WO2019237219A1 - 光学指纹传感器模组及其形成方法 - Google Patents

光学指纹传感器模组及其形成方法 Download PDF

Info

Publication number
WO2019237219A1
WO2019237219A1 PCT/CN2018/090559 CN2018090559W WO2019237219A1 WO 2019237219 A1 WO2019237219 A1 WO 2019237219A1 CN 2018090559 W CN2018090559 W CN 2018090559W WO 2019237219 A1 WO2019237219 A1 WO 2019237219A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
fingerprint sensor
optical fingerprint
ultraviolet
curing
Prior art date
Application number
PCT/CN2018/090559
Other languages
English (en)
French (fr)
Inventor
凌严
朱虹
Original Assignee
上海箩箕技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海箩箕技术有限公司 filed Critical 上海箩箕技术有限公司
Priority to PCT/CN2018/090559 priority Critical patent/WO2019237219A1/zh
Publication of WO2019237219A1 publication Critical patent/WO2019237219A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition

Definitions

  • the invention relates to the field of optical fingerprint recognition, and in particular to an optical fingerprint sensor module and a method for forming the same.
  • Fingerprint imaging recognition technology is a technology that collects a fingerprint image of a human body through an optical fingerprint sensor, and then compares it with the existing fingerprint imaging information in the system to determine whether it is correct or not, thereby achieving identity recognition. Due to its convenience and uniqueness of human fingerprints, fingerprint imaging recognition technology has been widely used in various fields, such as security inspection areas such as public security bureaus and customs, building access control systems, and consumer products such as personal computers and mobile phones.
  • the imaging methods of fingerprint imaging recognition technology include optical imaging, capacitive imaging, and ultrasound imaging. Relatively speaking, the optical fingerprint imaging recognition technology has a relatively good imaging effect, and the equipment cost is relatively low.
  • the problem solved by the present invention is to provide an optical fingerprint sensor module and a method for forming the same, so as to improve the performance of the optical fingerprint sensor module.
  • the present invention provides a method for forming an optical fingerprint sensor module, including: providing an optical fingerprint sensor, a self-luminous display panel, and a light collimator panel, the light collimator panel having a relative first adhesive Surface and second adhesive surface; providing a first initial ultraviolet light curing adhesive and a second initial ultraviolet light curing adhesive; passing the first adhesive surface of the optical fingerprint sensor and the light collimator panel through a first initial ultraviolet The light curing glue is bonded together; after the optical fingerprint sensor and the light collimator panel are bonded together, the first initial ultraviolet light curing adhesive is cured with a first ultraviolet light, so that the first initial ultraviolet light is cured.
  • the light curing glue forms a first ultraviolet light curing glue; the second adhesive surface of the self-luminous display panel and the light collimator panel is bonded together by a second initial ultraviolet light curing glue; After the display panel and the light collimator panel are bonded together, a second ultraviolet curing is performed on the second initial ultraviolet curing adhesive, so that the second initial ultraviolet curing adhesive forms a second ultraviolet curing. gum.
  • the self-luminous display panel and the second adhesive surface of the light collimator panel are bonded together by a second initial ultraviolet light curing adhesive.
  • the first ultraviolet curing method for the first initial ultraviolet curing adhesive includes: irradiating ultraviolet light from the light collimator panel to the optical fingerprint sensor in a direction from the light collimator panel. The surface passes through the light collimator panel and is irradiated into the first initial ultraviolet curing adhesive.
  • the parameters of the first ultraviolet curing include: the wavelength of the ultraviolet light used is 200 nanometers to 400 nanometers, the energy of the ultraviolet light is 0.4W / cm 2 to 40W / cm 2 , and the curing time is 1 second to 10 seconds.
  • the first ultraviolet curing method for the first initial ultraviolet curing adhesive includes: irradiating ultraviolet light from a direction of the optical fingerprint sensor to the light collimator panel onto the surface of the optical fingerprint sensor, After passing through the optical fingerprint sensor, it is irradiated into the first initial ultraviolet curing adhesive.
  • the parameters of the first ultraviolet curing include: the wavelength of the ultraviolet light used is 200 nanometers to 400 nanometers, the energy of the ultraviolet light is 0.4W / cm 2 to 40W / cm 2 , and the curing time is 1 second to 10 seconds.
  • a method for performing second ultraviolet curing on the second initial ultraviolet curing adhesive includes: irradiating ultraviolet light from a direction of the optical fingerprint sensor to the self-luminous display panel to the surface of the optical fingerprint sensor, and After passing through the optical fingerprint sensor and the light collimator panel, it is irradiated into the second initial ultraviolet curing adhesive.
  • the parameters of the second ultraviolet curing include: the wavelength of the ultraviolet light used is 200 nm to 400 nm, the energy of the ultraviolet light is 0.2 W / cm 2 to 20 W / cm 2 , and the curing time is 3 seconds to 30 seconds.
  • the optical fingerprint sensor and the first adhesive surface of the light collimator panel are bonded together by a first initial ultraviolet light curing adhesive.
  • a method for performing second ultraviolet curing on the second initial ultraviolet curing adhesive includes: irradiating ultraviolet light from the light collimator panel to the light-emitting display panel in a direction from the light collimator. The panel surface passes through the light collimator panel and is irradiated into the second initial ultraviolet curing adhesive.
  • the cured second parameter comprises UV: ultraviolet wavelength of 200 nanometers using 400 nanometers, ultraviolet energy is 0.1W / cm 2 ⁇ 10W / cm 2, the curing time of 4 seconds to 40 seconds.
  • the first ultraviolet curing method for the first initial ultraviolet curing adhesive includes: irradiating ultraviolet light from a direction of the optical fingerprint sensor to the light collimator panel onto the surface of the optical fingerprint sensor, After passing through the optical fingerprint sensor, it is irradiated into the first initial ultraviolet curing adhesive.
  • the parameters of the first ultraviolet curing include: the wavelength of the ultraviolet light used is 200 nm to 400 nm, the energy of the ultraviolet light is 0.2 W / cm 2 to 20 W / cm 2 , and the curing time is 2 seconds to 20 seconds.
  • a first adhesive surface of the optical fingerprint sensor and the light collimator panel is bonded together by a first initial ultraviolet curing adhesive, and the self-luminous display panel and the light collimate After the second adhesive surface of the device panel is bonded together by the second initial ultraviolet curing adhesive, the first ultraviolet curing and the second ultraviolet curing are performed together.
  • the method for performing the first ultraviolet curing and the second ultraviolet curing together includes: irradiating ultraviolet light from a direction of the optical fingerprint sensor to the self-luminous display panel onto the surface of the optical fingerprint sensor, and passing through The optical fingerprint sensor and the light collimator panel allow ultraviolet light to be irradiated into the first initial ultraviolet curing adhesive and the second initial ultraviolet curing adhesive.
  • the parameters for the first UV curing and the second UV curing include: the wavelength of the ultraviolet light used is 200 nm to 400 nm, and the energy of the ultraviolet light is 0.2 W / cm 2 to 20 W / cm 2 , The curing time is 5 seconds to 50 seconds.
  • the thickness of the first ultraviolet curing adhesive is 5 to 50 microns; the thickness of the second ultraviolet curing adhesive is 5 to 50 microns.
  • the present invention also provides an optical fingerprint sensor module formed by using any of the above methods, including: an optical fingerprint sensor; a self-luminous display panel; and light collimation located between the optical fingerprint sensor and the self-luminous display panel.
  • the light collimator panel has a first adhesive surface and a second adhesive surface opposite to each other, the first adhesive surface faces the optical fingerprint sensor, and the second adhesive surface faces the A light-emitting display panel; a first ultraviolet curing adhesive, the first ultraviolet curing adhesive being located on a first adhesive surface and a surface of the optical fingerprint sensor facing the first adhesive surface; a second ultraviolet curing adhesive, the second The ultraviolet curing adhesive is located on the second adhesive surface and the surface of the self-luminous display panel facing the second adhesive surface.
  • a first ultraviolet light curing is used to adhere the optical fingerprint sensor and a light collimator panel, and a second ultraviolet light curing is used to self-luminous display panel and light collimator.
  • the panel is bonded.
  • a thinner first UV curing adhesive and a second UV curing adhesive can be used. Light is reflected through the thinner first through the process of reflecting the light to the optical fingerprint sensor.
  • the ultraviolet curing adhesive and the second ultraviolet curing adhesive make the fingerprint image transmitted to the optical fingerprint sensor clear, which improves the fingerprint recognition capability of the optical fingerprint sensor.
  • FIG. 1 is a schematic structural diagram of an optical fingerprint sensor module
  • FIGS. 2 to 11 are schematic structural diagrams of a process of forming an optical fingerprint sensor module according to an embodiment of the present invention.
  • 12 to 13 are schematic structural diagrams of a process of forming an optical fingerprint sensor module in another embodiment of the present invention.
  • the performance of the optical fingerprint sensor module formed in the prior art is poor.
  • An optical fingerprint sensor module includes: an optical fingerprint sensor 110; a self-luminous display panel 120; and a light collimator panel 130 located between the optical fingerprint sensor 110 and the self-luminous display panel 120.
  • the optical fingerprint sensor 110 and the light collimator panel 130 are bonded using a first adhesive 140, and the self-luminous display panel 120 and the light collimator panel 130 are bonded using a second adhesive 150.
  • the material of the first adhesive 140 and the second adhesive 150 can be selected from materials that need to be heat-bonded.
  • the material of the first adhesive 140 and the second adhesive 150 can also be selected from materials that do not need to be heated, that is, Adhesive is applied directly.
  • the heating temperature is generally 80 degrees Celsius to 200 degrees Celsius
  • the self-luminous display panel 120 is generally an OLED display panel
  • the structure of the OLED display panel has more organic materials, and generally is not resistant to high temperatures, and the OLED display panel is normal.
  • the temperature during work must not exceed 60 degrees Celsius. Therefore, the heating during the bonding process will reduce the reliability of the self-luminous display panel 120, thereby reducing the performance of the optical fingerprint sensor module.
  • the first adhesive 140 and the second adhesive 150 are made of a material that does not require heating, in order to improve the adhesion between the optical fingerprint sensor 110, the light collimator panel 130, and the self-luminous display panel 120, the first Both the first adhesive 140 and the second adhesive 150 need to be thicker. This will cause the light to pass through the thicker first adhesive 140 and second adhesive 150, which will easily cause crosstalk of the light, which will cause the fingerprint image transmitted to the optical fingerprint sensor 110 to be blurred and affect the optical fingerprint sensor 110. Fingerprint recognition capability.
  • the present invention provides a method for forming an optical fingerprint sensor module, which includes: after the optical fingerprint sensor and the first adhesive surface of the light collimator panel are bonded together through a first initial ultraviolet curing adhesive, Performing a first ultraviolet curing on the first initial ultraviolet curing adhesive, so that the first initial ultraviolet curing adhesive forms a first ultraviolet curing adhesive; passing the second adhesive surface of the self-luminous display panel and the light collimator panel through a second After the initial UV curing adhesives are bonded together, the second UV curing adhesive is subjected to a second UV curing so that the second UV curing adhesive is formed into a second UV curing adhesive.
  • the method improves the performance of the optical fingerprint sensor module.
  • FIGS. 2 to 11 are schematic structural diagrams of a process of forming an optical fingerprint sensor module according to an embodiment of the present invention.
  • the vertical relationship in this manual is defined by placing the optical fingerprint sensor module under the user's eyes.
  • the optical fingerprint sensor module is placed under the eyes of the user and the display surface of the self-luminous display panel is facing up, if one structure is located above the other structure, it means that this structure is closer to the user's eyes than the other structure.
  • an optical fingerprint sensor 210 (refer to FIGS. 2 and 3 in combination), a self-luminous display panel 220 (refer to FIG. 4), and a light collimator panel 230 (refer to FIGS. 5 to 8) are provided.
  • the light collimator panel 230 has a first adhesive surface and a second adhesive surface opposite to each other; a first initial ultraviolet curing adhesive and a second initial ultraviolet curing adhesive are provided.
  • the optical fingerprint sensor 210 includes a sensor transparent substrate 211 (refer to FIG. 2) and a fingerprint sensing circuit layer 212 (refer to FIG. 2) on a surface of the sensor transparent substrate 211.
  • the material of the sensor light-transmitting substrate 211 may be a glass or plastic substrate, and the plastic substrate includes a PI substrate or a PET substrate.
  • the light transmittance of the sensor light-transmitting substrate 211 to visible light is greater than 50%, and the light transmittance of the sensor light-transmitting substrate 211 to ultraviolet light is greater than 20%.
  • the fingerprint sensing circuit layer 212 (refer to FIG. 3) includes a first non-light-transmitting region and a first light-transmitting region 2123.
  • the fingerprint sensing circuit layer 212 includes a signal line 21, a driving line 22, and a photosensitive pixel array.
  • the photosensitive pixel array includes a plurality of photosensitive pixel units. Each of the photosensitive pixel units includes a signal control switch 2121, a photosensitive device 2122, and a first light-transmitting region 2123.
  • the signal control switch 2121 and the light-sensitive device 2122 are not transparent.
  • the first non-light-transmitting area includes the signal control switch 2121 and the light-sensitive device 2122.
  • the first light-transmitting area 2123 is in addition to the signal line 21 and the driving line 22. , Signal control switch 2121 and areas other than the photosensitive device 2122.
  • the light transmittance of the first non-light-transmitting region to visible light is greater than 50%, and the light transmittance of the first non-light-transmitting region to ultraviolet light is greater than 20%.
  • the self-luminous display panel 220 includes a first light-transmitting substrate 221, a second light-transmitting substrate 222, and a self-light-emitting circuit layer 223.
  • the self-luminous circuit layer 223 is located between the first transparent substrate 221 and the second transparent substrate 222.
  • the material of the first transparent substrate 221 and the second transparent substrate 222 may be a transparent material, and the specific material is inorganic glass or organic glass, or other plastic products other than organic glass, such as a plastic substrate.
  • the plastic substrate includes a PI substrate. Or PET substrate.
  • the self-luminous circuit layer 223 includes a plurality of display pixel units 2231.
  • the area where the plurality of display pixel units 2231 are located and the adjacent relationship between the display pixel units 2231 are illustrated by dashed frames.
  • the display pixel unit 2231 does not include the first light-transmitting substrate 221 and the second light-transmitting substrate. Substrate 222.
  • Each display pixel unit 2231 includes a second non-light-transmitting region and a second light-transmitting region. Since each display pixel unit 2231 has a corresponding second light-transmitting region and a second non-light-transmitting region, in this embodiment, on a macro scale, the self-luminous display panel 220 can uniformly transmit light.
  • the self-luminous display panel 220 is an OLED display panel.
  • the display pixel unit 2231 includes an anode layer, a hole injection layer (HIL), a light emitting layer (EML), an electron injection layer (EIL), and a cathode layer. Structure, the display pixel unit 2231 may further include a hole transport layer (HTL) and an electron transport layer (ETL), and the display pixel unit 2231 further includes structures such as a TFT driving an OLED, a driving metal line, and a storage capacitor.
  • the light emitting layer and other structures are located in the second non-light-transmitting region.
  • the display pixel unit 2231 On the periphery of the second non-light-transmitting region, the display pixel unit 2231 has a second light-transmitting region. It should be noted that, in other embodiments, the second light-transmitting area of one display pixel unit 2231 and the second light-transmitting area of the other display pixel unit 2231 are connected together to form a larger light-transmitting area.
  • the two display pixel units 2231 are usually adjacent, and the area between the two display pixel units 2231 is also a light transmitting area, so that the three light transmitting areas can be connected into a large light transmitting area. .
  • the TFT driving OLED, driving metal lines, and storage capacitors need metal layers, so these structures are also in the second non-light-transmitting region, and the gaps between them all belong to the second light-transmitting region.
  • the second non-light-transmitting region not the entire region is light-transmissive from top to bottom. Instead, the bottom of these areas has a non-light-transmitting structure (illustrated by the oblique shading portion in each display pixel unit 2231 in FIG. 3). That is, the structure above the second non-light-transmitting region light-emitting layer structure is still transparent. For example, the structure above the light-emitting layer is light-transmitting. Therefore, the light emitted by the light-emitting layer can reach the user's eyes upward, thereby ensuring the OLED display panel. Display it.
  • FIG. 6 is a top view corresponding to the light collimator panel 230 in FIG. 5
  • FIG. 7 is a side view corresponding to the light collimator panel 230 in FIG. 5, and FIG.
  • one of the light collimation units 231 is selected by using a dashed frame for distinguishing display in FIGS. 6 and 7.
  • the light collimator panel 230 has an opposite first adhesive surface and a second adhesive surface. The bonding surface is parallel to the second bonding surface.
  • the light collimator panel 230 includes a plurality of light collimation units 231. The extending direction of the light collimation unit 231 is perpendicular to the first bonding surface and the second bonding surface. .
  • the light collimator panel 230 is used to make the light passing through the self-luminous display panel 220 more collimated.
  • Each light collimation unit 231 has a core layer 2311 and a skin layer 2312 surrounding the core layer 2311.
  • the light collimator panel 230 mainly uses the core layer 2311 to pass light, while the skin layer 2312 is used to absorb light, and the core layer 2311 and the skin layer 2312 are used together to achieve the above-mentioned light collimation effect.
  • the core layer 2311 is selected to have an absorption rate of visible light and infrared light ⁇ 10%.
  • the transmittance of the core layer 2311 to visible light is greater than 50%, and the transmittance of the core layer 2311 to ultraviolet light is greater than 20%.
  • the absorption rate of visible light and infrared light of the skin layer 2312 is selected to be greater than 50%.
  • the light incident obliquely to the light collimator panel 230 will not be significantly reflected at the interface between the core layer 2311 and the skin layer 2312 of the light collimation fiber, nor will it be totally reflected, but will be incident from the core layer 2311 into the skin layer 2312. Absorbed by the cortex 2312. Therefore, light having a small angle with the first adhesive surface and the second adhesive surface of the light collimator panel 230 will be absorbed by the skin layer 2312 after passing through the skin layer 2312 one or more times, and will be absorbed by the light collimator panel. Light with a larger angle between the first adhesive surface and the second adhesive surface of 230 can completely pass through a core layer 2311.
  • the angles between the light passing through the light collimator panel 230 and the first adhesive surface and the second adhesive surface are close to 90 degrees (for example, 80 degrees to 90 degrees), while the light in other angle ranges is Absorbed by the light collimator panel 230.
  • the light collimator panel 230 can make the light passing through the self-luminous display panel 220 more collimated. The collimating effect of the light collimator panel 230 on light helps to improve the fingerprint recognition performance of the optical fingerprint sensor.
  • a first adhesive surface of the optical fingerprint sensor 210 and the light collimator panel 230 is adhered together by a first initial ultraviolet curing adhesive; the optical fingerprint sensor 210 and the light After the collimator panels 200 are bonded together, the first initial ultraviolet light curing adhesive is subjected to first ultraviolet light curing, so that the first initial ultraviolet light curing adhesive forms a first ultraviolet light curing adhesive 240.
  • the first ultraviolet curing method for the first initial ultraviolet curing adhesive includes: irradiating ultraviolet light from the optical fingerprint sensor 210 to the optical collimator panel 230 to the optical fingerprint.
  • the surface of the sensor 210 passes through the optical fingerprint sensor 210 and is irradiated into the first initial ultraviolet curing adhesive.
  • the first ultraviolet light curing needs to select appropriate parameters. If the ultraviolet light energy is too strong, the optical fingerprint sensor 210 and the light collimator panel 230 may generate excessive heat after absorbing ultraviolet rays, and may be damaged. If the optical fingerprint sensor 210 and the light collimator panel 230 are too weak, the first initial ultraviolet curing adhesive is difficult to undergo a curing reaction; if the curing time is too short, the first initial It is difficult to completely cure the ultraviolet curing adhesive. If the curing time is too long, the process is wasted. Therefore, the parameters for selecting the first ultraviolet curing include: the wavelength of the ultraviolet light used is 200 nm to 400 nm, and the ultraviolet light is used. The energy is 0.4 W / cm 2 to 40 W / cm 2 , and the curing time is 1 second to 10 seconds.
  • a method for performing a first ultraviolet curing on the first initial ultraviolet curing adhesive includes: passing ultraviolet light from the light collimator panel 230 to the optical fingerprint sensor 210.
  • the light is irradiated onto the surface of the light collimator panel 230 in a direction, and passes through the light collimator panel 230 and is irradiated into the first initial ultraviolet curing adhesive.
  • the direction of the light collimator panel 230 is from ultraviolet light to the direction from the light collimator panel 230 to the optical fingerprint sensor 210, and has a higher light transmittance. Higher transmittance can reduce the ultraviolet light energy used for the first ultraviolet light curing, reduce the heating of the optical fingerprint sensor 210 and the light collimator panel 230, and also reduce the curing time, improving the first ultraviolet light curing Process efficiency.
  • the parameters of the first ultraviolet curing include: the wavelength of the ultraviolet light used is 200 nanometers to 400 nanometers, and the energy of the ultraviolet light is 0.4W / cm 2 to 40W / cm 2 , such as 0.4W / cm 2 to 30W / cm 2.
  • the curing time is 1 second to 10 seconds, such as 1 second to 8 seconds.
  • a second adhesive surface of the self-luminous display panel 220 and the light collimator panel 230 is bonded together by a second initial ultraviolet curing adhesive; After the light collimator panels 230 are bonded together, the second initial ultraviolet curing adhesive is cured by a second ultraviolet light, so that the second initial ultraviolet curing adhesive is formed into a second ultraviolet curing adhesive 250.
  • the second adhesive surface of the self-luminous display panel 220 and the light collimator panel 230 is bonded together by a second initial ultraviolet light curing adhesive.
  • the second ultraviolet curing method for the second initial ultraviolet curing adhesive includes: irradiating ultraviolet light from the optical fingerprint sensor 210 to the self-luminous display panel 220 to the optical fingerprint sensor. 210 surface, passes through the optical fingerprint sensor 210 and the light collimator panel 230, and is irradiated into the second initial ultraviolet curing adhesive.
  • Organic materials are included in the self-luminous display panel 220.
  • the benefits of choosing such an irradiation direction include: avoiding irradiating high-intensity ultraviolet light into the self-luminous display panel 220, and avoiding high-intensity ultraviolet light. The organic material in the self-luminous display panel 220 is damaged, so that the display performance of the self-luminous display panel 220 is not reduced.
  • the optical fingerprint sensor 210 and the light collimator panel 230 may generate excessive heat after absorbing ultraviolet rays, damaging the optical fingerprint sensor 210 and the light collimator.
  • Straightener panel 230, and a large amount of ultraviolet light passes through the second initial ultraviolet curing adhesive and irradiates the self-luminous display panel 220, causing damage to the organic material in the self-luminous display panel 220.
  • the ultraviolet light energy is too small, the first It is difficult for the initial UV curing adhesive to undergo a curing reaction.
  • the curing time is too long, the process is wasted, and the curing efficiency is low. If the curing time is too short, it is difficult to completely cure the second initial ultraviolet curing adhesive.
  • the energy of the ultraviolet light used for the second ultraviolet light curing is smaller than that of the first ultraviolet light.
  • the curing time of the second ultraviolet light is made longer than that of the first ultraviolet light.
  • the parameters for selecting the second ultraviolet curing include: the wavelength of the ultraviolet light used is 200 nanometers to 400 nanometers, the energy of the ultraviolet light is 0.2W / cm 2 to 20W / cm 2 , and the curing time is 3 seconds to 30 seconds. .
  • the thickness of the first ultraviolet curing adhesive is 5 to 50 microns, such as 8 microns, 10 microns, 15 microns, 20 microns, 30 microns, 40 microns, or 50 microns;
  • the second ultraviolet light is 5 micrometers to 50 micrometers, such as 8 micrometers, 10 micrometers, 15 micrometers, 20 micrometers, 30 micrometers, 40 micrometers, or 50 micrometers.
  • the first ultraviolet curing adhesive and the second ultraviolet curing adhesive are transparent.
  • the temperatures experienced by the optical fingerprint sensor 210 and the light collimator panel 230 are less than 60 degrees Celsius, such as 25 degrees Celsius and 30 degrees Celsius; during the second ultraviolet curing process, The temperature of the optical fingerprint sensor 210, the self-luminous display panel 220, and the light collimator panel 230 is less than 60 degrees Celsius, such as 25 degrees Celsius and 30 degrees Celsius.
  • the thickness of the first UV curing adhesive is thin, the adhesion strength between the optical fingerprint sensor 210 and the light collimator panel 230 is strong.
  • the thickness of the second ultraviolet curing adhesive is thin, the light collimator panel 230 and the self-luminous display panel 220 have a strong adhesion.
  • the first ultraviolet light curing and the second ultraviolet light curing processes are adopted, and the optical fingerprint sensor 210, the self-luminous display panel 220, and the light collimator panel 230 are prevented from being bonded by heating the adhesive.
  • the optical fingerprint sensor 210, the self-luminous display panel 220, and the light collimator panel 230 are prevented from being bonded by heating the adhesive.
  • the first collimator panel 230 and the optical fingerprint sensor 210 are bonded by using a first ultraviolet curing adhesive, so that there is no air layer between the optical collimator panel 230 and the optical fingerprint sensor 210.
  • the ultraviolet light curing adhesive adheres the light collimator panel 230 and the self-luminous display panel 220, so that there is no air layer between the light collimator panel 230 and the self-luminous display panel 220, thereby avoiding the situation of causing serious loss of optical signals.
  • this embodiment also provides an optical fingerprint sensor module formed by using the above method, including: an optical fingerprint sensor 210; a self-luminous display panel 220; and located between the optical fingerprint sensor 210 and the self-luminous display panel 220.
  • the light collimator panel 230 has a first adhesive surface and a second adhesive surface opposite to each other, and the first adhesive surface faces the optical fingerprint sensor 210, and the first The two adhesive surfaces face the self-luminous display panel 220; the first ultraviolet light curing adhesive 240 is located on the first adhesive surface and the surface of the optical fingerprint sensor 210 facing the first adhesive surface.
  • a second ultraviolet curing adhesive 250 which is located on the second adhesive surface and the surface of the self-luminous display panel 220 facing the second adhesive surface.
  • the thickness of the first ultraviolet curing adhesive 240 is 5 to 50 microns; the thickness of the second ultraviolet curing adhesive 250 is 5 to 50 microns.
  • Another embodiment of the present invention also provides a method for forming an optical fingerprint sensor module.
  • the difference between this embodiment and the previous embodiment is that after performing the second ultraviolet curing, the optical fingerprint sensor and the optical fingerprint sensor are formed.
  • the first adhesive surface of the light collimator panel is bonded together by a first initial ultraviolet curing adhesive.
  • 12 to 13 are schematic structural diagrams of a process of forming an optical fingerprint sensor module in another embodiment of the present invention.
  • a second bonding surface of the self-luminous display panel 220 and the light collimator panel 230 is bonded together by a second initial ultraviolet curing adhesive; After the light collimator panels 230 are bonded together, the second initial ultraviolet curing adhesive is cured by a second ultraviolet light, so that the second initial ultraviolet curing adhesive forms a second ultraviolet curing adhesive 350.
  • a method for performing second ultraviolet curing on the second initial ultraviolet curing adhesive includes: irradiating ultraviolet light from the light collimator panel 230 to the self-luminous display panel 220 to the light collimator panel 230 The surface passes through the light collimator panel 230 and is irradiated into the second initial ultraviolet curing adhesive.
  • the ultraviolet energy used in the second ultraviolet curing in this embodiment is smaller than the ultraviolet used in the second ultraviolet curing in FIG. 11.
  • the curing time of the second UV light curing in this embodiment is longer than the curing time of the second UV light in FIG. 11.
  • the second UV-curable parameters comprises: wavelength of used ultraviolet light of 200 nm to 400 nm ultraviolet light energy of 0.1W / cm 2 ⁇ 10W / cm 2, the curing time It is 4 seconds to 40 seconds.
  • the optical fingerprint sensor 210 and the first adhesive surface of the light collimator panel 230 are adhered together by a first initial ultraviolet light curing adhesive; After the optical fingerprint sensor 210 and the light collimator panel 230 are bonded together, the first initial ultraviolet light curing adhesive is subjected to a first ultraviolet light curing, so that the first initial ultraviolet light curing adhesive forms a first ultraviolet light.
  • Light curing glue 340 is subjected to a first ultraviolet light curing, so that the first initial ultraviolet light curing adhesive forms a first ultraviolet light.
  • a method for performing first ultraviolet curing on the first initial ultraviolet curing adhesive includes: irradiating ultraviolet light from a direction of the optical fingerprint sensor 210 to the light collimator panel 230 onto a surface of the optical fingerprint sensor 210, and After passing through the optical fingerprint sensor 210, it is irradiated into the first initial ultraviolet curing adhesive.
  • the parameters of the first ultraviolet curing include: the wavelength of the used ultraviolet light is 200 nm to 400 nm, the energy of the ultraviolet light is 0.2 W / cm 2 to 20 W / cm 2 , and the curing time is 2 seconds. ⁇ 20 seconds.
  • the temperature of the optical fingerprint sensor 210, the self-luminous display panel 220, and the light collimator panel 230 is less than 60 degrees Celsius, such as 25 degrees Celsius and 30 degrees Celsius.
  • the temperature experienced by the optical fingerprint sensor 210, the self-luminous display panel 220, and the light collimator panel 230 is less than 60 degrees Celsius, such as 25 degrees Celsius and 30 degrees Celsius.
  • the advantage of this embodiment over the previous embodiment is that when curing the second initial ultraviolet curing adhesive, the ultraviolet light passes through the light collimator panel 230 without passing through the optical fingerprint sensor 210, the light utilization rate is high, and the process Easy to control.
  • this embodiment also provides an optical fingerprint sensor module formed by using the above method, including: an optical fingerprint sensor 210; a self-luminous display panel 220; and located between the optical fingerprint sensor 210 and the self-luminous display panel 220.
  • the light collimator panel 230 has a first adhesive surface and a second adhesive surface opposite to each other, and the first adhesive surface faces the optical fingerprint sensor 210, and the first Two adhesive surfaces face the self-luminous display panel 220; a first ultraviolet light curing adhesive 340, the first ultraviolet light curing adhesive 340 is located on the first adhesive surface and the surface of the optical fingerprint sensor 210 facing the first adhesive surface
  • a second ultraviolet curing adhesive 350 which is located on the second adhesive surface and the surface of the self-luminous display panel 220 facing the second adhesive surface.
  • Another embodiment of the present invention also provides a method for forming an optical fingerprint sensor module.
  • the difference between this embodiment and the previous embodiment lies in that the optical fingerprint sensor and the light collimator panel are first adhered. The surfaces are bonded together by a first initial ultraviolet curing adhesive, and the second bonding surface of the self-luminous display panel and the light collimator panel are bonded together by a second initial ultraviolet curing adhesive. The first ultraviolet light curing and the second ultraviolet light curing are performed.
  • the method for performing the first ultraviolet curing and the second ultraviolet curing together includes: irradiating ultraviolet light from the optical fingerprint sensor to the self-luminous display panel onto the surface of the optical fingerprint sensor, and passing through the optical fingerprint sensor and light.
  • the collimator panel allows ultraviolet light to be irradiated into the first initial ultraviolet curing adhesive and the second initial ultraviolet curing adhesive.
  • the parameters for the first UV curing and the second UV curing include: the wavelength of the ultraviolet light used is 200 nm to 400 nm, the energy of the ultraviolet light is 0.2 W / cm 2 to 20 W / cm 2 , and the curing time is 5 seconds to 50 seconds.
  • the temperatures to which the optical fingerprint sensor 210, the self-luminous display panel 220, and the light collimator panel 230 are less than 60 degrees Celsius, such as 25 degrees Celsius and 30 degrees Celsius.
  • optical fingerprint sensor module formed in this embodiment refers to the optical fingerprint sensor module of the previous embodiment, and will not be described in detail.
  • both the optical fingerprint sensor 210 and the self-luminous display panel 220 can be further combined with the refrigeration system during the curing process.
  • the light collimator panel 230 dissipates heat to further reduce the thermal influence of ultraviolet light irradiation on the optical fingerprint sensor 210, the self-luminous display panel 220, and the light collimator panel 230.
  • the curing of the first initial ultraviolet curing adhesive and the second initial ultraviolet curing adhesive depends on the ultraviolet curing reaction, not the temperature, so it is ensured that the first ultraviolet curing adhesive and the second ultraviolet curing adhesive are formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Image Input (AREA)

Abstract

一种光学指纹传感器模组及其形成方法,方法包括:提供光学指纹传感器、自发光显示面板和光准直器面板,光准直器面板具有相对的第一粘合面和第二粘合面;提供第一初始紫外光固化胶和第二初始紫外光固化胶;将光学指纹传感器和光准直器面板的第一粘合面通过第一初始紫外光固化胶粘合在一起后,对第一初始紫外光固化胶进行第一紫外光固化,使第一初始紫外光固化胶形成第一紫外光固化胶;将自发光显示面板和光准直器面板的第二粘合面通过第二初始紫外光固化胶粘合在一起后,对第二初始紫外光固化胶进行第二紫外光固化,使第二初始紫外光固化胶形成第二紫外光固化胶。所述方法使光学指纹传感器模组的性能得到提高。

Description

光学指纹传感器模组及其形成方法 技术领域
本发明涉及光学指纹识别领域,尤其涉及一种光学指纹传感器模组及其形成方法。
背景技术
指纹成像识别技术,是通过光学指纹传感器采集到人体的指纹图像,然后与***里的已有指纹成像信息进行比对,来判断正确与否,进而实现身份识别的技术。由于其使用的方便性,以及人体指纹的唯一性,指纹成像识别技术已经大量应用于各个领域,如公安局和海关等安检领域、楼宇的门禁***、以及个人电脑和手机等消费品领域等。
指纹成像识别技术的成像方式有光学成像、电容成像、超声成像等多种技术。相对来说,光学指纹成像识别技术成像效果相对较好,设备成本相对较低。
然而,现有的光学指纹传感器模组的性能有待提高。
发明内容
本发明解决的问题是提供一种光学指纹传感器模组及其形成方法,以提高光学指纹传感器模组的性能。
为解决上述问题,本发明提供一种光学指纹传感器模组的形成方法,包括:提供光学指纹传感器、自发光显示面板和光准直器面板,所述光准直器面板具有相对的第一粘合面和第二粘合面;提供第一初始紫外光固化胶和第二初始紫外光固化胶;将所述光学指纹传感器和所述光准直器面板的第一粘合面通过第一初始紫外光固化胶粘合在一起;将所述光学指纹传感器和所述光准直器面板粘合在一起后,对所述第一初始紫外光固化胶进行第一紫外光固化,使第一初始紫外光 固化胶形成第一紫外光固化胶;将所述自发光显示面板和所述光准直器面板的第二粘合面通过第二初始紫外光固化胶粘合在一起;将所述自发光显示面板和所述光准直器面板粘合在一起后,对所述第二初始紫外光固化胶进行第二紫外光固化,使第二初始紫外光固化胶形成第二紫外光固化胶。
可选的,进行所述第一紫外光固化后,将所述自发光显示面板和所述光准直器面板的第二粘合面通过第二初始紫外光固化胶粘合在一起。
可选的,对所述第一初始紫外光固化胶进行第一紫外光固化的方法包括:将紫外光自所述光准直器面板至所述光学指纹传感器的方向照射至光准直器面板表面,并穿过光准直器面板后照射至第一初始紫外光固化胶中。
可选的,所述第一紫外光固化的参数包括:采用的紫外光的波长为200纳米~400纳米,紫外光的能量为0.4W/cm 2~40W/cm 2,固化时间为1秒~10秒。
可选的,对所述第一初始紫外光固化胶进行第一紫外光固化的方法包括:将紫外光自所述光学指纹传感器至所述光准直器面板的方向照射至光学指纹传感器表面,并穿过光学指纹传感器后照射至第一初始紫外光固化胶中。
可选的,所述第一紫外光固化的参数包括:采用的紫外光的波长为200纳米~400纳米,紫外光的能量为0.4W/cm 2~40W/cm 2,固化时间为1秒~10秒。
可选的,对所述第二初始紫外光固化胶进行第二紫外光固化的方法包括:将紫外光自所述光学指纹传感器至所述自发光显示面板的方向照射至光学指纹传感器表面,并穿过光学指纹传感器和光准直器面板后照射至第二初始紫外光固化胶中。
可选的,所述第二紫外光固化的参数包括:采用的紫外光的波长 为200纳米~400纳米,紫外光的能量为0.2W/cm 2~20W/cm 2,固化时间为3秒~30秒。
可选的,进行所述第二紫外光固化后,将所述光学指纹传感器和所述光准直器面板的第一粘合面通过第一初始紫外光固化胶粘合在一起。
可选的,对所述第二初始紫外光固化胶进行第二紫外光固化的方法包括:将紫外光自所述光准直器面板至所述自发光显示面板的方向照射至光准直器面板表面,并穿过光准直器面板后照射至第二初始紫外光固化胶中。
可选的,所述第二紫外光固化的参数包括:采用的紫外光的波长为200纳米~400纳米,紫外光的能量为0.1W/cm 2~10W/cm 2,固化时间为4秒~40秒。
可选的,对所述第一初始紫外光固化胶进行第一紫外光固化的方法包括:将紫外光自所述光学指纹传感器至所述光准直器面板的方向照射至光学指纹传感器表面,并穿过光学指纹传感器后照射至第一初始紫外光固化胶中。
可选的,所述第一紫外光固化的参数包括:采用的紫外光的波长为200纳米~400纳米,紫外光的能量为0.2W/cm 2~20W/cm 2,固化时间为2秒~20秒。
可选的,将所述光学指纹传感器和所述光准直器面板的第一粘合面通过第一初始紫外光固化胶粘合在一起,将所述自发光显示面板和所述光准直器面板的第二粘合面通过第二初始紫外光固化胶粘合在一起后,一并进行第一紫外光固化和第二紫外光固化。
可选的,一并进行第一紫外光固化和第二紫外光固化的方法包括:将紫外光自所述光学指纹传感器至所述自发光显示面板的方向照射至光学指纹传感器表面,并穿过光学指纹传感器和光准直器面板,使紫外光照射至第一初始紫外光固化胶中和第二初始紫外光固化胶 中。
可选的,一并进行第一紫外光固化和第二紫外光固化的参数包括:采用的紫外光的波长为200纳米~400纳米,紫外光的能量为0.2W/cm 2~20W/cm 2,固化时间为5秒~50秒。
可选的,所述第一紫外光固化胶的厚度为5微米~50微米;所述第二紫外光固化胶的厚度为5微米~50微米。
本发明还提供一种采用上述任意一项方法形成的光学指纹传感器模组,包括:光学指纹传感器;自发光显示面板;位于所述光学指纹传感器和所述自发光显示面板之间的光准直器面板,所述光准直器面板具有相对的第一粘合面和第二粘合面,所述第一粘合面朝向所述光学指纹传感器,所述第二粘合面朝向所述自发光显示面板;第一紫外光固化胶,所述第一紫外光固化胶位于第一粘合面以及光学指纹传感器的朝向第一粘合面的表面;第二紫外光固化胶,所述第二紫外光固化胶位于第二粘合面以及自发光显示面板的朝向第二粘合面的表面。
与现有技术相比,本发明的技术方案具有以下优点:
本发明技术方案提供的光学指纹传感器模组的形成方法中,采用第一紫外光固化对光学指纹传感器和光准直器面板进行粘合,采用第二紫外光固化对自发光显示面板和光准直器面板进行粘合,第一紫外光固化和第二紫外光固化中没有高温加热过程,能避免自发光显示面板承受较高的温度而影响自发光显示面板的性能,且避免了光学指纹传感器和光准直器面板承受较高的温度。其次,在保证粘合力度满足工艺要求的同时,能够采用厚度较薄的第一紫外光固化胶和第二紫外光固化胶,光线反射至光学指纹传感器中的过程中通过较薄厚度的第一紫外光固化胶和第二紫外光固化胶,这样使得传输至光学指纹传感器中的指纹图像清晰,提高了光学指纹传感器的指纹识别能力。
附图说明
图1是一种光学指纹传感器模组的结构示意图;
图2至图11是本发明一实施例中光学指纹传感器模组形成过程的结构示意图;
图12至图13是本发明另一实施例中光学指纹传感器模组形成过程的结构示意图。
具体实施方式
正如背景技术所述,现有技术形成的光学指纹传感器模组的性能较差。
一种光学指纹传感器模组,请参考图1,包括:光学指纹传感器110;自发光显示面板120;位于光学指纹传感器110和自发光显示面板120之间的光准直器面板130。
通常,光学指纹传感器110和光准直器面板130之间采用第一粘合胶140来粘结,自发光显示面板120和光准直器面板130之间采用第二粘合胶150来粘结。
第一粘合胶140和第二粘合胶150的材料可选择需要加热粘合的材料,第一粘合胶140和第二粘合胶150的材料还可选择无需加热粘合的材料,即直接采用粘合剂进行粘合。
当第一粘合胶140和第二粘合胶150采用需要加热粘合的材料时,由于在粘合光学指纹传感器110、光准直器面板130和自发光显示面板120的过程中,需要进行加热,该加热温度一般为80摄氏度~200摄氏度,而自发光显示面板120一般为OLED显示面板,而OLED显示面板的结构中具有较多的有机材料,一般不耐承受高温,OLED显示面板在正常工作时得承受的温度不能超过60摄氏度。因此,粘合过程中的加热会降低自发光显示面板120的可靠性,从而降低光学指纹传感器模组的性能。
当第一粘合胶140和第二粘合胶150采用无需加热粘合的材料 时,为了提高光学指纹传感器110、光准直器面板130和自发光显示面板120之间的粘合力,第一粘合胶140和第二粘合胶150均需要采用较厚的厚度。而这样会导致光线需要通过较厚的第一粘合胶140和第二粘合胶150,容易使得光线发生串扰,从而导致传输至光学指纹传感器110中的指纹图像模糊,影响光学指纹传感器110的指纹识别能力。
在此基础上,本发明提供一种光学指纹传感器模组的形成方法,包括:将光学指纹传感器和光准直器面板的第一粘合面通过第一初始紫外光固化胶粘合在一起后,对第一初始紫外光固化胶进行第一紫外光固化,使第一初始紫外光固化胶形成第一紫外光固化胶;将自发光显示面板和光准直器面板的第二粘合面通过第二初始紫外光固化胶粘合在一起后,对第二初始紫外光固化胶进行第二紫外光固化,使第二初始紫外光固化胶形成第二紫外光固化胶。所述方法提高了光学指纹传感器模组的性能。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图2至图11是本发明一实施例中光学指纹传感器模组形成过程的结构示意图。
本说明书中的上下关系,是以将光学指纹传感器模组放置在用户眼睛下方进行定义的。当光学指纹传感器模组放置在用户眼睛下方,且自发光显示面板的显示面朝上时,如果说一个结构位于另一个结构的上方,则说明这个结构比另一个结构更加靠近用户眼睛,在此一并说明。
结合参考图2至图8,提供光学指纹传感器210(结合参考图2和图3)、自发光显示面板220(参考图4)和光准直器面板230(参考图5至图8),所述光准直器面板230具有相对的第一粘合面和第二粘合面;提供第一初始紫外光固化胶和第二初始紫外光固化胶。
所述光学指纹传感器210包括传感器透光基板211(参考图2)和位于所述传感器透光基板211表面的指纹感测电路层212(参考图2)。所述传感器透光基板211的材料可以为玻璃或者塑料基板,塑料基板包括PI基板或PET基板。所述传感器透光基板211对可见光的透光率大于50%,所述传感器透光基板211对紫外光的透光率大于20%。
所述指纹感测电路层212(参考图3)包括第一非透光区域和第一透光区域2123。所述指纹感测电路层212包括信号线21、驱动线22和感光像素阵列,所述感光像素阵列包括若干感光像素单元。其中,每个感光像素单元包括信号控制开关2121、感光器件2122和第一透光区域2123。信号控制开关2121和感光器件2122都不透光,所述第一非透光区域包括所述信号控制开关2121和感光器件2122,所述第一透光区域2123是除了信号线21、驱动线22、信号控制开关2121和感光器件2122以外的区域。
所述第一非透光区域对可见光的透光率大于50%,所述第一非透光区域对紫外光的透光率大于20%。
所述自发光显示面板220包括第一透光基板221、第二透光基板222和自发光电路层223。自发光电路层223位于第一透光基板221和第二透光基板222之间。第一透光基板221和第二透光基板222的材料可以为透光材料,具体材料为无机玻璃或有机玻璃,也可以是有机玻璃以外的其它塑料制品,如塑料基板,塑料基板包括PI基板或PET基板。
所述自发光电路层223包括多个显示像素单元2231。图3中用虚线框示意出多个显示像素单元2231所在的区域,及各个显示像素单元2231相邻关系。需要说明的是,虽然虚线框包括了部分第一透光基板221和第二透光基板222,但这只是为了便于显示,显示像素单元2231并不包括第一透光基板221和第二透光基板222。每个显示像素单元2231包括第二非透光区和第二透光区。由于每个显示像 素单元2231具有相应的第二透光区和第二非透光区,本实施例中,在宏观上,自发光显示面板220能够均匀透过光线。
本实施例中,自发光显示面板220为OLED显示面板,相应的,显示像素单元2231包括阳极层、空穴注入层(HIL)、发光层(EML)、电子注入层(EIL)和阴极层等结构,显示像素单元2231还可以包括空穴传输层(HTL)和电子传输层(ETL),显示像素单元2231还包括驱动OLED的TFT、驱动金属线和存储电容等结构。
上述发光层等结构位于第二非透光区中。而在第二非透光区周边,显示像素单元2231具有第二透光区。需要说明的是,其它实施例中,一个显示像素单元2231的第二透光区与另一个显示像素单元2231的第二透光区连接在一起,形成一个范围更大的透光区,此时,这两个显示像素单元2231通常是相邻的,并且,两个显示像素单元2231相邻之间的区域也是一个透光区,从而能够使得三个透光区连接为一个大的透光区。
所述驱动OLED的TFT、驱动金属线和存储电容等结构需要有金属层,因此这些结构也在第二非透光区中,而它们之间的间隙均属于第二透光区。在第二非透光区中,并不是整个区从上到下都是非透光的。而是,这些区的底部具有非透光结构(图3中以各显示像素单元2231中的斜底纹部分示意)。即在第二非透光区发光层等结构上方的结构仍然是透光的,例如,发光层上方的结构透光,因此,发光层发出的光线才能够向上到达用户眼睛,从而保证OLED显示面板进行显示。
结合参考图5至图8,图6为对应图5中光准直器面板230的俯视图,图7为对应图5中光准直器面板230的侧视图,图8为光准直单元231的俯视图,6和图7中均用虚线框框选出其中一个光准直单元231进行区分显示,所述光准直器面板230具有相对的第一粘合面和第二粘合面,第一粘合面和第二粘合面平行,所述光准直器面板230包括多个光准直单元231,所述光准直单元231的延伸方向垂直 于第一粘合面和第二粘合面。
所述光准直器面板230用于使透过自发光显示面板220的光线更加准直。每个光准直单元231具有芯层2311和包围芯层2311的皮层2312。光准直器面板230主要利用芯层2311来通过光线,而皮层2312则用于吸收光线,芯层2311和皮层2312配合使用,从而达到上述光准直作用。
所述芯层2311对可见光和红外光的吸收率越低越好。为保证通过光准直器面板230的光线强度足够,选择令芯层2311对可见光和红外光的吸收率<10%。另外,由于考虑到后续的粘合方式,芯层2311紫外光的吸收率越低越好。本实施例中,芯层2311对可见光的透光率大于50%,芯层2311对紫外光的透光率大于20%。
所述皮层2312对可见光和红外光的吸收率越高越好,以便对特定角度之外的光线进行吸收。为保证对相应光线进行有效吸收,选择令皮层2312对可见光和红外光的吸收率>50%。
斜入射至光准直器面板230的光在光准直纤维的芯层2311和皮层2312界面不会发生明显反射,更不会发生全反射,而是会从芯层2311入射进入皮层2312中,被皮层2312吸收。因此,与光准直器面板230的第一粘合面和第二粘合面夹角较小的光线,会在经过一次或者多次皮层2312后被皮层2312吸收,而与光准直器面板230的第一粘合面和第二粘合面夹角较大的光线,则可以从一个芯层2311中完全穿过。例如,通过光准直器面板230的光线分别与第一粘合面和第二粘合面之间的夹角均较接近90度(如80度至90度),而其他角度范围的光都被光准直器面板230吸收掉。综上,所述光准直器面板230能够使透过自发光显示面板220的光线更加准直。所述光准直器面板230对光线的准直作用,有助于提高光学指纹传感器的指纹识别性能。
参考图9,将所述光学指纹传感器210和所述光准直器面板230的第一粘合面通过第一初始紫外光固化胶粘合在一起;将所述光学指 纹传感器210和所述光准直器面板200粘合在一起后,对所述第一初始紫外光固化胶进行第一紫外光固化,使第一初始紫外光固化胶形成第一紫外光固化胶240。
本实施例中,对所述第一初始紫外光固化胶进行第一紫外光固化的方法包括:将紫外光自所述光学指纹传感器210至所述光准直器面板230的方向照射至光学指纹传感器210表面,并穿过光学指纹传感器210后照射至第一初始紫外光固化胶中。
本实施例中,所述第一紫外光固化需要选择合适的参数,若所述紫外光能量过强,则导致光学指纹传感器210和所述光准直器面板230吸收紫外线后发热过大,损坏光学指纹传感器210和所述光准直器面板230,若所述紫外光能量过弱,则导致第一初始紫外光固化胶难以发生固化反应;若所述固化时间过短,则导致第一初始紫外光固化胶难以完全固化,若所述固化时间过长,则导致工艺浪费,因此,选择所述第一紫外光固化的参数包括:采用的紫外光的波长为200纳米~400纳米,紫外光的能量为0.4W/cm 2~40W/cm 2,固化时间为1秒~10秒。
在其它实施例中,参考图10,对所述第一初始紫外光固化胶进行第一紫外光固化的方法包括:将紫外光自所述光准直器面板230至所述光学指纹传感器210的方向照射至光准直器面板230表面,并穿过光准直器面板230后照射至第一初始紫外光固化胶中,这样的好处是:相对于紫外光采用自所述光学指纹传感器210至所述光准直器面板230的方向,从紫外光采用自所述光准直器面板230至所述光学指纹传感器210的方向,具有更高的透光率。更高透过率就可以降低第一紫外光固化采用的紫外光能量,减少光学指纹传感器210和所述光准直器面板230的发热,也可以减小固化时间,提高第一紫外光固化的工艺效率。
所述第一紫外光固化的参数包括:采用的紫外光的波长为200纳米~400纳米,紫外光的能量为0.4W/cm 2~40W/cm 2,如 0.4W/cm 2~30W/cm 2,固化时间为1秒~10秒,如1秒~8秒。
参考图11,将所述自发光显示面板220和所述光准直器面板230的第二粘合面通过第二初始紫外光固化胶粘合在一起;将所述自发光显示面板220和所述光准直器面板230粘合在一起后,对所述第二初始紫外光固化胶进行第二紫外光固化,使第二初始紫外光固化胶形成第二紫外光固化胶250。
本实施例中,进行所述第一紫外光固化后,将所述自发光显示面板220和所述光准直器面板230的第二粘合面通过第二初始紫外光固化胶粘合在一起。
本实施例中,对所述第二初始紫外光固化胶进行第二紫外光固化的方法包括:将紫外光自所述光学指纹传感器210至所述自发光显示面板220的方向照射至光学指纹传感器210表面,并穿过光学指纹传感器210和光准直器面板230后照射至第二初始紫外光固化胶中。自发光显示面板220中具有有机材料,第二紫外光固化中,选择这样的照射方向的好处包括:避免将强度较高的紫外光照射至自发光显示面板220中,避免强度较高的紫外光损伤自发光显示面板220中的有机材料,避免降低自发光显示面板220的显示性能。
本实施例的第二紫外光固化中,若紫外光能量过大,会导致光学指纹传感器210和所述光准直器面板230吸收紫外线后发热过大,损坏光学指纹传感器210和所述光准直器面板230,且会有大量的紫外光穿过第二初始紫外光固化胶照射至自发光显示面板220中,引起自发光显示面板220中有机材料损伤,若紫外光能量过小于,导致第二初始紫外光固化胶难以发生固化反应。本实施例的第二紫外光固化中,若固化时间过长,导致工艺浪费,且固化效率低,若固化时间过短,导致第二初始紫外光固化胶难以完全固化。
本实施例中,考虑到紫外光照射到自发光显示面板220的可能性,为了避免紫外光对自发光显示面板220的影响,因此第二紫外光固化采用的紫外光能量小于第一紫外光固化采用的紫外光能量,同 时,为了弥补紫外光能量较小会对第二紫外光固化不充分的因素,因此使第二紫外光固化的固化时间大于第一紫外光固化的时间。
综上,选择第二紫外光固化的参数包括:采用的紫外光的波长为200纳米~400纳米,紫外光的能量为0.2W/cm 2~20W/cm 2,固化时间为3秒~30秒。
本实施例中,所述第一紫外光固化胶的厚度为5微米~50微米,如8微米、10微米、15微米、20微米、30微米、40微米或50微米;所述第二紫外光固化胶的厚度为5微米~50微米,如8微米、10微米、15微米、20微米、30微米、40微米或50微米。
第一紫外光固化胶和第二紫外光固化胶是透光的。
本实施例中,在第一紫外光固化的过程中,光学指纹传感器210和光准直器面板230承受的温度均小于60摄氏度,如25摄氏度、30摄氏度;在第二紫外光固化的过程中,光学指纹传感器210、自发光显示面板220和光准直器面板230承受的温度均小于60摄氏度,如25摄氏度、30摄氏度。
本实施例中,尽管所述第一紫外光固化胶的厚度较薄,但是光学指纹传感器210和所述光准直器面板230之间的粘合力度较强。尽管所述第二紫外光固化胶的厚度较薄,但是所述光准直器面板230和所述自发光显示面板220之间的粘合力度较强。
本实施例中,采用的是第一紫外光固化和第二紫外光固化的工艺,避免采用加热粘合胶的方式对光学指纹传感器210、自发光显示面板220和光准直器面板230进行粘合,避免自发光显示面板220承受较高的温度,避免影响自发光显示面板220的性能,且避免了光学指纹传感器210和光准直器面板230承受较高的温度。
本实施例中,采用第一紫外光固化胶对光准直器面板230和光学指纹传感器210进行贴合,使得光准直器面板230和光学指纹传感器210之间不存在空气层,采用第二紫外光固化胶对光准直器面板230 和自发光显示面板220进行贴合,使得光准直器面板230和自发光显示面板220之间不存在空气层,避免造成光信号严重损失的情况。
相应的,本实施例还提供一种采用上述方法形成的光学指纹传感器模组,包括:光学指纹传感器210;自发光显示面板220;位于所述光学指纹传感器210和所述自发光显示面板220之间的光准直器面板230,所述光准直器面板230具有相对的第一粘合面和第二粘合面,所述第一粘合面朝向所述光学指纹传感器210,所述第二粘合面朝向所述自发光显示面板220;第一紫外光固化胶240,所述第一紫外光固化胶240位于第一粘合面以及光学指纹传感器210的朝向第一粘合面的表面;第二紫外光固化胶250,所述第二紫外光固化胶250位于第二粘合面以及自发光显示面板220的朝向第二粘合面的表面。
本实施例中,所述第一紫外光固化胶240的厚度为5微米~50微米;所述第二紫外光固化胶250的厚度为5微米~50微米。
本发明另一实施例还提供一种光学指纹传感器模组的形成方法,本实施例与前一实施例的区别在于:进行所述第二紫外光固化后,将所述光学指纹传感器和所述光准直器面板的第一粘合面通过第一初始紫外光固化胶粘合在一起。
图12至图13是本发明另一实施例中光学指纹传感器模组形成过程的结构示意图。
参考图12,将所述自发光显示面板220和所述光准直器面板230的第二粘合面通过第二初始紫外光固化胶粘合在一起;将所述自发光显示面板220和所述光准直器面板230粘合在一起后,对所述第二初始紫外光固化胶进行第二紫外光固化,使第二初始紫外光固化胶形成第二紫外光固化胶350。
对所述第二初始紫外光固化胶进行第二紫外光固化的方法包括:将紫外光自所述光准直器面板230至所述自发光显示面板220的方向照射至光准直器面板230表面,并穿过光准直器面板230后照射至第 二初始紫外光固化胶中。
本实施例中,为了减小对第二紫外光固化对自发光显示面板220的照射影响,因此本实施例第二紫外光固化采用的紫外光能量小于图11中第二紫外光固化采用的紫外光能量,同时,为了弥补紫外光能量较小会对第二紫外光固化不充分的因素,因此使本实施例中第二紫外光固化的固化时间大于图11中第二紫外光固化的时间。
综上,本实施例中,所述第二紫外光固化的参数包括:采用的紫外光的波长为200纳米~400纳米,紫外光的能量为0.1W/cm 2~10W/cm 2,固化时间为4秒~40秒。
参考图13,进行所述第二紫外光固化后,将所述光学指纹传感器210和所述光准直器面板230的第一粘合面通过第一初始紫外光固化胶粘合在一起;将所述光学指纹传感器210和所述光准直器面板230粘合在一起后,对所述第一初始紫外光固化胶进行第一紫外光固化,使第一初始紫外光固化胶形成第一紫外光固化胶340。
对所述第一初始紫外光固化胶进行第一紫外光固化的方法包括:将紫外光自所述光学指纹传感器210至所述光准直器面板230的方向照射至光学指纹传感器210表面,并穿过光学指纹传感器210后照射至第一初始紫外光固化胶中。
本实施例中,所述第一紫外光固化的参数包括:采用的紫外光的波长为200纳米~400纳米,紫外光的能量为0.2W/cm 2~20W/cm 2,固化时间为2秒~20秒。
本实施例中,在第一紫外光固化的过程中,光学指纹传感器210、自发光显示面板220和光准直器面板230承受的温度均小于60摄氏度,如25摄氏度、30摄氏度;在第二紫外光固化的过程中,光学指纹传感器210、自发光显示面板220和光准直器面板230承受的温度均小于60摄氏度,如25摄氏度、30摄氏度。
本实施例相对于前一实施例的好处在于:固化第二初始紫外光固 化胶时,紫外光透过所述光准直器面板230而无需透过光学指纹传感器210,光利用率高,工艺容易控制。
相应的,本实施例还提供一种采用上述方法形成的光学指纹传感器模组,包括:光学指纹传感器210;自发光显示面板220;位于所述光学指纹传感器210和所述自发光显示面板220之间的光准直器面板230,所述光准直器面板230具有相对的第一粘合面和第二粘合面,所述第一粘合面朝向所述光学指纹传感器210,所述第二粘合面朝向所述自发光显示面板220;第一紫外光固化胶340,所述第一紫外光固化胶340位于第一粘合面以及光学指纹传感器210的朝向第一粘合面的表面;第二紫外光固化胶350,所述第二紫外光固化胶350位于第二粘合面以及自发光显示面板220的朝向第二粘合面的表面。
本发明又一实施例还提供一种光学指纹传感器模组的形成方法,本实施例与前一实施例的区别在于:将所述光学指纹传感器和所述光准直器面板的第一粘合面通过第一初始紫外光固化胶粘合在一起,将所述自发光显示面板和所述光准直器面板的第二粘合面通过第二初始紫外光固化胶粘合在一起后,一并进行第一紫外光固化和第二紫外光固化。
一并进行第一紫外光固化和第二紫外光固化的方法包括:将紫外光自所述光学指纹传感器至所述自发光显示面板的方向照射至光学指纹传感器表面,并穿过光学指纹传感器和光准直器面板,使紫外光照射至第一初始紫外光固化胶中和第二初始紫外光固化胶中。
一并进行第一紫外光固化和第二紫外光固化的参数包括:采用的紫外光的波长为200纳米~400纳米,紫外光的能量为0.2W/cm 2~20W/cm 2,固化时间为5秒~50秒。
本实施例中,光学指纹传感器210、自发光显示面板220和光准直器面板230承受的温度均小于60摄氏度,如25摄氏度、30摄氏度。
本实施例中,由于一并进行第一紫外光固化和第二紫外光固化,因此简化了工艺。
本实施例形成的光学指纹传感器模组参考前一实施例的光学指纹传感器模组,不再详述。
需要说明的是,上述各实施例提到的第一紫外光固化和第二紫外光固化的工艺,均可在进行固化的过程中,结合制冷***进一步对光学指纹传感器210、自发光显示面板220和光准直器面板230进行散热,进一步降低紫外光照射对光学指纹传感器210、自发光显示面板220和光准直器面板230的热影响。且第一初始紫外光固化胶和第二初始紫外光固化胶的固化依赖的紫外光固化反应,而不是温度,因此保证形成第一紫外光固化胶和第二紫外光固化胶。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (18)

  1. 一种光学指纹传感器模组的形成方法,其特征在于,包括:
    提供光学指纹传感器、自发光显示面板和光准直器面板,所述光准直器面板具有相对的第一粘合面和第二粘合面;
    提供第一初始紫外光固化胶和第二初始紫外光固化胶;
    将所述光学指纹传感器和所述光准直器面板的第一粘合面通过第一初始紫外光固化胶粘合在一起;
    将所述光学指纹传感器和所述光准直器面板粘合在一起后,对所述第一初始紫外光固化胶进行第一紫外光固化,使第一初始紫外光固化胶形成第一紫外光固化胶;
    将所述自发光显示面板和所述光准直器面板的第二粘合面通过第二初始紫外光固化胶粘合在一起;
    将所述自发光显示面板和所述光准直器面板粘合在一起后,对所述第二初始紫外光固化胶进行第二紫外光固化,使第二初始紫外光固化胶形成第二紫外光固化胶。
  2. 根据权利要求1所述的光学指纹传感器模组的形成方法,其特征在于,进行所述第一紫外光固化后,将所述自发光显示面板和所述光准直器面板的第二粘合面通过第二初始紫外光固化胶粘合在一起。
  3. 根据权利要求2所述的光学指纹传感器模组的形成方法,其特征在于,对所述第一初始紫外光固化胶进行第一紫外光固化的方法包括:将紫外光自所述光准直器面板至所述光学指纹传感器的方向照射至光准直器面板表面,并穿过光准直器面板后照射至第一初始紫外光固化胶中。
  4. 根据权利要求3所述的光学指纹传感器模组的形成方法,其特征在于,所述第一紫外光固化的参数包括:采用的紫外光的波长为200纳米~400纳米,紫外光的能量为0.4W/cm 2~40W/cm 2,固化时间为1秒~10秒。
  5. 根据权利要求2所述的光学指纹传感器模组的形成方法,其特征在于,对所述第一初始紫外光固化胶进行第一紫外光固化的方法包括:将紫外光自所述光学指纹传感器至所述光准直器面板的方向照射至光学指纹传感器表面,并穿过光学指纹传感器后照射至第一初始紫外光固化胶中。
  6. 根据权利要求5所述的光学指纹传感器模组的形成方法,其特征在于,所述第一紫外光固化的参数包括:采用的紫外光的波长为200纳米~400纳米,紫外光的能量为0.4W/cm 2~40W/cm 2,固化时间为1秒~10秒。
  7. 根据权利要求2所述的光学指纹传感器模组的形成方法,其特征在于,对所述第二初始紫外光固化胶进行第二紫外光固化的方法包括:将紫外光自所述光学指纹传感器至所述自发光显示面板的方向照射至光学指纹传感器表面,并穿过光学指纹传感器和光准直器面板后照射至第二初始紫外光固化胶中。
  8. 根据权利要求7所述的光学指纹传感器模组的形成方法,其特征在于,所述第二紫外光固化的参数包括:采用的紫外光的波长为200纳米~400纳米,紫外光的能量为0.2W/cm 2~20W/cm 2,固化时间为3秒~30秒。
  9. 根据权利要求1所述的光学指纹传感器模组的形成方法,其特征在于,进行所述第二紫外光固化后,将所述光学指纹传感器和所述光准直器面板的第一粘合面通过第一初始紫外光固化胶粘合在一起。
  10. 根据权利要求9所述的光学指纹传感器模组的形成方法,其特征在于,对所述第二初始紫外光固化胶进行第二紫外光固化的方法包括:将紫外光自所述光准直器面板至所述自发光显示面板的方向照射至光准直器面板表面,并穿过光准直器面板后照射至第二初始紫外光固化胶中。
  11. 根据权利要求10所述的光学指纹传感器模组的形成方法,所述第二紫外光固化的参数包括:采用的紫外光的波长为200纳米~400纳米,紫外光的能量为0.1W/cm 2~10W/cm 2,固化时间为4秒~40 秒。
  12. 根据权利要求9所述的光学指纹传感器模组的形成方法,其特征在于,对所述第一初始紫外光固化胶进行第一紫外光固化的方法包括:将紫外光自所述光学指纹传感器至所述光准直器面板的方向照射至光学指纹传感器表面,并穿过光学指纹传感器后照射至第一初始紫外光固化胶中。
  13. 根据权利要求12所述的光学指纹传感器模组的形成方法,其特征在于,所述第一紫外光固化的参数包括:采用的紫外光的波长为200纳米~400纳米,紫外光的能量为0.2W/cm 2~20W/cm 2,固化时间为2秒~20秒。
  14. 根据权利要求1所述的光学指纹传感器模组的形成方法,其特征在于,将所述光学指纹传感器和所述光准直器面板的第一粘合面通过第一初始紫外光固化胶粘合在一起,将所述自发光显示面板和所述光准直器面板的第二粘合面通过第二初始紫外光固化胶粘合在一起后,一并进行第一紫外光固化和第二紫外光固化。
  15. 根据权利要求14所述的光学指纹传感器模组的形成方法,其特征在于,一并进行第一紫外光固化和第二紫外光固化的方法包括:将紫外光自所述光学指纹传感器至所述自发光显示面板的方向照射至光学指纹传感器表面,并穿过光学指纹传感器和光准直器面板,使紫外光照射至第一初始紫外光固化胶中和第二初始紫外光固化胶中。
  16. 根据权利要求15所述的光学指纹传感器模组的形成方法,其特征在于,一并进行第一紫外光固化和第二紫外光固化的参数包括:采用的紫外光的波长为200纳米~400纳米,紫外光的能量为0.2W/cm 2~20W/cm 2,固化时间为5秒~50秒。
  17. 根据权利要求1所述的光学指纹传感器模组的形成方法,其特征在于,所述第一紫外光固化胶的厚度为5微米~50微米;所述第二紫外光固化胶的厚度为5微米~50微米。
  18. 一种根据权利要求1至17任意一项方法形成的光学指纹传 感器模组,其特征在于,包括:
    光学指纹传感器;
    自发光显示面板;
    位于所述光学指纹传感器和所述自发光显示面板之间的光准直器面板,所述光准直器面板具有相对的第一粘合面和第二粘合面,所述第一粘合面朝向所述光学指纹传感器,所述第二粘合面朝向所述自发光显示面板;
    第一紫外光固化胶,所述第一紫外光固化胶位于第一粘合面以及光学指纹传感器的朝向第一粘合面的表面;
    第二紫外光固化胶,所述第二紫外光固化胶位于第二粘合面以及自发光显示面板的朝向第二粘合面的表面。
PCT/CN2018/090559 2018-06-11 2018-06-11 光学指纹传感器模组及其形成方法 WO2019237219A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/090559 WO2019237219A1 (zh) 2018-06-11 2018-06-11 光学指纹传感器模组及其形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/090559 WO2019237219A1 (zh) 2018-06-11 2018-06-11 光学指纹传感器模组及其形成方法

Publications (1)

Publication Number Publication Date
WO2019237219A1 true WO2019237219A1 (zh) 2019-12-19

Family

ID=68841818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090559 WO2019237219A1 (zh) 2018-06-11 2018-06-11 光学指纹传感器模组及其形成方法

Country Status (1)

Country Link
WO (1) WO2019237219A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084503A1 (ja) * 2011-12-08 2013-06-13 日本化薬株式会社 光学部材、紫外線硬化型樹脂組成物及び硬化物
CN103911078A (zh) * 2014-04-04 2014-07-09 深圳市库泰克电子材料技术有限公司 触控面板贴合用高透光率的紫外线固化胶粘剂
CN105425468A (zh) * 2016-01-04 2016-03-23 京东方科技集团股份有限公司 一种直下式背光模组及显示装置
CN106773219A (zh) * 2017-02-07 2017-05-31 京东方科技集团股份有限公司 一种显示装置
CN107561754A (zh) * 2016-06-30 2018-01-09 乐金显示有限公司 嵌入有光学图像传感器的平板显示器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084503A1 (ja) * 2011-12-08 2013-06-13 日本化薬株式会社 光学部材、紫外線硬化型樹脂組成物及び硬化物
CN103911078A (zh) * 2014-04-04 2014-07-09 深圳市库泰克电子材料技术有限公司 触控面板贴合用高透光率的紫外线固化胶粘剂
CN105425468A (zh) * 2016-01-04 2016-03-23 京东方科技集团股份有限公司 一种直下式背光模组及显示装置
CN107561754A (zh) * 2016-06-30 2018-01-09 乐金显示有限公司 嵌入有光学图像传感器的平板显示器
CN106773219A (zh) * 2017-02-07 2017-05-31 京东方科技集团股份有限公司 一种显示装置

Similar Documents

Publication Publication Date Title
JP6501853B2 (ja) 指紋センサ一体型電界発光表示装置
CN109299708B (zh) 光学指纹传感器模组及其形成方法
CN109829452B (zh) 光学指纹传感器模组及其形成方法
WO2018103194A1 (zh) 显示模组及其使用方法
JP5550357B2 (ja) フロントウインドウ付き表示装置
US20130069890A1 (en) Touch display device and a method of manufacturing the same
WO2018120692A1 (zh) 显示装置和显示装置的控制方法
WO2015188524A1 (zh) 有机发光二极管显示面板和显示装置
WO2020077721A1 (zh) 一种显示面板
TWI581023B (zh) 前光顯示裝置及其製作方法
WO2018103193A1 (zh) 显示模组及其使用方法
JP2015103519A (ja) 一種のamoledモジュール構造とその組立方法
WO2020133720A1 (zh) Oled显示面板及oled显示装置
WO2015151658A1 (ja) フレキシブルデバイスの製造方法及び装置
WO2019019045A1 (zh) 光学指纹传感器模组
CN208903279U (zh) 光学指纹传感器模组
US20220238820A1 (en) Flexible display panel, method for forming the same and adhesive application device for the method
WO2019237219A1 (zh) 光学指纹传感器模组及其形成方法
JP2013171250A (ja) 表示装置、及びその製造方法
KR102568654B1 (ko) 백라이트 유닛, 백라이트 유닛을 포함하는 표시 장치 및 표시 장치를 제조하는 방법
CN209447196U (zh) 光学指纹传感器模组
CN110569686B (zh) 显示模组
WO2020107381A1 (zh) 光学指纹传感器模组及其形成方法
CN110580431A (zh) 光学指纹传感器模组及其形成方法
US20210202913A1 (en) Light extraction apparatus and flexible oled displays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922226

Country of ref document: EP

Kind code of ref document: A1