WO2019237302A1 - 信息传输方法、装置、***及存储介质 - Google Patents

信息传输方法、装置、***及存储介质 Download PDF

Info

Publication number
WO2019237302A1
WO2019237302A1 PCT/CN2018/091250 CN2018091250W WO2019237302A1 WO 2019237302 A1 WO2019237302 A1 WO 2019237302A1 CN 2018091250 W CN2018091250 W CN 2018091250W WO 2019237302 A1 WO2019237302 A1 WO 2019237302A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
flight mode
flight
drone
switching information
Prior art date
Application number
PCT/CN2018/091250
Other languages
English (en)
French (fr)
Inventor
洪伟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP18922669.9A priority Critical patent/EP3809230A4/en
Priority to CN201880000663.XA priority patent/CN108885468B/zh
Priority to PCT/CN2018/091250 priority patent/WO2019237302A1/zh
Priority to US17/251,040 priority patent/US11800424B2/en
Publication of WO2019237302A1 publication Critical patent/WO2019237302A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/36Reselection control by user or terminal equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/005Moving wireless networks

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to an information transmission method, device, system, and storage medium.
  • Unmanned aerial vehicle is a kind of unmanned aerial vehicle that can be controlled by radio remote control equipment. At present, it is becoming more and more common in people's daily life to connect drones to cellular networks and use them to control drones. How to improve the flexibility of cellular network to control UAV has become an urgent problem.
  • the embodiments of the present disclosure provide an information transmission method, device, system, and storage medium, which can improve the flexibility of the cellular network to control the drone.
  • an information transmission method including:
  • the drone After switching the flight mode from the first flight mode to the second flight mode, the drone sends mode switching information to the base station;
  • the mode switching information is used to indicate that a flight mode of the drone has been switched from the first flight mode to the second flight mode.
  • the drone sends the mode switching information to the base station, including:
  • the drone After switching the flight mode from the first flight mode to the second flight mode, the drone initiates random access, and sends the mode switching information to the base station during the random access process;
  • the receiving, by the base station, the mode switching information sent by the drone includes:
  • the sending the mode switching information to the base station in the process of random access includes:
  • the receiving, by the base station, the mode switching information sent by the drone in a random access process includes:
  • the base station receives the mode switching information sent by the drone through the message 3 in the random access process.
  • the mode switching information is carried in the radio resource control connection request signaling of the message 3.
  • the sending the mode switching information to the base station in the process of random access includes:
  • the receiving, by the base station, the mode switching information sent by the drone in a random access process includes:
  • the base station receives the mode switching information sent by the drone through the message 5 in the random access process.
  • the mode switching information is carried in a radio resource control connection setup completion signaling of the message 5.
  • the first flight mode is a flight mode with a fixed flight path
  • the second flight mode is a flight mode with a variable flight path
  • the first flight mode is a flight mode with a variable flight path
  • the second flight mode is a flight mode with a fixed flight path
  • an information transmission device including:
  • a sending module configured to send mode switching information to a base station after switching a flight mode from a first flight mode to a second flight mode
  • the mode switching information is used to indicate that a flight mode of the drone has been switched from the first flight mode to the second flight mode.
  • the sending module is configured to:
  • a random access is initiated, and the mode switching information is sent to the base station during the random access.
  • the sending module is configured to:
  • the mode switching information is carried in the radio resource control connection request signaling of the message 3.
  • the sending module is configured to:
  • the mode switching information is carried in a radio resource control connection setup completion signaling of the message 5.
  • the first flight mode is a flight mode with a fixed flight path
  • the second flight mode is a flight mode with a variable flight path
  • the first flight mode is a flight mode with a variable flight path
  • the second flight mode is a flight mode with a fixed flight path
  • an information transmission device including:
  • a receiving module for receiving mode switching information sent by the drone
  • the mode switching information is sent by the drone after switching the flight mode from the first flight mode to the second flight mode, and the mode switching information is used to indicate that the drone flight mode has been The first flight mode is switched to the second flight mode.
  • the mode switching information is sent by the drone during a random access process, and the random access is when the drone switches a flight mode from the first flight mode to a desired location. It was initiated after the second flight mode.
  • the receiving module is configured to:
  • the mode switching information is carried in the radio resource control connection request signaling of the message 3.
  • the receiving module is configured to:
  • the mode switching information is carried in a radio resource control connection setup completion signaling of the message 5.
  • the first flight mode is a flight mode with a fixed flight path
  • the second flight mode is a flight mode with a variable flight path
  • the first flight mode is a flight mode with a variable flight path
  • the second flight mode is a flight mode with a fixed flight path
  • a drone including:
  • Memory for storing instructions executable by the processor
  • the processor is configured to:
  • the mode switching information is used to indicate that a flight mode of the drone has been switched from the first flight mode to the second flight mode.
  • a base station including:
  • Memory for storing instructions executable by the processor
  • the processor is configured to:
  • the mode switching information is sent by the drone after switching the flight mode from the first flight mode to the second flight mode, and the mode switching information is used to indicate that the drone's flight mode has been changed by The first flight mode is switched to the second flight mode.
  • an information transmission system including the information transmission device according to any one of the above-mentioned second aspects and the information transmission device according to any of the above-mentioned third aspects .
  • a computer-readable storage medium stores at least one instruction, and the instruction is loaded and executed by a processor to implement any of the first aspect described above.
  • An information transmission method An information transmission method.
  • the drone After the drone switches the flight mode from the first flight mode to the second flight mode, the drone sends mode switching information to the base station to report to the base station that the drone flight mode has been switched from the first flight mode through the mode switching information. It is the second flight mode. In this way, after the drone flight mode is switched, the base station can control the drone according to the switched flight mode, that is, the second flight mode, thereby improving the flexibility of the drone control. Sex.
  • Fig. 1 is a schematic diagram showing an implementation environment according to an exemplary embodiment.
  • Fig. 2 is a flow chart showing an information transmission method according to an exemplary embodiment.
  • Fig. 3 is a flow chart showing an information transmission method according to an exemplary embodiment.
  • Fig. 4 is a block diagram of an information transmission device according to an exemplary embodiment.
  • Fig. 5 is a block diagram of an information transmission device according to an exemplary embodiment.
  • Fig. 6 is a block diagram showing an information transmission device according to an exemplary embodiment.
  • Fig. 7 is a block diagram showing an information transmission device according to an exemplary embodiment.
  • Fig. 8 is a block diagram showing an information transmission system according to an exemplary embodiment.
  • UAV is a kind of unmanned aerial vehicle that can be controlled by radio remote control equipment. At present, it is becoming more and more common in people's daily life to connect drones to cellular networks and use them to control drones.
  • the drone Because the coverage of a single cell in a cellular network is limited, during the flight, the drone is likely to move from the coverage of one cell to the coverage of another cell. In order to ensure the continuity of the drone communication service and to prevent the drone from getting out of the control of the cellular network, when the drone moves from the coverage area of one cell to the coverage area of another cell, it is necessary to switch the cell of the drone. .
  • the drone's flight mode can include two types of fixed flight mode and dynamic flight mode.
  • the fixed flight mode refers to a flight mode with a fixed flight path. Under the fixed flight mode, a drone operator can preset a flight path for the drone, and the drone can fly according to the preset flight path.
  • the dynamic flight mode refers to a flight mode with a variable flight path. In the dynamic flight mode, the drone operator can control the drone's flight in real time through the radio remote control device, and the drone can be controlled in real time by the radio remote control device. Fly.
  • the drone can send the flight path to the network side of the cellular network (hereinafter referred to as the network side), so that the network side can
  • the flight route determines the cell that the drone will pass during the flight, so that the base station to which the cell belongs prepares for cell switching in advance.
  • the base station on the network side can instruct the drone to measure the neighbor cell during the flight and report the measurement result to the base station so that the base station can Perform cell switching on the drone according to the measurement results.
  • an embodiment of the present disclosure provides an information transmission method.
  • the drone can switch the flight mode from the first flight mode to the second flight.
  • the mode switching information is sent to the base station to report to the base station that the flight mode of the drone has been switched from the first flight mode to the second flight mode, so that the base station can switch in the drone flight mode.
  • a suitable control strategy is determined according to the switched flight mode, that is, the second flight mode, and the drone is controlled according to the control strategy, so that the flexibility of the drone control can be improved.
  • FIG. 1 is a schematic diagram of an implementation environment involved in an information transmission method according to an embodiment of the present disclosure.
  • the implementation environment may include a base station 10 and a drone 20, and the base station 10 and the drone 20 may pass through a cellular network.
  • the network is connected, and the drone 20 is any drone in a cell served by the base station 10.
  • the above-mentioned cellular network may be a fifth-generation mobile communication technology (English: Generation, Mobile, Communication, and Technology; 5G for short), or a long-term evolution (English: Long, Term, Evolution; LTE) network, or other A cellular network similar to an LTE network or a 5G network.
  • 5G Fifth Generation
  • LTE Long, Term, Evolution
  • Fig. 2 is a flowchart illustrating an information transmission method according to an exemplary embodiment. As shown in Fig. 2, the information transmission method is used in the implementation environment shown in Fig. 1. The information transmission method includes the following steps:
  • Step 201 After switching the flight mode from the first flight mode to the second flight mode, the drone sends mode switching information to the base station.
  • the mode switching information is used to indicate that the flight mode of the drone has been switched from the first flight mode to the second flight mode.
  • Step 202 The base station receives mode switching information sent by the drone.
  • a drone after a drone switches a flight mode from a first flight mode to a second flight mode, it sends a mode switching information to a base station, so that the mode switching information is transmitted to the base station.
  • the base station reports that the drone's flight mode has been switched from the first flight mode to the second flight mode. In this way, the base station can switch the drone flight mode according to the switched flight mode, which is the second flight mode.
  • UAV control which can increase the flexibility of drone control.
  • Fig. 3 is a flowchart illustrating an information transmission method according to an exemplary embodiment. As shown in Fig. 3, the information transmission method is used in the implementation environment shown in Fig. 1. The information transmission method includes the following steps:
  • Step 301 The drone switches the flight mode from the first flight mode to the second flight mode.
  • the first flight mode may be a flight mode with a fixed flight path, that is, the first flight mode may be a fixed flight mode
  • the second flight mode may be a flight mode with a variable flight path, that is, a second flight mode.
  • the first flight mode may be a flight mode with a variable flight path
  • the second flight mode may be a flight mode with a fixed flight path.
  • the embodiment of the present disclosure only describes the technical process of switching the flight mode from the first flight mode to the second flight mode by taking the first flight mode as a fixed flight mode and the second flight mode as a dynamic flight mode as an example.
  • the drone operator may use a radio remote control device to send a control instruction to the drone.
  • the drone may send the control instruction Fixed flight mode switched to dynamic flight mode.
  • the drone operator when the drone is in a fixed flight mode, when the drone operator observes that the drone may collide with an obstacle, the drone operator may use a radio remote control device to send control to the drone. Command to control the drone for emergency obstacle avoidance. After receiving the control command, the drone can switch the fixed flight mode to the dynamic flight mode and adjust the flight path according to the control command.
  • the distance sensor installed in the drone can measure the distance between the drone and the objects around the drone in real time, and when the distance sensor measures the drone When the distance between the drone and the objects around the drone is less than a certain threshold, the drone can automatically switch the fixed flight mode to the dynamic flight mode and perform emergency obstacle avoidance.
  • Step 302 The drone initiates random access and sends mode switching information to the base station during the random access.
  • the drone can initiate random access, that is, the drone can be accessed through physical random access.
  • a channel Physical Random Access
  • the mode switching information is used to indicate that the flight mode of the drone has been switched from the first flight mode to the second flight mode.
  • the embodiments of the present disclosure provide two ways for the drone to send the mode switching information to the base station during the random access process:
  • the drone sends mode switching information to the base station through message 3 (MSG3) in the random access process.
  • MSG3 message 3
  • the mode switching information may be carried in a radio resource control connection request signaling (English: RRCConnectionRequest) of message 3.
  • the drone sends mode switching information to the base station through message 5 (MSG 5) in the random access process.
  • the mode switching information may be carried in the radio resource control connection setup completion signaling (English: RRCConnectionSetupComplete) of message 5.
  • Step 303 The base station receives the mode switching information sent by the drone during the random access initiated by the drone.
  • the way in which the base station receives the mode switching information may also include two modes:
  • the base station receives mode switching information sent by the drone through message 3 in the random access process.
  • the base station receives mode switching information sent by the drone through message 5 in the random access process.
  • Step 304 The base station acquires a second flight mode according to the mode switching information, and controls the drone according to the second flight mode.
  • the base station After receiving the mode switching information, the base station can obtain the flight mode after the drone switching, that is, the second flight mode according to the instruction of the mode switching information. Then, the base station can obtain a control strategy corresponding to the second flight mode, and control the drone based on the control strategy.
  • the base station when the base station determines that the drone's flight mode has been switched from a fixed flight mode to a dynamic flight mode according to the mode switching information sent by the drone, at this time, the base station can notify each base station on the original flight path of the drone to stop preparing the cell At the same time, the base station can also instruct the drone to make measurements on neighboring cells.
  • a drone after a drone switches a flight mode from a first flight mode to a second flight mode, it sends mode switching information to a base station, and the mode switching information is transmitted to the base station.
  • the base station reports that the drone's flight mode has been switched from the first flight mode to the second flight mode. In this way, the base station can switch the drone flight mode according to the switched flight mode, which is the second flight mode.
  • UAV control which can increase the flexibility of drone control.
  • Fig. 4 is a block diagram of an information transmission device 400 according to an exemplary embodiment.
  • the information transmission device 400 may be provided in the drone 20 shown in Fig. 1.
  • the information transmission device 400 includes a sending module 401.
  • the sending module 401 is configured to send a mode switching letter to a base station after switching a flight mode from a first flight mode to a second flight mode.
  • the mode switching information is used to indicate that the flight mode of the drone has been switched from the first flight mode to the second flight mode.
  • the sending module 401 is configured to initiate a random access after switching a flight mode from the first flight mode to the second flight mode, and to the random access process to the The base station sends the mode switching information.
  • the sending module 401 is configured to send the mode switching information to the base station through a message 3 in a random access process.
  • the mode switching information is carried in a radio resource control connection request signaling of the message 3.
  • the sending module 401 is configured to send the mode switching information to the base station through a message 4 in a random access process.
  • the mode switching information is carried in a radio resource control connection setting completion signaling of the message 4.
  • the first flight mode is a flight mode with a fixed flight path
  • the second flight mode is a flight mode with a variable flight path; or the first flight mode is a flight with a variable flight path.
  • the second flight mode is a flight mode with a fixed flight path.
  • the information transmission device sends a mode switching information to a base station after switching a flight mode from a first flight mode to a second flight mode to report no information to the base station through the mode switching information.
  • the flight mode of the man-machine has been switched from the first flight mode to the second flight mode, so that the base station can switch to the drone according to the switched flight mode after the drone flight mode is switched, that is, the second flight mode. Take control to increase the flexibility of drone control.
  • Fig. 5 is a block diagram illustrating an information transmission device 500 according to an exemplary embodiment.
  • the information transmission device 500 may be provided in the base station 10 shown in Fig. 1.
  • the information transmission device 500 includes a receiving module 501.
  • the receiving module 501 is configured to receive mode switching information sent by a drone.
  • the mode switching information is sent by the drone after switching the flight mode from the first flight mode to the second flight mode, and the mode switching information is used to indicate that the flight mode of the drone has been switched by the first flight mode. This is the second flight mode.
  • the mode switching information is sent by the drone during random access, and the random access is when the drone switches the flight mode from the first flight mode to the Launched after the second flight mode.
  • the receiving module 501 is configured to receive the mode switching information sent by the drone through message 3 in a random access process.
  • the mode switching information is carried in a radio resource control connection request signaling of the message 3.
  • the receiving module 501 is configured to receive the mode switching information sent by the drone through message 5 in a random access process.
  • the mode switching information is carried in a radio resource control connection setting completion signaling of the message 5.
  • the first flight mode is a flight mode with a fixed flight path
  • the second flight mode is a flight mode with a variable flight path; or the first flight mode is a flight with a variable flight path.
  • the second flight mode is a flight mode with a fixed flight path.
  • the information transmission device receives mode switching information sent by a drone after switching a flight mode from a first flight mode to a second flight mode, and the mode switching information is used to indicate no The flight mode of the human aircraft has been switched from the first flight mode to the second flight mode, so that the base station can switch to the drone according to the switched flight mode after the drone flight mode is switched. Take control to increase the flexibility of drone control.
  • Fig. 6 is a block diagram of an information transmission device 600 according to an exemplary embodiment.
  • the device 600 may be a drone or the like.
  • the device 600 may include one or more of the following components: a processing component 602, a memory 604, a power component 606, a power component 608, a sensor component 610, and a communication component 612.
  • the processing component 602 generally controls overall operations of the device 600, such as operations such as communicating with data, changing flight altitude, changing flight direction, and switching flight modes.
  • the processing component 602 may include one or more processors 620 to execute instructions to complete all or part of the steps of the method described above.
  • the processing component 602 may include one or more modules to facilitate the interaction between the processing component 602 and other components.
  • the processing component 602 may include a sensor module to facilitate the interaction between the sensor component 610 and the processing component 602.
  • the memory 604 is configured to store various types of data to support operation at the device 600. Examples of such data include instructions for any applications or methods installed in the device 600, and the like.
  • the memory 604 may be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), Programming read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM Programming read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power component 606 provides power to various components of the device 600.
  • the power component 606 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for the device 600.
  • the power component 608 can provide power for the flight of the drone, and can change the flying height and flight direction of the drone under the control of the processing component 602.
  • the sensor assembly 610 includes one or more sensors for providing status assessment of various aspects of the device 600.
  • the sensor assembly 610 may detect the orientation or acceleration / deceleration of the device 600 and temperature changes of the device 600.
  • the sensor assembly 610 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor component 610 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 610 may further include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 612 is configured to facilitate wired or wireless communication between the device 600 and other devices.
  • the device 600 may access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication section 612 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 612 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra wideband
  • Bluetooth Bluetooth
  • the apparatus 600 may be implemented by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation is used to perform the above method.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation is used to perform the above method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 604 including instructions, may be provided, which may be executed by the processor 620 of the device 600 to complete the method.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.
  • a non-transitory computer-readable storage medium is also provided, and when the instructions in the storage medium are executed by the processor of the drone, the drone is capable of executing the embodiments of the present disclosure A method of information transmission.
  • Fig. 7 is a block diagram showing an information transmission apparatus 700 according to an exemplary embodiment.
  • the information transmission apparatus 700 may be a base station.
  • the information transmission apparatus 700 may include a processor 701, a receiver 702, a transmitter 703, and a memory 704.
  • the receiver 702, the transmitter 703, and the memory 704 are connected to the processor 701 through a bus, respectively.
  • the processor 701 includes one or more processing cores, and the processor 701 executes a method performed by a base station in the information transmission method provided by the embodiments of the present disclosure by running software programs and modules.
  • the memory 704 can be used to store software programs and modules. Specifically, the memory 704 may store an operating system 7041, an application program module 7042 required for at least one function.
  • the receiver 702 is configured to receive communication data sent by other devices, and the transmitter 703 is configured to send communication data to other devices.
  • Fig. 8 is a block diagram of an information transmission system 800 according to an exemplary embodiment. As shown in Fig. 8, the information transmission system 800 includes a base station 801 and a drone 802.
  • the base station 801 is configured to execute the information transmission method performed by the base station in the embodiment shown in FIG. 4.
  • the drone 802 is configured to execute the information transmission method performed by the drone in the embodiment shown in FIG. 4.
  • a computer-readable storage medium is also provided.
  • the computer-readable storage medium is a non-volatile computer-readable storage medium.
  • the computer-readable storage medium stores a computer program. When a computer program is executed by a processing component, the information transmission method provided by the above embodiments of the present disclosure can be implemented.
  • An embodiment of the present disclosure also provides a computer program product.
  • the computer program product stores instructions that, when run on a computer, enable the computer to execute the information transmission method provided by the embodiment of the present disclosure.
  • An embodiment of the present disclosure further provides a chip, which includes a programmable logic circuit and / or a program instruction, and can execute the information transmission method provided by the embodiment of the present disclosure when the chip is running.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种信息传输方法、装置、***及存储介质,属于无线通信技术领域。所述方法包括:在将飞行模式由第一飞行模式切换为第二飞行模式后,无人机向基站发送模式切换信息;该基站接收无人机发送的该模式切换信息;其中,该模式切换信息用于指示该无人机的飞行模式已经由该第一飞行模式切换为该第二飞行模式。本公开提供的技术方案通过无人机在将飞行模式由第一飞行模式切换为第二飞行模式后,向基站发送模式切换信息,以通过该模式切换信息向基站报告无人机的飞行模式已经由第一飞行模式切换为第二飞行模式,这样,基站就可以在无人机飞行模式切换后,根据切换后的飞行模式对无人机进行控制,从而可以提高无人机控制的灵活性。

Description

信息传输方法、装置、***及存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种信息传输方法、装置、***及存储介质。
背景技术
无人驾驶飞机(Unmanned Aerial Vehicle;UAV)简称无人机,是一种可以利用无线电遥控设备进行操纵的不载人飞行器。当前,将无人机接入蜂窝网络中,以利用蜂窝网络对无人机进行控制的方式在人们的日常生活中已经越来越常见了。而如何提高蜂窝网络对无人机控制的灵活性已经成为了一个亟待解决的问题。
发明内容
本公开实施例提供了一种信息传输方法、装置、***及存储介质,可以提高蜂窝网络对无人机控制的灵活性。
根据本公开实施例的第一方面,提供一种信息传输方法,包括:
在将飞行模式由第一飞行模式切换为第二飞行模式后,无人机向基站发送模式切换信息;
所述基站接收无人机发送的所述模式切换信息;
其中,所述模式切换信息用于指示所述无人机的飞行模式已经由所述第一飞行模式切换为所述第二飞行模式。
可选的,所述在将飞行模式由第一飞行模式切换为第二飞行模式后,无人机向基站发送模式切换信息,包括:
在将飞行模式由所述第一飞行模式切换为所述第二飞行模式后,所述无人机发起随机接入,并在随机接入的过程中向所述基站发送所述模式切换信息;
所述基站接收无人机发送的所述模式切换信息,包括:
所述基站接收所述无人机在随机接入的过程中发送的所述模式切换信息。
可选的,所述在随机接入的过程中向所述基站发送所述模式切换信息,包括:
所述无人机通过随机接入过程中的消息3向所述基站发送所述模式切换信息;
所述基站接收所述无人机在随机接入的过程中发送的所述模式切换信息,包括:
所述基站通过随机接入过程中的所述消息3接收所述无人机发送的所述模式切换信息。
可选的,所述模式切换信息携带于所述消息3的无线资源控制连接请求信令中。
可选的,所述在随机接入的过程中向所述基站发送所述模式切换信息,包括:
所述无人机通过随机接入过程中的消息5向所述基站发送所述模式切换信息;
所述基站接收所述无人机在随机接入的过程中发送的所述模式切换信息,包括:
所述基站通过随机接入过程中的所述消息5接收所述无人机发送的所述模式切换信息。
可选的,所述模式切换信息携带于所述消息5的无线资源控制连接设置完成信令中。
可选的,所述第一飞行模式为飞行路线固定的飞行模式,所述第二飞行模式为飞行路线可变的飞行模式;
或者,所述第一飞行模式为飞行路线可变的飞行模式,所述第二飞行模式为飞行路线固定的飞行模式。
根据本公开实施例的第二方面,提供一种信息传输装置,包括:
发送模块,用于在将飞行模式由第一飞行模式切换为第二飞行模式后,向基站发送模式切换信息;
其中,所述模式切换信息用于指示无人机的飞行模式已经由所述第一飞行模式切换为所述第二飞行模式。
可选的,所述发送模块,用于:
在将飞行模式由所述第一飞行模式切换为所述第二飞行模式后,发起随机接入,并在随机接入的过程中向所述基站发送所述模式切换信息。
可选的,所述发送模块,用于:
通过随机接入过程中的消息3向所述基站发送所述模式切换信息。
可选的,所述模式切换信息携带于所述消息3的无线资源控制连接请求信令中。
可选的,所述发送模块,用于:
通过随机接入过程中的消息5向所述基站发送所述模式切换信息。
可选的,所述模式切换信息携带于所述消息5的无线资源控制连接设置完成信令中。
可选的,所述第一飞行模式为飞行路线固定的飞行模式,所述第二飞行模式为飞行路线可变的飞行模式;
或者,所述第一飞行模式为飞行路线可变的飞行模式,所述第二飞行模式为飞行路线固定的飞行模式。
根据本公开实施例的第三方面,提供一种信息传输装置,包括:
接收模块,用于接收无人机发送的模式切换信息;
其中,所述模式切换信息是所述无人机在将飞行模式由第一飞行模式切换为第二飞行模式后发送的,所述模式切换信息用于指示所述无人机的飞行模式 已经由所述第一飞行模式切换为所述第二飞行模式。
可选的,所述模式切换信息是所述无人机在随机接入的过程中发送的,所述随机接入是所述无人机在将飞行模式由所述第一飞行模式切换为所述第二飞行模式后发起的。
可选的,所述接收模块,用于:
通过随机接入过程中的消息3接收所述无人机发送的所述模式切换信息。
可选的,所述模式切换信息携带于所述消息3的无线资源控制连接请求信令中。
可选的,所述接收模块,用于:
通过随机接入过程中的消息5接收所述无人机发送的所述模式切换信息。
可选的,所述模式切换信息携带于所述消息5的无线资源控制连接设置完成信令中。
可选的,所述第一飞行模式为飞行路线固定的飞行模式,所述第二飞行模式为飞行路线可变的飞行模式;
或者,所述第一飞行模式为飞行路线可变的飞行模式,所述第二飞行模式为飞行路线固定的飞行模式。
根据本公开实施例的第四方面,提供一种无人机,包括:
处理器;
用于存储处理器可执行的指令的存储器;
其中,所述处理器被配置为:
在将飞行模式由第一飞行模式切换为第二飞行模式后,向基站发送模式切换信息;
其中,所述模式切换信息用于指示无人机的飞行模式已经由所述第一飞行模式切换为所述第二飞行模式。
根据本公开实施例的第五方面,提供一种基站,包括:
处理器;
用于存储处理器可执行的指令的存储器;
其中,所述处理器被配置为:
接收无人机发送的模式切换信息;
其中,所述模式切换信息是所述无人机在将飞行模式由第一飞行模式切换为第二飞行模式后发送的,所述模式切换信息用于指示所述无人机的飞行模式已经由所述第一飞行模式切换为所述第二飞行模式。
根据本公开实施例的第六方面,提供一种信息传输***,所述信息传输***包括如上述第二方面任一所述的信息传输装置和如上述第三方面任一所述的信息传输装置。
根据本公开实施例的第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如上述第一方面任一所述的信息传输方法。
本公开的实施例提供的技术方案至少可以包括以下有益效果:
通过无人机在将飞行模式由第一飞行模式切换为第二飞行模式后,向基站发送模式切换信息,以通过该模式切换信息向基站报告无人机的飞行模式已经由第一飞行模式切换为第二飞行模式,这样,基站就可以在无人机飞行模式切换后,根据切换后的飞行模式,也即是第二飞行模式对无人机进行控制,从而可以提高无人机控制的灵活性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种实施环境的示意图。
图2是根据一示例性实施例示出的一种信息传输方法的流程图。
图3是根据一示例性实施例示出的一种信息传输方法的流程图。
图4是根据一示例性实施例示出的一种信息传输装置的框图。
图5是根据一示例性实施例示出的一种信息传输装置的框图。
图6是根据一示例性实施例示出的一种信息传输装置的框图。
图7是根据一示例性实施例示出的一种信息传输装置的框图。
图8是根据一示例性实施例示出的一种信息传输***的框图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
无人机是一种可以利用无线电遥控设备进行操纵的不载人飞行器。当前,将无人机接入蜂窝网络中,以利用蜂窝网络对无人机进行控制的方式在人们的日常生活中已经越来越常见了。
由于蜂窝网络中单个小区覆盖的范围是有限的,因此,在飞行的过程中,无人机很可能会由某一小区覆盖的范围移动到另一小区覆盖的范围。为了保证无人机通信业务的连续性,避免无人机脱离蜂窝网络的控制,当无人机由一个小区覆盖的范围移动到另一小区覆盖的范围时,就需要对无人机进行小区切换。
实际应用中,无人机的飞行模式可以包括固定飞行模式和动态飞行模式两种。其中,固定飞行模式指的是飞行路线固定的飞行模式,在固定飞行模式下, 无人机操作人员可以为无人机预先设置飞行路线,无人机可以按照该预先设置的飞行路线进行飞行,动态飞行模式指的是飞行路线可变的飞行模式,在动态飞行模式中,无人机操作人员可以通过无线电遥控设备实时控制无人机的飞行,无人机可以在无线电遥控设备的实时控制下进行飞行。
在固定飞行模式中,由于无人机的飞行路线是预先设置好的,因此,无人机可以将该飞行路线发送至蜂窝网络的网络侧(以下简称网络侧),以使网络侧能够根据该飞行路线确定无人机在飞行过程中会经过的小区,以使该小区所属的基站提前做好小区切换准备。
在动态飞行模式中,由于无法预知无人机的飞行路线,因此,网络侧的基站可以指示无人机在飞行的过程中对邻居小区进行测量,并向该基站上报测量结果,以使基站能够根据测量结果对该无人机进行小区切换。
由上述说明可知,在不同飞行模式下,网络侧控制无人机所需采用的控制策略很可能并不相同。
为了提高蜂窝网络对无人机控制的灵活性,本公开实施例提供了一种信息传输方法,在该信息传输方法中,无人机可以在将飞行模式由第一飞行模式切换为第二飞行模式后,向基站发送模式切换信息,以通过该模式切换信息向基站报告无人机的飞行模式已经由第一飞行模式切换为第二飞行模式,这样,基站就可以在无人机飞行模式切换后,根据切换后的飞行模式,也即是第二飞行模式确定合适的控制策略,并根据该控制策略对无人机进行控制,这样就可以提高无人机控制的灵活性。
下面,将对本公开实施例提供的信息传输方法所涉及到的实施环境进行简要的说明。
图1为本公开实施例提供的信息传输方法所涉及到的实施环境的示意图,如图1所示,该实施环境可以包括基站10和无人机20,基站10和无人机20可以通过蜂窝网络进行连接,无人机20为基站10所服务的小区中的任一个无 人机。
上述蜂窝网络可以为第五代移动通信技术(英文:The Fifth Generation Mobile Communication Technology;简称:5G)信网络,也可以为长期演进(英文:Long Term Evolution;简称:LTE)网络,或者,其他的与LTE网络或5G网络类似的蜂窝网络。
图2是根据一示例性实施例示出的一种信息传输方法的流程图,如图2所示,该信息传输方法用于图1所示的实施环境中,该信息传输方法包括以下步骤:
步骤201、在将飞行模式由第一飞行模式切换为第二飞行模式后,无人机向基站发送模式切换信息。
其中,该模式切换信息用于指示无人机的飞行模式已经由该第一飞行模式切换为该第二飞行模式。
步骤202、基站接收无人机发送的模式切换信息。
综上所述,本公开实施例提供的信息传输方法,通过无人机在将飞行模式由第一飞行模式切换为第二飞行模式后,向基站发送模式切换信息,以通过该模式切换信息向基站报告无人机的飞行模式已经由第一飞行模式切换为第二飞行模式,这样,基站就可以在无人机飞行模式切换后,根据切换后的飞行模式,也即是第二飞行模式对无人机进行控制,从而可以提高无人机控制的灵活性。
图3是根据一示例性实施例示出的一种信息传输方法的流程图,如图3所示,该信息传输方法用于图1所示的实施环境中,该信息传输方法包括以下步骤:
步骤301、无人机将飞行模式由第一飞行模式切换为第二飞行模式。
其中,第一飞行模式可以是飞行路线固定的飞行模式,也即是,第一飞行 模式可以是固定飞行模式,第二飞行模式可以是飞行路线可变的飞行模式,也即是第二飞行模式可以是动态飞行模式。或者,第一飞行模式可以是飞行路线可变的飞行模式,第二飞行模式可以是飞行路线固定的飞行模式。
下面,本公开实施例仅以第一飞行模式是固定飞行模式,第二飞行模式是动态飞行模式为例对无人机将飞行模式由第一飞行模式切换为第二飞行模式的技术过程进行说明,第一飞行模式是动态飞行模式,第二飞行模式是固定飞行模式的情况与之同理,本公开实施例在此就不赘述了。
在一种可能的情况下,当无人机处于固定飞行模式时,无人机操作人员可以利用无线电遥控设备向该无人机发送控制指令,在接收到该控制指令后,无人机可以将固定飞行模式切换为动态飞行模式。
例如,在无人机处于固定飞行模式时,当无人机操作人员观察到无人机可能会与障碍物相撞时,该无人机操作人员可以利用无线电遥控设备向该无人机发送控制指令,以控制无人机进行紧急避障,无人机在接收到该控制指令后,可以将固定飞行模式切换为动态飞行模式,并根据该控制指令调整飞行路线。
在另一种可能的情况下,当无人机处于固定飞行模式时,无人机中安装的距离传感器可以实时测量无人机与该无人机周围物体的距离,当距离传感器测量到无人机与该无人机周围物体的距离值小于某一阈值时,无人机可以自动将固定飞行模式切换为动态飞行模式,并进行紧急避障。
步骤302、无人机发起随机接入,并在随机接入的过程中向基站发送模式切换信息。
在将第一飞行模式切换为第二飞行模式之后,且无人机处于空闲状态(英文:idle)时,无人机可以发起随机接入,也即是,无人机可以通过物理随机接入信道(Physical Random Access Channel;PRACH)向基站发送随机接入前导码,以使基站根据该随机接入前导码进行后续的随机接入过程。
模式切换信息用于指示无人机的飞行模式已经由第一飞行模式切换为第二飞行模式。本公开实施例提供了两种无人机在随机接入的过程中向基站发送 该模式切换信息的方式:
第一种、无人机通过随机接入过程中的消息3(MSG 3)向基站发送模式切换信息。
在这种方式中,模式切换信息可以携带于消息3的无线资源控制连接请求信令(英文:RRCConnectionRequest)中。
第二种、无人机通过随机接入过程中的消息5(MSG 5)向基站发送模式切换信息。
在这种方式中,模式切换信息可以携带于消息5的无线资源控制连接设置完成信令(英文:RRCConnectionSetupComplete)中。
步骤303、基站在无人机发起的随机接入的过程中接收无人机发送的模式切换信息。
与无人机向基站发送模式切换信息的两种方式对应地,基站接收模式切换信息的方式也可以包括两种方式:
第一种、基站通过随机接入过程中的消息3接收无人机发送的模式切换信息。
第二种、基站通过随机接入过程中的消息5接收无人机发送的模式切换信息。
步骤304、基站根据模式切换信息获取第二飞行模式,并根据第二飞行模式对无人机进行控制。
基站在接收到该模式切换信息后,可以根据该模式切换信息的指示获取无人机切换后的飞行模式,也即是第二飞行模式。而后,基站可以获取第二飞行模式对应的控制策略,并基于该控制策略对无人机进行控制。
例如,当基站根据无人机发送的模式切换信息确定无人机的飞行模式已经由固定飞行模式切换为动态飞行模式,此时,基站可以通知无人机原来飞行路线上的各个基站停止准备小区切换,同时,基站还可以指示该无人机对邻居小区进行测量。
综上所述,本公开实施例提供的信息传输方法,通过无人机在将飞行模式由第一飞行模式切换为第二飞行模式后,向基站发送模式切换信息,以通过该模式切换信息向基站报告无人机的飞行模式已经由第一飞行模式切换为第二飞行模式,这样,基站就可以在无人机飞行模式切换后,根据切换后的飞行模式,也即是第二飞行模式对无人机进行控制,从而可以提高无人机控制的灵活性。
图4是根据一示例性实施例示出的一种信息传输装置400的框图,该信息传输装置400可以设置于图1所示的无人机20中。参照图4,该信息传输装置400包括发送模块401。
其中,该发送模块401,用于在将飞行模式由第一飞行模式切换为第二飞行模式后,向基站发送模式切换信。该模式切换信息用于指示无人机的飞行模式已经由该第一飞行模式切换为该第二飞行模式。
在本公开的一个实施例中,该发送模块401,用于在将飞行模式由该第一飞行模式切换为该第二飞行模式后,发起随机接入,并在随机接入的过程中向该基站发送该模式切换信息。
在本公开的一个实施例中,该发送模块401,用于通过随机接入过程中的消息3向该基站发送该模式切换信息。
在本公开的一个实施例中,该模式切换信息携带于该消息3的无线资源控制连接请求信令中。
在本公开的一个实施例中,该发送模块401,用于通过随机接入过程中的消息4向该基站发送该模式切换信息。
在本公开的一个实施例中,该模式切换信息携带于该消息4的无线资源控制连接设置完成信令中。
在本公开的一个实施例中,该第一飞行模式为飞行路线固定的飞行模式,该第二飞行模式为飞行路线可变的飞行模式;或者,该第一飞行模式为飞行路 线可变的飞行模式,该第二飞行模式为飞行路线固定的飞行模式。
综上所述,本公开实施例提供的信息传输装置,通过在将飞行模式由第一飞行模式切换为第二飞行模式后,向基站发送模式切换信息,以通过该模式切换信息向基站报告无人机的飞行模式已经由第一飞行模式切换为第二飞行模式,这样,基站就可以在无人机飞行模式切换后,根据切换后的飞行模式,也即是第二飞行模式对无人机进行控制,从而可以提高无人机控制的灵活性。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图5是根据一示例性实施例示出的一种信息传输装置500的框图,该信息传输装置500可以设置于图1所示的基站10中。参照图5,该信息传输装置500包括接收模块501。
其中,该接收模块501,用于接收无人机发送的模式切换信息。该模式切换信息是该无人机在将飞行模式由第一飞行模式切换为第二飞行模式后发送的,该模式切换信息用于指示该无人机的飞行模式已经由该第一飞行模式切换为该第二飞行模式。
在本公开的一个实施例中,该模式切换信息是该无人机在随机接入的过程中发送的,该随机接入是该无人机在将飞行模式由该第一飞行模式切换为该第二飞行模式后发起的。
在本公开的一个实施例中,该接收模块501,用于通过随机接入过程中的消息3接收该无人机发送的该模式切换信息。
在本公开的一个实施例中,该模式切换信息携带于该消息3的无线资源控制连接请求信令中。
在本公开的一个实施例中,该接收模块501,用于通过随机接入过程中的消息5接收该无人机发送的该模式切换信息。
在本公开的一个实施例中,该模式切换信息携带于该消息5的无线资源控 制连接设置完成信令中。
在本公开的一个实施例中,该第一飞行模式为飞行路线固定的飞行模式,该第二飞行模式为飞行路线可变的飞行模式;或者,该第一飞行模式为飞行路线可变的飞行模式,该第二飞行模式为飞行路线固定的飞行模式。
综上所述,本公开实施例提供的信息传输装置,通过接收无人机在将飞行模式由第一飞行模式切换为第二飞行模式后发送的模式切换信息,该模式切换信息用于指示无人机的飞行模式已经由该第一飞行模式切换为该第二飞行模式,使得基站能够在无人机飞行模式切换后,根据切换后的飞行模式,也即是第二飞行模式对无人机进行控制,从而可以提高无人机控制的灵活性。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图6是根据一示例性实施例示出的一种信息传输装置600的框图。例如,装置600可以是无人机等。
参照图6,装置600可以包括以下一个或多个组件:处理组件602,存储器604,电源组件606,动力组件608、传感器组件610以及通信组件612。
处理组件602通常控制装置600的整体操作,诸如与数据通信,改变飞行高度、改变飞行方向和切换飞行模式等的操作。处理组件602可以包括一个或多个处理器620来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件602可以包括一个或多个模块,便于处理组件602和其他组件之间的交互。例如,处理组件602可以包括传感器模块,以方便传感器组件610和处理组件602之间的交互。
存储器604被配置为存储各种类型的数据以支持在装置600的操作。这些数据的示例包括在装置600中安装的任何应用程序或方法的指令等。存储器604可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦 除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件606为装置600的各种组件提供电力。电源组件606可以包括电源管理***,一个或多个电源,及其他与为装置600生成、管理和分配电力相关联的组件。
动力组件608可以为无人机的飞行提供动力,并可以在处理组件602的控制下改变无人机的飞行高度和飞行方向等。
传感器组件610包括一个或多个传感器,用于为装置600提供各个方面的状态评估。例如,传感器组件610可以检测到装置600方位或加速/减速和装置600的温度变化。传感器组件610可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件610还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件610还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件612被配置为便于装置600和其他设备之间有线或无线方式的通信。装置600可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信部件612经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通信部件612还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置600可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介 质,例如包括指令的存储器604,上述指令可由装置600的处理器620执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
在示例性实施例中,还提供了一种非临时性计算机可读存储介质,当所述存储介质中的指令由无人机的处理器执行时,使得无人机能够执行本公开实施例提供的一种信息传输方法。
图7是根据一示例性实施例示出的一种信息传输装置700的框图。例如,信息传输装置700可以是基站。如图7所示,信息传输装置700可以包括:处理器701、接收机702、发射机703和存储器704。接收机702、发射机703和存储器704分别通过总线与处理器701连接。
其中,处理器701包括一个或者一个以上处理核心,处理器701通过运行软件程序以及模块以执行本公开实施例提供的信息传输方法中基站所执行的方法。存储器704可用于存储软件程序以及模块。具体的,存储器704可存储操作***7041、至少一个功能所需的应用程序模块7042。接收机702用于接收其他设备发送的通信数据,发射机703用于向其他设备发送通信数据。
图8是根据一示例性实施例示出的一种信息传输***800的框图,如图8所示,该信息传输***800包括基站801和无人机802。
其中,基站801用于执行图4所示实施例中基站所执行的信息传输方法。
无人机802用于执行图4所示实施例中无人机所执行的信息传输方法。
在示例性实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质为非易失性的计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,存储的计算机程序被处理组件执行时能够实现本公开上述实施例提供的信息传输方法。
本公开实施例还提供了一种计算机程序产品,该计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机能够执行本公开实施例提供的信息传输方法。
本公开实施例还提供了一种芯片,该芯片包括可编程逻辑电路和/或程序指令,当该芯片运行时能够执行本公开实施例提供的信息传输方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (25)

  1. 一种信息传输方法,其特征在于,所述方法包括:
    在将飞行模式由第一飞行模式切换为第二飞行模式后,无人机向基站发送模式切换信息;
    所述基站接收无人机发送的所述模式切换信息;
    其中,所述模式切换信息用于指示所述无人机的飞行模式已经由所述第一飞行模式切换为所述第二飞行模式。
  2. 根据权利要求1所述的方法,其特征在于,所述在将飞行模式由第一飞行模式切换为第二飞行模式后,无人机向基站发送模式切换信息,包括:
    在将飞行模式由所述第一飞行模式切换为所述第二飞行模式后,所述无人机发起随机接入,并在随机接入的过程中向所述基站发送所述模式切换信息;
    所述基站接收无人机发送的所述模式切换信息,包括:
    所述基站接收所述无人机在随机接入的过程中发送的所述模式切换信息。
  3. 根据权利要求2所述的方法,其特征在于,所述在随机接入的过程中向所述基站发送所述模式切换信息,包括:
    所述无人机通过随机接入过程中的消息3向所述基站发送所述模式切换信息;
    所述基站接收所述无人机在随机接入的过程中发送的所述模式切换信息,包括:
    所述基站通过随机接入过程中的所述消息3接收所述无人机发送的所述模式切换信息。
  4. 根据权利要求3所述的方法,其特征在于,所述模式切换信息携带于所 述消息3的无线资源控制连接请求信令中。
  5. 根据权利要求2所述的方法,其特征在于,所述在随机接入的过程中向所述基站发送所述模式切换信息,包括:
    所述无人机通过随机接入过程中的消息5向所述基站发送所述模式切换信息;
    所述基站接收所述无人机在随机接入的过程中发送的所述模式切换信息,包括:
    所述基站通过随机接入过程中的所述消息5接收所述无人机发送的所述模式切换信息。
  6. 根据权利要求5所述的方法,其特征在于,所述模式切换信息携带于所述消息5的无线资源控制连接设置完成信令中。
  7. 根据权利要求1至6任一所述的方法,其特征在于,所述第一飞行模式为飞行路线固定的飞行模式,所述第二飞行模式为飞行路线可变的飞行模式;
    或者,所述第一飞行模式为飞行路线可变的飞行模式,所述第二飞行模式为飞行路线固定的飞行模式。
  8. 一种信息传输装置,其特征在于,所述装置包括:
    发送模块,用于在将飞行模式由第一飞行模式切换为第二飞行模式后,向基站发送模式切换信息;
    其中,所述模式切换信息用于指示无人机的飞行模式已经由所述第一飞行模式切换为所述第二飞行模式。
  9. 根据权利要求8所述的装置,其特征在于,所述发送模块,用于:
    在将飞行模式由所述第一飞行模式切换为所述第二飞行模式后,发起随机 接入,并在随机接入的过程中向所述基站发送所述模式切换信息。
  10. 根据权利要求9所述的装置,其特征在于,所述发送模块,用于:
    通过随机接入过程中的消息3向所述基站发送所述模式切换信息。
  11. 根据权利要求10所述的装置,其特征在于,所述模式切换信息携带于所述消息3的无线资源控制连接请求信令中。
  12. 根据权利要求9所述的装置,其特征在于,所述发送模块,用于:
    通过随机接入过程中的消息5向所述基站发送所述模式切换信息。
  13. 根据权利要求12所述的装置,其特征在于,所述模式切换信息携带于所述消息5的无线资源控制连接设置完成信令中。
  14. 根据权利要求8至13任一所述的装置,其特征在于,所述第一飞行模式为飞行路线固定的飞行模式,所述第二飞行模式为飞行路线可变的飞行模式;
    或者,所述第一飞行模式为飞行路线可变的飞行模式,所述第二飞行模式为飞行路线固定的飞行模式。
  15. 一种信息传输装置,其特征在于,所述装置包括:
    接收模块,用于接收无人机发送的模式切换信息;
    其中,所述模式切换信息是所述无人机在将飞行模式由第一飞行模式切换为第二飞行模式后发送的,所述模式切换信息用于指示所述无人机的飞行模式已经由所述第一飞行模式切换为所述第二飞行模式。
  16. 根据权利要求15所述的装置,其特征在于,所述模式切换信息是所述无人机在随机接入的过程中发送的,所述随机接入是所述无人机在将飞行模式 由所述第一飞行模式切换为所述第二飞行模式后发起的。
  17. 根据权利要求16所述的装置,其特征在于,所述接收模块,用于:
    通过随机接入过程中的消息3接收所述无人机发送的所述模式切换信息。
  18. 根据权利要求17所述的装置,其特征在于,所述模式切换信息携带于所述消息3的无线资源控制连接请求信令中。
  19. 根据权利要求16所述的装置,其特征在于,所述接收模块,用于:
    通过随机接入过程中的消息5接收所述无人机发送的所述模式切换信息。
  20. 根据权利要求19所述的装置,其特征在于,所述模式切换信息携带于所述消息5的无线资源控制连接设置完成信令中。
  21. 根据权利要求15至20任一所述的装置,其特征在于,所述第一飞行模式为飞行路线固定的飞行模式,所述第二飞行模式为飞行路线可变的飞行模式;
    或者,所述第一飞行模式为飞行路线可变的飞行模式,所述第二飞行模式为飞行路线固定的飞行模式。
  22. 一种无人机,其特征在于,包括:
    处理器;
    用于存储处理器可执行的指令的存储器;
    其中,所述处理器被配置为:
    在将飞行模式由第一飞行模式切换为第二飞行模式后,向基站发送模式切换信息;
    其中,所述模式切换信息用于指示无人机的飞行模式已经由所述第一飞行 模式切换为所述第二飞行模式。
  23. 一种基站,其特征在于,包括:
    处理器;
    用于存储处理器可执行的指令的存储器;
    其中,所述处理器被配置为:
    接收无人机发送的模式切换信息;
    其中,所述模式切换信息是所述无人机在将飞行模式由第一飞行模式切换为第二飞行模式后发送的,所述模式切换信息用于指示所述无人机的飞行模式已经由所述第一飞行模式切换为所述第二飞行模式。
  24. 一种信息传输***,其特征在于,所述信息传输***包括如权利要求8至14任一所述的信息传输装置和如权利要求15至21任一所述的信息传输装置。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如权利要求1至7任一所述的信息传输方法。
PCT/CN2018/091250 2018-06-14 2018-06-14 信息传输方法、装置、***及存储介质 WO2019237302A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18922669.9A EP3809230A4 (en) 2018-06-14 2018-06-14 PROCESS, DEVICE AND SYSTEM FOR TRANSMISSION OF INFORMATION, AND INFORMATION MEDIA
CN201880000663.XA CN108885468B (zh) 2018-06-14 2018-06-14 信息传输方法、装置、***及存储介质
PCT/CN2018/091250 WO2019237302A1 (zh) 2018-06-14 2018-06-14 信息传输方法、装置、***及存储介质
US17/251,040 US11800424B2 (en) 2018-06-14 2018-06-14 Information transmission method, device and system and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/091250 WO2019237302A1 (zh) 2018-06-14 2018-06-14 信息传输方法、装置、***及存储介质

Publications (1)

Publication Number Publication Date
WO2019237302A1 true WO2019237302A1 (zh) 2019-12-19

Family

ID=64325075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091250 WO2019237302A1 (zh) 2018-06-14 2018-06-14 信息传输方法、装置、***及存储介质

Country Status (4)

Country Link
US (1) US11800424B2 (zh)
EP (1) EP3809230A4 (zh)
CN (1) CN108885468B (zh)
WO (1) WO2019237302A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3709709B1 (en) * 2017-11-10 2023-01-04 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for unmanned aerial vehicle handover and base station
US20210253245A1 (en) * 2018-06-14 2021-08-19 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for reporting flight mode and method and device for changing control strategy
CN111600916B (zh) * 2019-02-02 2022-03-25 华为技术有限公司 无人机控制方法、装置及***
CN112180962A (zh) * 2020-09-30 2021-01-05 苏州臻迪智能科技有限公司 无人机的飞行控制方法及装置、电子设备、存储介质
CN114584201A (zh) * 2022-03-01 2022-06-03 电子科技大学长三角研究院(湖州) 一种基于5g传输协议的无人机***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102508447A (zh) * 2011-12-30 2012-06-20 北京理工大学 小型无人飞行器用双向切换***
CN102595604A (zh) * 2012-01-18 2012-07-18 新邮通信设备有限公司 一种基站向终端传输控制信息的方法和***
WO2016057098A2 (en) * 2014-07-15 2016-04-14 Richard Postrel System and method for automated traffic management of intelligent unmanned aerial vehicles
CN107248881A (zh) * 2017-06-15 2017-10-13 北京佰才邦技术有限公司 一种信息传输的方法及无人机

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070123290A1 (en) * 2005-11-28 2007-05-31 Fredrik Stenmark Low power transmission mode
WO2011114480A1 (ja) * 2010-03-18 2011-09-22 富士通株式会社 無線端末装置、通信装置、無線通信システムおよび通信方法
CN103581885A (zh) 2012-07-20 2014-02-12 中兴通讯股份有限公司 用户设备辅助信息上报方法、装置和***
CN102915038B (zh) 2012-11-16 2014-10-22 北京航空航天大学 一种微小型无人直升机双余度自主飞行控制***
US9031544B2 (en) * 2013-01-02 2015-05-12 Htc Corporation Status switching method for mobile device
KR102065489B1 (ko) * 2013-08-20 2020-01-13 삼성전자주식회사 이동통신 시스템에서 핸드오버 수행 방법 및 장치
CN105338464B (zh) * 2014-06-17 2020-10-20 索尼公司 无线通信***中的用户设备侧的电子设备和无线通信方法
KR20180025264A (ko) * 2016-08-30 2018-03-08 한국전자통신연구원 통신 시스템에서 다중 접속을 위한 방법 및 장치
WO2018097497A1 (ko) 2016-11-23 2018-05-31 한국전자통신연구원 통신 시스템에서 접속 방법 및 이를 수행하는 장치
KR102310719B1 (ko) * 2017-03-20 2021-10-08 삼성전자 주식회사 차세대 이동통신에서 대기 모드 동작을 효과적으로 하는 방법 및 장치
US11212841B2 (en) * 2017-03-23 2021-12-28 Lg Electronics Inc. Method for performing random access procedure and apparatus therefor
CN106950978B (zh) 2017-03-28 2019-08-27 西安电子科技大学 固定翼无人机避障***及其避障方法以及固定翼无人机
US9836049B1 (en) * 2017-05-05 2017-12-05 Pinnacle Vista, LLC Relay drone system
CN116347670A (zh) * 2017-09-27 2023-06-27 三菱电机株式会社 通信***、基站装置及通信终端装置
WO2019061140A1 (en) * 2017-09-28 2019-04-04 Lenovo (Beijing) Limited METHOD AND APPARATUS FOR CONTROLLING AERIAL UE MANUFACTURE
WO2019080099A1 (zh) * 2017-10-27 2019-05-02 北京小米移动软件有限公司 控制无人机的方法及装置和无人机的操作方法及装置
CN108064360A (zh) * 2017-11-02 2018-05-22 北京小米移动软件有限公司 无人机的控制方法及装置
WO2019084871A1 (zh) 2017-11-02 2019-05-09 北京小米移动软件有限公司 无人机飞行信息的传输方法、装置、基站及核心网设备
RU2754430C1 (ru) * 2018-05-10 2021-09-02 Бейдзин Сяоми Мобайл Софтвэр Ко., Лтд. Способ и устройство передачи информации

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102508447A (zh) * 2011-12-30 2012-06-20 北京理工大学 小型无人飞行器用双向切换***
CN102595604A (zh) * 2012-01-18 2012-07-18 新邮通信设备有限公司 一种基站向终端传输控制信息的方法和***
WO2016057098A2 (en) * 2014-07-15 2016-04-14 Richard Postrel System and method for automated traffic management of intelligent unmanned aerial vehicles
CN107248881A (zh) * 2017-06-15 2017-10-13 北京佰才邦技术有限公司 一种信息传输的方法及无人机

Also Published As

Publication number Publication date
EP3809230A1 (en) 2021-04-21
CN108885468B (zh) 2022-11-11
CN108885468A (zh) 2018-11-23
EP3809230A4 (en) 2021-06-09
US11800424B2 (en) 2023-10-24
US20210195496A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
WO2019237302A1 (zh) 信息传输方法、装置、***及存储介质
WO2019222926A1 (zh) 无人机控制方法、装置、基站和无人机
US11122400B2 (en) Communication device, first radio node, second radio node, and methods therein, for determining whether to allow a first vehicle to overtake a vehicle platoon
US20190174421A1 (en) User equipment path transfer method, user equipment state conversion control method, user equipment , and base station
US11843446B2 (en) Method and device of controlling unmanned aerial vehicle to access network
US20210068028A1 (en) Improved cell reselection for an aerial ue
WO2021121208A1 (zh) 定时提前量的确定方法、装置、设备及介质
US20200187072A1 (en) Method and system for base station handover
WO2019095738A1 (zh) 一种无人机的通信方法、通信装置及无人机
US11760480B2 (en) Information sending and receiving method and apparatus, device, and storage medium
US11825552B2 (en) Information transmission method, device and system, and storage medium
US20220264416A1 (en) Equipment and mobile telecommunications system
US11984037B2 (en) Method for providing flight route to unmanned aerial vehicle, acquisition method and device, and system
US11115987B2 (en) Method and apparatus for controlling network devices providing network services for a plurality of over-the-air areas
WO2021035641A1 (zh) 控制方法、远程服务器、控制站及存储介质
WO2020061907A1 (zh) 无人机飞行路径提供方法、装置及***
WO2020133259A1 (zh) 通信控制方法及装置
CN108713222B (zh) 飞行控制的方法、装置和***
WO2023201538A1 (zh) 信息传输方法及装置、存储介质
US11153805B2 (en) Access control execution method, device, and system
WO2018171200A1 (zh) 位置关系确定方法及装置
US20230422105A1 (en) Communication related to ue context
KR20220036782A (ko) 차량에 탑재된 통신 장치 및 그 동작 방법
CN117296377A (zh) Nr sdt的小区重选期间的安全性参数更新

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018922669

Country of ref document: EP

Effective date: 20210113