WO2019237685A1 - 机床导轨检测装置及机床导轨检测方法 - Google Patents

机床导轨检测装置及机床导轨检测方法 Download PDF

Info

Publication number
WO2019237685A1
WO2019237685A1 PCT/CN2018/119489 CN2018119489W WO2019237685A1 WO 2019237685 A1 WO2019237685 A1 WO 2019237685A1 CN 2018119489 W CN2018119489 W CN 2018119489W WO 2019237685 A1 WO2019237685 A1 WO 2019237685A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide rail
machine tool
mounting portion
guide
detection
Prior art date
Application number
PCT/CN2018/119489
Other languages
English (en)
French (fr)
Inventor
张文坤
刘星
张博
尹立明
李伊君
Original Assignee
珠海格力智能装备有限公司
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力智能装备有限公司, 珠海格力电器股份有限公司 filed Critical 珠海格力智能装备有限公司
Publication of WO2019237685A1 publication Critical patent/WO2019237685A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/24Measuring arrangements characterised by the use of mechanical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B5/245Measuring arrangements characterised by the use of mechanical techniques for measuring angles or tapers; for testing the alignment of axes for testing perpendicularity

Definitions

  • the present invention relates to the field of machine tool rail verticality detection, and in particular, to a machine tool rail detection device and a machine tool rail detection method.
  • the main purpose of the present invention is to provide a machine tool guide detection device and a machine tool guide detection method, so as to solve the problem that the machine tool guide perpendicularity detection is difficult in the prior art.
  • a machine tool guide detection device for detecting a perpendicularity between a first guide and a second guide of a machine tool, and the first guide has a first abutting surface.
  • the first bonding surface extends along the extension direction of the first guide rail.
  • the machine tool guide rail detection device includes: a measurement plate, the measurement plate is disposed on the first guide rail, and the measurement plate has a first reference plane and a second reference plane perpendicular to the first reference plane.
  • a reference surface the first reference surface is parallel to the first bonding surface; the first detection instrument, the measuring head of the first detection instrument is in contact with the second reference surface, so that the reading of the first detection instrument is the first initial reading;
  • the first detection instrument is movably arranged along the extending direction of the second guide rail to obtain a plurality of first real-time readings of the first detection instrument during the movement, and according to a plurality of the first real-time readings and the first initial readings. The difference relationship between them determines the perpendicularity between the first rail and the second rail.
  • the machine tool rail detection device further includes: a first sliding portion, the first sliding portion is movably mounted on the second rail, and the first detection instrument is provided on the first sliding portion, so that the first sliding portion is driven The first detection instrument moves in an extending direction of the second guide rail.
  • the second guide rails are arranged in pairs, and the pair of two second guide rails are parallel to each other.
  • the first sliding part includes a first mounting part and a second mounting part. The first sliding part is connected to one second rail through the first mounting part. The first sliding portion is movably connected to another second guide rail through the second mounting portion.
  • first mounting portion and the second mounting portion are both plate bodies, and the first sliding portion further includes a first connection plate.
  • the first connection plate is disposed between the first mounting portion and the second mounting portion, and is located at the second Above the guide rail, the first connecting plate, the first mounting portion and the second mounting portion are spliced into a U-shaped structure.
  • the machine tool guide detection device further includes: a second detection instrument, and the measurement head of the second detection instrument is in contact with the first reference surface, so that the reading of the second detection instrument is the second initial reading;
  • the extension direction of a laminating surface is movably set to obtain a plurality of second real-time readings of the second detection instrument during the movement, and according to the difference relationship between the plurality of second real-time readings and the second initial reading.
  • the measurement plate is adjusted so that the first reference surface is parallel to the first bonding surface.
  • the machine tool guide rail detection device further includes: a second sliding portion, the second sliding portion is movably mounted on the first guide rail, and the measuring plate is disposed on the second sliding portion, so that the second sliding portion drives the measuring plate. Move along the extending direction of the first bonding surface.
  • the first guide rails are arranged in pairs, and the pair of two first guide rails are parallel to each other.
  • the second sliding portion includes a third mounting portion and a fourth mounting portion. The second sliding portion is connected to one first rail through the third mounting portion. The second sliding portion is movably connected to another first guide rail through the fourth mounting portion.
  • the third mounting portion and the fourth mounting portion are both plate bodies, and the second sliding portion further includes a second connection plate.
  • the second connection plate is disposed between the third mounting portion and the fourth mounting portion, and is located at the first Above the guide rail, the second connecting plate, the third mounting portion and the fourth mounting portion are spliced into a U-shaped structure.
  • the machine tool guide rail detection device further includes: a first sliding portion, the first sliding portion is movably mounted on the second guide rail, the first sliding portion has a mounting end surface, and the first detection instrument is spaced from the second detection instrument. Ground on the mounting face.
  • the first detection instrument is a dial indicator
  • the second detection instrument is a dial indicator
  • a method for testing a machine tool rail is provided, which is applicable to the above-mentioned machine tool rail testing device.
  • the method for testing a machine tool rail includes: installing a measurement board on a first guide rail of a machine tool, and A reference plane is parallel to the first abutting surface of the first guide rail; the measuring head of the first testing instrument is in contact with the second reference plane of the measuring board, and the reading of the first testing instrument is recorded as the first initial reading; A testing instrument moves a first preset distance along the second guide rail, and during the movement of the first testing instrument, records a plurality of first real-time readings of the first testing instrument; according to a plurality of first real-time readings and a first initial reading, The difference relationship between them determines the perpendicularity between the first rail and the second rail.
  • the method for making the first reference surface parallel to the first bonding surface includes: contacting the measurement head of the second testing instrument with the first reference surface, and recording the reading of the second testing instrument as a second initial reading;
  • the measurement board moves a second preset distance along the extension direction of the first bonding surface, and during the movement of the measurement board, records a plurality of second real-time readings of the second detection instrument; according to the plurality of second real-time readings and the second initial
  • the difference between the readings adjusts the measuring plate so that the first reference plane is parallel to the first bonding plane.
  • the machine tool guide rail detecting device of the present invention can detect the perpendicularity between the first guide rail and the second guide rail of the machine tool through the measurement board and the first detection instrument.
  • the measurement board is arranged on the first guide rail, and the measurement head of the first detection instrument is in contact with the second reference surface.
  • the first detection instrument moves along the extension direction of the second guide rail. The difference between the real-time reading and the first initial reading determines the perpendicularity between the first guide and the second guide.
  • the machine tool guide rail detecting device of the present invention can detect the verticality between the first guide rail and the second guide rail of the machine tool through the measurement board and the first detection instrument, and solves the difficulty in detecting the verticality of the machine tool guide rail in the prior art. problem.
  • FIG. 1 is a schematic structural view of a first perspective of a machine tool guide detection device installed on a machine tool according to the present invention
  • FIG. 2 is a schematic structural view of a second perspective of a machine tool guide detection device installed on a machine tool according to the present invention
  • FIG. 3 is a schematic diagram showing a partially enlarged structure of the machine tool guide detection device A in FIG. 2; FIG.
  • FIG. 4 shows a partially enlarged structure diagram of the machine tool guide detection device B in FIG. 2;
  • FIG. 5 is a schematic flowchart of a method for testing a machine tool guide according to the present invention.
  • the present invention provides a machine tool guide rail detection device. Please refer to FIGS. 1 to 4.
  • the machine tool guide rail detection device is used to detect the perpendicularity between the first guide rail 20 and the second guide rail 30 of the machine tool 10.
  • the first guide rail 20 The first bonding surface 21 is provided.
  • the first bonding surface 21 extends along the extending direction of the first guide rail 20.
  • the machine tool rail detection device includes a measuring plate 40.
  • the measuring plate 40 is disposed on the first guide rail 20.
  • the measuring plate 40 has a first A reference surface 41 and a second reference surface 42 perpendicular to the first reference surface 41, the first reference surface 41 is parallel to the first bonding surface 21; the first detection instrument 50, the measuring head of the first detection instrument 50 and the first The two reference planes 42 abut, so that the reading of the first detection meter 50 is the first initial reading; wherein the first detection meter 50 is movably disposed along the extending direction of the second guide rail 30 to obtain the first detection meter 50 A plurality of first real-time readings during the movement, and a perpendicularity between the first guide rail 20 and the second guide rail 30 is determined according to a difference relationship between the plurality of first real-time readings and the first initial reading.
  • the machine tool guide detection device of the present invention can detect the perpendicularity between the first guide 20 and the second guide 30 of the machine tool 10 through the measurement plate 40 and the first detection instrument 50.
  • the measurement board 40 is disposed on the first guide rail 20, and the measurement head of the first detection meter 50 is in contact with the second reference surface 42.
  • the first detection meter 50 moves along the extension direction of the second guide rail 30. , Determine the perpendicularity between the first guide rail 20 and the second guide rail 30 according to the difference relationship between the plurality of first real-time readings and the first initial reading.
  • the machine tool guide detection device of the present invention can detect the verticality between the first guide rail 20 and the second guide rail 30 of the machine tool 10 through the measurement board 40 and the first detection instrument 50, and solves the verticality of the machine tool guide rail in the prior art Degree detection is more difficult.
  • the measurement head of the first detection instrument 50 is in contact with the second reference surface 42 so that the reading of the first detection instrument 50 is the first initial reading, and the first detection instrument 50 is along the second guide rail 30.
  • the extending direction of the moving direction is movably set to obtain a plurality of first real-time readings of the first detection meter 50 during the movement, and determine the first according to a difference relationship between the plurality of first real-time readings and the first initial reading.
  • the first guide rail 20 has a first bonding surface 21, the first bonding surface 21 extends along the extending direction of the first guide rail 20, and the measurement plate 40 has a first reference surface 41 and is perpendicular to the first reference surface.
  • the second reference surface 42 of 41, the first reference surface 41 is parallel to the first bonding surface 21, that is, when the first detection instrument 50 is moved along the extending direction of the second guide rail 30, the second guide rail 30 and the second The parallelism of the reference surface 42.
  • the verticality of 30 is the verticality between the first guide rail 20 and the second guide rail 30.
  • the first rail 20 is an X-axis direction rail
  • the second rail 30 is a Z-axis direction rail.
  • the machine tool guide rail detection device further includes a first sliding portion 60, and the first sliding portion 60 is configured to be movably movable.
  • the first detecting instrument 50 is installed on the second guide rail 30, and the first detecting instrument 50 is disposed on the first sliding part 60, so that the first sliding part 60 drives the first detecting instrument 50 to move along the extending direction of the second guide rail 30.
  • a first sliding portion 60 is provided on the machine tool guide detection device, wherein the first sliding portion 60 is movably mounted on the second guide 30 and the first detection meter 50 is provided on the first sliding portion. 60, so that the first sliding part 60 can drive the first detection instrument 50 to move along the extending direction of the second guide rail 30.
  • the second guide rails 30 are arranged in pairs, and the pair of two second guide rails 30 are parallel to each other.
  • the first sliding portion 60 includes a first mounting portion and a second mounting portion. The first sliding portion 60 is connected to the first sliding portion 60 through the first mounting portion.
  • One second guide rail 30 is movably connected, and the first sliding portion 60 is movably connected with the other second guide rail 30 through the second mounting portion.
  • the first mounting portion and the second mounting portion are both plate bodies.
  • the first sliding portion 60 further includes a first connection plate, and the first connection plate is disposed on the first mounting portion and the second mounting portion.
  • the first connecting plate, the first mounting portion and the second mounting portion are spliced into a U-shaped structure between the parts and located above the second guide rail 30.
  • the first connection plate is disposed between the first and second mounting portions, and the first connection plate is disposed to connect the first and second mounting portions.
  • the second guide rail 30 has a second bonding surface 31, the second bonding surface 31 extends in the extending direction of the second guide rail 30, and the first sliding portion 60 has a first mounting surface.
  • the first mounting surface and the second bonding surface 31 are bonded to each other, so that the first sliding part 60 drives the first detection meter 50 to move along the extending direction of the second bonding surface 31.
  • the first sliding portion 60 is a bridge plate.
  • the machine tool rail detection device further includes: a second detection instrument 70, a measurement head of the second detection instrument 70 and a first measurement instrument 70.
  • a reference surface 41 abuts, so that the reading of the second testing instrument 70 is the second initial reading; wherein the measuring plate 40 is movably disposed along the extending direction of the first bonding surface 21 to obtain the second testing instrument 70.
  • a plurality of second real-time readings during the movement, and the measurement plate 40 is adjusted according to the difference relationship between the plurality of second real-time readings and the second initial reading, so that the first reference surface 41 and the first bonding surface 21 Phase parallel.
  • the second inspection instrument 70 is provided on the machine tool guide detection device.
  • the measurement head of the second inspection instrument 70 is in contact with the first reference surface 41 to make the second inspection instrument 70
  • the reading is the second initial reading
  • the measuring plate 40 is movably set along the extending direction of the first bonding surface 21, so that multiple second real-time readings of the second detection instrument 70 during the movement can be obtained, and
  • the measurement board 40 is adjusted according to the difference relationship between the plurality of second real-time readings and the second initial readings until the first reference surface 41 is parallel to the first bonding surface 21.
  • the machine tool rail detection device further includes: a second sliding portion 80, and the second sliding portion 80 is configured to be movable.
  • the measurement board 40 is installed on the first guide rail 20, and the measurement board 40 is disposed on the second sliding part 80, so that the second sliding part 80 drives the measurement board 40 to move along the extending direction of the first bonding surface 21.
  • the first guide rails 20 are arranged in pairs, and the two pairs of the first guide rails 20 are parallel to each other.
  • the second sliding portion 80 includes a third mounting portion and a fourth mounting portion. The second sliding portion 80 is connected to the third sliding portion through the third mounting portion.
  • One first guide rail 20 is movably connected, and the second sliding portion 80 is movably connected with the other first guide rail 20 through a fourth mounting portion.
  • the third mounting portion and the fourth mounting portion are both plate bodies, and the second sliding portion 80 further includes a second connection plate.
  • the second connection plate is disposed between the third mounting portion and the fourth mounting portion, and is located at the first portion. Above the one guide rail 20, the second connecting plate, the third mounting portion and the fourth mounting portion are spliced into a U-shaped structure.
  • the second connection plate is disposed between the third mounting portion and the fourth mounting portion, and is used to connect the third mounting portion and the fourth mounting portion.
  • the machine tool rail detection device further includes: a first sliding portion 60, the first sliding portion 60 is movably mounted on the second rail 30, and the first The sliding portion 60 has a mounting end face 61, and the first detection meter 50 and the second detection meter 70 are mounted on the mounting end face 61 at intervals.
  • the second sliding portion 80 is in contact with the first bonding surface 21.
  • the second sliding portion 80 is a bridge plate.
  • the measurement plate 40 is a square ruler.
  • the measurement board 40 is a 000-level granite marble square ruler.
  • a grade of 000 means that the accuracy of the square ruler is a thousand grades.
  • the first detection meter 50 is a dial indicator
  • the second detection meter 70 is a dial indicator
  • the invention also provides a machine tool guide rail detection method, which is suitable for the above machine tool guide rail detection device.
  • the machine tool guide rail detection method includes: installing a measurement board on a first guide rail of a machine tool, and The first reference surface is parallel to the first abutting surface of the first guide rail; the measuring head of the first testing instrument is in contact with the second reference surface of the measuring board, and the reading of the first testing instrument is recorded as the first initial reading;
  • the first detection instrument moves a first preset distance along the second guide rail, and during the movement of the first detection instrument, records a plurality of first real-time readings of the first detection instrument; according to the plurality of first real-time readings and the first initial reading The difference relationship between them determines the perpendicularity between the first rail and the second rail.
  • the method for making the first reference surface parallel to the first bonding surface includes: contacting the measuring head of the second testing instrument with the first reference surface, and recording the reading of the second testing instrument as a second initial reading;
  • the measurement board moves a second preset distance along the extension direction of the first bonding surface, and during the movement of the measurement board, records a plurality of second real-time readings of the second detection instrument; according to the plurality of second real-time readings and the second initial
  • the difference between the readings adjusts the measuring plate so that the first reference plane is parallel to the first bonding plane.
  • the second guide rail 30 has a second bonding surface 31, the second bonding surface 31 extends along the extending direction of the second guide rail 30, and the first sliding part 60 drives the first detection meter 50 along the second bonding surface 31. Move in extension direction.
  • a method for determining the perpendicularity of the first guide rail 20 and the second guide rail 30 according to a difference relationship between a plurality of first real-time readings and a first initial reading includes: determining a difference relationship between a plurality of first real-time readings and a first initial reading
  • the parallelism between the second reference surface 42 and the second bonding surface 31 of the second guide rail; the second bonding surface 31 and the first bonding surface 31 are obtained by the parallelism between the second reference surface 42 and the second bonding surface 31.
  • the machine tool guide detection device of the present invention can detect the perpendicularity between the first guide 20 and the second guide 30 of the machine tool 10 through the measurement plate 40 and the first detection instrument 50.
  • the measurement board 40 is disposed on the first guide rail 20, and the measurement head of the first detection meter 50 is in contact with the second reference surface 42.
  • the first detection meter 50 moves along the extension direction of the second guide rail 30. , Determine the perpendicularity between the first guide rail 20 and the second guide rail 30 according to the difference relationship between the plurality of first real-time readings and the first initial reading.
  • the machine tool guide detection device of the present invention can detect the verticality between the first guide rail 20 and the second guide rail 30 of the machine tool 10 through the measurement board 40 and the first detection instrument 50, and solves the verticality of the machine tool guide rail in the prior art Degree detection is more difficult.
  • spatially relative terms such as “above”, “above”, “above”, “above”, etc. can be used here to describe as shown in the figure Shows the spatial relationship between one device or feature and other devices or features. It should be understood that spatially relative terms are intended to encompass different orientations in use or operation in addition to the orientation of the device as described in the figures. For example, if a device in the drawing is turned over, devices described as “above” or “above” other devices or constructions will be positioned “below the other devices or structures” or “below” Other devices or constructs. " Thus, the exemplary term “above” may include both directions “above” and “below”. The device can also be positioned in other different ways (rotated 90 degrees or at other orientations), and the relative description of space used here is explained accordingly.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Machine Tool Units (AREA)

Abstract

本发明提供了一种机床导轨检测装置及机床导轨检测方法,机床导轨检测装置用于对机床的第一导轨和第二导轨之间的垂直度进行检测,机床导轨检测装置包括:测量板,测量板设置在第一导轨上;第一检测仪表,第一检测仪表的测量头与第二基准面相抵接,以使第一检测仪表的读数为第一初始读数;其中,第一检测仪表沿第二导轨的延伸方向可移动地设置,得出第一检测仪表在移动过程中的多个第一实时读数,根据多个第一实时读数与第一初始读数之间的差值关系确定第一导轨与第二导轨之间的垂直度。本发明的机床导轨检测装置解决了现有技术中的机床导轨垂直度检测较为困难的问题。

Description

机床导轨检测装置及机床导轨检测方法 技术领域
本发明涉及机床导轨垂直度检测领域,具体而言,涉及一种机床导轨检测装置及机床导轨检测方法。
背景技术
现有的机床,为了适应加工刀具不同方向的移动,机床底座上多安装有不同方向的导轨,为了满足Z轴以及X轴方向导轨的安装位置,在安装过程中,需要保证Z轴以及X轴方向导轨的垂直度。
然而,由于底座体积较大,且重量较重,无法在三坐标测量仪上测量精度,且现有的测量手段又很难满足较高的垂直度要求。
发明内容
本发明的主要目的在于提供一种机床导轨检测装置及机床导轨检测方法,以解决现有技术中的机床导轨垂直度检测较为困难的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种机床导轨检测装置,用于对机床的第一导轨和第二导轨之间的垂直度进行检测,第一导轨具有第一贴合面,第一贴合面沿第一导轨的延伸方向延伸,机床导轨检测装置包括:测量板,测量板设置在第一导轨上,测量板具有第一基准面和垂直于第一基准面的第二基准面,第一基准面与第一贴合面相平行;第一检测仪表,第一检测仪表的测量头与第二基准面相抵接,以使第一检测仪表的读数为第一初始读数;其中,第一检测仪表沿第二导轨的延伸方向可移动地设置,以得出第一检测仪表在移动过程中的多个第一实时读数,并根据多个第一实时读数与第一初始读数之间的差值关系确定第一导轨与第二导轨之间的垂直度。
进一步地,机床导轨检测装置还包括:第一滑动部,第一滑动部用于可移动地安装在第二导轨上,第一检测仪表设置在第一滑动部上,以使第一滑动部带动第一检测仪表沿第二导轨的延伸方向移动。
进一步地,第二导轨成对设置,成对的两个第二导轨相平行,第一滑动部包括第一安装部和第二安装部,第一滑动部通过第一安装部与一个第二导轨可移动地相连接,第一滑动部通过第二安装部与另一个第二导轨可移动地相连接。
进一步地,第一安装部和第二安装部均为板体,第一滑动部还包括第一连接板,第一连接板设置在第一安装部和第二安装部之间,且位于第二导轨的上方,第一连接板、第一安装部和第二安装部拼接为U形结构。
进一步地,机床导轨检测装置还包括:第二检测仪表,第二检测仪表的测量头与第一基准面相抵接,以使第二检测仪表的读数为第二初始读数;其中,测量板沿第一贴合面的延伸方向可移动地设置,以得出第二检测仪表在移动过程中的多个第二实时读数,并根据多个第二实时读数与第二初始读数之间的差值关系调节测量板,以使第一基准面与第一贴合面相平行。
进一步地,机床导轨检测装置还包括:第二滑动部,第二滑动部用于可移动地安装在第一导轨上,测量板设置在第二滑动部上,以使第二滑动部带动测量板沿第一贴合面的延伸方向移动。
进一步地,第一导轨成对设置,成对的两个第一导轨相平行,第二滑动部包括第三安装部和第四安装部,第二滑动部通过第三安装部与一个第一导轨可移动地相连接,第二滑动部通过第四安装部与另一个第一导轨可移动地相连接。
进一步地,第三安装部和第四安装部均为板体,第二滑动部还包括第二连接板,第二连接板设置在第三安装部和第四安装部之间,且位于第一导轨的上方,第二连接板、第三安装部和第四安装部拼接为U形结构。
进一步地,机床导轨检测装置还包括:第一滑动部,第一滑动部用于可移动地安装在第二导轨上,第一滑动部具有安装端面,第一检测仪表与第二检测仪表相间隔地安装在安装端面上。
进一步地,第一检测仪表为千分表,第二检测仪表为千分表。
根据本发明的另一方面,提供了一种机床导轨检测方法,适用于上述的机床导轨检测装置,机床导轨检测方法包括:将测量板安装在机床的第一导轨上,并使测量板的第一基准面与第一导轨的第一贴合面相平行;使第一检测仪表的测量头与测量板的第二基准面相抵接,并记录第一检测仪表的读数为第一初始读数;使第一检测仪表沿第二导轨移动第一预设距离,并在第一检测仪表移动过程中,记录第一检测仪表的多个第一实时读数;根据多个第一实时读数与第一初始读数之间的差值关系确定第一导轨与第二导轨之间的垂直度。
进一步地,使第一基准面与第一贴合面相平行的方法包括:使第二检测仪表的测量头与第一基准面相抵接,并记录第二检测仪表的读数为第二初始读数;使测量板沿第一贴合面的延伸方向移动第二预设距离,并在测量板移动过程中,记录第二检测仪表的多个第二实时读数;根据多个第二实时读数与第二初始读数之间的差值关系调节测量板,以使第一基准面与第一贴合面相平行。
本发明的机床导轨检测装置通过测量板和第一检测仪表能够对机床的第一导轨和第二导轨之间的垂直度进行检测。其中,测量板设置在第一导轨上,第一检测仪表的测量头与第二基准面相抵接,在具体检测过程中,第一检测仪表沿第二导轨的延伸方向移动,根据多个第一实时读数与第一初始读数之间的差值关系确定第一导轨与第二导轨之间的垂直度。本发明 的机床导轨检测装置通过测量板和第一检测仪表就能够对机床的第一导轨和第二导轨之间的垂直度进行检测,解决了现有技术中的机床导轨垂直度检测较为困难的问题。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的机床导轨检测装置安装在机床上的第一个视角的结构示意图;
图2示出了根据本发明的机床导轨检测装置安装在机床上的第二个视角的结构示意图;
图3示出了图2中的机床导轨检测装置的A处的局部放大结构示意图;
图4示出了图2中的机床导轨检测装置的B处的局部放大结构示意图;
图5示出了根据本发明的机床导轨检测方法的流程示意图。
其中,上述附图包括以下附图标记:
10、机床;20、第一导轨;21、第一贴合面;30、第二导轨;31、第二贴合面;40、测量板;41、第一基准面;42、第二基准面;50、第一检测仪表;60、第一滑动部;61、安装端面;70、第二检测仪表;80、第二滑动部。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
本发明提供了一种机床导轨检测装置,请参考图1至图4,机床导轨检测装置用于对机床10的第一导轨20和第二导轨30之间的垂直度进行检测,第一导轨20具有第一贴合面21,第一贴合面21沿第一导轨20的延伸方向延伸,机床导轨检测装置包括:测量板40,测量板40设置在第一导轨20上,测量板40具有第一基准面41和垂直于第一基准面41的第二基准面42,第一基准面41与第一贴合面21相平行;第一检测仪表50,第一检测仪表50的测量头与第二基准面42相抵接,以使第一检测仪表50的读数为第一初始读数;其中,第一检测 仪表50沿第二导轨30的延伸方向可移动地设置,以得出第一检测仪表50在移动过程中的多个第一实时读数,并根据多个第一实时读数与第一初始读数之间的差值关系确定第一导轨20与第二导轨30之间的垂直度。
本发明的机床导轨检测装置通过测量板40和第一检测仪表50能够对机床10的第一导轨20和第二导轨30之间的垂直度进行检测。其中,测量板40设置在第一导轨20上,第一检测仪表50的测量头与第二基准面42相抵接,在具体检测过程中,第一检测仪表50沿第二导轨30的延伸方向移动,根据多个第一实时读数与第一初始读数之间的差值关系确定第一导轨20与第二导轨30之间的垂直度。本发明的机床导轨检测装置通过测量板40和第一检测仪表50就能够对机床10的第一导轨20和第二导轨30之间的垂直度进行检测,解决了现有技术中的机床导轨垂直度检测较为困难的问题。
在本实施例中,通过将第一检测仪表50的测量头与第二基准面42相抵接,以使第一检测仪表50的读数为第一初始读数,第一检测仪表50沿第二导轨30的延伸方向可移动地设置,以得出第一检测仪表50在移动过程中的多个第一实时读数,并根据多个第一实时读数与第一初始读数之间的差值关系确定第一导轨20与第二导轨30之间的垂直度。
在本实施例中,第一导轨20具有第一贴合面21,第一贴合面21沿第一导轨20的延伸方向延伸,测量板40具有第一基准面41和垂直于第一基准面41的第二基准面42,第一基准面41与第一贴合面21相平行,即在第一检测仪表50沿第二导轨30的延伸方向移动时,可以获得第二导轨30与第二基准面42的平行度,考虑到第一基准面41垂直于第二基准面42,第一基准面41与第一贴合面21相平行,即可以获得第一贴合面21与第二导轨30的垂直度,也就是确定了第一导轨20和第二导轨30之间的垂直度。
在本实施例中,第一导轨20为X轴方向导轨,第二导轨30为Z轴方向导轨。
为了能够使得第一检测仪表50沿第二导轨30的延伸方向移动,如图1和图2所示,机床导轨检测装置还包括:第一滑动部60,第一滑动部60用于可移动地安装在第二导轨30上,第一检测仪表50设置在第一滑动部60上,以使第一滑动部60带动第一检测仪表50沿第二导轨30的延伸方向移动。
在本实施例中,通过在机床导轨检测装置上设置有第一滑动部60,其中,第一滑动部60可移动地安装在第二导轨30上,第一检测仪表50设置在第一滑动部60上,从而可以使第一滑动部60带动第一检测仪表50沿第二导轨30的延伸方向移动。
优选地,第二导轨30成对设置,成对的两个第二导轨30相平行,第一滑动部60包括第一安装部和第二安装部,第一滑动部60通过第一安装部与一个第二导轨30可移动地相连接,第一滑动部60通过第二安装部与另一个第二导轨30可移动地相连接。
针对第一滑动部60的具体结构,第一安装部和第二安装部均为板体,第一滑动部60还包括第一连接板,第一连接板设置在第一安装部和第二安装部之间,且位于第二导轨30的上方,第一连接板、第一安装部和第二安装部拼接为U形结构。
第一连接板设置在第一安装部和第二安装部之间,第一连接板设置用于连接第一安装部和第二安装部。
在本实施例中,如图4所示,第二导轨30具有第二贴合面31,第二贴合面31沿第二导轨30的延伸方向延伸,第一滑动部60具有第一安装面,第一安装面与第二贴合面31相贴合,以使第一滑动部60带动第一检测仪表50沿第二贴合面31的延伸方向移动。
优选地,第一滑动部60为桥板。
为了能够保证第一基准面41与第一贴合面21相平行,如图1和图3所示,机床导轨检测装置还包括:第二检测仪表70,第二检测仪表70的测量头与第一基准面41相抵接,以使第二检测仪表70的读数为第二初始读数;其中,测量板40沿第一贴合面21的延伸方向可移动地设置,以得出第二检测仪表70在移动过程中的多个第二实时读数,并根据多个第二实时读数与第二初始读数之间的差值关系调节测量板40,以使第一基准面41与第一贴合面21相平行。
在本实施例中,通过在机床导轨检测装置上设置有第二检测仪表70,在具体检测时,第二检测仪表70的测量头与第一基准面41相抵接,以使第二检测仪表70的读数为第二初始读数,然后使得测量板40沿第一贴合面21的延伸方向可移动地设置,从而可以得出第二检测仪表70在移动过程中的多个第二实时读数,并根据多个第二实时读数与第二初始读数之间的差值关系调节测量板40,直至第一基准面41与第一贴合面21相平行。
为了能够保证测量板40沿第一贴合面21的延伸方向移动,如图1和图2所示,机床导轨检测装置还包括:第二滑动部80,第二滑动部80用于可移动地安装在第一导轨20上,测量板40设置在第二滑动部80上,以使第二滑动部80带动测量板40沿第一贴合面21的延伸方向移动。
优选地,第一导轨20成对设置,成对的两个第一导轨20相平行,第二滑动部80包括第三安装部和第四安装部,第二滑动部80通过第三安装部与一个第一导轨20可移动地相连接,第二滑动部80通过第四安装部与另一个第一导轨20可移动地相连接。
优选地,第三安装部和第四安装部均为板体,第二滑动部80还包括第二连接板,第二连接板设置在第三安装部和第四安装部之间,且位于第一导轨20的上方,第二连接板、第三安装部和第四安装部拼接为U形结构。
在本实施例中,第二连接板设置在第三安装部和第四安装部之间,用于连接第三安装部和第四安装部。
针对第一检测仪表50与第二检测仪表70的具体安装位置,机床导轨检测装置还包括:第一滑动部60,第一滑动部60用于可移动地安装在第二导轨30上,第一滑动部60具有安装端面61,第一检测仪表50与第二检测仪表70相间隔地安装在安装端面61上。
在本实施例中,第二滑动部80与第一贴合面21相贴合。
优选地,第二滑动部80为桥板。
优选地,测量板40为方尺。
优选地,测量板40为000级花岗岩大理石方尺。000级即表示方尺的精度为千分级。
优选地,第一检测仪表50为千分表,第二检测仪表70为千分表。
本发明还提供了一种机床导轨检测方法,适用于上述的机床导轨检测装置,如图5所示,机床导轨检测方法包括:将测量板安装在机床的第一导轨上,并使测量板的第一基准面与第一导轨的第一贴合面相平行;使第一检测仪表的测量头与测量板的第二基准面相抵接,并记录第一检测仪表的读数为第一初始读数;使第一检测仪表沿第二导轨移动第一预设距离,并在第一检测仪表移动过程中,记录第一检测仪表的多个第一实时读数;根据多个第一实时读数与第一初始读数之间的差值关系确定第一导轨与第二导轨之间的垂直度。
优选地,使第一基准面与第一贴合面相平行的方法包括:使第二检测仪表的测量头与第一基准面相抵接,并记录第二检测仪表的读数为第二初始读数;使测量板沿第一贴合面的延伸方向移动第二预设距离,并在测量板移动过程中,记录第二检测仪表的多个第二实时读数;根据多个第二实时读数与第二初始读数之间的差值关系调节测量板,以使第一基准面与第一贴合面相平行。
优选地,第二导轨30具有第二贴合面31,第二贴合面31沿第二导轨30的延伸方向延伸,第一滑动部60带动第一检测仪表50沿第二贴合面31的延伸方向移动。
根据多个第一实时读数与第一初始读数的差值关系确定第一导轨20与第二导轨30的垂直度的方法包括:根据多个第一实时读数与第一初始读数的差值关系确定第二基准面42与第二导轨的第二贴合面31之间的平行度;通过第二基准面42与第二贴合面31之间的平行度得出第二贴合面31与第一贴合面21之间的垂直度。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
本发明的机床导轨检测装置通过测量板40和第一检测仪表50能够对机床10的第一导轨20和第二导轨30之间的垂直度进行检测。其中,测量板40设置在第一导轨20上,第一检测仪表50的测量头与第二基准面42相抵接,在具体检测过程中,第一检测仪表50沿第二导轨30的延伸方向移动,根据多个第一实时读数与第一初始读数之间的差值关系确定第一导轨20与第二导轨30之间的垂直度。本发明的机床导轨检测装置通过测量板40和第一检测仪表50就能够对机床10的第一导轨20和第二导轨30之间的垂直度进行检测,解决了现有技术中的机床导轨垂直度检测较为困难的问题。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于 覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种机床导轨检测装置,用于对机床(10)的第一导轨(20)和第二导轨(30)之间的垂直度进行检测,所述第一导轨(20)具有第一贴合面(21),所述第一贴合面(21)沿所述第一导轨(20)的延伸方向延伸,其特征在于,所述机床导轨检测装置包括:
    测量板(40),所述测量板(40)设置在所述第一导轨(20)上,所述测量板(40)具有第一基准面(41)和垂直于所述第一基准面(41)的第二基准面(42),所述第一基准面(41)与所述第一贴合面(21)相平行;
    第一检测仪表(50),所述第一检测仪表(50)的测量头与所述第二基准面(42)相抵接,以使所述第一检测仪表(50)的读数为第一初始读数;
    其中,所述第一检测仪表(50)沿所述第二导轨(30)的延伸方向可移动地设置,以得出所述第一检测仪表(50)在移动过程中的多个第一实时读数,并根据多个所述第一实时读数与所述第一初始读数之间的差值关系确定所述第一导轨(20)与所述第二导轨(30)之间的垂直度。
  2. 根据权利要求1所述的机床导轨检测装置,其特征在于,所述机床导轨检测装置还包括:
    第一滑动部(60),所述第一滑动部(60)用于可移动地安装在所述第二导轨(30)上,所述第一检测仪表(50)设置在所述第一滑动部(60)上,以使所述第一滑动部(60)带动所述第一检测仪表(50)沿所述第二导轨(30)的延伸方向移动。
  3. 根据权利要求2所述的机床导轨检测装置,其特征在于,所述第二导轨(30)成对设置,成对的两个所述第二导轨(30)相平行,所述第一滑动部(60)包括第一安装部和第二安装部,所述第一滑动部(60)通过所述第一安装部与一个所述第二导轨(30)可移动地相连接,所述第一滑动部(60)通过所述第二安装部与另一个所述第二导轨(30)可移动地相连接。
  4. 根据权利要求3所述的机床导轨检测装置,其特征在于,所述第一安装部和所述第二安装部均为板体,所述第一滑动部(60)还包括第一连接板,所述第一连接板设置在所述第一安装部和所述第二安装部之间,且位于所述第二导轨(30)的上方,所述第一连接板、所述第一安装部和所述第二安装部拼接为U形结构。
  5. 根据权利要求1所述的机床导轨检测装置,其特征在于,所述机床导轨检测装置还包括:
    第二检测仪表(70),所述第二检测仪表(70)的测量头与所述第一基准面(41)相抵接,以使所述第二检测仪表(70)的读数为第二初始读数;
    其中,所述测量板(40)沿所述第一贴合面(21)的延伸方向可移动地设置,以得出所述第二检测仪表(70)在移动过程中的多个第二实时读数,并根据多个所述第二实时读数与所述第二初始读数之间的差值关系调节所述测量板(40),以使所述第一基准面(41)与所述第一贴合面(21)相平行。
  6. 根据权利要求5所述的机床导轨检测装置,其特征在于,所述机床导轨检测装置还包括:
    第二滑动部(80),第二滑动部(80)用于可移动地安装在所述第一导轨(20)上,所述测量板(40)设置在所述第二滑动部(80)上,以使所述第二滑动部(80)带动所述测量板(40)沿所述第一贴合面(21)的延伸方向移动。
  7. 根据权利要求6所述的机床导轨检测装置,其特征在于,所述第一导轨(20)成对设置,成对的两个所述第一导轨(20)相平行,所述第二滑动部(80)包括第三安装部和第四安装部,所述第二滑动部(80)通过所述第三安装部与一个所述第一导轨(20)可移动地相连接,所述第二滑动部(80)通过所述第四安装部与另一个所述第一导轨(20)可移动地相连接。
  8. 根据权利要求7所述的机床导轨检测装置,其特征在于,所述第三安装部和所述第四安装部均为板体,第二滑动部(80)还包括第二连接板,所述第二连接板设置在所述第三安装部和所述第四安装部之间,且位于所述第一导轨(20)的上方,所述第二连接板、所述第三安装部和所述第四安装部拼接为U形结构。
  9. 根据权利要求5所述的机床导轨检测装置,其特征在于,所述机床导轨检测装置还包括:
    第一滑动部(60),所述第一滑动部(60)用于可移动地安装在所述第二导轨(30)上,所述第一滑动部(60)具有安装端面(61),所述第一检测仪表(50)与所述第二检测仪表(70)相间隔地安装在所述安装端面(61)上。
  10. 根据权利要求5所述的机床导轨检测装置,其特征在于,所述第一检测仪表(50)为千分表,所述第二检测仪表(70)为千分表。
  11. 一种机床导轨检测方法,适用于权利要求1至10中任一项所述的机床导轨检测装置,其特征在于,所述机床导轨检测方法包括:
    将测量板安装在机床的第一导轨上,并使所述测量板的第一基准面与第一导轨的第一贴合面相平行;
    使第一检测仪表的测量头与所述测量板的第二基准面相抵接,并记录所述第一检测仪表的读数为第一初始读数;
    使所述第一检测仪表沿所述第二导轨移动第一预设距离,并在所述第一检测仪表移动过程中,记录所述第一检测仪表的多个第一实时读数;
    根据多个所述第一实时读数与所述第一初始读数之间的差值关系确定所述第一导轨与所述第二导轨之间的垂直度。
  12. 根据权利要求11所述的机床导轨检测方法,其特征在于,所述机床导轨检测装置为权利要求5所述的机床导轨检测装置,使所述第一基准面与所述第一贴合面相平行的方法包括:
    使第二检测仪表的测量头与所述第一基准面相抵接,并记录所述第二检测仪表的读数为第二初始读数;
    使所述测量板沿所述第一贴合面的延伸方向移动第二预设距离,并在所述测量板移动过程中,记录所述第二检测仪表的多个第二实时读数;
    根据多个所述第二实时读数与所述第二初始读数之间的差值关系调节所述测量板,以使所述第一基准面与所述第一贴合面相平行。
PCT/CN2018/119489 2018-06-12 2018-12-06 机床导轨检测装置及机床导轨检测方法 WO2019237685A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810601506.6A CN108548476A (zh) 2018-06-12 2018-06-12 机床导轨检测装置及机床导轨检测方法
CN201810601506.6 2018-06-12

Publications (1)

Publication Number Publication Date
WO2019237685A1 true WO2019237685A1 (zh) 2019-12-19

Family

ID=63493729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119489 WO2019237685A1 (zh) 2018-06-12 2018-12-06 机床导轨检测装置及机床导轨检测方法

Country Status (2)

Country Link
CN (1) CN108548476A (zh)
WO (1) WO2019237685A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112344886A (zh) * 2020-11-02 2021-02-09 江苏科技大学 一种电梯空心导轨几何误差测量装置及测量方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108548476A (zh) * 2018-06-12 2018-09-18 珠海格力智能装备有限公司 机床导轨检测装置及机床导轨检测方法
CN110482351B (zh) * 2019-08-05 2020-12-04 南京理工大学 一种在用电梯导轨直线度检测***及方法
CN114211318A (zh) * 2021-12-27 2022-03-22 河源市皓吉达通讯器材有限公司 滑道垂直度与平行度加工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234122A (ja) * 1994-02-23 1995-09-05 Hitachi Zosen Corp 真直度測定装置
CN102243052A (zh) * 2011-04-15 2011-11-16 许晓华 一种垂直度检测装置
CN206540507U (zh) * 2017-03-14 2017-10-03 东旭科技集团有限公司 测量两条直线导轨垂直度的检验装置
CN108548476A (zh) * 2018-06-12 2018-09-18 珠海格力智能装备有限公司 机床导轨检测装置及机床导轨检测方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2214324C2 (ru) * 2001-12-13 2003-10-20 Московский государственный открытый университет Способ измерения отклонения от взаимной перпендикулярности направляющих металлорежущих станков
JP3959326B2 (ja) * 2002-09-18 2007-08-15 三菱電機ビルテクノサービス株式会社 エレベータ用ガイドレールの垂直度測定装置
JP2005030879A (ja) * 2003-07-11 2005-02-03 Dainippon Screen Mfg Co Ltd 測長装置
CN101458058B (zh) * 2007-12-12 2010-09-29 鸿富锦精密工业(深圳)有限公司 量测装置
TW201011182A (en) * 2008-09-05 2010-03-16 Univ Nat Formosa Parallelism measurement device for movements on linear slide-rail
CN102661700B (zh) * 2012-03-22 2014-05-14 江苏扬力数控机床有限公司 一种长行程丝杠安装精度的检测装置的使用方法
CN203704846U (zh) * 2014-01-28 2014-07-09 德马泰克物流***(苏州)有限公司 一种新型导轨平行度检验装置
JP2015209038A (ja) * 2014-04-24 2015-11-24 公益財団法人鉄道総合技術研究所 車輪内面距離測定装置
CN103940399A (zh) * 2014-04-29 2014-07-23 康代影像科技(苏州)有限公司 一种测量垂直度和水平度用治具
CN105157542B (zh) * 2015-09-24 2017-12-08 中国航天科技集团公司川南机械厂 一种基于切割索校直检测装置的校直检测方法
CN106247997B (zh) * 2016-08-09 2018-12-28 中国人民解放军国防科学技术大学 用于正交导轨平台的垂直度误差测量方法
CN106273520B (zh) * 2016-08-31 2019-03-08 浙江闪铸三维科技有限公司 一种多喷嘴3d打印机x、y、z三轴的结构及安装方法
CN206540510U (zh) * 2017-03-14 2017-10-03 东旭科技集团有限公司 测量两条直线导轨平行度的检验装置
CN208313200U (zh) * 2018-06-12 2019-01-01 珠海格力智能装备有限公司 机床导轨检测装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234122A (ja) * 1994-02-23 1995-09-05 Hitachi Zosen Corp 真直度測定装置
CN102243052A (zh) * 2011-04-15 2011-11-16 许晓华 一种垂直度检测装置
CN206540507U (zh) * 2017-03-14 2017-10-03 东旭科技集团有限公司 测量两条直线导轨垂直度的检验装置
CN108548476A (zh) * 2018-06-12 2018-09-18 珠海格力智能装备有限公司 机床导轨检测装置及机床导轨检测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112344886A (zh) * 2020-11-02 2021-02-09 江苏科技大学 一种电梯空心导轨几何误差测量装置及测量方法

Also Published As

Publication number Publication date
CN108548476A (zh) 2018-09-18

Similar Documents

Publication Publication Date Title
WO2019237685A1 (zh) 机床导轨检测装置及机床导轨检测方法
CN104678222B (zh) Fpc柔性板自动化测试仪
CN111089559A (zh) 一种孔距、孔到平面距离以及平面到平面距离的检测工具
CN108827193A (zh) 一种用于精确检测模板平整度的检测装置
TW201445108A (zh) 壁厚測量儀
CN114043171B (zh) 一种曲线索塔钢锚箱制造方法
CN116608817A (zh) 一种导轨精度检测设备
CN110738897A (zh) 机械零件定位与几何精度测量实训台
CN104931167A (zh) 超声波应力测量***中超声探头的固定走行装置
JP3171691U (ja) 可搬式レール形状測定装置
CN211740174U (zh) 一种楼板厚度检测仪
CN105698739A (zh) 一种方形导轨宽度直线度检测判定装置及方法
CN206037856U (zh) 一种可用于楔形塞尺和内外直角检测尺检定的检定装置
RU2324893C1 (ru) Способ измерения отклонений взаимного расположения паза и оси отверстия
CN219077211U (zh) 一种铁路轨道坐标单点约束测量仪
KR101906865B1 (ko) 다축형 구조물 변위 측정장치
CN106679604B (zh) 间隙测量装置及方法
CN218329728U (zh) 一种导轨间平行度检测装置
CN210923585U (zh) 超声波检测缺陷测定尺
CN105277166A (zh) 一种立式轨道垂直度和平面度的测量装置及其测量方法
CN105387788B (zh) 一种转向架管路定位检测装置及定位、检测方法
CN110672723B (zh) 超声波检测缺陷测定尺
CN108548508A (zh) 一种混凝土楼板厚度非破损精准检测方法
JP2008096114A (ja) 測定装置
CN207991527U (zh) 机械工程用水平仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/03/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18922741

Country of ref document: EP

Kind code of ref document: A1