WO2019244262A1 - Robot and robot hand - Google Patents

Robot and robot hand Download PDF

Info

Publication number
WO2019244262A1
WO2019244262A1 PCT/JP2018/023370 JP2018023370W WO2019244262A1 WO 2019244262 A1 WO2019244262 A1 WO 2019244262A1 JP 2018023370 W JP2018023370 W JP 2018023370W WO 2019244262 A1 WO2019244262 A1 WO 2019244262A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear guide
slider
gripping member
robot
actuator
Prior art date
Application number
PCT/JP2018/023370
Other languages
French (fr)
Japanese (ja)
Inventor
恵次郎 見須
諒宏 古川
崇允 齊藤
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to JP2019540678A priority Critical patent/JP6601650B1/en
Priority to CN201880094731.3A priority patent/CN112313048B/en
Priority to PCT/JP2018/023370 priority patent/WO2019244262A1/en
Publication of WO2019244262A1 publication Critical patent/WO2019244262A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members

Definitions

  • the disclosed embodiments relate to a robot and a robot hand.
  • Patent Literature 1 discloses a pair of pawls movable in directions of coming and coming from each other, an air cylinder connected to one pawl to stop and fix this pawl at an arbitrary predetermined position, and a pawl connected to the other pawl.
  • a gripping device including a servomotor capable of freely setting the gripping force of the claw is described.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a small-sized robot hand having a high gripping force and a robot having the same.
  • a robot having a robot arm and a robot hand attached to a tip of the robot arm, wherein the robot hand has a first grip.
  • a first linear guide including a member, a first slider to which the first gripping member is connected, and a first rail for guiding the first slider in a moving direction; and attaching the first slider to the first rail.
  • a second actuator having a first actuator for moving the second slider along the second gripper, a second slider to which the second gripper is connected, and a second rail for guiding the second slider in the moving direction.
  • a base member for fixing the second linear guide wherein the robot hand is configured such that a thrust of the second gripping member is larger than a thrust of the first gripping member, As the linear guide, a robot having a larger allowable moment than the allowable moment of the first linear guide is applied.
  • a robot hand attached to a distal end of a robot arm, comprising: a first gripping member, a first slider to which the first gripping member is connected, and the first slider.
  • a first linear guide having a first rail that guides in a movement direction, a first actuator that moves the first slider along the first rail, a second gripping member, and the second gripping member connected
  • a second linear guide having a second slider, a second rail that guides the second slider in the moving direction, and a second power source driven by a power source different from the first actuator.
  • a second actuator that moves along two rails; and a base member that fixes the first linear guide and the second linear guide.
  • a small-sized robot hand having a high gripping force and a robot having the same can be realized.
  • FIG. 2 is an explanatory diagram illustrating an example of a configuration of a robot system.
  • FIG. 3 is an explanatory diagram illustrating an example of a configuration of a front side of a robot hand.
  • FIG. 4 is an explanatory diagram illustrating an example of a configuration of a rear side of the robot hand. It is explanatory drawing showing an example of a structure of the base end part of a 2nd holding member.
  • FIG. 3 is an explanatory diagram illustrating an example of a configuration of a lower side of a robot hand.
  • FIG. 9 is an explanatory diagram illustrating an example of a gripping operation of the robot hand.
  • FIG. 9 is an explanatory diagram illustrating an example of a gripping operation of the robot hand.
  • FIG. 3 is a block diagram illustrating an example of a hardware configuration of a controller.
  • the robot system 1 of the present embodiment includes a robot 10, a container 20, and a conveyor 30.
  • the robot system 1 is a system in which a work W stored in a container 20 is taken out by a robot 10 and transferred to a conveyor 30.
  • a workpiece is moved from a container to a conveyor is described as an example.
  • a workpiece may be moved from a conveyor to a container, from a conveyor to a conveyor, or from a container to a container.
  • the container 20 is a container capable of accommodating a plurality of works W, and for example, a cardboard box, a container, a cargo, a weight, and the like are used.
  • the work W is not particularly limited as long as it can be gripped by the robot 10, but is, for example, a mechanical component or an electrical component (a substrate or the like) constituting the apparatus, a product, a product, a food, or the like in distribution.
  • the robot 10 sequentially takes out the works W from the container 20 and transfers them to the conveyor 30.
  • the container 20 is mounted on, for example, a cart 21 and is replaced with a new container 20 when the transfer of the work W is completed.
  • the container 20 may be placed on the floor without using the cart 21.
  • the conveyor 30 transports the workpiece W sequentially to a predetermined place.
  • the type of the conveyor is not particularly limited, such as a belt, a roller, and a chain. Further, a transfer device (robot or the like) other than the conveyor may be used.
  • the robot 10 has a robot arm 40, a robot hand 100, and a controller 50.
  • the robot arm 40 is an example of an actuator that can move the robot hand 100 in XYZ directions and ⁇ directions orthogonal to each other, and is, for example, a vertical multi-joint type six-axis robot having six joints.
  • the X direction is the transport direction of the conveyor 30
  • the Z direction is the vertical direction
  • the Y direction is a direction orthogonal to both the X and Y directions
  • the ⁇ direction is a rotation direction around the Z axis.
  • a robot hand 100 is attached to the tip of the robot arm 40.
  • the robot arm 40 moves the robot hand 100 to the position where the work W is received (in this example, the container 20), grips the work W, and moves the robot hand 100 to the position where the work W is placed (in this example, the conveyor 30).
  • the workpiece W is transferred by releasing the grip.
  • the robot arm 40 may be a robot other than six axes (for example, five axes or seven axes), or may be a robot other than a vertical articulated robot such as a horizontal articulated robot. Also, instead of a robot having a plurality of joints, an actuator that can move in at least one of the XYZ ⁇ directions may be used.
  • the robot arm 40 has a base 41, a turning part 42, and an arm part 43.
  • the base 41 is fixed to the floor F.
  • the robot 10 may be configured to be movable, for example, by providing an automatic guided vehicle (AGV).
  • AGV automatic guided vehicle
  • the turning part 42 is supported by the upper end of the base 41 so as to be able to turn around a rotation axis Ax1 substantially parallel to the vertical direction.
  • the turning portion 42 is turned around the rotation axis Ax1 with respect to the upper end of the base 41 by driving an actuator Ac1 provided at a joint between the turning portion 42 and the base 41.
  • the arm 43 is supported on one side of the turning part 42.
  • the arm 43 includes a lower arm 44, an upper arm 45, a wrist 46, and a flange 47.
  • the lower arm portion 44 is supported on one side of the turning portion 42 so as to be rotatable around a rotation axis Ax2 substantially perpendicular to the rotation axis Ax1.
  • the lower arm portion 44 is driven to rotate about the rotation axis Ax2 with respect to one side of the turning portion 42 by driving an actuator Ac2 provided at a joint portion between the lower arm portion 44 and the turning portion 42.
  • the upper arm portion 45 is supported on the distal end side of the lower arm portion 44 so as to be rotatable around a rotation axis Ax3 substantially parallel to the rotation axis Ax2 and rotatable around a rotation axis Ax4 substantially perpendicular to the rotation axis Ax3.
  • the upper arm 45 is driven to rotate around the rotation axis Ax3 with respect to the distal end side of the lower arm 44 by driving an actuator Ac3 provided at a joint between the upper arm 45 and the lower arm 44.
  • the upper arm 45 is driven to rotate around the rotation axis Ax4 with respect to the distal end side of the lower arm 44 by the driving of the actuator Ac4 provided between the upper arm 45 and the actuator Ac3.
  • the wrist portion 46 is supported on the tip side of the upper arm portion 45 so as to be rotatable around a rotation axis Ax5 substantially perpendicular to the rotation axis Ax4.
  • the wrist 46 is turned around the rotation axis Ax5 with respect to the distal end side of the upper arm 45 by driving an actuator Ac5 provided at a joint between the wrist 46 and the upper arm 45.
  • the flange portion 47 is rotatably supported on the distal end side of the wrist portion 46 about a rotation axis Ax6 substantially perpendicular to the rotation axis Ax5.
  • the flange portion 47 is driven to rotate about the rotation axis Ax6 with respect to the tip end of the wrist portion 46 by driving an actuator Ac6 provided at a joint between the flange portion 47 and the wrist portion 46.
  • the robot hand 100 is attached to the tip of the flange portion 47, and rotates around the rotation axis Ax6 with the rotation of the flange portion 47 around the rotation axis Ax6.
  • the robot hand 100 has an attachment member 101, a base member 102, and grip members 103 and 104. The detailed structure of the robot hand 100 will be described later.
  • the actuators Ac1 to Ac6 for driving the joints are composed of, for example, a servomotor, a speed reducer, a brake, and the like. Note that the servomotor, the speed reducer, the brake, and the like do not necessarily need to be arranged on the rotation axes Ax1 to Ax6, and may be arranged at positions away from these rotation axes Ax1 to Ax6.
  • rotation about the rotation axis along the longitudinal direction (or the extending direction of the arm) of the arm 43 is referred to as “rotation” and is substantially perpendicular to the longitudinal direction (or the extending direction of the arm) of the arm 43.
  • the rotation about the rotation axis is called “turning” and is distinguished.
  • the controller 50 is attached to, for example, the base 41 of the robot arm 40.
  • the controller 50 is composed of, for example, one or more computers having a computing unit (CPU), a recording device, an input device, and the like (see FIG. 8 described later).
  • the controller 50 controls the driving of the actuators Ac1 to Ac6 provided on the robot arm 40 and the servo motor 105 and the air cylinder 106, which will be described later, provided on the robot hand 100. Control the operation of.
  • the controller 50 may be arranged separately from the robot arm 40. In the controller 50, a part that controls the robot arm 40 and a part that controls the robot hand 100 may be separated. In this case, a part that controls the robot hand 100 may be attached to the robot hand 100. Further, the controller 50 may be configured by one or a combination of a programmable logic controller (PLC) and a robot controller (RC).
  • PLC programmable logic controller
  • RC robot controller
  • FIGS. 2 does not show the attachment member 101
  • FIG. 3 shows the attachment member 101 in a transparent manner.
  • directions such as up, down, left, right, front, and back are appropriately used for convenience of description of the configuration of the robot hand 100.
  • the extending direction of the grip members 103 and 104 is referred to as the front-rear direction
  • the moving direction of the grip members 103 and 104 is referred to as the left-right direction
  • the direction orthogonal to the front-rear direction and the left-right direction is referred to as the up-down direction.
  • each direction of the robot hand 100 changes depending on the posture of the robot arm 40, and does not limit the positional relationship of each component of the robot hand 100.
  • the robot hand 100 includes a mounting member 101, a base member 102, a first gripping member 103, a second gripping member 104, a first actuator 105, and a second actuator 106. , A servo motor 105, an air cylinder 106, a first linear guide 107, and a second linear guide 108.
  • the first actuator 105 and the second actuator 106 are driven by different power sources.
  • a servomotor also referred to as “servomotor 105”
  • an air cylinder also referred to as “air cylinder 106”
  • the base member 102 fixes the first linear guide 107 and the second linear guide 108 and the like.
  • the base member 102 is, for example, a substantially rectangular parallelepiped member, and has a front surface 102f, a rear surface 102b, an upper surface 102u, a lower surface 102d, a left surface 102l, and a right surface 102r.
  • the front surface 102f and the rear surface 102b are parallel to each other with the base member 102 interposed therebetween.
  • the upper surface 102u, the lower surface 102d, the left surface 102l, and the right surface 102r are orthogonal to the front surface 102f and the rear surface 102b, respectively.
  • the space near the front of the base member 102 including the front surface 102f is the front side (an example of the first side)
  • the space near the rear of the base member 102 including the rear surface 102b is the rear side
  • the base including the upper surface 102u is the upper side
  • the lower neighboring space of the base member 102 including the lower surface 102d is the lower side (an example of the second side)
  • the left neighboring space of the base member 102 including the left surface 102l is the left side, the right side.
  • the space near the right side of the base member 102 including the base member 102r is also referred to as the right side.
  • the first linear guide 107 is disposed along the left-right direction on the front side of the base member 102 (which may be on the front surface 102f or may be separated).
  • the first linear guide 107 has a first slider 110 to which the first gripping member 103 is connected, and a first rail 109 that guides the first slider 110 in a moving direction (in this example, a left-right direction).
  • the first rail 109 includes a pair of rail members arranged in parallel with each other.
  • the first slider 110 is connected to the first holding member 103 via the first movable plate 111.
  • the first slider 110 is composed of two sliders arranged at a predetermined distance in the moving direction.
  • the first guide length GL1 which is the distance from one end to the other end in the moving direction of the entire slider, can be increased.
  • the moment allowable by the first linear guide 107 (moment generated in the first linear guide 107 due to the reaction force acting on the first gripping member 103 when the workpiece W is gripped) can be increased.
  • the number of the first sliders 110 is not limited to two. If the first linear guide 107 can tolerate a moment due to the reaction force of the first holding member 103, for example, the first slider may be one. Or three or more.
  • the first movable plate 111 has a shape that is bent in a substantially L-shape when viewed from above and below.
  • the first movable plate 111 has a plate main body 112 connected to the two first sliders 110 and a connecting part 113 bent forward from the plate main body 112 and projected.
  • the first gripping member 103 is detachably connected to the connecting portion 113 of the first movable plate 111 by, for example, a screw (not shown).
  • the first linear guide 107 has a transmission mechanism 114 and a ball screw 115.
  • the transmission mechanism 114 is disposed on the left side of the base member 102 (may be on the left surface 102l or may be separated therefrom).
  • the transmission mechanism 114 has, for example, a pulley and a timing belt (not shown) inside, and transmits the rotational drive of the servo motor 105 to the ball screw 115.
  • the ball screw 115 is engaged with the first slider 110 via a ball (not shown), and the rotational movement of the ball screw 115 is converted into a linear movement of the first slider 110.
  • the servo motor 105 moves the first slider 110 along the first rail 109, the first gripping member 103 can move in a relatively long stroke S1 in the left-right direction.
  • the servomotor 105 is disposed on the rear side of the base member 102 so that the rotation axis extends in the left-right direction.
  • the servomotor 105 is supported at a predetermined distance from the rear surface 102b using the support member 116 because the transmission mechanism 114 requires a predetermined length in the front-rear direction due to its structure.
  • the servomotor 105 may be disposed on the rear surface 102b by reducing the length of the transmission mechanism 114 or increasing the thickness of the base member 102 in the front-rear direction.
  • the second linear guide 108 is disposed below the base member 102 (which may be on the lower surface 102d or may be separated) along the left-right direction.
  • the second linear guide 108 has a second slider 118 to which the second gripping member 104 is connected, and a second rail 117 that guides the second slider 118 in the moving direction (left and right direction in this example).
  • the second slider 118 is connected to the second gripping member 104 via the second movable plate 119.
  • the second linear guide 108 has a larger allowable moment than the allowable moment of the first linear guide 107. That is, when the robot hand 100 grips the workpiece W, an allowable moment generated in the second linear guide 108 due to the reaction force acting on the second gripping member 104 is reduced by the reaction force acting on the first gripping member 103. It is larger than the allowable moment generated in one linear guide 107.
  • such a structure is realized by the following means.
  • the second slider 118 is constituted by two sliders which are arranged at a predetermined distance (a distance larger than the first slider 110) in the moving direction.
  • the second guide length GL2 which is the distance from one end to the other end in the moving direction of the entire slider, can be increased.
  • the second guide length GL2 is configured to be longer than the first guide length GL1, and has a wide distance close to, for example, the left-right dimension of the base member 102.
  • the allowable moment in the second linear guide 108 can be made larger than the allowable moment in the first linear guide 107.
  • the number of the second sliders 118 is not limited to two, and may be one or three or more as long as the second guide length GL2 can be secured by a predetermined distance. Further, the second rail 117 may be divided into a plurality of parts and installed at positions corresponding to the arrangement of the second slider 118.
  • the second movable plate 119 has a shape that is bent substantially in an L-shape when viewed from above and below.
  • the second movable plate 119 has a plate main body 120 connected to the two second sliders 118, and a connecting part 121 bent forward from the plate main body 120 and projected.
  • the connecting portion 121 is formed such that the width in the left-right direction is larger than that of the second gripping member 104.
  • the second holding member 104 is detachably connected to the connection portion 121 of the second movable plate 119 by, for example, a screw (not shown).
  • the air cylinder 106 is positioned on the rear side of the base member 102 (on the surface of the rear surface 102 b or may be separated) so that the moving direction of the rod 106 a is along the left-right direction.
  • the thrust of the air cylinder 106 is increased and transmitted to the second movable plate 119 and the second slider 118.
  • a mechanism 122 is provided.
  • the booster mechanism 122 is a mechanism using a so-called lever.
  • the booster mechanism 122 includes a shaft member 123, a plate member 124 rotatable around the shaft member 123, a connecting member 125 rotatably connecting one end of the plate member 124 and a tip of the rod 106 a, and a plate member 124.
  • a connection member 126 that rotatably connects the end and the side surface of the second movable plate 119;
  • the shaft member 123, the connecting member 125, and the connecting member 126 respectively function as a fulcrum, a power point, and an action point of the lever. That is, the force increasing mechanism 122 increases the thrust of the air cylinder 106 according to the ratio of the distance between the shaft member 123 and the connecting member 125 to the distance between the shaft member 123 and the connecting member 126.
  • the thrust of the second gripping member 104 increased by the force intensifying mechanism 122 by the air cylinder 106 is configured to be larger than the thrust of the first gripping member 103 by the servomotor 105.
  • the robot hand 100 is configured such that the thrust of the second gripping member 104 is larger than the thrust of the first gripping member 103.
  • the boosting mechanism 122 may be a mechanism other than the lever, as long as the mechanism can increase the thrust of the air cylinder 106, such as a mechanism using a rack and a pinion and a plurality of gears.
  • the air cylinder 106 and the second linear guide 108 are spaced apart in the vertical direction (an example of a first direction) via a booster mechanism 122.
  • the servo motor 105 and the first linear guide 107 are disposed on the rear side and the front side of the base member 102, respectively, so as to be located between the air cylinder 106 and the second linear guide 108 in the vertical direction. I have.
  • the first linear guide 107 and the second linear guide 108 are provided on the base member 102 so as to cover substantially all of the extended areas of the first rail 109 and the second rail 117 (of the base member 102).
  • the dimension in the left-right direction overlaps (wraps) in the movement direction (left-right direction), and is fixed at a position shifted from each other in a direction (vertical direction) orthogonal to the movement direction.
  • the first rail 109 and the second rail 117 are arranged so that substantially all of them overlap in the moving direction. However, only a part of the extension area of the first rail 109 and the second rail 117 is moved in the moving direction. May be arranged so as to overlap.
  • the robot hand 100 has a camera 127 (an example of a sensor) and a displacement sensor 128.
  • the camera 127 is attached above the front side of the base member 102 (which may be on the surface of the front surface 102f or may be separated), and is an object to be gripped by the first gripping member 103 and the second gripping member 104. Is imaged.
  • the controller 50 acquires the image information of the work W from the camera 127, thereby recognizing the type, size, shape, position, posture, and the like of the work W, and operating the robot arm 40 and the robot hand 100 according to the result. Control.
  • a camera cable 129 connected to the camera 127 is also disposed along the left-right direction via a fixture (not shown) on the front side of the base member 102.
  • the displacement sensor 128 is a laser sensor that detects a distance from the workpiece W. Since the displacement sensor 128 has a relatively large dimension in the front-rear direction, the displacement sensor 128 is attached to a sensor attachment member 130 provided by cutting out the upper left portion of the base member 102. That is, the displacement sensor 128 is disposed above the base member 102 via the sensor mounting member 130.
  • the controller 50 controls the operations of the robot arm 40 and the robot hand 100 according to the detection result from the displacement sensor 128.
  • the camera 127 and the displacement sensor 128 may be arranged in places other than the above.
  • the camera 127 may be arranged above or below the base member 102, or the displacement sensor 128 may be arranged above or below the base member 102.
  • another type of sensor may be provided in addition to or instead of the camera 127 and the displacement sensor 128.
  • one or both of the camera 127 and the displacement sensor 128 may not be installed on the robot hand 100 but may be installed on another location (for example, the robot arm 40 or the like).
  • the robot hand 100 has a mounting member 101.
  • the attachment member 101 is attached to the distal end (flange portion 47) of the robot arm 40 and supports the entire robot hand 100.
  • the mounting member 101 has a plate portion 101a fixed to the flange portion 47 and a plurality (for example, four) of leg portions 101b to 101e. As shown in FIG. 3, each of the legs 101b to 101e is connected to the rear surface 102b of the base member 102 while avoiding the disposed devices.
  • the plate portion 101a of the attachment member 101 is fixed to the base member 102 with a gap between the base member 102 and the opposite side (rear side) of the first holding member 103 and the second holding member 104 with respect to the base member 102, It is attached to the tip of the robot arm 40.
  • a space is provided between the distal end of the robot arm 40 and the base member 102, in which the servo motor 105, the air cylinder 106, the booster 122, and the like are installed.
  • the attachment member 101 is a member that attaches the base member 102 of the robot hand 100 to the robot arm 40 by offsetting the base member 102 by a predetermined distance from the tip of the robot arm 40.
  • servomotor 105 and the air cylinder 106 may be installed in the installation space formed by the mounting member 101, or another device may be installed in addition to or instead of these.
  • Robot hand gripping operation Next, an example of a gripping operation of the robot hand 100 under the control of the controller 50 will be described with reference to FIGS. 6 and 7.
  • the controller 50 drives the servo motor 105 and the air cylinder 106 to move the first gripping member 103 and the second gripping member 104 to the most distant positions in the respective stroke ranges or the workpiece W to be gripped. If the size is known, it is moved to a position farther apart by a predetermined value than the size, and the gripping members 103 and 104 are opened.
  • the controller 50 operates the robot arm 40 to move the robot hand 100 to the position for receiving the workpiece W. At this time, the controller 50 controls the position of the robot arm 40 using the innermost position in the range of the stroke S2 of the second gripping member 104 as a reference position.
  • the controller 50 drives the air cylinder 106 to move the second gripping member 104 to the innermost position (the end of the stroke S2) in the range of the stroke S2.
  • the holding member 104 is brought into contact with the work W.
  • the controller 50 drives the servomotor 105 to move the first gripping member 103 so as to approach the second gripping member 104, and to bring the first gripping member 103 into contact with the workpiece W. Hold.
  • the controller 50 may perform torque control of the servomotor 105 to control the gripping force to be constant.
  • the controller 50 operates the robot arm 40 to move the robot hand 100 to the position where the work W is placed. Then, the first holding member 103 and the second holding member 104 are moved in the opening direction, and the workpiece W is placed. At this time, the controller 50 may move only one of the first gripping member 103 and the second gripping member 104, or may move both.
  • the first gripping member 103 is moved after the second gripping member 104 is moved to the end of the stroke S2. However, the stroke end of the second gripping member 104 is not moved until the workpiece W is gripped. If the movement to the section is completed, the second gripping member 104 and the first gripping member 103 may be operated simultaneously.
  • the robot hand 100 of the present embodiment is configured such that the thrust of the second gripping member 104 is greater than the thrust of the first gripping member 103, and the second linear guide 108 is The allowable moment is larger than the allowable moment in the linear guide 107. If the allowable moments of the first linear guide 107 and the second linear guide 108 are substantially the same and the thrust is made to correspond to the first gripping member 103 having a small thrust, the allowable moment of the second linear guide 108 is restricted. The large thrust of the second gripping member 104 cannot be used, and a high gripping force cannot be realized.
  • the first linear guide 107 becomes unnecessarily large, and 100 is increased.
  • the robot 10 including the robot hand 100 having a small size and a high gripping force.
  • the second guide length GL2 of the second slider 118 is made larger than the first guide length GL1 of the first slider 110.
  • the reaction force acting on each gripping member 103, 104 causes the first linear guide 107 and the second linear guide 108 to have a moment.
  • the thrust of the second gripping member 104 by the air cylinder 106 is set to be larger than the thrust of the first gripping member 103 by the servomotor 105, the moment acting on the second linear guide 108 is equal to the first linear guide. It becomes larger than 107.
  • the moment allowable by the second linear guide 108 can be more reliably made than by the first linear guide 107. Can increase. Thereby, it is possible to improve the reliability of obtaining a high gripping force. Further, since the magnitude of the allowable moment is adjusted by the guide length of the slider, it is possible to use the same type of linear guide without using, for example, linear guides of different material strengths and types, thereby reducing costs.
  • the first actuator 105 is a servo motor and the second actuator 106 is an air cylinder
  • the thrust of an air cylinder is relatively large, but there is a problem that an increase in stroke causes an increase in size.
  • a servo motor can secure a large stroke, but has a relatively small thrust. For this reason, when the capacity of the motor is increased or the number of motors is increased in order to increase the gripping force, there is a problem that the size and weight are increased.
  • the first gripping member 103 is driven by the servo motor 105 and the second gripping member 104 is driven by the air cylinder 106.
  • the second gripping member 104 only needs to have a small stroke S2 that can grip and release the workpiece W. Therefore, the first gripping member 103 can control the large stroke S1 while suppressing the air cylinder 106 from increasing in size. Can be secured.
  • a gripping force can be secured without increasing the capacity or the number of motors. Therefore, a small and lightweight robot hand 100 having high gripping force and a large stroke and improved versatility can be realized.
  • the base member 102 overlaps the first linear guide 107 and the second linear guide 108 with at least a part of each of the first rail 109 and the second rail 117 in the moving direction,
  • the first linear guide 107 and the second linear guide 108 which are likely to be long in the moving direction of the first slider 110 and the second slider 118, can be arranged in parallel.
  • the first and second linear guides are connected in series.
  • the size in the moving direction (stroke direction) of the robot hand 100 can be significantly reduced as compared with the case where the robot hand 100 is arranged.
  • the robot 10 including the small and highly versatile robot hand 100 can be realized.
  • the robot hand 100 is fixed to the base member 102 with a gap between the base member 102 and the first gripping member 103 and the second gripping member 104 on the opposite side to the base member 102,
  • the servo motor 105 and the air cylinder 106 are further attached to the base member 102 in the above gap, the following effects are obtained when the robot further includes an attachment member 101 (plate portion 101a) attached to the tip of the robot arm 40.
  • the servo motor 105 and the air cylinder 106 are collectively arranged on the side (rear side) of the base member 102 to be attached to the robot arm 40 by the attaching member 101, and the installation space for other devices (such as sensor devices) is provided on the front side or the like.
  • the arrangement of the devices can be optimized by effectively utilizing the space on the rear side. Therefore, the size of the robot hand 100 can be reduced.
  • the base member 102 of the robot hand 100 can be offset by a predetermined distance from the tip of the robot arm 40 by the attachment member 101, the wrist portion is smaller than when the base member 102 is directly attached to the tip of the robot arm 40.
  • the movable range of 46 can be expanded, and the degree of freedom of the posture of the robot 10 can be improved.
  • the dimension in the parallel direction can be reduced as compared with the case where, for example, the first linear guide 107 and the second linear guide 108 are mounted side by side on the same direction side (for example, the front side) of the base member 102.
  • the total length of the robot 10 can be shortened as compared with the case where the first linear guide 107 and the second linear guide 108 are respectively attached to the opposite sides (for example, the front side and the rear side) of the base member 102.
  • the robot hand 100 can be reduced in size and weight.
  • the stroke S2 of the second gripping member 104 is reduced by the force increasing mechanism 122, there is no problem since the second gripping member 104 only needs to have a stroke small enough to grip and release the work W.
  • the air cylinder 106 and the second linear guide 108 are vertically separated from each other via a booster 122, and the servo motor 105 and the first linear guide 107 are When the base member 102 is disposed so as to be located between the first linear guide 108 and the second linear guide 108, the following effects are obtained.
  • the air cylinder 106 and the second linear guide 108 are disposed apart from each other due to the mechanism.
  • the dead space can be reduced and the robot hand 100 can be made compact by arranging and effectively utilizing the servomotor 105 in that space.
  • the robot hand 100 includes a first movable plate 111 that connects the first slider 110 and the first gripping member 103, and a second movable plate that connects the second slider 118 and the second gripping member 104.
  • first gripping member 103 is detachably connected to the first movable plate 111 and the second gripping member 104 is detachably connected to the second movable plate 119, the following is performed. Effect.
  • the first gripping member 103 and the second gripping member 104 can be changed (replaced) to corresponding gripping members according to the type, size, shape, and the like of the workpiece W to be gripped. Therefore, it is possible to cope with various works W, so that versatility can be further improved.
  • the second movable plate 119 is formed so as to bend in the extending direction of the second gripping member 104 and have a width dimension in the moving direction (left-right direction) larger than that of the second gripping member 104.
  • the rigidity of the base of the second gripping member 104 can be improved.
  • the deformation for example, deformation in the expanding direction
  • the positioning accuracy of the workpiece W while securing a high gripping force. Can be improved.
  • the robot hand 100 is attached to the front side of the base member 102 to which the first linear guide 107 is attached, and the workpiece W to be gripped by the first gripping member 103 and the second gripping member 104.
  • the following effects are obtained when the camera 127 for detecting is provided.
  • the controller 50 recognizes the type, size, shape, position, posture, and the like of the work W based on the detection result of the camera 127, and can control the operations of the robot arm 40 and the robot hand 100 according to the result. Therefore, the reliability of the gripping operation can be improved.
  • the second gripping member 104 may stop in the middle of the stroke S2.
  • the stop position cannot be grasped, and the positioning accuracy of the work W may be reduced.
  • the stop position of the second gripping member 104 can be grasped, and the position based on the position is determined. By performing the control, the positioning accuracy of the work W can be improved.
  • the second guide length GL2 of the second slider 118 is made longer than the first guide length GL1 of the first slider 110, so that the allowable moment of the second linear guide 108 is reduced. Larger than the moment.
  • the means for making the allowable moment of the second linear guide 108 larger than that of the first linear guide 107 is not limited to the length of the guide length, and other means such as increasing the holding strength of the slider may be used. May be. This modification is an example in which the holding strength of the second slider 118 is made stronger than that of the first slider 110.
  • two second sliders 118 are arranged close to each other, and the first guide length GL1 of the first slider 110 and the second guide length GL2 of the second slider 118 are substantially the same. It is configured to be length. Further, by disposing the second slider 118 close to the second rail 117, unnecessary portions of the second rail 117 are removed as long as the stroke S2 of the second gripping member 104 can be secured, and the rail length is shortened. Similarly, unnecessary portions of the second movable plate 119 are also removed as long as the connection with the second slider 118 can be ensured, and the length in the left-right direction is reduced.
  • the second slider 118 and the second rail 117 constituting the second linear guide 108 are formed to be thicker in the vertical direction than in the above-described embodiment, and the holding strength of the second slider 118 is lower than that of the first slider 110. It is configured to be larger than the holding strength. As a result, even if the first guide length GL1 and the second guide length GL2 are substantially the same length, the allowable moment of the second linear guide 108 is larger than the allowable moment of the first linear guide 107.
  • the following effects can be further obtained. That is, since the useless lengths of the second rail 117 and the second movable plate 119 are reduced, the number of mounting steps such as the number of screws can be reduced, the cost can be reduced, and the weight can be reduced. Further, the space occupied by the second rail 117 and the second movable plate 119 can be reduced, so that the degree of freedom in layout can be increased.
  • the second slider 118 is configured by a plurality of sliders, but the second slider 118 may be configured as a single slider.
  • the second slider 118 is configured as one slider that is long in the left-right direction.
  • the second guide length GL2 which is the distance from one end to the other end in the movement direction of the entire slider of the second slider 118, is configured to be longer than the first guide length GL1 of the first slider 110. ing.
  • the allowable moment of the second linear guide 108 is larger than the allowable moment of the first linear guide 107.
  • the second rail 117 is configured as one rail.
  • the second rail 117 may be configured to be divided into a plurality (for example, the same number as the number of the second sliders 118).
  • the second linear guide 108 has two second sliders 118 and two second rails 117 that guide each of the two second sliders 118.
  • the second rail 117 is divided into two at positions corresponding to the two second sliders 118.
  • Each of the second rails 117 is formed to have a length that can secure the stroke S2 of the second gripping member 104, and the second rail 117 is not provided at an intermediate portion in the left-right direction.
  • the second guide length GL2 of the second slider 118 is configured to be longer than the first guide length GL1 of the first slider 110.
  • the following effects can be further obtained. That is, since the useless rail length of the second rail 117 is reduced, the number of mounting steps such as the number of screws can be reduced, the cost can be reduced, and the weight can be reduced. Further, since the space occupied by the second rail 117 can be reduced, the degree of freedom in layout can be increased.
  • the first gripping member 103 driven by the servo motor 105 is arranged on the right side
  • the second gripping member 104 driven by the air cylinder 106 is arranged on the left side.
  • the left side and the second gripping member 104 may be arranged on the right side.
  • the servo motor 105, the air cylinder 106, the first linear guide 107, the second linear guide 108, and the like may be arranged to be left and right opposite.
  • a servo motor power source is electric
  • an air cylinder air is power source
  • an actuator using another power source oil pressure, steam, or the like
  • Example of controller hardware configuration> Next, an example of a hardware configuration of the controller 50 described above will be described with reference to FIG. In FIG. 8, the configuration related to the function of supplying the driving power of the controller 50 is omitted as appropriate.
  • the controller 50 includes, for example, a CPU 901, a ROM 903, a RAM 905, a dedicated integrated circuit 907 constructed for a specific use such as an ASIC or an FPGA, an input device 913, and an output device 915. , A recording device 917, a drive 919, a connection port 921, and a communication device 923. These components are connected so that signals can be transmitted to each other via a bus 909 and an input / output interface 911.
  • the program can be recorded in, for example, the ROM 903, the RAM 905, the recording device 917, or the like.
  • the program is temporarily or non-temporarily (permanently) recorded on a magnetic disk such as a flexible disk, an optical disk such as various CD / MO disks / DVDs, or a removable recording medium 925 such as a semiconductor memory. You can keep it.
  • a recording medium 925 can be provided as so-called package software.
  • the programs recorded on these recording media 925 may be read by the drive 919 and recorded on the recording device 917 via the input / output interface 911, the bus 909, and the like.
  • the program can also be recorded on, for example, a download site, another computer, another recording device, or the like (not shown).
  • the program is transferred via a network NW such as a LAN or the Internet, and the communication device 923 receives the program.
  • NW such as a LAN or the Internet
  • the program received by the communication device 923 may be recorded in the recording device 917 via the input / output interface 911, the bus 909, and the like.
  • the program can also be recorded on, for example, an appropriate externally connected device 927.
  • the program may be transferred through an appropriate connection port 921 and recorded in the recording device 917 via the input / output interface 911, the bus 909, or the like.
  • the CPU 901 performs various processes in accordance with the program recorded in the recording device 917, thereby realizing the control of the gripping operation of the robot hand 100 and the like.
  • the CPU 901 may, for example, directly read out the program from the recording device 917 and execute the program, or may execute the program once loaded in the RAM 905. Further, for example, when the CPU 901 receives a program via the communication device 923, the drive 919, and the connection port 921, the CPU 901 may directly execute the received program without recording it in the recording device 917.
  • the CPU 901 may perform various processes based on signals and information input from the input device 913 such as a mouse, a keyboard, and a microphone (not shown), as necessary.
  • the input device 913 such as a mouse, a keyboard, and a microphone (not shown), as necessary.
  • the CPU 901 may output the result of executing the above processing from an output device 915 such as a display device or an audio output device, and the CPU 901 may transmit the processing result to the communication device 923 and the connection device 923 as necessary.
  • the data may be transmitted via the port 921 or may be recorded on the recording device 917 or the recording medium 925.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

[Problem] To provide a compact and highly versatile robot hand and a robot which is provided with the same. [Solution] A robot hand (100) is provided with a first gripping member (103), a first linear guide (107) which is provided with a first slider (110) and a first rail (109), a servo motor (105) which moves the first slider (110) along the first rail (109), a second gripping member (104), a second linear guide (108) which is provided with a second slider (118) and a second rail (117), an air cylinder (106) which moves the second slider (118) along the second rail (117), and a base member (102) to which the first linear guide (107) and the second linear guide (108) are affixed. The robot hand (100) is configured so that the thrust of the second gripping member (104) is greater than the thrust of the first gripping member (103). The second linear guide (108) has higher allowable moment than the first linear guide (107).

Description

ロボット及びロボットハンドRobots and robot hands
 開示の実施形態は、ロボット及びロボットハンドに関する。 The disclosed embodiments relate to a robot and a robot hand.
 従来、複数の把持部を駆動させる駆動源としてサーボモータとエアシリンダを備えたロボットハンドが知られている。例えば特許文献1には、互いに接離する方向へ移動自在な一対の爪と、一方の爪に連結されてこの爪を予め設定した任意の位置に停止固定させるエアシリンダと、他方の爪に連結されてこの爪の把持力を任意に設定自在なサーボモータと、を備えた把持装置が記載されている。 Conventionally, a robot hand including a servomotor and an air cylinder as a drive source for driving a plurality of gripping portions is known. For example, Patent Literature 1 discloses a pair of pawls movable in directions of coming and coming from each other, an air cylinder connected to one pawl to stop and fix this pawl at an arbitrary predetermined position, and a pawl connected to the other pawl. In addition, a gripping device including a servomotor capable of freely setting the gripping force of the claw is described.
特開平10-5932号公報JP-A-10-5932
 上記従来技術の把持装置において、大型化を抑えつつ把持力の向上を図る場合、装置構成の更なる最適化が要望される。 に お い て In the gripping device of the prior art described above, if the gripping force is to be improved while suppressing an increase in size, further optimization of the device configuration is required.
 本発明はこのような問題点に鑑みてなされたものであり、小型で把持力の高いロボットハンド及びこれを備えたロボットを提供することを目的とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a small-sized robot hand having a high gripping force and a robot having the same.
 上記課題を解決するため、本発明の一の観点によれば、ロボットアームと、前記ロボットアームの先端に取り付けられたロボットハンドと、を備えたロボットであって、前記ロボットハンドは、第1把持部材と、前記第1把持部材が連結された第1スライダと、前記第1スライダを移動方向にガイドする第1レールとを備えた第1リニアガイドと、前記第1スライダを前記第1レールに沿って移動させる第1アクチュエータと、第2把持部材と、前記第2把持部材が連結された第2スライダと、前記第2スライダを前記移動方向にガイドする第2レールとを備えた第2リニアガイドと、前記第1アクチュエータと異なる動力源で駆動され、前記第2スライダを前記第2レールに沿って移動させる第2アクチュエータと、前記第1リニアガイドと前記第2リニアガイドを固定するベース部材と、を備え、前記ロボットハンドは、前記第2把持部材の推力が前記第1把持部材の推力よりも大きくなるように構成されており、前記第2リニアガイドは、前記第1リニアガイドにおける許容モーメントよりも大きな許容モーメントを有する、ロボットが適用される。 According to one embodiment of the present invention, there is provided a robot having a robot arm and a robot hand attached to a tip of the robot arm, wherein the robot hand has a first grip. A first linear guide including a member, a first slider to which the first gripping member is connected, and a first rail for guiding the first slider in a moving direction; and attaching the first slider to the first rail. A second actuator having a first actuator for moving the second slider along the second gripper, a second slider to which the second gripper is connected, and a second rail for guiding the second slider in the moving direction. A guide, a second actuator driven by a power source different from the first actuator, and configured to move the second slider along the second rail; and a first linear guide. And a base member for fixing the second linear guide, wherein the robot hand is configured such that a thrust of the second gripping member is larger than a thrust of the first gripping member, As the linear guide, a robot having a larger allowable moment than the allowable moment of the first linear guide is applied.
 また、本発明の別の観点によれば、ロボットアームの先端に取り付けられるロボットハンドであって、第1把持部材と、前記第1把持部材が連結された第1スライダと、前記第1スライダを移動方向にガイドする第1レールとを備えた第1リニアガイドと、前記第1スライダを前記第1レールに沿って移動させる第1アクチュエータと、第2把持部材と、前記第2把持部材が連結された第2スライダと、前記第2スライダを前記移動方向にガイドする第2レールとを備えた第2リニアガイドと、前記第1アクチュエータと異なる動力源で駆動され、前記第2スライダを前記第2レールに沿って移動させる第2アクチュエータと、前記第1リニアガイドと前記第2リニアガイドを固定するベース部材と、を備え、前記ロボットハンドは、前記第2把持部材の推力が前記第1把持部材の推力よりも大きくなるように構成されており、前記第2リニアガイドは、前記第1リニアガイドにおける許容モーメントよりも大きな許容モーメントを有する、ロボットハンドが適用される。 According to another aspect of the present invention, there is provided a robot hand attached to a distal end of a robot arm, comprising: a first gripping member, a first slider to which the first gripping member is connected, and the first slider. A first linear guide having a first rail that guides in a movement direction, a first actuator that moves the first slider along the first rail, a second gripping member, and the second gripping member connected A second linear guide having a second slider, a second rail that guides the second slider in the moving direction, and a second power source driven by a power source different from the first actuator. A second actuator that moves along two rails; and a base member that fixes the first linear guide and the second linear guide. (2) The robot hand is configured such that the thrust of the gripping member is larger than the thrust of the first gripping member, and the second linear guide has a larger allowable moment than the allowable moment of the first linear guide. Applied.
 本発明によれば、小型で把持力の高いロボットハンド及びこれを備えたロボットを実現できる。 According to the present invention, a small-sized robot hand having a high gripping force and a robot having the same can be realized.
ロボットシステムの構成の一例を表す説明図である。FIG. 2 is an explanatory diagram illustrating an example of a configuration of a robot system. ロボットハンドの前側の構成の一例を表す説明図である。FIG. 3 is an explanatory diagram illustrating an example of a configuration of a front side of a robot hand. ロボットハンドの後側の構成の一例を表す説明図である。FIG. 4 is an explanatory diagram illustrating an example of a configuration of a rear side of the robot hand. 第2把持部材の基端部の構成の一例を表す説明図である。It is explanatory drawing showing an example of a structure of the base end part of a 2nd holding member. ロボットハンドの下側の構成の一例を表す説明図である。FIG. 3 is an explanatory diagram illustrating an example of a configuration of a lower side of a robot hand. ロボットハンドの把持動作の一例を表す説明図である。FIG. 9 is an explanatory diagram illustrating an example of a gripping operation of the robot hand. ロボットハンドの把持動作の一例を表す説明図である。FIG. 9 is an explanatory diagram illustrating an example of a gripping operation of the robot hand. 第2スライダの保持強度を第1スライダよりも強くした変形例における、ロボットハンドの前側の構成の一例を表す説明図である。It is explanatory drawing showing an example of the structure of the front side of a robot hand in the modification which made the holding strength of the 2nd slider stronger than the 1st slider. 第2スライダが単体のスライダとして構成された変形例における、ロボットハンドの前側の構成の一例を表す説明図である。It is explanatory drawing showing an example of a structure of the front side of a robot hand in the modification which comprised the 2nd slider as a single slider. 第2レールを分割配置した変形例における、ロボットハンドの前側の構成の一例を表す説明図である。It is explanatory drawing showing an example of the structure of the front side of a robot hand in the modification which divided | segmented and arrange | positioned the 2nd rail. コントローラのハードウェア構成の一例を表すブロック図である。FIG. 3 is a block diagram illustrating an example of a hardware configuration of a controller.
 以下、一実施の形態について図面を参照しつつ説明する。 Hereinafter, an embodiment will be described with reference to the drawings.
 <1.ロボットシステムの構成>
 まず、図1を参照しつつ、本実施形態に係るロボットシステムの構成の一例について説明する。
<1. Configuration of Robot System>
First, an example of the configuration of the robot system according to the present embodiment will be described with reference to FIG.
 図1に示すように、本実施形態のロボットシステム1は、ロボット10と、容器20と、コンベア30とを有する。ロボットシステム1は、ロボット10により容器20に収容されるワークWを取り出してコンベア30に移載するシステムである。なお、本実施形態では一例として容器からコンベアにワークを移動する場合を一例として説明するが、例えばコンベアから容器、コンベアからコンベア、容器から容器にワークを移動してもよい。 As shown in FIG. 1, the robot system 1 of the present embodiment includes a robot 10, a container 20, and a conveyor 30. The robot system 1 is a system in which a work W stored in a container 20 is taken out by a robot 10 and transferred to a conveyor 30. In the present embodiment, a case where a workpiece is moved from a container to a conveyor is described as an example. However, for example, a workpiece may be moved from a conveyor to a container, from a conveyor to a conveyor, or from a container to a container.
 容器20は、複数のワークWを収容可能な容器であり、例えば段ボール箱、コンテナ、カーゴ、番重等が使用される。ワークWは、ロボット10により把持可能なものであれば特に限定されるものではないが、例えば装置を構成する機械部品や電気部品(基板等)、物流における生産物や商品、食品等である。ロボット10は、ワークWを順次容器20から取り出し、コンベア30に移載する。容器20は、例えば台車21に搭載されており、ワークWの移載が完了すると新たな容器20に交換される。なお、台車21を使用せず、容器20を床置きしてもよい。 The container 20 is a container capable of accommodating a plurality of works W, and for example, a cardboard box, a container, a cargo, a weight, and the like are used. The work W is not particularly limited as long as it can be gripped by the robot 10, but is, for example, a mechanical component or an electrical component (a substrate or the like) constituting the apparatus, a product, a product, a food, or the like in distribution. The robot 10 sequentially takes out the works W from the container 20 and transfers them to the conveyor 30. The container 20 is mounted on, for example, a cart 21 and is replaced with a new container 20 when the transfer of the work W is completed. The container 20 may be placed on the floor without using the cart 21.
 コンベア30は、ワークWを順次、所定の場所に向けて搬送する。コンベアの種類はベルト、ローラ、チェーン等、特に限定されるものではない。また、コンベア以外の搬送装置(ロボット等)を使用してもよい。 (4) The conveyor 30 transports the workpiece W sequentially to a predetermined place. The type of the conveyor is not particularly limited, such as a belt, a roller, and a chain. Further, a transfer device (robot or the like) other than the conveyor may be used.
 ロボット10は、ロボットアーム40と、ロボットハンド100と、コントローラ50とを有する。 The robot 10 has a robot arm 40, a robot hand 100, and a controller 50.
 ロボットアーム40は、ロボットハンド100を互いに直交するXYZ方向及びθ方向に移動可能なアクチュエータの一例であり、例えば6つの関節部を備えた垂直多関節型の6軸ロボットである。なお、図1に示す例では、X方向はコンベア30の搬送方向、Z方向は上下方向、Y方向はX及びYの両方向に直交する方向、θ方向はZ軸周りの回転方向である。ロボットアーム40の先端には、ロボットハンド100が取り付けられている。ロボットアーム40は、ロボットハンド100をワークWの受け取り位置(この例では容器20)に移動させてワークWを把持し、ロボットハンド100をワークWの置き位置(この例ではコンベア30)に移動させて把持を解除することにより、ワークWを移載する。 The robot arm 40 is an example of an actuator that can move the robot hand 100 in XYZ directions and θ directions orthogonal to each other, and is, for example, a vertical multi-joint type six-axis robot having six joints. In the example shown in FIG. 1, the X direction is the transport direction of the conveyor 30, the Z direction is the vertical direction, the Y direction is a direction orthogonal to both the X and Y directions, and the θ direction is a rotation direction around the Z axis. A robot hand 100 is attached to the tip of the robot arm 40. The robot arm 40 moves the robot hand 100 to the position where the work W is received (in this example, the container 20), grips the work W, and moves the robot hand 100 to the position where the work W is placed (in this example, the conveyor 30). The workpiece W is transferred by releasing the grip.
 なお、ロボットアーム40は、6軸以外(例えば5軸や7軸等)のロボットとしてもよいし、例えば水平多関節型等、垂直多関節型以外のロボットとしてもよい。また、複数の関節部を備えたロボットではなく、XYZθ方向のうち少なくとも1方向に移動可能なアクチュエータとしてもよい。 Note that the robot arm 40 may be a robot other than six axes (for example, five axes or seven axes), or may be a robot other than a vertical articulated robot such as a horizontal articulated robot. Also, instead of a robot having a plurality of joints, an actuator that can move in at least one of the XYZθ directions may be used.
 ロボットアーム40は、基台41と、旋回部42と、アーム部43とを有する。基台41は、床面Fに固定されている。なお、例えば無人搬送車(AGV)を設ける等により、ロボット10を移動可能な構成としてもよい。 The robot arm 40 has a base 41, a turning part 42, and an arm part 43. The base 41 is fixed to the floor F. The robot 10 may be configured to be movable, for example, by providing an automatic guided vehicle (AGV).
 旋回部42は、基台41の上端部に、上下方向に略平行な回転軸心Ax1まわりに旋回可能に支持されている。この旋回部42は、基台41との間の関節部に設けられたアクチュエータAc1の駆動により、基台41の上端部に対し、回転軸心Ax1まわりに旋回駆動される。 The turning part 42 is supported by the upper end of the base 41 so as to be able to turn around a rotation axis Ax1 substantially parallel to the vertical direction. The turning portion 42 is turned around the rotation axis Ax1 with respect to the upper end of the base 41 by driving an actuator Ac1 provided at a joint between the turning portion 42 and the base 41.
 アーム部43は、旋回部42の一方側の側部に支持されている。このアーム部43は、下腕部44と、上腕部45と、手首部46と、フランジ部47とを備える。 The arm 43 is supported on one side of the turning part 42. The arm 43 includes a lower arm 44, an upper arm 45, a wrist 46, and a flange 47.
 下腕部44は、旋回部42の一方側の側部に、回転軸心Ax1に略垂直な回転軸心Ax2まわりに旋回可能に支持されている。この下腕部44は、旋回部42との間の関節部に設けられたアクチュエータAc2の駆動により、旋回部42の一方側の側部に対し、回転軸心Ax2まわりに旋回駆動される。 The lower arm portion 44 is supported on one side of the turning portion 42 so as to be rotatable around a rotation axis Ax2 substantially perpendicular to the rotation axis Ax1. The lower arm portion 44 is driven to rotate about the rotation axis Ax2 with respect to one side of the turning portion 42 by driving an actuator Ac2 provided at a joint portion between the lower arm portion 44 and the turning portion 42.
 上腕部45は、下腕部44の先端側に、回転軸心Ax2に略平行な回転軸心Ax3まわりに旋回可能且つ回転軸心Ax3に略垂直な回転軸心Ax4回りに回動可能に支持されている。この上腕部45は、下腕部44との間の関節部に設けられたアクチュエータAc3の駆動により、下腕部44の先端側に対し、回転軸心Ax3まわりに旋回駆動される。また上腕部45は、アクチュエータAc3との間に設けられたアクチュエータAc4の駆動により、下腕部44の先端側に対し、回転軸心Ax4まわりに回動駆動される。 The upper arm portion 45 is supported on the distal end side of the lower arm portion 44 so as to be rotatable around a rotation axis Ax3 substantially parallel to the rotation axis Ax2 and rotatable around a rotation axis Ax4 substantially perpendicular to the rotation axis Ax3. Have been. The upper arm 45 is driven to rotate around the rotation axis Ax3 with respect to the distal end side of the lower arm 44 by driving an actuator Ac3 provided at a joint between the upper arm 45 and the lower arm 44. The upper arm 45 is driven to rotate around the rotation axis Ax4 with respect to the distal end side of the lower arm 44 by the driving of the actuator Ac4 provided between the upper arm 45 and the actuator Ac3.
 手首部46は、上腕部45の先端側に、回転軸心Ax4に略垂直な回転軸心Ax5まわりに旋回可能に支持されている。この手首部46は、上腕部45との間の関節部に設けられたアクチュエータAc5の駆動により、上腕部45の先端側に対し、回転軸心Ax5まわりに旋回駆動される。 The wrist portion 46 is supported on the tip side of the upper arm portion 45 so as to be rotatable around a rotation axis Ax5 substantially perpendicular to the rotation axis Ax4. The wrist 46 is turned around the rotation axis Ax5 with respect to the distal end side of the upper arm 45 by driving an actuator Ac5 provided at a joint between the wrist 46 and the upper arm 45.
 フランジ部47は、手首部46の先端側に、回転軸心Ax5に略垂直な回転軸心Ax6まわりに回動可能に支持されている。このフランジ部47は、手首部46との間の関節部に設けられたアクチュエータAc6の駆動により、手首部46の先端側に対し、回転軸心Ax6まわりに回動駆動される。 The flange portion 47 is rotatably supported on the distal end side of the wrist portion 46 about a rotation axis Ax6 substantially perpendicular to the rotation axis Ax5. The flange portion 47 is driven to rotate about the rotation axis Ax6 with respect to the tip end of the wrist portion 46 by driving an actuator Ac6 provided at a joint between the flange portion 47 and the wrist portion 46.
 ロボットハンド100は、フランジ部47の先端に取り付けられており、フランジ部47の回転軸心Ax6まわりの回動と共に、回転軸心Ax6まわりに回動する。ロボットハンド100は、取付部材101と、ベース部材102と、把持部材103,104とを有する。ロボットハンド100の詳細構造については、後述する。 The robot hand 100 is attached to the tip of the flange portion 47, and rotates around the rotation axis Ax6 with the rotation of the flange portion 47 around the rotation axis Ax6. The robot hand 100 has an attachment member 101, a base member 102, and grip members 103 and 104. The detailed structure of the robot hand 100 will be described later.
 各関節部を駆動するアクチュエータAc1~Ac6は、例えばサーボモータ、減速機及びブレーキ等により構成されている。なお、サーボモータ、減速機及びブレーキ等は、必ずしも回転軸心Ax1~Ax6上に配置される必要はなく、これらの回転軸心Ax1~Ax6から離れた位置に配置されてもよい。 The actuators Ac1 to Ac6 for driving the joints are composed of, for example, a servomotor, a speed reducer, a brake, and the like. Note that the servomotor, the speed reducer, the brake, and the like do not necessarily need to be arranged on the rotation axes Ax1 to Ax6, and may be arranged at positions away from these rotation axes Ax1 to Ax6.
 なお、上記では、アーム部43の長手方向(あるいは延材方向)に沿った回転軸心まわりの回転を「回動」と呼び、アーム部43の長手方向(あるいは延材方向)に略垂直な回転軸心まわりの回転を「旋回」と呼んで区別している。 In the above description, the rotation about the rotation axis along the longitudinal direction (or the extending direction of the arm) of the arm 43 is referred to as “rotation” and is substantially perpendicular to the longitudinal direction (or the extending direction of the arm) of the arm 43. The rotation about the rotation axis is called "turning" and is distinguished.
 コントローラ50は、ロボットアーム40の例えば基台41に取り付けられている。コントローラ50は、例えば演算器(CPU)、記録装置、入力装置等を有する1以上のコンピュータで構成されている(後述の図8参照)。コントローラ50は、ロボットアーム40に設けられた上記アクチュエータAc1~Ac6、及び、ロボットハンド100に設けられた後述するサーボモータ105及びエアシリンダ106の駆動を制御することにより、ロボットアーム40及びロボットハンド100の動作を制御する。 The controller 50 is attached to, for example, the base 41 of the robot arm 40. The controller 50 is composed of, for example, one or more computers having a computing unit (CPU), a recording device, an input device, and the like (see FIG. 8 described later). The controller 50 controls the driving of the actuators Ac1 to Ac6 provided on the robot arm 40 and the servo motor 105 and the air cylinder 106, which will be described later, provided on the robot hand 100. Control the operation of.
 なお、コントローラ50は、ロボットアーム40と分離して配置されてもよい。また、コントローラ50は、ロボットアーム40を制御する部分とロボットハンド100を制御する部分が分離されてもよい。この場合、ロボットハンド100を制御する部分がロボットハンド100に取り付けられてもよい。また、コントローラ50は、プログラマブルロジックコントローラ(PLC)とロボットコントローラ(RC)のいずれか一方または両方の組み合わせによって構成するようにしてもよい。 The controller 50 may be arranged separately from the robot arm 40. In the controller 50, a part that controls the robot arm 40 and a part that controls the robot hand 100 may be separated. In this case, a part that controls the robot hand 100 may be attached to the robot hand 100. Further, the controller 50 may be configured by one or a combination of a programmable logic controller (PLC) and a robot controller (RC).
 <2.ロボットハンドの構成>
 次に、図2~図5を参照しつつ、ロボットハンド100の構成の一例について説明する。なお、図2では取付部材101の図示を省略しており、図3では取付部材101を透過して図示している。また以下において、ロボットハンド100の構成の説明の便宜上、上下左右前後等の方向を適宜使用する。以下の例では、把持部材103,104の延設方向を前後方向、把持部材103,104の移動方向を左右方向、それら前後方向及び左右方向に直交する方向を上下方向とする。但し、ロボットハンド100の各方向はロボットアーム40の姿勢により変化するものであり、ロボットハンド100の各構成の位置関係を限定するものではない。
<2. Configuration of Robot Hand>
Next, an example of the configuration of the robot hand 100 will be described with reference to FIGS. 2 does not show the attachment member 101, and FIG. 3 shows the attachment member 101 in a transparent manner. In the following, directions such as up, down, left, right, front, and back are appropriately used for convenience of description of the configuration of the robot hand 100. In the following example, the extending direction of the grip members 103 and 104 is referred to as the front-rear direction, the moving direction of the grip members 103 and 104 is referred to as the left-right direction, and the direction orthogonal to the front-rear direction and the left-right direction is referred to as the up-down direction. However, each direction of the robot hand 100 changes depending on the posture of the robot arm 40, and does not limit the positional relationship of each component of the robot hand 100.
 図2及び図3に示すように、ロボットハンド100は、取付部材101と、ベース部材102と、第1把持部材103と、第2把持部材104と、第1アクチュエータ105と、第2アクチュエータ106と、サーボモータ105と、エアシリンダ106と、第1リニアガイド107と、第2リニアガイド108とを有する。 As shown in FIGS. 2 and 3, the robot hand 100 includes a mounting member 101, a base member 102, a first gripping member 103, a second gripping member 104, a first actuator 105, and a second actuator 106. , A servo motor 105, an air cylinder 106, a first linear guide 107, and a second linear guide 108.
 第1アクチュエータ105と第2アクチュエータ106は異なる動力源で駆動される。本実施形態では、第1アクチュエータ105としてサーボモータ(「サーボモータ105」ともいう)、第2アクチュエータ106としてエアシリンダ(「エアシリンダ106」ともいう)を使用する場合について説明する。 The first actuator 105 and the second actuator 106 are driven by different power sources. In the present embodiment, a case where a servomotor (also referred to as “servomotor 105”) is used as the first actuator 105 and an air cylinder (also referred to as “air cylinder 106”) is used as the second actuator 106 will be described.
 ベース部材102は、第1リニアガイド107と第2リニアガイド108等を固定する。ベース部材102は、例えば略直方体状の部材であり、前面102fと、後面102bと、上面102uと、下面102dと、左面102lと、右面102rとを有する。前面102fと後面102bはベース部材102を挟んで互いに平行である。上面102u、下面102d、左面102l及び右面102rはそれぞれ、前面102f及び後面102bと直交する。なお、本実施形態では、前面102fを含むベース部材102の前方の近傍空間を前側(第1サイドの一例)、後面102bを含むベース部材102の後方の近傍空間を後側、上面102uを含むベース部材102の上方の近傍空間を上側、下面102dを含むベース部材102の下方の近傍空間を下側(第2サイドの一例)、左面102lを含むベース部材102の左方の近傍空間を左側、右面102rを含むベース部材102の右方の近傍空間を右側ともいう。 The base member 102 fixes the first linear guide 107 and the second linear guide 108 and the like. The base member 102 is, for example, a substantially rectangular parallelepiped member, and has a front surface 102f, a rear surface 102b, an upper surface 102u, a lower surface 102d, a left surface 102l, and a right surface 102r. The front surface 102f and the rear surface 102b are parallel to each other with the base member 102 interposed therebetween. The upper surface 102u, the lower surface 102d, the left surface 102l, and the right surface 102r are orthogonal to the front surface 102f and the rear surface 102b, respectively. In this embodiment, the space near the front of the base member 102 including the front surface 102f is the front side (an example of the first side), the space near the rear of the base member 102 including the rear surface 102b is the rear side, and the base including the upper surface 102u. The upper neighboring space of the member 102 is the upper side, the lower neighboring space of the base member 102 including the lower surface 102d is the lower side (an example of the second side), the left neighboring space of the base member 102 including the left surface 102l is the left side, the right side. The space near the right side of the base member 102 including the base member 102r is also referred to as the right side.
 第1リニアガイド107は、ベース部材102の前側(前面102fの面上でもよいし離間しててもよい)に左右方向に沿って配置されている。第1リニアガイド107は、第1把持部材103が連結された第1スライダ110と、第1スライダ110を移動方向(この例では左右方向)にガイドする第1レール109とを有する。第1レール109は、互いに平行に配置された一対のレール部材で構成されている。第1スライダ110は、第1可動プレート111を介して第1把持部材103と連結されている。 1 The first linear guide 107 is disposed along the left-right direction on the front side of the base member 102 (which may be on the front surface 102f or may be separated). The first linear guide 107 has a first slider 110 to which the first gripping member 103 is connected, and a first rail 109 that guides the first slider 110 in a moving direction (in this example, a left-right direction). The first rail 109 includes a pair of rail members arranged in parallel with each other. The first slider 110 is connected to the first holding member 103 via the first movable plate 111.
 第1スライダ110は、移動方向に所定距離だけ離間して配置された2つのスライダで構成されている。2つの第1スライダ110を間隔を空けて配置することにより、スライダ全体の移動方向における一方側端部から他方側端部までの距離である第1ガイド長GL1を長くできる。その結果、第1リニアガイド107で許容可能なモーメント(ワークWを把持した際に第1把持部材103に作用する反力により第1リニアガイド107に生じるモーメント)を増大できる。なお、第1スライダ110の数は2つに限定されるものではなく、第1リニアガイド107で第1把持部材103の反力によるモーメントを許容可能であれば、例えば第1スライダを1つとしてもよいし、3つ以上としてもよい。 The first slider 110 is composed of two sliders arranged at a predetermined distance in the moving direction. By arranging the two first sliders 110 at an interval, the first guide length GL1, which is the distance from one end to the other end in the moving direction of the entire slider, can be increased. As a result, the moment allowable by the first linear guide 107 (moment generated in the first linear guide 107 due to the reaction force acting on the first gripping member 103 when the workpiece W is gripped) can be increased. Note that the number of the first sliders 110 is not limited to two. If the first linear guide 107 can tolerate a moment due to the reaction force of the first holding member 103, for example, the first slider may be one. Or three or more.
 第1可動プレート111は、上下方向から見て略L字状に屈曲した形状を有する。第1可動プレート111は、2つの第1スライダ110に連結されるプレート本体部112と、このプレート本体部112から前方に屈曲して突出した連結部113とを有する。第1把持部材103は、第1可動プレート111の連結部113に例えばネジ(図示省略)により着脱可能に連結されている。 The first movable plate 111 has a shape that is bent in a substantially L-shape when viewed from above and below. The first movable plate 111 has a plate main body 112 connected to the two first sliders 110 and a connecting part 113 bent forward from the plate main body 112 and projected. The first gripping member 103 is detachably connected to the connecting portion 113 of the first movable plate 111 by, for example, a screw (not shown).
 また第1リニアガイド107は、伝達機構部114と、ボールネジ115とを有する。伝達機構部114は、ベース部材102の左側(左面102lの面上でもよいし離間しててもよい)に配置されている。伝達機構部114は、内部に例えばプーリ及びタイミングベルト(図示省略)を有しており、サーボモータ105の回転駆動をボールネジ115に伝達する。ボールネジ115はボール(図示省略)を介して第1スライダ110と係合しており、ボールネジ115の回転運動が第1スライダ110の直線運動に変換される。サーボモータ105が第1スライダ110を第1レール109に沿って移動させることにより、第1把持部材103は左右方向に比較的長いストロークS1の範囲で移動可能である。 The first linear guide 107 has a transmission mechanism 114 and a ball screw 115. The transmission mechanism 114 is disposed on the left side of the base member 102 (may be on the left surface 102l or may be separated therefrom). The transmission mechanism 114 has, for example, a pulley and a timing belt (not shown) inside, and transmits the rotational drive of the servo motor 105 to the ball screw 115. The ball screw 115 is engaged with the first slider 110 via a ball (not shown), and the rotational movement of the ball screw 115 is converted into a linear movement of the first slider 110. As the servo motor 105 moves the first slider 110 along the first rail 109, the first gripping member 103 can move in a relatively long stroke S1 in the left-right direction.
 図3及び図5に示すように、サーボモータ105は、ベース部材102の後側に、回転軸が左右方向に沿うように配置されている。サーボモータ105は、伝達機構部114が構造上前後方向に所定の長さを必要とすることにより、支持部材116を用いて後面102bから所定距離だけ離間した状態で支持されている。なお、伝達機構部114の長さを短くする、あるいは、ベース部材102の前後方向の厚みを厚くする等により、サーボモータ105を後面102bの面上に配置してもよい。 As shown in FIGS. 3 and 5, the servomotor 105 is disposed on the rear side of the base member 102 so that the rotation axis extends in the left-right direction. The servomotor 105 is supported at a predetermined distance from the rear surface 102b using the support member 116 because the transmission mechanism 114 requires a predetermined length in the front-rear direction due to its structure. Note that the servomotor 105 may be disposed on the rear surface 102b by reducing the length of the transmission mechanism 114 or increasing the thickness of the base member 102 in the front-rear direction.
 図2及び図3に示すように、第2リニアガイド108は、ベース部材102の下側(下面102dの面上でもよいし離間しててもよい)に左右方向に沿って配置されている。第2リニアガイド108は、第2把持部材104が連結された第2スライダ118と、第2スライダ118を移動方向(この例では左右方向)にガイドする第2レール117とを有する。第2スライダ118は、第2可動プレート119を介して第2把持部材104と連結されている。 2 and 3, the second linear guide 108 is disposed below the base member 102 (which may be on the lower surface 102d or may be separated) along the left-right direction. The second linear guide 108 has a second slider 118 to which the second gripping member 104 is connected, and a second rail 117 that guides the second slider 118 in the moving direction (left and right direction in this example). The second slider 118 is connected to the second gripping member 104 via the second movable plate 119.
 第2リニアガイド108は、第1リニアガイド107における許容モーメントよりも大きな許容モーメントを有する。すなわち、ロボットハンド100でワークWを把持した際に、第2把持部材104に作用する反力により第2リニアガイド108に生じる許容可能なモーメントが、第1把持部材103に作用する反力により第1リニアガイド107に生じる許容可能なモーメントよりも大きい。本実施形態では、このような構造を次のような手段で実現している。 2The second linear guide 108 has a larger allowable moment than the allowable moment of the first linear guide 107. That is, when the robot hand 100 grips the workpiece W, an allowable moment generated in the second linear guide 108 due to the reaction force acting on the second gripping member 104 is reduced by the reaction force acting on the first gripping member 103. It is larger than the allowable moment generated in one linear guide 107. In the present embodiment, such a structure is realized by the following means.
 すなわち、第2スライダ118は、移動方向に所定距離(第1スライダ110よりも大きな距離)だけ離間して配置された2つのスライダで構成されている。2つの第2スライダ118を間隔を空けて配置することにより、スライダ全体の移動方向における一方側端部から他方側端部までの距離である第2ガイド長GL2を長くできる。本実施形態では、第2ガイド長GL2が第1ガイド長GL1よりも長くなるように構成されており、例えばベース部材102の左右方向の寸法に近い広めの距離となっている。その結果、第2リニアガイド108における許容モーメントを第1リニアガイド107における許容モーメントよりも増大できる。なお、第2スライダ118の数は2つに限定されるものではなく、第2ガイド長GL2を所定距離だけ確保可能であれば、例えば1つとしてもよいし、3つ以上としてもよい。また、第2レール117を複数に分割し、第2スライダ118の配置に応じた位置に設置してもよい。 That is, the second slider 118 is constituted by two sliders which are arranged at a predetermined distance (a distance larger than the first slider 110) in the moving direction. By arranging the two second sliders 118 at an interval, the second guide length GL2, which is the distance from one end to the other end in the moving direction of the entire slider, can be increased. In the present embodiment, the second guide length GL2 is configured to be longer than the first guide length GL1, and has a wide distance close to, for example, the left-right dimension of the base member 102. As a result, the allowable moment in the second linear guide 108 can be made larger than the allowable moment in the first linear guide 107. The number of the second sliders 118 is not limited to two, and may be one or three or more as long as the second guide length GL2 can be secured by a predetermined distance. Further, the second rail 117 may be divided into a plurality of parts and installed at positions corresponding to the arrangement of the second slider 118.
 図4及び図5に示すように、第2可動プレート119は、上下方向から見て略L字状に屈曲した形状を有する。第2可動プレート119は、2つの第2スライダ118に連結されるプレート本体部120と、このプレート本体部120から前方に屈曲して突出した連結部121とを有する。図4に示すように、連結部121は、左右方向の幅寸法が第2把持部材104よりも大きくなるように形成されている。第2把持部材104は、第2可動プレート119の連結部121に例えばネジ(図示省略)により着脱可能に連結されている。 As shown in FIGS. 4 and 5, the second movable plate 119 has a shape that is bent substantially in an L-shape when viewed from above and below. The second movable plate 119 has a plate main body 120 connected to the two second sliders 118, and a connecting part 121 bent forward from the plate main body 120 and projected. As shown in FIG. 4, the connecting portion 121 is formed such that the width in the left-right direction is larger than that of the second gripping member 104. The second holding member 104 is detachably connected to the connection portion 121 of the second movable plate 119 by, for example, a screw (not shown).
 図3及び図5に示すように、エアシリンダ106は、ベース部材102の後側(後面102bの面上でもよいし離間しててもよい)に、ロッド106aの移動方向が左右方向に沿うように配置されている。また、ベース部材102の後側(後面102bの面上でもよいし離間しててもよい)には、エアシリンダ106の推力を増大して第2可動プレート119及び第2スライダ118に伝達する増力機構122が配置されている。増力機構122は、いわゆるてこを利用した機構である。増力機構122は、軸部材123と、軸部材123周りに回転可能な板部材124と、板部材124の一端とロッド106aの先端とを回転可能に連結する連結部材125と、板部材124の他端と第2可動プレート119の側面とを回転可能に連結する連結部材126とを有する。軸部材123、連結部材125及び連結部材126は、てこの支点、力点、作用点としてそれぞれ機能する。すなわち、増力機構122は、軸部材123と連結部材125間の距離と、軸部材123と連結部材126間の距離との比に応じて、エアシリンダ106の推力を増大する。エアシリンダ106が増力機構122を介して第2可動プレート119及び第2スライダ118を第2レール117に沿って移動させることにより、第2把持部材104は左右方向に比較的短いストロークS2の範囲で移動可能である。 As shown in FIGS. 3 and 5, the air cylinder 106 is positioned on the rear side of the base member 102 (on the surface of the rear surface 102 b or may be separated) so that the moving direction of the rod 106 a is along the left-right direction. Are located in Further, on the rear side of the base member 102 (which may be on the surface of the rear surface 102b or may be separated), the thrust of the air cylinder 106 is increased and transmitted to the second movable plate 119 and the second slider 118. A mechanism 122 is provided. The booster mechanism 122 is a mechanism using a so-called lever. The booster mechanism 122 includes a shaft member 123, a plate member 124 rotatable around the shaft member 123, a connecting member 125 rotatably connecting one end of the plate member 124 and a tip of the rod 106 a, and a plate member 124. A connection member 126 that rotatably connects the end and the side surface of the second movable plate 119; The shaft member 123, the connecting member 125, and the connecting member 126 respectively function as a fulcrum, a power point, and an action point of the lever. That is, the force increasing mechanism 122 increases the thrust of the air cylinder 106 according to the ratio of the distance between the shaft member 123 and the connecting member 125 to the distance between the shaft member 123 and the connecting member 126. When the air cylinder 106 moves the second movable plate 119 and the second slider 118 along the second rail 117 via the force increasing mechanism 122, the second gripping member 104 moves in a relatively short stroke S2 in the left-right direction. Can be moved.
 なお、エアシリンダ106による増力機構122により増力された第2把持部材104の推力は、サーボモータ105による第1把持部材103の推力よりも大きくなるように構成される。この結果、ロボットハンド100は、第2把持部材104の推力が第1把持部材103の推力よりも大きくなるように構成されている。また、増力機構122は、例えばラック及びピニオンと複数のギアを用いた機構等、エアシリンダ106の推力を増大可能な機構であれば、てこ以外の機構としてもよい。 The thrust of the second gripping member 104 increased by the force intensifying mechanism 122 by the air cylinder 106 is configured to be larger than the thrust of the first gripping member 103 by the servomotor 105. As a result, the robot hand 100 is configured such that the thrust of the second gripping member 104 is larger than the thrust of the first gripping member 103. Further, the boosting mechanism 122 may be a mechanism other than the lever, as long as the mechanism can increase the thrust of the air cylinder 106, such as a mechanism using a rack and a pinion and a plurality of gears.
 図3に示すように、エアシリンダ106と第2リニアガイド108は、増力機構122を介して上下方向(第1方向の一例)に離間して配置されている。この配置に対し、サーボモータ105及び第1リニアガイド107は、上下方向においてエアシリンダ106と第2リニアガイド108との間に位置するように、ベース部材102の後側と前側にそれぞれ配置されている。 エ ア As shown in FIG. 3, the air cylinder 106 and the second linear guide 108 are spaced apart in the vertical direction (an example of a first direction) via a booster mechanism 122. In contrast to this arrangement, the servo motor 105 and the first linear guide 107 are disposed on the rear side and the front side of the base member 102, respectively, so as to be located between the air cylinder 106 and the second linear guide 108 in the vertical direction. I have.
 また図2に示すように、第1リニアガイド107と第2リニアガイド108とは、ベース部材102において、第1レール109と第2レール117のそれぞれの延設領域の略全部(ベース部材102の左右方向の寸法分)が移動方向(左右方向)において相互に重複(ラップ)し、且つ移動方向に直交する方向(上下方向)において相互にずれた位置に固定されている。なお、本実施形態では、第1レール109と第2レール117の略全部が移動方向に重複するように配置したが、第1レール109と第2レール117の延設領域の一部分のみが移動方向に重複するように配置してもよい。 Further, as shown in FIG. 2, the first linear guide 107 and the second linear guide 108 are provided on the base member 102 so as to cover substantially all of the extended areas of the first rail 109 and the second rail 117 (of the base member 102). (The dimension in the left-right direction) overlaps (wraps) in the movement direction (left-right direction), and is fixed at a position shifted from each other in a direction (vertical direction) orthogonal to the movement direction. In the present embodiment, the first rail 109 and the second rail 117 are arranged so that substantially all of them overlap in the moving direction. However, only a part of the extension area of the first rail 109 and the second rail 117 is moved in the moving direction. May be arranged so as to overlap.
 図2に示すように、ロボットハンド100は、カメラ127(センサの一例)と、変位センサ128とを有する。カメラ127は、ベース部材102の前側(前面102fの面上でもよいし離間しててもよい)の上方に取り付けられており、第1把持部材103と第2把持部材104とにより把持される対象であるワークWを撮像する。コントローラ50は、カメラ127からワークWの画像情報を取得することにより、ワークWの種類や大きさ、形状、位置や姿勢等を認識し、その結果に応じてロボットアーム40及びロボットハンド100の動作を制御する。なおカメラ127に接続されるカメラケーブル129も、ベース部材102の前側に取付具(図示省略)を介して左右方向に沿って配置されている。 ロ ボ ッ ト As shown in FIG. 2, the robot hand 100 has a camera 127 (an example of a sensor) and a displacement sensor 128. The camera 127 is attached above the front side of the base member 102 (which may be on the surface of the front surface 102f or may be separated), and is an object to be gripped by the first gripping member 103 and the second gripping member 104. Is imaged. The controller 50 acquires the image information of the work W from the camera 127, thereby recognizing the type, size, shape, position, posture, and the like of the work W, and operating the robot arm 40 and the robot hand 100 according to the result. Control. Note that a camera cable 129 connected to the camera 127 is also disposed along the left-right direction via a fixture (not shown) on the front side of the base member 102.
 変位センサ128は、ワークWとの距離を検出するレーザセンサである。変位センサ128は、前後方向の寸法が比較的大きいため、ベース部材102の左上部を切り欠いて設けられたセンサ取付部材130に取り付けられている。すなわち、変位センサ128は、ベース部材102の上側にセンサ取付部材130を介して配置されている。コントローラ50は、変位センサ128からの検出結果に応じてロボットアーム40及びロボットハンド100の動作を制御する。 The displacement sensor 128 is a laser sensor that detects a distance from the workpiece W. Since the displacement sensor 128 has a relatively large dimension in the front-rear direction, the displacement sensor 128 is attached to a sensor attachment member 130 provided by cutting out the upper left portion of the base member 102. That is, the displacement sensor 128 is disposed above the base member 102 via the sensor mounting member 130. The controller 50 controls the operations of the robot arm 40 and the robot hand 100 according to the detection result from the displacement sensor 128.
 なお、カメラ127や変位センサ128を上記以外の場所に配置してもよい。例えば、カメラ127をベース部材102の上側や下側に配置したり、変位センサ128を前側や下側に配置してもよい。また、カメラ127や変位センサ128に加えて又は代えて、別の種類のセンサを設けてもよい。また、カメラ127や変位センサ128の一方又は両方をロボットハンド100に設置せずに、他の箇所(例えばロボットアーム40等)に設置してもよい。 Note that the camera 127 and the displacement sensor 128 may be arranged in places other than the above. For example, the camera 127 may be arranged above or below the base member 102, or the displacement sensor 128 may be arranged above or below the base member 102. Further, another type of sensor may be provided in addition to or instead of the camera 127 and the displacement sensor 128. Further, one or both of the camera 127 and the displacement sensor 128 may not be installed on the robot hand 100 but may be installed on another location (for example, the robot arm 40 or the like).
 図3及び図5に示すように、ロボットハンド100は、取付部材101を有する。図5に示すように、取付部材101は、ロボットアーム40の先端(フランジ部47)に取り付けられ、ロボットハンド100全体を支持する。取付部材101は、フランジ部47に固定される板部101aと、複数(例えば4つ)の脚部101b~101eとを有する。図3に示すように、各脚部101b~101eは、配置された機器を避けてベース部材102の後面102bに連結されている。取付部材101の板部101aは、ベース部材102における、第1把持部材103及び第2把持部材104に対して反対側(後側)にベース部材102と間隙をあけてベース部材102に固定され、ロボットアーム40の先端に取り付けられる。取付部材101のこのような構造により、ロボットアーム40の先端とベース部材102との間に、サーボモータ105、エアシリンダ106、増力機構122等が設置されるスペースが形成される。言い換えると、取付部材101は、ロボットハンド100のベース部材102をロボットアーム40の先端から所定距離だけオフセットさせてロボットアーム40に取り付ける部材である。 ロ ボ ッ ト As shown in FIGS. 3 and 5, the robot hand 100 has a mounting member 101. As shown in FIG. 5, the attachment member 101 is attached to the distal end (flange portion 47) of the robot arm 40 and supports the entire robot hand 100. The mounting member 101 has a plate portion 101a fixed to the flange portion 47 and a plurality (for example, four) of leg portions 101b to 101e. As shown in FIG. 3, each of the legs 101b to 101e is connected to the rear surface 102b of the base member 102 while avoiding the disposed devices. The plate portion 101a of the attachment member 101 is fixed to the base member 102 with a gap between the base member 102 and the opposite side (rear side) of the first holding member 103 and the second holding member 104 with respect to the base member 102, It is attached to the tip of the robot arm 40. With such a structure of the mounting member 101, a space is provided between the distal end of the robot arm 40 and the base member 102, in which the servo motor 105, the air cylinder 106, the booster 122, and the like are installed. In other words, the attachment member 101 is a member that attaches the base member 102 of the robot hand 100 to the robot arm 40 by offsetting the base member 102 by a predetermined distance from the tip of the robot arm 40.
 なお、取付部材101により形成される設置スペースに、サーボモータ105又はエアシリンダ106のいずれか一方のみが設置されてもよいし、これらに加えて又は代えて別の機器が設置されてもよい。 Note that only one of the servomotor 105 and the air cylinder 106 may be installed in the installation space formed by the mounting member 101, or another device may be installed in addition to or instead of these.
 <3.ロボットハンドの把持動作>
 次に、図6及び図7を参照しつつ、コントローラ50の制御によるロボットハンド100の把持動作の一例について説明する。
<3. Robot hand gripping operation>
Next, an example of a gripping operation of the robot hand 100 under the control of the controller 50 will be described with reference to FIGS. 6 and 7.
 まず、コントローラ50は、サーボモータ105及びエアシリンダ106を駆動して、第1把持部材103及び第2把持部材104を、それぞれのストローク範囲において最も離間する位置、あるいは、把持する対象であるワークWの寸法が分かっている場合には当該寸法よりも所定値だけ大きく離間する位置に移動させ、把持部材103,104を開放する。 First, the controller 50 drives the servo motor 105 and the air cylinder 106 to move the first gripping member 103 and the second gripping member 104 to the most distant positions in the respective stroke ranges or the workpiece W to be gripped. If the size is known, it is moved to a position farther apart by a predetermined value than the size, and the gripping members 103 and 104 are opened.
 その状態で、コントローラ50は、ロボットアーム40を動作させてロボットハンド100をワークWの受け取り位置に移動させる。このとき、コントローラ50は、第2把持部材104のストロークS2の範囲における最も内側の位置を基準位置として、ロボットアーム40の位置制御を行う。 In this state, the controller 50 operates the robot arm 40 to move the robot hand 100 to the position for receiving the workpiece W. At this time, the controller 50 controls the position of the robot arm 40 using the innermost position in the range of the stroke S2 of the second gripping member 104 as a reference position.
 次に、図6に示すように、コントローラ50はエアシリンダ106を駆動して、第2把持部材104を上記ストロークS2の範囲において最も内側の位置(ストロークS2の端部)に移動させ、第2把持部材104をワークWに接触させる。 Next, as shown in FIG. 6, the controller 50 drives the air cylinder 106 to move the second gripping member 104 to the innermost position (the end of the stroke S2) in the range of the stroke S2. The holding member 104 is brought into contact with the work W.
 その後、図7に示すように、コントローラ50はサーボモータ105を駆動して、第1把持部材103を第2把持部材104に近づくように移動させ、第1把持部材103をワークWに接触させて把持する。このとき、コントローラ50はサーボモータ105のトルク制御を行って把持力が一定となるように制御してもよい。 Thereafter, as shown in FIG. 7, the controller 50 drives the servomotor 105 to move the first gripping member 103 so as to approach the second gripping member 104, and to bring the first gripping member 103 into contact with the workpiece W. Hold. At this time, the controller 50 may perform torque control of the servomotor 105 to control the gripping force to be constant.
 ワークWを把持した状態で、コントローラ50は、ロボットアーム40を動作させてロボットハンド100をワークWの置き位置に移動させる。そして、第1把持部材103及び第2把持部材104を開く方向に移動させ、ワークWを置く。このとき、コントローラ50は第1把持部材103又は第2把持部材104のいずれか一方のみを移動させてもよいし、両方を移動させてもよい。 コ ン ト ロ ー ラ With the work W held, the controller 50 operates the robot arm 40 to move the robot hand 100 to the position where the work W is placed. Then, the first holding member 103 and the second holding member 104 are moved in the opening direction, and the workpiece W is placed. At this time, the controller 50 may move only one of the first gripping member 103 and the second gripping member 104, or may move both.
 なお、以上では第2把持部材104をストロークS2の端部まで移動させた後に第1把持部材103を移動させるようにしたが、ワークWを把持するまでの間に第2把持部材104のストローク端部への移動が完了するのであれば、第2把持部材104と第1把持部材103とを同時に動作させてもよい。 In the above description, the first gripping member 103 is moved after the second gripping member 104 is moved to the end of the stroke S2. However, the stroke end of the second gripping member 104 is not moved until the workpiece W is gripped. If the movement to the section is completed, the second gripping member 104 and the first gripping member 103 may be operated simultaneously.
 <4.本実施形態による効果の例>
 以上説明したように、本実施形態のロボットハンド100は、第2把持部材104の推力が第1把持部材103の推力よりも大きくなるように構成されており、第2リニアガイド108は、第1リニアガイド107における許容モーメントよりも大きな許容モーメントを有する。仮に、第1リニアガイド107と第2リニアガイド108の許容モーメントを略同じとし、推力が小さな第1把持部材103に対応させた場合、第2リニアガイド108の許容モーメントの制約を受けるため、より大きな第2把持部材104の推力を活用することができず、高い把持力を実現できない。一方で、第1リニアガイド107と第2リニアガイド108の許容モーメントを略同じとし、推力が大きな第2把持部材104に対応させた場合、第1リニアガイド107が必要以上に大型化し、ロボットハンド100の大型化を招く。本実施形態では、上述の構成とすることにより、ロボットハンド100の大型化を抑えつつ高い把持力を得ることが可能となる。したがって、小型で把持力の高いロボットハンド100を備えたロボット10を実現できる。
<4. Example of Effect of Present Embodiment>
As described above, the robot hand 100 of the present embodiment is configured such that the thrust of the second gripping member 104 is greater than the thrust of the first gripping member 103, and the second linear guide 108 is The allowable moment is larger than the allowable moment in the linear guide 107. If the allowable moments of the first linear guide 107 and the second linear guide 108 are substantially the same and the thrust is made to correspond to the first gripping member 103 having a small thrust, the allowable moment of the second linear guide 108 is restricted. The large thrust of the second gripping member 104 cannot be used, and a high gripping force cannot be realized. On the other hand, when the allowable moments of the first linear guide 107 and the second linear guide 108 are substantially the same and the second linear guide 107 is adapted to the second gripping member 104 having a large thrust, the first linear guide 107 becomes unnecessarily large, and 100 is increased. In the present embodiment, with the above-described configuration, it is possible to obtain a high gripping force while suppressing an increase in the size of the robot hand 100. Therefore, it is possible to realize the robot 10 including the robot hand 100 having a small size and a high gripping force.
 また、本実施形態において、第2リニアガイド108の許容モーメントを第1リニアガイド107よりも大きくするために、第2スライダ118の第2ガイド長GL2が第1スライダ110の第1ガイド長GL1よりも長くなるように構成する場合には、次のような効果を得る。 Further, in the present embodiment, in order to make the allowable moment of the second linear guide 108 larger than that of the first linear guide 107, the second guide length GL2 of the second slider 118 is made larger than the first guide length GL1 of the first slider 110. The following effects can be obtained when the configuration is made to be longer.
 すなわち、第1把持部材103及び第2把持部材104によりワークWを把持した際には、各把持部材103,104に作用する反力により、第1リニアガイド107及び第2リニアガイド108にそれぞれモーメントが作用する。本実施形態では、エアシリンダ106による第2把持部材104の推力はサーボモータ105による第1把持部材103の推力よりも大きく設定されるため、第2リニアガイド108に作用するモーメントは第1リニアガイド107よりも大きくなる。このため、第2スライダ118の第2ガイド長GL2を第1スライダ110の第1ガイド長GL1よりも長くすることにより、第2リニアガイド108で許容できるモーメントを第1リニアガイド107よりも確実に増大することができる。これにより、高い把持力を得る確実性を向上できる。また、許容モーメントの大小をスライダのガイド長によって調整しているので、例えば材料強度やタイプの異なるリニアガイドを使用することなく、同じタイプのリニアガイドを用いることが可能となり、コストを削減できる。 That is, when the work W is gripped by the first gripping member 103 and the second gripping member 104, the reaction force acting on each gripping member 103, 104 causes the first linear guide 107 and the second linear guide 108 to have a moment. Works. In the present embodiment, since the thrust of the second gripping member 104 by the air cylinder 106 is set to be larger than the thrust of the first gripping member 103 by the servomotor 105, the moment acting on the second linear guide 108 is equal to the first linear guide. It becomes larger than 107. Therefore, by making the second guide length GL2 of the second slider 118 longer than the first guide length GL1 of the first slider 110, the moment allowable by the second linear guide 108 can be more reliably made than by the first linear guide 107. Can increase. Thereby, it is possible to improve the reliability of obtaining a high gripping force. Further, since the magnitude of the allowable moment is adjusted by the guide length of the slider, it is possible to use the same type of linear guide without using, for example, linear guides of different material strengths and types, thereby reducing costs.
 また、本実施形態において、第1アクチュエータ105をサーボモータとし、第2アクチュエータ106をエアシリンダとする場合には、次のような効果を得る。すなわち、一般にエアシリンダは推力は比較的大きいが、ストロークを大きくすると大型化を招くという課題がある。一方、サーボモータは大きなストロークを確保できるが、推力が比較的小さい。このため、把持力を高くするためにモータの容量を大きくしたり台数を増加させると、大型化及び重量化を招くという課題がある。 In the present embodiment, when the first actuator 105 is a servo motor and the second actuator 106 is an air cylinder, the following effects are obtained. That is, in general, the thrust of an air cylinder is relatively large, but there is a problem that an increase in stroke causes an increase in size. On the other hand, a servo motor can secure a large stroke, but has a relatively small thrust. For this reason, when the capacity of the motor is increased or the number of motors is increased in order to increase the gripping force, there is a problem that the size and weight are increased.
 本実施形態では、第1把持部材103をサーボモータ105で駆動し、第2把持部材104をエアシリンダ106で駆動する。第2把持部材104を固定部材とせずに駆動させることにより、ロボットアーム40によるロボットハンド100をワークWに寄せる動作が不要となり、タクトタイムを向上できる。また第2把持部材104はワークWを把持・開放することが可能な程度の小さなストロークS2を有すればよいので、エアシリンダ106の大型化を抑制しつつ、第1把持部材103で大きなストロークS1を確保できる。また、サーボモータ105で駆動する把持部材が1つであるため、モータの容量や台数を増やすことなく把持力を確保できる。したがって、高い把持力と大きなストロークを備えることで汎用性を向上させた小型で軽量なロボットハンド100を実現できる。 In the present embodiment, the first gripping member 103 is driven by the servo motor 105 and the second gripping member 104 is driven by the air cylinder 106. By driving the second gripping member 104 without using it as a fixed member, the operation of moving the robot hand 100 to the workpiece W by the robot arm 40 becomes unnecessary, and the tact time can be improved. Further, the second gripping member 104 only needs to have a small stroke S2 that can grip and release the workpiece W. Therefore, the first gripping member 103 can control the large stroke S1 while suppressing the air cylinder 106 from increasing in size. Can be secured. Further, since only one gripping member is driven by the servomotor 105, a gripping force can be secured without increasing the capacity or the number of motors. Therefore, a small and lightweight robot hand 100 having high gripping force and a large stroke and improved versatility can be realized.
 また、本実施形態において、ベース部材102が、第1リニアガイド107と第2リニアガイド108を、第1レール109と第2レール117とのそれぞれの少なくとも一部が移動方向において相互に重複し、且つ移動方向に直交する方向において相互にずれた位置に固定する場合には、次のような効果を得る。すなわち、第1スライダ110及び第2スライダ118の移動方向において長尺となりやすい第1リニアガイド107と第2リニアガイド108を並列に配置することができるので、例えば第1及び第2リニアガイドを直列に配置する場合に比べて、ロボットハンド100の移動方向(ストローク方向)の寸法を大幅に小型化できる。また、2つのリニアガイドの並列配置により、ロボットハンド100の大型化を抑えつつ把持部材103,104のストロークを大きく確保できるので、大小様々なワークWに対応することが可能となり、汎用性を向上できる。したがって、小型で汎用性の高いロボットハンド100を備えたロボット10を実現できる。 Further, in the present embodiment, the base member 102 overlaps the first linear guide 107 and the second linear guide 108 with at least a part of each of the first rail 109 and the second rail 117 in the moving direction, In addition, in the case where it is fixed at a position shifted from each other in a direction perpendicular to the moving direction, the following effects are obtained. That is, the first linear guide 107 and the second linear guide 108, which are likely to be long in the moving direction of the first slider 110 and the second slider 118, can be arranged in parallel. For example, the first and second linear guides are connected in series. The size in the moving direction (stroke direction) of the robot hand 100 can be significantly reduced as compared with the case where the robot hand 100 is arranged. Further, by arranging the two linear guides in parallel, a large stroke of the gripping members 103 and 104 can be secured while suppressing an increase in the size of the robot hand 100, so that it is possible to cope with various sizes of workpieces W and improve versatility. it can. Therefore, the robot 10 including the small and highly versatile robot hand 100 can be realized.
 また、本実施形態において、ロボットハンド100が、ベース部材102における、第1把持部材103及び第2把持部材104に対して反対側にベース部材102と間隙をあけて、ベース部材102に固定され、ロボットアーム40の先端に取付けられる取付部材101(板部101a)を更に有し、サーボモータ105及びエアシリンダ106を、上記間隙においてベース部材102に取り付ける場合には、次のような効果を得る。 Further, in the present embodiment, the robot hand 100 is fixed to the base member 102 with a gap between the base member 102 and the first gripping member 103 and the second gripping member 104 on the opposite side to the base member 102, When the servo motor 105 and the air cylinder 106 are further attached to the base member 102 in the above gap, the following effects are obtained when the robot further includes an attachment member 101 (plate portion 101a) attached to the tip of the robot arm 40.
 すなわち取付部材101により、ベース部材102のロボットアーム40に取り付けられる側(後側)にサーボモータ105とエアシリンダ106を集約配置して、前側等にその他の機器(センサ機器等)の設置スペースを確保するといったように、後側のスペースを有効活用して機器配置を最適化することができる。したがって、ロボットハンド100を小型化できる。また、取付部材101によりロボットハンド100のベース部材102をロボットアーム40の先端から所定距離だけオフセットさせることができるので、ロボットアーム40の先端にベース部材102が直接取り付けられる場合に比べて、手首部46の可動範囲を拡大でき、ロボット10の姿勢の自由度を向上できる。 That is, the servo motor 105 and the air cylinder 106 are collectively arranged on the side (rear side) of the base member 102 to be attached to the robot arm 40 by the attaching member 101, and the installation space for other devices (such as sensor devices) is provided on the front side or the like. For example, the arrangement of the devices can be optimized by effectively utilizing the space on the rear side. Therefore, the size of the robot hand 100 can be reduced. Further, since the base member 102 of the robot hand 100 can be offset by a predetermined distance from the tip of the robot arm 40 by the attachment member 101, the wrist portion is smaller than when the base member 102 is directly attached to the tip of the robot arm 40. The movable range of 46 can be expanded, and the degree of freedom of the posture of the robot 10 can be improved.
 また、本実施形態において、第1リニアガイド107をベース部材102の前側に取り付け、第2リニアガイド108をベース部材102の前側と直交する下側に取り付ける場合には、次のような効果を得る。 In this embodiment, when the first linear guide 107 is attached to the front side of the base member 102 and the second linear guide 108 is attached to the lower side orthogonal to the front side of the base member 102, the following effects are obtained. .
 すなわち、例えば第1リニアガイド107と第2リニアガイド108をベース部材102の同一方向側(例えば前側)に並列して取り付ける場合に比べて、並列方向(上下方向)の寸法を小型化できる。また、例えば第1リニアガイド107と第2リニアガイド108をそれぞれベース部材102の反対側(例えば前側と後側)に取り付ける場合に比べて、ロボット10の全長を短くできる。 That is, the dimension in the parallel direction (vertical direction) can be reduced as compared with the case where, for example, the first linear guide 107 and the second linear guide 108 are mounted side by side on the same direction side (for example, the front side) of the base member 102. Further, for example, the total length of the robot 10 can be shortened as compared with the case where the first linear guide 107 and the second linear guide 108 are respectively attached to the opposite sides (for example, the front side and the rear side) of the base member 102.
 また、本実施形態において、ロボットハンド100にエアシリンダ106の推力を増大して第2スライダ118に伝達する増力機構122を設ける場合には、次のような効果を得る。 In addition, in the present embodiment, when the boosting mechanism 122 that increases the thrust of the air cylinder 106 and transmits the thrust to the second slider 118 is provided in the robot hand 100, the following effects are obtained.
 すなわち、増力機構122により、第2把持部材104の推力(把持力)を確保しつつ小型のエアシリンダ106を使用できるので、ロボットハンド100を小型化及び軽量化できる。なお、増力機構122により第2把持部材104のストロークS2は小さくなるが、第2把持部材104はワークWを把持・開放することが可能な程度の小さいストロークを有すればよいので、問題ない。 That is, since the small air cylinder 106 can be used by the force increasing mechanism 122 while securing the thrust (gripping force) of the second gripping member 104, the robot hand 100 can be reduced in size and weight. Although the stroke S2 of the second gripping member 104 is reduced by the force increasing mechanism 122, there is no problem since the second gripping member 104 only needs to have a stroke small enough to grip and release the work W.
 また、本実施形態において、エアシリンダ106と第2リニアガイド108を、増力機構122を介して上下方向に離間して配置し、サーボモータ105及び第1リニアガイド107を、上下方向においてエアシリンダ106と第2リニアガイド108との間に位置するように、ベース部材102に配置する場合には、次のような効果を得る。 In the present embodiment, the air cylinder 106 and the second linear guide 108 are vertically separated from each other via a booster 122, and the servo motor 105 and the first linear guide 107 are When the base member 102 is disposed so as to be located between the first linear guide 108 and the second linear guide 108, the following effects are obtained.
 すなわち、増力機構122として例えばてこ機構を使用する場合、その機構上、エアシリンダ106と第2リニアガイド108とを離間して配置することとなる。本実施形態では、そのスペースにサーボモータ105を配置して有効活用することにより、デッドスペースを減らすことができ、ロボットハンド100をコンパクト化できる。 That is, when, for example, a lever mechanism is used as the booster mechanism 122, the air cylinder 106 and the second linear guide 108 are disposed apart from each other due to the mechanism. In the present embodiment, the dead space can be reduced and the robot hand 100 can be made compact by arranging and effectively utilizing the servomotor 105 in that space.
 また、本実施形態において、ロボットハンド100が、第1スライダ110と第1把持部材103とを連結する第1可動プレート111と、第2スライダ118と第2把持部材104とを連結する第2可動プレート119と、を有し、第1把持部材103を第1可動プレート111に着脱可能に連結し、第2把持部材104を第2可動プレート119に着脱可能に連結する場合には、次のような効果を得る。 Further, in the present embodiment, the robot hand 100 includes a first movable plate 111 that connects the first slider 110 and the first gripping member 103, and a second movable plate that connects the second slider 118 and the second gripping member 104. When the first gripping member 103 is detachably connected to the first movable plate 111 and the second gripping member 104 is detachably connected to the second movable plate 119, the following is performed. Effect.
 すなわち上記構成により、把持するワークWの種類や大きさ、形状等に応じて第1把持部材103及び第2把持部材104を対応する把持部材に変更(交換)することができる。したがって、様々なワークWに対応することが可能となるので、汎用性をさらに向上できる。 That is, with the above configuration, the first gripping member 103 and the second gripping member 104 can be changed (replaced) to corresponding gripping members according to the type, size, shape, and the like of the workpiece W to be gripped. Therefore, it is possible to cope with various works W, so that versatility can be further improved.
 また、本実施形態において、第2可動プレート119が、第2把持部材104の延設方向に屈曲し、移動方向(左右方向)の幅寸法が第2把持部材104よりも大きくなるように形成された、第2把持部材104が連結される連結部121を有する場合には、次のような効果を得る。 Further, in the present embodiment, the second movable plate 119 is formed so as to bend in the extending direction of the second gripping member 104 and have a width dimension in the moving direction (left-right direction) larger than that of the second gripping member 104. When the second gripping member 104 has the connecting portion 121 to which the second gripping member 104 is connected, the following effects are obtained.
 すなわち上記構成により、第2把持部材104の付け根部分の剛性を向上できる。その結果、第2把持部材104の推力(把持力)を高くした場合でも第2把持部材104の変形(例えば拡がる方向の変形)を抑制できるので、高い把持力を確保しつつワークWの位置決め精度を向上できる。 That is, with the above configuration, the rigidity of the base of the second gripping member 104 can be improved. As a result, even when the thrust (gripping force) of the second gripping member 104 is increased, the deformation (for example, deformation in the expanding direction) of the second gripping member 104 can be suppressed, and thus the positioning accuracy of the workpiece W while securing a high gripping force. Can be improved.
 また、本実施形態において、ロボットハンド100が、第1リニアガイド107が取り付けられるベース部材102の前側に取り付けられ、第1把持部材103と第2把持部材104とにより把持される対象であるワークWを検出するカメラ127を有する場合には、次のような効果を得る。 In this embodiment, the robot hand 100 is attached to the front side of the base member 102 to which the first linear guide 107 is attached, and the workpiece W to be gripped by the first gripping member 103 and the second gripping member 104. The following effects are obtained when the camera 127 for detecting is provided.
 すなわち、カメラ127の検出結果により、コントローラ50がワークWの種類や大きさ、形状、位置や姿勢等を認識し、その結果に応じてロボットアーム40及びロボットハンド100の動作を制御することができるので、把持動作の信頼性を向上できる。 That is, the controller 50 recognizes the type, size, shape, position, posture, and the like of the work W based on the detection result of the camera 127, and can control the operations of the robot arm 40 and the robot hand 100 according to the result. Therefore, the reliability of the gripping operation can be improved.
 また、本実施形態において、第1把持部材103と第2把持部材104を近づけてワークWを把持する際に、コントローラ50により、第2把持部材104をストロークS2の内側端部まで移動させた後に第1把持部材103を移動させるようにサーボモータ105とエアシリンダ106を制御する場合には、次のような効果を得る。 Further, in the present embodiment, when the first gripping member 103 and the second gripping member 104 are brought close to each other to grip the workpiece W, after the controller 50 moves the second gripping member 104 to the inner end of the stroke S2. When the servo motor 105 and the air cylinder 106 are controlled to move the first gripping member 103, the following effects are obtained.
 すなわち、例えばワークWを把持する際に第1把持部材103と第2把持部材104を同時に移動させる場合、第2把持部材104がストロークS2の途中で停止する可能性がある。その場合、エアシリンダ106の位置のフィードバック情報がないため停止位置が把握できず、ワークWの位置決め精度の低下を招く可能性がある。本実施形態では、第2把持部材104をストロークS2の内側端部まで移動させた後に第1把持部材103を移動させるので、第2把持部材104の停止位置を把握でき、当該位置を基準として位置制御することにより、ワークWの位置決め精度を向上できる。 In other words, for example, when the first gripping member 103 and the second gripping member 104 are simultaneously moved when gripping the workpiece W, the second gripping member 104 may stop in the middle of the stroke S2. In this case, since there is no feedback information on the position of the air cylinder 106, the stop position cannot be grasped, and the positioning accuracy of the work W may be reduced. In the present embodiment, since the first gripping member 103 is moved after the second gripping member 104 is moved to the inner end of the stroke S2, the stop position of the second gripping member 104 can be grasped, and the position based on the position is determined. By performing the control, the positioning accuracy of the work W can be improved.
 <5.変形例>
 以上、添付図面を参照しながら一実施の形態について詳細に説明した。しかしながら、特許請求の範囲に記載された技術的思想の範囲は、ここで説明した実施の形態に限定されるものではない。本実施形態の属する技術の分野における通常の知識を有する者であれば、技術的思想の範囲内において、様々な変更や修正、組み合わせなどを行うことに想到できることは明らかである。従って、これらの変更や修正、組み合わせなどが行われた後の技術も、当然に技術的思想の範囲に属するものである。
<5. Modification>
The embodiment has been described in detail with reference to the accompanying drawings. However, the scope of the technical idea described in the claims is not limited to the embodiments described herein. It is obvious that a person having ordinary knowledge in the technical field to which the present embodiment belongs can make various changes, modifications, combinations, and the like within the scope of the technical idea. Therefore, the technology after these changes, corrections, combinations, etc., naturally belong to the scope of the technical idea.
  (5-1.第2スライダの保持強度を第1スライダよりも強くした場合)
 前述の実施形態では、第2スライダ118の第2ガイド長GL2を第1スライダ110の第1ガイド長GL1よりも長くすることにより、第2リニアガイド108の許容モーメントを第1リニアガイド107の許容モーメントよりも大きくしている。但し、第2リニアガイド108の許容モーメントを第1リニアガイド107よりも大きくする手段は、ガイド長の長さだけに限るものではなく、例えばスライダの保持強度を強くする等、他の手段を用いてもよい。本変形例は、第2スライダ118の保持強度を第1スライダ110よりも強くする場合の一例である。
(5-1. When the holding strength of the second slider is higher than that of the first slider)
In the above-described embodiment, the second guide length GL2 of the second slider 118 is made longer than the first guide length GL1 of the first slider 110, so that the allowable moment of the second linear guide 108 is reduced. Larger than the moment. However, the means for making the allowable moment of the second linear guide 108 larger than that of the first linear guide 107 is not limited to the length of the guide length, and other means such as increasing the holding strength of the slider may be used. May be. This modification is an example in which the holding strength of the second slider 118 is made stronger than that of the first slider 110.
 例えば図8に示す例では、2つの第2スライダ118が近接して配置されており、第1スライダ110の第1ガイド長GL1と、第2スライダ118の第2ガイド長GL2とが、略同じ長さとなるように構成されている。また、第2スライダ118を近接配置したことにより、第2レール117は第2把持部材104のストロークS2を確保できる範囲で不要な部分が削除され、レール長が短縮されている。同様に、第2可動プレート119についても第2スライダ118との連結を確保できる範囲で不要な部分が削除され、左右方向の長さ寸法が短縮されている。さらに、第2リニアガイド108を構成する第2スライダ118と第2レール117とが、前述の実施形態よりも上下方向に厚く形成されており、第2スライダ118の保持強度が第1スライダ110の保持強度よりも大きくなるように構成されている。その結果、第1ガイド長GL1と第2ガイド長GL2とが略同じ長さであっても、第2リニアガイド108の許容モーメントが第1リニアガイド107の許容モーメントよりも大きくなっている。 For example, in the example shown in FIG. 8, two second sliders 118 are arranged close to each other, and the first guide length GL1 of the first slider 110 and the second guide length GL2 of the second slider 118 are substantially the same. It is configured to be length. Further, by disposing the second slider 118 close to the second rail 117, unnecessary portions of the second rail 117 are removed as long as the stroke S2 of the second gripping member 104 can be secured, and the rail length is shortened. Similarly, unnecessary portions of the second movable plate 119 are also removed as long as the connection with the second slider 118 can be ensured, and the length in the left-right direction is reduced. Further, the second slider 118 and the second rail 117 constituting the second linear guide 108 are formed to be thicker in the vertical direction than in the above-described embodiment, and the holding strength of the second slider 118 is lower than that of the first slider 110. It is configured to be larger than the holding strength. As a result, even if the first guide length GL1 and the second guide length GL2 are substantially the same length, the allowable moment of the second linear guide 108 is larger than the allowable moment of the first linear guide 107.
 本変形例によれば、前述の実施形態と同様の効果に加えて、さらに次のような効果を得ることができる。すなわち、第2レール117や第2可動プレート119の無駄な長さが減るので、ネジの数を減らすなど取付工数を減らすことができると共に、コストを削減でき、重量も軽減できる。また、第2レール117や第2可動プレート119による占有スペースを小さくできるので、レイアウトの自由度を増すことができる。 According to the present modification, in addition to the same effects as those of the above-described embodiment, the following effects can be further obtained. That is, since the useless lengths of the second rail 117 and the second movable plate 119 are reduced, the number of mounting steps such as the number of screws can be reduced, the cost can be reduced, and the weight can be reduced. Further, the space occupied by the second rail 117 and the second movable plate 119 can be reduced, so that the degree of freedom in layout can be increased.
  (5-2.第2スライダが単体のスライダとして構成された場合)
 前述の実施形態では、第2スライダ118を複数のスライダで構成したが、第2スライダ118を単体のスライダとして構成してもよい。例えば図9に示す例では、第2スライダ118が左右方向に長尺な1つのスライダとして構成されている。第2スライダ118のスライダ全体の移動方向における一方側端部から他方側端部までの距離である第2ガイド長GL2は、第1スライダ110の第1ガイド長GL1よりも長くなるように構成されている。これにより、第2リニアガイド108の許容モーメントは第1リニアガイド107の許容モーメントよりも大きくなっている。
(5-2. When the second slider is configured as a single slider)
In the above-described embodiment, the second slider 118 is configured by a plurality of sliders, but the second slider 118 may be configured as a single slider. For example, in the example shown in FIG. 9, the second slider 118 is configured as one slider that is long in the left-right direction. The second guide length GL2, which is the distance from one end to the other end in the movement direction of the entire slider of the second slider 118, is configured to be longer than the first guide length GL1 of the first slider 110. ing. Thus, the allowable moment of the second linear guide 108 is larger than the allowable moment of the first linear guide 107.
 本変形例においても、前述の実施形態と同様の効果を得ることができる。 に お い て In this modification as well, the same effects as in the above-described embodiment can be obtained.
  (5-3.第2レールを分割配置した場合)
 前述の実施形態では、第2レール117を一本のレールとして構成したが、第2レール117を複数(例えば第2スライダ118の数と同数)に分割した構成としてもよい。例えば図10に示す例では、第2リニアガイド108が、2つの第2スライダ118と、2つの第2スライダ118のそれぞれをガイドする2つの第2レール117とを有する。言い換えると、第2レール117が2つの第2スライダ118に対応する位置に2分割して配置されている。それぞれの第2レール117は第2把持部材104のストロークS2を確保できる長さに形成されており、左右方向における中間の部分には第2レール117は設置されていない。前述の実施形態と同様に、第2スライダ118の第2ガイド長GL2は第1スライダ110の第1ガイド長GL1よりも長くなるように構成されている。
(5-3. When the 2nd rail is divided and arranged)
In the above-described embodiment, the second rail 117 is configured as one rail. However, the second rail 117 may be configured to be divided into a plurality (for example, the same number as the number of the second sliders 118). For example, in the example shown in FIG. 10, the second linear guide 108 has two second sliders 118 and two second rails 117 that guide each of the two second sliders 118. In other words, the second rail 117 is divided into two at positions corresponding to the two second sliders 118. Each of the second rails 117 is formed to have a length that can secure the stroke S2 of the second gripping member 104, and the second rail 117 is not provided at an intermediate portion in the left-right direction. As in the above-described embodiment, the second guide length GL2 of the second slider 118 is configured to be longer than the first guide length GL1 of the first slider 110.
 本変形例によれば、前述の実施形態と同様の効果に加えて、さらに次のような効果を得ることができる。すなわち、第2レール117の無駄なレール長が減るので、ネジの数を減らすなど取付工数を減らすことができると共に、コストを削減でき、重量も軽減できる。また、第2レール117による占有スペースを小さくできるので、レイアウトの自由度を増すことができる。 According to the present modification, in addition to the same effects as those of the above-described embodiment, the following effects can be further obtained. That is, since the useless rail length of the second rail 117 is reduced, the number of mounting steps such as the number of screws can be reduced, the cost can be reduced, and the weight can be reduced. Further, since the space occupied by the second rail 117 can be reduced, the degree of freedom in layout can be increased.
  (5-4.その他)
 例えば、以上ではサーボモータ105により駆動される第1把持部材103が右側、エアシリンダ106により駆動される第2把持部材104が左側に配置される構成としたが、反対に第1把持部材103が左側、第2把持部材104が右側に配置される構成としてもよい。この場合、サーボモータ105、エアシリンダ106、第1リニアガイド107及び第2リニアガイド108等についても左右反対の配置構成とすればよい。
(5-4. Others)
For example, in the above description, the first gripping member 103 driven by the servo motor 105 is arranged on the right side, and the second gripping member 104 driven by the air cylinder 106 is arranged on the left side. The left side and the second gripping member 104 may be arranged on the right side. In this case, the servo motor 105, the air cylinder 106, the first linear guide 107, the second linear guide 108, and the like may be arranged to be left and right opposite.
 また以上では、第1アクチュエータ105としてサーボモータ(動力源が電気)、第2アクチュエータ106としてエアシリンダ(動力源がエア)を使用する場合について説明したが、2つのアクチュエータが異なる動力源であれば、その他の動力源(油圧、蒸気等)を使用したアクチュエータであってもよい。 In the above description, the case where a servo motor (power source is electric) is used as the first actuator 105 and an air cylinder (air is power source) is used as the second actuator 106 has been described. Alternatively, an actuator using another power source (oil pressure, steam, or the like) may be used.
 <6.コントローラのハードウェア構成例>
 次に、図8を参照しつつ、上記で説明したコントローラ50のハードウェア構成例について説明する。なお、図8中では、コントローラ50の駆動電力を給電する機能に係る構成を適宜省略して図示している。
<6. Example of controller hardware configuration>
Next, an example of a hardware configuration of the controller 50 described above will be described with reference to FIG. In FIG. 8, the configuration related to the function of supplying the driving power of the controller 50 is omitted as appropriate.
 図8に示すように、コントローラ50は、例えば、CPU901と、ROM903と、RAM905と、ASIC又はFPGA等の特定の用途向けに構築された専用集積回路907と、入力装置913と、出力装置915と、記録装置917と、ドライブ919と、接続ポート921と、通信装置923とを有する。これらの構成は、バス909や入出力インターフェース911を介し相互に信号を伝達可能に接続されている。 As shown in FIG. 8, the controller 50 includes, for example, a CPU 901, a ROM 903, a RAM 905, a dedicated integrated circuit 907 constructed for a specific use such as an ASIC or an FPGA, an input device 913, and an output device 915. , A recording device 917, a drive 919, a connection port 921, and a communication device 923. These components are connected so that signals can be transmitted to each other via a bus 909 and an input / output interface 911.
 プログラムは、例えば、ROM903やRAM905、記録装置917等に記録しておくことができる。 The program can be recorded in, for example, the ROM 903, the RAM 905, the recording device 917, or the like.
 また、プログラムは、例えば、フレキシブルディスクなどの磁気ディスク、各種のCD・MOディスク・DVD等の光ディスク、半導体メモリ等のリムーバブルな記録媒体925に、一時的又は非一時的(永続的)に記録しておくこともできる。このような記録媒体925は、いわゆるパッケージソフトウエアとして提供することもできる。この場合、これらの記録媒体925に記録されたプログラムは、ドライブ919により読み出されて、入出力インターフェース911やバス909等を介し上記記録装置917に記録されてもよい。 The program is temporarily or non-temporarily (permanently) recorded on a magnetic disk such as a flexible disk, an optical disk such as various CD / MO disks / DVDs, or a removable recording medium 925 such as a semiconductor memory. You can keep it. Such a recording medium 925 can be provided as so-called package software. In this case, the programs recorded on these recording media 925 may be read by the drive 919 and recorded on the recording device 917 via the input / output interface 911, the bus 909, and the like.
 また、プログラムは、例えば、ダウンロードサイト・他のコンピュータ・他の記録装置等(図示せず)に記録しておくこともできる。この場合、プログラムは、LANやインターネット等のネットワークNWを介し転送され、通信装置923がこのプログラムを受信する。そして、通信装置923が受信したプログラムは、入出力インターフェース911やバス909等を介し上記記録装置917に記録されてもよい。 The program can also be recorded on, for example, a download site, another computer, another recording device, or the like (not shown). In this case, the program is transferred via a network NW such as a LAN or the Internet, and the communication device 923 receives the program. The program received by the communication device 923 may be recorded in the recording device 917 via the input / output interface 911, the bus 909, and the like.
 また、プログラムは、例えば、適宜の外部接続機器927に記録しておくこともできる。この場合、プログラムは、適宜の接続ポート921を介し転送され、入出力インターフェース911やバス909等を介し上記記録装置917に記録されてもよい。 The program can also be recorded on, for example, an appropriate externally connected device 927. In this case, the program may be transferred through an appropriate connection port 921 and recorded in the recording device 917 via the input / output interface 911, the bus 909, or the like.
 そして、CPU901が、上記記録装置917に記録されたプログラムに従い各種の処理を実行することにより、上記のロボットハンド100の把持動作等の制御が実現される。この際、CPU901は、例えば、上記記録装置917からプログラムを直接読み出して実行してもよいし、RAM905に一旦ロードした上で実行してもよい。更にCPU901は、例えば、プログラムを通信装置923やドライブ919、接続ポート921を介し受信する場合、受信したプログラムを記録装置917に記録せずに直接実行してもよい。 Then, the CPU 901 performs various processes in accordance with the program recorded in the recording device 917, thereby realizing the control of the gripping operation of the robot hand 100 and the like. At this time, the CPU 901 may, for example, directly read out the program from the recording device 917 and execute the program, or may execute the program once loaded in the RAM 905. Further, for example, when the CPU 901 receives a program via the communication device 923, the drive 919, and the connection port 921, the CPU 901 may directly execute the received program without recording it in the recording device 917.
 また、CPU901は、必要に応じて、例えばマウス・キーボード・マイク(図示せず)等の入力装置913から入力する信号や情報に基づいて各種の処理を行ってもよい。 The CPU 901 may perform various processes based on signals and information input from the input device 913 such as a mouse, a keyboard, and a microphone (not shown), as necessary.
 そして、CPU901は、上記の処理を実行した結果を、例えば表示装置や音声出力装置等の出力装置915から出力してもよく、さらにCPU901は、必要に応じてこの処理結果を通信装置923や接続ポート921を介し送信してもよく、上記記録装置917や記録媒体925に記録させてもよい。 Then, the CPU 901 may output the result of executing the above processing from an output device 915 such as a display device or an audio output device, and the CPU 901 may transmit the processing result to the communication device 923 and the connection device 923 as necessary. The data may be transmitted via the port 921 or may be recorded on the recording device 917 or the recording medium 925.
 なお、以上の説明において、「垂直」「平行」「平面」等の記載がある場合には、当該記載は厳密な意味ではない。すなわち、それら「垂直」「平行」「平面」とは、設計上、製造上の公差、誤差が許容され、「実質的に垂直」「実質的に平行」「実質的に平面」という意味である。 In the above description, if there is a description such as “vertical”, “parallel”, or “plane”, the description is not strictly meaningful. That is, the terms “vertical”, “parallel”, and “plane” mean tolerances and errors in design and manufacture, and mean “substantially vertical”, “substantially parallel”, and “substantially plane”. .
 また、以上の説明において、外観上の寸法や大きさ、形状、位置等が「同一(同じ)」「等しい」「異なる」等の記載がある場合は、当該記載は厳密な意味ではない。すなわち、それら「同一(同じ)」「等しい」「異なる」とは、設計上、製造上の公差、誤差が許容され、「実質的に同一(同じ)」「実質的に等しい」「実質的に異なる」という意味である。 In addition, in the above description, when there is a description such as “identical (same)”, “equal”, “different”, etc., in appearance, size, size, shape, position, etc., the description is not strictly meaning. That is, the terms “same (same)”, “equal”, and “different” mean that tolerances and errors in design and manufacture are allowed, and that “substantially the same (same)”, “substantially equal”, “substantially equal” Is different. "
 10     ロボット
 40     ロボットアーム
 50     コントローラ
 100    ロボットハンド
 101    取付部材
 102    ベース部材
 102b   後面
 102d   下面(第2サイド)
 102f   前面(第1サイド)
 103    第1把持部材
 104    第2把持部材
 105    サーボモータ(第1アクチュエータの一例)
 106    エアシリンダ(第2アクチュエータの一例)
 107    第1リニアガイド
 108    第2リニアガイド
 109    第1レール
 110    第1スライダ
 111    第1可動プレート
 117    第2レール
 118    第2スライダ
 119    第2可動プレート
 121    連結部
 122    増力機構
 127    カメラ(センサ)
 S2     ストローク
 W      ワーク
Reference Signs List 10 robot 40 robot arm 50 controller 100 robot hand 101 mounting member 102 base member 102b rear surface 102d lower surface (second side)
102f Front (1st side)
103 First holding member 104 Second holding member 105 Servo motor (an example of a first actuator)
106 air cylinder (an example of the second actuator)
107 1st linear guide 108 2nd linear guide 109 1st rail 110 1st slider 111 1st movable plate 117 2nd rail 118 2nd slider 119 2nd movable plate 121 Connecting part 122 Booster mechanism 127 Camera (sensor)
S2 Stroke W Work

Claims (14)

  1.  ロボットアームと、前記ロボットアームの先端に取り付けられたロボットハンドと、を備えたロボットであって、
     前記ロボットハンドは、
     第1把持部材と、
     前記第1把持部材が連結された第1スライダと、前記第1スライダを移動方向にガイドする第1レールとを備えた第1リニアガイドと、
     前記第1スライダを前記第1レールに沿って移動させる第1アクチュエータと、
     第2把持部材と、
     前記第2把持部材が連結された第2スライダと、前記第2スライダを前記移動方向にガイドする第2レールとを備えた第2リニアガイドと、
     前記第1アクチュエータと異なる動力源で駆動され、前記第2スライダを前記第2レールに沿って移動させる第2アクチュエータと、
     前記第1リニアガイドと前記第2リニアガイドを固定するベース部材と、
    を備え、
     前記ロボットハンドは、前記第2把持部材の推力が前記第1把持部材の推力よりも大きくなるように構成されており、
     前記第2リニアガイドは、前記第1リニアガイドにおける許容モーメントよりも大きな許容モーメントを有する、
    ロボット。
    A robot comprising: a robot arm; and a robot hand attached to a tip of the robot arm,
    The robot hand is
    A first gripping member;
    A first linear guide including a first slider to which the first gripping member is connected, and a first rail for guiding the first slider in a moving direction;
    A first actuator for moving the first slider along the first rail;
    A second gripping member;
    A second linear guide including a second slider to which the second gripping member is connected, and a second rail for guiding the second slider in the moving direction;
    A second actuator driven by a power source different from the first actuator to move the second slider along the second rail;
    A base member for fixing the first linear guide and the second linear guide,
    With
    The robot hand is configured such that the thrust of the second gripping member is larger than the thrust of the first gripping member,
    The second linear guide has a larger allowable moment than the allowable moment of the first linear guide,
    robot.
  2.  前記第2スライダは、
     リニアガイドにおいて少なくとも1つのスライダ全体の前記移動方向における一方側端部から他方側端部までの距離であるガイド長が、前記第1スライダよりも長くなるように構成されている、請求項1に記載のロボット。
    The second slider,
    2. The linear guide according to claim 1, wherein a guide length, which is a distance from one end to the other end in the moving direction of at least one slider as a whole, is longer than the first slider. 3. The described robot.
  3.  前記第2リニアガイドは、
     前記第2スライダとして、少なくとも2つのスライダと、
     前記第2レールとして、前記少なくとも2つのスライダのそれぞれをガイドする2つのレールと、
    を備えることを特徴とする、請求項2に記載のロボット。
    The second linear guide includes:
    At least two sliders as the second slider;
    Two rails for guiding each of the at least two sliders as the second rail;
    The robot according to claim 2, comprising:
  4.  前記第1アクチュエータは、サーボモータであり、
     前記第2アクチュエータは、エアシリンダである、
    請求項1~3のいずれか1項に記載のロボット。
    The first actuator is a servomotor,
    The second actuator is an air cylinder;
    The robot according to any one of claims 1 to 3.
  5.  前記ベース部材は、
     前記第1リニアガイドと前記第2リニアガイドを、前記第1レールと前記第2レールとのそれぞれの少なくとも一部が前記移動方向において相互に重複し、且つ前記移動方向に直交する方向において相互にずれた位置に固定する、
    請求項1~4のいずれか1項に記載のロボット。
    The base member,
    The first linear guide and the second linear guide are connected to each other in a direction in which at least a part of each of the first rail and the second rail overlap each other in the moving direction and are orthogonal to the moving direction. Fixed in a shifted position,
    The robot according to any one of claims 1 to 4.
  6.  前記ベース部材における、前記第1把持部材及び前記第2把持部材に対して反対側に前記ベース部材と間隙をあけて、前記ベース部材に固定され、前記ロボットアームの先端に取付けられる取付部材を更に有し、
     前記第1アクチュエータ及び前記第2アクチュエータは、前記間隙において前記ベース部材に取り付けられている、
    請求項1~5のいずれか1項に記載のロボット。
    The base member further includes a mounting member fixed to the base member and spaced from the first gripping member and the second gripping member on a side opposite to the base member and attached to a tip of the robot arm. Have
    The first actuator and the second actuator are attached to the base member at the gap.
    The robot according to any one of claims 1 to 5.
  7.  前記第1リニアガイドは、
     前記ベース部材の第1サイドに取り付けられ、
     前記第2リニアガイドは、
     前記ベース部材の前記第1サイドと直交する第2サイドに取り付けられている、
    請求項1~6のいずれか1項に記載のロボット。
    The first linear guide includes:
    Attached to a first side of the base member,
    The second linear guide includes:
    Attached to a second side of the base member orthogonal to the first side,
    The robot according to any one of claims 1 to 6.
  8.  前記ロボットハンドは、
     前記第2アクチュエータの推力を増大して前記第2スライダに伝達する増力機構を有する、
    請求項1~7のいずれか1項に記載のロボット。
    The robot hand is
    A booster mechanism for increasing the thrust of the second actuator and transmitting the thrust to the second slider;
    The robot according to any one of claims 1 to 7.
  9.  前記第2アクチュエータと前記第2リニアガイドは、
     前記増力機構を介して第1方向に離間して配置されており、
     前記第1アクチュエータ及び前記第1リニアガイドの少なくとも一方は、
     前記第1方向において前記第2アクチュエータと前記第2リニアガイドとの間に位置するように、前記ベース部材に固定されている、
    請求項8に記載のロボット。
    The second actuator and the second linear guide,
    It is arranged spaced apart in the first direction via the booster mechanism,
    At least one of the first actuator and the first linear guide,
    Fixed to the base member so as to be located between the second actuator and the second linear guide in the first direction;
    The robot according to claim 8.
  10.  前記ロボットハンドは、
     前記第1スライダと前記第1把持部材とを連結する第1可動プレートと、
     前記第2スライダと前記第2把持部材とを連結する第2可動プレートと、を有し、
     前記第1把持部材は、
     前記第1可動プレートに着脱可能に連結されており、
     前記第2把持部材は、
     前記第2可動プレートに着脱可能に連結されている、
    請求項1~9のいずれか1項に記載のロボット。
    The robot hand is
    A first movable plate connecting the first slider and the first holding member,
    A second movable plate connecting the second slider and the second gripping member,
    The first holding member includes:
    Being detachably connected to the first movable plate,
    The second gripping member,
    Being detachably connected to the second movable plate,
    The robot according to any one of claims 1 to 9.
  11.  前記第2可動プレートは、
     前記第2把持部材の延設方向に屈曲し、前記移動方向の幅寸法が前記第2把持部材よりも大きくなるように形成された、前記第2把持部材が連結される連結部を有している、
    請求項10に記載のロボット。
    The second movable plate includes:
    A connecting portion that is bent in the extending direction of the second gripping member and has a width dimension in the moving direction larger than that of the second gripping member, the connecting portion being connected to the second gripping member; Yes,
    The robot according to claim 10.
  12.  前記ロボットハンドは、
     前記第1リニアガイドが取り付けられる前記ベース部材の第1サイドに取り付けられ、前記第1把持部材と前記第2把持部材とにより把持される対象であるワークを検出する少なくとも1つのセンサを有する、
    請求項1~11のいずれか1項に記載のロボット。
    The robot hand is
    At least one sensor attached to a first side of the base member to which the first linear guide is attached, the sensor including at least one sensor for detecting a work to be held by the first holding member and the second holding member,
    The robot according to any one of claims 1 to 11.
  13.  前記第1把持部材と前記第2把持部材を近づけてワークを把持する際に、前記第2把持部材をストロークの端部まで移動させた後に前記第1把持部材を移動させるように、前記第1アクチュエータと前記第2アクチュエータを制御するコントローラをさらに有する、
    請求項1~12のいずれか1項に記載のロボット。
    When the first gripping member and the second gripping member are brought close to each other to grip a workpiece, the first gripping member is moved after moving the second gripping member to an end of a stroke. Further comprising an actuator and a controller for controlling the second actuator;
    The robot according to any one of claims 1 to 12.
  14.  ロボットアームの先端に取り付けられるロボットハンドであって、
     第1把持部材と、
     前記第1把持部材が連結された第1スライダと、前記第1スライダを移動方向にガイドする第1レールとを備えた第1リニアガイドと、
     前記第1スライダを前記第1レールに沿って移動させる第1アクチュエータと、
     第2把持部材と、
     前記第2把持部材が連結された第2スライダと、前記第2スライダを前記移動方向にガイドする第2レールとを備えた第2リニアガイドと、
     前記第1アクチュエータと異なる動力源で駆動され、前記第2スライダを前記第2レールに沿って移動させる第2アクチュエータと、
     前記第1リニアガイドと前記第2リニアガイドを固定するベース部材と、
    を備え、
     前記ロボットハンドは、前記第2把持部材の推力が前記第1把持部材の推力よりも大きくなるように構成されており、
     前記第2リニアガイドは、前記第1リニアガイドにおける許容モーメントよりも大きな許容モーメントを有する、
    ロボットハンド。
    A robot hand attached to the tip of the robot arm,
    A first gripping member;
    A first linear guide including a first slider to which the first gripping member is connected, and a first rail for guiding the first slider in a moving direction;
    A first actuator for moving the first slider along the first rail;
    A second gripping member;
    A second linear guide including a second slider to which the second gripping member is connected, and a second rail for guiding the second slider in the moving direction;
    A second actuator driven by a power source different from the first actuator to move the second slider along the second rail;
    A base member for fixing the first linear guide and the second linear guide,
    With
    The robot hand is configured such that the thrust of the second gripping member is larger than the thrust of the first gripping member,
    The second linear guide has a larger allowable moment than the allowable moment of the first linear guide,
    Robot hand.
PCT/JP2018/023370 2018-06-19 2018-06-19 Robot and robot hand WO2019244262A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019540678A JP6601650B1 (en) 2018-06-19 2018-06-19 Robot and robot hand
CN201880094731.3A CN112313048B (en) 2018-06-19 2018-06-19 Robot and robot hand
PCT/JP2018/023370 WO2019244262A1 (en) 2018-06-19 2018-06-19 Robot and robot hand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023370 WO2019244262A1 (en) 2018-06-19 2018-06-19 Robot and robot hand

Publications (1)

Publication Number Publication Date
WO2019244262A1 true WO2019244262A1 (en) 2019-12-26

Family

ID=68462329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023370 WO2019244262A1 (en) 2018-06-19 2018-06-19 Robot and robot hand

Country Status (3)

Country Link
JP (1) JP6601650B1 (en)
CN (1) CN112313048B (en)
WO (1) WO2019244262A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223587A (en) * 1982-06-16 1983-12-26 味の素株式会社 Hand mechanism of robot
JPH027989U (en) * 1988-06-30 1990-01-18
JPH0274193U (en) * 1988-11-22 1990-06-06
JPH0653036U (en) * 1992-12-28 1994-07-19 株式会社タチエス S-spring chuck device
JPH105932A (en) * 1996-06-27 1998-01-13 Ishikawajima Shibaura Mach Co Ltd Device for holding core
JP2002184789A (en) * 2000-12-13 2002-06-28 Shibaura Mechatronics Corp Lead frame transfer apparatus
JP2010247288A (en) * 2009-04-17 2010-11-04 Ihi Corp Long stroke robot hand

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090132086A1 (en) * 2007-11-16 2009-05-21 Fanuc Ltd Holding apparatus and holding unit
JP5582313B2 (en) * 2011-06-28 2014-09-03 株式会社安川電機 Robot system
CN103386690B (en) * 2013-07-22 2015-06-03 山东省科学院自动化研究所 Double-finger double-driving translation clamping type flexible grip and control method
JP5696806B1 (en) * 2014-03-31 2015-04-08 ソニー株式会社 Industrial robot
DE102015216550A1 (en) * 2015-08-28 2017-03-02 Kuka Roboter Gmbh robot gripper

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223587A (en) * 1982-06-16 1983-12-26 味の素株式会社 Hand mechanism of robot
JPH027989U (en) * 1988-06-30 1990-01-18
JPH0274193U (en) * 1988-11-22 1990-06-06
JPH0653036U (en) * 1992-12-28 1994-07-19 株式会社タチエス S-spring chuck device
JPH105932A (en) * 1996-06-27 1998-01-13 Ishikawajima Shibaura Mach Co Ltd Device for holding core
JP2002184789A (en) * 2000-12-13 2002-06-28 Shibaura Mechatronics Corp Lead frame transfer apparatus
JP2010247288A (en) * 2009-04-17 2010-11-04 Ihi Corp Long stroke robot hand

Also Published As

Publication number Publication date
JP6601650B1 (en) 2019-11-06
CN112313048A (en) 2021-02-02
JPWO2019244262A1 (en) 2020-06-25
CN112313048B (en) 2023-04-04

Similar Documents

Publication Publication Date Title
Williams et al. Planar translational cable‐direct‐driven robots
US8549952B2 (en) Robot and method for controlling the robot
KR101964253B1 (en) Robot hand and robot
US8091448B2 (en) Manipulator with distributed actuation mechanism
US5611248A (en) Two-axis robot
JP4625110B2 (en) Grasp type hand
JP2018187751A (en) Robot, robot control method, and workpiece manufacturing method
US8668423B2 (en) Grasping device, robot system, and method of manufacturing mechanical product
JPWO2009157190A1 (en) Robot hand and robot arm
JP2009539624A5 (en)
JPWO2015075778A1 (en) Robot system
JP2014240106A (en) Robot, robot control device, and driving method of robot
US11389952B2 (en) Robot arm
JP7005136B2 (en) Manufacturing methods for gripping devices, robot devices, control methods, control programs, recording media, and articles.
JP6601650B1 (en) Robot and robot hand
JP5211287B2 (en) A haptic manipulator with a single center of rotation
JP5397833B2 (en) Long stroke robot hand
JP2006198703A (en) Arm driving device of human type robot
US20230052058A1 (en) Continuum arm robot system
JP5656189B2 (en) Trajectory information generation device for articulated robot arm type transfer device
JP2017127932A (en) Robot device, method for controlling robot, method for manufacturing component, program and recording medium
Lin et al. A quasi-direct drive robot hand for reactive and contact-rich manipulations
JP2006187815A (en) Manipulator and transfer robot using the same
JP2023061647A (en) Robot system, robot system control method, article manufacturing method using robot system, low friction member, control program and recording medium
JP2018034247A (en) Robot and operation method of the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019540678

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923211

Country of ref document: EP

Kind code of ref document: A1