WO2019242265A1 - 显示面板及其制备方法和显示器件 - Google Patents

显示面板及其制备方法和显示器件 Download PDF

Info

Publication number
WO2019242265A1
WO2019242265A1 PCT/CN2018/123181 CN2018123181W WO2019242265A1 WO 2019242265 A1 WO2019242265 A1 WO 2019242265A1 CN 2018123181 W CN2018123181 W CN 2018123181W WO 2019242265 A1 WO2019242265 A1 WO 2019242265A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
voltage
liquid crystal
volts
pressurizing
Prior art date
Application number
PCT/CN2018/123181
Other languages
English (en)
French (fr)
Inventor
姚宇
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Publication of WO2019242265A1 publication Critical patent/WO2019242265A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • the present application belongs to the field of display technology, and particularly relates to a display panel, a manufacturing method thereof, and a display device.
  • Liquid crystal display (Liquid Crystal Display, LCD) is a flat panel display device that uses the characteristics of liquid crystal materials to display images. Compared with other display devices, it has the advantages of lightness, thinness, low driving voltage, and low power consumption. The mainstream product in the consumer market.
  • a liquid crystal panel is the most important component of a liquid crystal display. It includes a vacuum-bonded thin film transistor (TFT) array substrate, a color filter (CF) substrate, and a liquid crystal layer disposed between the two. And alignment film (Alignment Film / Alignment Layer).
  • the alignment film is disposed on a TFT array substrate and / or a CF substrate, and is used to control a predetermined initial state arrangement of liquid crystal molecules of a liquid crystal layer, thereby affecting display characteristics of a liquid crystal panel.
  • PSVA Polymer Stabilized Vertical Alignment
  • a liquid crystal reactive monomer (RM) is first doped in the liquid crystal, and then a pretilt angle of the liquid crystal molecules is generated by power supply, so that the liquid crystal reactive monomer and the polyimide of the alignment film can be made.
  • PI Polyimide, PI
  • UV light is then irradiate ultraviolet light to react the polymer monomer to polymer, so that the pretilt angle of the liquid crystal molecules is fixed.
  • PSVA technology has the following advantages: 1 high contrast, static contrast can reach 16000: 1; 2 wide viewing angle, large viewing angle with low color deviation ⁇ u 'v' ⁇ 0.02, which meets the needs of multiple people watching TV; 3 fast response, dynamic image response speed MPRT ⁇ 5ms; 4 low power consumption: higher penetration (more than 30%), can reduce the number of light-emitting diodes, provide more Energy-saving backlight module.
  • PSVA technology has the above advantages, more and more problems are also highlighted. Among them, the nebula pattern bright band problem (that is, Sandy Mura defect) is the most prominent.
  • the purpose of this application is to overcome the above-mentioned shortcomings of the prior art, and to provide a display panel, a manufacturing method thereof, and a display device, which are intended to include, but not limited to, the technical problem that the existing PSVA mode liquid crystal display panel is prone to Sandy Mura defects.
  • a display panel includes:
  • a first electrode layer disposed on the first substrate
  • a second substrate is disposed opposite to the first substrate
  • a second electrode layer disposed on the second substrate and opposed to the first electrode layer
  • a liquid crystal layer is located between the first electrode layer and the second electrode layer; the liquid crystal layer includes liquid crystal molecules and an alignment polymer, and the alignment polymer is formed by polymerizing at least two photosensitive monomers;
  • the pretilt angle of the liquid crystal molecules in the liquid crystal layer is formed by applying a voltage between the first substrate and the second substrate; the voltage application range is from 0 volts to 50 volts; After the pressing voltage is applied between a substrate and the second substrate to reach a pressing time, the pressing voltage is turned off, so that the liquid crystal molecules form a pretilt angle; the pressing time is an intermittent pressing time.
  • the intermittent pressurizing time ranges from 0 seconds to 100 seconds each time, and the corresponding pressurizing voltage range in the penultimate interrupting pressurizing time ranges from 10 volts to 50 volts.
  • the first substrate is an array substrate.
  • the second substrate is a color filter substrate.
  • the frequency range of the boosting voltage is from 0 Hz to 60 Hz.
  • the frequency range of the boosting voltage is from 10 Hz to 50 Hz.
  • the voltage is AC voltage.
  • a pressing time achieved by applying the pressing voltage between the first substrate and the second substrate is 0s-1000s.
  • the pressing time achieved by applying the pressing voltage between the first substrate and the second substrate is 100s-1000s.
  • the voltage of the first electrode layer ranges from 0 volts to 50 volts.
  • the voltage of the first electrode layer ranges from 10 volts to 50 volts.
  • a method for preparing a display panel includes the following steps:
  • the first substrate is provided with a first electrode layer
  • the second substrate is provided with a second electrode layer
  • a liquid crystal material is injected between the first electrode layer and the second electrode layer, the liquid crystal material includes at least one liquid crystal molecule and at least two photosensitive monomers;
  • the application range of the pressurizing voltage is 0 volts to 50 volts;
  • the pressurizing time of the pressurizing voltage is an intermittent pressurizing time, and the range of the intermittent pressurizing time is 0 volts to 100 seconds, the countdown
  • the corresponding pressing voltage range during the second intermittent pressing time is 10 volts to 50 volts.
  • the first substrate is an array substrate.
  • the second substrate is a color filter substrate.
  • the frequency range of the boosting voltage is from 0 Hz to 60 Hz.
  • the frequency range of the boosting voltage is from 10 Hz to 50 Hz.
  • the voltage is AC voltage.
  • the pressing voltage is applied between the first substrate and the second substrate for a pressing time of 0s-1000s.
  • the pressing voltage is applied between the first substrate and the second substrate for a pressing time of 100s-1000s.
  • the voltage of the first electrode layer ranges from 0 volts to 50 volts.
  • the voltage of the first electrode layer ranges from 10 volts to 50 volts.
  • a display device wherein the display device includes a display panel, and the display panel includes:
  • a first substrate the first substrate being an array substrate
  • a first electrode layer disposed on the first substrate
  • a second substrate opposite to the first substrate, and the second substrate is a color filter substrate
  • a second electrode layer disposed on the second substrate and opposed to the first electrode layer
  • a liquid crystal layer is located between the first electrode layer and the second electrode layer; the liquid crystal layer includes liquid crystal molecules and an alignment polymer, and the alignment polymer is formed by polymerizing at least two photosensitive monomers;
  • the pretilt angle of the liquid crystal molecules in the liquid crystal layer is formed by applying a voltage between the first substrate and the second substrate; the voltage application range is 0 volts to 50 volts, and the frequency range is 0 Hz to 60Hz; after applying the pressurizing voltage between the first substrate and the second substrate for a pressurizing time, the pressurizing voltage is turned off to make the liquid crystal molecules form a pretilt angle; the pressurizing The time is an intermittent pressurizing time, and the intermittent pressurizing time ranges from 0 to 100 seconds each time, and the corresponding pressurizing voltage range in the penultimate interrupting pressurizing time ranges from 10 volts to 50 volts. .
  • the pretilt angle of the liquid crystal molecules in the liquid crystal layer in the display panel provided in the embodiment of the present application is formed by applying a voltage between the first substrate and the second substrate.
  • the pressurizing time is an intermittent pressurizing time.
  • Each intermittent pressurizing time ranges from 0 seconds to 100 seconds, and the corresponding one of the penultimate interrupting pressurizing time is added.
  • the voltage range is from 10 volts to 50 volts.
  • a voltage is first applied to the first substrate and the second electrode.
  • the ultraviolet light is used to polymerize the photosensitive monomers to form alignment polymers.
  • the liquid crystal molecules in the obtained liquid crystal layer can form a pretilt angle, which can greatly reduce the probability of Sandy Mura in the display panel.
  • the display device provided in the embodiment of the present application is provided with a display panel unique to the present application, and the liquid crystal molecules in the liquid crystal layer in the display panel form a pretilt angle.
  • FIG. 1 is a schematic structural diagram of a display panel before voltage and voltage are applied
  • FIG. 2 is a schematic structural diagram of the application of a pressurizing voltage to a display panel of the present application
  • FIG. 3 is a schematic structural diagram of ultraviolet light of a display panel of the present application.
  • FIG. 4 is a schematic structural diagram of a display panel disconnecting a pressurized voltage
  • FIG. 5 is a flowchart of a method for manufacturing a display panel of the present application.
  • FIG. 6 is a schematic diagram of a nebula-shaped pixel structure of a conventional display panel
  • FIG. 7 is a schematic diagram of a pixel structure of a display panel without a nebula pattern.
  • each reference numeral in the figure is:
  • 101-display panel 110-first substrate; 120-first electrode layer; 210-second substrate; 220-second electrode layer; 130-liquid crystal molecules; 140-alignment polymer; 160-liquid crystal layer; 150-plus Voltage; 600-pixel structure; 605-red, green and blue pixels; 610-moiré.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present application, the meaning of "a plurality” is two or more, unless it is specifically and specifically defined otherwise.
  • the display panel 101 includes:
  • the first electrode layer 120 is disposed on the first substrate 110;
  • the second substrate 210 is disposed opposite to the first substrate 110;
  • a second electrode layer 220 is disposed on the second substrate 210 and is opposite to the first electrode layer 120;
  • a liquid crystal layer 160 is located between the first electrode layer 120 and the second electrode layer 220.
  • the liquid crystal layer 160 includes liquid crystal molecules 130 and an alignment polymer 140.
  • the alignment polymer 140 is made of at least two kinds of photosensitive materials. Monomer polymerization
  • the pretilt angle of the liquid crystal molecules in the liquid crystal layer 160 is formed by applying a voltage 150 between the first substrate 110 and the second substrate 210; the voltage 150 is applied in a range of 0 volts to 50 volts; After the pressurizing voltage 150 is applied between the first substrate 110 and the second substrate 210 for a pressurizing time, the pressurizing voltage 150 is turned off, so that the liquid crystal molecules 130 form a pretilt angle; the pressurizing time It is an intermittent pressurizing time, and the intermittent pressurizing time ranges from 0 seconds to 100 seconds each time, and the corresponding pressurizing voltage range in the penultimate interrupting pressurizing time ranges from 10 volts to 50 volts.
  • the pretilt angle of the liquid crystal molecules in the liquid crystal layer 160 in the display panel 101 provided by the embodiment of the present application is formed by applying a voltage 150 between the first substrate 110 and the second substrate 210. That is, the application range of the pressing voltage 150 is 0 volts to 50 volts, and the pressing time is an intermittent pressing time. Each of the intermittent pressing time ranges from 0 seconds to 100 seconds. The corresponding pressing voltage range during the pressing time is from 10 volts to 50 volts.) After pressing, the liquid crystal molecules 130 in the liquid crystal layer 160 can form a pretilt angle.
  • the first substrate 110 is an array substrate.
  • the second substrate 210 is a color filter substrate.
  • the frequency of the voltage 150 is in the range of 0 Hz to 60 Hz, and may be 10 Hz to 50 Hz.
  • the voltage 150 is an AC voltage.
  • a pressing time for applying the pressing voltage between the first substrate 110 and the second substrate 210 is 0s-1000s, and may be 100s-1000s.
  • the voltage of the first electrode layer 120 ranges from 0 volts to 50 volts, and can be 10-50 volts.
  • the display panel of this application may also be an OLED (Organic Light-Emitting Diode) panel, or a QLED (Quantum Dots Light-Emitting Diode) panel.
  • OLED Organic Light-Emitting Diode
  • QLED Quadantum Dots Light-Emitting Diode
  • an embodiment of the present application provides a method for manufacturing a display panel 101, as shown in FIG. 5, including the following steps:
  • S511 Provide a first substrate 110 and a second substrate 210.
  • the first substrate 110 is provided with a first electrode layer 120
  • the second substrate 210 is provided with a second electrode layer 220.
  • a liquid crystal material is injected between the first electrode layer 120 and the second electrode layer 220.
  • the liquid crystal material includes at least one liquid crystal molecule 130 and at least two photosensitive monomers.
  • S515 Turn off the pressurized voltage 150 to form a pretilt angle of the liquid crystal molecules 130 to obtain a liquid crystal layer 160.
  • the application range of the pressurizing voltage 150 is 0 volts to 50 volts; the pressurizing time of the pressurizing voltage 150 is an intermittent pressurizing time, and each of the intermittent pressurizing time ranges from 0 seconds to 100 seconds.
  • the corresponding pressurizing voltage in the penultimate interrupting pressurizing time ranges from 10 volts to 50 volts.
  • a voltage 150 is applied to the first substrate between 110 and the second substrate 120, the photosensitive monomer is polymerized to form an alignment polymer 140 by ultraviolet light.
  • the liquid crystal molecules 140 in the liquid crystal layer 160 thus obtained can form a pretilt angle, which can greatly reduce the display. Probability of Sandy Mura in the panel.
  • the first substrate 110 is an array substrate.
  • the second substrate 210 is a color filter substrate.
  • the frequency of the voltage 150 is in the range of 0 Hz to 60 Hz, and may be 10 Hz to 50 Hz.
  • the voltage 150 is an AC voltage.
  • a pressing time for applying the pressing voltage between the first substrate 110 and the second substrate 210 is 0s-1000s, and may be 100s-1000s.
  • the voltage of the first electrode layer 120 ranges from 0 volts to 50 volts, and can be 10-50 volts.
  • the application range of the pressurizing voltage 150 is from 10 volts to 50 volts; each time of the intermittent pressurization time ranges from 1 to 50 seconds, and the last penultimate time of the intermittent pressurization time is The pressing voltage in the second pressing time ranges from 20 volts to 50 volts.
  • step S512 a liquid crystal material is injected between the first electrode layer 120 and the second electrode layer 220. As shown in FIG. 1, before the voltage 150 is applied, the liquid crystal molecules are aligned. happening.
  • step S513 a pressurizing voltage 150 is applied between the first substrate 110 and the second substrate 210. As shown in FIG. 2, the pressurizing voltage 150 is applied to start the liquid crystal molecules to fall.
  • step S514 the photosensitive monomer is polymerized to form an alignment polymer 140 by ultraviolet light. As shown in FIG. 3, ultraviolet light is applied to polymerize the photosensitive monomer to the alignment layer to form the alignment polymer 140.
  • step S515 as shown in FIG. 4, the pressurizing voltage 150 is turned off, so that the liquid crystal molecules 130 form a pretilt angle. Through the entire process, the liquid crystal layer 160 is finally obtained.
  • FIG. 6 it is a schematic diagram of a pixel structure with a nebula pattern in a conventional display panel
  • FIG. 7 is a schematic diagram of a pixel structure with a nebula pattern in a display panel of the present application. The comparison between the two shows that the display panel of this application has no Sandy Mura, and the product yield has been significantly improved.
  • an embodiment of the present application further provides a display device, as shown in FIG. 1-4, where the display device includes a display panel 101, and the display panel 101 includes:
  • a first substrate 110 which is an array substrate
  • the first electrode layer 120 is disposed on the first substrate 110;
  • a second substrate 210 is disposed opposite to the first substrate 110, and the second substrate 210 is a color filter substrate;
  • a second electrode layer 220 is disposed on the second substrate 210 and is opposite to the first electrode layer 120;
  • a liquid crystal layer 160 is located between the first electrode layer 120 and the second electrode layer 220.
  • the liquid crystal layer 160 includes liquid crystal molecules 130 and an alignment polymer 140.
  • the alignment polymer 140 is made of at least two kinds of photosensitive materials. Monomer polymerization
  • the pretilt angle of the liquid crystal molecules in the liquid crystal layer 160 is formed by applying a voltage 150 between the first substrate 110 and the second substrate 210.
  • the voltage 150 is applied in a range of 0 volts to 50 volts.
  • the frequency range is from 0 Hz to 60 Hz; after applying the pressurizing voltage 150 between the first substrate 110 and the second substrate 210 for a pressurizing time, the pressurizing voltage 150 is turned off, so that the liquid crystal molecules 130 form a pre- Inclination angle;
  • the pressurizing time is an intermittent pressurizing time, each of the intermittent pressurizing time ranges from 0 seconds to 100 seconds, and the corresponding pressurizing voltage range in the penultimate interrupting pressurizing time It is 10 volts to 50 volts.
  • the display device provided in the embodiment of the present application is provided with a display panel 101 unique to the present application.
  • the liquid crystal molecules 130 in the liquid crystal layer 160 in the display panel 101 form a pretilt angle, which can greatly reduce the probability of Sandy Mura in the display device. .
  • a display panel 101 includes:
  • the first electrode layer 120 is disposed on the first substrate 110;
  • the second substrate 210 is disposed opposite to the first substrate 110;
  • a second electrode layer 220 is disposed on the second substrate 210 and is opposite to the first electrode layer 120;
  • a liquid crystal layer 160 is located between the first electrode layer 120 and the second electrode layer 220.
  • the liquid crystal layer 160 includes liquid crystal molecules 130 and an alignment polymer 140.
  • the alignment polymer 140 is made of at least two kinds of photosensitive materials. Monomer polymerization
  • the pretilt angle of the liquid crystal molecules in the liquid crystal layer 160 is formed by applying a voltage 150 between the first substrate 110 and the second substrate 210; the voltage 150 is applied in a range of 0 volts to 50 volts; After the pressurizing voltage 150 is applied between the first substrate 110 and the second substrate 210 for a pressurizing time, the pressurizing voltage 150 is turned off, so that the liquid crystal molecules 130 form a pretilt angle; the pressurizing time It is an intermittent pressurizing time, and the intermittent pressurizing time ranges from 0 seconds to 100 seconds each time, and the corresponding pressurizing voltage range in the penultimate interrupting pressurizing time ranges from 10 volts to 50 volts.
  • a display panel 101 includes:
  • the first electrode layer 120 is disposed on the first substrate 110;
  • the second substrate 210 is disposed opposite to the first substrate 110;
  • a second electrode layer 220 is disposed on the second substrate 210 and is opposite to the first electrode layer 120;
  • a liquid crystal layer 160 is located between the first electrode layer 120 and the second electrode layer 220.
  • the liquid crystal layer 160 includes liquid crystal molecules 130 and an alignment polymer 140.
  • the alignment polymer 140 is made of at least two kinds of photosensitive materials. Monomer polymerization
  • the pretilt angle of the liquid crystal molecules in the liquid crystal layer 160 is formed by applying a voltage 150 between the first substrate 110 and the second substrate 210; the voltage 150 is applied in a range of 10 volts to 50 volts; After the pressurizing voltage 150 is applied between the first substrate 110 and the second substrate 210 for a pressurizing time, the pressurizing voltage 150 is turned off, so that the liquid crystal molecules 130 form a pretilt angle; the pressurizing time It is an intermittent pressurizing time, and the intermittent pressurizing time ranges from 10 seconds to 100 seconds each time, and the corresponding pressurizing voltage range in the penultimate interrupting pressurizing time ranges from 20 volts to 50 volts.
  • a display panel 101 includes:
  • the first electrode layer 120 is disposed on the first substrate 110;
  • the second substrate 210 is disposed opposite to the first substrate 110;
  • a second electrode layer 220 is disposed on the second substrate 210 and is opposite to the first electrode layer 120;
  • a liquid crystal layer 160 is located between the first electrode layer 120 and the second electrode layer 220.
  • the liquid crystal layer 160 includes liquid crystal molecules 130 and an alignment polymer 140.
  • the alignment polymer 140 is made of at least two kinds of photosensitive materials. Monomer polymerization
  • the pretilt angle of the liquid crystal molecules in the liquid crystal layer 160 is formed by applying a voltage 150 between the first substrate 110 and the second substrate 210; the voltage 150 is applied in a range of 10 to 40 volts; After the pressing voltage 150 is applied between the first substrate 110 and the second substrate 210 for a pressing time, the pressing voltage 150 is turned off, so that the liquid crystal molecules 130 form a pretilt angle; the pressing time is The intermittent pressurizing time ranges from 10 to 80 seconds each time, and the corresponding pressurizing voltage range of the penultimate interrupting pressurizing time ranges from 20 volts to 40 volts.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

显示面板(101)包括:第一基板(110);第一电极层(120),设置于第一基板(110)上;第二基板(210),与第一基板(110)对向设置;第二电极层(220),设置于第二基板(210)上,与第一电极层(120)对向设置;以及液晶层(160),位于第一电极层(120)和第二电极层(220)之间;液晶层(160)包括液晶分子(130)和配向聚合体(140),配向聚合体(140)由至少两种感光性单体聚合而成;液晶层(160)中的液晶分子预倾角由加压电压(150)施加于第一基板(110)和第二基板(210)之间形成。

Description

显示面板及其制备方法和显示器件 技术领域
本申请属于显示技术领域,具体涉及一种显示面板及其制备方法和显示器件。
背景技术
本申请要求于2018年06月22日提交中国专利局,申请号为2018106516996,发明名称为“显示面板及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
液晶显示器(Liquid Crystal Display,LCD)是利用液晶材料的特性来显示图像的一种平板显示装置,其相较于其他显示装置而言具有轻薄、低驱动电压及低功耗等优点,已经成为整个消费市场上的主流产品。
液晶面板是液晶显示器最主要的组成配件,其包括真空贴合的薄膜晶体管(Thin Film Transistor,TFT)阵列基板、彩色滤光片(Color Filter,CF)基板、设置在两者之间的液晶层及配向膜(Alignment Film/Alignment Layer)。所述配向膜设置在TFT阵列基板和/或CF基板上,用于控制液晶层的液晶分子的预定的初始状态排列,从而影响液晶面板的显示特性。
聚合物稳定垂直配向(Polymer Stabilized Vertical Alignment,PSVA)技术以其高穿透率、高对比度和快速响应等特点,渐渐成为主流。在PSVA技术中,先将液晶活性单体(Reactive Monomer,RM)掺杂于液晶内,之后透过供电使液晶分子产生一预倾角,从而可以让液晶活性单体与配向膜的聚酰亚胺 (Polyimide,PI)链结,最后再照射紫外光让聚合物单体反应成聚合物,使液晶分子的预倾角固定。
而PSVA模式的液晶显示面板越来越多的在8.5代以上面板厂量产,PSVA技术具有以下优势:①高对比度,静态对比度可达到16000:1;②宽视角,大视角具备低色偏Δu'v'<0.02,符合电视多人观看需求;③响应快,动态影像反应速度MPRT<5ms;④低功耗:较高的穿透率(大于30%),可以降低发光二极管数目,提供更节能的背光模块。虽然PSVA技术存在上述优点,但是其越来越多的问题也突显出来,其中,以星云纹的亮带问题(即Sandy Mura缺陷)最为突出。
申请内容
本申请的目的在于克服现有技术的上述不足,提供一种显示面板及其制备方法和显示器件,旨在包括但不限于解决现有PSVA模式的液晶显示面板易出现Sandy Mura缺陷的技术问题。
为实现上述目的,本申请实施例采用的技术方案如下:
一种显示面板,所述显示面板包括:
第一基板;
第一电极层,设置于所述第一基板上;
第二基板,与所述第一基板对向设置;
第二电极层,设置于所述第二基板上,与所述第一电极层对向设置;以及
液晶层,位于所述第一电极层和所述第二电极层之间;所述液晶层包括液晶分子和配向聚合体,所述配向聚合体由至少两种感光性单体聚合而成;
所述液晶层中的液晶分子预倾角由加压电压施加于所述第一基板和所述 第二基板之间形成;所述加压电压施加范围为0伏特~50伏特;通过在所述第一基板和所述第二基板之间施加所述加压电压达到加压时间后,断开所述加压电压,使所述液晶分子形成预倾角;所述加压时间为间断的加压时间,每次所述间断的加压时间范围为0秒~100秒,倒数第二次的所述间断的加压时间中对应的加压电压范围为10伏特~50伏特。
在一个实施例中,所述第一基板为阵列基板。
在一个实施例中,所述第二基板为彩色滤光片基板。
在一个实施例中,所述加压电压频率范围为0Hz~60Hz。
在一个实施例中,所述加压电压频率范围为10Hz~50Hz。
在一个实施例中,所述加压电压为交流电压。
在一个实施例中,在所述第一基板和所述第二基板之间施加所述加压电压达到的加压时间为0s-1000s。
在一个实施例中,在所述第一基板和所述第二基板之间施加所述加压电压达到的加压时间为100s-1000s。
在一个实施例中,所述第一电极层的电压范围为0伏特~50伏特。
在一个实施例中,所述第一电极层的电压范围为10伏特~50伏特。
一种显示面板的制备方法,包括如下步骤:
提供第一基板和第二基板,所述第一基板上设置有第一电极层,所述第二基板上设置有第二电极层;
将液晶材料注入于所述第一电极层与所述第二电极层之间,所述液晶材料包含至少一种液晶分子以及至少两种感光性单体;
将加压电压施加于所述第一基板和所述第二基板之间,然后紫外光照使所述感光性单体聚合形成配向聚合体;以及
断开所述加压电压,使所述液晶分子形成预倾角,得到液晶层;
其中,所述加压电压施加范围为0伏特~50伏特;所述加压电压的加压时间为间断的加压时间,每次所述间断的加压时间范围为0伏特~100秒,倒数第二次的所述间断的加压时间中对应的加压电压范围为10伏特~50伏特。
在一个实施例中,所述第一基板为阵列基板。
在一个实施例中,所述第二基板为彩色滤光片基板。
在一个实施例中,所述加压电压频率范围为0Hz~60Hz。
在一个实施例中,所述加压电压频率范围为10Hz~50Hz。
在一个实施例中,所述加压电压为交流电压。
在一个实施例中,在所述第一基板和所述第二基板之间施加所述加压电压加压时间为0s-1000s。
在一个实施例中,在所述第一基板和所述第二基板之间施加所述加压电压加压时间为100s-1000s。
在一个实施例中,所述第一电极层的电压范围为0伏特~50伏特。
在一个实施例中,所述第一电极层的电压范围为10伏特~50伏特。
一种显示器件,其中,所述显示器件包括显示面板,所述显示面板包括:
第一基板,所述第一基板为阵列基板;
第一电极层,设置于所述第一基板上;
第二基板,与所述第一基板对向设置,所述第二基板为彩色滤光片基板;
第二电极层,设置于所述第二基板上,与所述第一电极层对向设置;以及
液晶层,位于所述第一电极层和所述第二电极层之间;所述液晶层包括液晶分子和配向聚合体,所述配向聚合体由至少两种感光性单体聚合而成;
所述液晶层中的液晶分子预倾角由加压电压施加于所述第一基板和所述 第二基板之间形成;所述加压电压施加范围为0伏特~50伏特,频率范围为0Hz~60Hz;通过在所述第一基板和所述第二基板之间施加所述加压电压达到加压时间后,断开所述加压电压,使所述液晶分子形成预倾角;所述加压时间为间断的加压时间,每次所述间断的加压时间范围为0秒~100秒,倒数第二次的所述间断的加压时间中对应的加压电压范围为10伏特~50伏特。
本申请实施例提供的显示面板中的液晶层中的液晶分子预倾角由加压电压施加于第一基板和第二基板之间形成,通过该特有的加压电压曲线(即加压电压施加范围为0伏特~50伏特,加压时间为间断的加压时间,每次所述间断的加压时间范围为0秒~100秒,倒数第二次的所述间断的加压时间中对应的加压电压范围为10伏特~50伏特)加压后,可以使液晶层中的液晶分子形成预倾角,如此可以大大降低了显示面板中Sandy Mura发生的概率。
本申请实施例提供的显示面板的制备方法中,将液晶材料注入于所述第一电极与所述第二电极之间后,先将加压电压施加于所述第一基板和所述第二基板之间,然后紫外光照使所述感光性单体聚合形成配向聚合体,这样得到的液晶层中的液晶分子可以形成预倾角,如此可以大大降低了显示面板中Sandy Mura发生的概率。
本申请实施例提供的显示器件中设置有本申请特有的显示面板,该显示面板中的液晶层中的液晶分子形成预倾角。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳 动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请显示面板施加压电压前的结构示意图;
图2为本申请显示面板开始施加加压电压的结构示意图;
图3为本申请显示面板紫外光照的结构示意图;
图4为本申请显示面板断开加压电压的结构示意图;
图5为本申请显示面板的制备方法流程图;
图6为现有显示面板星云纹状的画素结构示意图;
图7为本申请显示面板不具有星云纹状的画素结构示意图。
其中,图中各附图标记为:
101-显示面板;110-第一基板;120-第一电极层;210-第二基板;220-第二电极层;130-液晶分子;140-配向聚合体;160-液晶层;150-加压电压;600-画素结构;605-红绿蓝画素;610-云纹状。
具体实施方式
为了使本申请要解决的技术问题、技术方案和优点更加清楚明白,以下结合附图和实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指 示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
一方面,如图1-4所示,本申请实施例提供了一种显示面板101,所述显示面板101包括:
第一基板110;
第一电极层120,设置于所述第一基板110上;
第二基板210,与所述第一基板110对向设置;
第二电极层220,设置于所述第二基板210上,与所述第一电极层120对向设置;以及
液晶层160,位于所述第一电极层120和所述第二电极层220之间;所述液晶层160包括液晶分子130和配向聚合体140,所述配向聚合体140由至少两种感光性单体聚合而成;
所述液晶层160中的液晶分子预倾角由加压电压150施加于所述第一基板110和所述第二基板210之间形成;所述加压电压150施加范围为0伏特~50伏特;通过在第一基板110和第二基板210之间施加所述加压电压150达到加压时间后,断开所述加压电压150,使所述液晶分子130形成预倾角;所述加压时间为间断的加压时间,每次所述间断的加压时间范围为0秒~100秒,倒数第二次的所述间断的加压时间中对应的加压电压范围为10伏特~50伏特。
本申请实施例提供的显示面板101中的液晶层160中的液晶分子预倾角由加压电压150施加于第一基板110和第二基板210之间形成,通过该特有的加压电压150曲线(即加压电压150施加范围为0伏特~50伏特,加压时间为间断的加压时间,每次所述间断的加压时间范围为0秒~100秒,倒数第二次的所述间断的加压时间中对应的加压电压范围为10伏特~50伏特)加压后,可以使液晶层160中的液晶分子130形成预倾角。
在一个实施例中,所述第一基板110为阵列基板。
在一个实施例中,所述第二基板210为彩色滤光片基板。
在一个实施例中,所述加压电压150频率范围为0Hz~60Hz,可选为10Hz-50Hz。
在一个实施例中,所述加压电压150为交流电压。
在一个实施例中,在所述第一基板110和所述第二基板210之间施加所述加压电压的加压时间为0s-1000s,可选为100s-1000s。
在一个实施例中,所述第一电极层120的电压范围为0伏特~50伏特,可选为10-50伏特。
本申请的显示面板亦或为OLED(Organic Light-Emitting Diode,有机发光二极管)面板,或QLED(Quantum Dots Light-Emitting Diode,量子点发光二极管)面板。
另一方面,本申请实施例提供一种显示面板101的制备方法,如图5所示,包括如下步骤:
S511:提供第一基板110和第二基板210,所述第一基板上110设置有第一电极层120,所述第二基板210上设置有第二电极层220;
S512:将液晶材料注入于所述第一电极层120与所述第二电极层220之间, 所述液晶材料包含至少一种液晶分子130以及至少两种感光性单体;
S513:将加压电压150施加于所述第一基板110和所述第二基板210之间;
S514:然后紫外光照使所述感光性单体聚合形成配向聚合体140;以及
S515:断开所述加压电压150,使所述液晶分子130形成预倾角,得到液晶层160;
其中,所述加压电压150施加范围为0伏特~50伏特;所述加压电压150的加压时间为间断的加压时间,每次所述间断的加压时间范围为0秒~100秒,倒数第二次的所述间断的加压时间中对应的加压电压范围为10伏特~50伏特。
本申请实施例提供的显示面板的制备方法中,将液晶材料注入于所述第一电极层120与所述第二电极层220之间后,先将加压电压150施加于所述第一基板110和所述第二基板120之间,然后紫外光照使所述感光性单体聚合形成配向聚合体140,这样得到的液晶层160中的液晶分子140可以形成预倾角,如此可以大大降低了显示面板中Sandy Mura发生的概率。
在一个实施例中,所述第一基板110为阵列基板。
在一个实施例中,所述第二基板210为彩色滤光片基板。
在一个实施例中,所述加压电压150频率范围为0Hz~60Hz,可选为10Hz-50Hz。
在一个实施例中,所述加压电压150为交流电压。
在一个实施例中,在所述第一基板110和所述第二基板210之间施加所述加压电压的加压时间为0s-1000s,可选为100s-1000s。
在一个实施例中,所述第一电极层120的电压范围为0伏特~50伏特,可选为10-50伏特。
在一个实施例中,所述加压电压150施加范围为10伏特~50伏特;每次 所述间断的加压时间范围为1~50秒,所述间断的加压时间中的最后倒数第二次的加压时间中的加压电压范围为20伏特~50伏特。
在上述制备方法中,对于步骤S512:将液晶材料注入于所述第一电极层120与所述第二电极层220之间,如图1所示,未施加加压电压150前,液晶分子排列情况。对于步骤S513,将加压电压150施加于所述第一基板110和所述第二基板210之间,如图2所示,施加加压电压150使液晶分子开始倾倒。对于步骤S514,紫外光照使所述感光性单体聚合形成配向聚合体140,如图3所示,加载紫外光使感光性单体聚合向配向层聚合形成配向聚合体140。对于步骤S515,如图4所示,断开所述加压电压150,使所述液晶分子130形成预倾角。通过上述整个工艺流程,最终得到液晶层160。
如图6所示,为现有显示面板星云纹状的画素结构示意图具有星云纹状的画素结构示意图,图7为本申请显示面板不具有星云纹状的画素结构示意图。两者对比可知:本申请的显示面板无Sandy Mura发生,产品良率得到显著提升。
最后,本申请实施例还提供一种显示器件,如图1-4所示,其中,所述显示器件包括显示面板101,所述显示面板101包括:
第一基板110,所述第一基板110为阵列基板;
第一电极层120,设置于所述第一基板110上;
第二基板210,与所述第一基板110对向设置,所述第二基板210为彩色滤光片基板;
第二电极层220,设置于所述第二基板210上,与所述第一电极层120对向设置;以及
液晶层160,位于所述第一电极层120和所述第二电极层220之间;所述 液晶层160包括液晶分子130和配向聚合体140,所述配向聚合体140由至少两种感光性单体聚合而成;
所述液晶层160中的液晶分子预倾角由加压电压150施加于所述第一基板110和所述第二基板210之间形成;所述加压电压150施加范围为0伏特~50伏特,频率范围为0Hz~60Hz;通过在第一基板110和第二基板210之间施加所述加压电压150达到加压时间后,断开所述加压电压150,使所述液晶分子130形成预倾角;所述加压时间为间断的加压时间,每次所述间断的加压时间范围为0秒~100秒,倒数第二次的所述间断的加压时间中对应的加压电压范围为10伏特~50伏特。
本申请实施例提供的显示器件中设置有本申请特有的显示面板101,该显示面板101中的液晶层160中的液晶分子130形成预倾角,如此可以大大降低了显示器件中Sandy Mura发生的概率。
其中一个实施例
一种显示面板101,所述显示面板101包括:
第一基板110;
第一电极层120,设置于所述第一基板110上;
第二基板210,与所述第一基板110对向设置;
第二电极层220,设置于所述第二基板210上,与所述第一电极层120对向设置;以及
液晶层160,位于所述第一电极层120和所述第二电极层220之间;所述液晶层160包括液晶分子130和配向聚合体140,所述配向聚合体140由至少两种感光性单体聚合而成;
所述液晶层160中的液晶分子预倾角由加压电压150施加于所述第一基板 110和所述第二基板210之间形成;所述加压电压150施加范围为0伏特~50伏特;通过在第一基板110和第二基板210之间施加所述加压电压150达到加压时间后,断开所述加压电压150,使所述液晶分子130形成预倾角;所述加压时间为间断的加压时间,每次所述间断的加压时间范围为0秒~100秒,倒数第二次的所述间断的加压时间中对应的加压电压范围为10伏特~50伏特。
其中另一个实施例
一种显示面板101,所述显示面板101包括:
第一基板110;
第一电极层120,设置于所述第一基板110上;
第二基板210,与所述第一基板110对向设置;
第二电极层220,设置于所述第二基板210上,与所述第一电极层120对向设置;以及
液晶层160,位于所述第一电极层120和所述第二电极层220之间;所述液晶层160包括液晶分子130和配向聚合体140,所述配向聚合体140由至少两种感光性单体聚合而成;
所述液晶层160中的液晶分子预倾角由加压电压150施加于所述第一基板110和所述第二基板210之间形成;所述加压电压150施加范围为10伏特~50伏特;通过在第一基板110和第二基板210之间施加所述加压电压150达到加压时间后,断开所述加压电压150,使所述液晶分子130形成预倾角;所述加压时间为间断的加压时间,每次所述间断的加压时间范围为10秒~100秒,倒数第二次的所述间断的加压时间中对应的加压电压范围为20伏特~50伏特。
其中另一个实施例
一种显示面板101,所述显示面板101包括:
第一基板110;
第一电极层120,设置于所述第一基板110上;
第二基板210,与所述第一基板110对向设置;
第二电极层220,设置于所述第二基板210上,与所述第一电极层120对向设置;以及
液晶层160,位于所述第一电极层120和所述第二电极层220之间;所述液晶层160包括液晶分子130和配向聚合体140,所述配向聚合体140由至少两种感光性单体聚合而成;
所述液晶层160中的液晶分子预倾角由加压电压150施加于所述第一基板110和所述第二基板210之间形成;所述加压电压150施加范围为10~40伏特;通过在第一基板110和第二基板210之间施加所述加压电压150达到加压时间后,断开所述加压电压150,使所述液晶分子130形成预倾角;所述加压时间为间断的加压时间,每次所述间断的加压时间范围为10~80秒,倒数第二次的所述间断的加压时间中对应的加压电压范围为20伏特~40伏特。
以上所述仅为本申请的可选实施例而已,并不用以限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种显示面板,其中,所述显示面板包括:
    第一基板;
    第一电极层,设置于所述第一基板上;
    第二基板,与所述第一基板对向设置;
    第二电极层,设置于所述第二基板上,与所述第一电极层对向设置;以及
    液晶层,位于所述第一电极层和所述第二电极层之间;所述液晶层包括液晶分子和配向聚合体,所述配向聚合体由至少两种感光性单体聚合而成;
    所述液晶层中的液晶分子预倾角由加压电压施加于所述第一基板和所述第二基板之间形成;所述加压电压施加范围为0伏特~50伏特;通过在所述第一基板和所述第二基板之间施加所述加压电压达到加压时间后,断开所述加压电压,使所述液晶分子形成预倾角;所述加压时间为间断的加压时间,每次所述间断的加压时间范围为0秒~100秒,倒数第二次的所述间断的加压时间中对应的加压电压范围为10伏特~50伏特。
  2. 如权利要求1所述的显示面板,其中,所述第一基板为阵列基板。
  3. 如权利要求1所述的显示面板,其中,所述第二基板为彩色滤光片基板。
  4. 如权利要求1所述的显示面板,其中,所述加压电压频率范围为0Hz~60Hz。
  5. 如权利要求4所述的显示面板,其中,所述加压电压频率范围为10~50Hz。
  6. 如权利要求1所述的显示面板,其中,所述加压电压为交流电压。
  7. 如权利要求1所述的显示面板,其中,在所述第一基板和所述第二基板之间施加所述加压电压达到的加压时间为0s-1000s。
  8. 如权利要求7所述的显示面板,其中,在所述第一基板和所述第二基板之间施加所述加压电压达到的加压时间为100s-1000s。
  9. 如权利要求1所述的显示面板,其中,所述第一电极层的电压范围为0伏特~50伏特。
  10. 如权利要求9所述的显示面板,其中,所述第一电极层的电压范围为10伏特~50伏特。
  11. 一种显示面板的制备方法,其中,包括:
    提供第一基板和第二基板,所述第一基板上设置有第一电极层,所述第二基板上设置有第二电极层;
    将液晶材料注入于所述第一电极层与所述第二电极层之间,所述液晶材料包含至少一种液晶分子以及至少两种感光性单体;
    将加压电压施加于所述第一基板和所述第二基板之间,然后紫外光照使所述感光性单体聚合形成配向聚合体;以及
    断开所述加压电压,使所述液晶分子形成预倾角,得到液晶层;
    其中,所述加压电压施加范围为0伏特~50伏特;所述加压电压的加压时间为间断的加压时间,每次所述间断的加压时间范围为0秒~100秒,倒数第二次的所述间断的加压时间中对应的加压电压范围为10伏特~50伏特。
  12. 如权利要求11所述的制备方法,其中,所述第一基板为阵列基板。
  13. 如权利要求11所述的制备方法,其中,所述第二基板为彩色滤光片基板。
  14. 如权利要求11所述的制备方法,其中,所述加压电压频率范围为 0Hz~60Hz。
  15. 如权利要求14所述的制备方法,其中,所述加压电压频率范围为10~50Hz。
  16. 如权利要求11所述的制备方法,其中,所述加压电压为交流电压。
  17. 如权利要求11所述的制备方法板,其中,在所述第一基板和所述第二基板之间施加所述加压电压达到的加压时间为0s-1000s。
  18. 如权利要求17所述的制备方法,其中,在所述第一基板和所述第二基板之间施加所述加压电压达到的加压时间为100s-1000s。
  19. 如权利要求11所述的制备方法,其中,所述第一电极层的电压范围为0伏特~50伏特。
  20. 一种显示器件,其中,所述显示器件包括显示面板,所述显示面板包括:
    第一基板,所述第一基板为阵列基板;
    第一电极层,设置于所述第一基板上;
    第二基板,与所述第一基板对向设置,所述第二基板为彩色滤光片基板;
    第二电极层,设置于所述第二基板上,与所述第一电极层对向设置;以及
    液晶层,位于所述第一电极层和所述第二电极层之间;所述液晶层包括液晶分子和配向聚合体,所述配向聚合体由至少两种感光性单体聚合而成;
    所述液晶层中的液晶分子预倾角由加压电压施加于所述第一基板和所述第二基板之间形成;所述加压电压施加范围为0伏特~50伏特,频率范围为0Hz~60Hz;通过在所述第一基板和所述第二基板之间施加所述加压电压达到加压时间后,断开所述加压电压,使所述液晶分子形成预倾角;所述加压时间为间断的加压时间,每次所述间断的加压时间范围为0秒~100秒,倒数第二 次的所述间断的加压时间中对应的加压电压范围为10伏特~50伏特。
PCT/CN2018/123181 2018-06-22 2018-12-24 显示面板及其制备方法和显示器件 WO2019242265A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810651699.6A CN108845441A (zh) 2018-06-22 2018-06-22 显示面板及其制造方法
CN201810651699.6 2018-06-22

Publications (1)

Publication Number Publication Date
WO2019242265A1 true WO2019242265A1 (zh) 2019-12-26

Family

ID=64203359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123181 WO2019242265A1 (zh) 2018-06-22 2018-12-24 显示面板及其制备方法和显示器件

Country Status (2)

Country Link
CN (1) CN108845441A (zh)
WO (1) WO2019242265A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108845441A (zh) * 2018-06-22 2018-11-20 惠科股份有限公司 显示面板及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1693970A (zh) * 2005-03-24 2005-11-09 友达光电股份有限公司 液晶配向添加剂、包含其的液晶显示装置及制造方法
US20090056853A1 (en) * 2007-09-05 2009-03-05 Chia-Hsuan Pai Liquid crystal medium for polymerization alignment process and method for manufacturing a liquid crystal display having the same
CN101840097A (zh) * 2010-04-30 2010-09-22 友达光电股份有限公司 蓝相液晶显示装置及其制作方法
CN102087440A (zh) * 2009-12-08 2011-06-08 华映视讯(吴江)有限公司 液晶显示面板的制作方法
CN105182617A (zh) * 2015-07-09 2015-12-23 友达光电股份有限公司 显示面板及其制造方法
CN108845441A (zh) * 2018-06-22 2018-11-20 惠科股份有限公司 显示面板及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI250353B (en) * 2002-02-04 2006-03-01 Sharp Kk Liquid crystal display and method of manufacturing the same
JP4551230B2 (ja) * 2005-01-31 2010-09-22 シャープ株式会社 液晶表示装置の製造方法
CN104298005B (zh) * 2014-10-11 2017-02-22 深圳市华星光电技术有限公司 一种液晶显示面板的制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1693970A (zh) * 2005-03-24 2005-11-09 友达光电股份有限公司 液晶配向添加剂、包含其的液晶显示装置及制造方法
US20090056853A1 (en) * 2007-09-05 2009-03-05 Chia-Hsuan Pai Liquid crystal medium for polymerization alignment process and method for manufacturing a liquid crystal display having the same
CN102087440A (zh) * 2009-12-08 2011-06-08 华映视讯(吴江)有限公司 液晶显示面板的制作方法
CN101840097A (zh) * 2010-04-30 2010-09-22 友达光电股份有限公司 蓝相液晶显示装置及其制作方法
CN105182617A (zh) * 2015-07-09 2015-12-23 友达光电股份有限公司 显示面板及其制造方法
CN108845441A (zh) * 2018-06-22 2018-11-20 惠科股份有限公司 显示面板及其制造方法

Also Published As

Publication number Publication date
CN108845441A (zh) 2018-11-20

Similar Documents

Publication Publication Date Title
US9069208B2 (en) Edge source illumination device for liquid crystal display with patterned electrodes for light guide modulation layer
US10209552B2 (en) PDLC display panel, manufacturing method thereof, and LCD
US9897882B1 (en) Methods of fabricating COA type liquid crystal display panels and COA type liquid crystal display panels
US20110242146A1 (en) Lighting device and display device
JP2008076950A (ja) 液晶表示パネル及びその製造方法
US9965072B1 (en) Quick response liquid crystal display device and manufacturing method thereof
US20230375871A1 (en) Manufacturing method of liquid crystal display panel and liquid crystal display panel
CN104977758A (zh) 一种适用于psva型液晶显示面板的配向方法
US20130329151A1 (en) Liquid crystal panel, manufacturing process and display device thereof
US9488869B2 (en) Liquid crystal display device and method for manufacturing same
WO2022116341A1 (zh) 显示面板及显示装置
WO2019242265A1 (zh) 显示面板及其制备方法和显示器件
CN105242465B (zh) 一种蓝相液晶显示面板及蓝相液晶显示面板的制作方法
WO2010098063A1 (ja) 液晶表示装置
KR20130079052A (ko) 액정 표시 장치의 제조 방법
WO2014205985A1 (zh) 导光板及其制作方法、背光源及透明显示装置
WO2015027642A1 (zh) 液晶面板及其制作方法、显示器
CN111552107A (zh) 光学膜、光学膜的制备方法及应用
JP2003255347A (ja) 液晶表示装置およびその製造方法
WO2020186561A1 (zh) 液晶显示面板的制作方法
TWI417618B (zh) 液晶顯示面板的製作方法
WO2020062465A1 (zh) 显示面板及其制作方法
CN104098725B (zh) 一种组合物、取向层及其制备方法、液晶取向单元、液晶显示面板
US10678096B1 (en) Method and apparatus for fabricating display panel
US9170460B2 (en) In-plane-switching mode liquid crystal panel, manufacturing process and display device thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.04.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18923606

Country of ref document: EP

Kind code of ref document: A1