WO2019242524A1 - 波束分配方法、装置、基站和计算机可读存储介质 - Google Patents

波束分配方法、装置、基站和计算机可读存储介质 Download PDF

Info

Publication number
WO2019242524A1
WO2019242524A1 PCT/CN2019/090650 CN2019090650W WO2019242524A1 WO 2019242524 A1 WO2019242524 A1 WO 2019242524A1 CN 2019090650 W CN2019090650 W CN 2019090650W WO 2019242524 A1 WO2019242524 A1 WO 2019242524A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthetic
beams
activation
energy projection
energy
Prior art date
Application number
PCT/CN2019/090650
Other languages
English (en)
French (fr)
Inventor
周娜
周将运
刘汉超
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019242524A1 publication Critical patent/WO2019242524A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • Embodiments of the present disclosure relate to the field of communications, and for example, to a beam allocation method, device, base station, and computer-readable storage medium.
  • MIMO Massive Multiple-Input Multiple-Output
  • the cell is divided into multiple pre-formed beams to cover, and the active beam is selected for the terminal according to a certain strategy.
  • Terminals with no intersection of activation beams can spatially multiplex the same time-frequency resources, thereby increasing network capacity.
  • the activation beam selected for the terminal is not accurate, it will affect the performance of space division multiplexing and affect the cell downlink Traffic.
  • Beam allocation strategies in related technologies are usually activated first and then synthesized, which will cause inaccurate beam activation and inaccurate conversion of the inner loop modulation and coding strategy (MCS), affecting the downstream traffic of the cell. .
  • MCS inner loop modulation and coding strategy
  • Embodiments of the present disclosure provide a beam allocation method, device, base station, and computer-readable storage medium, which are intended to at least solve the problem of inaccurate beam activation in related technologies.
  • An embodiment of the present disclosure provides a beam allocation method, including:
  • the activation threshold is a limit value of the energy projection ratio of the composite beam.
  • An embodiment of the present disclosure further provides a beam allocation apparatus, including:
  • a projection determining module configured to determine an energy projection ratio of each of the at least two synthetic beams preset
  • a beam activation module configured to select, from the synthetic beams, at least one synthetic beam that meets an activation threshold as an activation beam, and allocate the activation beam to a user terminal;
  • the activation threshold is a limit value of an energy projection ratio of the composite beam.
  • An embodiment of the present disclosure further provides a base station including a processor, a memory, and a communication bus;
  • the communication bus is configured to implement connection and communication between the processor and the memory
  • the processor is configured to execute a computer program stored in the memory to implement the above-mentioned beam allocation method.
  • An embodiment of the present disclosure further provides a computer-readable storage medium.
  • the computer-readable storage medium stores one or more computer programs, and the computer programs can be executed by one or more processors to implement the foregoing methods.
  • FIG. 1 is a schematic diagram of a base station of a Massive MIMO system
  • FIG. 2 is a flowchart of a beam allocation method according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of another beam allocation method according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a beam allocation apparatus according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 1 includes two hardware components, namely, a physical layer (PHY) module and a media access control sub-layer (Control, Media Access Control, CMAC) module.
  • PHY refers to the physical layer, the lowest layer of Long Term Evolution (LTE) (the fourth generation mobile phone mobile communication standard, commonly known as 4G), and generally refers to the chip that interfaces with external signals.
  • CMAC refers to the media access control sublayer.
  • the PHY module reports the beam energy
  • the CMAC module performs beam activation and the inner MCS loss based on the reported beam energy, and sends the activation result to the PHY
  • the PHY synthesizes the beam to the user equipment ( User (Equipment, UE) to communicate, that is, activate first and then synthesize.
  • the PHY module is responsible for reporting the beam, and reports the energy projection ratio of each synthesized beam synthesized by the channel sounding reference signal (SRS) to the CMAC module; the CMAC module is based on the reported by the PHY module.
  • SRS channel sounding reference signal
  • the energy projection ratio of the composite beam is used to activate the beam and convert the MCS of the inner loop. Then send the synthesized beam index to the PHY, so the final beam energy of the PHY is the energy used to activate the beam and the MCS of the inner loop.
  • FIG. 2 is a flowchart of a beam allocation method according to an embodiment of the present disclosure, including:
  • S210 Determine an energy projection ratio of each of the preset at least two synthetic beams.
  • S220 From at least two synthetic beams, select at least one synthetic beam that satisfies an activation threshold as an activation beam, and allocate the activation beam to a user terminal.
  • the activation threshold is a limit value of the energy projection ratio of the composite beam.
  • determining a preset energy projection ratio of each of the at least two synthetic beams may include:
  • the 255 synthetic beam weights are arranged according to the number of single beams synthesized from small to large (1 to 8).
  • the embodiment of the present disclosure only exemplifies the case where the number of synthetic beams is 255, and it is not limited that the number of synthetic beams must be 255.
  • the corresponding design may be performed according to the actual system, or may be less than 255, or more than 255.
  • the implementation of the present disclosure Examples do not limit it.
  • determining the energy projection of each synthetic beam according to the two polarization direction covariance matrices of each of the two antenna vertical plates and the weight of each synthetic beam may include:
  • M CRS -1 is the number of the largest synthetic beam, which is 255 in this embodiment. At this point, the size of the energy projection of each beam has been calculated. Then, according to the percentage of the energy projection of these 255 synthetic beams relative to the CRS broadcast right, the energy projection ratio of each synthetic beam can be obtained.
  • the specific algorithm is as follows: After obtaining the energy projection proportion, the PHY module can report the energy projection proportion to the CMAC module.
  • selecting, from at least two synthetic beams, at least one synthetic beam that satisfies an activation threshold as an activation beam may include: determining, from at least two synthetic beams, a synthetic beam that satisfies an activation threshold; Among the synthetic beams, the synthetic beam with the smallest number of beams is selected as the activation beam.
  • the activation threshold is a limited value of the energy projection size of the synthetic beam, which is usually compared with the largest energy in the synthetic beam, that is, the 255th synthetic beam, which is obtained by combining all the single beams. The value is also the highest.
  • the activation threshold is characterized by a certain ratio of the maximum energy value, such as 85%.
  • the activation threshold can also be understood as the limit value of the energy projection ratio of the composite beam.
  • a synthetic beam with the smallest number of beams that meets the activation threshold is usually selected as the activation beam for activation. For example, at this time, there are 8 groups of synthetic beams that meet the activation threshold, and the number of single beams in the 8 groups is 3, 3, 4, 5, 6, 7, 7, and 8 respectively.
  • the composite beam is the active beam.
  • selecting the synthetic beam with the smallest number of beams as the activated beam from the synthetic beams that satisfy the activation threshold may further include: when the synthetic beam with the smallest number of beams includes at least two, selecting an energy projection ratio The highest synthetic beam is used as the activation beam. There may also be multiple synthetic beams with the smallest number of beams. When there are multiple synthetic beams with the smallest number of beams, since the number of beams is the same, then you can start from the perspective of energy size, that is, the proportion of energy projection among them The highest synthetic beam is activated as the activation beam, which can ensure the communication quality as much as possible.
  • it may further include:
  • the user terminal is currently wideband filtering the signal to interference plus noise ratio, SINR, a transmission scheme SINR value of the CQI;
  • SINR signal to interference plus noise ratio
  • the energy beam projector share each synthesis, SINR and the CQI, MCS determining breakage of the inner ring.
  • determining the MCS impairment of the inner loop according to the energy projection ratio of each synthetic beam and the SINR CQI may include:
  • I SDMA ⁇ k ⁇ UeSet Pall_UE (SdmaSet k _inx), where UeSet is allocated to the user terminal empty pairing the terminal, SdmaSet k _inx beam is activated bitmap index corresponding to each pair of terminals;
  • I ChanLoss Pall_UE (end) -Pall_UE (AckSet_inx), wherein the end corresponding to the maximum beam synthesized bitmap index;
  • ⁇ and ⁇ are each configurable parameters
  • the MCS of the inner ring is obtained through the SINR ' pair .
  • the calculated inner loop MCS loss is more accurate, which can further improve the downlink traffic of the cell.
  • This embodiment proposes to replace the single-beam summation scheme in the related technology by the SRS synthetic beam scheme, that is, the PHY module directly reports the energy projection proportion of the 255 synthetic beams synthesized by the SRS, and the CMAC module according to the 255 synthetic beams reported by the PHY module The proportion of the energy projection is used to activate the beam and convert the inner MCS. In this way, both the beam activation and the inner loop conversion use the final synthesized beam energy.
  • the scheme in the embodiment of the present disclosure is synthesized first and then activated, which is more accurate and real, and thus improves air separation. The multiplexing performance improves the downlink traffic of the cell.
  • FIG. 3 is a flowchart of another beam allocation method according to an embodiment of the present disclosure, including:
  • Preset 255 synthetic beam weights W CRS [w0, w1, ... w255], and the 255 synthetic beams are arranged according to the number of beams from small to large (1 to 8).
  • the energy projection is calculated by combining the averaged covariance matrix and 255 synthetic beam weights.
  • M CRS -1 is equal to 255.
  • the PHY reports the energy projection ratio of 255 active beam bitmaps to the CMAC.
  • the CMAC finds the composite beam set An * that has the smallest number of activated beams and meets the activation threshold in the order of the number of activated beams from small to large.
  • Pall_UE indicates the proportion of 255 energy projections reported by the current UE.
  • SINR CQI linear value
  • is a configurable parameter
  • is a configurable parameter
  • the channel quality indicator (CQI) is mapped through the SINR ' pair , the corresponding spectral efficiency (SE) is obtained through the CQI mapping, and then the inner-loop MCS is obtained through the SE mapping.
  • This embodiment provides a specific application of the beam allocation method. It is assumed that a single beam summation method has an active beam energy ratio that exceeds an activation threshold, and a synthetic beam method detection does not reach the threshold.
  • Synthetic beam function switch turn on Active beam energy ratio 85% Whether beam overlap can be spatially separated no
  • Cell 1 has 4 UEs distributed near-to-medium and far-off to perform airspace separation, which are UE0 to UE3.
  • the energy projection ratio of the remote beam UE3's synthetic beam method and compare it with the single beam summation method.
  • the same UE3 can be measured.
  • the ratio of the energy projection of the synthetic beam is lower than the energy ratio of the single-beam summation.
  • the energy ratio of the single-beam summation method has reached At an 85% threshold, these beams of UE3 will be activated. It should not be paired with UE3 for air separation, but paired with other UEs for air separation.
  • the inter-stream interference is severe, which affects the cell's air division multiplexing performance.
  • the energy projection ratio of the synthetic beam method does not reach the 85% threshold.
  • step two These beams of UE3 will not be activated. It can be found through step two that more beams can be activated to reach the activation threshold. However, the more active beams, the greater the probability of beam overlap with other UEs. Since the UEs with overlapping beams cannot be space-divided, the probability of empty allocation pairs becomes smaller, inter-stream interference is also reduced, and cell space-division is complex. The performance is improved, and the downlink traffic of the cell is improved.
  • Synthetic beam function switch turn on Active beam energy ratio 85% Whether beam overlap can be spatially separated no
  • Cell1 has 4 UEs distributed near-to-medium-distance for downlink air separation, which are UE0 to UE3.
  • the energy projection ratio of the synthetic beam method of the midpoint UE2 and compare the energy ratio of the single beam summation method.
  • the same UE2 can be measured.
  • the ratio of the energy projection of the synthetic beam is higher than that of the single-beam summation.
  • the energy ratio of the single-beam summation method does not reach 85. % Threshold, none of these beams of the UE will be activated. It can be found through the beam allocation method in the above embodiment that more beam activations can be selected to reach the activation threshold.
  • the UE is paired with space division and affects the cell space division multiplexing performance.
  • the energy ratio of the synthetic beam method has reached the threshold of 85%. These beams of UE2 will be activated and can be paired with other UEs for air separation.
  • the cell space division multiplexing performance is improved, and the cell downlink traffic is improved.
  • the composite beam method can make the MCS inner loop damage more accurate and the cell downlink traffic can be improved.
  • Synthetic beam function switch turn on Active beam energy ratio 85% Whether beam overlap can be spatially separated no
  • Cell1 has 3 UEs distributed near-to-medium-distance for downlink air separation, which are UE0 to UE2.
  • UE1 activates beam 0,1, and the corresponding energy projection is [1,0,0,0,0,0];
  • the paired UE2 activates beams 2, 3, and the corresponding energy projection is [0, 0, 0, 0, 0];
  • the paired UE3 activates beams 4,5,6, and the corresponding energy projection is [0,0,0,0,1,1,0]; where 0 represents an inactive single beam and 1 represents an activated single beam.
  • the synthetic beam method can be obtained through step three:
  • bin2dec ('11000000') 192;
  • bin2dec ('11111111') 255.
  • the internal loop damage information of the midpoint UE2 is obtained through the beam allocation method in the foregoing embodiment.
  • the internal loop damage of the synthetic beam will be smaller than that of the single beam summing method. It is 5, the single-loop summation method finally schedules the inner loop MCS to be 1 or 2, and the final scheduled inner loop MCS rises, which improves the cell space division multiplexing performance and the cell downlink traffic.
  • FIG. 4 is a schematic diagram of a composition of a beam allocation apparatus according to this embodiment, including:
  • the projection determination module 41 is configured to determine an energy projection ratio of each of the preset at least two synthetic beams
  • the beam activation module 42 is configured to select, from at least two synthetic beams, at least one synthetic beam that meets an activation threshold as an activation beam, and allocate the activation beam to a user terminal.
  • the activation threshold is a limit value of the energy projection ratio of the composite beam.
  • the projection determining module 41 is configured to determine the energy projection of each composite beam according to the two polarization direction covariance matrices of the two antenna vertical plates and the weight of each composite beam; The percentage of the energy projection of each composite beam relative to the CRS broadcast right of the cell-specific reference signal, to obtain the energy projection ratio of each composite beam.
  • the 255 synthetic beam weights are arranged according to the number of single beams synthesized from small to large (1 to 8).
  • the embodiment of the present disclosure only exemplifies the case where the number of synthetic beams is 255, and it is not limited that the number of synthetic beams must be 255.
  • the corresponding design can be performed according to the actual system, or it can be less than 255, or more than 255. Examples do not limit it.
  • determining the energy projection of each synthetic beam according to the two polarization direction covariance matrices of each of the two antenna vertical plates and the weight of each synthetic beam may include:
  • M CRS -1 is the number of the largest synthetic beam, which is 255 in this embodiment. At this point, the size of the energy projection of each beam has been calculated. Then, according to the percentage of the energy projection of these 255 synthetic beams relative to the CRS broadcast right, the energy projection ratio of each synthetic beam can be obtained.
  • the specific algorithm is as follows: After obtaining the energy projection proportion, the PHY module can report the energy projection proportion to the CMAC module.
  • the beam activation module 42 is configured to determine, from at least two synthetic beams, a synthetic beam that satisfies an activation threshold; and from among the synthetic beams that meet the activation threshold, select a synthetic beam with the smallest number of beams as the activation beam .
  • the activation threshold is a limited value of the energy projection size of the synthetic beam, which is usually compared with the largest energy in the synthetic beam, that is, the 255th synthetic beam, which is obtained by combining all the single beams. The value is also the highest.
  • the activation threshold is characterized by a certain ratio of the maximum energy value, such as 85%. In a composite beam with an energy projection size greater than or equal to 85%, it can be considered that it meets the activation threshold and can be activated.
  • a synthetic beam with the smallest number of beams that meets the activation threshold is usually selected as the activation beam for activation. For example, at this time, there are 8 groups of synthetic beams that meet the activation threshold, and the number of single beams in the 8 groups is 3, 3, 4, 5, 6, 7, 7, and 8 respectively.
  • the composite beam is the active beam.
  • selecting the synthetic beam with the smallest number of beams as the activated beam from the synthetic beams that satisfy the activation threshold may further include: when the synthetic beam with the smallest number of beams includes at least two, selecting an energy projection ratio The highest synthetic beam is used as the activation beam. There may also be multiple synthetic beams with the smallest number of beams. When there are multiple synthetic beams with the smallest number of beams, since the number of beams is the same, then you can start from the perspective of the energy size, that is, the energy projection ratio. The highest synthetic beam is activated as the activation beam, which can ensure the communication quality as much as possible.
  • an inner-loop MCS determination module 43 configured to:
  • the user terminal is currently wideband filtering the signal to interference plus noise ratio, SINR, a transmission scheme SINR value of the CQI;
  • SINR signal to interference plus noise ratio
  • the energy beam projector share each synthesis, SINR and the CQI, MCS determining breakage of the inner ring.
  • the inner-loop MCS determination module 43 is configured to:
  • I SDMA ⁇ k ⁇ UeSet Pall_UE (SdmaSet k _inx), where UeSet is allocated to the user terminal empty pairing the terminal, SdmaSet k _inx beam is activated bitmap index corresponding to each pair of terminals;
  • I ChanLoss Pall_UE (end) -Pall_UE (AckSet_inx), wherein the end corresponding to the maximum beam synthesized bitmap index;
  • ⁇ and ⁇ are each configurable parameters
  • the MCS of the inner ring is obtained through the SINR ' pair .
  • the calculated inner loop MCS loss is more accurate, which can further improve the downlink traffic of the cell.
  • This embodiment proposes to replace the single-beam summation scheme in the related technology by the SRS synthetic beam scheme, that is, the PHY module directly reports the energy projection proportion of the 255 synthetic beams synthesized by the SRS, and the CMAC module according to the 255 synthetic beams reported by the PHY module The proportion of the energy projection is used to activate the beam and convert the inner MCS. In this way, both the beam activation and the inner loop conversion use the final synthesized beam energy.
  • the scheme in the embodiment of the present disclosure is synthesized first and then activated, which is more accurate and real, and thus improves air separation
  • the multiplexing performance improves the downlink traffic of the cell.
  • FIG. 5 is a schematic diagram of a base station according to this embodiment, including a processor 51, a memory 52, and a communication bus 53.
  • the communication bus 53 is configured to implement connection and communication between the processor 51 and the memory 52;
  • the processor 51 is configured to execute a computer program stored in the memory 52 to implement the beam allocation method in one or more embodiments of the present disclosure, and details are not described herein again.
  • This embodiment provides a computer-readable storage medium.
  • the computer-readable storage medium stores one or more computer programs, and the computer programs can be executed by one or more processors to implement the foregoing one or more embodiments.
  • the beam allocation method in this paper is not repeated here.
  • modules or steps of the present disclosure may be implemented by a general-purpose computing device, and they may be centralized on a single computing device or distributed on a network composed of multiple computing devices. Alternatively, they can be implemented with program code executable by a computing device, so that they can be stored in a storage medium (Read-Only Memory (ROM) / Random Access Memory (RAM), Magnetic disks, optical disks) are performed by a computing device, and in some cases, the steps shown or described can be performed in a different order than here, or they can be made into one or more integrated circuit modules, respectively, Or multiple modules or steps in them are made into a single integrated circuit module for implementation. Therefore, the present disclosure is not limited to any specific combination of hardware and software.
  • Embodiments of the present disclosure provide a beam allocation method, device, base station, and computer-readable storage medium.
  • determining a preset energy projection ratio of each of the at least two synthetic beams selecting from the synthetic beams, At least one synthetic beam that satisfies the activation threshold is used as the activation beam and is allocated to the user terminal, so that each of the single beams is synthesized in advance to form at least two synthetic beams, and then the energy projection ratio of these at least two synthetic beams is directly calculated, so that The accuracy of beam activation is improved, and the downlink traffic of the cell is further improved.
  • the embodiment of the present disclosure also determines the inner ring MCS damage based on the composite beam, which improves the accuracy of the inner ring MCS damage calculation, and further improves the downlink traffic of the cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种波束分配方法、装置、基站和计算机可读存储介质,所述方法包括:通过确定预设的至少两个合成波束中,每个合成波束的能量投影占比(S210);从至少两个合成波束中,选择满足激活门限的至少一个合成波束作为激活波束,并将激活波束分配给用户终端(S220)。

Description

波束分配方法、装置、基站和计算机可读存储介质
本申请要求在2018年6月19日提交中国专利局、申请号为201810632040.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开实施例涉及通信领域,例如涉及一种波束分配方法、装置、基站和计算机可读存储介质。
背景技术
在大规模(Massive)多入多出((Multiple-Input Multiple-Output,MIMO)***中,将小区划分为多个预制波束覆盖,并且按照一定的策略为终端选择激活的波束,基站通过激活波束向终端发送数据。激活波束无交集的终端可以空分复用相同的时频资源,从而提高网络容量。然而如果为终端选择的激活波束不准确,会影响空分复用的性能,影响小区下行流量。相关技术中的波束分配策略通常是先激活,再合成,这会导致波束的激活不准确,以及内环调制与编码策略(Modulation and Coding Scheme,MCS)折算不准确,影响小区的下行流量。
发明内容
本公开实施例提供了一种波束分配方法、装置、基站和计算机可读存储介质,旨在至少解决相关技术中波束激活不准确的问题。
本公开实施例提供了一种波束分配方法,包括:
确定预设的至少两个合成波束中,每个合成波束的能量投影占比;
从所述合成波束中,选择满足激活门限的至少一个合成波束作为激活波束,并将激活波束分配给用户终端;
其中,激活门限是合成波束的能量投影占比的限定值。
本公开实施例还提供了一种波束分配装置,包括:
投影确定模块,设置为确定预设的至少两个合成波束中,每个合成波束的能量投影占比;
波束激活模块,设置为从所述合成波束中,选择满足激活门限的至少一个合成波束作为激活波束,并将激活波束分配给用户终端;
其中,所述激活门限是所述合成波束的能量投影占比的限定值。
本公开实施例还提供了一种基站,包括处理器、存储器和通信总线;
所述通信总线设置为实现所述处理器和存储器之间的连接通信;
所述处理器设置为执行所述存储器中存储的计算机程序,以实现上述的波束分配方法。
本公开实施例还提供了一种计算机可读存储介质,计算机可读存储介质中存储有一个或者多个计算机程序,计算机程序可被一个或者多个处理器执行,以实现上述的方法。
附图说明
图1为Massive MIMO***基站的组成示意图;
图2为本公开实施例提供的一种波束分配方法的流程图;
图3为本公开实施例提供的另一种波束分配方法的流程图;
图4为本公开实施例提供的一种波束分配装置的组成示意图;
图5为本公开实施例提供的一种基站的组成示意图。
具体实施方式
在Massive MIMO***中,请参考图1,包括两个硬件组成部分,分别是物理层(Physical Layer,PHY)模块和媒体访问控制子层(Control Media Access Control,CMAC)模块。PHY指物理层,长期演进(Long Term Evolution,LTE)(***移动电话行动通信标准,俗称4G)的最底层,一般指与外部信号接口的芯片。CMAC指的是媒体访问控制子层。在Massive MIMO***中,由PHY 模块上报波束能量,CMAC模块根据上报的波束能量进行波束激活和内环MCS的折损,并将激活结果下发PHY,PHY根据这个结果合成波束打向用户设备(User Equipment,UE)进行通信,即先激活再合成。这会导致波束的激活不准确,以及内环折算不准确,影响小区的下行流量。而在本公开实施例中,PHY模块负责波束的上报,将信道探测参考信号(Sounding Reference Signal,SRS)合成的每个合成波束的能量投影占比上报给CMAC模块;CMAC模块根据PHY模块上报的合成波束的能量投影占比进行波束的激活和内环MCS的折算。然后再将合成的波束索引下发PHY,所以PHY最终合成的波束能量即是激活波束和内环MCS折损使用的能量。
下面通过实施方式结合附图对本公开实施例作进一步详细说明。此处所描述的实施例仅仅用以解释本公开,并不用于限定本公开。
实施例一
请参考图2,图2是本公开实施例提供的一种波束分配方法的流程图,包括:
S210、确定预设的至少两个合成波束中,每个合成波束的能量投影占比。
S220、从至少两个合成波束中,选择满足激活门限的至少一个合成波束作为激活波束,并将激活波束分配给用户终端。
在一实施例中,激活门限是合成波束的能量投影占比的限定值。
在一些实施例中,确定预设的至少两个合成波束中,每个合成波束的能量投影占比可以包括:
根据天线垂直两板各自的两个极化方向协方差矩阵,以及每个合成波束的权值,确定每个合成波束的能量投影;确定每个合成波束的能量投影相对于小 区特定参考信号(Cell-specific Reference Signal,CRS)广播权的百分比,得到每个合成波束的能量投影占比。其中,天线通常包括两个,每个天线有两个极化方向,也就是有两对极化方向协方差矩阵。假设本实施例中共有255个合成波束,那么就有255个合成波束的权值,分别为W CRS=[w0,w1,…w255],其中w255为补充值,填充协方差矩阵的最后一位。这255个合成波束权值按照合成其的单波束的个数从小到大(1~8)进行排列。
本公开实施例中仅列举合成波束为255个的情况,并不限定合成波束一定是255个,可以根据实际***进行相应的设计,或可少于255个,或者多于255个,本公开实施例并不对其进行限定。
在一些实施例中,根据天线垂直两板各自的两个极化方向协方差矩阵,以及每个合成波束的权值,确定每个合成波束的能量投影可以包括:
按照天线垂直两板抽取两个极化方向协方差矩阵
Figure PCTCN2019090650-appb-000001
Figure PCTCN2019090650-appb-000002
其中,
Figure PCTCN2019090650-appb-000003
Figure PCTCN2019090650-appb-000004
Figure PCTCN2019090650-appb-000005
Figure PCTCN2019090650-appb-000006
分别表示两个天线上的协方差矩阵,各自包括两个极化方向的协方差矩阵,也就是说,实际上有四个协方差矩阵,分别为
Figure PCTCN2019090650-appb-000007
Figure PCTCN2019090650-appb-000008
将抽取后的每个协方差矩阵合并求取平均值,得到平均协方差矩阵
Figure PCTCN2019090650-appb-000009
此处的平均值为算数平均值。
根据平均协方差矩阵与每个合成波束的权值,计算每个合成波束的能量投影
Figure PCTCN2019090650-appb-000010
其中,M CRS-1是最大的合成波束的编号,在本实施例中也就是255。到此,就已经计算出了每个波束的能量投影的大小,然后,再根据这255个合成波束的能量投影相对于CRS广播权的百分比,就可以得到每个合成波束的能量投影占比,具体算法如下:
Figure PCTCN2019090650-appb-000011
得到能量投影占比之后,PHY模块就可以将能量投影占比上报给CMAC模块。
在一些实施例中,从至少两个合成波束中,选择满足激活门限的至少一个合成波束作为激活波束可以包括:从至少两个合成波束中,确定满足激活门限的合成波束;从满足激活门限的合成波束中,选择波束个数最小的合成波束作为激活波束。其中,激活门限是合成波束的能量投影大小的限定值,其通常与合成波束中能量最大的作比,也就是第255个合成波束,第255个合成波束是将所有单波束合成得到,其能量值也是最高的,激活门限所表征的就是一定比率的最大能量值,比如说85%,在能量投影大小大于或等于85%的合成波束,则可认为其满足激活门限,可被激活。由于能量投影占比是能量投影大小相对于CRS的百分比得到的,因此,激活门限也可以理解为合成波束的能量投影占比的限定值。
但是,并不是所有的满足激活门限的合成波束均要激活,基于资源利用率的考虑,在满足激活门限要求的前提下,合成波束占用的单波束数量越低,其效率越高,换言之,在进行合成波束的选择时,通常会选择满足激活门限的合 成波束中,其波束个数最小的合成波束作为激活波束进行激活。比如说,此时满足激活门限的合成波束有8组,其中8组所包含的单波束的数量分别为3、3、4、5、6、7、7、8,那么其中3个单波束的合成波束则为激活波束。
此外,在一些实施例中,从满足激活门限合成波束中,选择波束个数最小的合成波束作为激活波束还可以包括:当波束个数最小的合成波束包括至少两个时,选择能量投影占比最高的合成波束作为激活波束。波束个数最小的合成波束也可能有多个,当波束个数最小的合成波束有多个时,由于波束数量相同,那么此时则可以从能量大小角度出发,也就是将其中能量投影占比最高的合成波束进行激活,作为激活波束,这样可以尽可能的保证通信质量。
在一些实施例中,还可以包括:
获取用户终端当前传输方案下的宽带滤波信号与干扰加噪声比SINR值为SINR CQI;根据每个合成波束的能量投影占比,以及SINR CQI,确定内环MCS折损。
在一实施例中,根据每个合成波束的能量投影占比,以及SINR CQI,确定内环MCS折损可以包括:
根据每个合成波束的能量投影占比计算信号功率Ps=Pall_UE(ActSet_inx);其中,Pall_UE为每个合成波束的能量投影占比;AckSet_inx为用户终端的激活波束对应的位图bitmap索引;
根据每个合成波束的投影能量占比计算空分复用干扰I SDMA以及信道不匹配损失I ChanLoss;其中,I SDMA=∑ k∈UeSetPall_UE(SdmaSet k_inx),其中UeSet为与用户终端空分配对的配对终端,SdmaSet k_inx为每个配对终端的激活波束对应的bitmap索引;I ChanLoss=Pall_UE(end)-Pall_UE(AckSet_inx),其中end为最大合成波束对应的 bitmap索引;
通过用户终端的归属水平波束和归属垂直波束获取零陷能力损失
Figure PCTCN2019090650-appb-000012
根据空分复用干扰I SDMA、信道不匹配损失I ChanLoss以及零陷能力损失
Figure PCTCN2019090650-appb-000013
折算
Figure PCTCN2019090650-appb-000014
其中,α和β各自为可配参数;
通过SINR' pair得到内环MCS折损。这样计算得到的内环MCS折损更加准确,从而可以进一步提升小区下行流量。
本实施例提出通过SRS合成波束方案替代相关技术中的单波束求和方案,即PHY模块直接上报SRS合成的255个合成波束的能量投影占比,CMAC模块根据PHY模块上报的这255个合成波束的能量投影占比进行波束的激活和内环MCS的折算。如此波束激活和内环折算使用的都是最终合成的波束能量,相比于相关技术中的单波束求和方案,本公开实施例的方案是先合成再激活,更加准确真实,进而提高空分复用的性能,提高小区下行的流量。
实施例二
请参考图3,图3本公开实施例提供的另一种波束分配方法流程图,包括:
S301、能量投影占比计算。
(1)预置波束。
预置255个合成波束权值W CRS=[w0,w1,…w255],且这255个合成波束是按波束个数从小到大(1~8)排列的。
(2)协方差矩阵的抽取。
按照天线垂直两板抽取两极化方向协方差矩阵
Figure PCTCN2019090650-appb-000015
Figure PCTCN2019090650-appb-000016
即:
Figure PCTCN2019090650-appb-000017
Figure PCTCN2019090650-appb-000018
n=0,1
(3)合并求平均。
将抽取后的结果合并求平均:
Figure PCTCN2019090650-appb-000019
用合并求平均后的协方差矩阵与255个合成波束权值计算能量投影。
(4)波束能量投影。
Figure PCTCN2019090650-appb-000020
(5)能量投影占比计算。
分别计算255个合成波束的能量投影相对于CRS广播权的百分比,并将能量投影占比上报给CMAC。计算方法描述如下:
Figure PCTCN2019090650-appb-000021
m=0,1,2,...M CRS-1
式中M CRS-1等于255。
S302、生成激活波束。
(1)PHY上报255个激活波束bitmap的能量投影占比给CMAC。
(2)根据PHY上报的合成波束能量投影占比表格,CMAC按照激活波束个数从小到大的顺序,找出激活波束个数最小并满足激活门限的合成波束集合An*。
(3)从An*中找出激活波束能量占比最高的合成波束组合作为激活波束。
S303、内环MCS折损。
本实施例中,Pall_UE表示当前UE上报的255个能量投影占比。
(1)获取用户u当前传输方案下宽带滤波SINR值为SINR CQI(线性值)。
(2)计算信号功率Ps=Pall_UE(ActSet_inx);其中ActSet_inx为用户u的激活波束集合对应的bitmap索引。
(3)计算空分复用干扰I SDMA=∑ k∈UeSetPall_UE(SdmaSet k_inx);其中UeSet为与用户u空分配对的UE,SdmaSet k_inx为用户k的激活波束集合对应的bitmap索引。
(4)计算信道不匹配损失I ChannLoss=Pall_UE(end)-Pall_UE(AckSet_inx);其中end为255。
(5)通过用户u的归属水平波束和归属垂直波束查表获取零陷能力损失
Figure PCTCN2019090650-appb-000022
(6)折算后的内环SINR' pair
Figure PCTCN2019090650-appb-000023
其中,α为可配参数,β为可配参数。
(7)通过SINR' pair映射信道质量指示(Channel Quality Indicator,CQI),再通过CQI映射得到对应的频谱效率(Spectral efficiency,SE),然后通过SE映射得到内环MCS。
实施例三
本实施例提供波束分配方法具体应用,其中,假设单波束求和方法激活波束能量占比已经超过激活门限,而合成波束方法检测未达到门限。
参数配置如下表所示:
合成波束功能开关 打开
激活波束能量占比 85%
波束重叠是否能空分
1、小区(Cell)1有4个UE近中远分布做下行空分,分别为UE0~UE3。
2、获取远点UE3的合成波束方法的能量投影占比,和单波束求和方法的能量占比比较。通过上述实施例中的波束分配方法,可以测得相同UE3,在相同的远点位置,合成波束能量投影占比低于单波束求和能量占比,单波束加和方法的能量占比已经达到85%的门限,UE3的这些波束都会激活,不应该配对空分的UE3,却跟其他UE配对空分,流间干扰严重,影响小区空分复用性能。而合成波束方法的能量投影占比都未达到85%的门限,UE3的这些波束不会被激活,通过步骤二可以发现,选择更多的波束激活才能达到激活门限。然而激活波束越多,和其他UE有波束交叠的概率越大,而由于波束有重叠的UE之间不能空分,因此空分配对的概率变小,流间干扰也降低,小区空分复用性能得到提升,小区下行流量得到提升。
假设单波束求和方法激活波束能量占比未达到激活门限,而合成波束方法检测已经超过门限。
参数配置如下表所示:
合成波束功能开关 打开
激活波束能量占比 85%
波束重叠是否能空分
1、Cell1有4个UE近中远分布做下行空分,分别为UE0~UE3。
2、获取中点UE2的合成波束方法的能量投影占比,和单波束求和方法的能量占比比较。通过上述实施例中的波束分配方法可以测得相同UE2,在相同的中点位置,合成波束能量投影占比高于单波束求和能量占比,单波束加和方法的能量占比未达到85%的门限,该UE的这些波束都不会激活,通过上述实施例中的波束分配方法可以发现,选择更多的波束激活才能达到激活门限。然后激活波束越多,和其他UE有波束交叠的概率越大(波束有重叠的UE之间不能空分),因此空分配对的概率变小,应该配对空分的UE2,却未跟其他UE配对空分,影响小区空分复用性能。而合成波束方法的能量占比都已达到85%的门限,UE2的这些波束会被激活,能与其他UE进行配对空分,小区空分复用性能得到提升,小区下行流量得到提升。
合成波束方法可以使得MCS内环折损更准确,小区下行流量得到提升。
参数配置如下表所示:
合成波束功能开关 打开
激活波束能量占比 85%
波束重叠是否能空分
1、Cell1有3个UE近中远分布做下行空分,分别为UE0~UE2。
2、通过上述实施例中的波束分配方法可以得到:
UE1激活波束0,1,对应的能量投影为【1 1 0 0 0 0 0 0】;
配对的UE2激活波束2,3,对应的能量投影为【0 0 1 1 0 0 0 0】;
配对的UE3激活波束4,5,6,对应的能量投影为【0 0 0 0 1 1 1 0】;其中,0表示未激活的单波束,1表示激活的单波束。
单波束求和方法:
上报UE1的16个投影能量,二维合并8个投影能量,
Figure PCTCN2019090650-appb-000024
表示用户UE1在波束i的投影能量,i=0:7。
Figure PCTCN2019090650-appb-000025
Figure PCTCN2019090650-appb-000026
Figure PCTCN2019090650-appb-000027
合成波束方法,通过步骤三可以得到:
上报UE1的255个投影能量Pall_UE。
bin2dec('11000000')=192;
bin2dec('00110000')=48,bin2dec('00001110')=14;
bin2dec('11111111')=255。
信号功率P s=Pall_UE(192)。
空分复用干扰I SDMA=Pall_UE(48)+Pall_UE(14)。
信道不匹配损失I ChannLoss=Pall_UE(255)-Pall_UE(192)。
3、通过上述实施例中的波束分配方法获取中点UE2的内环折损信息,合成波束的内环折损会比单波束求和方法的要小,合成波束方法UE2最终调度的内环MCS为5,单波束求和方法最终调度的内环MCS为1或2,最终调度的内环MCS抬升,使得小区空分复用性能得到提升,小区下行流量得到提升。
实施例四
请参考图4,图4为本实施例提供的一种波束分配装置组成示意图,包括:
投影确定模块41,设置为确定预设的至少两个合成波束中,每个合成波束的能量投影占比;
波束激活模块42,设置为从至少两个合成波束中,选择满足激活门限的至少一个合成波束作为激活波束,并将激活波束分配给用户终端。
在一实施例中,激活门限是合成波束的能量投影占比的限定值。
在一些实施例中,投影确定模块41是设置为:根据天线垂直两板各自的两个极化方向协方差矩阵,以及每个合成波束的权值,确定每个合成波束的能量投影;确定每个合成波束的能量投影相对于小区特定参考信号CRS广播权的百分比,得到每个合成波束的能量投影占比。其中,天线通常包括两个,每个天线有两个极化方向,也就是有两对极化方向协方差矩阵。假设本实施例中共有255个合成波束,那么就有255个合成波束的权值,分别为W CRS=[w0,w1,…w255], 其中w255为补充值,填充协方差矩阵的最后一位。这255个合成波束权值按照合成其的单波束的个数从小到大(1~8)进行排列。
本公开实施例中仅列举合成波束为255个的情况,并不限定合成波束一定是255个,可以根据实际***进行相应的设计,或可少于255个,或者多于255个,本公开实施例并不对其进行限定。
在一些实施例中,根据天线垂直两板各自的两个极化方向协方差矩阵,以及每个合成波束的权值,确定每个合成波束的能量投影可以包括:
按照天线垂直两板抽取两个极化方向协方差矩阵
Figure PCTCN2019090650-appb-000028
Figure PCTCN2019090650-appb-000029
其中,
Figure PCTCN2019090650-appb-000030
Figure PCTCN2019090650-appb-000031
Figure PCTCN2019090650-appb-000032
Figure PCTCN2019090650-appb-000033
分别表示两个天线上的协方差矩阵,各自包括两个极化方向的协方差矩阵,也就是说,实际上有四个协方差矩阵,分别为
Figure PCTCN2019090650-appb-000034
Figure PCTCN2019090650-appb-000035
将抽取后的每个协方差矩阵合并求取平均值,得到平均协方差矩阵
Figure PCTCN2019090650-appb-000036
此处的平均值为算数平均值。
根据平均协方差矩阵与每个合成波束的权值,计算每个合成波束的能量投影
Figure PCTCN2019090650-appb-000037
其中,M CRS-1是最大的合成波束的编号,在本实施例中也就是255。到此,就已经计算出了每个波束的能量 投影的大小,然后,再根据这255个合成波束的能量投影相对于CRS广播权的百分比,就可以得到每个合成波束的能量投影占比,具体算法如下:
Figure PCTCN2019090650-appb-000038
得到能量投影占比之后,PHY模块就可以将能量投影占比上报给CMAC模块。
在一些实施例中,波束激活模块42是设置为:从至少两个合成波束中,确定满足激活门限的合成波束;从满足激活门限的合成波束中,选择波束个数最小的合成波束作为激活波束。其中,激活门限是合成波束的能量投影大小的限定值,其通常与合成波束中能量最大的作比,也就是第255个合成波束,第255个合成波束是将所有单波束合成得到,其能量值也是最高的,激活门限所表征的就是一定比率的最大能量值,比如说85%,在能量投影大小大于或等于85%的合成波束,则可认为其满足激活门限,可被激活。
但是,并不是所有的满足激活门限的合成波束均要激活,基于资源利用率的考虑,在满足激活门限要求的前提下,合成波束占用的单波束数量越低,其效率越高,换言之,在进行合成波束的选择时,通常会选择满足激活门限的合成波束中,其波束个数最小的合成波束作为激活波束进行激活。比如说,此时满足激活门限的合成波束有8组,其中8组所包含的单波束的数量分别为3、3、4、5、6、7、7、8,那么其中3个单波束的合成波束则为激活波束。
此外,在一些实施例中,从满足激活门限合成波束中,选择波束个数最小的合成波束作为激活波束还可以包括:当波束个数最小的合成波束包括至少两个时,选择能量投影占比最高的合成波束作为激活波束。波束个数最小的合成波束也可能有多个,当波束个数最小的合成波束有多个时,由于波束数量相同, 那么此时则可以从能量大小角度出发,也就是将其中能量投影占比最高的合成波束进行激活,作为激活波束,这样可以尽可能的保证通信质量。
在一些实施例中,还可以包括内环MCS确定模块43,设置为:
获取用户终端当前传输方案下的宽带滤波信号与干扰加噪声比SINR值为SINR CQI;根据每个合成波束的能量投影占比,以及SINR CQI,确定内环MCS折损。
在一实施例中,内环MCS确定模块43是设置为:
根据每个合成波束的能量投影占比计算信号功率Ps=Pall_UE(ActSet_inx);其中,Pall_UE为每个合成波束的能量投影占比;AckSet_inx为用户终端的激活波束对应的位图bitmap索引;
根据每个合成波束的投影能量占比计算空分复用干扰I SDMA以及信道不匹配损失I ChanLoss;其中,I SDMA=∑ k∈UeSetPall_UE(SdmaSet k_inx),其中UeSet为与用户终端空分配对的配对终端,SdmaSet k_inx为每个配对终端的激活波束对应的bitmap索引;I ChanLoss=Pall_UE(end)-Pall_UE(AckSet_inx),其中end为最大合成波束对应的bitmap索引;
通过用户终端的归属水平波束和归属垂直波束获取零陷能力损失
Figure PCTCN2019090650-appb-000039
根据空分复用干扰I SDMA、信道不匹配损失I ChanLoss以及零陷能力损失
Figure PCTCN2019090650-appb-000040
折算
Figure PCTCN2019090650-appb-000041
其中,α和β各自为可配参数;
通过SINR' pair得到内环MCS折损。这样计算得到的内环MCS折损更加准确,从而可以进一步提升小区下行流量。
本实施例提出通过SRS合成波束方案替代相关技术中的单波束求和方案,即PHY模块直接上报SRS合成的255个合成波束的能量投影占比,CMAC模块根据PHY模块上报的这255个合成波束的能量投影占比进行波束的激活和内环MCS的折算。如此波束激活和内环折算使用的都是最终合成的波束能量,相比于相关技术中的单波束求和方案,本公开实施例的方案是先合成再激活,更加准确真实,进而提高空分复用的性能,提高小区下行的流量。
实施例五
请参考图5,图5为本实施例提供的一种基站的组成示意图,包括处理器51、存储器52和通信总线53;
通信总线53设置为实现处理器51和存储器52之间的连接通信;
处理器51设置为执行存储器52中存储的计算机程序,以实现本公开上述一个或多个实施例中的波束分配方法,这里不再赘述。
实施例六
本实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有一个或者多个计算机程序,计算机程序可被一个或者多个处理器执行,以实现前述一个或多个实施例中的波束分配方法,这里不再赘述。
显然,本领域的技术人员应该明白,上述本公开的模块或步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储介质(只读存储器(Read-Only Memory,ROM)/随机存取存储器(Random Access Memory,RAM)、磁碟、光盘)中由计算装置 来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成一个或多个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。所以,本公开不限制于任何特定的硬件和软件结合。
本公开实施例提供了一种波束分配方法、装置、基站和计算机可读存储介质,通过确定预设的至少两个合成波束中,每个合成波束的能量投影占比;从合成波束中,选择满足激活门限的至少一个合成波束作为激活波束,并分配给用户终端,从而通过预先将单波束各自合成形成至少两个合成波束,然后直接对这至少两个合成波束计算其能量投影占比,从而提升了波束激活的准确性,并进一步提升了小区下行流量。
此外,本公开实施例还根据合成波束来确定内环MCS折损,提升了内环MCS折损计算的准确度,进而提升了小区下行流量。

Claims (12)

  1. 一种波束分配方法,包括:
    确定预设的至少两个合成波束中,每个合成波束的能量投影占比;
    从所述至少两个合成波束中,选择满足激活门限的至少一个合成波束作为激活波束,并将所述激活波束分配给用户终端;
    其中,所述激活门限是所述合成波束的能量投影占比的限定值。
  2. 如权利要求1所述的方法,其中,所述确定预设的至少两个合成波束中,每个合成波束的能量投影占比,包括:
    根据天线垂直两板各自的两个极化方向协方差矩阵,以及每个合成波束的权值,确定每个合成波束的能量投影;
    确定每个合成波束的能量投影相对于小区特定参考信号CRS广播权的百分比,得到每个合成波束的能量投影占比。
  3. 如权利要求2所述的方法,其中,所述根据天线垂直两板各自的两个极化方向协方差矩阵,以及每个合成波束的权值,确定每个合成波束的能量投影包括:
    按照天线垂直两板抽取两个极化方向协方差矩阵
    Figure PCTCN2019090650-appb-100001
    Figure PCTCN2019090650-appb-100002
    其中,
    Figure PCTCN2019090650-appb-100003
    Figure PCTCN2019090650-appb-100004
    将抽取后的每个协方差矩阵合并求取平均值,得到平均协方差矩阵
    Figure PCTCN2019090650-appb-100005
    根据所述平均协方差矩阵与每个合成波束的权值,计算每个合成波束的能量投影
    Figure PCTCN2019090650-appb-100006
    其中,所述w CRS(m)表示所述合成波束m的权值,所述M CRS-1是合成波束的最大的编号。
  4. 如权利要求1-3任一项所述的方法,其中,所述从所述至少两个合成波束中,选择满足激活门限的至少一个合成波束作为激活波束,包括:
    从所述至少两个合成波束中,确定满足所述激活门限的合成波束;
    从所述满足所述激活门限的合成波束中,选择波束个数最小的合成波束作为所述激活波束。
  5. 如权利要求4所述的方法,其中,所述从所述满足所述激活门限的合成波束中,选择波束个数最小的合成波束作为所述激活波束,包括:
    在所述波束个数最小的合成波束包括至少两个的情况下,选择能量投影占比最高的所述合成波束作为所述激活波束。
  6. 如权利要求1-3任一项所述的方法,还包括:
    获取所述用户终端当前传输方案下的宽带滤波信号与干扰加噪声比SINR的值为SINR CQI
    根据每个合成波束的能量投影占比,以及所述SINR CQI,确定内环调制与编码策略MCS折损。
  7. 如权利要求6所述的方法,其中,所述根据每个合成波束的能量占比,以及所述SINR CQI,确定内环MCS折损,包括:
    根据每个合成波束的能量投影占比计算信号功率Ps=Pall_UE(ActSet_inx);其中,所述Pall_UE为每个合成波束的能量投影占比;所述AckSet_inx为所述用户终端的激活波束对应的位图bitmap索引;
    根据所述每个合成波束的投影能量占比计算空分复用干扰I SDMA以及信道不匹配损失I ChanLoss;其中,I SDMA=∑ k∈UeSetPall_UE(SdmaSet k_inx),所述UeSet为与所述用户终端空分配对的配对终端,SdmaSet k_inx为每个配对终端的激活波束对应的bitmap索引;I ChanLoss=Pall_UE(end)-Pall_UE(AckSet_inx),所述end为最大合成波束对应的bitmap索引;
    通过所述用户终端的归属水平波束和归属垂直波束获取零陷能力损失
    Figure PCTCN2019090650-appb-100007
    根据所述空分复用干扰I SDMA、所述信道不匹配损失I ChanLoss以及所述零陷能力损失
    Figure PCTCN2019090650-appb-100008
    折算
    Figure PCTCN2019090650-appb-100009
    其中,α和β各自为可配参数;
    通过所述SINR' pair得到内环MCS折损。
  8. 如权利要求1-3任一项所述的方法,其中,所述预设的所述合成波束的个数为255。
  9. 一种波束分配装置,包括:
    投影确定模块,设置为确定预设的至少两个合成波束中,每个合成波束的能量投影占比;
    波束激活模块,设置为从所述至少两个合成波束中,选择满足激活门限的至少一个合成波束作为激活波束,并将所述激活波束分配给用户终端;
    其中,所述激活门限是所述合成波束的能量投影占比的限定值。
  10. 如权利要求9所述的装置,还包括:内环调制与编码策略MCS确定模块,设置为获取用户终端当前传输方案下的宽带滤波信号与干扰加噪声比SINR值为SINR CQI,并根据每个合成波束的能量占比,以及所述SINR值,确定内环 MCS。
  11. 一种基站,包括处理器、存储器和通信总线;
    所述通信总线设置为实现所述处理器和所述存储器之间的连接通信;
    所述处理器设置为执行所述存储器中存储的计算机程序,以实现如权利要求1-8中任一项所述的方法。
  12. 一种计算机可读存储介质,所述计算机可读存储介质中存储有一个或者多个计算机程序,所述计算机程序可被一个或者多个处理器执行,以实现如权利要求1-8中任一项所述的方法。
PCT/CN2019/090650 2018-06-19 2019-06-11 波束分配方法、装置、基站和计算机可读存储介质 WO2019242524A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810632040.6 2018-06-19
CN201810632040.6A CN110620604A (zh) 2018-06-19 2018-06-19 波束分配方法、装置、基站和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2019242524A1 true WO2019242524A1 (zh) 2019-12-26

Family

ID=68920234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090650 WO2019242524A1 (zh) 2018-06-19 2019-06-11 波束分配方法、装置、基站和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN110620604A (zh)
WO (1) WO2019242524A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383333B (zh) * 2020-10-09 2022-09-02 杭州红岭通信息科技有限公司 一种秩试探和赋形权计算的方法
CN115243305A (zh) * 2021-04-23 2022-10-25 中兴通讯股份有限公司 一种用户空间关联关系确定方法、基站及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103516410A (zh) * 2012-06-19 2014-01-15 中兴通讯股份有限公司 一种利用有源天线***实现下行数据发射方法及装置
CN105790913A (zh) * 2014-12-26 2016-07-20 上海无线通信研究中心 FDD模式massive-MIMO***中上行导频的选择与分配方法
US20160315686A1 (en) * 2015-04-23 2016-10-27 Electronics And Telecommunications Research Institute Antenna apparatus and method for beam forming thereof
CN108260216A (zh) * 2018-01-22 2018-07-06 中兴通讯股份有限公司 高频通信的调度方法、设备及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9813867B2 (en) * 2005-12-15 2017-11-07 Polte Corporation Angle of arrival (AOA) positioning method and system for positional finding and tracking objects using reduced attenuation RF technology
CN102356586B (zh) * 2009-03-16 2015-06-03 马维尔国际贸易有限公司 多用户多输入多输出(mu-mimo)接收器
CN108092701B (zh) * 2017-11-21 2020-12-01 东南大学 混合波束成形hbf***波束选择方法、装置及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103516410A (zh) * 2012-06-19 2014-01-15 中兴通讯股份有限公司 一种利用有源天线***实现下行数据发射方法及装置
CN105790913A (zh) * 2014-12-26 2016-07-20 上海无线通信研究中心 FDD模式massive-MIMO***中上行导频的选择与分配方法
US20160315686A1 (en) * 2015-04-23 2016-10-27 Electronics And Telecommunications Research Institute Antenna apparatus and method for beam forming thereof
CN108260216A (zh) * 2018-01-22 2018-07-06 中兴通讯股份有限公司 高频通信的调度方法、设备及存储介质

Also Published As

Publication number Publication date
CN110620604A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
US9544909B2 (en) Method and device for interference coordination
US9565010B2 (en) Method and apparatus for handling inter-cell interference
CN105898757B (zh) 一种无线回程链路异构物联网中的频谱资源分配方法
EP2582194A1 (en) Wireless access method, equipment and system
US10524132B2 (en) Method for intra-cell frequency reuse for indoor wireless network and baseband unit
KR101909968B1 (ko) 자원 스케줄링 방법 및 장치
JP2012182792A (ja) 移動通信システム及びそのリモート無線ユニットクラスタリング方法
KR20110091036A (ko) 간섭 조정 방법 및 액세스 네트워크 장치
JP2015531554A (ja) 周波数スペクトル管理システム、周波数スペクトル管理方法、及び非揮発コンピュータ読取可能媒体
CN111836306B (zh) 功率协调方法及装置
CN102014440A (zh) 一种小区间干扰协调方法、装置和***
CN107734595B (zh) 接入控制方法及装置、***
WO2019242524A1 (zh) 波束分配方法、装置、基站和计算机可读存储介质
JP6051319B2 (ja) クロスサブフレーム干渉調整のための方法、装置およびプログラム
KR20140090495A (ko) 빔포밍 장치, 및 그의 빔 셀 형성 방법
KR20150008988A (ko) 가상 셀 네트워크 시스템에서 가상 셀 형성장치 및 방법
KR102610919B1 (ko) 통신 네트워크에서 협력 전송을 지원하는 통신 노드의 동작 방법
JP2019504549A (ja) ジョイントデータ送信方法及び装置
JP2017525233A (ja) ユーザーサービスモード選択方法、パイロット情報送信方法、装置及び記憶媒体
KR102350860B1 (ko) 무선 통신 시스템에서 스케줄링 방법 및 장치
CN115665832A (zh) 基于无蜂窝网络的接入点关联方法、基站和存储介质
WO2019100244A1 (zh) 波束分配方法及装置
CN113747458B (zh) D2d通信***资源分配方法、装置、基站及可读存储介质
WO2018210462A1 (en) Transmission power distribution
CN102905377B (zh) 一种无线通信***中上行sdma无线资源管理的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19822541

Country of ref document: EP

Kind code of ref document: A1