WO2019239789A1 - Wireless communication method, wireless communication system, and wireless communication device - Google Patents

Wireless communication method, wireless communication system, and wireless communication device Download PDF

Info

Publication number
WO2019239789A1
WO2019239789A1 PCT/JP2019/019639 JP2019019639W WO2019239789A1 WO 2019239789 A1 WO2019239789 A1 WO 2019239789A1 JP 2019019639 W JP2019019639 W JP 2019019639W WO 2019239789 A1 WO2019239789 A1 WO 2019239789A1
Authority
WO
WIPO (PCT)
Prior art keywords
time division
radio station
fixed
division channel
preamble
Prior art date
Application number
PCT/JP2019/019639
Other languages
French (fr)
Japanese (ja)
Inventor
藤嶋 堅三郎
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019239789A1 publication Critical patent/WO2019239789A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7143Arrangements for generation of hop patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7156Arrangements for sequence synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a wireless communication method in a wireless communication system used for mobile control.
  • ATACS Advanced Train Administration and Communication System
  • a mobile radio station on a train and a fixed radio station on the ground
  • train control is performed by exchanging train position information and a train entry permission point.
  • Patent Literature 1 controls an antenna, a transmission / reception unit connected to the antenna, and a transmission / reception unit, inputs the same transmission data to the transmission / reception unit at the same time, and transmits the frequency to the transmission / reception unit at each frequency hopping switching period.
  • a radio control unit that instructs the start of the channel availability check process, and the transmission / reception unit switches the frequency channel at regular intervals in synchronization with the communication partner, and at the same time, a different frequency is set for each transmission / reception unit.
  • a hopping control unit that controls the frequency channel to be used, and when it is determined that the frequency channel is in an idle state until a predetermined time elapses after the start of the empty state confirmation process, the frequency channel is used.
  • a wireless communication device that transmits the transmission data to a communication partner is described.
  • timing synchronization is established between a fixed wireless station and a mobile wireless station, and the reliability of communication is improved by applying frequency hopping.
  • a specific synchronization method between the mobile station and the mobile radio station is not disclosed.
  • the synchronization method a method using a preamble signal that is also used in a wireless LAN or the like is known.
  • the mobile wireless station performs data communication. There is a possibility that the data signal may not be transmitted correctly by erroneously synchronizing with a preamble signal of a fixed radio station different from the fixed radio station to be performed.
  • the present invention relates to a radio communication system that bi-directionally transmits mobile control information using a time-division channel that performs frequency hopping between a fixed radio station and a mobile radio station, and that reduces false synchronization caused by erroneous detection of a preamble signal.
  • An object is to provide a communication method.
  • a typical example of the invention disclosed in the present application is as follows. That is, a wireless communication method in a wireless communication system for bidirectionally transmitting mobile control information using a time division channel for frequency hopping between a fixed wireless station and a mobile wireless station, wherein the mobile wireless station transmits a preamble signal
  • the plurality of fixed wireless stations that synchronize timing between the wireless stations and are close to each other and constitute a group use orthogonal frequency hopping sequences, use the same preamble signal, and use different fixed wireless stations of the group Between stations, frequency hopping sequences are allowed to overlap in some or all of the time division channels, and different preamble signals are used.
  • FIG. 1 It is a figure which shows the structural example of the radio
  • An example of a frequency hopping matrix and a preamble signal according to the present embodiment is shown.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system includes a plurality of fixed wireless stations 13 and one or a plurality of mobile wireless stations 23.
  • the center-side mobile body control device 11 receives observation information around the mobile body 21, determines a control target of the mobile body 21 based on the input observation information, and transmits the control target to the mobile radio station 23.
  • Non-Patent Document 1 the operation related to ATACS (Advanced Train Administration and Communication System) described in Non-Patent Document 1 can be applied.
  • the mobile body control information in this specification is information regarding the observation information and the control target.
  • the edge side mobile body control device 22 performs bidirectional transmission of the mobile body control information with the center side mobile body control device 11. Observation information around the moving body 21 is transmitted to the center-side moving body control device 11, and a control target is input from the center-side moving body control device 11, and the operation of the moving body 21 is autonomously performed according to the input control target and observation information. Control.
  • the fixed radio station 13 has at least one antenna 14, receives observation information converted into a radio signal, converts the control target into a radio signal, and transmits it.
  • the mobile radio station 23 is mounted on the mobile body 21, has at least one antenna 24, receives a control target converted into a radio signal, converts the observation information into a radio signal, and transmits it.
  • the center-side mobile control device 11 is connected to a plurality of fixed wireless stations 13 via a backbone network 12.
  • the mobile body 21 is a train
  • the fixed radio station 13 is a radio base station provided along a route along which the train travels.
  • the mobile radio station 23 may be regarded as an on-board radio station attached to the train.
  • the center side mobile body control apparatus 11 is a part of the ground side control system which produces
  • the edge-side moving body control device 22 may be regarded as a part of the vehicle upper side control system, for example.
  • the edge-side moving body control device 22 is connected to, for example, a communication unit with a ground unit or a distance measuring unit using radio, and the position information acquired by these is transmitted to the fixed radio station 13 via the mobile radio station 23.
  • the configuration of the vehicle upper side control system can be arbitrarily determined.
  • the edge side mobile body control device 22 and the mobile radio station 23 may be configured as an integrated device.
  • you may consider that the system comprised by such a vehicle upper side control system and the ground side control system mentioned above is a train control system.
  • FIG. 2 shows an example of a frequency hopping matrix and a preamble signal according to this embodiment.
  • FIG. 2A shows an example of a frequency hopping matrix.
  • the vertical axis of the frequency hopping matrix is a frequency subchannel obtained by dividing a frequency band that can be used by the system, and is divided into 16 frequency subchannels in this embodiment.
  • Each frequency subchannel is assigned a number (FDC No.).
  • the horizontal axis represents time division channels, and each time division channel is assigned a number (TDC No.).
  • TDC No. the same pattern is repeated with a period of 16 time division channels.
  • Numerals from 0 to 15 are drawn on each square of the frequency hopping matrix. This number represents the lower 4 bits of the identifier of the fixed radio station (FRS). For example, if attention is paid to the allocation of 0 in the colored lower 4 bits, the first time division channel is assigned frequency subchannel # 0, and the frequency subchannel number is incremented by 3 each time the time division channel is advanced by one. If the result is 16 or more, the frequency subchannel number is subtracted by 16. When the serial number of the time division channel reaches 16, it loops back to 0.
  • FSS fixed radio station
  • Such a series of frequency subchannel numbers for each time division channel for each fixed radio station is a frequency hopping sequence.
  • the frequency hopping sequence has a period of 16 because it folds back to the left every 16 time division channels.
  • frequency hopping sequences orthogonal to each other can be generated by the number of frequency subchannels.
  • the effect of the present invention can be obtained for any frequency hopping sequence.
  • One of the methods is a method of holding a table capable of acquiring a frequency hopping sequence for a period when a lower bit of the fixed wireless station ID is input to each of the fixed wireless station 13 and the mobile wireless station 23.
  • This table is written in the fixed radio station 13 and the mobile radio station 23 at the time of shipment, and an initial value is set when each radio station is activated.
  • Another method formulates a method of generating a frequency hopping sequence, and inputs the serial number of the time division channel and the low-order bits of the identifier of the fixed radio station 13 as explanatory variables into the formula, so that the frequency subchannel for each successive time division channel is obtained.
  • This is a method for calculating a number.
  • TDC is the serial number of the time division channel
  • frsidlsb is the low-order bit (4 bits in FIG. 2) of the fixed radio station identifier
  • NTDC is the frequency hopping sequence period, and corresponds to the length of the horizontal axis of the matrix. (16 in FIG. 2)
  • step is the number (3 in FIG. 2) to be added to the frequency subchannel number every time the time division channel advances
  • NFDC is the total number of frequency subchannels (16 in FIG. 2).
  • the above-described equation is an equation for generating a frequency hopping sequence in which the frequency subchannel numbers FDC (TDC, frsidlsb) for each time division channel serial number TDC are arranged with respect to the lower bits frsidlsb of the fixed radio station identifier. It may be in the form of a recurrence formula with FDCini (frsidlsb) as an initial value.
  • a frequency hopping sequence for the lower bits of the fixed wireless station identifier can be generated.
  • the same frequency subchannel is not used in the same time division channel, that is, the orthogonality of the frequency hopping sequence is maintained in all the time division channels.
  • FIG. 2B shows an example of a preamble signal with low cross-correlation.
  • the preamble signal is a signal having a certain fixed time length (M samples), and different preamble signals are generated using the upper bits (upper one bit in the case of FIG. 2) of the fixed radio station identifier as an index.
  • sine waves having different frequencies are used as preambles.
  • a rotating sine wave is used as a preambles.
  • Integral product of signals of different double frequency within the range of 2 ⁇ period of fundamental frequency is 0, and 1 is integrated of products of signals of the same frequency. This is a property of Fourier transform. That is, when sine waves having different frequencies are used as the preamble, a plurality of preambles having zero cross correlation can be prepared theoretically.
  • Equation 2 The preamble sequence using a sine wave with the higher bit frsidmsb of the fixed radio station identifier as an index is expressed by the following Equation 2.
  • t is a time sample counter which takes values from 0 to M-1.
  • the preamble sequences are orthogonal to each other.
  • the number of preamble sequences is reduced as compared with the preamble sequences that are quasi-orthogonal to each other.
  • preamble sequence is selected depends on the system, but in the case of a system that requires many preamble sequences (for example, a large number of fixed radio stations 13), a pseudo-orthogonal preamble sequence such as a Gold sequence It may be more appropriate to use.
  • the same preamble signal is used by orthogonalizing the frequency hopping sequence in the group.
  • the same frequency hopping sequence is used by making the preamble signals orthogonal or pseudo-orthogonal within the group, and the fixed wireless stations having different low-order identifier bits.
  • the station 13 is a separate group.
  • an index for specifying a preamble sequence and an index for specifying a frequency hopping sequence are derived from the fixed radio station identifier.
  • both indexes are treated as parameters with names different from the fixed radio station identifier.
  • the combination of parameters can be regarded as equivalent to the fixed radio station identifier in the present specification.
  • the combination of parameters for calculating Equation 1 and Equation 2 can be regarded as equivalent to the fixed wireless station identifier in this specification. That is, a combination of parameters different between fixed wireless stations can be regarded as a modification of the fixed wireless station identifier.
  • FIG. 3 is a diagram illustrating a configuration example of a time division channel according to the present embodiment.
  • the fixed radio station 13 whose lower 4 bits of the fixed radio station identifier are 0, and the mobile radio station 23 communicating with the fixed radio station 13 are colored time division channels and frequencies.
  • a radio signal is transmitted on the subchannel.
  • the communication direction is specified in advance for each time division channel, It is necessary to dynamically control the communication direction between the fixed radio station 13 and the mobile radio station 23.
  • the configuration in the time division channel is the same.
  • the time division channel is a preamble sequence, a data signal obtained by converting information related to mobile control into a radio signal, and a guard time for absorbing the time lag between stations caused by various factors (the radio signal is not transmitted).
  • the length of the preamble sequence is always fixed, but the ratio between the data signal and the guard time may be dynamically changed as necessary.
  • the preamble sequence the sequence selected based on the fixed radio station identifier is arranged as it is.
  • the data signal is generated as a time-domain signal using, for example, a secondary modulation scheme of OFDM (Orthogonal Frequency Domain Multiplex).
  • the modulation symbol for each subcarrier is based on a bit sequence after signal processing generated by signal processing such as CRC (Cyclic Redundancy Code) addition, convolutional coding, interleaving, and repetition for the bit sequence of mobile control information. Then, it is generated by a primary modulation method such as QPSK (Quadrature Phase Shift Keying).
  • CRC Cyclic Redundancy Code
  • QPSK Quadrature Phase Shift Keying
  • the effect of the present invention does not change.
  • a protocol is prescribed in advance between the fixed radio station 13 and the mobile radio station 23, or on the transmission side. It is necessary to unify the schemes between radio stations by separately transmitting the applied primary modulation scheme, coding rate, and information bit sequence length at the beginning of the data signal.
  • FIG. 4 is a diagram showing a frame configuration example of the present embodiment.
  • the frame configuration example shown in FIG. 4 shows the frame number corresponding to the time division channel shown in FIG. 3, the intra-frame time division channel number, and the use for each intra-frame time division channel number.
  • a frame is composed of 10 intra-frame time division channels.
  • the frequency hopping sequence period and the frame length coincide with each other, and the two do not need to coincide with each other.
  • the number of time division channels in a frame may be changed according to the system needs.
  • the frequency subchannel may be selected by returning to the head of the frequency hopping sequence for each frame head.
  • FDCini (frsidlsb) may be changed in conjunction with the frame number. Even if it changes in this way, since the orthogonality of the frequency hopping sequence between the fixed radio stations 13 in the group is maintained, the effect of the present invention can be obtained.
  • NTDClocal is the number of time division channel numbers in the frame (10 in FIG. 4).
  • the frame number is folded back within a finite range as necessary. For example, when the frame number reaches 256, a process of turning back to 0 is performed. Along with this, the serial number of the time division channel is also returned within a finite range.
  • the fixed radio station 13 and the mobile radio station 23 know the serial numbers of the time division channels for all the time division channels in the frame, and the frequency hopping for the fixed radio station 13 By referring to the sequence, the number of frequency subchannels that can be used in each time division channel is known.
  • the same rules apply to all frames in time division channels.
  • the application rule is changed during operation, the usage is changed by operating the fixed radio station 13 from a device outside the system such as a maintenance terminal, and the mobile radio station 23 is notified through a time division channel for notification. Since this is only a principle, the applications for each time division channel do not have to completely match between the fixed wireless stations 13 if necessary as a system. However, in order to establish a synchronization process to be described later, the use of the time division channel designated for notification in the initial state is not changed.
  • B is a time division channel for broadcasting
  • A is a time division channel for initial access
  • C is a time division channel for data signal communication.
  • DL indicates a downlink direction for transmission from the fixed radio station 13 to the mobile radio station 23
  • UL indicates an uplink direction for transmission from the mobile radio station 23 to the fixed radio station 13.
  • FIG. 5 is a diagram illustrating an example of information elements transmitted on the broadcast time division channel of the present embodiment.
  • the broadcast time division channel is an information for generating an identifier (FRS ID), a frame number (Frame No.), and a frequency hopping sequence of the transmission source fixed radio station 13 from the calculation formula, and every time division channel advances.
  • FSS ID an identifier
  • Frame No. a frame number
  • FDCini frequency subchannel number
  • Step and FDC ini are transmitted in the time-sharing channel for notification in the form shown in the figure, but these values are explicitly determined in advance between the fixed radio station 13 and the mobile radio station 23, as shown in FIG.
  • step and FDC ini It is not necessary to transmit on the broadcast time division channel.
  • the usage information of the intra-frame time division channel is dynamically changed, the usage information is added to the information element of the broadcast time division channel shown in FIG.
  • the fixed radio station 13 broadcasts the latest information.
  • the information element transmitted on the broadcast time division channel is converted into a radio signal by the fixed radio station 13, and then the preamble sequence corresponding to the identifier of the fixed radio station 13 and the guard time are multiplexed to obtain the fixed radio station 13 Sent from
  • FIG. 6 is a diagram illustrating an example of information elements transmitted on the time division channel for initial access according to the present embodiment.
  • the time division channel for initial access is composed of an identifier (MRS ID) that uniquely identifies the mobile radio station 23 in the system and an identifier (FRS ID) of the fixed radio station 13 that is the transmission destination of the time division channel for initial access. Is done.
  • the information element transmitted on the time division channel for initial access is converted into a radio signal by the mobile radio station 23, and then the preamble sequence based on the identifier of the fixed radio station 13 indicated by the FRS ID and the guard time are multiplexed to obtain the mobile radio Transmit from station 23.
  • the method in which the mobile radio station 23 selects the fixed radio station 13 which is the transmission destination of the time division channel for initial access is to compare the received power of the preamble sequence transmitted from the fixed radio station 13 between the fixed radio stations 13. There is a method of selecting the fixed radio station 13 having the largest received power.
  • the preamble sequence may be transmitted when there is no data signal to be transmitted in the time division channel. However, in the present invention, it is desirable not to transmit the preamble sequence more than necessary from the viewpoint of avoiding erroneous detection of the preamble. On the other hand, since the broadcast time division channel is always transmitted in every frame, the mobile radio station 23 may select the fixed radio station 13 using the preamble sequence in the broadcast time division channel.
  • the mobile radio station 23 Since the mobile radio station 23 has already synchronized the frame, the mobile radio station 23 knows the timing at which the preamble sequence of the broadcast time division channel is received. Starting from this timing, the wideband signal corresponding to 16 frequency subchannels by the preamble sequence length is obtained. Record the received waveform temporarily. The mobile radio station 23 calculates the cross-correlation with the preambles of all the fixed radio station groups assumed in the system for the recorded received waveform, and selects the fixed radio station group having the largest cross-correlation. After selecting the fixed radio station group, the frequency subchannel having the largest cross-correlation value of the received waveform is selected. When the fixed wireless station group and the frequency subchannel having the largest cross-correlation value are determined, the fixed wireless station identifier can be determined from the content of the broadcast time division channel.
  • the fixed radio station selection method described here is an example. Based on the cross-correlation value of the preamble sequence of the broadcast time division channel received by the mobile radio station 23, a fixed radio station group identifier assumed to be used in the system and an intra-group identifier or a fixed radio station identifier Any method can be used as long as it can be determined.
  • FIG. 7 is a diagram illustrating an example of information elements of the data signal time division channel according to the present embodiment.
  • FIG. 7A shows information elements transmitted between the mobile radio station 23 to which the data signal time-division channel has been assigned and the fixed radio station 13.
  • the information element is composed of at least an identifier (FRS ID) of the fixed radio station 13 related to the transmission of the data signal, an identifier (MRS ID) of the mobile radio station 23, and an information bit sequence (Data Body) serving as the data signal body.
  • the information bit sequence includes information related to mobile control. When the information bit sequence length is variable, the length of the information bit sequence is also given.
  • FIG. 7B is an information element of a response transmitted by the fixed radio station 13 to the mobile radio station 23 that has transmitted the information element of FIG. 6 using the time division channel for initial access.
  • the basic format of the information elements shown in FIG. 7B is the same as that in FIG. 7A, but is assigned to the mobile radio station 23 in uplink communication and downlink communication instead of the data signal body. It consists of a time division channel number in a frame.
  • time division channel allocation to the mobile radio station 23 fails, no response is returned to the mobile radio station 23.
  • An example in which time division channel allocation fails is when the intra-frame time division channel that can be allocated to the mobile radio station 23 is allocated to another mobile radio station 23 and does not remain. For this reason, the communication failure in the fixed radio station 13 continues for a certain time, that is, the information bit sequence error continues, and the mobile radio station 23 to which the time division channel has already been assigned to the fixed radio station 13 It is desirable to release the allocated intra-frame time division channel.
  • the information element shown in FIG. 7B is transmitted to the mobile radio station 23 through the assigned downlink data signal time division channel.
  • the mobile radio station 23 since the mobile radio station 23 is not sure which time-division channel is assigned, the mobile radio station 23 decodes the time-division channel for the downlink data signal through the information element including its own mobile radio station identifier. By checking, it is possible to acquire time division channel allocation information.
  • FIG. 8 is a diagram illustrating a configuration example of the fixed radio station 13 according to the present embodiment.
  • the network interface unit 101 realizes bidirectional communication between the center-side mobile control device 11 and the fixed wireless station 13 via the backbone network 12.
  • bidirectional communication for example, an IP packet can be used.
  • a communication protocol unique to the system may be used.
  • the downlink transmission buffer 102 temporarily stores downlink mobile control information for each mobile radio station that performs radio communication with the fixed radio station 13.
  • the downlink transmission buffer 102 wirelessly transmits the mobile control information from the center-side mobile control device 11 to the mobile wireless station 23, and has a timing adjustment function that waits for the mobile control information until the wireless transmission timing is reached.
  • the time division channel control unit 103 performs a control operation in units of frames.
  • the time division channel control unit 103 refers to the use information of the time division channel in the frame of FIG. 4 to the wireless digital signal transmission processing unit 104 and the wireless digital signal reception processing unit 107, and determines each time division channel in the frame.
  • a function for controlling transmission / reception a function for designating a frequency subchannel number to be used in each time division channel according to a frequency hopping sequence, a function for designating a sequence of preambles to be used based on a fixed radio station identifier, and one frame worth
  • the function of updating the frame number and the information element of the broadcast time division channel including the frame number and the fixed wireless station identifier are managed, and the latest value is set in the wireless digital signal transmission processing unit 104 for each frame.
  • Function and information elements (FIG. 7) to be transmitted on each data signal time division channel for each time division channel Stop and a function of setting a radio digital signal transmission processing unit 104.
  • an information bit sequence is generated by combining information elements transmitted in each time division channel.
  • the wireless digital signal transmission processing unit 104 refers to the bit sequence and frequency subchannel number of each time division channel input from the time division channel control unit 103, and generates a digital radio signal.
  • CRC Check Redundancy Code
  • CRC Check Redundancy Code
  • convolutional coding for error correction, error correction capability improvement, and interleaving to improve noise energy per bit.
  • processing such as repetition, modulation for converting a bit string into amplitude and phase information, time multiplexing between a modulated signal and a specified preamble sequence, and frequency conversion for transmission on a specified frequency subchannel.
  • the wireless digital signal transmission processing unit 104 outputs a baseband digital signal.
  • the wireless analog signal transmission / reception processing unit 105 performs digital / analog conversion, conversion from baseband to high-frequency signal, and amplification of output of the high-frequency signal to the baseband digital signal input from the wireless digital signal transmission processing unit 104.
  • a switch for switching between transmission and reception is provided in front of the antenna 14.
  • the wireless analog signal received by the antenna 14 is sent to the reception signal processing side by the switch described above, and the input weak signal is amplified, converted from a high-frequency signal to a baseband signal, and analog-to-digital conversion processing. Output to the digital signal reception processing unit 107.
  • the wireless digital signal reception processing unit 107 performs low-pass filter processing after performing frequency shift on the input digital reception signal in which the frequency subchannel signal designated for each time division channel moves to the center frequency. After that, the radio channel response is estimated, the estimated channel response is used to compensate for the amplitude phase of the received signal affected by the radio channel, and the information placed on the compensated amplitude phase of the received signal is The demodulating process to return to the bit string is performed, and the repeated bits on the transmitting side are synthesized by deinterleaving and repetition for performing the reverse process of interleaving on the transmitting side for the demodulated bit string.
  • Wireless digital signal reception processing section 107 After combining the received signal at the bit level, error correction decoding such as Viterbi decoding is performed, and the presence or absence of a bit error is determined by checking the CRC attached to this output.
  • Wireless digital signal reception processing section 107 outputs at least an estimated transmission bit sequence excluding CRC and a CRC check result indicating the presence or absence of an error.
  • the initial access processing unit 108 acquires a bit sequence having no bit error regarding the time division channel for initial access from the radio digital signal reception processing unit 107, and refers to the time division channel allocation information of the fixed radio station management information 106 to It is determined whether or not the data signal time division channel can be assigned to the mobile radio station 23 that has transmitted the access time division channel.
  • the allocation of the mobile radio station 23 is added to the time division channel allocation information of the fixed radio station management information 106, and the time division channel control unit 103 performs the initial access time shown in FIG.
  • the information element of the response to the split channel is output.
  • the uplink transmission buffer 109 is a buffer that temporarily stores uplink mobile control information and waits for data until it can be transmitted to the backbone network 12.
  • Uplink transmission buffer 109 stores only data that has been determined to have no bit errors as a result of the CRC check, among the data received by the time division channel for uplink data signals.
  • FIG. 9 is a diagram illustrating a configuration example of the mobile radio station 23 according to the present embodiment.
  • the network interface unit 201 realizes bidirectional communication between the mobile radio station 23 and the edge-side mobile control device 22. Similar to the configuration example of the fixed wireless station 13 (FIG. 8), in this bidirectional communication, an IP packet or a communication protocol unique to the system may be used.
  • the uplink transmission buffer 202 is a buffer that temporarily stores uplink mobile control information.
  • the uplink transmission buffer 202 has a function of waiting for the information sequence until the radio transmission time of the allocated time division channel for the uplink data signal, and the mobile control information from the edge side mobile control device 22 based on the radio transmission frequency. Has a temporary storage function of information for re-transmitting the same mobile control information wirelessly.
  • the buffer read processing unit 203 reads the latest mobile control information for each frame from the uplink transmission buffer 202 and writes it to the wireless digital signal transmission processing unit 204 as a bit sequence.
  • the wireless digital signal transmission processing unit 204 converts the bit sequence related to the data signal input from the buffer read processing unit 203 and the information element of the time division channel for initial access input from the initial access processing unit 208 into a bit sequence to generate an error.
  • CRC Check Redundancy Code
  • convolutional coding for error correction, interleaving and repetition for improving error correction capability and noise energy per bit
  • bit string into amplitude and phase information Modulation
  • time multiplexing of the modulated signal and the designated preamble sequence and frequency conversion for transmission on the designated frequency subchannel.
  • the wireless digital signal transmission processing unit 204 outputs a baseband digital signal.
  • the radio digital signal transmission processing unit 204 acquires information on the fixed radio station identifier and the information on the frequency subchannel for determining the preamble sequence from the time division channel control unit 207.
  • the wireless analog signal transmission / reception processing unit 205 has the same function as the wireless analog signal transmission / reception processing unit 105 of the fixed wireless station 13.
  • the wireless digital signal reception processing unit 209 performs low-pass filter processing after performing frequency shift on the input digital reception signal so that the signal of the frequency subchannel designated for each time division channel moves to the center frequency. After that, the radio channel response is estimated, the estimated channel response is used to compensate for the amplitude phase of the received signal affected by the radio channel, and the information placed on the compensated amplitude phase of the received signal is The demodulating process to return to the bit string is performed, and the repeated bits on the transmitting side are synthesized by deinterleaving and repetition for performing the reverse process of interleaving on the transmitting side for the demodulated bit string.
  • the wireless digital signal reception processing unit 209 After synthesizing the received signal at the bit level, error correction decoding such as Viterbi decoding is performed, and the presence or absence of a bit error is determined by checking the CRC attached to this output.
  • the wireless digital signal reception processing unit 209 outputs at least an estimated transmission bit sequence excluding CRC and a CRC check result indicating the presence or absence of an error.
  • the wireless digital signal reception processing unit 209 performs timing synchronization on the wireless signal received from the fixed wireless station 13 in addition to the decoding processing regarding these data signals.
  • the reception timing is estimated by performing a sliding correlation calculation between the preamble sequence designated by the time division channel control unit 207 and the received signal, and the head time position of the data signal is specified from the estimated received timing to determine the data signal. To extract.
  • the wireless digital signal reception processing unit 209 adjusts the time division channel and the frame timing based on the wireless signal reception timing transmitted by the connected fixed wireless station 13. That is, when the reception timing of the signal from the fixed radio station 13 is earlier than the time division channel timing of the mobile radio station 23, the time division channel timing of the mobile radio station 23 is advanced. Conversely, the time division channel timing is adjusted in the same manner.
  • the initial access processing unit 208 communicates with any fixed radio station 13 in a state where the mobile radio station 23 is not communicating with any fixed radio station 13 immediately after activation. To start.
  • the initial access processing unit 208 first searches the fixed radio station 13 to identify the fixed radio station 13 that is the transmission source of the preamble sequence having the largest received power.
  • the initial access processing unit 208 acquires information related to the frame number, the fixed radio station identifier, and the frequency hopping sequence included in the broadcast time division channel transmitted by the fixed radio station 13, and sends the information to the time division channel management information memory 206. Write. After that, the information shown in FIG. 6 is bit-sequenced and written to the wireless digital signal transmission processing unit 204, and the wireless signal of the time division channel for initial access is transmitted as a wireless signal under the control of the time division channel control unit 207.
  • the initial access processing unit 208 refers to the use information of the intra-frame time division channel recorded in the time division channel management information memory 206 at the time of initialization, and downloads All the received bit sequences of the data signal time division channel are acquired from the wireless digital signal reception processing unit 209. Note that the use information of the intra-frame time division channel in which the usage information included in the broadcast time division channel is written in the time division channel management information memory 206 may be referred to.
  • the initial access processing unit 208 When the initial access processing unit 208 can acquire information including the identifier of the mobile radio station 23, the initial access processing unit 208 writes the allocation information included in the bit sequence to the time division channel management information memory 206. When the information including the identifier of the mobile radio station 23 cannot be acquired, the radio signal transmission of the initial access time division channel is repeated and the fixed radio station 13 is re-searched.
  • the initial access processing unit 208 when searching for a fixed radio station, detects a deviation from the frame number or time division channel timing generated by the time division channel control unit 207 self-running before synchronization. The detected shift is notified to the time division channel control unit 207. The time division channel control unit 207 corrects the timing based on the detected deviation. In addition, the initial access processing unit 208 corrects the internal counter of the time division channel control unit 207 with respect to the frame number. For the wireless digital signal transmission processing unit 204 and the wireless analog signal transmission / reception processing unit 205, the time division channel and the time division channel determined by self-running so that the timing of the frame boundary matches the fixed wireless station 13 Is corrected by an instruction from the time division channel control unit 207.
  • the time division channel control unit 207 performs a control operation in units of frames. With reference to the use information of the time division channel in the frame, the frequency hopping sequence related information, and the data signal time division channel allocation information stored in the time division channel management information memory 206, the wireless digital signal transmission processing unit 204 and the wireless A function for controlling transmission / reception of the time division channel in the frame by the digital signal reception processing unit 209, a function for designating a frequency subchannel number used in each time division channel based on the frequency hopping sequence, and a time division channel management information memory 206 It has a function of using a preamble sequence transmitted from a stored fixed wireless station identifier and a function of updating a frame number when processing for one frame is completed.
  • the time division channel control unit 207 always counts the frames, but when the radio digital signal reception processing unit 209 detects a timing deviation of the time division channel due to the movement of the mobile body 21, the timing deviation is detected.
  • the wireless digital signal transmission processing unit 204 and the wireless digital signal reception processing unit 209 are instructed to correct the above. Specifically, the timing shift may be corrected by extending or shortening the guard time included in all time division channels. If the current timing is delayed and the timing is advanced, an instruction to temporarily reduce the guard time is provided. If the timing is delayed, an instruction to temporarily increase the guard time is provided, and the wireless digital signal transmission processing unit 204 and the wireless digital signal reception are provided. The data is sent to the processing unit 209.
  • the downlink transmission buffer 210 is a buffer that temporarily stores downlink mobile control information, and temporarily waits for data until the edge-side mobile control device 22 can accept data.
  • FIG. 10 is a diagram illustrating an example of the device configuration of the fixed radio station 13 and the mobile radio station 23 according to the present embodiment.
  • the fixed radio station 13 and the mobile radio station 23 can have the same hardware configuration.
  • the network interface unit 301 is a device that communicates with the center-side mobile control device 11 or the edge-side mobile control device 22 in a wired or wireless manner according to a predetermined communication method, and is a physical layer used in the communication method And a modem function for processing lower layers such as a data link layer and a MAC (Medium Access Control) layer.
  • a commercially available chip or board having a modem function can be used. This corresponds to the network interface unit 101 in FIG. 8 and the network interface unit 201 in FIG. 9.
  • the radio control arithmetic unit 302 performs radio control in units of frames such as resource allocation management and message transmission inside the fixed radio station 13 and the mobile radio station 23, and can be realized by an arithmetic device such as a CPU.
  • the radio control arithmetic unit 302 corresponds to the time division channel control unit 103 and the initial access processing unit 108 in FIG. 8, and corresponds to the buffer read processing unit 203, the time division channel control unit 207, and the initial access processing unit 208 in FIG. .
  • the wireless digital signal processing unit 303 can be realized by an arithmetic device suitable for real-time processing such as FPGA.
  • the wireless digital signal processing unit 303 corresponds to the wireless digital signal transmission processing unit 104 and the wireless digital signal reception processing unit 107 in FIG. 8, and corresponds to the wireless digital signal transmission processing unit 204 and the wireless digital signal reception processing unit 209 in FIG. To do.
  • the wireless analog signal processing unit 304 has a conversion function between a baseband digital signal and a high-frequency analog signal, such as an A / D (analog / digital) converter, a D / A (digital / analog) converter, a filter, a mixer, and an amplifier. Is a wireless communication module. In this embodiment, since TDD (Time Division Duplex) communication is assumed, a switch for switching between transmission and reception is provided on the antenna side. High frequency analog signals are transmitted and received via the antennas (14, 24).
  • the wireless control calculation unit 302 the wireless digital signal processing unit 303, and the wireless analog signal processing unit 304
  • programs related to programmable devices are stored in the program storage memory 310. Even if the power is turned off, the stored contents of the memory are not cleared, and the memory contents are written to the wireless control arithmetic unit 302, the wireless digital signal processing unit 303, and the wireless analog signal processing unit 304 immediately after the power is turned on. Use of is desirable.
  • the processor 311 that executes the boot sequence performs program writing control when the apparatus is activated.
  • the processor 311 executes a boot sequence after the power is turned on to start the apparatus.
  • the contents of the program stored in the program storage memory 310 are written to the wireless control arithmetic unit 302, the wireless digital signal processing unit 303, and the wireless analog signal processing unit 304 through the data transmission bus 309.
  • the processor 311 can be realized by an arithmetic device such as a CPU and a storage device.
  • the buffer 305 is a storage area provided in the network interface unit 301 and is composed of a volatile memory.
  • the buffer 305 is an information sequence transmitted from the center side mobile control device 11 to the fixed radio station 13, an information sequence transmitted from the edge side mobile control device 22 to the mobile radio station 23, or transmitted in the reverse direction. Temporarily accumulate information series.
  • the buffer 305 corresponds to the downlink transmission buffer 102 and the uplink transmission buffer 109 in FIG. 8, and corresponds to the uplink transmission buffer 202 and the downlink transmission buffer 210 in FIG.
  • the buffer 306 is a buffer for transferring data between the wireless control calculation unit 302 that operates at the frame timing and the wireless digital signal processing unit 303 that operates in real time, and is configured by a volatile memory. From the wireless control arithmetic unit 302 to the wireless digital signal processing unit 303, an information bit sequence transmitted in each slot in the frame is written. From the wireless digital signal processing unit 303 to the wireless control operation unit 302, the information bit sequence obtained by decoding the wireless signal relating to each slot in the frame and the error detection result by CRC are written.
  • the working memories 307 and 308 are working memories used by the radio control arithmetic unit 302 and the radio digital signal processing unit 303, respectively, information necessary for radio control and radio signal processing, frequency hopping sequences for each fixed radio station identifier, The preamble sequence is written in the working memories 307 and 308, respectively, and is referred to by itself.
  • the working memories 307 and 308 are composed of volatile memories.
  • Frequency hopping sequences and preamble sequences for all fixed wireless station identifiers are generated when the radio control arithmetic unit 302 is activated, or are referred to as a part of the program stored in the program storage memory 310, and the frequency hopping sequence is The preamble sequence is written in the working memory 307 and the preamble sequence.
  • FIG. 11 is a diagram illustrating an example of a time division channel when the two types of preamble sequences of the present embodiment are applied.
  • the preamble sequences in the time-division channel are collectively expressed as one, but in FIG. 11, two types of preambles, that is, the first preamble and the second preamble are data signals. Placed in front.
  • the first preamble and the second preamble are fixed in length, but the lengths of both may not be the same.
  • the length of the preamble and the preamble between the fixed radio station 13 and the mobile radio station 23 are not necessarily the same. It only has to share the line itself.
  • the first preamble and the second preamble can be transmitted from the fixed radio station 13 and the mobile radio station 23, and are time-multiplexed with the data signal in the time division channel where the data signal to be transmitted exists. That is, there is no time division channel for transmitting only the preamble. From this point of view, only the preamble transmitted from the fixed radio station 13 in the broadcast time division channel is reliably transmitted for each frame.
  • the first preamble is used to estimate the start timing of the time division channel and the start timing of the frame.
  • the mobile radio station 23 performs a sliding correlation calculation using the first preamble sequence that the mobile radio station 23 has on the received signal, and when the correlation value exceeds a threshold set in the mobile radio station 23 in advance, the timing is It is determined that it is the beginning of one preamble, that is, at least the beginning of a time division channel.
  • the second preamble is a sequence that depends on the fixed radio station identifier and has two uses.
  • the first application is an application in which the mobile radio station 23 searches for a fixed radio station 13 that provides a preamble received with the strongest power in an initial state in which communication with any fixed radio station 13 has not started.
  • a second application is that the mobile radio station 23 is assigned a time division channel from any one of the fixed radio stations 13, and the source fixed radio station 13 of the first preamble is the fixed radio station 13 to be synchronized. It is an application to verify.
  • the fixed radio station group having the strongest reception power is specified, and the reception power of the second preamble is further determined between the frequency subchannels.
  • the fixed wireless station 13 in the group is further specified.
  • the first preamble is a preamble transmitted on the broadcast time division channel.
  • channels other than the broadcast time division channel if there is a fixed radio station 13 that does not transmit a preamble and the cross-correlation value is low as a result of the cross-correlation calculation of the preamble, whether the correlation value is low because the preamble has not been transmitted, It cannot be determined whether or not the correlation value has decreased due to propagation attenuation. If the wireless signal is transmitted, the fixed wireless station 13 selected is not selected because it does not transmit the signal.
  • the first preamble transmitted on the broadcast time division channel is a sequence having a low cross-correlation with the first preamble transmitted on other time division channels, and is the same for all the fixed radio stations 13 in the system.
  • the first preamble used in the sliding correlation is a sequence dedicated to the broadcast time division channel, so that the head of the broadcast time division channel can be detected based on the cross-correlation value.
  • the timing delayed by the first preamble length from the start timing of the broadcast time division channel acquired in this process is the start timing of the second preamble.
  • the cross-correlation between the received signal and the second preamble sequence of various fixed radio station groups is calculated using the start timing of the second preamble as the head and the second preamble length as the cross-correlation calculation section.
  • a fixed radio station group associated with the second preamble sequence having the highest cross-correlation value is selected.
  • the cross-correlation with the second preamble sequence of the selected fixed radio station group is calculated for all frequency sub-channels in this cross-correlation calculation section, and the frequency sub-channel with the highest cross-correlation value is selected.
  • the data signal immediately after the second preamble sequence is decoded, and the information element of the broadcast time division channel is extracted.
  • the fixed radio station identifier shown in the information element is the first use of the second preamble, that is, the fixed radio station search result.
  • the mobile radio station 23 has once established synchronization with a certain fixed radio station 13.
  • the frame head timing and the time division channel head timing shift due to the clock shift between the radio stations due to the passage of time and the movement of the mobile radio station 23.
  • the mobile radio station 23 In order to monitor the deviation of the head timing, the mobile radio station 23 considers the frequency hopping sequence of the fixed radio station 13 with which synchronization is established, and the frequency sub-channel to which the time division channel for notification of the fixed radio station 13 of the synchronization target is transmitted After selecting a channel, the first timing of the broadcast time division channel is detected using the first preamble sequence.
  • the expected start timing of a certain frame is the timing delayed by the frame length from the start of the previous frame.
  • the expected timing and the observed timing fluctuate. This deviation is always corrected.
  • the shift can be corrected by extending or shortening the guard time of the time division channel next to the broadcast time division channel.
  • the second preamble can be used to verify whether the source fixed wireless station 13 of the first preamble is as expected. Specifically, as a result of cross-correlation calculation for the first preamble, cross-correlation maximum values occur at multiple timings, but based on each timing at which the maximum value is recorded, cross-correlation calculation is performed on the second preamble. As a result, the cross-correlation value is low except for the reception timing of the second preamble transmitted by the expected fixed wireless station 13.
  • Example 2 In the first embodiment, it is assumed that all the fixed radio stations 13 and the mobile radio stations 23 belong to the same system. In the present embodiment, an example in which another system to which the present invention is applied shares the same space is shown.
  • the same frequency hopping matrix (FIG. 2) is prepared in both systems, and fixed to, for example, one system.
  • the frequency hopping sequences are orthogonalized at least between the systems. This method can ensure orthogonality between systems, but the number of fixed wireless stations 13 in a fixed wireless station group that can maintain orthogonality in the system is reduced from 16 to 8 in the example shown in FIG.
  • the start timings of frames and time division channels are not synchronized between systems, the orthogonality of the frequency hopping sequence is not strictly ensured. For this reason, it is desirable to synchronize timing between systems if possible.
  • the upper bits of the fixed wireless station identifier serving as the identifier of the fixed wireless station group are further subdivided to indicate a bit range indicating the system
  • the bit range the lower side of the upper bits
  • the intra-system fixed radio station group the higher side of the upper bits
  • the cross-correlation between the second preambles can be lowered between the systems.
  • a sequence having a low cross-correlation between systems may be defined for the broadcast time division channel and the others.
  • the system identifier corresponding to both the value of the bit range indicating the system and the value used for specifying the sequence of the first preamble is added to the information element of the broadcast time division channel in FIG.
  • information corresponding to the system identifier may be transmitted as a part of the fixed radio station identifier already included in the information element of the broadcast time division channel.
  • the operation method described above can be used to maintain orthogonality between systems and maintain orthogonality within a fixed radio station group in the system at the expense of orthogonality between systems. .
  • Example 3 In the first embodiment and the second embodiment, the method in which the mobile radio station 23 synchronizes the timing based on the signal transmitted from the fixed radio station 13 has been described. When this method is applied, synchronization between the fixed radio stations 13 is possible.
  • an observation frame that does not transmit a radio signal to each fixed radio station 13 is defined, and the time-division channel for notification of other fixed radio stations 13 is observed in the frame.
  • the fixed radio station 13 normally operates as the fixed radio station 13, but only the frame operates in the same manner as the reception side of the mobile radio station 23.
  • the fixed radio station 13 does not transmit a radio signal in the observation frame, but the time division channel serial number for selecting the frequency subchannel for transmitting the radio signal from the frequency hopping sequence is counted in the same way as when transmitting the radio signal. Keep it up. This is because the orthogonality of the frequency hopping sequence is based on the premise that all the fixed radio stations 13 simultaneously count up the time division channel serial numbers.
  • the identifier of the fixed radio station 13 serving as a synchronization target is set in advance at the time of startup or from a maintenance terminal outside the system.
  • at least one fixed wireless station 13 serving as a synchronization master is determined in the system.
  • the fixed wireless station 13 serving as a synchronization target is not set in the fixed wireless station 13 serving as the synchronization master. Further, it is not necessary to define an observation frame for the fixed wireless station 13 of the synchronization master.
  • the operation of synchronization between the fixed radio stations 13 is basically the same as the reception and analysis operation of the mobile radio station 23.
  • the fixed wireless station search illustrated in FIG. 11 and the synchronization state are maintained.
  • the fixed wireless station search ignores the fixed wireless stations 13 other than the target.
  • transmission on the time division channel for initial access after completion of the fixed radio station search is not performed.
  • the fixed radio station 13 needs to be equipped with a function excluding radio signal transmission among the functions of the mobile radio station 23.
  • the mobile radio station 23 is transmitted between the radio stations (between the fixed radio station 13 and the mobile radio station 23 or between the fixed radio stations 13 by a preamble signal. ),
  • the plurality of fixed radio stations 13 that are close to each other and form a group use orthogonal frequency hopping sequences and use the same preamble signal. Since overlapping frequency hopping sequences are allowed in some or all time division channels and different preamble signals are used, the same frequency subchannel as the preamble transmitted by the fixed radio station 13 connected to the mobile radio station 23 is used.
  • the mobile radio station has a low cross-correlation with the preamble transmitted by another fixed radio station 13 to be used on the same frequency subchannel In cross-correlation operation at 3, it can reduce erroneous detection of the preamble of another fixed radio station 13.
  • the wireless communication system as described above to wireless train control, for example, if a radio wave environment changes, a signal transmitted from a wireless base station that should not be received is transmitted to the on-board wireless station of the train. Even if it is detected by the above, it becomes possible to discriminate the signal transmitted from the radio base station that should be received, and to realize highly reliable train control.
  • the radio base station defines an observation frame that does not transmit a radio signal, and observes the time division channel for notification of other radio base stations in the frame.
  • the radio base station operates only in the same manner as the receiving side of the on-board radio station.
  • the radio base station does not transmit the radio signal in the observation frame, but the time division channel serial number for selecting the frequency subchannel for transmitting the radio signal from the frequency hopping sequence is counted up as in the case of transmitting the radio signal. Keep it.
  • the orthogonality of the frequency hopping sequence is based on the premise that all the terrestrial base stations simultaneously count up the time division channel serial numbers.
  • the identifier of the radio base station to be a synchronization target is set in advance at the time of startup or from a maintenance terminal outside the system.
  • at least one radio base station to be a synchronization master is determined in the system.
  • a radio base station that is a synchronization target is not set in the radio base station of the synchronization master.
  • the observation frame need not be defined for the radio base station of the synchronization master.
  • the identifier of the fixed radio station 13 includes a group identifier for uniquely identifying the group and an intra-group identifier for uniquely identifying the fixed radio station 13 in the group.
  • the preamble signal is used as the group identifier. Since the frequency hopping sequence is determined based on the intra-group identifier, the preamble transmitted from the fixed radio station 13 defines a group of fixed radio stations 13 that do not overlap in each frequency subchannel in the mobile radio station 23. it can. Then, by making the fixed wireless stations 13 arranged in the vicinity the same group, erroneous detection of the preamble in the mobile wireless station 23 can be reduced.
  • the fixed radio station 13 and the mobile radio station 23 connected to the fixed radio station 13 use a time division channel determined according to the frequency hopping sequence selected based on the identifier of the fixed radio station 13, Since the preamble signal selected based on the identifier of the fixed wireless station 13 and the mobile control information are time-multiplexed and transmitted, the reception timing by the preamble can be detected for each time division channel. For this reason, the fixed radio station 13 can correctly receive the data signal from the mobile radio station 23 having a different transmission source and radio propagation distance for each time division channel.
  • the preamble signal is a combination of a first preamble sequence signal and a second preamble sequence signal, and the first preamble sequence includes all fixed radio stations 13 and mobile radio stations in the radio communication system. Since the second preamble sequence is selected based on the identifier of the fixed radio station 13, the first preamble common in the radio communication system facilitates the detection of the start timing of the time division channel, The second preamble can verify whether the fixed radio station 13 that is the transmission source of the first preamble is correct. For this reason, erroneous detection of timing due to the preamble can be reduced.
  • the fixed radio station 13 is connected to the fixed radio station 13 with the identifier of the fixed radio station 13 and the time division channel number for associating each time division channel with the reading position of the frequency hopping sequence.
  • the mobile radio station 23 can easily identify the position of the received time division channel in the frequency hopping sequence.
  • a broadcast time division channel is arranged at a position in the same frame among all the fixed wireless stations 13 in the wireless communication system, and a frame is used as a time division channel number broadcast on the broadcast time division channel. Therefore, when the mobile radio station 23 receives the broadcast time division channel that is periodically transmitted, the frequency hopping sequence and the preamble sequence that can be received by the fixed radio station 13 can be selected at any time.
  • the preamble signal transmitted on the broadcast time division channel is a preamble signal of a sequence having a low cross-correlation with a preamble signal transmitted on a time division channel other than the broadcast time division channel, and is included in the radio communication system. Therefore, it is easy for the mobile radio station 23 to determine that the start timing of the time division channel detected by the first preamble is the broadcast time division channel. Can be identified.
  • the fixed wireless station 23 transmits the assignment result using the downlink time division channel assigned to the mobile wireless station 23, so that the mobile wireless station 23 determines the predetermined fixed wireless station 13. In addition, it is possible to communicate with an appropriate fixed wireless station 13 according to the wireless communication state of each fixed wireless station 13.
  • the present invention is not limited to the above-described embodiments, and includes various modifications and equivalent configurations within the scope of the appended claims.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment may be replaced with the configuration of another embodiment.
  • another configuration may be added, deleted, or replaced.
  • each of the above-described configurations, functions, processing units, processing means, etc. may be realized in hardware by designing a part or all of them, for example, with an integrated circuit, and the processor realizes each function. It may be realized by software by interpreting and executing the program to be executed.
  • Information such as programs, tables, and files that realize each function can be stored in a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
  • a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and do not necessarily indicate all control lines and information lines necessary for mounting. In practice, it can be considered that almost all the components are connected to each other.

Abstract

Provided is a wireless communication method in a wireless communication system for bidirectionally transmitting mobile entity control information using a time-derived channel that performs frequency hopping between a stationary wireless station and a mobile wireless station, wherein: the mobile wireless station synchronizes timing between the wireless stations by a preamble signal; in a plurality of stationary wireless stations that are close to each other and constitute a group, frequency hopping sequences are orthogonalized and the same preamble signal is used; and between different groups of stationary wireless stations, overlapping of frequency hopping sequences in some or all time-derived channels is tolerated, and different preamble signals are used.

Description

無線通信方法、無線通信システム及び無線通信装置Wireless communication method, wireless communication system, and wireless communication apparatus 参照による取り込みImport by reference
 本出願は、平成30年(2018年)6月11日に出願された日本出願である特願2018-110869の優先権を主張し、その内容を参照することにより、本出願に取り込む。 This application claims the priority of Japanese Patent Application No. 2018-110869, which was filed on June 11, 2018, and is incorporated herein by reference.
 移動体制御に用いる無線通信システムにおける無線通信方法に関する。 The present invention relates to a wireless communication method in a wireless communication system used for mobile control.
 近年、移動体の制御に無線通信を活用する動きがある。例えば、列車制御の分野ではETCS(Europian Train Control System)のLevel2以降や、CBTC(Communication Based Train Control)などが知られている。また、自動車の自動運転の分野では、V2X(Vehicle to Everything)などが知られている。移動体制御に用いる通信では、パケット誤り率、レイテンシ、遅延ジッタなどの低減が求められる。 In recent years, there is a movement to use wireless communication for mobile control. For example, in the field of train control, ETCS (European Train Control System) Level 2 or later, CBTC (Communication Based Train Control), and the like are known. In the field of automatic driving of automobiles, V2X (Vehicle to Everything) is known. In communication used for mobile control, reduction of packet error rate, latency, delay jitter, and the like is required.
 また、非特許文献1に開示されるように、無線列車制御システムであるATACS(Advanced Train Administration and Communication System)が提案されている。ATACSでは、列車上の移動無線局と地上の固定無線局との間で双方向通信を行い、列車の位置情報と列車の侵入許可地点を交換することで列車制御を実施する。 Further, as disclosed in Non-Patent Document 1, ATACS (Advanced Train Administration and Communication System), which is a radio train control system, has been proposed. In ATACS, two-way communication is performed between a mobile radio station on a train and a fixed radio station on the ground, and train control is performed by exchanging train position information and a train entry permission point.
 また、周波数ホッピングによって通信の信頼性を向上させる技術がある。例えば、特許文献1には、アンテナと、アンテナにそれぞれ接続される送受信部と、送受信部を制御し、送受信部へ同一の送信データを同時に入力し、周波数ホッピングの切替周期ごとに送受信部へ周波数チャネルの空き状態の確認処理の開始を指示する無線制御部と、を備え、送受信部は、通信相手と同期して一定時間ごとに周波数チャネルを切り替え、同一時刻では、送受信部ごとに異なる周波数を用いるよう制御するホッピング制御部、をそれぞれ備え、空き状態の確認処理の開始から所定の時間が経過するまでの間に、周波数チャネルが空き状態であると判断した場合に、当該周波数チャネルを用いて前記送信データを通信相手へ送信する無線通信装置が記載されている。 There is also a technology that improves communication reliability by frequency hopping. For example, Patent Literature 1 controls an antenna, a transmission / reception unit connected to the antenna, and a transmission / reception unit, inputs the same transmission data to the transmission / reception unit at the same time, and transmits the frequency to the transmission / reception unit at each frequency hopping switching period. A radio control unit that instructs the start of the channel availability check process, and the transmission / reception unit switches the frequency channel at regular intervals in synchronization with the communication partner, and at the same time, a different frequency is set for each transmission / reception unit. A hopping control unit that controls the frequency channel to be used, and when it is determined that the frequency channel is in an idle state until a predetermined time elapses after the start of the empty state confirmation process, the frequency channel is used. A wireless communication device that transmits the transmission data to a communication partner is described.
国際公開2014/045402号International Publication No. 2014/0445402
 特許文献1に記載された無線通信システムでは、固定無線局と移動無線局との間でタイミング同期を確立し、周波数ホッピングを適用することで通信の信頼性を向上しているが、固定無線局と移動無線局との間の具体的な同期方法は開示されていない。同期方法の具体例としては、無線LANなどでも使われているプリアンブル信号を用いた方法が知られているが、複数の固定無線局で同一のプリアンブル信号を使用すると、移動無線局がデータ通信を行う固定無線局とは別の固定無線局のプリアンブル信号に誤って同期し、データ信号を正しく伝送できない可能性がある。 In the wireless communication system described in Patent Document 1, timing synchronization is established between a fixed wireless station and a mobile wireless station, and the reliability of communication is improved by applying frequency hopping. A specific synchronization method between the mobile station and the mobile radio station is not disclosed. As a specific example of the synchronization method, a method using a preamble signal that is also used in a wireless LAN or the like is known. However, if the same preamble signal is used in a plurality of fixed wireless stations, the mobile wireless station performs data communication. There is a possibility that the data signal may not be transmitted correctly by erroneously synchronizing with a preamble signal of a fixed radio station different from the fixed radio station to be performed.
 本発明は、固定無線局と移動無線局との間で周波数ホッピングする時分割チャネルを用いて移動体制御情報を双方向伝送する無線通信システムにおいて、プリアンブル信号の誤検出による誤同期を低減する無線通信方法を提供することを目的とする。 The present invention relates to a radio communication system that bi-directionally transmits mobile control information using a time-division channel that performs frequency hopping between a fixed radio station and a mobile radio station, and that reduces false synchronization caused by erroneous detection of a preamble signal. An object is to provide a communication method.
 本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、固定無線局と移動無線局との間で周波数ホッピングする時分割チャネルを用いて移動体制御情報を双方向伝送する無線通信システムにおける無線通信方法であって、前記移動無線局は、プリアンブル信号によって、前記無線局間でタイミングを同期し、相互に近接し、グループを構成する複数の固定無線局では、周波数ホッピングシーケンスを直交させて、同一のプリアンブル信号を使用し、異なる前記グループの固定無線局間では、一部又は全ての時分割チャネルで周波数ホッピングシーケンスの重複を許容し、異なるプリアンブル信号を使用することを特徴とする。 A typical example of the invention disclosed in the present application is as follows. That is, a wireless communication method in a wireless communication system for bidirectionally transmitting mobile control information using a time division channel for frequency hopping between a fixed wireless station and a mobile wireless station, wherein the mobile wireless station transmits a preamble signal The plurality of fixed wireless stations that synchronize timing between the wireless stations and are close to each other and constitute a group use orthogonal frequency hopping sequences, use the same preamble signal, and use different fixed wireless stations of the group Between stations, frequency hopping sequences are allowed to overlap in some or all of the time division channels, and different preamble signals are used.
 本発明の一態様によれば、別の固定無線局のプリアンブルの誤検出による誤同期を低減できる。前述した以外の課題、構成及び効果は、以下の実施例の説明によって明らかにされる。 According to one aspect of the present invention, it is possible to reduce erroneous synchronization due to erroneous detection of the preamble of another fixed wireless station. Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.
本発明の実施例の無線通信システムの構成例を示す図である。It is a figure which shows the structural example of the radio | wireless communications system of the Example of this invention. 本実施例による周波数ホッピングマトリクスとプリアンブル信号の例を示す。An example of a frequency hopping matrix and a preamble signal according to the present embodiment is shown. 本実施例の時分割チャネルの構成例を示す図である。It is a figure which shows the structural example of the time division channel of a present Example. 本実施例のフレーム構成例を示す図である。It is a figure which shows the example of a frame structure of a present Example. 本実施例の報知用時分割チャネルで送信する情報要素の例を示す図である。It is a figure which shows the example of the information element transmitted with the time division channel for alerting | reporting of a present Example. 本実施例の初期アクセス用時分割チャネルで送信する情報要素の例を示す図である。It is a figure which shows the example of the information element transmitted with the time division channel for initial access of a present Example. 本実施例のデータ信号用時分割チャネルの情報要素の例を示す図である。It is a figure which shows the example of the information element of the time division channel for data signals of a present Example. 本実施例の固定無線局の構成例を示す図である。It is a figure which shows the structural example of the fixed radio station of a present Example. 本実施例の移動無線局の構成例を示す図である。It is a figure which shows the structural example of the mobile radio station of a present Example. 本実施例の固定無線局及び移動無線局の装置構成の例を示す図である。It is a figure which shows the example of the apparatus structure of the fixed radio station and mobile radio station of a present Example. 本実施例の2種類のプリアンブル系列を適用した時の時分割チャネルの例を示す図である。It is a figure which shows the example of the time division channel when the two types of preamble series of a present Example is applied.
 <実施例1>
 図1は、本発明の実施例の無線通信システムの構成例を示す図である。
<Example 1>
FIG. 1 is a diagram illustrating a configuration example of a wireless communication system according to an embodiment of the present invention.
 本実施例の無線通信システムは、複数の固定無線局13と、1又は複数の移動無線局23で構成される。 The wireless communication system according to the present embodiment includes a plurality of fixed wireless stations 13 and one or a plurality of mobile wireless stations 23.
 センター側移動体制御装置11は、移動体21周辺の観測情報が入力され、入力された観測情報に基づいて、移動体21の制御ターゲットを決定し、制御ターゲットを移動無線局23に送信する。 The center-side mobile body control device 11 receives observation information around the mobile body 21, determines a control target of the mobile body 21 based on the input observation information, and transmits the control target to the mobile radio station 23.
 観測情報から制御ターゲットを決定する方法は本発明の範囲外であるが、例えば、非特許文献1に記載されたATACS(Advanced Train Administration and Communication System)に関する動作を適用できる。なお、本明細書における移動体制御情報は、この観測情報及び制御ターゲットに関する情報である。 Although the method for determining the control target from the observation information is outside the scope of the present invention, for example, the operation related to ATACS (Advanced Train Administration and Communication System) described in Non-Patent Document 1 can be applied. In addition, the mobile body control information in this specification is information regarding the observation information and the control target.
 エッジ側移動体制御装置22は、センター側移動体制御装置11と移動体制御情報の双方向伝送を行う。移動体21周辺の観測情報を、センター側移動体制御装置11へ送信し、センター側移動体制御装置11から制御ターゲットが入力され、入力された制御ターゲット及び観測情報に従って移動体21の動作を自律的に制御する。 The edge side mobile body control device 22 performs bidirectional transmission of the mobile body control information with the center side mobile body control device 11. Observation information around the moving body 21 is transmitted to the center-side moving body control device 11, and a control target is input from the center-side moving body control device 11, and the operation of the moving body 21 is autonomously performed according to the input control target and observation information. Control.
 固定無線局13は、少なくとも一つのアンテナ14を有し、無線信号化された観測情報を受信し、制御ターゲットを無線信号化して送信する。 The fixed radio station 13 has at least one antenna 14, receives observation information converted into a radio signal, converts the control target into a radio signal, and transmits it.
 移動無線局23は、移動体21に搭載されており、少なくとも一つのアンテナ24を有し、無線信号化された制御ターゲットを受信し、観測情報を無線信号化して送信する。 The mobile radio station 23 is mounted on the mobile body 21, has at least one antenna 24, receives a control target converted into a radio signal, converts the observation information into a radio signal, and transmits it.
 センター側移動体制御装置11は、複数の固定無線局13とバックボーンネットワーク12で接続されている。ここで、本実施例の無線通信システムを無線式列車制御へ適用する場合、例えば、移動体21が列車であり、固定無線局13は列車が進行する経路に沿って設けられた無線基地局であり、移動無線局23は列車に取り付けられた車上無線局とみなしてもよい。また、センター側移動体制御装置11は、列車の制御情報を生成する地上側制御システムの一部であって、例えば、列車の制御情報の一つとして停止限界点情報を生成又は更に上位の演算装置から取得し固定無線局13へ伝送する機能や、固定無線局13を介して、後述する車上側制御システムから送信された位置情報を受信する装置とみなしてもよい。 The center-side mobile control device 11 is connected to a plurality of fixed wireless stations 13 via a backbone network 12. Here, when the radio communication system of the present embodiment is applied to radio train control, for example, the mobile body 21 is a train, and the fixed radio station 13 is a radio base station provided along a route along which the train travels. Yes, the mobile radio station 23 may be regarded as an on-board radio station attached to the train. Moreover, the center side mobile body control apparatus 11 is a part of the ground side control system which produces | generates the control information of a train, for example, produces | generates a stop limit point information as one of the control information of a train, or a higher-order calculation It may be regarded as a device that receives a position information transmitted from a vehicle upper side control system, which will be described later, via a function acquired from the device and transmitted to the fixed wireless station 13 or via the fixed wireless station 13.
 また、本実施例の無線通信システムを無線式列車制御へ適用する場合、エッジ側移動体制御装置22は、例えば車上側制御システムの一部とみなしてもよい。エッジ側移動体制御装置22は、例えば、地上子との通信手段、又は無線を利用した測距手段と接続され、これらによって取得された位置情報を、移動無線局23を介して固定無線局13へ送信する機能や、地上側制御システムから受信した停止限界点情報を車両側の上位制御装置へ渡す装置とみなしてもよい。なお、車上側制御システムの構成は任意に決めることができ、例えばエッジ側移動体制御装置22及び移動無線局23を一体の装置として構成してもよい。また、このような車上側制御システム及び前述する地上側制御システムによって構成されるシステムを列車制御システムとみなしてもよい。 In addition, when the wireless communication system of the present embodiment is applied to wireless train control, the edge-side moving body control device 22 may be regarded as a part of the vehicle upper side control system, for example. The edge-side moving body control device 22 is connected to, for example, a communication unit with a ground unit or a distance measuring unit using radio, and the position information acquired by these is transmitted to the fixed radio station 13 via the mobile radio station 23. May be regarded as a device that passes the stop limit information received from the control system on the vehicle side or the stop limit information received from the ground side control system. The configuration of the vehicle upper side control system can be arbitrarily determined. For example, the edge side mobile body control device 22 and the mobile radio station 23 may be configured as an integrated device. Moreover, you may consider that the system comprised by such a vehicle upper side control system and the ground side control system mentioned above is a train control system.
 図2は、本実施例による周波数ホッピングマトリクスとプリアンブル信号の例を示す。 FIG. 2 shows an example of a frequency hopping matrix and a preamble signal according to this embodiment.
 図2(A)は、周波数ホッピングマトリクスの例を示す。 FIG. 2A shows an example of a frequency hopping matrix.
 周波数ホッピングマトリクスの縦軸は、システムが使用可能な周波数帯域を分割した周波数サブチャネルであり、本実施例では16個の周波数サブチャネルに分割されている。各周波数サブチャネルには番号(FDC No.)が割り振られている。横軸は、時分割チャネルであり、各時分割チャネルには番号(TDC No.)を割り振られている。本実施例では、16個の時分割チャネルの周期で同じパタンを繰り返す。 The vertical axis of the frequency hopping matrix is a frequency subchannel obtained by dividing a frequency band that can be used by the system, and is divided into 16 frequency subchannels in this embodiment. Each frequency subchannel is assigned a number (FDC No.). The horizontal axis represents time division channels, and each time division channel is assigned a number (TDC No.). In the present embodiment, the same pattern is repeated with a period of 16 time division channels.
 周波数ホッピングマトリクスの各マス目には0から15の数字が描かれている。この数字は、固定無線局(FRS)の識別子の下位4bitsを表している。たとえば、着色された下位4bitsが0の割り当てに注目すると、先頭の時分割チャネルでは周波数サブチャネル#0が割り当てられ、時分割チャネルを一つ進めるごとに周波数サブチャネル番号を3ずつ加算し、加算結果が16以上ならば16減算した周波数サブチャネル番号とする。時分割チャネルの通し番号が16に達すると0に折り返す。 Numerals from 0 to 15 are drawn on each square of the frequency hopping matrix. This number represents the lower 4 bits of the identifier of the fixed radio station (FRS). For example, if attention is paid to the allocation of 0 in the colored lower 4 bits, the first time division channel is assigned frequency subchannel # 0, and the frequency subchannel number is incremented by 3 each time the time division channel is advanced by one. If the result is 16 or more, the frequency subchannel number is subtracted by 16. When the serial number of the time division channel reaches 16, it loops back to 0.
 このような、各固定無線局に関する時分割チャネル毎の周波数サブチャネル番号の連なりが周波数ホッピングシーケンスである。図2に示す例では、16時分割チャネル毎に左側へ折り返すため、周波数ホッピングシーケンスの周期は16である。 Such a series of frequency subchannel numbers for each time division channel for each fixed radio station is a frequency hopping sequence. In the example shown in FIG. 2, the frequency hopping sequence has a period of 16 because it folds back to the left every 16 time division channels.
 各固定無線局13が各時分割チャネルで一つの周波数サブチャネルを必ず使用する制約条件のもと、相互に直交する周波数ホッピングシーケンスは周波数サブチャネルの数だけ生成できる。 Under the constraint that each fixed radio station 13 always uses one frequency subchannel in each time division channel, frequency hopping sequences orthogonal to each other can be generated by the number of frequency subchannels.
 この制約条件を満たす場合、任意の周波数ホッピングシーケンスに対して本発明の効果が得られる。但し、固定無線局13と移動無線局23が、固定無線局IDの下位ビットをインデックスとして、同一の周波数ホッピングシーケンスを再生できることが、本発明の効果を得るために必要である。 When this constraint condition is satisfied, the effect of the present invention can be obtained for any frequency hopping sequence. However, it is necessary for the fixed radio station 13 and the mobile radio station 23 to reproduce the same frequency hopping sequence using the lower bits of the fixed radio station ID as an index.
 この方法の一つは、固定無線局13と移動無線局23のそれぞれで固定無線局IDの下位ビットを入力すると、周期分の周波数ホッピングシーケンスを取得可能なテーブルを保持する方法である。このテーブルは出荷時に固定無線局13及び移動無線局23へ書き込んでおき、各無線局の起動時に初期値を設定する。 One of the methods is a method of holding a table capable of acquiring a frequency hopping sequence for a period when a lower bit of the fixed wireless station ID is input to each of the fixed wireless station 13 and the mobile wireless station 23. This table is written in the fixed radio station 13 and the mobile radio station 23 at the time of shipment, and an initial value is set when each radio station is activated.
 他の方法は、周波数ホッピングシーケンスの生成方法を数式化し、時分割チャネルの通し番号と固定無線局13の識別子の下位ビットを説明変数として数式に入力することで、逐次時分割チャネルごとの周波数サブチャネル番号を算出する方法である。図2に示す周波数ホッピングシーケンスは、以下の数式1で生成できる。 Another method formulates a method of generating a frequency hopping sequence, and inputs the serial number of the time division channel and the low-order bits of the identifier of the fixed radio station 13 as explanatory variables into the formula, so that the frequency subchannel for each successive time division channel is obtained. This is a method for calculating a number. The frequency hopping sequence shown in FIG.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 但し、TDCは時分割チャネルの通し番号であり、frsidlsbは固定無線局識別子の下位ビット(図2では4bits)であり、NTDCは周波数ホッピングシーケンスの周期であり、マトリックスの横軸の長さに相当し(図2では16)、stepは時分割チャネルが1進むごとに周波数サブチャネル番号に加算する数(図2では3)であり、NFDCは周波数サブチャネル数の総数(図2では16)であり、FDCiniは周波数ホッピングシーケンスの周波数サブチャネル初期値であり、frsidlsb毎に定義される(図2ではFDCini(frsidlsb)=frsidlsb)、moduloは除算の余りを求める演算である。 However, TDC is the serial number of the time division channel, frsidlsb is the low-order bit (4 bits in FIG. 2) of the fixed radio station identifier, NTDC is the frequency hopping sequence period, and corresponds to the length of the horizontal axis of the matrix. (16 in FIG. 2), step is the number (3 in FIG. 2) to be added to the frequency subchannel number every time the time division channel advances, and NFDC is the total number of frequency subchannels (16 in FIG. 2). , FDCini is an initial value of the frequency subchannel of the frequency hopping sequence, and is defined for each frsidlsb (in FIG. 2, FDCini (frsidlsb) = frsidlsb), and modulo is an operation for obtaining a remainder of division.
 前述した式は、固定無線局識別子の下位ビットfrsidlsbに対する、時分割チャネル通し番号TDC毎の周波数サブチャネル番号FDC(TDC,frsidlsb)を並べた周波数ホッピングシーケンスを生成する式となる。FDCini(frsidlsb)を初期値とする漸化式の形式でもよい。 The above-described equation is an equation for generating a frequency hopping sequence in which the frequency subchannel numbers FDC (TDC, frsidlsb) for each time division channel serial number TDC are arranged with respect to the lower bits frsidlsb of the fixed radio station identifier. It may be in the form of a recurrence formula with FDCini (frsidlsb) as an initial value.
 以上の手順によって、固定無線局識別子の下位ビットに対する周波数ホッピングシーケンスを生成できる。固定無線局識別子の下位ビットの値が異なる固定無線局13の間では、同一時分割チャネルで同一周波数サブチャネルを使用しない、すなわち全ての時分割チャネルにおいて周波数ホッピングシーケンスの直交性が保たれる。本発明の効果を得るためには、固定無線局識別子の下位ビットが同一の固定無線局13同士を、可能な限り離れた位置に配置することが望ましい。 By the above procedure, a frequency hopping sequence for the lower bits of the fixed wireless station identifier can be generated. Between fixed wireless stations 13 having different values of lower bits of the fixed wireless station identifier, the same frequency subchannel is not used in the same time division channel, that is, the orthogonality of the frequency hopping sequence is maintained in all the time division channels. In order to obtain the effect of the present invention, it is desirable to arrange the fixed radio stations 13 having the same low-order bit of the fixed radio station identifier as far apart as possible.
 図2(B)は、相互相関が低いプリアンブル信号の例を示す。 FIG. 2B shows an example of a preamble signal with low cross-correlation.
 プリアンブル信号は、ある一定の時間長(Mサンプル)を有する信号であり、固定無線局識別子の上位ビット(図2の場合は上位1ビット)をインデックスとして異なるプリアンブル信号を生成する。 The preamble signal is a signal having a certain fixed time length (M samples), and different preamble signals are generated using the upper bits (upper one bit in the case of FIG. 2) of the fixed radio station identifier as an index.
 図2に示す例では周波数が異なる正弦波をプリアンブルとしている。基本周波数の正弦波は、固定無線局識別子の上位ビット=0の固定無線局13、及びこの固定無線局と通信する移動無線局23が送信するプリアンブルで、Mサンプルで位相が2π回転する正弦波である。一方、2倍の周波数の正弦波は固定無線局識別子の上位ビット=1の固定無線局13、及びこの固定無線局13と通信する移動無線局23が送信するプリアンブルで、Mサンプルで位相が4π回転する正弦波である。 In the example shown in FIG. 2, sine waves having different frequencies are used as preambles. The sine wave of the fundamental frequency is a preamble transmitted by the fixed radio station 13 having the higher-order bit = 0 of the fixed radio station identifier and the mobile radio station 23 communicating with the fixed radio station, and is a sine wave whose phase is rotated by 2π with M samples. It is. On the other hand, a sine wave of twice the frequency is a preamble transmitted by the fixed radio station 13 with the higher-order bit = 1 of the fixed radio station identifier and the mobile radio station 23 communicating with the fixed radio station 13, and the phase is 4π with M samples. A rotating sine wave.
 基本周波数の2π周期の範囲で、異なる倍周波数の信号同士の積を積分すると0となり、同一周波数の信号同士の積を積分すると1となる。これはフーリエ変換の性質である。つまり、周波数が異なる正弦波をプリアンブルとして用いると、理論上は相互相関が0のプリアンブルを複数準備することができる。 Integral product of signals of different double frequency within the range of 2π period of fundamental frequency is 0, and 1 is integrated of products of signals of the same frequency. This is a property of Fourier transform. That is, when sine waves having different frequencies are used as the preamble, a plurality of preambles having zero cross correlation can be prepared theoretically.
 固定無線局識別子の上位ビットfrsidmsbをインデックスとした、正弦波を使用したプリアンブル系列は以下の数式2で表される。tは0からM-1の値をとる時間サンプルカウンタである。 The preamble sequence using a sine wave with the higher bit frsidmsb of the fixed radio station identifier as an index is expressed by the following Equation 2. t is a time sample counter which takes values from 0 to M-1.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 本実施例において、プリアンブル系列同士は互いに直交していることが望ましいが、同じプリアンブルサンプル長で考えると、互いに疑似直交するプリアンブル系列と比較すると、プリアンブル系列の数が少なくなる。 In this embodiment, it is desirable that the preamble sequences are orthogonal to each other. However, considering the same preamble sample length, the number of preamble sequences is reduced as compared with the preamble sequences that are quasi-orthogonal to each other.
 どのようなプリアンブル系列を選択するかはシステムに依存するが、多くのプリアンブル系列を必要とする(例えば、固定無線局13の数が多い)システムの場合、Gold系列のような疑似直交のプリアンブル系列を用いる方が適切な場合もある。 Which preamble sequence is selected depends on the system, but in the case of a system that requires many preamble sequences (for example, a large number of fixed radio stations 13), a pseudo-orthogonal preamble sequence such as a Gold sequence It may be more appropriate to use.
 以上に説明したとおり、固定無線局識別子に基づいて、上位ビットからプリアンブル系列、下位ビットから周波数ホッピングシーケンスを生成できる。識別子の上位ビットが同一の固定無線局13でグループを構成すると、該グループ内では周波数ホッピングシーケンスを直交させて同一のプリアンブル信号が使用され、識別子の上位ビットが異なる固定無線局13は別グループとなる。一方、識別子の下位ビットが同一の固定無線局13でグループを構成すると、該グループ内ではプリアンブル信号を直交、または疑似直交させて同一の周波数ホッピングシーケンスが使用され、識別子の下位ビットが異なる固定無線局13は別グループとなる。 As described above, it is possible to generate a preamble sequence from the upper bits and a frequency hopping sequence from the lower bits based on the fixed radio station identifier. When a group of fixed wireless stations 13 having the same high-order bit of the identifier is formed, the same preamble signal is used by orthogonalizing the frequency hopping sequence in the group. Become. On the other hand, when a group of fixed wireless stations 13 having the same low-order identifier bits is used, the same frequency hopping sequence is used by making the preamble signals orthogonal or pseudo-orthogonal within the group, and the fixed wireless stations having different low-order identifier bits. The station 13 is a separate group.
 なお、本明細書では固定無線局識別子からプリアンブル系列を指定するインデックス、および周波数ホッピングシーケンスを指定するインデックスを派生させているが、両方のインデックスを固定無線局識別子とは別の名前のパラメータとして扱い、そのパラメータの組み合わせを本明細書の固定無線局識別子と同等のものとみなすこともできる。また、数式1や数式2を計算するためのパラメータの組み合わせを、本明細書の固定無線局識別子と同等のものとみなすこともできる。つまり、固定無線局間で異なるパラメータの組み合わせは、固定無線局識別子の変形とみなすことができる。 In this specification, an index for specifying a preamble sequence and an index for specifying a frequency hopping sequence are derived from the fixed radio station identifier. However, both indexes are treated as parameters with names different from the fixed radio station identifier. The combination of parameters can be regarded as equivalent to the fixed radio station identifier in the present specification. Also, the combination of parameters for calculating Equation 1 and Equation 2 can be regarded as equivalent to the fixed wireless station identifier in this specification. That is, a combination of parameters different between fixed wireless stations can be regarded as a modification of the fixed wireless station identifier.
 図3は、本実施例の時分割チャネルの構成例を示す図である。 FIG. 3 is a diagram illustrating a configuration example of a time division channel according to the present embodiment.
 図2(A)に示すように、固定無線局識別子の下位4bitsが0である固定無線局13、及び当該固定無線局13と通信を行う移動無線局23は、着色された時分割チャネル及び周波数サブチャネルにて無線信号を送信する。 As shown in FIG. 2A, the fixed radio station 13 whose lower 4 bits of the fixed radio station identifier are 0, and the mobile radio station 23 communicating with the fixed radio station 13 are colored time division channels and frequencies. A radio signal is transmitted on the subchannel.
 但し、着色されたサブチャネルで無線信号を送信可能なのは、固定無線局グループ内において固定無線局13又は移動無線局23のいずれかであるため、通信方向を時分割チャネルごとに予め規定するか、固定無線局13と移動無線局23との間で通信方向を動的に制御する必要がある。 However, since it is either the fixed radio station 13 or the mobile radio station 23 in the fixed radio station group that can transmit the radio signal on the colored subchannel, the communication direction is specified in advance for each time division channel, It is necessary to dynamically control the communication direction between the fixed radio station 13 and the mobile radio station 23.
 各時分割チャネルで固定無線局13又は移動無線局23のどちらが無線信号を送信するとしても、時分割チャネル内の構成は同じの形式とする。つまり、時分割チャネルはプリアンブル系列と、移動体制御に関わる情報などを無線信号化したデータ信号と、様々な要因で発生する局間の時間ずれを吸収するためのガードタイム(無線信号は無送信)が時間多重されて構成される。プリアンブル系列の長さは常時固定であるが、データ信号とガードタイムの割合は必要に応じて動的に変更してもよい。 Whether the fixed radio station 13 or the mobile radio station 23 transmits a radio signal in each time division channel, the configuration in the time division channel is the same. In other words, the time division channel is a preamble sequence, a data signal obtained by converting information related to mobile control into a radio signal, and a guard time for absorbing the time lag between stations caused by various factors (the radio signal is not transmitted). ) Are time multiplexed. The length of the preamble sequence is always fixed, but the ratio between the data signal and the guard time may be dynamically changed as necessary.
 プリアンブル系列としては、固定無線局識別子に基づいて選択した系列をそのまま配置する。データ信号は、たとえばOFDM(Orthogonal Freqency Domain Multiplex)の2次変調方式で時間領域信号として生成する。サブキャリアごとの変調シンボルは、移動体制御情報のビット系列に対し、CRC(Cyclic Redundancy Code)の付与、畳み込み符号化、インターリーブ、リピティションなどの信号処理で生成した信号処理後のビット系列に基づいて、QPSK(Quadrature Phase Shift Keying)などの一次変調方式で生成する。 As the preamble sequence, the sequence selected based on the fixed radio station identifier is arranged as it is. The data signal is generated as a time-domain signal using, for example, a secondary modulation scheme of OFDM (Orthogonal Frequency Domain Multiplex). The modulation symbol for each subcarrier is based on a bit sequence after signal processing generated by signal processing such as CRC (Cyclic Redundancy Code) addition, convolutional coding, interleaving, and repetition for the bit sequence of mobile control information. Then, it is generated by a primary modulation method such as QPSK (Quadrature Phase Shift Keying).
 データ信号は任意の変調方式を用いて無線信号化しても、本発明の効果は変わらないが、固定無線局13と移動無線局23との間でプロトコルを予め規定しておくか、送信側で適用した一次変調方式、符号化率、及び情報ビット系列長をデータ信号の先頭部分で別途送信するなどの方法で、無線局間で方式を統一する必要がある。 Even if the data signal is converted into a radio signal using an arbitrary modulation method, the effect of the present invention does not change. However, a protocol is prescribed in advance between the fixed radio station 13 and the mobile radio station 23, or on the transmission side. It is necessary to unify the schemes between radio stations by separately transmitting the applied primary modulation scheme, coding rate, and information bit sequence length at the beginning of the data signal.
 図4は、本実施例のフレーム構成例を示す図である。 FIG. 4 is a diagram showing a frame configuration example of the present embodiment.
 図4に示すフレーム構成例は、図3に示す時分割チャネルに対応したフレーム番号、フレーム内時分割チャネル番号、及びフレーム内時分割チャネル番号ごとの用途を示す。 The frame configuration example shown in FIG. 4 shows the frame number corresponding to the time division channel shown in FIG. 3, the intra-frame time division channel number, and the use for each intra-frame time division channel number.
 図4に示す例では、フレームは10個のフレーム内時分割チャネルで構成される。本実施例では、周波数ホッピングのシーケンスの周期とフレーム長の一致は前提としておらず、両者は一致していなくてもよい。 In the example shown in FIG. 4, a frame is composed of 10 intra-frame time division channels. In the present embodiment, it is not assumed that the frequency hopping sequence period and the frame length coincide with each other, and the two do not need to coincide with each other.
 フレーム内の時分割チャネルの数はシステムの必要に応じて変えてもよい。また、フレーム先頭毎に周波数ホッピングシーケンスの先頭に戻って周波数サブチャネルを選択してもよい。さらに、フレーム番号に連動する形でFDCini(frsidlsb)を変更してもよい。このように変更しても、グループ内の固定無線局13の間の周波数ホッピングシーケンスの直交性は保たれるため、本発明効果を得ることができる。 The number of time division channels in a frame may be changed according to the system needs. Alternatively, the frequency subchannel may be selected by returning to the head of the frequency hopping sequence for each frame head. Further, FDCini (frsidlsb) may be changed in conjunction with the frame number. Even if it changes in this way, since the orthogonality of the frequency hopping sequence between the fixed radio stations 13 in the group is maintained, the effect of the present invention can be obtained.
 図2で示す時分割チャネルの通し番号TDCと、フレーム番号frame及びフレーム内時分割チャネル番号TDClocalとの関係は以下の数式3のとおりである。 The relationship between the serial number TDC of the time division channel shown in FIG. 2, the frame number frame, and the intra-frame time division channel number TDClocal is as shown in Equation 3 below.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 NTDClocalは、フレーム内の時分割チャネル番号の数(図4では10)である。フレーム番号は、必要に応じて有限の範囲で折り返す。例えば、フレーム番号が256に達したら0に折り返す処理を行う。これに伴い、時分割チャネルの通し番号も有限範囲で折り返す。 NTDClocal is the number of time division channel numbers in the frame (10 in FIG. 4). The frame number is folded back within a finite range as necessary. For example, when the frame number reaches 256, a process of turning back to 0 is performed. Along with this, the serial number of the time division channel is also returned within a finite range.
 フレーム番号とフレーム内時分割チャネルの数がわかれば、固定無線局13及び移動無線局23は、フレーム内の全ての時分割チャネルに関して時分割チャネルの通し番号が分かり、当該固定無線局13に関する周波数ホッピングシーケンスを参照することによって、各時分割チャネルにおいて使用可能な周波数サブチャネルの番号が分かる。 If the frame number and the number of time division channels in the frame are known, the fixed radio station 13 and the mobile radio station 23 know the serial numbers of the time division channels for all the time division channels in the frame, and the frequency hopping for the fixed radio station 13 By referring to the sequence, the number of frequency subchannels that can be used in each time division channel is known.
 フレーム内時分割チャネル毎の用途は、原則として全フレーム同じルールを適用する。運用中に適用ルールを変更する場合、保守端末などシステム外の装置から固定無線局13を操作して用途変更し、報知用の時分割チャネルで移動無線局23へ報知する。これはあくまで原則であるため、システムとして必要であれば固定無線局13の間で時分割チャネル毎の用途が完全に一致しなくてもよい。しかし、後述する同期処理を成立させるため、初期状態で報知用に指定される時分割チャネルの用途は変更しない。 As a general rule, the same rules apply to all frames in time division channels. When the application rule is changed during operation, the usage is changed by operating the fixed radio station 13 from a device outside the system such as a maintenance terminal, and the mobile radio station 23 is notified through a time division channel for notification. Since this is only a principle, the applications for each time division channel do not have to completely match between the fixed wireless stations 13 if necessary as a system. However, in order to establish a synchronization process to be described later, the use of the time division channel designated for notification in the initial state is not changed.
 フレーム内時分割チャネル毎の用途の記号を説明する。Bは報知用時分割チャネル、Aは初期アクセス用時分割チャネル、Cはデータ信号通信用の時分割チャネルである。DLは固定無線局13から移動無線局23へ伝送するダウンリンク方向、ULは移動無線局23から固定無線局13へ伝送するアップリンク方向を示す。 Explains the usage symbols for each time division channel in the frame. B is a time division channel for broadcasting, A is a time division channel for initial access, and C is a time division channel for data signal communication. DL indicates a downlink direction for transmission from the fixed radio station 13 to the mobile radio station 23, and UL indicates an uplink direction for transmission from the mobile radio station 23 to the fixed radio station 13.
 図5は、本実施例の報知用時分割チャネルで送信する情報要素の例を示す図である。 FIG. 5 is a diagram illustrating an example of information elements transmitted on the broadcast time division channel of the present embodiment.
 報知用時分割チャネルは、送信元固定無線局13の識別子(FRS ID)、フレーム番号(Frame No.)、及び周波数ホッピングシーケンスを計算式から生成する情報として、時分割チャネルが1個進む毎にシフトする周波数サブチャネルの数(step)と、フレーム番号が0かつフレーム内時分割チャネル番号が0の時の周波数サブチャネル番号(FDCini)で構成される。 The broadcast time division channel is an information for generating an identifier (FRS ID), a frame number (Frame No.), and a frequency hopping sequence of the transmission source fixed radio station 13 from the calculation formula, and every time division channel advances. The number of frequency subchannels to be shifted (step) and the frequency subchannel number (FDCini) when the frame number is 0 and the intra-frame time division channel number is 0 are configured.
 stepとFDC iniは、図示した形式で報知用時分割チャネルで伝送されるが、固定無線局13と移動無線局23との間でこれらの値が予め明示的に定められていたり、図2の周波数ホッピングマトリクスを表す情報を固定無線局13と移動無線局23とが共有している(例えば、起動時に初期設定として固定無線局13及び移動無線局23へ書き込まれる)場合、step及びFDC iniは報知用時分割チャネルで送信しなくてもよい。 Step and FDC ini are transmitted in the time-sharing channel for notification in the form shown in the figure, but these values are explicitly determined in advance between the fixed radio station 13 and the mobile radio station 23, as shown in FIG. When the information representing the frequency hopping matrix is shared between the fixed radio station 13 and the mobile radio station 23 (for example, written to the fixed radio station 13 and the mobile radio station 23 as an initial setting at the time of activation), step and FDC ini It is not necessary to transmit on the broadcast time division channel.
 図4の説明で述べたように、フレーム内時分割チャネルの用途情報を動的に変更する場合、図5に示す報知用時分割チャネルの情報要素に用途情報を追加し、毎フレームの用途情報の最新情報を固定無線局13が報知する。 As described in the explanation of FIG. 4, when the usage information of the intra-frame time division channel is dynamically changed, the usage information is added to the information element of the broadcast time division channel shown in FIG. The fixed radio station 13 broadcasts the latest information.
 報知用時分割チャネルで送信される情報要素は、固定無線局13で無線信号化された後、当該固定無線局13の識別子に対応するプリアンブル系列とガードタイムとを多重化して、固定無線局13から送信される。 The information element transmitted on the broadcast time division channel is converted into a radio signal by the fixed radio station 13, and then the preamble sequence corresponding to the identifier of the fixed radio station 13 and the guard time are multiplexed to obtain the fixed radio station 13 Sent from
 図6は、本実施例の初期アクセス用時分割チャネルで送信する情報要素の例を示す図である。 FIG. 6 is a diagram illustrating an example of information elements transmitted on the time division channel for initial access according to the present embodiment.
 初期アクセス用時分割チャネルは、システム内で移動無線局23を一意に特定する識別子(MRS ID)と、初期アクセス用時分割チャネルの送信先である固定無線局13の識別子(FRS ID)で構成される。 The time division channel for initial access is composed of an identifier (MRS ID) that uniquely identifies the mobile radio station 23 in the system and an identifier (FRS ID) of the fixed radio station 13 that is the transmission destination of the time division channel for initial access. Is done.
 初期アクセス用時分割チャネルで送信する情報要素は、移動無線局23で無線信号化された後、FRS IDが示す固定無線局13の識別子に基づくプリアンブル系列とガードタイムとを多重化して、移動無線局23から送信する。 The information element transmitted on the time division channel for initial access is converted into a radio signal by the mobile radio station 23, and then the preamble sequence based on the identifier of the fixed radio station 13 indicated by the FRS ID and the guard time are multiplexed to obtain the mobile radio Transmit from station 23.
 移動無線局23が、初期アクセス用時分割チャネルの送信先である固定無線局13を選択する方法は、固定無線局13から送信されるプリアンブル系列の受信電力を固定無線局13の間で比較し、受信電力が最も大きい固定無線局13を選択する方法がある。 The method in which the mobile radio station 23 selects the fixed radio station 13 which is the transmission destination of the time division channel for initial access is to compare the received power of the preamble sequence transmitted from the fixed radio station 13 between the fixed radio stations 13. There is a method of selecting the fixed radio station 13 having the largest received power.
 なお、プリアンブル系列は時分割チャネル内で送信すべきデータ信号がない場合に送信してもよいが、本発明においては、プリアンブルの誤検出を回避する観点から、必要以上に送信しないことが望ましい。一方、報知用時分割チャネルは、必ず毎フレームで送信されるため、報知用時分割チャネル内のプリアンブル系列を用いて、移動無線局23が固定無線局13を選択するとよい。 The preamble sequence may be transmitted when there is no data signal to be transmitted in the time division channel. However, in the present invention, it is desirable not to transmit the preamble sequence more than necessary from the viewpoint of avoiding erroneous detection of the preamble. On the other hand, since the broadcast time division channel is always transmitted in every frame, the mobile radio station 23 may select the fixed radio station 13 using the preamble sequence in the broadcast time division channel.
 移動無線局23によるフレーム同期については後述するが、フレーム同期が確立した後の固定無線局13の選択方法を説明する。また、ここでは固定無線局13の間の同期も確立していることを前提とする。 Although frame synchronization by the mobile radio station 23 will be described later, a method for selecting the fixed radio station 13 after the frame synchronization is established will be described. Here, it is assumed that synchronization between the fixed radio stations 13 is also established.
 移動無線局23は、フレーム同期済みのため、報知用時分割チャネルのプリアンブル系列が受信されるタイミングを把握しており、このタイミングを起点にプリアンブル系列長だけ、16周波数サブチャネル分の広帯域信号の受信波形を一時的に記録する。移動無線局23は、記録した受信波形に対し、システム内で想定している固定無線局グループ全てのプリアンブルとの相互相関を演算し、相互相関が最も大きい固定無線局グループを選択する。固定無線局グループの選択後、受信波形の相互相関値が最も大きい周波数サブチャネルを選択する。固定無線局グループ及び相互相関値の最も大きい周波数サブチャネルが決定すると、報知用時分割チャネルの内容から固定無線局識別子を決定できる。 Since the mobile radio station 23 has already synchronized the frame, the mobile radio station 23 knows the timing at which the preamble sequence of the broadcast time division channel is received. Starting from this timing, the wideband signal corresponding to 16 frequency subchannels by the preamble sequence length is obtained. Record the received waveform temporarily. The mobile radio station 23 calculates the cross-correlation with the preambles of all the fixed radio station groups assumed in the system for the recorded received waveform, and selects the fixed radio station group having the largest cross-correlation. After selecting the fixed radio station group, the frequency subchannel having the largest cross-correlation value of the received waveform is selected. When the fixed wireless station group and the frequency subchannel having the largest cross-correlation value are determined, the fixed wireless station identifier can be determined from the content of the broadcast time division channel.
 ここで説明した固定無線局選択法は一例である。移動無線局23にて、受信した報知用時分割チャネルのプリアンブル系列の相互相関値に基づいて、システム内で利用が想定される固定無線局グループ識別子と、グループ内識別子又は固定無線局識別子とを決定できれば、どのような方法でもよい。 The fixed radio station selection method described here is an example. Based on the cross-correlation value of the preamble sequence of the broadcast time division channel received by the mobile radio station 23, a fixed radio station group identifier assumed to be used in the system and an intra-group identifier or a fixed radio station identifier Any method can be used as long as it can be determined.
 図7は、本実施例のデータ信号用時分割チャネルの情報要素の例を示す図である。 FIG. 7 is a diagram illustrating an example of information elements of the data signal time division channel according to the present embodiment.
 図7(A)は、データ信号用時分割チャネル割り当て済みの移動無線局23と固定無線局13との間で伝送される情報要素である。情報要素は、少なくともデータ信号の伝送に関わる固定無線局13の識別子(FRS ID)と、移動無線局23の識別子(MRS ID)と、データ信号本体となる情報ビット系列(Data Body)で構成される。情報ビット系列は、移動体制御に関わる情報を含む。情報ビット系列長が可変の場合は、情報ビット系列の長さも併せて付与する。 FIG. 7A shows information elements transmitted between the mobile radio station 23 to which the data signal time-division channel has been assigned and the fixed radio station 13. The information element is composed of at least an identifier (FRS ID) of the fixed radio station 13 related to the transmission of the data signal, an identifier (MRS ID) of the mobile radio station 23, and an information bit sequence (Data Body) serving as the data signal body. The The information bit sequence includes information related to mobile control. When the information bit sequence length is variable, the length of the information bit sequence is also given.
 図7(B)は、初期アクセス用時分割チャネルで図6の情報要素を送信した移動無線局23に対し、固定無線局13が送信する応答の情報要素である。図7(B)に示す情報要素は、基本的な形式は図7(A)と同様であるが、データ信号本体に代えてアップリンク通信とダウンリンク通信とで当該移動無線局23に割り当てられたフレーム内時分割チャネル番号で構成される。 FIG. 7B is an information element of a response transmitted by the fixed radio station 13 to the mobile radio station 23 that has transmitted the information element of FIG. 6 using the time division channel for initial access. The basic format of the information elements shown in FIG. 7B is the same as that in FIG. 7A, but is assigned to the mobile radio station 23 in uplink communication and downlink communication instead of the data signal body. It consists of a time division channel number in a frame.
 移動無線局23に対する時分割チャネル割り当てに失敗した場合、移動無線局23に対して何も応答は返らない。なお、時分割チャネル割り当てに失敗する例としては、当該移動無線局23に割り当て可能なフレーム内時分割チャネルが、他の移動無線局23に割り当てられており残っていない場合である。このため、固定無線局13には通信失敗が一定時間継続する、すなわち情報ビット系列の誤りが継続して発生する、既に当該固定無線局13に時分割チャネルが割り当て済みである移動無線局23に関して、割り当て済のフレーム内時分割チャネルを開放することが望ましい。 If the time division channel allocation to the mobile radio station 23 fails, no response is returned to the mobile radio station 23. An example in which time division channel allocation fails is when the intra-frame time division channel that can be allocated to the mobile radio station 23 is allocated to another mobile radio station 23 and does not remain. For this reason, the communication failure in the fixed radio station 13 continues for a certain time, that is, the information bit sequence error continues, and the mobile radio station 23 to which the time division channel has already been assigned to the fixed radio station 13 It is desirable to release the allocated intra-frame time division channel.
 当該移動無線局23に対して時分割チャネル割り当てに成功した場合、割り当てたダウンリンクのデータ信号用時分割チャネルで当該移動無線局23に図7(B)の情報要素を伝送する。この時点で移動無線局23は、どの時分割チャネルが割り当てられているか不明のため、下りのデータ信号用時分割チャネルを一通り復号し、自身の移動無線局識別子が含まれている情報要素を確認することで、時分割チャネル割り当ての情報を取得することができる。 When the time division channel assignment to the mobile radio station 23 is successful, the information element shown in FIG. 7B is transmitted to the mobile radio station 23 through the assigned downlink data signal time division channel. At this point, since the mobile radio station 23 is not sure which time-division channel is assigned, the mobile radio station 23 decodes the time-division channel for the downlink data signal through the information element including its own mobile radio station identifier. By checking, it is possible to acquire time division channel allocation information.
 図8は、本実施例の固定無線局13の構成例を示す図である。 FIG. 8 is a diagram illustrating a configuration example of the fixed radio station 13 according to the present embodiment.
 ネットワークインターフェース部101は、バックボーンネットワーク12を介してセンター側移動体制御装置11と固定無線局13との間の双方向通信を実現する。双方向通信では、例えばIPパケットを用いることができるが、固定無線局13と上記各装置間との間でインターフェースを定義すればシステム独自の通信プロトコルを用いてもよい。 The network interface unit 101 realizes bidirectional communication between the center-side mobile control device 11 and the fixed wireless station 13 via the backbone network 12. In bidirectional communication, for example, an IP packet can be used. However, if an interface is defined between the fixed wireless station 13 and each of the above devices, a communication protocol unique to the system may be used.
 下り伝送バッファ102は、固定無線局13と無線通信を行う移動無線局単位で下りの移動体制御情報を一時的に格納する。下り伝送バッファ102は、センター側移動体制御装置11から移動無線局23へ移動体制御情報を送信するにあたり、無線への送信タイミングとなるまで移動体制御情報を待たせるタイミング調整機能と、無線での送信頻度(フレーム毎)よりセンター側移動体制御装置11から移動体制御情報が入力される頻度が少ない場合に、同一の移動体制御情報を無線で再度送信するための情報の一時的な記憶機能を有する。 The downlink transmission buffer 102 temporarily stores downlink mobile control information for each mobile radio station that performs radio communication with the fixed radio station 13. The downlink transmission buffer 102 wirelessly transmits the mobile control information from the center-side mobile control device 11 to the mobile wireless station 23, and has a timing adjustment function that waits for the mobile control information until the wireless transmission timing is reached. Temporary storage of information for wirelessly transmitting the same mobile control information again when the mobile control information is input from the center side mobile control device 11 less than the transmission frequency (for each frame). It has a function.
 時分割チャネル制御部103は、フレーム単位での制御動作を行う。時分割チャネル制御部103は、無線デジタル信号送信処理部104及び無線デジタル信号受信処理部107に対して、図4のフレーム内時分割チャネルの用途情報を参照してフレーム内の各時分割チャネルの送受信を制御する機能と、周波数ホッピングシーケンスに従って各時分割チャネルで使用する周波数サブチャネル番号を指定する機能と、固定無線局識別子に基づいて使用するプリアンブルの系列を指定する機能と、1フレーム分の処理が完了するとフレーム番号を更新する機能と、フレーム番号や固定無線局識別子を含めた報知用時分割チャネルの情報要素を管理し、フレーム毎に最新の値を無線デジタル信号送信処理部104に設定する機能と、各データ信号用時分割チャネルで送信する情報要素(図7)を時分割チャネル毎にまとめて無線デジタル信号送信処理部104に設定する機能とを有する。また、各時分割チャネルで送信する情報要素を結合して情報ビット系列を生成する。 The time division channel control unit 103 performs a control operation in units of frames. The time division channel control unit 103 refers to the use information of the time division channel in the frame of FIG. 4 to the wireless digital signal transmission processing unit 104 and the wireless digital signal reception processing unit 107, and determines each time division channel in the frame. A function for controlling transmission / reception, a function for designating a frequency subchannel number to be used in each time division channel according to a frequency hopping sequence, a function for designating a sequence of preambles to be used based on a fixed radio station identifier, and one frame worth When the processing is completed, the function of updating the frame number and the information element of the broadcast time division channel including the frame number and the fixed wireless station identifier are managed, and the latest value is set in the wireless digital signal transmission processing unit 104 for each frame. Function and information elements (FIG. 7) to be transmitted on each data signal time division channel for each time division channel Stop and a function of setting a radio digital signal transmission processing unit 104. In addition, an information bit sequence is generated by combining information elements transmitted in each time division channel.
 無線デジタル信号送信処理部104は、時分割チャネル制御部103から入力される各時分割チャネルのビット系列及び周波数サブチャネル番号を参照し、デジタル無線信号を生成する。信号処理としては、入力されたビット系列に、誤り検出のためのCRC(Check Redundancy Code)の付与、誤り訂正のための畳み込み符号化、誤り訂正能力向上やビット当たりの対雑音エネルギーを向上させるインターリーブ及びリピティション、ビット列を振幅や位相の情報に変換する変調、変調信号と指定されたプリアンブル系列との時間多重、及び指定された周波数サブチャネルで送信するための周波数変換などの処理を行う。無線デジタル信号送信処理部104は、ベースバンドのデジタル信号を出力する。 The wireless digital signal transmission processing unit 104 refers to the bit sequence and frequency subchannel number of each time division channel input from the time division channel control unit 103, and generates a digital radio signal. For signal processing, CRC (Check Redundancy Code) is added to the input bit sequence, convolutional coding for error correction, error correction capability improvement, and interleaving to improve noise energy per bit. And processing such as repetition, modulation for converting a bit string into amplitude and phase information, time multiplexing between a modulated signal and a specified preamble sequence, and frequency conversion for transmission on a specified frequency subchannel. The wireless digital signal transmission processing unit 104 outputs a baseband digital signal.
 無線アナログ信号送受信処理部105は、無線デジタル信号送信処理部104から入力されたベースバンドデジタル信号に、デジタルアナログ変換、ベースバンドから高周波信号への変換、高周波信号の出力の増幅処理を実施する。アンテナ14の手前で送受信を切り替えるスイッチを設ける。 The wireless analog signal transmission / reception processing unit 105 performs digital / analog conversion, conversion from baseband to high-frequency signal, and amplification of output of the high-frequency signal to the baseband digital signal input from the wireless digital signal transmission processing unit 104. A switch for switching between transmission and reception is provided in front of the antenna 14.
 アンテナ14が受信した無線アナログ信号は、前述したスイッチによって受信信号処理側に流され、入力された微弱な信号の増幅、高周波信号からベースバンド信号への変換、アナログデジタル変換処理を実施し、無線デジタル信号受信処理部107へ出力する。 The wireless analog signal received by the antenna 14 is sent to the reception signal processing side by the switch described above, and the input weak signal is amplified, converted from a high-frequency signal to a baseband signal, and analog-to-digital conversion processing. Output to the digital signal reception processing unit 107.
 無線デジタル信号受信処理部107は、入力されるデジタル受信信号に、時分割チャネルごとに指定された周波数サブチャネルの信号が中心周波数に移動する周波数シフトを実施した後にローパスフィルタ処理を実施する。その後、無線伝搬路応答を推定し、推定された伝搬路応答を用いて無線伝搬路の影響を受けた受信信号の振幅位相を補償し、補償された受信信号の振幅位相に載せられた情報をビット列に戻す復調処理を行い、復調処理後のビット列に対して送信側のインターリーブの逆処理を行うデインターリーブ、リピティションによって送信側で繰り返されたビットを合成する。 The wireless digital signal reception processing unit 107 performs low-pass filter processing after performing frequency shift on the input digital reception signal in which the frequency subchannel signal designated for each time division channel moves to the center frequency. After that, the radio channel response is estimated, the estimated channel response is used to compensate for the amplitude phase of the received signal affected by the radio channel, and the information placed on the compensated amplitude phase of the received signal is The demodulating process to return to the bit string is performed, and the repeated bits on the transmitting side are synthesized by deinterleaving and repetition for performing the reverse process of interleaving on the transmitting side for the demodulated bit string.
 ビットレベルで受信信号を合成した後、ビタビ復号法などの誤り訂正復号を行い、この出力に付与されているCRCを検査することでビット誤りの有無を判定する。無線デジタル信号受信処理部107は、少なくとも、CRCを除いた推定送信ビット系列と、誤りの有無を示すCRC検査結果を出力する。 After combining the received signal at the bit level, error correction decoding such as Viterbi decoding is performed, and the presence or absence of a bit error is determined by checking the CRC attached to this output. Wireless digital signal reception processing section 107 outputs at least an estimated transmission bit sequence excluding CRC and a CRC check result indicating the presence or absence of an error.
 初期アクセス処理部108は、無線デジタル信号受信処理部107から初期アクセス用時分割チャネルに関してビット誤りのないビット系列を取得し、固定無線局管理情報106の時分割チャネル割り当て情報を参照して、初期アクセス用時分割チャネルを送信した移動無線局23に、データ信号用時分割チャネルを割り当て可能か否かを判定する。割り当て可能な場合は、固定無線局管理情報106の時分割チャネル割り当て情報に当該移動無線局23の割り当てを追加し、時分割チャネル制御部103にて、図7(B)に示す初期アクセス用時分割チャネルに対する応答の情報要素を出力する。 The initial access processing unit 108 acquires a bit sequence having no bit error regarding the time division channel for initial access from the radio digital signal reception processing unit 107, and refers to the time division channel allocation information of the fixed radio station management information 106 to It is determined whether or not the data signal time division channel can be assigned to the mobile radio station 23 that has transmitted the access time division channel. When the allocation is possible, the allocation of the mobile radio station 23 is added to the time division channel allocation information of the fixed radio station management information 106, and the time division channel control unit 103 performs the initial access time shown in FIG. The information element of the response to the split channel is output.
 上り伝送バッファ109は、上り移動体制御情報を一時的に格納し、バックボーンネットワーク12に対してデータを送信できるタイミングまでデータを待たせるバッファである。上り伝送バッファ109には、アップリンクのデータ信号用時分割チャネルで受信したデータのうち、CRC検査の結果、ビット誤りがないと判定されたデータのみが格納される。 The uplink transmission buffer 109 is a buffer that temporarily stores uplink mobile control information and waits for data until it can be transmitted to the backbone network 12. Uplink transmission buffer 109 stores only data that has been determined to have no bit errors as a result of the CRC check, among the data received by the time division channel for uplink data signals.
 図9は、本実施例の移動無線局23の構成例を示す図である。 FIG. 9 is a diagram illustrating a configuration example of the mobile radio station 23 according to the present embodiment.
 ネットワークインターフェース部201は、移動無線局23とエッジ側移動体制御装置22との間の双方向通信を実現する。固定無線局13の構成例(図8)と同様に、この双方向通信ではIPパケットやシステム独自の通信プロトコルを用いてもよい。 The network interface unit 201 realizes bidirectional communication between the mobile radio station 23 and the edge-side mobile control device 22. Similar to the configuration example of the fixed wireless station 13 (FIG. 8), in this bidirectional communication, an IP packet or a communication protocol unique to the system may be used.
 上り伝送バッファ202は、上りの移動体制御情報を一時的に格納するバッファである。上り伝送バッファ202は、割り当てられた上りのデータ信号用時分割チャネルの無線送信時間となるまで情報系列を待たせる機能と、無線での送信頻度よりエッジ側移動体制御装置22から移動体制御情報が入力される頻度が少ない場合に、同一の移動体制御情報を無線で再度送信するための情報の一時的な記憶機能を有する。 The uplink transmission buffer 202 is a buffer that temporarily stores uplink mobile control information. The uplink transmission buffer 202 has a function of waiting for the information sequence until the radio transmission time of the allocated time division channel for the uplink data signal, and the mobile control information from the edge side mobile control device 22 based on the radio transmission frequency. Has a temporary storage function of information for re-transmitting the same mobile control information wirelessly.
 バッファ読み出し処理部203は、フレーム毎に最新の移動体制御情報を上り伝送バッファ202から読み出し、ビット系列として無線デジタル信号送信処理部204へ書き込む。 The buffer read processing unit 203 reads the latest mobile control information for each frame from the uplink transmission buffer 202 and writes it to the wireless digital signal transmission processing unit 204 as a bit sequence.
 無線デジタル信号送信処理部204は、バッファ読み出し処理部203から入力されるデータ信号に関するビット系列と、初期アクセス処理部208から入力される初期アクセス用時分割チャネルの情報要素をビット系列化して、誤り検出のためのCRC(Check Redundancy Code)の付与、誤り訂正のための畳み込み符号化、誤り訂正能力向上やビット当たりの対雑音エネルギーを向上させるインターリーブ及びリピティション、ビット列を振幅や位相の情報に変換する変調、変調信号と指定されたプリアンブル系列との時間多重、及び指定された周波数サブチャネルで送信するための周波数変換などの処理を行う。無線デジタル信号送信処理部204は、ベースバンドのデジタル信号を出力する。 The wireless digital signal transmission processing unit 204 converts the bit sequence related to the data signal input from the buffer read processing unit 203 and the information element of the time division channel for initial access input from the initial access processing unit 208 into a bit sequence to generate an error. CRC (Check Redundancy Code) for detection, convolutional coding for error correction, interleaving and repetition for improving error correction capability and noise energy per bit, and converting bit string into amplitude and phase information Modulation, time multiplexing of the modulated signal and the designated preamble sequence, and frequency conversion for transmission on the designated frequency subchannel. The wireless digital signal transmission processing unit 204 outputs a baseband digital signal.
 無線デジタル信号送信処理部204は、プリアンブル系列を決定するための固定無線局識別子の情報及び周波数サブチャネルに関する情報を時分割チャネル制御部207から取得する。 The radio digital signal transmission processing unit 204 acquires information on the fixed radio station identifier and the information on the frequency subchannel for determining the preamble sequence from the time division channel control unit 207.
 無線アナログ信号送受信処理部205は、固定無線局13の無線アナログ信号送受信処理部105と同様の機能を有する。 The wireless analog signal transmission / reception processing unit 205 has the same function as the wireless analog signal transmission / reception processing unit 105 of the fixed wireless station 13.
 無線デジタル信号受信処理部209は、入力されるデジタル受信信号に、時分割チャネルごとに指定された周波数サブチャネルの信号が中心周波数に移動する周波数シフトを実施した後にローパスフィルタ処理を実施する。その後、無線伝搬路応答を推定し、推定された伝搬路応答を用いて無線伝搬路の影響を受けた受信信号の振幅位相を補償し、補償された受信信号の振幅位相に載せられた情報をビット列に戻す復調処理を行い、復調処理後のビット列に対して送信側のインターリーブの逆処理を行うデインターリーブ、リピティションによって送信側で繰り返されたビットを合成する。 The wireless digital signal reception processing unit 209 performs low-pass filter processing after performing frequency shift on the input digital reception signal so that the signal of the frequency subchannel designated for each time division channel moves to the center frequency. After that, the radio channel response is estimated, the estimated channel response is used to compensate for the amplitude phase of the received signal affected by the radio channel, and the information placed on the compensated amplitude phase of the received signal is The demodulating process to return to the bit string is performed, and the repeated bits on the transmitting side are synthesized by deinterleaving and repetition for performing the reverse process of interleaving on the transmitting side for the demodulated bit string.
 ビットレベルで受信信号を合成した後、ビタビ復号法などの誤り訂正復号を行い、この出力に付与されているCRCを検査することでビット誤りの有無を判断する。無線デジタル信号受信処理部209は、少なくとも、CRCを除いた推定送信ビット系列と、誤りの有無を示すCRC検査結果を出力する。 After synthesizing the received signal at the bit level, error correction decoding such as Viterbi decoding is performed, and the presence or absence of a bit error is determined by checking the CRC attached to this output. The wireless digital signal reception processing unit 209 outputs at least an estimated transmission bit sequence excluding CRC and a CRC check result indicating the presence or absence of an error.
 無線デジタル信号受信処理部209は、これらのデータ信号に関する復号処理の他に、固定無線局13から受信する無線信号に対するタイミング同期を行う。時分割チャネル制御部207から指定されたプリアンブル系列と受信信号との間でスライディング相関演算を行って受信タイミングを推定し、推定された受信タイミングからデータ信号の先頭の時間位置を特定してデータ信号を抽出する。 The wireless digital signal reception processing unit 209 performs timing synchronization on the wireless signal received from the fixed wireless station 13 in addition to the decoding processing regarding these data signals. The reception timing is estimated by performing a sliding correlation calculation between the preamble sequence designated by the time division channel control unit 207 and the received signal, and the head time position of the data signal is specified from the estimated received timing to determine the data signal. To extract.
 また、無線デジタル信号受信処理部209は、接続した固定無線局13が送信した無線信号受信タイミングに基づいて、時分割チャネル及びフレームタイミングを調整する。つまり、移動無線局23の時分割チャネルタイミングより固定無線局13からの信号の受信タイミングが早い場合、移動無線局23の時分割チャネルタイミングを早める。逆も同様に時分割チャネルタイミングを調整する。 Also, the wireless digital signal reception processing unit 209 adjusts the time division channel and the frame timing based on the wireless signal reception timing transmitted by the connected fixed wireless station 13. That is, when the reception timing of the signal from the fixed radio station 13 is earlier than the time division channel timing of the mobile radio station 23, the time division channel timing of the mobile radio station 23 is advanced. Conversely, the time division channel timing is adjusted in the same manner.
 初期アクセス処理部208は、移動無線局23が起動直後でいずれの固定無線局13とも通信を行っていない状態において、図6の説明で示したように、いずれかの固定無線局13との通信を開始する。 As shown in the explanation of FIG. 6, the initial access processing unit 208 communicates with any fixed radio station 13 in a state where the mobile radio station 23 is not communicating with any fixed radio station 13 immediately after activation. To start.
 初期アクセス処理部208は、最初に固定無線局13をサーチし、受信電力が最も大きいプリアンブル系列の送信元である固定無線局13を特定する。初期アクセス処理部208は、当該固定無線局13が送信する報知用時分割チャネルに含まれるフレーム番号、固定無線局識別子、周波数ホッピングシーケンスに関連する情報を取得し、時分割チャネル管理情報メモリ206へ書き込む。その後、図6に示す情報をビット系列化して無線デジタル信号送信処理部204へ書き込み、時分割チャネル制御部207の制御によって無線信号として初期アクセス用時分割チャネルの無線信号が送信される。 The initial access processing unit 208 first searches the fixed radio station 13 to identify the fixed radio station 13 that is the transmission source of the preamble sequence having the largest received power. The initial access processing unit 208 acquires information related to the frame number, the fixed radio station identifier, and the frequency hopping sequence included in the broadcast time division channel transmitted by the fixed radio station 13, and sends the information to the time division channel management information memory 206. Write. After that, the information shown in FIG. 6 is bit-sequenced and written to the wireless digital signal transmission processing unit 204, and the wireless signal of the time division channel for initial access is transmitted as a wireless signal under the control of the time division channel control unit 207.
 初期アクセス処理部208は、初期アクセス用時分割チャネルの無線信号の送信が完了すると、時分割チャネル管理情報メモリ206に初期化時に記録されたフレーム内時分割チャネルの用途情報を参照して、下りのデータ信号用時分割チャネルの受信ビット系列を無線デジタル信号受信処理部209からすべて取得する。なお、報知用時分割チャネルに含まれる用途情報を時分割チャネル管理情報メモリ206へ書き込んだフレーム内時分割チャネルの用途情報を参照してもよい。 When the initial access time division channel radio signal transmission is completed, the initial access processing unit 208 refers to the use information of the intra-frame time division channel recorded in the time division channel management information memory 206 at the time of initialization, and downloads All the received bit sequences of the data signal time division channel are acquired from the wireless digital signal reception processing unit 209. Note that the use information of the intra-frame time division channel in which the usage information included in the broadcast time division channel is written in the time division channel management information memory 206 may be referred to.
 初期アクセス処理部208は、当該移動無線局23の識別子が含まれている情報を取得できた場合、そのビット系列に含まれている割り当て情報を時分割チャネル管理情報メモリ206へ書き込む。当該移動無線局23の識別子が含まれている情報を取得できない場合は、初期アクセス用時分割チャネルの無線信号送信の繰り返しや、固定無線局13の再サーチからやり直す。 When the initial access processing unit 208 can acquire information including the identifier of the mobile radio station 23, the initial access processing unit 208 writes the allocation information included in the bit sequence to the time division channel management information memory 206. When the information including the identifier of the mobile radio station 23 cannot be acquired, the radio signal transmission of the initial access time division channel is repeated and the fixed radio station 13 is re-searched.
 なお、初期アクセス処理部208は、固定無線局をサーチする際、同期前で時分割チャネル制御部207が自走して生成しているフレーム番号や時分割チャネルのタイミングとのずれを検出すると、検出されたずれを時分割チャネル制御部207に通知する。時分割チャネル制御部207は、検出されたずれに基づいてタイミングを補正する。また、初期アクセス処理部208は、フレーム番号に関して、時分割チャネル制御部207の内部のカウンタを補正する。無線デジタル信号送信処理部204と無線アナログ信号送受信処理部205に対しては、無線での時分割チャネル及びフレームの境界のタイミングが固定無線局13と合うよう、自走で定めていた時分割チャネルの先頭タイミングを時分割チャネル制御部207からの指示で補正する。 The initial access processing unit 208, when searching for a fixed radio station, detects a deviation from the frame number or time division channel timing generated by the time division channel control unit 207 self-running before synchronization. The detected shift is notified to the time division channel control unit 207. The time division channel control unit 207 corrects the timing based on the detected deviation. In addition, the initial access processing unit 208 corrects the internal counter of the time division channel control unit 207 with respect to the frame number. For the wireless digital signal transmission processing unit 204 and the wireless analog signal transmission / reception processing unit 205, the time division channel and the time division channel determined by self-running so that the timing of the frame boundary matches the fixed wireless station 13 Is corrected by an instruction from the time division channel control unit 207.
 時分割チャネル制御部207は、フレーム単位での制御動作を行う。時分割チャネル管理情報メモリ206に格納されているフレーム内時分割チャネルの用途情報、周波数ホッピングシーケンス関連情報、及びデータ用信号時分割チャネルの割り当て情報を参照し、無線デジタル信号送信処理部204及び無線デジタル信号受信処理部209によるフレーム内時分割チャネルの送受信を制御する機能と、周波数ホッピングシーケンスに基づく各時分割チャネルで使用する周波数サブチャネル番号を指定する機能と、時分割チャネル管理情報メモリ206に格納されている固定無線局識別子から送信するプリアンブル系列を使用する機能と、1フレーム分の処理が完了するとフレーム番号を更新する機能とを有する。 The time division channel control unit 207 performs a control operation in units of frames. With reference to the use information of the time division channel in the frame, the frequency hopping sequence related information, and the data signal time division channel allocation information stored in the time division channel management information memory 206, the wireless digital signal transmission processing unit 204 and the wireless A function for controlling transmission / reception of the time division channel in the frame by the digital signal reception processing unit 209, a function for designating a frequency subchannel number used in each time division channel based on the frequency hopping sequence, and a time division channel management information memory 206 It has a function of using a preamble sequence transmitted from a stored fixed wireless station identifier and a function of updating a frame number when processing for one frame is completed.
 時分割チャネル制御部207は、フレームを常時カウントしているが、移動体21の移動などの理由により時分割チャネルのタイミングのずれが無線デジタル信号受信処理部209によって検知されると、そのタイミングずれを修正するように、無線デジタル信号送信処理部204と無線デジタル信号受信処理部209に指示する。具体的には、全ての時分割チャネルに含まれるガードタイムの伸縮によってタイミングのずれを修正するとよい。現状タイミングが遅れていてタイミングを早める場合にはガードタイムを一時的に縮める指示を、タイミングを遅らせる場合にはガードタイムを一時的に伸ばす指示を、無線デジタル信号送信処理部204及び無線デジタル信号受信処理部209に送る。 The time division channel control unit 207 always counts the frames, but when the radio digital signal reception processing unit 209 detects a timing deviation of the time division channel due to the movement of the mobile body 21, the timing deviation is detected. The wireless digital signal transmission processing unit 204 and the wireless digital signal reception processing unit 209 are instructed to correct the above. Specifically, the timing shift may be corrected by extending or shortening the guard time included in all time division channels. If the current timing is delayed and the timing is advanced, an instruction to temporarily reduce the guard time is provided. If the timing is delayed, an instruction to temporarily increase the guard time is provided, and the wireless digital signal transmission processing unit 204 and the wireless digital signal reception are provided. The data is sent to the processing unit 209.
 下り伝送バッファ210は、下りの移動体制御情報を一時的に格納するバッファであり、エッジ側移動体制御装置22がデータ受け入れ可能となるまで一時的にデータを待たせる。 The downlink transmission buffer 210 is a buffer that temporarily stores downlink mobile control information, and temporarily waits for data until the edge-side mobile control device 22 can accept data.
 図10は、本実施例の固定無線局13及び移動無線局23の装置構成の例を示す図である。 FIG. 10 is a diagram illustrating an example of the device configuration of the fixed radio station 13 and the mobile radio station 23 according to the present embodiment.
 固定無線局13と移動無線局23は、同一のハードウェア構成を取ることが可能である。 The fixed radio station 13 and the mobile radio station 23 can have the same hardware configuration.
 ネットワークインターフェース部301は、センター側移動体制御装置11又はエッジ側移動体制御装置22との間で、定められた通信方式に従って有線又は無線で通信する装置であり、当該通信方式で使用する物理層、データリンク層、MAC(Medium Access Control)層などの下位レイヤを処理するモデム機能を有する。市販されているモデム機能を有するチップやボードなどを利用できる。図8のネットワークインターフェース部101及び図9のネットワークインターフェース部201に対応する。 The network interface unit 301 is a device that communicates with the center-side mobile control device 11 or the edge-side mobile control device 22 in a wired or wireless manner according to a predetermined communication method, and is a physical layer used in the communication method And a modem function for processing lower layers such as a data link layer and a MAC (Medium Access Control) layer. A commercially available chip or board having a modem function can be used. This corresponds to the network interface unit 101 in FIG. 8 and the network interface unit 201 in FIG. 9.
 無線制御演算部302は、固定無線局13及び移動無線局23の内部でリソース割り当て管理やメッセージ伝送などのフレーム単位の無線制御を実施し、CPUなどの演算装置により実現可能である。無線制御演算部302は、図8の時分割チャネル制御部103及び初期アクセス処理部108に対応し、図9のバッファ読み出し処理部203、時分割チャネル制御部207及び初期アクセス処理部208に対応する。 The radio control arithmetic unit 302 performs radio control in units of frames such as resource allocation management and message transmission inside the fixed radio station 13 and the mobile radio station 23, and can be realized by an arithmetic device such as a CPU. The radio control arithmetic unit 302 corresponds to the time division channel control unit 103 and the initial access processing unit 108 in FIG. 8, and corresponds to the buffer read processing unit 203, the time division channel control unit 207, and the initial access processing unit 208 in FIG. .
 無線デジタル信号処理部303は、FPGAなどリアルタイム処理に適する演算装置で実現可能である。無線デジタル信号処理部303は、図8の無線デジタル信号送信処理部104及び無線デジタル信号受信処理部107に対応し、図9の無線デジタル信号送信処理部204及び無線デジタル信号受信処理部209に対応する。 The wireless digital signal processing unit 303 can be realized by an arithmetic device suitable for real-time processing such as FPGA. The wireless digital signal processing unit 303 corresponds to the wireless digital signal transmission processing unit 104 and the wireless digital signal reception processing unit 107 in FIG. 8, and corresponds to the wireless digital signal transmission processing unit 204 and the wireless digital signal reception processing unit 209 in FIG. To do.
 無線アナログ信号処理部304は、ベースバンドデジタル信号と高周波アナログ信号との変換機能を有し、A/D(アナログデジタル)変換器、D/A(デジタルアナログ)変換器、フィルタ、ミキサ、アンプなどを有する無線通信モジュールである。本実施例ではTDD(Time Division Duplex)通信を想定しているため、送信と受信を切り替えるスイッチをアンテナ側に備える。高周波アナログ信号はアンテナ(14、24)を介して送受信される。 The wireless analog signal processing unit 304 has a conversion function between a baseband digital signal and a high-frequency analog signal, such as an A / D (analog / digital) converter, a D / A (digital / analog) converter, a filter, a mixer, and an amplifier. Is a wireless communication module. In this embodiment, since TDD (Time Division Duplex) communication is assumed, a switch for switching between transmission and reception is provided on the antenna side. High frequency analog signals are transmitted and received via the antennas (14, 24).
 無線制御演算部302、無線デジタル信号処理部303及び無線アナログ信号処理部304のうち、プログラム可能なデバイスに関するプログラムはプログラム格納メモリ310に格納されている。電源を遮断してもメモリの記憶内容がクリアされず、電源投入後直後にメモリ内容を無線制御演算部302、無線デジタル信号処理部303及び無線アナログ信号処理部304へ書き込むため、不揮発性のメモリの利用が望ましい。 Among the wireless control calculation unit 302, the wireless digital signal processing unit 303, and the wireless analog signal processing unit 304, programs related to programmable devices are stored in the program storage memory 310. Even if the power is turned off, the stored contents of the memory are not cleared, and the memory contents are written to the wireless control arithmetic unit 302, the wireless digital signal processing unit 303, and the wireless analog signal processing unit 304 immediately after the power is turned on. Use of is desirable.
 ブートシーケンスを実行するプロセッサ311は、装置起動時のプログラムの書き込み制御を実施する。プロセッサ311は電源投入後に、装置を起動するためにブートシーケンスを実行する。ブートシーケンスの過程で、プログラム格納メモリ310内に格納されたプログラムの内容をデータ伝送バス309を通して無線制御演算部302、無線デジタル信号処理部303及び無線アナログ信号処理部304へ書き込む。プロセッサ311はCPUなどの演算装置と記憶装置で実現可能である。 The processor 311 that executes the boot sequence performs program writing control when the apparatus is activated. The processor 311 executes a boot sequence after the power is turned on to start the apparatus. During the boot sequence, the contents of the program stored in the program storage memory 310 are written to the wireless control arithmetic unit 302, the wireless digital signal processing unit 303, and the wireless analog signal processing unit 304 through the data transmission bus 309. The processor 311 can be realized by an arithmetic device such as a CPU and a storage device.
 バッファ305はネットワークインターフェース部301に備わる記憶領域であり、揮発性のメモリで構成する。バッファ305は、センター側移動体制御装置11から固定無線局13へ伝送される情報系列や、エッジ側移動体制御装置22から移動無線局23へ伝送される情報系列や、逆方向に伝送される情報系列を一時的に蓄積する。バッファ305は、図8の下り伝送バッファ102及び上り伝送バッファ109に対応し、図9の上り伝送バッファ202及び下り伝送バッファ210に対応する。 The buffer 305 is a storage area provided in the network interface unit 301 and is composed of a volatile memory. The buffer 305 is an information sequence transmitted from the center side mobile control device 11 to the fixed radio station 13, an information sequence transmitted from the edge side mobile control device 22 to the mobile radio station 23, or transmitted in the reverse direction. Temporarily accumulate information series. The buffer 305 corresponds to the downlink transmission buffer 102 and the uplink transmission buffer 109 in FIG. 8, and corresponds to the uplink transmission buffer 202 and the downlink transmission buffer 210 in FIG.
 バッファ306は、フレームのタイミングで動作する無線制御演算部302とリアルタイムで動作する無線デジタル信号処理部303との間でデータを受け渡すバッファであり、揮発性のメモリで構成する。無線制御演算部302から無線デジタル信号処理部303へは、フレーム内の各スロットで伝送する情報ビット系列などを書き込む。無線デジタル信号処理部303から無線制御演算部302へは、フレーム内の各スロットに関する無線信号を復号して得られた情報ビット系列と、CRCによる誤り検出結果を書き込む。 The buffer 306 is a buffer for transferring data between the wireless control calculation unit 302 that operates at the frame timing and the wireless digital signal processing unit 303 that operates in real time, and is configured by a volatile memory. From the wireless control arithmetic unit 302 to the wireless digital signal processing unit 303, an information bit sequence transmitted in each slot in the frame is written. From the wireless digital signal processing unit 303 to the wireless control operation unit 302, the information bit sequence obtained by decoding the wireless signal relating to each slot in the frame and the error detection result by CRC are written.
 ワーキングメモリ307、308は、それぞれ無線制御演算部302及び無線デジタル信号処理部303が使用するワーキングメモリであり、無線制御及び無線信号処理に必要な情報や、固定無線局識別子ごとの周波数ホッピングシーケンス及びプリアンブル系列をそれぞれワーキングメモリ307、308に書き込んで自ら参照する。ワーキングメモリ307、308は揮発性メモリで構成する。 The working memories 307 and 308 are working memories used by the radio control arithmetic unit 302 and the radio digital signal processing unit 303, respectively, information necessary for radio control and radio signal processing, frequency hopping sequences for each fixed radio station identifier, The preamble sequence is written in the working memories 307 and 308, respectively, and is referred to by itself. The working memories 307 and 308 are composed of volatile memories.
 全ての固定無線局識別子ごとの周波数ホッピングシーケンス及びプリアンブル系列は、無線制御演算部302の起動時に生成、又はプログラム格納メモリ310にプログラムの一部として書き込まれているテーブルを参照し、周波数ホッピングシーケンスはワーキングメモリ307へ、プリアンブル系列はワーキングメモリ308へ書き込む。 Frequency hopping sequences and preamble sequences for all fixed wireless station identifiers are generated when the radio control arithmetic unit 302 is activated, or are referred to as a part of the program stored in the program storage memory 310, and the frequency hopping sequence is The preamble sequence is written in the working memory 307 and the preamble sequence.
 図11に、本実施例の2種類のプリアンブル系列を適用した時の時分割チャネルの例を示す図である。 FIG. 11 is a diagram illustrating an example of a time division channel when the two types of preamble sequences of the present embodiment are applied.
 図3では時分割チャネル内のプリアンブル系列を一つにまとめて表現していたが、図11では第一のプリアンブル(Primary Preamble)と第二のプリアンブル(Secondary Preamble)の2種類のプリアンブルがデータ信号前に配置される。 In FIG. 3, the preamble sequences in the time-division channel are collectively expressed as one, but in FIG. 11, two types of preambles, that is, the first preamble and the second preamble are data signals. Placed in front.
 第一のプリアンブルと第二のプリアンブルは、それぞれ長さ固定であるが、両者の長さは同じでなくてもよく、固定無線局13と移動無線局23との間でプリアンブルの長さ及びプリアンブル系列そのものを共有していればよい。 The first preamble and the second preamble are fixed in length, but the lengths of both may not be the same. The length of the preamble and the preamble between the fixed radio station 13 and the mobile radio station 23 are not necessarily the same. It only has to share the line itself.
 第一のプリアンブル及び第二のプリアンブルは、固定無線局13及び移動無線局23から送信可能で、かつ送るべきデータ信号が存在する時分割チャネルにおいてデータ信号と時間多重して送信される。すなわち、プリアンブルのみを送信する時分割チャネルは存在しない。この観点で、フレーム毎に確実に送信されるのは、報知用時分割チャネルにおいて固定無線局13から送信されるプリアンブルのみである。 The first preamble and the second preamble can be transmitted from the fixed radio station 13 and the mobile radio station 23, and are time-multiplexed with the data signal in the time division channel where the data signal to be transmitted exists. That is, there is no time division channel for transmitting only the preamble. From this point of view, only the preamble transmitted from the fixed radio station 13 in the broadcast time division channel is reliably transmitted for each frame.
 第一のプリアンブルは、時分割チャネルの先頭タイミング及びフレームの先頭タイミングを推定するために使用する。移動無線局23は、受信信号に対して自身が持つ第一のプリアンブル系列を用いたスライディング相関演算を実施し、相関値が予め移動無線局23に設定された閾値を超えると、当該タイミングが第一プリアンブルの先頭、すなわち少なくとも時分割チャネルの先頭であると判定する。 The first preamble is used to estimate the start timing of the time division channel and the start timing of the frame. The mobile radio station 23 performs a sliding correlation calculation using the first preamble sequence that the mobile radio station 23 has on the received signal, and when the correlation value exceeds a threshold set in the mobile radio station 23 in advance, the timing is It is determined that it is the beginning of one preamble, that is, at least the beginning of a time division channel.
 第二のプリアンブルは、固定無線局識別子に依存する系列であり、2通りの用途がある。第一の用途は、移動無線局23が、いずれの固定無線局13とも通信を開始していない初期状態で、最も強い電力で受信されるプリアンブルを与える固定無線局13をサーチする用途である。第二の用途は、移動無線局23がいずれかの固定無線局13から時分割チャネルが割り当てられている状態で、第一のプリアンブルの送信元固定無線局13が同期維持対象の固定無線局13かを検証する用途である。 The second preamble is a sequence that depends on the fixed radio station identifier and has two uses. The first application is an application in which the mobile radio station 23 searches for a fixed radio station 13 that provides a preamble received with the strongest power in an initial state in which communication with any fixed radio station 13 has not started. A second application is that the mobile radio station 23 is assigned a time division channel from any one of the fixed radio stations 13, and the source fixed radio station 13 of the first preamble is the fixed radio station 13 to be synchronized. It is an application to verify.
 第二プリアンブルの第一の用途について説明する。 The first use of the second preamble will be described.
 第一の用途においては、受信した様々な固定無線局グループの第二のプリアンブルのうち、最も受信電力が強い固定無線局グループを特定し、さらに周波数サブチャネル間で第二のプリアンブルの受信電力を比較してグループ内の固定無線局13さらに特定する。 In the first application, among the received second preambles of various fixed radio station groups, the fixed radio station group having the strongest reception power is specified, and the reception power of the second preamble is further determined between the frequency subchannels. In comparison, the fixed wireless station 13 in the group is further specified.
 前述を実施するために、まず第一のプリアンブルが報知用時分割チャネルにて送信されるプリアンブルであるかを特定する必要がある。報知用時分割チャネル以外のチャネルでは、プリアンブルを送信していない固定無線局13があり、プリアンブルの相互相関演算の結果として相互相関値が低かった場合に、プリアンブル未送信で相関値が低いのか、伝搬減衰で相関値が低下しているかを判定できない。そして、無線信号を送信していれば選択される固定無線局13が、信号を送信していないため選択されないという問題が生じる。 In order to carry out the above, it is necessary to first determine whether the first preamble is a preamble transmitted on the broadcast time division channel. In channels other than the broadcast time division channel, if there is a fixed radio station 13 that does not transmit a preamble and the cross-correlation value is low as a result of the cross-correlation calculation of the preamble, whether the correlation value is low because the preamble has not been transmitted, It cannot be determined whether or not the correlation value has decreased due to propagation attenuation. If the wireless signal is transmitted, the fixed wireless station 13 selected is not selected because it does not transmit the signal.
 例えば、報知用時分割チャネルで送信される第一のプリアンブルは、その他の時分割チャネルで送信される第一のプリアンブルと相互相関が低い系列とし、かつシステム内全ての固定無線局13に関して同一のプリアンブル系列とすると、スライディング相関で使用する第一のプリアンブルを報知用時分割チャネル専用の系列とすることによって、相互相関値に基づいて報知用時分割チャネルの先頭を検出できる。 For example, the first preamble transmitted on the broadcast time division channel is a sequence having a low cross-correlation with the first preamble transmitted on other time division channels, and is the same for all the fixed radio stations 13 in the system. When the preamble sequence is used, the first preamble used in the sliding correlation is a sequence dedicated to the broadcast time division channel, so that the head of the broadcast time division channel can be detected based on the cross-correlation value.
 このプロセスで取得した報知用時分割チャネルの先頭タイミングから、第一のプリアンブル長だけ遅れたタイミングが第二のプリアンブルの先頭タイミングであると推定できる。 It can be estimated that the timing delayed by the first preamble length from the start timing of the broadcast time division channel acquired in this process is the start timing of the second preamble.
 第二のプリアンブルの先頭タイミングを先頭とし、第二のプリアンブル長の区間を相互相関演算区間として、受信信号と様々な固定無線局グループの第二のプリアンブル系列との間の相互相関を演算し、相互相関値が最も高い第二のプリアンブル系列に関連付けられる固定無線局グループを選択する。 The cross-correlation between the received signal and the second preamble sequence of various fixed radio station groups is calculated using the start timing of the second preamble as the head and the second preamble length as the cross-correlation calculation section. A fixed radio station group associated with the second preamble sequence having the highest cross-correlation value is selected.
 さらに、この相互相関演算区間における全ての周波数サブチャネルで、選択した固定無線局グループの第二のプリアンブル系列との間の相互相関を演算し、相互相関値が最も高い周波数サブチャネルを選択する。 Further, the cross-correlation with the second preamble sequence of the selected fixed radio station group is calculated for all frequency sub-channels in this cross-correlation calculation section, and the frequency sub-channel with the highest cross-correlation value is selected.
 選択した周波数サブチャネルにおいて、第二のプリアンブル系列の直後にあるデータ信号を復号し、報知用時分割チャネルの情報要素を取り出す。情報要素内に示されている固定無線局識別子が、第二プリアンブルの第一の用途、すなわち固定無線局サーチ結果となる。 In the selected frequency subchannel, the data signal immediately after the second preamble sequence is decoded, and the information element of the broadcast time division channel is extracted. The fixed radio station identifier shown in the information element is the first use of the second preamble, that is, the fixed radio station search result.
 第二プリアンブルの第二の用途について説明する。 The second usage of the second preamble will be described.
 第二の用途では、移動無線局23は、ある固定無線局13に同期を一旦確立していることが前提となる。但し、時間経過による無線局間のクロックずれや、移動無線局23の移動に伴って、フレーム先頭タイミングや時分割チャネル先頭タイミングがずれる。 In the second application, it is assumed that the mobile radio station 23 has once established synchronization with a certain fixed radio station 13. However, the frame head timing and the time division channel head timing shift due to the clock shift between the radio stations due to the passage of time and the movement of the mobile radio station 23.
 この先頭タイミングのずれを監視するため、移動無線局23は同期が確立した固定無線局13の周波数ホッピングシーケンスを考慮し、同期ターゲットの固定無線局13の報知用時分割チャネルが送信される周波数サブチャネルを選択したうえで、第一のプリアンブル系列を用いて報知用時分割チャネルの先頭タイミングを検出する。 In order to monitor the deviation of the head timing, the mobile radio station 23 considers the frequency hopping sequence of the fixed radio station 13 with which synchronization is established, and the frequency sub-channel to which the time division channel for notification of the fixed radio station 13 of the synchronization target is transmitted After selecting a channel, the first timing of the broadcast time division channel is detected using the first preamble sequence.
 先頭タイミングのずれがない場合、あるフレームの当該先頭タイミングは、一つ前のフレーム先頭からフレーム長だけ遅延したタイミングが期待タイミングとなる。一方、ずれが発生している場合、期待タイミングと観測されるタイミングとが前後する。このずれは、常時補正する。例えば、報知用時分割チャネルの次の時分割チャネルのガードタイムを伸縮することで、ずれを補正できる。 If there is no deviation of the start timing, the expected start timing of a certain frame is the timing delayed by the frame length from the start of the previous frame. On the other hand, when a deviation occurs, the expected timing and the observed timing fluctuate. This deviation is always corrected. For example, the shift can be corrected by extending or shortening the guard time of the time division channel next to the broadcast time division channel.
 以上の処理で注意すべきことは、同一の周波数サブチャネルで第一のプリアンブルを送信する固定無線局13が複数あるため、期待外の固定無線局13の第一のプリアンブル系列の受信タイミングが正しいタイミングであると判断することである。その結果、ガードタイムの補正を誤り、誤ったタイミングでデータ信号を抽出するため、正しいデータ信号を取り出すことが困難となる。 What should be noted in the above processing is that there are a plurality of fixed radio stations 13 that transmit the first preamble on the same frequency subchannel, so that the reception timing of the first preamble sequence of the unexpected fixed radio station 13 is correct. It is to judge that it is timing. As a result, the correction of the guard time is erroneous and the data signal is extracted at an incorrect timing, so that it is difficult to extract the correct data signal.
 なお、この特性を生かして、第二のプリアンブルを第一のプリアンブルの送信元固定無線局13が期待通りかどうかを検証するために使用できる。具体的には、第一のプリアンブルに関する相互相関演算の結果、複数のタイミングで相互相関の極大値が発生するが、極大値が記録された各タイミングに基づいて、第二のプリアンブルで相互相関演算を実施すると、期待する固定無線局13が送信した第二のプリアンブルの受信タイミング以外では低い相互相関値となる。 It should be noted that taking advantage of this characteristic, the second preamble can be used to verify whether the source fixed wireless station 13 of the first preamble is as expected. Specifically, as a result of cross-correlation calculation for the first preamble, cross-correlation maximum values occur at multiple timings, but based on each timing at which the maximum value is recorded, cross-correlation calculation is performed on the second preamble. As a result, the cross-correlation value is low except for the reception timing of the second preamble transmitted by the expected fixed wireless station 13.
 <実施例2>
 実施例1では、全ての固定無線局13及び移動無線局23が同一システムに所属する前提であった。本実施例では、本発明が適用される別システムが同一空間を共有する例を示す。
<Example 2>
In the first embodiment, it is assumed that all the fixed radio stations 13 and the mobile radio stations 23 belong to the same system. In the present embodiment, an example in which another system to which the present invention is applied shares the same space is shown.
 別システムの固定無線局13が近傍に存在し、相互の周波数ホッピングの直交性を維持する場合、両方のシステムで同一の周波数ホッピングマトリクス(図2)を準備した上で、例えば一方のシステムに固定無線局識別子の最下位ビット=0、他方のシステムに同最下位ビット=1を割り当てることで、少なくともシステム間で周波数ホッピングシーケンスが直交する。この方法は、システム間の直交性を確保できるが、システム内で直交性を維持できる固定無線局グループ内の固定無線局13の数が、図2に示す例では16から8に、減少する。但し、システム間でフレームや時分割チャネルの先頭タイミングの同期がとれていない場合、周波数ホッピングシーケンスの直交性は厳密には確保されていない。このため、可能であれば、システム間でタイミング同期をとることが望ましい。 When the fixed radio station 13 of another system exists in the vicinity and maintains the orthogonality of the frequency hopping between each other, the same frequency hopping matrix (FIG. 2) is prepared in both systems, and fixed to, for example, one system. By assigning the least significant bit = 0 of the radio station identifier and the least significant bit = 1 to the other system, the frequency hopping sequences are orthogonalized at least between the systems. This method can ensure orthogonality between systems, but the number of fixed wireless stations 13 in a fixed wireless station group that can maintain orthogonality in the system is reduced from 16 to 8 in the example shown in FIG. However, if the start timings of frames and time division channels are not synchronized between systems, the orthogonality of the frequency hopping sequence is not strictly ensured. For this reason, it is desirable to synchronize timing between systems if possible.
 システム内の直交性を維持できる固定無線局グループ内の固定無線局13の数を維持する場合、固定無線局グループの識別子となる固定無線局識別子の上位ビットをさらに細分化し、システムを示すビット範囲(上位ビットの上位側)と、システム内固定無線局グループを示すビット範囲(上位ビットの下位側)を定義することによって、システム間で第二のプリアンブル間の相互相関を低くできる。第一のプリアンブルに関しては、システム間で相互相関が低い系列を報知用時分割チャネル及びそれ以外に、それぞれ定義すればよい。 When maintaining the number of fixed wireless stations 13 in a fixed wireless station group capable of maintaining orthogonality in the system, the upper bits of the fixed wireless station identifier serving as the identifier of the fixed wireless station group are further subdivided to indicate a bit range indicating the system By defining the bit range (the lower side of the upper bits) indicating the intra-system fixed radio station group (the higher side of the upper bits), the cross-correlation between the second preambles can be lowered between the systems. With regard to the first preamble, a sequence having a low cross-correlation between systems may be defined for the broadcast time division channel and the others.
 なお、この場合、システムを示すビット範囲の値と、第一プリアンブルの系列指定に用いる値の両方に対応するシステム識別子を、図5の報知用時分割チャネルの情報要素に追加する。又は、既に報知用時分割チャネルの情報要素に含まれる固定無線局識別子の一部ビットとしてシステム識別子相当の情報を伝送してもよい。固定無線局13及び移動無線局23に対してシステム識別子をプリセットして運用中に変更しない場合は、報知用時分割チャネルでのシステム識別子の報知は不要である。 In this case, the system identifier corresponding to both the value of the bit range indicating the system and the value used for specifying the sequence of the first preamble is added to the information element of the broadcast time division channel in FIG. Alternatively, information corresponding to the system identifier may be transmitted as a part of the fixed radio station identifier already included in the information element of the broadcast time division channel. When the system identifier is preset for the fixed radio station 13 and the mobile radio station 23 and is not changed during operation, it is not necessary to broadcast the system identifier on the broadcast time division channel.
 前述した運用方法により、システム設計思想に応じて、システム間の直交性を維持する場合と、システム間の直交性を犠牲にしてシステム内固定無線局グループ内の直交性を維持する場合に対応できる。 According to the system design concept described above, the operation method described above can be used to maintain orthogonality between systems and maintain orthogonality within a fixed radio station group in the system at the expense of orthogonality between systems. .
 <実施例3>
 実施例1及び実施例2では、移動無線局23が固定無線局13が送信した信号に基づいてタイミングを同期する方法を示した。この方法を応用すると、固定無線局13の間でも同期が可能である。
<Example 3>
In the first embodiment and the second embodiment, the method in which the mobile radio station 23 synchronizes the timing based on the signal transmitted from the fixed radio station 13 has been described. When this method is applied, synchronization between the fixed radio stations 13 is possible.
 これを実現するためには、各固定無線局13に対して無線信号を送信しない観測フレームを定義し、当該フレームでは他の固定無線局13の報知用時分割チャネルを観測する。言い換えると、固定無線局13は、通常は固定無線局13として動作するが、当該フレームのみ移動無線局23の受信側と同じように動作する。ただし、観測フレームにおいて固定無線局13は無線信号を送信しないが、周波数ホッピングシーケンスから無線信号を送信する周波数サブチャネルを選択するための時分割チャネル通し番号は、無線信号を送信する場合と同様にカウントアップしておく。周波数ホッピングシーケンスの直交性は、全ての固定無線局13が同時に時分割チャネル通し番号をカウントアップすることを前提としているためである。 To realize this, an observation frame that does not transmit a radio signal to each fixed radio station 13 is defined, and the time-division channel for notification of other fixed radio stations 13 is observed in the frame. In other words, the fixed radio station 13 normally operates as the fixed radio station 13, but only the frame operates in the same manner as the reception side of the mobile radio station 23. However, the fixed radio station 13 does not transmit a radio signal in the observation frame, but the time division channel serial number for selecting the frequency subchannel for transmitting the radio signal from the frequency hopping sequence is counted in the same way as when transmitting the radio signal. Keep it up. This is because the orthogonality of the frequency hopping sequence is based on the premise that all the fixed radio stations 13 simultaneously count up the time division channel serial numbers.
 各固定無線局13に対して、同期ターゲットとなる固定無線局13の識別子を予め起動時に初期設定、又はシステム外の保守端末から設定する。但し、システム内に少なくとも1台は同期マスターとなる固定無線局13を定めておく。同期マスターの固定無線局13には、同期ターゲットとなる固定無線局13を設定しない。また、同期マスターの固定無線局13には観測フレームを定義しなくてもよい。 For each fixed radio station 13, the identifier of the fixed radio station 13 serving as a synchronization target is set in advance at the time of startup or from a maintenance terminal outside the system. However, at least one fixed wireless station 13 serving as a synchronization master is determined in the system. The fixed wireless station 13 serving as a synchronization target is not set in the fixed wireless station 13 serving as the synchronization master. Further, it is not necessary to define an observation frame for the fixed wireless station 13 of the synchronization master.
 固定無線局13の間の同期の動作は、基本的に移動無線局23の受信及び解析動作と同様である。例えば、図11に例示した固定無線局サーチと、同期状態の維持である。但し、同期ターゲットの固定無線局13が定められているため、固定無線局サーチでは当該ターゲット以外の固定無線局13を無視する動作となる。また、移動無線局23のように固定無線局サーチ完了後の初期アクセス用時分割チャネルでの送信は行わない。 The operation of synchronization between the fixed radio stations 13 is basically the same as the reception and analysis operation of the mobile radio station 23. For example, the fixed wireless station search illustrated in FIG. 11 and the synchronization state are maintained. However, since the fixed wireless station 13 as the synchronization target is determined, the fixed wireless station search ignores the fixed wireless stations 13 other than the target. In addition, unlike the mobile radio station 23, transmission on the time division channel for initial access after completion of the fixed radio station search is not performed.
 以上の動作を実現するため、固定無線局13には移動無線局23が持つ機能のうち、無線信号送信を除く機能を搭載する必要がある。 In order to realize the above operation, the fixed radio station 13 needs to be equipped with a function excluding radio signal transmission among the functions of the mobile radio station 23.
 以上に説明したように、本発明の実施例によると、移動無線局23は、プリアンブル信号によって、無線局の間(固定無線局13と移動無線局23の間や、固定無線局13同士の間)でタイミングを同期し、相互に近接し、グループを構成する複数の固定無線局13では、周波数ホッピングシーケンスを直交させて、同一のプリアンブル信号を使用し、異なるグループの固定無線局13では、一部又は全ての時分割チャネルで周波数ホッピングシーケンスの重複を許容し、異なるプリアンブル信号を使用するので、移動無線局23と接続している固定無線局13が送信するプリアンブルと、同一の周波数サブチャネルを使用する別の固定無線局13が同一の周波数サブチャネルで送信するプリアンブルとの相互相関が低いため、移動無線局23における相互相関演算において、別の固定無線局13のプリアンブルの誤検出を低減できる。また上述するような無線通信システムを無線式列車制御に適用することにより、例えば、もし無線電波環境が変化し、本来受信すべきでない無線基地局から送信された信号が、列車の車上無線局で検知されたとしても、本来受信すべき無線基地局から送信された信号とを弁別することが可能となり、信頼性の高い列車制御が実現できる。 As described above, according to the embodiment of the present invention, the mobile radio station 23 is transmitted between the radio stations (between the fixed radio station 13 and the mobile radio station 23 or between the fixed radio stations 13 by a preamble signal. ), The plurality of fixed radio stations 13 that are close to each other and form a group use orthogonal frequency hopping sequences and use the same preamble signal. Since overlapping frequency hopping sequences are allowed in some or all time division channels and different preamble signals are used, the same frequency subchannel as the preamble transmitted by the fixed radio station 13 connected to the mobile radio station 23 is used. The mobile radio station has a low cross-correlation with the preamble transmitted by another fixed radio station 13 to be used on the same frequency subchannel In cross-correlation operation at 3, it can reduce erroneous detection of the preamble of another fixed radio station 13. In addition, by applying the wireless communication system as described above to wireless train control, for example, if a radio wave environment changes, a signal transmitted from a wireless base station that should not be received is transmitted to the on-board wireless station of the train. Even if it is detected by the above, it becomes possible to discriminate the signal transmitted from the radio base station that should be received, and to realize highly reliable train control.
 また、このような無線通信システムを、同期をとるべき無線基地局間の通信に応用することによって、それらの無線基地局の間の同期をとることが可能となる。すなわち、無線基地局は、無線信号を送信しない観測フレームが定義され、当該フレームでは他の無線基地局の報知用時分割チャネルを観測する。言い換えると、無線基地局は、当該フレームのみ車上無線局の受信側と同じように動作する。ただし、観測フレームにおいて無線基地局は無線信号を送信しないが、周波数ホッピングシーケンスから無線信号を送信する周波数サブチャネルを選択するための時分割チャネル通し番号は、無線信号を送信する場合と同様にカウントアップしておく。周波数ホッピングシーケンスの直交性は、全ての地上基地局が同時に時分割チャネル通し番号をカウントアップすることを前提としているためである。各無線基地局に対して、同期ターゲットとなる無線基地局の識別子を予め起動時に初期設定、又はシステム外の保守端末から設定する。但し、システム内に少なくとも1台は同期マスターとなる無線基地局を定めておく。同期マスターの無線基地局には、同期ターゲットとなる無線基地局を設定しない。また、同期マスターの無線基地局には観測フレームを定義しなくてもよい。 Further, by applying such a radio communication system to communication between radio base stations to be synchronized, it becomes possible to synchronize the radio base stations. That is, the radio base station defines an observation frame that does not transmit a radio signal, and observes the time division channel for notification of other radio base stations in the frame. In other words, the radio base station operates only in the same manner as the receiving side of the on-board radio station. However, the radio base station does not transmit the radio signal in the observation frame, but the time division channel serial number for selecting the frequency subchannel for transmitting the radio signal from the frequency hopping sequence is counted up as in the case of transmitting the radio signal. Keep it. This is because the orthogonality of the frequency hopping sequence is based on the premise that all the terrestrial base stations simultaneously count up the time division channel serial numbers. For each radio base station, the identifier of the radio base station to be a synchronization target is set in advance at the time of startup or from a maintenance terminal outside the system. However, at least one radio base station to be a synchronization master is determined in the system. A radio base station that is a synchronization target is not set in the radio base station of the synchronization master. Further, the observation frame need not be defined for the radio base station of the synchronization master.
 また、固定無線局13の識別子は、グループを一意に識別するためのグループ識別子と、グループ内の固定無線局13を一意に識別するためのグループ内識別子とから構成され、プリアンブル信号はグループ識別子に基づいて決定され、周波数ホッピングシーケンスはグループ内識別子に基づいて決定されるので、固定無線局13から送信するプリアンブルが、移動無線局23において各周波数サブチャネルで重複しない固定無線局13のグループを定義できる。そして、近傍に配置される固定無線局13を同一グループとすることによって、移動無線局23におけるプリアンブルの誤検出を低減できる。 The identifier of the fixed radio station 13 includes a group identifier for uniquely identifying the group and an intra-group identifier for uniquely identifying the fixed radio station 13 in the group. The preamble signal is used as the group identifier. Since the frequency hopping sequence is determined based on the intra-group identifier, the preamble transmitted from the fixed radio station 13 defines a group of fixed radio stations 13 that do not overlap in each frequency subchannel in the mobile radio station 23. it can. Then, by making the fixed wireless stations 13 arranged in the vicinity the same group, erroneous detection of the preamble in the mobile wireless station 23 can be reduced.
 また、固定無線局13及び当該固定無線局13と接続している移動無線局23は、当該固定無線局13の識別子に基づいて選択された周波数ホッピングシーケンスに従って決定された時分割チャネルを用いて、当該固定無線局13の識別子に基づいて選択されたプリアンブル信号と、移動体制御情報とを時間多重して伝送するので、時分割チャネル毎にプリアンブルによる受信タイミングを検出できる。このため、固定無線局13は、時分割チャネル毎に送信元及び無線伝搬距離が異なる移動無線局23からのデータ信号を正しく受信できる。 Further, the fixed radio station 13 and the mobile radio station 23 connected to the fixed radio station 13 use a time division channel determined according to the frequency hopping sequence selected based on the identifier of the fixed radio station 13, Since the preamble signal selected based on the identifier of the fixed wireless station 13 and the mobile control information are time-multiplexed and transmitted, the reception timing by the preamble can be detected for each time division channel. For this reason, the fixed radio station 13 can correctly receive the data signal from the mobile radio station 23 having a different transmission source and radio propagation distance for each time division channel.
 また、プリアンブル信号は、第一のプリアンブル系列の信号と第二のプリアンブル系列の信号が結合したものであり、第一のプリアンブル系列は、無線通信システム内の全ての固定無線局13及び移動無線局23について同一であり、第二のプリアンブル系列は、固定無線局13の識別子に基づいて選択されるので、無線通信システム内で共通の第一のプリアンブルにより時分割チャネルの先頭タイミング検出を容易にし、第二のプリアンブルにより第一のプリアンブルの送信元の固定無線局13が正しいかを検証できる。このため、プリアンブルによるタイミングの誤検出を低減できる。 The preamble signal is a combination of a first preamble sequence signal and a second preamble sequence signal, and the first preamble sequence includes all fixed radio stations 13 and mobile radio stations in the radio communication system. Since the second preamble sequence is selected based on the identifier of the fixed radio station 13, the first preamble common in the radio communication system facilitates the detection of the start timing of the time division channel, The second preamble can verify whether the fixed radio station 13 that is the transmission source of the first preamble is correct. For this reason, erroneous detection of timing due to the preamble can be reduced.
 また、固定無線局13は、当該固定無線局13の識別子と、各時分割チャネルと周波数ホッピングシーケンスの読み出し位置を対応付けるための時分割チャネル番号とを、当該固定無線局13と接続している全ての移動無線局23に報知するので、移動無線局23は、受信した時分割チャネルの周波数ホッピングシーケンスにおける位置を容易に特定できる。 In addition, the fixed radio station 13 is connected to the fixed radio station 13 with the identifier of the fixed radio station 13 and the time division channel number for associating each time division channel with the reading position of the frequency hopping sequence. The mobile radio station 23 can easily identify the position of the received time division channel in the frequency hopping sequence.
 また、無線通信システム内の全ての固定無線局13間で同一のフレーム内の位置に報知用時分割チャネルが配置されており、報知用時分割チャネルにて報知される時分割チャネル番号として、フレームの通し番号を使用するので、定期的に送信される報知用時分割チャネルを移動無線局23が受信することによって、周波数ホッピングシーケンス及び当該固定無線局13が受信可能なプリアンブル系列を随時選択できる。 Also, a broadcast time division channel is arranged at a position in the same frame among all the fixed wireless stations 13 in the wireless communication system, and a frame is used as a time division channel number broadcast on the broadcast time division channel. Therefore, when the mobile radio station 23 receives the broadcast time division channel that is periodically transmitted, the frequency hopping sequence and the preamble sequence that can be received by the fixed radio station 13 can be selected at any time.
 また、報知用時分割チャネルで送信されるプリアンブル信号は、当該報知用時分割チャネル以外の時分割チャネルで送信されるプリアンブル信号と相互相関が低い系列のプリアンブル信号であり、かつ、無線通信システム内の全ての固定無線局13に関して同一のプリアンブル系列のプリアンブル信号であるので、移動無線局23は第一のプリアンブルにより検出した時分割チャネルの先頭タイミングが、報知用時分割チャネルであることを容易に特定できる。 The preamble signal transmitted on the broadcast time division channel is a preamble signal of a sequence having a low cross-correlation with a preamble signal transmitted on a time division channel other than the broadcast time division channel, and is included in the radio communication system. Therefore, it is easy for the mobile radio station 23 to determine that the start timing of the time division channel detected by the first preamble is the broadcast time division channel. Can be identified.
 また、固定無線局13は、接続要求を受けると、移動無線局23に割り当てた下りの時分割チャネルを使用して割り当て結果を伝送するので、移動無線局23は予め定められた固定無線局13だけでなく、固定無線局13毎の無線通信状態に応じて適切な固定無線局13と通信できる。 Further, when the fixed wireless station 13 receives the connection request, the fixed wireless station 23 transmits the assignment result using the downlink time division channel assigned to the mobile wireless station 23, so that the mobile wireless station 23 determines the predetermined fixed wireless station 13. In addition, it is possible to communicate with an appropriate fixed wireless station 13 according to the wireless communication state of each fixed wireless station 13.
 なお、本発明は前述した実施例に限定されるものではなく、添付した特許請求の範囲の趣旨内における様々な変形例及び同等の構成が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに本発明は限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えてもよい。また、ある実施例の構成に他の実施例の構成を加えてもよい。また、各実施例の構成の一部について、他の構成の追加・削除・置換をしてもよい。 The present invention is not limited to the above-described embodiments, and includes various modifications and equivalent configurations within the scope of the appended claims. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to those having all the configurations described. A part of the configuration of one embodiment may be replaced with the configuration of another embodiment. Moreover, you may add the structure of another Example to the structure of a certain Example. In addition, for a part of the configuration of each embodiment, another configuration may be added, deleted, or replaced.
 また、前述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等により、ハードウェアで実現してもよく、プロセッサがそれぞれの機能を実現するプログラムを解釈し実行することにより、ソフトウェアで実現してもよい。 In addition, each of the above-described configurations, functions, processing units, processing means, etc. may be realized in hardware by designing a part or all of them, for example, with an integrated circuit, and the processor realizes each function. It may be realized by software by interpreting and executing the program to be executed.
 各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記憶装置、又は、ICカード、SDカード、DVD等の記録媒体に格納することができる。 Information such as programs, tables, and files that realize each function can be stored in a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、実装上必要な全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成が相互に接続されていると考えてよい。 Also, the control lines and information lines indicate what is considered necessary for the explanation, and do not necessarily indicate all control lines and information lines necessary for mounting. In practice, it can be considered that almost all the components are connected to each other.

Claims (11)

  1.  固定無線局と移動無線局との間で周波数ホッピングする時分割チャネルを用いて移動体制御情報を双方向伝送する無線通信システムにおける無線通信方法であって、
     前記移動無線局は、プリアンブル信号によって、前記無線局間でタイミングを同期し、
     相互に近接し、グループを構成する複数の固定無線局では、周波数ホッピングシーケンスを直交させて、同一のプリアンブル信号を使用し、
     異なる前記グループの固定無線局間では、一部又は全ての時分割チャネルで周波数ホッピングシーケンスの重複を許容し、異なるプリアンブル信号を使用することを特徴とする無線通信方法。
    A wireless communication method in a wireless communication system for bidirectionally transmitting mobile control information using a time division channel for frequency hopping between a fixed wireless station and a mobile wireless station,
    The mobile radio station synchronizes timing between the radio stations by a preamble signal,
    In a plurality of fixed radio stations that are close to each other and form a group, frequency hopping sequences are orthogonalized and the same preamble signal is used.
    A wireless communication method characterized in that frequency hopping sequences are allowed to overlap in a part or all of the time division channels between different groups of fixed wireless stations, and different preamble signals are used.
  2.  請求項1に記載の無線通信方法であって、
     前記固定無線局の識別子は、前記グループを一意に識別するためのグループ識別子と、前記グループ内の固定無線局を一意に識別するためのグループ内識別子とから構成され、
     前記プリアンブル信号は、前記グループ識別子に基づいて決定され、
     前記周波数ホッピングシーケンスは、グループ内識別子に基づいて決定されることを特徴とする無線通信方法。
    The wireless communication method according to claim 1,
    The fixed radio station identifier is composed of a group identifier for uniquely identifying the group, and an intra-group identifier for uniquely identifying the fixed radio station in the group,
    The preamble signal is determined based on the group identifier;
    The wireless communication method according to claim 1, wherein the frequency hopping sequence is determined based on an intra-group identifier.
  3.  請求項2に記載の無線通信方法であって、
     前記固定無線局及び当該固定無線局と接続している移動無線局は、当該固定無線局の識別子に基づいて選択された周波数ホッピングシーケンスに従って決定された時分割チャネルを用いて、当該固定無線局の識別子に基づいて選択されたプリアンブル信号と、前記移動体制御情報とを時間多重して伝送することを特徴とする無線通信方法。
    The wireless communication method according to claim 2,
    The fixed radio station and the mobile radio station connected to the fixed radio station use the time division channel determined according to the frequency hopping sequence selected based on the identifier of the fixed radio station, and A radio communication method characterized by time-multiplexing and transmitting a preamble signal selected based on an identifier and the mobile control information.
  4.  請求項3に記載の無線通信方法であって、
     前記プリアンブル信号は、第一のプリアンブル系列の信号と第二のプリアンブル系列の信号が結合したものであり、
     前記第一のプリアンブル系列は、前記無線通信システム内の全ての前記固定無線局及び前記移動無線局について同一であり、
     前記第二のプリアンブル系列は、前記固定無線局の識別子に基づいて選択されることを特徴とする無線通信方法。
    The wireless communication method according to claim 3,
    The preamble signal is a combination of a first preamble sequence signal and a second preamble sequence signal,
    The first preamble sequence is the same for all the fixed radio stations and the mobile radio stations in the radio communication system;
    The wireless communication method, wherein the second preamble sequence is selected based on an identifier of the fixed wireless station.
  5.  請求項4に記載の無線通信方法であって、
     前記固定無線局は、当該固定無線局の識別子と、各時分割チャネルと周波数ホッピングシーケンスの読み出し位置を対応付けるための時分割チャネル通し番号とを、当該固定無線局と接続している全ての前記移動無線局に対して報知することを特徴とする無線通信方法。
    The wireless communication method according to claim 4,
    The fixed radio station has an identifier of the fixed radio station and a time division channel serial number for associating each time division channel with a reading position of the frequency hopping sequence for all the mobile radios connected to the fixed radio station. A wireless communication method characterized by notifying a station.
  6.  請求項5に記載の無線通信方法であって、
     複数の時分割チャネルを束ねてフレームが定義されており、
     前記無線通信システム内の全ての固定無線局間で同一のフレーム内の位置に、報知用時分割チャネルが配置されており、
     前記報知用時分割チャネルにて報知される時分割チャネル番号として、前記フレームの通し番号を使用することを特徴とする無線通信方法。
    The wireless communication method according to claim 5,
    A frame is defined by bundling multiple time division channels,
    A time division channel for notification is arranged at a position in the same frame between all the fixed wireless stations in the wireless communication system,
    A wireless communication method, wherein a serial number of the frame is used as a time division channel number broadcasted on the broadcast time division channel.
  7.  請求項6記載の無線通信方法であって、
     前記フレーム内に少なくとも一つの報知用時分割チャネルが配置されており、
     前記報知用時分割チャネルで送信されるプリアンブル信号は、当該報知用時分割チャネル以外の時分割チャネルで送信されるプリアンブル信号と相互相関が低い系列のプリアンブル信号であり、かつ、前記無線通信システム内の全ての固定無線局に関して同一のプリアンブル系列のプリアンブル信号であることを特徴とする無線通信方法。
    The wireless communication method according to claim 6, comprising:
    At least one broadcast time division channel is arranged in the frame,
    The preamble signal transmitted on the broadcast time division channel is a preamble signal having a low cross-correlation with a preamble signal transmitted on a time division channel other than the broadcast time division channel, and in the radio communication system A radio communication method characterized by being preamble signals of the same preamble sequence for all the fixed radio stations.
  8.  請求項6に記載の無線通信方法であって、
     移動無線局が前記移動体制御情報を伝送する時分割チャネルの割り当てを要求する接続要求を前記固定無線局に送信するための初期アクセス用時分割チャネルが、フレーム内の定められた位置に配置され、
     固定無線局は、前記接続要求を受けると、移動体制御情報を双方向伝送するための時分割チャネルを当該移動無線局に割り当て、前記割り当てた時分割チャネルのうち下りの時分割チャネルを使用して、当該移動無線局に時分割チャネルの割り当て結果を伝送することを特徴とする無線通信方法。
    The wireless communication method according to claim 6, comprising:
    A time division channel for initial access for transmitting a connection request for requesting assignment of a time division channel for the mobile radio station to transmit the mobile control information to the fixed radio station is arranged at a predetermined position in the frame. ,
    Upon receiving the connection request, the fixed radio station assigns a time division channel for bidirectional transmission of mobile control information to the mobile radio station, and uses a downlink time division channel among the assigned time division channels. And transmitting a time division channel assignment result to the mobile radio station.
  9.  固定無線局と移動無線局との間で周波数ホッピングする時分割チャネルを用いて移動体制御情報を双方向伝送する無線通信システムであって、
     前記移動無線局及び前記固定無線局の各々を構成する無線通信装置は、1又は複数のアンテナと、無線信号の送受信処理を行う無線信号処理部と、特定の無線チャネルによる無線信号の送受信を制御する無線伝送制御部とを有し、
     前記移動無線局は、プリアンブル信号によって、前記無線局間でタイミングを同期し、
     相互に近接し、グループを構成する複数の固定無線局では、周波数ホッピングシーケンスを直交させて、同一のプリアンブル信号を使用し、
     異なる前記グループの固定無線局では、一部又は全ての時分割チャネルで周波数ホッピングシーケンスの重複を許容し、異なるプリアンブル信号を使用することを特徴とする無線通信システム。
    A wireless communication system for bidirectionally transmitting mobile control information using a time division channel for frequency hopping between a fixed radio station and a mobile radio station,
    The wireless communication device that constitutes each of the mobile radio station and the fixed radio station controls one or a plurality of antennas, a radio signal processing unit that performs radio signal transmission / reception processing, and radio signal transmission / reception using a specific radio channel. A wireless transmission control unit,
    The mobile radio station synchronizes timing between the radio stations by a preamble signal,
    In a plurality of fixed radio stations that are close to each other and form a group, frequency hopping sequences are orthogonalized and the same preamble signal is used.
    A wireless communication system characterized in that, in the fixed wireless stations of different groups, frequency hopping sequences are allowed to overlap in some or all of the time division channels and different preamble signals are used.
  10.  移動無線局との間で周波数ホッピングする時分割チャネルを用いて移動体制御情報を双方向伝送する固定無線局を構成する無線通信装置であって、
     1又は複数のアンテナと、無線信号の送受信処理を行う無線信号処理部と、特定の無線チャネルによる無線信号の送受信を制御する無線伝送制御部とを有し、
     相互に近接し、グループを構成する複数の固定無線局では、周波数ホッピングシーケンスを直交させて、同一のプリアンブル信号を使用し、
     異なる前記グループの固定無線局では、一部又は全ての時分割チャネルで周波数ホッピングシーケンスの重複を許容し、異なるプリアンブル信号を使用し、
     前記周波数ホッピングシーケンスに従って決定された時分割チャネルにおいて、前記プリアンブル信号及び前記移動体制御情報を送信することを特徴とする無線通信装置。
    A wireless communication device constituting a fixed wireless station that bidirectionally transmits mobile control information using a time division channel for frequency hopping with a mobile wireless station,
    One or a plurality of antennas, a radio signal processing unit that performs radio signal transmission / reception processing, and a radio transmission control unit that controls transmission / reception of radio signals via a specific radio channel,
    In a plurality of fixed radio stations that are close to each other and form a group, frequency hopping sequences are orthogonalized and the same preamble signal is used.
    In different groups of fixed radio stations, some or all of the time division channels allow overlapping frequency hopping sequences and use different preamble signals,
    A radio communication apparatus that transmits the preamble signal and the mobile control information in a time division channel determined according to the frequency hopping sequence.
  11.  固定無線局との間で周波数ホッピングする時分割チャネルを用いて移動体制御情報を双方向伝送する移動無線局を構成する無線通信装置であって、
     1又は複数のアンテナと、無線信号の送受信処理を行う無線信号処理部と、特定の無線チャネルによる無線信号の送受信を制御する無線伝送制御部とを有し、
     相互に近接し、グループを構成する複数の固定無線局では、周波数ホッピングシーケンスを直交させて、同一のプリアンブル信号を使用し、
     異なる前記グループの固定無線局では、一部又は全ての時分割チャネルで周波数ホッピングシーケンスの重複を許容し、異なるプリアンブル信号を使用し、
     前記無線通信装置は、
     前記固定無線局が送信するプリアンブル信号を受信して、固定無線局グループを検索し、
     前記検索された固定無線局グループのプリアンブル信号の受信強度に基づいて選択された周波数チャネルにおいて一つの固定無線局を選択し、
     前記選択された固定無線局の時分割チャネルタイミング及び周波数ホッピングシーケンスを参照してタイミングを同期し、
     前記同期が確立した固定無線局と同一のプリアンブル信号と前記移動体制御情報とを時分割チャネル内で送信することを特徴とする無線通信装置。
    A wireless communication device constituting a mobile radio station that bidirectionally transmits mobile control information using a time division channel that performs frequency hopping with a fixed radio station,
    One or a plurality of antennas, a radio signal processing unit that performs radio signal transmission / reception processing, and a radio transmission control unit that controls transmission / reception of radio signals via a specific radio channel,
    In a plurality of fixed radio stations that are close to each other and form a group, frequency hopping sequences are orthogonalized and the same preamble signal is used.
    In different groups of fixed radio stations, some or all of the time division channels allow overlapping frequency hopping sequences and use different preamble signals,
    The wireless communication device
    Receiving a preamble signal transmitted by the fixed radio station, searching for a fixed radio station group;
    Selecting one fixed radio station in the frequency channel selected based on the received signal strength of the preamble of the fixed radio station group searched;
    Synchronize timing with reference to the time division channel timing and frequency hopping sequence of the selected fixed radio station,
    A radio communication apparatus, wherein the same preamble signal as that of the fixed radio station with which the synchronization is established and the mobile control information are transmitted in a time division channel.
PCT/JP2019/019639 2018-06-11 2019-05-17 Wireless communication method, wireless communication system, and wireless communication device WO2019239789A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-110869 2018-06-11
JP2018110869A JP7123642B2 (en) 2018-06-11 2018-06-11 Wireless communication method, wireless communication system and wireless communication device

Publications (1)

Publication Number Publication Date
WO2019239789A1 true WO2019239789A1 (en) 2019-12-19

Family

ID=68843296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019639 WO2019239789A1 (en) 2018-06-11 2019-05-17 Wireless communication method, wireless communication system, and wireless communication device

Country Status (2)

Country Link
JP (1) JP7123642B2 (en)
WO (1) WO2019239789A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204615A (en) * 1995-01-27 1996-08-09 Hitachi Ltd Radio lan system adopting frequency hopping system
WO2000052851A1 (en) * 1999-02-26 2000-09-08 Springboard Wireless Networks Inc. Communication system for mobile networks
US20060067205A1 (en) * 2004-09-20 2006-03-30 Samsung Electronics Co., Ltd. Base station identification method for an FH-OFDMA MIMO communication system
JP2009171078A (en) * 2008-01-15 2009-07-30 Hitachi Ltd Radio communication system, base station, and frequency channel selection method
WO2017018539A1 (en) * 2015-07-30 2017-02-02 京セラ株式会社 Base station and wireless terminal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204615A (en) * 1995-01-27 1996-08-09 Hitachi Ltd Radio lan system adopting frequency hopping system
WO2000052851A1 (en) * 1999-02-26 2000-09-08 Springboard Wireless Networks Inc. Communication system for mobile networks
US20060067205A1 (en) * 2004-09-20 2006-03-30 Samsung Electronics Co., Ltd. Base station identification method for an FH-OFDMA MIMO communication system
JP2009171078A (en) * 2008-01-15 2009-07-30 Hitachi Ltd Radio communication system, base station, and frequency channel selection method
WO2017018539A1 (en) * 2015-07-30 2017-02-02 京セラ株式会社 Base station and wireless terminal

Also Published As

Publication number Publication date
JP7123642B2 (en) 2022-08-23
JP2019216298A (en) 2019-12-19

Similar Documents

Publication Publication Date Title
US10873957B2 (en) Method and apparatus for transmitting adaptive partial subframe in unlicensed frequency band, method and apparatus for identifying a frame structure, and method and apparatus for transmitting signal
KR102537798B1 (en) Method, device, and system for transmitting or receiving uplink control channel in wireless communication system
US11502794B2 (en) Communication system, communication terminal device, and communication node
JP6838615B2 (en) Communication equipment, communication methods, base stations and programs
JP6996492B2 (en) Terminal equipment, base station equipment and communication method
US9794030B2 (en) Method and apparatus for making HARQs in carrier aggregation systems
JP7027892B2 (en) Terminal device and communication method
US20200127879A1 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
US20200195358A1 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
US9408168B2 (en) Method and apparatus for transmitting synchronization signal in carrier aggregation system
US8737286B2 (en) Sub-frame structure for use in advanced communication systems
AU2018215316A1 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
US10616892B2 (en) User equipments, base stations and methods
JP6828728B2 (en) Communication equipment, base station equipment and communication method
US11284247B2 (en) Terminal apparatus and method
JP2019504543A (en) Uplink control channel configuration for unlicensed carriers
KR20140010383A (en) Micro base station, user terminal, and wireless communication method
JP6773052B2 (en) Terminal equipment, base station equipment and communication methods
WO2014003432A1 (en) Method and user equipment for performing radio resource management, and method and base station for requesting radio resource management
JP2022036266A (en) Communication method and communication device
JP2017535223A (en) Data transmission method and apparatus in frequency bins without license
US11963116B2 (en) Synchronization for V2X communication
CN112771964A (en) Bandwidth portion configuration for V2X communications
CN112771965A (en) Waveform portion configuration for V2X communications
KR20180007648A (en) Method and apparatus for transmission and reception of random access preamble in wirelss cellular communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819421

Country of ref document: EP

Kind code of ref document: A1