WO2019235862A1 - 디이소시아네이트 및 광학 렌즈의 제조방법 - Google Patents

디이소시아네이트 및 광학 렌즈의 제조방법 Download PDF

Info

Publication number
WO2019235862A1
WO2019235862A1 PCT/KR2019/006832 KR2019006832W WO2019235862A1 WO 2019235862 A1 WO2019235862 A1 WO 2019235862A1 KR 2019006832 W KR2019006832 W KR 2019006832W WO 2019235862 A1 WO2019235862 A1 WO 2019235862A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
diisocyanate
hydrochloride
organic solvent
triphosgene
Prior art date
Application number
PCT/KR2019/006832
Other languages
English (en)
French (fr)
Inventor
김달성
권오준
이성기
최경하
신정환
Original Assignee
우리화인켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=68769475&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019235862(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 우리화인켐 주식회사 filed Critical 우리화인켐 주식회사
Priority to US15/734,645 priority Critical patent/US20210230352A1/en
Priority to CN201980038601.2A priority patent/CN112292413B/zh
Publication of WO2019235862A1 publication Critical patent/WO2019235862A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/90Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/26Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
    • C07C211/27Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring having amino groups linked to the six-membered aromatic ring by saturated carbon chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/10Preparation of derivatives of isocyanic acid by reaction of amines with carbonyl halides, e.g. with phosgene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/14Derivatives of isocyanic acid containing at least two isocyanate groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • Embodiments relate to methods of making diisocyanates and optical lenses. More specifically, embodiments relate to methods of preparing diisocyanates using diamine hydrochlorides. Embodiments also relate to a method of manufacturing an optical lens using the diisocyanate thus prepared.
  • Isocyanates used as raw materials for plastic optical lenses are produced by the phosgene method, biphosgene method, pyrolysis method and the like.
  • the phosgene method is to synthesize an isocyanate by reacting a raw amine with a phosgene (COCl 2 ) gas
  • the biphosgen method is to synthesize xylylene chloride with sodium cyanate in the presence of a catalyst to synthesize an isocyanate. Is reacted with alkyl chloroformate to produce carbamate and then pyrolyzed at high temperature in the presence of a catalyst to synthesize isocyanate.
  • the phosgene method is most widely used, and in particular, a direct method of directly reacting phosgene gas with an amine has been generally used, but this has a problem of requiring a large number of devices for the direct reaction of phosgene gas.
  • a hydrochloride method has been developed in which a hydrochloric acid gas is reacted with an amine to obtain an amine hydrochloride as an intermediate, and reacts with phosgene, as in Korean Patent Publication No. 1994-1948.
  • the phosgene gas used in the conventional phosgene method is a toxic substance to be environmentally regulated, there is a problem that it is difficult to store and manage because it requires a separate cooling device to store it.
  • an object of the embodiment is to provide a method for producing a diisocyanate and an optical lens excellent in yield and quality with little environmental problems.
  • the present invention is at least one diamine selected from the group consisting of orthoxylylenediamine, methaxylylenediamine, paraxylylenediamine, norbornenediamine, hydrogenated xylylenediamine and isophoronediamine Preparing a; Reacting the diamine with an aqueous hydrochloric acid solution in a first organic solvent to obtain diamine hydrochloride; And reacting the diamine hydrochloride with triphosgene in a second organic solvent to obtain diisocyanate.
  • the present invention comprises the steps of reacting the metaxylylenediamine in an aqueous hydrochloric acid solution and a first organic solvent to obtain a metaxylylenediamine hydrochloride; And reacting the metaxylylenediamine hydrochloride with triphosgene in a second organic solvent to obtain methaxylylene diisocyanate.
  • the present invention is one or more selected from the group consisting of orthoxylylenediamine, methaxylylenediamine, paraxylylenediamine, norbornenediamine, hydrogenated xylylenediamine and isophoronediamine
  • a diamine Reacting the diamine with an aqueous hydrochloric acid solution in a first organic solvent to obtain diamine hydrochloride; Reacting the diamine hydrochloride with triphosgene in a second organic solvent to obtain diisocyanate; And mixing the diisocyanate with thiol or episulfide and polymerizing and curing in a mold.
  • the method for preparing diisocyanate according to the above embodiment is difficult to store and manage, and does not use toxic phosgene gas, and uses triphosgene having low toxicity without requiring a separate cold storage device as a solid state at room temperature. Therefore, it is excellent in handling and fairness.
  • the method for producing a diisocyanate according to the embodiment by using an aqueous hydrochloric acid solution without the use of hydrogen chloride gas in the production of diamine hydrochloride as an intermediate, the reaction can proceed at atmospheric pressure, requiring an additional device for high temperature heating and cooling And yield can be improved.
  • the method for preparing diisocyanate according to the embodiment by using an organic solvent with hydrochloric acid aqueous solution and adjusting the reaction conditions to prepare the hydrochloride, it is possible to further minimize the dissolution of the hydrochloride in the hydrochloric acid aqueous solution to further increase the final yield,
  • the choice of raw materials can be widened without being largely dependent on the moisture and impurity content in the raw diamine.
  • the method for producing diisocyanate according to the above embodiment can be applied to the production of high quality plastic optical lens.
  • FIG. 1 shows an example of a mechanism in which metha xylylenediamine hydrochloride and triphosgene are prepared through reaction.
  • Figure 2 shows an example of a process apparatus for the reaction of methacrylicylenediamine hydrochloride and triphosgene.
  • T-1 first tank
  • T-2 second tank
  • T-3 third tank
  • R-1 reactor, D-1: first distiller, D-2: second distiller,
  • C-1 first capacitor
  • C-2 second capacitor
  • C-3 third capacitor
  • S-1 first scrubber
  • S-2 second scrubber
  • G-1 sight glass
  • V-1 solvent recovery machine
  • amine refers to a compound having one or more amine groups at the terminal
  • diamine refers to a compound having two amine groups at the terminal, aliphatic chain, aliphatic ring, aromatic ring
  • aliphatic chain refers to a compound having one or more amine groups at the terminal
  • aliphatic ring refers to a compound having two amine groups at the terminal
  • aromatic ring Depending on the skeleton of the can have a wide variety of structures.
  • diamine examples include orthoxylylenediamine, methaxylylenediamine, paraxylylenediamine, hexamethylenediamine, 2,2-dimethylpentanediamine, 2,2,4-trimethylhexanediamine, butenediamine, 1,3-butadiene-1,4-diamine, 2,4,4-trimethylhexamethylenediamine, bis (aminoethyl) carbonate, bis (aminoethyl) ether, lysinediaminomethyl ester, bis (aminoethyl) benzene, Bis (aminopropyl) benzene, ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylxylylenediamine, bis (aminobutyl) benzene, bis (aminomethyl) naphthalene, bis (aminomethyl) diphenylether, bis (amino Ethyl) phthalate, 2,6-di
  • isocyanate refers to a compound having an NCO group
  • diisocyanate refers to a compound having two NCO groups at the terminal, and in the skeleton of an aliphatic chain, an aliphatic ring, or an aromatic ring. Therefore, it can have a very diverse structure.
  • diisocyanate examples include ortho xylylene diisocyanate, metha xylylene diisocyanate, para xylylene diisocyanate, hexamethylene diisocyanate, 2,5-bis (isocyanatomethyl) -bicyclo [2.2.1] Heptane, 2,6-bis (isocyanatomethyl) -bicyclo [2.2.1] heptane, bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane diisocyanate, isophorone diisocyanate, 1,2 -Diisocyanatobenzene, 1,3-diisocyanatobenzene, 1,4-diisocyanatobenzene, 2,4-diisocyanatotoluene, ethylphenylenediisocyanate, dimethylphenylene diisocyanate, biphenyldi Isocyanate, toluid
  • the preparation method of the diisocyanate according to one embodiment is one selected from the group consisting of ortho xylylenediamine, methaxylylenediamine, paraxylylenediamine, norbornenediamine, hydryl xylylenediamine and isophoronediamine Preparing at least diamine; Reacting the diamine with an aqueous hydrochloric acid solution in a first organic solvent to obtain diamine hydrochloride; And reacting the diamine hydrochloride with triphosgene in a second organic solvent to obtain diisocyanate.
  • the diamine used as a starting material in the method for producing a diisocyanate according to the embodiment is ortho xylylenediamine (o-XDA), methaxylylenediamine (m-XDA), paraxylylenediamine (p-XDA, Norbornenediamine (NBDA), xylylenediamine hydride (H6XDA), and isophoronediamine (IPDA).
  • o-XDA ortho xylylenediamine
  • m-XDA methaxylylenediamine
  • p-XDA paraxylylenediamine
  • NBDA Norbornenediamine
  • H6XDA xylylenediamine hydride
  • IPDA isophoronediamine
  • diamine is reacted with an aqueous hydrochloric acid solution in a first organic solvent to obtain diamine hydrochloride.
  • an aqueous hydrochloric acid solution since an aqueous hydrochloric acid solution is used, a problem occurring when conventionally using hydrogen chloride gas can be solved. Specifically, in the case of using an aqueous hydrochloric acid solution, the product produced through the reaction is a solid form, not a slurry form, so the yield is high, and the reaction may be performed at normal pressure, and thus does not require a separate apparatus or process for quenching.
  • the concentration of the hydrochloric acid aqueous solution may be 5% by weight to 50% by weight. When in the concentration range, it is possible to minimize the dissolution of the hydrochloride in the aqueous hydrochloric acid solution to increase the final yield, and to improve the handleability.
  • the concentration of the hydrochloric acid aqueous solution may be 10 wt% to 45 wt%, 20 wt% to 45 wt%, or 30 wt% to 40 wt%. More specifically, the hydrochloric acid aqueous solution may have a concentration of 20% by weight to 45% by weight.
  • the diamine and the hydrochloric acid aqueous solution may be added to the reaction in an equivalent ratio of 1: 2 to 5.
  • the equivalent ratio range it is possible to prevent the yield is lowered due to dissolution due to the generation of moisture while reducing the unreacted material.
  • the diamine and the hydrochloric acid aqueous solution may be added to the reaction in an equivalent ratio of 1: 2 to 2.5.
  • the diamine and the hydrochloric acid aqueous solution may be added while maintaining a constant temperature inside the reactor.
  • the reactor internal temperature may be 20 ° C. to 100 ° C.
  • the temperature is higher than the boiling point is not suitable for the reaction or the temperature is too low to prevent the reaction efficiency is lowered.
  • the temperature inside the reactor at the time of adding the diamine and the aqueous hydrochloric acid solution may be 20 °C to 60 °C, or 20 °C to 40 °C.
  • the diamine and the hydrochloric acid aqueous solution may be added to the reaction at a temperature of 20 °C to 40 °C in an equivalent ratio of 1: 2 to 5.
  • the diamine and the hydrochloric acid aqueous solution may be introduced, for example, by first introducing the aqueous hydrochloric acid solution into the reactor, and then slowly adding the diamine.
  • the diamine and / or the hydrochloric acid aqueous solution may be added for 30 minutes to 1 hour.
  • the reactor internal temperature may be cooled to 0 °C to 20 °C, 0 °C to 10 °C or 10 °C to 20 °C.
  • the reaction of the diamine and hydrochloric acid aqueous solution may be carried out at atmospheric pressure, for example, it may be performed with stirring for 30 minutes to 2 hours.
  • the first organic solvent may be added to the reaction, and the reaction may proceed while further stirring after cooling.
  • the first organic solvent may be a hydrophilic solvent, specifically, diethyl ether, diisopropyl ether, dioxane, tetrahydrofuran, methanol, ethanol, dimethylsulfoxide, dimethylformamide, acetonitrile, acetone, trichloro It may be at least one selected from the group consisting of ethylene, tetrachloroethane, trichloroethane, n-butanol, isobutanol, methyl ethyl ketone, methyl butyl ketone, isopropanol and methyl acetate.
  • hydrophilic solvent specifically, diethyl ether, diisopropyl ether, dioxane, tetrahydrofuran, methanol, ethanol, dimethylsulfoxide, dimethylformamide, acetonitrile, acetone, trichloro It may be at least one selected from the group consisting of ethylene
  • the input amount (weight) of the first organic solvent may be 1 to 5 times the weight of the diamine.
  • the first organic solvent may be added to the reaction in an amount of 1 to 2 times, or 1 to 1.5 times the weight of the diamine.
  • the cooling temperature after the first organic solvent is added may be -10 ° C to 10 ° C or -5 ° C to 5 ° C. Further reaction time after the cooling may be 30 minutes to 2 hours, or 30 minutes to 1 hour.
  • the reaction of the diamine and the hydrochloric acid aqueous solution is (1a) the step of introducing the hydrochloric acid aqueous solution to the first reactor; (1b) further adding and diluting the diamine to the first reactor; And (1c) may further comprise the step of further adding and stirring the first organic solvent to the first reactor.
  • the reaction of the diamine and the hydrochloric acid aqueous solution is the step of cooling the inside of the reactor to a temperature of 0 °C to 10 °C before stirring after the addition of the diamine in the step (1b); And cooling the inside of the reactor to a temperature of ⁇ 5 ° C. to 5 ° C. before stirring after adding the first organic solvent in step (1c).
  • the reactants obtained through the reaction may be further subjected to separation, filtration and drying.
  • a solid diamine hydrochloride can be obtained by separating the aqueous layer in the reaction, filtration and drying.
  • the method of preparing the diisocyanate may further include removing impurities generated in the diamine hydrochloride together with the first organic solvent. Impurities are generated in the reaction process for preparing the diamine hydrochloride to be included in the first organic solvent, it is possible to increase the purity of the product by removing such impurities through the step of removing the first organic solvent.
  • the yield of diamine hydrochloride thus obtained may be at least 80%, at least 85%, or at least 90%, specifically 85% to 95%, or 88% to 92%.
  • the water content of the diamine hydrochloride obtained may be 5% or less, when more than 5%, the physical properties of the final manufactured lens is not good.
  • the diamine hydrochloride can be obtained in a yield of 80% or more and a water content of 5% or less.
  • the organic layer may be separated from the reactant and reused as an organic solvent. Accordingly, the recovery rate of the first organic solvent may be 80% or more, 85% or more, or 90% or more, specifically 80% to 95%, or 80% to 82%.
  • diamine hydrochloride is reacted with triphosgene in a second organic solvent to obtain diisocyanate.
  • diamine hydrochloride prepared above is added to an organic solvent, and reacted with triphosgene (triphosgene, BTC, bis (trichloromethyl) carbonate), and then diisocyanate is obtained through filtration and distillation.
  • triphosgene triphosgene, BTC, bis (trichloromethyl) carbonate
  • the second organic solvent include benzene, toluene, ethylbenzene, chlorobenzene, monochlorobenzene, 1,2-dichlorobenzene, dichloromethane, 1-chloro-n-butane, 1-chloro-n-pentane, 1 At least one member selected from the group consisting of -chloro-n-hexane, chloroform, carbon tetrachloride, n-pentane, n-hexane, n-heptane, n-octane, cyclohexane, cyclopentane, cyclooctane and methylcyclohexane have.
  • the input amount (weight) of the second organic solvent may be 1 to 5 times the weight of the diamine hydrochloride.
  • the second organic solvent may be added to the reaction in an amount of 2 to 5 times, or 3 to 5 times the weight of the diamine hydrochloride.
  • the reaction temperature of the diamine hydrochloride and triphosgene may be 130 °C to 160 °C.
  • the reaction between the diamine hydrochloride and the triphosgene can be smooth, and it is possible to suppress the generation of impurities such as tar during the final diisocyanate production.
  • the reaction temperature of the diamine hydrochloride and triphosgene may be 135 °C to 155 °C.
  • the reaction of the diamine hydrochloride and triphosgene may be performed for 5 hours to 100 hours. When in the reaction time range, the reaction time is not excessive, it is possible to minimize the production of unreacted material due to the generation of phosgene. Specifically, the reaction of the diamine hydrochloride and triphosgene may be performed for 15 hours to 40 hours, 20 hours to 35 hours, or 24 hours to 30 hours.
  • reaction of the diamine hydrochloride and the triphosgene may be performed for 5 hours to 100 hours at a temperature of 130 °C to 160 °C.
  • the diamine hydrochloride and the triphosgene may be added to the reaction in an equivalent ratio of 1: 1 to 5. When it is in the said equivalence ratio range, while reaction efficiency is high, reaction time can be prevented from increasing by excessive addition. Specifically, the diamine hydrochloride and the triphosgene may be added to the reaction in an equivalent ratio of 1: 1.5 to 4, or 1: 2 to 2.5.
  • reaction of the diamine hydrochloride and triphosgene (2a) is a step of introducing the second organic solvent into a second reactor; (2b) further adding and stirring the diamine hydrochloride into the second reactor; And (2c) may further comprise the step of further adding and stirring the triphosgene in the second reactor.
  • the input of the triphosgene is a total of 25 hours to 40 hours in the reactor at a temperature of 135 °C to 155 °C in the solution of the triphosgene dissolved in the same solvent as the second organic solvent It may be divided into two or more times.
  • each injection time of the triphosgene solution may be 5 hours to 25 hours, or 10 hours to 14 hours.
  • reaction time after the addition of the triphosgene stirring may be 2 hours to 5 hours or 3 hours to 4 hours.
  • the reaction may be cooled at a temperature of 90 °C to 110 °C.
  • the reactants obtained through the reaction may be further subjected to separation, filtration and distillation.
  • the distillation may include primary distillation and secondary distillation.
  • the diisocyanate first distills the product of the reaction of the diamine hydrochloride and the triphosgene at 40 ° C. to 60 ° C. for 2 to 8 hours, and then at 100 ° C. to 120 ° C. for 2 hours to 10 hours. It may be obtained by secondary distillation.
  • the primary distillation may be performed at 0.5 Torr or less, and the secondary distillation may be performed at 0.1 Torr or less.
  • the organic solvent may be recovered and recycled through the first distillation, and the final diisocyanate may be obtained through the second distillation.
  • the diisocyanate is ortho xylylene diisocyanate (o-XDI), metha xylylene diisocyanate (m-XDI), para xylylene diisocyanate (p-XDI), norbornene diisocyanate (NBDI), hydryl xylyl It may be at least one selected from the group consisting of rendiisocyanate (H6XDI) and isophorone diisocyanate (IPDI).
  • the yield of diisocyanate thus obtained may be at least 80%, at least 85%, or at least 90%.
  • the purity of the obtained diisocyanate may be at least 95%, at least 99.5%, or at least 99.8%.
  • the diisocyanate is at least one member selected from the group consisting of ortho xylylene diisocyanate, metha xylylene diisocyanate, para xylylene diisocyanate, norbornene diisocyanate, hydrogenated xylylene diisocyanate and isophorone diisocyanate. It may have a purity of 99.5% or more.
  • the yield of the diisocyanate is high, the recycling rate of the organic solvent is excellent, and since no toxic phosgene gas is used, it is environmentally friendly, capable of atmospheric pressure reaction, and does not require a separate device for pressurization or quenching.
  • a method for preparing metha xylylene diisocyanate may include: reacting metha xylylenediamine in an aqueous hydrochloric acid solution with a first organic solvent to obtain methaxylylenediamine hydrochloride; And reacting the metha xylylenediamine hydrochloride with triphosgene in a second organic solvent to obtain methaxylylene diisocyanate.
  • the diamine used as starting material in the method for preparing diisocyanate according to the above embodiment is methacrylicylenediamine (m-XDA).
  • metha xylylenediamine is reacted in an aqueous hydrochloric acid solution and a first organic solvent to obtain methaxylylenediamine hydrochloride.
  • an aqueous hydrochloric acid solution since an aqueous hydrochloric acid solution is used, a problem occurring when conventionally using hydrogen chloride gas can be solved. Specifically, in the case of using an aqueous hydrochloric acid solution, the product produced through the reaction is a solid form, not a slurry form, so the yield is high, and the reaction may be performed at normal pressure, and thus does not require a separate apparatus or process for quenching.
  • the concentration of the hydrochloric acid aqueous solution may be 5% by weight to 50% by weight. When in the concentration range, it is possible to minimize the dissolution of the hydrochloride in the aqueous hydrochloric acid solution to increase the final yield, and to improve the handleability.
  • the concentration of the hydrochloric acid aqueous solution may be 10 wt% to 45 wt%, 20 wt% to 45 wt%, or 30 wt% to 40 wt%. More specifically, the hydrochloric acid aqueous solution may have a concentration of 20% by weight to 45% by weight.
  • the metaxylylenediamine and the aqueous hydrochloric acid solution may be added to the reaction in an equivalent ratio of 1: 2 to 5.
  • the equivalent ratio range it is possible to prevent the yield is lowered due to dissolution due to the generation of moisture while reducing the unreacted material.
  • the metaxylylenediamine and the aqueous hydrochloric acid solution may be added to the reaction in an equivalent ratio of 1: 2 to 2.5.
  • the methacrylicylene diamine and the hydrochloric acid aqueous solution may be added, while maintaining a constant temperature inside the reactor.
  • the reactor internal temperature may be 20 ° C. to 100 ° C. at the time of adding the metaxylylenediamine and the aqueous hydrochloric acid solution.
  • the temperature is higher than the boiling point is not suitable for the reaction or the temperature is too low to prevent the reaction efficiency is lowered.
  • the temperature inside the reactor when the methacrylicylene diamine and the hydrochloric acid aqueous solution is added may be 20 °C to 60 °C, or 20 °C to 40 °C.
  • the methacrylicylene diamine and the hydrochloric acid aqueous solution may be added to the reaction at a temperature of 20 °C to 40 °C in an equivalent ratio of 1: 2 to 5.
  • the methacrylicylene diamine and the hydrochloric acid aqueous solution may be introduced, for example, the hydrochloric acid aqueous solution is first introduced into the reactor, and then the methaxylyylenediamine is slowly added.
  • the methacrylicylene diamine and / or the hydrochloric acid aqueous solution may be added for 30 minutes to 1 hour.
  • the temperature inside the reactor can be cooled to 0 °C to 20 °C, 0 °C to 10 °C or 10 °C to 20 °C.
  • the reaction of the metaxylylenediamine and hydrochloric acid aqueous solution may be carried out at normal pressure, for example, it may be carried out while stirring for 30 minutes to 2 hours.
  • the first organic solvent may be added to the reaction, and the reaction may proceed while further stirring after cooling.
  • the first organic solvent may be a hydrophilic solvent, specifically, diethyl ether, diisopropyl ether, dioxane, tetrahydrofuran, methanol, ethanol, dimethylsulfoxide, dimethylformamide, acetonitrile, acetone, trichloro It may be at least one selected from the group consisting of ethylene, tetrachloroethane, trichloroethane, n-butanol, isobutanol, methyl ethyl ketone, methyl butyl ketone, isopropanol and methyl acetate.
  • hydrophilic solvent specifically, diethyl ether, diisopropyl ether, dioxane, tetrahydrofuran, methanol, ethanol, dimethylsulfoxide, dimethylformamide, acetonitrile, acetone, trichloro It may be at least one selected from the group consisting of ethylene
  • the input amount (weight) of the first organic solvent may be 1 to 5 times the weight of the metha xylylenediamine.
  • the first organic solvent may be added to the reaction in an amount of 1 to 2 times, or 1 to 1.5 times the weight of the metha xylylenediamine.
  • the cooling temperature after the first organic solvent is added may be -10 ° C to 10 ° C or -5 ° C to 5 ° C. Further reaction time after the cooling may be 30 minutes to 2 hours, or 30 minutes to 1 hour.
  • the reaction of the metaxylylenediamine and the hydrochloric acid aqueous solution is (1a) the step of introducing the aqueous hydrochloric acid solution into the first reactor; (1b) further adding and stirring the metaxylylenediamine to the first reactor; And (1c) may further comprise the step of further adding and stirring the first organic solvent to the first reactor.
  • the reaction of the metaxylylenediamine and the hydrochloric acid aqueous solution is cooled in the reactor to a temperature of 0 °C to 10 °C before stirring after the addition of the metha xylylenediamine in the step (1b) step; And cooling the inside of the reactor to a temperature of ⁇ 5 ° C. to 5 ° C. before stirring after adding the first organic solvent in step (1c).
  • the reactants obtained through the reaction may be further subjected to separation, filtration and drying.
  • a solid methacrylicylenediamine hydrochloride can be obtained by separating the aqueous layer in the reaction, filtration and drying.
  • the manufacturing method of the metha xylylene diisocyanate may further include the step of removing the impurities generated in the step of obtaining the metha xylylene diamine hydrochloride together with the first organic solvent. Impurities are generated in the reaction process for preparing the metaxylylenediamine hydrochloride to be included in the first organic solvent, it is possible to increase the purity of the product by removing such impurities through the step of removing the first organic solvent. .
  • the yield of the metaxylylenediamine hydrochloride thus obtained may be at least 80%, at least 85%, or at least 90%, specifically 85% to 95%, or 88% to 92%.
  • the water content of the methacrylicylene diamine hydrochloride obtained may be 5% or less, when more than 5%, the physical properties of the final manufactured lens is not good.
  • the methacrylicylenediamine hydrochloride can be obtained in a yield of 80% or more and a water content of 5% or less.
  • the organic layer may be separated from the reactant and reused as an organic solvent. Accordingly, the recovery rate of the first organic solvent may be 80% or more, 85% or more, or 90% or more, specifically 80% to 95%, or 80% to 82%.
  • the said metha xylylenediamine hydrochloride is made to react with a triphosgene and a 2nd organic solvent, and methacrylic diisocyanate is obtained.
  • the previously prepared metha xylylenediamine hydrochloride is added to an organic solvent, and reacted with triphosgene (triphosgene, BTC, bis (trichloromethyl) carbonate), and then the metha xylylene diisocyanate is obtained through filtration and distillation. .
  • triphosgene triphosgene, BTC, bis (trichloromethyl) carbonate
  • the second organic solvent include benzene, toluene, ethylbenzene, chlorobenzene, monochlorobenzene, 1,2-dichlorobenzene, dichloromethane, 1-chloro-n-butane, 1-chloro-n-pentane, 1 At least one member selected from the group consisting of -chloro-n-hexane, chloroform, carbon tetrachloride, n-pentane, n-hexane, n-heptane, n-octane, cyclohexane, cyclopentane, cyclooctane and methylcyclohexane have.
  • the input amount (weight) of the second organic solvent may be 1 to 5 times the weight of the metaxylylenediamine hydrochloride.
  • the second organic solvent may be added to the reaction in an amount of 2 to 5 times, or 3 to 5 times the weight of the metaxylylenediamine hydrochloride.
  • the reaction temperature of the metaxylylenediamine hydrochloride and triphosgene may be 130 °C to 160 °C.
  • the reaction between the metha xylylenediamine hydrochloride and the triphosgene can be smooth, it is possible to suppress the generation of impurities such as tar at the time of the final metha xylylene diisocyanate production.
  • the reaction temperature of the metaxylylenediamine hydrochloride and triphosgene may be 135 °C to 155 °C.
  • the reaction of the metaxylylenediamine hydrochloride and triphosgene may be performed for 5 hours to 100 hours. When in the reaction time range, the reaction time is not excessive, it is possible to minimize the production of unreacted material due to the generation of phosgene. Specifically, the reaction of the metaxylylenediamine hydrochloride and triphosgene may be carried out for 15 hours to 40 hours, 20 hours to 35 hours, or 24 hours to 30 hours.
  • reaction of the metaxylylenediamine hydrochloride and triphosgene may be performed for 5 hours to 100 hours at a temperature of 130 °C to 160 °C.
  • Figure 1 shows the reaction mechanism of the production of methaxylylene diisocyanate through the reaction of methaxylylenediamine hydrochloride and triphosgene.
  • the amine group of the diamine hydrochloride attacks the carbonate group of the triphosgene, and then the phosgene gas (COCl 2 ) is generated as the electrons move. Through this repetition, phosgene gas is continuously generated, which causes a reaction with the amine group of methacrylicylenediamine hydrochloride.
  • Figure 1 B may comprise anions, for example chlorine ions.
  • the metaxylylenediamine hydrochloride and the triphosgene may be added to the reaction in an equivalent ratio of 1: 1 to 5. When it is in the said equivalence ratio range, while reaction efficiency is high, reaction time can be prevented from increasing by excessive addition. Specifically, the metaxylylenediamine hydrochloride and the triphosgene may be added to the reaction in an equivalence ratio of 1: 1.5 to 4, or 1: 2 to 2.5.
  • the reaction of the metaxylylenediamine hydrochloride and triphosgene (2a) is a step of introducing the second organic solvent into a second reactor; (2b) further adding and stirring the metaxylylenediamine hydrochloride to the second reactor; And (2c) may further comprise the step of further adding and stirring the triphosgene in the second reactor.
  • the input of the triphosgene is a solution in which the triphosgene is dissolved in the same solvent as the second organic solvent in the reactor at a temperature of 135 °C to 155 °C 25 to 40 hours in total It may be divided into two or more times.
  • each injection time of the triphosgene solution may be 5 hours to 25 hours, or 10 hours to 14 hours.
  • reaction time after the addition of the triphosgene stirring may be 2 hours to 5 hours or 3 hours to 4 hours.
  • the reaction may be cooled at a temperature of 90 °C to 110 °C.
  • the reactants obtained through the reaction may be further subjected to separation, filtration and distillation.
  • the distillation may include primary distillation and secondary distillation.
  • the metha xylylene diisocyanate is the first distillation of the result of the reaction of the metha xylylene diamine hydrochloride and the triphosgene at 40 °C to 60 °C for 2 to 8 hours, then 100 °C to 120 °C It may be obtained by secondary distillation for 2 hours to 10 hours.
  • the first distillation may be performed at 0.5 Torr or less, and the second distillation may be performed at 0.1 Torr or less.
  • the organic solvent may be recovered and recycled through the primary distillation, and the final metha xylylene diisocyanate may be obtained through the secondary distillation.
  • the yield of methacrylicylene diisocyanate thus obtained may be at least 80%, at least 85%, or at least 90%.
  • the purity of the obtained metha xylylene diisocyanate may be at least 95%, at least 99.5%, or at least 99.8%.
  • the yield of methacrylic diisocyanate is high, the recycling rate of the organic solvent is excellent and does not use a toxic phosgene gas, environmentally friendly, atmospheric pressure reaction is possible and requires a separate device for pressurization or quenching I never do that.
  • the step of obtaining the metha xylylene diisocyanate from the metha xylylene diamine hydrochloride and triphosgene (i) the reaction solution of the metha xylylene diamine hydrochloride by reacting the triphosgene in a second organic solvent Obtaining; (ii) measuring the color and transparency of the reaction solution; And (iii) obtaining methacrylicylene diisocyanate from the reaction solution.
  • the reaction conditions can be adjusted by measuring the color and transparency of the reaction solution.
  • the reaction solution at the beginning of the reaction may be opaque colorless to white, and the reaction solution at the time when the reaction is normally completed may be transparent or close to transparent and have a light brown color.
  • the reaction solution may exhibit a light pale brown.
  • the reaction solution may have an L * value of 45 to 60, an a * value of 3 to 15, and a b * value of 15 to 30 in the CIE-LAB color coordinate. More specifically, the reaction solution may have an L * value of 50 to 55, an a * value of 5 to 10, and a b * value of 20 to 25 in the CIE-LAB color coordinate.
  • the reaction solution may have a transmittance of 60% or more, 70% or more, 80% or more, or 90% or more with respect to light having a wavelength of 550 nm.
  • the reaction solution may have a haze of 20% or less, 10% or less, 5% or less, or 3% or less.
  • the reaction solution may have a transmittance of 70% or more and a haze of 10% or less with respect to light having a wavelength of 550 nm. More specifically, the reaction solution may have a transmittance of 80% or more and a haze of 5% or less with respect to light having a wavelength of 550 nm.
  • the reaction solution may be opaque or have a precipitate, and may be faint, white or colorless.
  • the reaction solution may be opaque or light color other than light brown, for example, may be dark brown to dark color.
  • the reaction step of the metaxylylenediamine hydrochloride and triphosgene may be carried out simultaneously with the step of measuring the color and transparency of the reaction solution.
  • the color and transparency of the reaction solution may be measured in real time while the reaction between the methacrylicylene diamine hydrochloride and triphosgene is in progress.
  • some of the reaction solution can be taken to precisely measure the color and transparency.
  • the measurement of the color and transparency of the reaction solution may be performed by taking a part of the reaction solution and measuring the color and transparency of the collected reaction solution.
  • the reaction equivalent, the reaction temperature, or the reaction time may be adjusted according to the color and transparency of the reaction solution.
  • the reaction termination point may be determined according to the color and transparency of the reaction solution.
  • the step (i) and the step (ii) is carried out at the same time, the end point of the reaction of the metaxylylenediamine hydrochloride and triphosgene in the step (i) is the reaction measured in the step (ii) It can be determined according to the color and transparency of the solution.
  • the end point of the reaction may be after the time point at which the reaction solution turns into a light pale brown.
  • the reactor may include a viewing window, and measurement of color and transparency of the reaction solution may be performed through the viewing window.
  • the reactor may be connected to one or more stages of condenser, and after the gas generated in the reactor is transferred to the one or more stages of condenser, the second organic solvent present in the gas may be condensed and recovered to the reactor.
  • the at least one stage condenser is connected to the first and second scrubbers, and the gas transferred from the reactor to the at least one stage condenser includes hydrogen chloride gas and phosgene gas, and the first scrubber converts the hydrogen chloride gas into water. Dissolve to produce an aqueous solution, and the second scrubber may neutralize the phosgene gas with an aqueous NaOH solution.
  • the reactor is connected to one or more stages of the distiller, the reaction solution is sent to the one or more stages of distiller, the one or more stages of the distiller may separate the methacrylicylene diisocyanate and the second organic solvent from the reaction solution. .
  • the separated second organic solvent may be recycled to the reaction of the metaxylylenediamine hydrochloride and triphosgene.
  • Figure 2 shows an example of a process apparatus for the reaction of methacrylicylenediamine hydrochloride and triphosgene.
  • a second organic solvent and triphosgene are filled in the first tank T-1, and a constant temperature is maintained by reflux of hot water or the like.
  • the inside of the reactor (R-1) is replaced with nitrogen and a second organic solvent is added thereto and stirred, while the methacrylicylene diisocyanate hydrochloride is slowly added and the inside of the reactor is kept at a constant temperature and stirred.
  • the triphosgene solution in the second organic solvent is gradually introduced into the reactor R-1 from the first tank T-1.
  • the injection of the triphosgene solution in the second organic solvent is performed once or two or more times, in which stirring is performed while keeping the internal temperature of the reactor R-1 constant.
  • further reaction is carried out with stirring for a certain period of time.
  • the color and transparency of the reaction solution are visually observed through the viewing window G-1 provided in the reactor R-1.
  • the color and the transparency of the reaction solution are measured with an optical device through the viewing window (G-1) provided in the reactor (R-1).
  • the optical device may include a digital camera, spectrometer, optical analysis equipment, and the like.
  • Gas (second organic solvent, hydrogen chloride, phosgene, etc.) present in the reactor R-1 is transferred to the first condenser C-1.
  • the second organic solvent is first condensed and recovered to the reactor R-1, and the remaining gas is transferred to the second condenser C-2.
  • the second organic solvent is secondary condensed and recovered to the reactor R-1, and the remaining gas is transferred to the third condenser C-3.
  • the third condenser (C-3) By the cooling in the third condenser (C-3), the second organic solvent is tertiarily condensed and recovered to the reactor (R-1).
  • the remaining gas (hydrogen chloride, phosgene, etc.) is transferred to the first scrubber S-1.
  • Hydrogen chloride gas is dissolved in water in the first scrubber (S-2) to obtain an aqueous hydrochloric acid solution and stored in the second tank (T-2), and the remaining gas is transferred to the second scrubber (S-2).
  • the phosgene (COCl 2 ) gas may be neutralized and removed using an aqueous sodium hydroxide solution stored in the third tank T-3 in the second scrubber S-2.
  • the reaction solution obtained in the reactor (R-1) is sequentially transferred to the first distillator (D-1) and the second distillator (D-2), and undergoes first and second distillation, and then, from the reaction solution, The silylene diisocyanate and the second organic solvent are separated.
  • the second organic solvent separated from the reaction solution may be transferred to and stored in the solvent recovery unit (V-1), and then recycled to the reaction of the metaxylylenediamine hydrochloride and triphosgene.
  • the metha xylylene diisocyanate separated from the reaction solution may be provided as a final product through filtration and drying.
  • the composition for an optical material can be manufactured by combining the diisocyanate manufactured by the said embodiment with another component.
  • the composition for an optical material includes a diisocyanate prepared according to the above embodiment, and a thiol or episulfide.
  • an optical lens can be manufactured by mixing the said composition for optical materials and heat-hardening in a mold.
  • the manufacturing method of the optical lens according to the embodiment is one selected from the group consisting of ortho xylylenediamine, methaxylylenediamine, paraxylylenediamine, norbornenediamine, hydryl xylylenediamine and isophoronediamine Preparing at least diamine; Reacting the diamine with an aqueous hydrochloric acid solution in a first organic solvent to obtain diamine hydrochloride; Reacting the diamine hydrochloride with triphosgene in a second organic solvent to obtain diisocyanate; And mixing the diisocyanate with thiol or episulfide and polymerizing and curing in the mold.
  • the thiol may be a polythiol including two or more SH groups, and may have an aliphatic, alicyclic, or aromatic skeleton.
  • the episulfide may have two or more thioepoxy groups and may have an aliphatic, alicyclic, or aromatic skeleton.
  • thiol examples include bis (2-mercaptoethyl) sulfide, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 2,3-bis (2-mercaptoethylthio Propane-1-thiol, 2,2-bis (mercaptomethyl) -1,3-propanedithiol, tetrakis (mercaptomethyl) methane, 2- (2-mercaptoethylthio) propane-1,3 -Dithiol, 2- (2,3-bis (2-mercaptoethylthio) propylthio) ethanethiol, bis (2,3-dimercaptopropanyl) sulfide, bis (2,3-dimercaptopropanyl ) Disulfide, 1,2-bis (2-mercaptoethylthio) -3-mercaptopropane, 1,2-bis (2- (2-mercaptoethylthio)
  • the thiol is 2- (2-mercaptoethylthio) propane-1,3-dithiol, 2,3-bis (2-mercaptoethylthio) propane-1-thiol, 2- (2, 3-bis (2-mercaptoethylthio) propylthio) ethanethiol, 1,2-bis (2-mercaptoethylthio) -3-mercaptopropane, 1,2-bis (2- (2-mercapto Ethylthio) -3-mercaptopropylthio) -ethane, bis (2- (2-mercaptoethylthio) -3-mercaptopropyl) sulfide, 2- (2-mercaptoethylthio) -3-2 -Mercapto-3- [3-mercapto-2- (2-mercaptoethylthio) -propylthio] propylthio-propane-1-thiol, 2,2'-thiodietanthi
  • the thiol may be any one or two or more of the above exemplary compounds, but is not limited thereto.
  • episulfide examples include bis ( ⁇ -epithiopropylthio) methane, 1,2-bis ( ⁇ -ethiothiopropylthio) ethane, 1,3-bis ( ⁇ -ethiothiopropylthio) propane , 1,2-bis ( ⁇ -ethiothiopropylthio) propane, 1- ( ⁇ -ethiothiopropylthio) -2- ( ⁇ -ethiothiopropylthiomethyl) propane, 1,4-bis ( ⁇ -ethiothio Propylthio) butane, 1,3-bis ( ⁇ -ethiothiopropylthio) butane, 1- ( ⁇ -ethiothiopropylthio) -3- ( ⁇ -ethiothiopropylthiomethyl) butane, 1,5-bis ( ⁇ -epithiopropylthio) pentane, 1- ( ⁇ -ethiothiothio) -4- ( ⁇ -ethi
  • the episulfide may be any one or two or more of the above exemplary compounds, but is not limited thereto.
  • the episulfide may be a compound in which at least one of hydrogen of its thioepoxy group is substituted with a methyl group.
  • the composition for an optical material may include the diisocyanate and the thiol or episulfide in a mixed state or in a separated state. That is, in the polymerizable composition, they may be in contact with each other in a compounded state or in a state in which they are separated from each other.
  • composition for an optical material may include the thiol or episulfide in a weight ratio of 2: 8 to 8: 2, 3: 7 to 7: 3, or 4: 6 to 6: 4 with the diisocyanate.
  • a catalyst At the time of preparation of the composition for an optical material and the optical lens, a catalyst, a chain extender, a crosslinking agent, an ultraviolet stabilizer, an antioxidant, a colorant, a dye, a filler, a release agent, and the like may be further added.
  • thiols or episulfides can be mixed with a diisocyanate and other additives and degassed, then injected into a mold and slowly polymerized while gradually warming from low to high temperature, and the resin is cured by heating it to produce an optical lens.
  • the temperature of the polymerization reaction may be, for example, 20 °C to 150 °C, specifically may be 25 °C to 120 °C.
  • a reaction catalyst commonly used in the preparation of polythiourethane may be added, and specific types thereof are as described above.
  • optical lens manufactured as described above may be physically subjected to anti-reflection, high hardness, abrasion resistance, chemical resistance, anti-fog, surface polishing, antistatic treatment, hard coat treatment, anti-reflective coating treatment, dyeing treatment, or the like as necessary. Chemical treatment may be further carried out.
  • the optical lens manufactured by the above method is excellent in optical properties such as transparency and refractive index.
  • the optical lens may have a refractive index of 1.60 or more, and specifically, may have a refractive index of 1.60 to 1.67.
  • the optical lens may have an Abbe number of 30 to 50, specifically 30 to 45, or 31 to 40.
  • the optical lens may have a light transmittance of 80% or more, 85% or more, or 87% or more, which may be a total light transmittance.
  • the total loading time of the BTC solution was 33 hours, and when the addition was completed, an additional reaction was performed for 3 to 4 hours, cooled to 90 to 110 ° C., and excess COCl 2 was decomposed by purging with nitrogen.
  • toluene was first removed by distillation at a temperature of 50-60 ° C., and secondly, distillation at 120 ° C. gave methacrylic diisocyanate (m-XDI), and the recovery rate of the first distilled toluene was 85. It was%.
  • the purity of the final m-XDI obtained was determined to be 99.5%, yield 84%.
  • the inside of the 5L four-necked reactor was replaced with nitrogen, and 3400 g of ethylbenzene was added thereto, followed by stirring, while gradually adding 800 g of m-XDA hydrochloride obtained in Example 2 and stirring the inside of the reactor while maintaining 140 ° C. Thereafter, a solution of 378.5 g of BTC dissolved in 200 g of ethylbenzene was first introduced over 10 to 14 hours, and then a solution of 378.5 g of BTC dissolved in 200 g of ethylbenzene was added secondly, and the temperature inside the reactor was 140 to 145. °C was maintained.
  • the total loading time of the BTC solution was 31 hours, and when the addition was completed, an additional reaction was performed for 3 to 4 hours, cooled to a temperature of 90 to 110 ° C, and excess COCl 2 was decomposed by purging with nitrogen.
  • ethylbenzene was first distilled off at a temperature of 50 to 60 ° C., and secondly, distillation was performed at 120 ° C. to obtain m-XDI, and the recovery rate of ethylbenzene distilled primarily was 85%.
  • the purity of the final m-XDI obtained was determined to be 99.7%, yield 86%.
  • the total loading time of the BTC solution was 28 hours, and when the addition was completed, an additional reaction was carried out for 3 to 4 hours, cooled to a temperature of 90 to 110 ° C, and excess COCl 2 was decomposed by purging with nitrogen.
  • the first ODCB was distilled off at a temperature of 50 ⁇ 60 °C, the second distilled at 120 °C to obtain m-XDI, the recovery rate of the first distilled ODCB was 88%.
  • the purity of the final m-XDI obtained was determined to be 99.8%, yield 90%.
  • the inside of the 5L four-necked reactor was replaced with nitrogen, and 3400 g of cyclohexane was added thereto, followed by stirring, while gradually adding 800 g of m-XDA hydrochloride obtained in Example 4 and stirring the inside of the reactor while maintaining 145 ° C. Thereafter, a solution in which BTC 454g was dissolved in 200 g of cyclohexane was first introduced over 10 to 14 hours, and then a solution of BTC 454g in 200 g of cyclohexane was added secondly, and the temperature inside the reactor was 145 to 150 ° C. Maintained.
  • the BTC solution was added for a total of 30 hours, and when the addition was completed, an additional reaction was performed for 3 to 4 hours, cooled to 90 to 110 ° C., and excess COCl 2 was purged with nitrogen to decompose it.
  • cyclohexane was first removed by distillation at a temperature of 50 to 60 ° C., and secondly, distillation was performed at 120 ° C. to obtain m-XDI, and the recovery rate of the first distilled cyclohexane was 87%.
  • the purity of the final m-XDI obtained was determined to be 99.5%, yield 88%.
  • the inside of the 5L four-necked reactor was replaced with nitrogen, and 3400 g of monochlorobenzene was added thereto, followed by stirring, while 800 g of m-XDA hydrochloride obtained in Example 5 was slowly added thereto, and the inside of the reactor was stirred while maintaining 150 ° C. Thereafter, a solution of 454 g of BTC dissolved in 200 g of monochlorobenzene was first added over 12 hours, and then a solution of BTC 454 g of dissolved in 200 g of monochlorobenzene was added secondly, and the temperature inside the reactor was 150-155 ° C. Maintained.
  • the BTC solution was added for a total of 29 hours, and when the addition was completed, an additional reaction was performed for 3 to 4 hours, cooled to a temperature of 90 to 110 ° C, and excess COCl 2 was purged with nitrogen to decompose it.
  • the monochlorobenzene was distilled off first at a temperature of 50 to 60 ° C, and distilled at 120 ° C secondly to obtain m-XDI, and the recovery rate of the first distilled monochlorobenzene was 86%.
  • the purity of the final m-XDI obtained was determined to be 99.6%, yield 90%.
  • the phosgene gas was blown in at 100 g / hr (1.0 mol / hr) from the phosgene blow pipe, and it was made to react for 8 hours, maintaining temperature. After the reaction was completed, nitrogen was purged to remove unreacted phosgene gas and hydrogen chloride gas. The reaction solution was filtered, and 8.2 g (dry weight) of unreacted hydrochloride was removed by filtration. The obtained filtrate was desolventized to obtain 183.3 g of m-XDI (purity conversion 93.71 mol%) having a purity of 96.2% containing 1.1 wt% of impurity (CBi).
  • Example 2800 g Example 3800 g
  • Example 4800 g Example 5800 g Comparative Example 1
  • Slurry Organic solvent Toluene 3400g Ethylbenzene 3400g ODCB3400g 3400 g of cyclohexane Monochlorobenzene 3400g - Reactor internal temperature 135-140 °C 140-145 °C 145-150 °C 145-150 °C 150-155 °C - BTC 757 g 757 g 833 g 908 g 908 g Phosgenegas Organic solvent 400 g 400 g 400 g 400 g 400 g 400 g - Solvent Recovery 85% 85% 88% 87% 86% - Reaction temperature > 135 °C > 140 °C > 145 °C > 145 °C > 150 °C - Total input time 33 hours 31 hours 28 hours 30 hours 29 hours - m
  • a process apparatus including a reactor having a see-through window as shown in FIG. 2 was constructed, and m-XDI was prepared according to the procedure of Example 8 using the same.
  • the reaction solution was cooled to 90 ⁇ 110 °C temperature, excess COCl 2 was decomposed by purging with nitrogen.
  • the first ODCB was distilled off at a temperature of 50 ⁇ 60 °C, the second distilled at 120 °C to obtain m-XDI, the recovery rate of the first distilled ODCB was 88%.
  • the purity of the final m-XDI obtained was determined to be 99.8%, yield 90%.
  • Example 8A The same procedure as in Example 8A was performed, but the reaction equivalent, reaction temperature, or reaction time of m-XDA hydrochloride and BTC was changed to obtain a reaction solution having various colors and clarities, and from the same manner as in Example 8A. The final m-XDI was obtained.
  • Example 8A Example 8B
  • Example 8C Reaction solution transparency Transparency opacity Transparency Reaction solution color Light brown Light brown Dark brown m-XDI yield O X
  • m-XDI purity O O X
  • the first liquid containing methacrylicylene diisocyanate (m-XDI) prepared in Example 6 and the second liquid containing thiol were mixed in the ratio of the table below to prepare a composition for an optical material.
  • Example 11 Example 12
  • Example 13 First amount m-XDI 52 46.92 50.09 DBTC 0.015 0.015 0.015 Zelec TM UN 0.1 0.1 0.1 Tinuvin TM 329 0.05 0.05 0.05 Second amount GST 48 - - DMMD - 53.08 - BET - - 49.41
  • Tinuvin TM 329 UV blocker from BASF
  • Examples 11-13 The optical composition of Examples 11-13 was hardened and the optical lens corresponding to Examples 14-16 was produced, respectively. Physical properties of the prepared optical lens are shown in the table below.
  • the optical lens prepared from the composition for an optical material according to the embodiment is suitable for being used as a high quality optical lens because of its high refractive index and high transmittance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

디아민으로부터 디아민 염산염을 거쳐 디이소시아네이트를 제조하는 과정에서, 염화수소 가스 대신 염산 수용액과 유기 용매를 이용하고 포스겐 가스 대신 고상의 트리포스겐을 이용하면서 반응 조건들을 조절하여, 환경 문제가 적으면서도 수율 및 품질이 우수한 디이소시아네이트 및 광학 렌즈의 제조방법이 제공된다.

Description

디이소시아네이트 및 광학 렌즈의 제조방법
구현예는 디이소시아네이트 및 광학 렌즈 제조방법에 관한 것이다. 보다 구체적으로, 구현예는 디아민 염산염을 이용하여 디이소시아네이트를 제조하는 방법에 관한 것이다. 또한, 구현예는 이와 같이 제조된 디이소시아네이트를 이용하여 광학 렌즈를 제조하는 방법에 관한 것이다.
플라스틱 광학 렌즈의 원료로 사용되는 이소시아네이트는 포스겐법, 비포스겐법, 열분해법 등에 의해 제조된다.
포스겐법은 원료 아민을 포스겐(COCl2) 가스와 반응시켜 이소시아네이트를 합성하는 것이고, 또한 비포스겐법은 크실릴렌 클로라이드를 촉매 존재 하에서 소듐 시아네이트와 반응시켜 이소시아네이트로 합성하는 것이며, 열분해법은 아민을 알킬 클로로포르메이트와 반응시켜 카바메이트를 제조한 후 촉매 존재하의 고온에서 열분해하여 이소시아네이트를 합성하는 것이다.
이들 이소시아네이트 제법 중에서 포스겐법이 가장 널리 사용되고 있으며, 특히 아민에 포스겐 가스를 직접 반응시키는 직접법이 일반적으로 이용되어 왔으나, 이는 포스겐 가스의 직접 반응을 위한 다수의 장치를 필요로 하는 문제가 있었다. 한편 상기 직접법을 보완하기 위해, 한국 등록특허공보 제1994-1948호와 같이 아민에 염화수소 가스를 반응시켜 중간물질인 아민 염산염을 얻고 이를 포스겐과 반응시키는 염산염법이 개발되었다.
종래의 이소시아네이트의 합성을 위한 포스겐법 중에서 아민을 염화수소 가스와 반응시켜 중간물질로 염산염을 얻는 방법은, 상압에서 염산염이 미세한 입자로 생성되어 반응기 내부의 교반 상태가 원활하지 않기 때문에, 반응기 내부의 압력을 높이기 위해 온도를 상승시키는 공정이 추가로 필요하며, 최종 제품의 수율도 낮은 문제가 있었다.
이에 염화수소 가스가 아닌 염산 수용액을 이용하여 염산염을 얻으려는 시도가 있으나, 염산 수용액 내에 아민이 용해되어 수율이 50%까지 크게 떨어져서 실제 적용되기 어려웠고, 최종 제품의 순도를 높이기 위해 원료로서 수분 및 불순물 함량이 낮은 아민을 이용해야 하는 까다로움이 있었다.
특히 종래의 포스겐법에서 사용되는 포스겐 가스는 맹독성으로 환경 규제 대상의 물질이고, 이를 보관하기 위해 별도의 냉각 장치를 필요하여 보관 및 관리가 어려운 문제가 있다.
이에 본 발명자들이 연구한 결과, 플라스틱 광학 렌즈의 원료로 주로 사용되는 디이소시아네이트를 디아민으로부터 염산염을 거쳐 제조하는 과정에서, 염화수소 가스 대신 염산 수용액과 유기 용매를 이용하고 포스겐 가스 대신 고상의 트리포스겐을 이용하면서 반응 조건들을 조절하여, 종래의 환경, 수율 및 품질 문제들을 해결할 수 있음을 발견하였다.
따라서 구현예의 목적은 환경 문제가 적으면서도 수율 및 품질이 우수한 디이소시아네이트 및 광학 렌즈의 제조방법을 제공하는 것이다.
일 구현예에 따라, 본 발명은 오르쏘크실릴렌디아민, 메타크실릴렌디아민, 파라크실릴렌디아민, 노보넨디아민, 수소화크실릴렌디아민 및 이소포론디아민으로 이루어진 군에서 선택되는 1종 이상의 디아민을 준비하는 단계; 상기 디아민을 염산 수용액과 제 1 유기 용매 중에서 반응시켜 디아민 염산염을 얻는 단계; 및 상기 디아민 염산염을 트리포스겐과 제 2 유기 용매 중에서 반응시켜 디이소시아네이트를 얻는 단계를 포함하는, 디이소시아네이트의 제조방법을 제공한다.
다른 구현예에 따라, 본 발명은 메타크실릴렌디아민을 염산 수용액과 제 1 유기 용매 중에서 반응시켜 메타크실릴렌디아민 염산염을 얻는 단계; 및 상기 메타크실릴렌디아민 염산염을 트리포스겐과 제 2 유기 용매 중에서 반응시켜 메타크실릴렌디이소시아네이트를 얻는 단계를 포함하는, 메타크실릴렌디이소시아네이트의 제조방법을 제공한다.
또 다른 구현예에 따라, 본 발명은 오르쏘크실릴렌디아민, 메타크실릴렌디아민, 파라크실릴렌디아민, 노보넨디아민, 수소화크실릴렌디아민 및 이소포론디아민으로 이루어진 군에서 선택되는 1종 이상의 디아민을 준비하는 단계; 상기 디아민을 염산 수용액과 제 1 유기 용매 중에서 반응시켜 디아민 염산염을 얻는 단계; 상기 디아민 염산염을 트리포스겐과 제 2 유기 용매 중에서 반응시켜 디이소시아네이트를 얻는 단계; 및 상기 디이소시아네이트를 티올 또는 에피설피드와 혼합하고 몰드에서 중합 및 경화시키는 단계를 포함하는, 광학 렌즈의 제조방법을 제공한다.
상기 구현예에 따른 디이소시아네이트의 제조방법은, 보관 및 관리가 까다롭고 맹독성인 포스겐 가스를 사용하지 않고, 상온에서 고체 상태로서 별도의 냉각 보관 장치를 필요로 하지 않으면서 독성이 적은 트리포스겐을 사용하므로 취급성 및 공정성이 우수하다.
또한 상기 구현예에 따른 디이소시아네이트의 제조방법은, 중간물질인 디아민 염산염의 제조에 염화수소 가스를 사용하지 않고 염산 수용액을 이용함으로써, 상압에서도 반응이 진행 가능하여 고온 가열 및 냉각을 위한 추가 장치가 필요 없고 수율도 향상시킬 수 있다.
또한 상기 구현예에 따른 디이소시아네이트의 제조방법은, 염산 수용액과 함께 유기 용매를 이용하고 반응 조건을 조절하여 염산염을 제조함으로써, 염산 수용액 내에 염산염이 용해되는 것을 최소화하여 최종 수율을 더욱 높일 수 있고, 원료 디아민 내의 수분 및 불순물 함량에 크게 구애받지 않아서 원료 선택의 폭이 넓어질 수 있다
따라서, 상기 구현예에 따른 디이소시아네이트의 제조방법은 고품질의 플라스틱 광학 렌즈의 제조에 적용될 수 있다.
도 1은 메타크실릴렌디아민 염산염과 트리포스겐이 반응을 통해 메타크실릴렌디이소시아네이트 제조되는 메커니즘의 일례를 나타낸 것이다.
도 2는 메타크실릴렌디아민 염산염과 트리포스겐의 반응을 위한 공정 장치의 예시를 나타낸 것이다.
<부호의 설명>
T-1: 제 1 탱크, T-2: 제 2 탱크, T-3: 제 3 탱크,
R-1: 반응기, D-1: 제 1 증류기, D-2: 제 2 증류기,
C-1: 제 1 콘덴서, C-2: 제 2 콘텐서, C-3: 제 3 콘덴서,
S-1: 제 1 스크러버, S-2: 제 2 스크러버,
G-1: 투시창, V-1: 용매 회수기
본 명세서에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 본 명세서에 기재된 구성성분의 물성 값, 함량, 치수 등을 나타내는 모든 수치 범위는 특별한 기재가 없는 한 모든 경우에 "약"이라는 용어로 수식되는 것으로 이해하여야 한다.
본 명세서에서, "아민(amine)"은 말단에 아민기를 하나 이상 갖는 화합물을 의미하고, "디아민(diamine)"은 말단에 아민기를 2개 갖는 화합물을 의미하며, 지방족 사슬, 지방족 고리, 방향족 고리의 골격에 따라 매우 다양한 구조를 가질 수 있다. 상기 디아민의 구체적인 예로는, 오르쏘크실릴렌디아민, 메타크실릴렌디아민, 파라크실릴렌디아민, 헥사메틸렌디아민, 2,2-디메틸펜탄디아민, 2,2,4-트리메틸헥산디아민, 부텐디아민, 1,3-부타디엔-1,4-디아민, 2,4,4-트리메틸헥사메틸렌디아민, 비스(아미노에틸)카보네이트, 비스(아미노에틸)에테르, 리신디아미노메틸에스테르, 비스(아미노에틸)벤젠, 비스(아미노프로필)벤젠, α,α,α',α'-테트라메틸크시릴렌디아민, 비스(아미노부틸)벤젠, 비스(아미노메틸)나프탈렌, 비스(아미노메틸)디페닐에테르, 비스(아미노에틸)프탈레이트, 2,6-디(아미노메틸)퓨란, 비스(아미노메틸)시클로헥산, 디시클로헥실메탄디아민, 시클로헥산디아민, 메틸시클로헥산디아민, 디시클로헥실디메틸메탄디아민, 2,2-디메틸디시클로헥실메탄디아민, 2,5-비스(아미노메틸)비시클로-[2,2,1]-헵탄, 2,6-비스(아미노메틸)비시클로-[2,2,1]-헵탄, 3,8-비스(아미노메틸)트리시클로데칸, 3,9-비스(아미노메틸)트리시클로데칸, 4,8-비스(아미노메틸)트리시클로데칸, 4,9-비스(아미노메틸)트리시클로데칸, 비스(아미노메틸)노보넨, 비스(아미노메틸)설피드, 비스(아미노에틸)설피드, 비스(아미노프로필)설피드, 비스(아미노헥실)설피드, 비스(아미노메틸)설폰, 비스(아미노메틸)디설피드, 비스(아미노에틸)디설피드, 비스(아미노프로필)디설피드, 비스(아미노메틸티오)메탄, 비스(아미노에틸티오)메탄, 비스(아미노에틸티오)에탄, 비스(아미노메틸티오)에탄 등을 들 수 있다.
본 명세서에서, "이소시아네이트(isocyanate)"는 NCO기를 갖는 화합물을 의미하고, "디이소시아네이트(diisocyanate)"는 말단에 NCO기를 두 개 갖는 화합물을 의미하며, 지방족 사슬, 지방족 고리, 방향족 고리의 골격에 따라 매우 다양한 구조를 가질 수 있다. 상기 디이소시아네이트의 구체적인 예로는 오르쏘크실릴렌디이소시아네이트, 메타크실릴렌디이소시아네이트, 파라크실릴렌디이소시아네이트, 헥사메틸렌디이소시아네이트, 2,5-비스(이소시아네이토메틸)-비시클로[2.2.1]헵탄, 2,6-비스(이소시아네이토메틸)-비시클로[2.2.1]헵탄, 비스(이소시아네이토메틸)시클로헥산, 디시클로헥실메탄디이소시아네이트, 이소포론디이소시아네이트, 1,2-디이소시아네이토벤젠, 1,3-디이소시아네이토벤젠, 1,4-디이소시아네이토벤젠, 2,4-디이소시아네이토톨루엔, 에틸페닐렌디이소시아네이트, 디메틸페닐렌디이소시아네이트, 비페닐디이소시아네이트, 톨루이딘디이소시아네이트, 4,4'-메틸렌비스(페닐이소시아네이트), 1,2-비스(이소시아네이토메틸)벤젠, 1,3-비스(이소시아네이토메틸)벤젠, 1,4-비스(이소시아네이토메틸)벤젠, 1,2-비스(이소시아네이토에틸)벤젠, 1,3-비스(이소시아네이토에틸)벤젠, 1,4-비스(이소시아네이토에틸)벤젠, α,α,α',α'-테트라메틸크실릴렌디이소시아네이트, 비스(이소시아네이토메틸)나프탈린, 비스(이소시아네이토메틸페닐)에테르, 비스(이소시아네이토메틸)설피드, 비스(이소시아네이토에틸)설피드, 비스(이소시아네이토프로필)설피드, 2,5-디이소시아네이토테트라하이드로티오펜, 2,5-디이소시아네이토메틸테트라하이드로티오펜, 3,4-디이소시아네이토메틸테트라하이드로티오펜, 2,5-디이소시아네이토-1,4-디티안, 2,5-디이소시아네이토메틸-1,4-디티안 등을 들 수 있다.
[디이소시아네이트의 제조방법]
일 구현예에 따른 디이소시아네이트의 제조방법은 오르쏘크실릴렌디아민, 메타크실릴렌디아민, 파라크실릴렌디아민, 노보넨디아민, 수소화크실릴렌디아민 및 이소포론디아민으로 이루어진 군에서 선택되는 1종 이상의 디아민을 준비하는 단계; 상기 디아민을 염산 수용액과 제 1 유기 용매 중에서 반응시켜 디아민 염산염을 얻는 단계; 및 상기 디아민 염산염을 트리포스겐과 제 2 유기 용매 중에서 반응시켜 디이소시아네이트를 얻는 단계를 포함한다.
상기 구현예에 따른 디이소시아네이트의 제조방법에서 출발물질로 사용되는 디아민은 오르쏘크실릴렌디아민(o-XDA), 메타크실릴렌디아민(m-XDA), 파라크실릴렌디아민(p-XDA, 노보넨디아민(NBDA), 수소화크실릴렌디아민(H6XDA) 및 이소포론디아민(IPDA)으로 이루어진 군에서 선택되는 1종 이상이다.
디아민 염산염의 제조
먼저, 디아민을 염산 수용액과 제 1 유기 용매 중에서 반응시켜 디아민 염산염을 얻는다.
종래에 염화수소 가스를 이용하는 경우에는, 상압 반응시 염산염이 미세한 입자로 생성되어 반응기 내부의 교반 상태가 원활하지 않기 때문에, 압력을 높여주어 반응기 내부 온도를 상승시키는 공정이 추가로 필요하며, 최종 공정 제품의 수율도 낮은 문제가 있었다.
그러나 상기 구현예에 따르면 염산 수용액을 사용하므로, 종래에 염화수소 가스를 이용할 때 발생하는 문제를 해결할 수 있다. 구체적으로, 염산 수용액을 사용할 경우, 반응을 통해 제조되는 생성물이 슬러리의 형태가 아닌 고체 형태이므로 수율이 높으며, 상압에서도 반응이 이뤄질 수 있기 때문에 급냉을 위한 별도로 장치 또는 공정을 필요로 하지 않는다.
상기 염산 수용액의 농도는 5 중량% 내지 50 중량%일 수 있다. 상기 농도 범위 내일 때, 염산 수용액 내에 염산염이 용해되는 것을 최소화하여 최종 수율을 높일 수 있고, 취급성도 향상시킬 수 있다.
구체적으로, 상기 염산 수용액의 농도는 10 중량% 내지 45 중량%, 20 중량% 내지 45 중량%, 또는 30 중량% 내지 40 중량%일 수 있다. 보다 구체적으로, 상기 염산 수용액은 20 중량% 내지 45 중량%의 농도를 가질 수 있다.
상기 디아민 및 상기 염산 수용액은 1 : 2 내지 5의 당량비로 반응에 투입될 수 있다. 상기 당량비 범위 내일 때, 미반응물을 줄이면서 수분 발생에 따른 용해로 인해 수율이 낮아지는 것을 방지할 수 있다. 구체적으로, 상기 디아민과 상기 염산 수용액은 1 : 2 내지 2.5의 당량비로 반응에 투입될 수 있다.
상기 디아민 및 상기 염산 수용액의 투입은, 반응기 내부 온도를 일정하게 유지하면서 수행될 수 있다.
상기 디아민 및 상기 염산 수용액의 투입 시의 반응기 내부 온도는 20℃ 내지 100℃일 수 있다. 상기 온도 범위 내일 때, 온도가 끓는점 이상으로 높아져 반응에 적합하지 않거나 온도가 너무 낮아져 반응 효율이 떨어지는 것을 방지할 수 있다.
구체적으로, 상기 디아민 및 상기 염산 수용액의 투입 시의 반응기 내부 온도는 20℃ 내지 60℃, 또는 20℃ 내지 40℃일 수 있다.
보다 구체적으로, 상기 디아민 및 상기 염산 수용액이 1 : 2 내지 5의 당량비로 20℃ 내지 40℃의 온도에서 반응에 투입될 수 있다.
종래의 염산염법에서는 반응 과정에서 열이 많이 발생하여 별도의 냉각기를 통한 급냉을 필요로 하는 반면, 상기 구현예에 따르면 낮은 온도를 유지하면서 반응 물질을 투입하므로 별도의 냉각기를 필요로 하지 않는다.
상기 디아민 및 상기 염산 수용액의 투입은, 예를 들어 반응기에 상기 염산 수용액을 먼저 투입하고 이후 상기 디아민을 천천히 투입하는 순서로 진행될 수 있다. 상기 디아민 및/또는 상기 염산 수용액의 투입은 30분 내지 1시간 동안 수행될 수 있다.
상기 디아민 및 상기 염산 수용액의 투입이 완료된 이후에는 반응기 내부 온도를 0℃ 내지 20℃, 0℃ 내지 10℃ 또는 10℃ 내지 20℃로 냉각시킬 수 있다.
상기 디아민과 염산 수용액의 반응은 상압에서 진행될 수 있고, 예를 들어 30분 내지 2시간 동안 교반하며 수행될 수 있다.
이후 상기 제 1 유기 용매를 반응에 투입하고, 냉각 후 추가로 교반하면서 반응을 진행할 수 있다.
상기 제 1 유기 용매는 친수성 용매일 수 있고, 구체적으로 디에틸에테르, 디이소프로필에테르, 디옥산, 테트라하이드로퓨란, 메탄올, 에탄올, 디메틸설폭사이드, 디메틸폼아마이드, 아세토나이트릴, 아세톤, 트리클로로에틸렌, 테트라클로로에탄, 트리클로로에탄, n-부탄올, 이소부탄올, 메틸에틸케톤, 메틸부틸케톤, 이소프로판올 및 메틸아세테이트로 이루어진 군에서 선택된 1종 이상일 수 있다.
상기 제 1 유기 용매의 투입량(중량)은 상기 디아민의 중량 대비 1배 내지 5배일 수 있다. 상기 투입량 범위 내일 때, 최종 염산염의 수율이 높으면서 과도한 유기 용매의 사용을 방지할 수 있다. 구체적으로, 상기 제 1 유기 용매는 상기 디아민의 중량 대비 1배 내지 2배, 또는 1배 내지 1.5배의 양으로 반응에 투입될 수 있다.
상기 제 1 유기 용매의 투입 이후의 냉각 온도는 -10℃ 내지 10℃ 또는 -5℃ 내지 5℃일 수 있다. 또한 상기 냉각 이후의 추가 반응 시간은 30분 내지 2시간, 또는 30분 내지 1시간일 수 있다.
구체적인 일례에 따르면, 상기 디아민과 상기 염산 수용액의 반응이 (1a) 제 1 반응기에 상기 염산 수용액을 투입하는 단계; (1b) 상기 제 1 반응기에 상기 디아민을 추가로 투입하고 교반하는 단계; 및 (1c) 상기 제 1 반응기에 상기 제 1 유기 용매를 추가로 투입하고 교반하는 단계를 순차적으로 포함할 수 있다.
보다 구체적으로, 상기 디아민과 상기 염산 수용액의 반응이 상기 단계 (1b)에서 상기 디아민의 투입 이후 교반 이전에 상기 반응기의 내부를 0℃ 내지 10℃의 온도로 냉각하는 단계; 및 상기 단계 (1c)에서 상기 제 1 유기 용매의 투입 이후 교반 이전에 상기 반응기의 내부를 -5℃ 내지 5℃의 온도로 냉각하는 단계를 추가로 포함할 수 있다.
상기 반응을 통해 수득된 반응물은 분리, 여과 및 건조를 더 거칠 수 있다. 예를 들어, 반응물 중에서 수층을 분리하고 여과 및 건조함으로써 고상의 디아민 염산염을 수득할 수 있다. 구체적으로, 상기 디이소시아네이트의 제조방법은, 상기 디아민 염산염을 얻는 단계에서 발생되는 불순물을 상기 제 1 유기 용매와 함께 제거하는 단계;를 더 포함할 수 있다. 상기 디아민 염산염을 제조하기 위한 반응 과정에서 불순물이 발생하여 상기 제 1 유기 용매에 포함되는데, 상기 제 1 유기 용매의 제거 단계를 통해 이와 같은 불순물을 제거하여 제품의 순도를 높일 수 있다.
이와 같이 수득된 디아민 염산염의 수율은 80% 이상, 85% 이상, 또는 90% 이상일 수 있고, 구체적으로 85% 내지 95%, 또는 88% 내지 92%일 수 있다. 또한 상기 수득된 디아민 염산염의 수분 함유량은 5% 이하일 수 있으며, 5% 초과인 경우, 최종 제조되는 렌즈의 물성이 좋지 않다. 일례로서 상기 디아민 염산염이 80% 이상의 수율 및 5% 이하의 수분 함유량으로 얻어질 수 있다.
한편 반응물 중에서 유기층을 분리하여 유기 용매로 재사용할 수 있다. 이에 따라 상기 제 1 유기 용매의 회수율은 80% 이상, 85% 이상, 또는 90% 이상일 수 있고, 구체적으로는 80% 내지 95%, 또는 80% 내지 82%일 수 있다.
디이소시아네이트의 제조
다음으로, 상기 디아민 염산염을 트리포스겐과 제 2 유기 용매 중에서 반응시켜 디이소시아네이트를 얻는다.
구체적으로, 앞서 제조된 디아민 염산염을 유기 용매에 투입하고, 트리포스겐(triphosgene, BTC, bis(trichloromethyl)carbonate)과 반응시킨 후, 여과 및 증류를 통하여 디이소시아네이트를 수득한다.
상기 제 2 유기 용매의 구체적인 예로는 벤젠, 톨루엔, 에틸벤젠, 클로로벤젠, 모노클로로벤젠, 1,2-디클로로벤젠, 디클로로메탄, 1-클로로-n-부탄, 1-클로로-n-펜탄, 1-클로로-n-헥산, 클로로포름, 카본 테트라클로라이드, n-펜탄, n-헥산, n-헵탄, n-옥탄, 사이클로헥산, 사이클로펜탄, 사이클로옥탄 및 메틸사이클로헥산으로 구성된 군에서 선택된 1종 이상일 수 있다.
상기 제 2 유기 용매의 투입량(중량)은 상기 디아민 염산염의 중량 대비 1배 내지 5배일 수 있다. 상기 투입량 범위 내일 때, 최종 디이소시아네이트의 수율이 높으면서 과도한 유기 용매의 사용을 방지할 수 있다. 구체적으로, 상기 제 2 유기 용매는 상기 디아민 염산염의 중량 대비 2배 내지 5배, 또는 3배 내지 5배의 양으로 반응에 투입될 수 있다.
상기 디아민 염산염과 트리포스겐의 반응 온도는 130℃ 내지 160℃일 수 있다. 상기 반응 온도 범위 내일 때, 디아민 염산염과 트리포스겐 간에 반응이 원활할 수 있고, 최종 디이소시아네이트 생성 시에 타르와 같은 불순물의 생성을 억제할 수 있다. 구체적으로, 상기 디아민 염산염과 트리포스겐의 반응 온도는 135℃ 내지 155℃일 수 있다.
상기 디아민 염산염과 트리포스겐의 반응은 5시간 내지 100시간 동안 수행될 수 있다. 상기 반응 시간 범위 내일 때, 반응 시간이 과도하지 않으면서, 포스겐 발생으로 인한 미반응 물질의 생성을 최소화할 수 있다. 구체적으로, 상기 디아민 염산염과 트리포스겐의 반응은 15시간 내지 40시간, 20시간 내지 35시간, 또는 24시간 내지 30시간 동안 수행될 수 있다.
구체적인 예로서, 상기 디아민 염산염과 트리포스겐의 반응이 130℃ 내지 160℃의 온도에서 5시간 내지 100시간 동안 수행될 수 있다.
상기 디아민 염산염 및 상기 트리포스겐은 1 : 1 내지 5의 당량비로 반응에 투입될 수 있다. 상기 당량비 범위 내일 때, 반응 효율이 높으면서도, 과도한 투입으로 반응 시간이 증가하는 것을 방지할 수 있다. 구체적으로, 상기 디아민 염산염과 상기 트리포스겐은 1 : 1.5 내지 4, 또는 1 : 2 내지 2.5의 당량비로 반응에 투입될 수 있다
구체적인 일례에 따르면, 상기 디아민 염산염과 트리포스겐의 반응이 (2a) 제 2 반응기에 상기 제 2 유기 용매를 투입하는 단계; (2b) 상기 제 2 반응기에 상기 디아민 염산염을 추가로 투입하고 교반하는 단계; 및 (2c) 상기 제 2 반응기에 상기 트리포스겐을 추가로 투입하고 교반하는 단계를 순차적으로 포함할 수 있다.
보다 구체적으로, 상기 단계 (2c)에서 상기 트리포스겐의 투입이 상기 제 2 유기 용매와 동일한 용매 중에 상기 트리포스겐이 용해된 용액을 상기 반응기에 135℃ 내지 155℃의 온도에서 총 25시간 내지 40 시간 동안 2회 이상 나누어 투입하는 것일 수 있다.
이때 상기 트리포스겐 용액의 각 회별 투입 시간은 5시간 내지 25시간, 또는 10시간 내지 14시간일 수 있다.
또한 상기 트리포스겐의 투입 이후에 교반하여 추가로 반응시키는 시간은 2시간 내지 5시간 또는 3시간 내지 4시간일 수 있다.
반응 이후에는 반응물을 90℃ 내지 110℃의 온도에서 냉각할 수 있다.
상기 반응을 통해 수득된 반응물은 분리, 여과 및 증류를 더 거칠 수 있다.
상기 증류는 1차 증류 및 2차 증류를 포함할 수 있다.
구체적인 예로서, 상기 디이소시아네이트가 상기 디아민 염산염과 상기 트리포스겐의 반응의 결과물을 40℃ 내지 60℃에서 2시간 내지 8시간 동안 1차 증류한 후, 100℃ 내지 120℃에서 2시간 내지 10시간 동안 2차 증류하여 얻어진 것일 수 있다.
상기 1차 증류는 0.5 Torr 이하에서, 상기 2차 증류는 0.1 Torr 이하에서 수행될 수 있다.
상기 1차 증류를 통해 유기 용매를 회수하여 재활용할 수 있고, 상기 2차 증류를 통해 최종 디이소시아네이트를 얻을 수 있다.
구체적으로, 상기 디이소시아네이트는 오르쏘크실릴렌디이소시아네이트(o-XDI), 메타크실릴렌디이소시아네이트(m-XDI), 파라크실릴렌디이소시아네이트(p-XDI), 노보넨디이소시아네이트(NBDI), 수소화크실릴렌디이소시아네이트(H6XDI) 및 이소포론디이소시아네이트(IPDI)로 이루어진 군에서 선택되는 1종 이상일 수 있다.
이와 같이 수득된 디이소시아네이트의 수율은 80% 이상, 85% 이상, 또는 90% 이상일 수 있다. 또한 상기 수득된 디이소시아네이트의 순도는 95% 이상, 99.5% 이상, 또는 99.8% 이상일 수 있다.
구체적인 예로서, 상기 디이소시아네이트가 오르쏘크실릴렌디이소시아네이트, 메타크실릴렌디이소시아네이트, 파라크실릴렌디이소시아네이트, 노보넨디이소시아네이트, 수소화크실릴렌디이소시아네이트 및 이소포론디이소시아네이트로 이루어진 군에서 선택되는 1종 이상이고, 99.5% 이상의 순도를 가질 수 있다.
상기 구현예의 방법에 따르면, 디이소시아네이트의 수율이 높고, 유기 용매의 재활용률이 우수하고 맹독성의 포스겐 가스를 사용하지 않으므로 친환경적이며, 상압 반응이 가능하고 가압 또는 급냉을 위한 별도 장치를 필요로 하지 않는다.
[메타크실릴렌디이소시아네이트의 제조방법]
일 구현예에 따른 메타크실릴렌디이소시아네이트의 제조방법은 메타크실릴렌디아민을 염산 수용액과 제 1 유기 용매 중에서 반응시켜 메타크실릴렌디아민 염산염을 얻는 단계; 및 상기 메타크실릴렌디아민 염산염을 트리포스겐과 제 2 유기 용매 중에서 반응시켜 메타크실릴렌디이소시아네이트를 얻는 단계를 포함한다.
상기 구현예에 따른 디이소시아네이트의 제조방법에서 출발물질로 사용되는 디아민은 메타크실릴렌디아민(m-XDA)이다.
메타크실릴렌디아민 염산염의 제조
먼저, 메타크실릴렌디아민을 염산 수용액과 제 1 유기 용매 중에서 반응시켜 메타크실릴렌디아민 염산염을 얻는다.
아래 반응식 1은 본 단계의 반응의 일례를 나타낸 것이다.
[반응식 1]
Figure PCTKR2019006832-appb-I000001
종래에 염화수소 가스를 이용하는 경우에는, 상압 반응시 염산염이 미세한 입자로 생성되어 반응기 내부의 교반 상태가 원활하지 않기 때문에, 압력을 높여주어 반응기 내부 온도를 상승시키는 공정이 추가로 필요하며, 최종 공정 제품의 수율도 낮은 문제가 있었다.
그러나 상기 구현예에 따르면 염산 수용액을 사용하므로, 종래에 염화수소 가스를 이용할 때 발생하는 문제를 해결할 수 있다. 구체적으로, 염산 수용액을 사용할 경우, 반응을 통해 제조되는 생성물이 슬러리의 형태가 아닌 고체 형태이므로 수율이 높으며, 상압에서도 반응이 이뤄질 수 있기 때문에 급냉을 위한 별도로 장치 또는 공정을 필요로 하지 않는다.
상기 염산 수용액의 농도는 5 중량% 내지 50 중량%일 수 있다. 상기 농도 범위 내일 때, 염산 수용액 내에 염산염이 용해되는 것을 최소화하여 최종 수율을 높일 수 있고, 취급성도 향상시킬 수 있다.
구체적으로, 상기 염산 수용액의 농도는 10 중량% 내지 45 중량%, 20 중량% 내지 45 중량%, 또는 30 중량% 내지 40 중량%일 수 있다. 보다 구체적으로, 상기 염산 수용액은 20 중량% 내지 45 중량%의 농도를 가질 수 있다.
상기 메타크실릴렌디아민 및 상기 염산 수용액은 1 : 2 내지 5의 당량비로 반응에 투입될 수 있다. 상기 당량비 범위 내일 때, 미반응물을 줄이면서 수분 발생에 따른 용해로 인해 수율이 낮아지는 것을 방지할 수 있다. 구체적으로, 상기 메타크실릴렌디아민과 상기 염산 수용액은 1 : 2 내지 2.5의 당량비로 반응에 투입될 수 있다.
상기 메타크실릴렌디아민 및 상기 염산 수용액의 투입은, 반응기 내부 온도를 일정하게 유지하면서 수행될 수 있다.
상기 메타크실릴렌디아민 및 상기 염산 수용액의 투입 시의 반응기 내부 온도는 20℃ 내지 100℃일 수 있다. 상기 온도 범위 내일 때, 온도가 끓는점 이상으로 높아져 반응에 적합하지 않거나 온도가 너무 낮아져 반응 효율이 떨어지는 것을 방지할 수 있다.
구체적으로, 상기 메타크실릴렌디아민 및 상기 염산 수용액의 투입 시의 반응기 내부 온도는 20℃ 내지 60℃, 또는 20℃ 내지 40℃일 수 있다.
보다 구체적으로, 상기 메타크실릴렌디아민 및 상기 염산 수용액이 1 : 2 내지 5의 당량비로 20℃ 내지 40℃의 온도에서 반응에 투입될 수 있다.
종래의 염산염법에서는 반응 과정에서 열이 많이 발생하여 별도의 냉각기를 통한 급냉을 필요로 하는 반면, 상기 구현예에 따르면 낮은 온도를 유지하면서 반응 물질을 투입하므로 별도의 냉각기를 필요로 하지 않는다.
상기 메타크실릴렌디아민 및 상기 염산 수용액의 투입은, 예를 들어 반응기에 상기 염산 수용액을 먼저 투입하고 이후 상기 메타크실릴렌디아민을 천천히 투입하는 순서로 진행될 수 있다. 상기 메타크실릴렌디아민 및/또는 상기 염산 수용액의 투입은 30분 내지 1시간 동안 수행될 수 있다.
상기 메타크실릴렌디아민 및 상기 염산 수용액의 투입이 완료된 이후에는 반응기 내부 온도를 0℃ 내지 20℃, 0℃ 내지 10℃ 또는 10℃ 내지 20℃로 냉각시킬 수 있다.
상기 메타크실릴렌디아민과 염산 수용액의 반응은 상압에서 진행될 수 있고, 예를 들어 30분 내지 2시간 동안 교반하며 수행될 수 있다.
이후 상기 제 1 유기 용매를 반응에 투입하고, 냉각 후 추가로 교반하면서 반응을 진행할 수 있다.
상기 제 1 유기 용매는 친수성 용매일 수 있고, 구체적으로 디에틸에테르, 디이소프로필에테르, 디옥산, 테트라하이드로퓨란, 메탄올, 에탄올, 디메틸설폭사이드, 디메틸폼아마이드, 아세토나이트릴, 아세톤, 트리클로로에틸렌, 테트라클로로에탄, 트리클로로에탄, n-부탄올, 이소부탄올, 메틸에틸케톤, 메틸부틸케톤, 이소프로판올 및 메틸아세테이트로 이루어진 군에서 선택된 1종 이상일 수 있다.
상기 제 1 유기 용매의 투입량(중량)은 상기 메타크실릴렌디아민의 중량 대비 1배 내지 5배일 수 있다. 상기 투입량 범위 내일 때, 최종 염산염의 수율이 높으면서 과도한 유기 용매의 사용을 방지할 수 있다. 구체적으로, 상기 제 1 유기 용매는 상기 메타크실릴렌디아민의 중량 대비 1배 내지 2배, 또는 1배 내지 1.5배의 양으로 반응에 투입될 수 있다.
상기 제 1 유기 용매의 투입 이후의 냉각 온도는 -10℃ 내지 10℃ 또는 -5℃ 내지 5℃일 수 있다. 또한 상기 냉각 이후의 추가 반응 시간은 30분 내지 2시간, 또는 30분 내지 1시간일 수 있다.
구체적인 일례에 따르면, 상기 메타크실릴렌디아민과 상기 염산 수용액의 반응이 (1a) 제 1 반응기에 상기 염산 수용액을 투입하는 단계; (1b) 상기 제 1 반응기에 상기 메타크실릴렌디아민을 추가로 투입하고 교반하는 단계; 및 (1c) 상기 제 1 반응기에 상기 제 1 유기 용매를 추가로 투입하고 교반하는 단계를 순차적으로 포함할 수 있다.
보다 구체적으로, 상기 메타크실릴렌디아민과 상기 염산 수용액의 반응이 상기 단계 (1b)에서 상기 메타크실릴렌디아민의 투입 이후 교반 이전에 상기 반응기의 내부를 0℃ 내지 10℃의 온도로 냉각하는 단계; 및 상기 단계 (1c)에서 상기 제 1 유기 용매의 투입 이후 교반 이전에 상기 반응기의 내부를 -5℃ 내지 5℃의 온도로 냉각하는 단계를 추가로 포함할 수 있다.
상기 반응을 통해 수득된 반응물은 분리, 여과 및 건조를 더 거칠 수 있다. 예를 들어, 반응물 중에서 수층을 분리하고 여과 및 건조함으로써 고상의 메타크실릴렌디아민 염산염을 수득할 수 있다. 구체적으로, 상기 메타크실릴렌디이소시아네이트의 제조방법은, 상기 메타크실릴렌디아민 염산염을 얻는 단계에서 발생되는 불순물을 상기 제 1 유기 용매와 함께 제거하는 단계;를 더 포함할 수 있다. 상기 메타크실릴렌디아민 염산염을 제조하기 위한 반응 과정에서 불순물이 발생하여 상기 제 1 유기 용매에 포함되는데, 상기 제 1 유기 용매의 제거 단계를 통해 이와 같은 불순물을 제거하여 제품의 순도를 높일 수 있다.
이와 같이 수득된 메타크실릴렌디아민 염산염의 수율은 80% 이상, 85% 이상, 또는 90% 이상일 수 있고, 구체적으로 85% 내지 95%, 또는 88% 내지 92%일 수 있다. 또한 상기 수득된 메타크실릴렌디아민 염산염의 수분 함유량은 5% 이하일 수 있으며, 5% 초과인 경우, 최종 제조되는 렌즈의 물성이 좋지 않다. 일례로서 상기 메타크실릴렌디아민 염산염이 80% 이상의 수율 및 5% 이하의 수분 함유량으로 얻어질 수 있다.
한편 반응물 중에서 유기층을 분리하여 유기 용매로 재사용할 수 있다. 이에 따라 상기 제 1 유기 용매의 회수율은 80% 이상, 85% 이상, 또는 90% 이상일 수 있고, 구체적으로는 80% 내지 95%, 또는 80% 내지 82%일 수 있다.
메타크실릴렌디이소시아네이트의 제조
다음으로, 상기 메타크실릴렌디아민 염산염을 트리포스겐과 제 2 유기 용매 중에서 반응시켜 메타크실릴렌디이소시아네이트를 얻는다.
아래 반응식 2는 본 단계의 반응의 일례를 나타낸 것이다.
[반응식 2]
Figure PCTKR2019006832-appb-I000002
구체적으로, 앞서 제조된 메타크실릴렌디아민 염산염을 유기 용매에 투입하고, 트리포스겐(triphosgene, BTC, bis(trichloromethyl)carbonate)과 반응시킨 후, 여과 및 증류를 통하여 메타크실릴렌디이소시아네이트를 수득한다.
상기 제 2 유기 용매의 구체적인 예로는 벤젠, 톨루엔, 에틸벤젠, 클로로벤젠, 모노클로로벤젠, 1,2-디클로로벤젠, 디클로로메탄, 1-클로로-n-부탄, 1-클로로-n-펜탄, 1-클로로-n-헥산, 클로로포름, 카본 테트라클로라이드, n-펜탄, n-헥산, n-헵탄, n-옥탄, 사이클로헥산, 사이클로펜탄, 사이클로옥탄 및 메틸사이클로헥산으로 구성된 군에서 선택된 1종 이상일 수 있다.
상기 제 2 유기 용매의 투입량(중량)은 상기 메타크실릴렌디아민 염산염의 중량 대비 1배 내지 5배일 수 있다. 상기 투입량 범위 내일 때, 최종 메타크실릴렌디이소시아네이트의 수율이 높으면서 과도한 유기 용매의 사용을 방지할 수 있다. 구체적으로, 상기 제 2 유기 용매는 상기 메타크실릴렌디아민 염산염의 중량 대비 2배 내지 5배, 또는 3배 내지 5배의 양으로 반응에 투입될 수 있다.
상기 메타크실릴렌디아민 염산염과 트리포스겐의 반응 온도는 130℃ 내지 160℃일 수 있다. 상기 반응 온도 범위 내일 때, 메타크실릴렌디아민 염산염과 트리포스겐 간에 반응이 원활할 수 있고, 최종 메타크실릴렌디이소시아네이트 생성 시에 타르와 같은 불순물의 생성을 억제할 수 있다. 구체적으로, 상기 메타크실릴렌디아민 염산염과 트리포스겐의 반응 온도는 135℃ 내지 155℃일 수 있다.
상기 메타크실릴렌디아민 염산염과 트리포스겐의 반응은 5시간 내지 100시간 동안 수행될 수 있다. 상기 반응 시간 범위 내일 때, 반응 시간이 과도하지 않으면서, 포스겐 발생으로 인한 미반응 물질의 생성을 최소화할 수 있다. 구체적으로, 상기 메타크실릴렌디아민 염산염과 트리포스겐의 반응은 15시간 내지 40시간, 20시간 내지 35시간, 또는 24시간 내지 30시간 동안 수행될 수 있다.
구체적인 예로서, 상기 메타크실릴렌디아민 염산염과 트리포스겐의 반응이 130℃ 내지 160℃의 온도에서 5시간 내지 100시간 동안 수행될 수 있다.
도 1은 메타크실릴렌디아민 염산염과 트리포스겐의 반응을 통한 메타크실릴렌디이소시아네이트 제조의 반응 메커니즘을 나타낸 것이다. 도 1에서 보듯이, 디아민 염산염의 아민기가 트리포스겐의 카보네이트기를 공격하고, 이후 전자가 이동하면서 포스겐 가스(COCl2)가 발생한다. 이러한 반복을 통해서 지속적으로 포스겐 가스가 생성되며, 이로 인해 메타크실릴렌디아민 염산염의 아민기와 반응이 일어난다. 도 1에서 B는 음이온, 예를 들어 염소 이온을 포함할 수 있다.
상기 메타크실릴렌디아민 염산염 및 상기 트리포스겐은 1 : 1 내지 5의 당량비로 반응에 투입될 수 있다. 상기 당량비 범위 내일 때, 반응 효율이 높으면서도, 과도한 투입으로 반응 시간이 증가하는 것을 방지할 수 있다. 구체적으로, 상기 메타크실릴렌디아민 염산염과 상기 트리포스겐은 1 : 1.5 내지 4, 또는 1 : 2 내지 2.5의 당량비로 반응에 투입될 수 있다
구체적인 일례에 따르면, 상기 메타크실릴렌디아민 염산염과 트리포스겐의 반응이 (2a) 제 2 반응기에 상기 제 2 유기 용매를 투입하는 단계; (2b) 상기 제 2 반응기에 상기 메타크실릴렌디아민 염산염을 추가로 투입하고 교반하는 단계; 및 (2c) 상기 제 2 반응기에 상기 트리포스겐을 추가로 투입하고 교반하는 단계를 순차적으로 포함할 수 있다.
보다 구체적으로, 상기 단계 (2c)에서 상기 트리포스겐의 투입이 상기 제 2 유기 용매와 동일한 용매 중에 상기 트리포스겐이 용해된 용액을 상기 반응기에 135℃ 내지 155℃의 온도에서 총 25시간 내지 40시간 동안 2회 이상 나누어 투입하는 것일 수 있다.
이때 상기 트리포스겐 용액의 각 회별 투입 시간은 5시간 내지 25시간, 또는 10시간 내지 14시간일 수 있다.
또한 상기 트리포스겐의 투입 이후에 교반하여 추가로 반응시키는 시간은 2시간 내지 5시간 또는 3시간 내지 4시간일 수 있다.
반응 이후에는 반응물을 90℃ 내지 110℃의 온도에서 냉각할 수 있다.
상기 반응을 통해 수득된 반응물은 분리, 여과 및 증류를 더 거칠 수 있다.
상기 증류는 1차 증류 및 2차 증류를 포함할 수 있다.
구체적인 예로서, 상기 메타크실릴렌디이소시아네이트가 상기 메타크실릴렌디아민 염산염과 상기 트리포스겐의 반응의 결과물을 40℃ 내지 60℃에서 2시간 내지 8시간 동안 1차 증류한 후, 100℃ 내지 120℃에서 2시간 내지 10시간 동안 2차 증류하여 얻어진 것일 수 있다.
상기 1차 증류는 0.5 Torr 이하에서, 상기 2차 증류는 0.1 Torr 이하에서 수행될 수 있다.
상기 1차 증류를 통해 유기 용매를 회수하여 재활용할 수 있고, 상기 2차 증류를 통해 최종 메타크실릴렌디이소시아네이트를 얻을 수 있다.
이와 같이 수득된 메타크실릴렌디이소시아네이트의 수율은 80% 이상, 85% 이상, 또는 90% 이상일 수 있다. 또한 상기 수득된 메타크실릴렌디이소시아네이트의 순도는 95% 이상, 99.5% 이상, 또는 99.8% 이상일 수 있다.
상기 구현예의 방법에 따르면, 메타크실릴렌디이소시아네이트의 수율이 높고, 유기 용매의 재활용률이 우수하고 맹독성의 포스겐 가스를 사용하지 않으므로 친환경적이며, 상압 반응이 가능하고 가압 또는 급냉을 위한 별도 장치를 필요로 하지 않는다.
반응용액의 색상 및 투명도 측정
일 구현예에 따르면, 상기 메타크실릴렌디아민 염산염 및 트리포스겐으로부터 메타크실릴렌디이소시아네이트를 얻는 단계는, (i) 상기 메타크실릴렌디아민 염산염을 트리포스겐과 제 2 유기 용매 중에서 반응시켜 반응용액을 얻는 단계; (ii) 상기 반응용액의 색상 및 투명도를 측정하는 단계; 및 (iii) 상기 반응용액으로부터 메타크실릴렌디이소시아네이트를 얻는 단계를 포함할 수 있다.
상기 메타크실릴렌디아민 염산염과 트리포스겐의 반응에서, 상기 반응용액의 색상 및 투명도를 측정하여 반응 조건을 조절할 수 있다. 예를 들어, 반응 초기의 반응용액은 불투명한 무색 내지 흰색일 수 있고, 반응이 정상적으로 완료된 시점의 반응용액은 투명하거나 투명에 가까우며 연한 갈색 계통의 색상을 가질 수 있다.
예를 들어, 상기 반응용액의 색상 및 투명도를 측정하는 단계에서, 상기 반응용액은 투명한 연갈색을 나타낼 수 있다.
구체적으로, 상기 반응용액이 CIE-LAB 색좌표에서 45 내지 60의 L* 값, 3 내지 15의 a* 값, 및 15 내지 30의 b* 값을 가질 수 있다. 보다 구체적으로, 상기 반응용액은 CIE-LAB 색좌표에서 50 내지 55의 L* 값, 5 내지 10의 a* 값, 및 20 내지 25의 b* 값을 가질 수 있다.
또한, 상기 반응용액은 550 nm 파장의 광에 대한 투과율이 60% 이상, 70% 이상, 80% 이상, 또는 90% 이상일 수 있다. 또한, 상기 반응용액은 헤이즈가 20% 이하, 10% 이하, 5% 이하, 또는 3% 이하일 수 있다. 구체적으로, 상기 반응용액이 550 nm 파장의 광에 대해 70% 이상의 투과율 및 10% 이하의 헤이즈를 가질 수 있다. 보다 구체적으로, 상기 반응용액이 550 nm 파장의 광에 대해 80% 이상의 투과율 및 5% 이하의 헤이즈를 가질 수 있다.
이와 달리, 만약 상기 메타크실릴렌디아민 염산염과 트리포스겐의 반응이 완료되지 않은 경우, 반응용액이 불투명하거나 침전물을 가질 수 있고 색상이 희미하거나 흰색 또는 무색일 수 있다. 또한 만약 부반응이 많이 발생된 경우에는, 반응용액이 불투명하거나 또는 연갈색 이외의 색을 나타낼 수 있으며, 예를 들어 흑갈색 내지 어두운 색상을 나타낼 수 있다.
상기 메타크실릴렌디아민 염산염과 트리포스겐의 반응 단계는, 상기 반응용액의 색상 및 투명도를 측정하는 단계와 동시에 수행될 수 있다.
즉 상기 메타크실릴렌디아민 염산염 및 트리포스겐의 반응이 진행되는 중에 실시간으로 상기 반응용액의 색상 및 투명도를 측정할 수 있다.
또한 보다 정확한 측정을 위해, 반응용액 중 일부를 채취하여 색상 및 투명도를 정밀 측정할 수 있다. 예를 들어, 상기 반응용액의 색상 및 투명도의 측정은, 상기 반응용액 중 일부를 채취하고, 채취된 반응용액의 색상 및 투명도를 측정하는 것으로 수행될 수 있다.
이때, 상기 반응용액의 색상 및 투명도에 따라 반응 당량, 반응 온도, 또는 반응 시간을 조절할 수 있다. 예를 들어, 상기 반응용액의 색상 및 투명도에 따라 반응 종료 시점을 결정할 수 있다. 즉, 상기 단계 (i) 및 상기 단계 (ii)가 동시에 수행되고, 상기 단계 (i)에서 상기 메타크실릴렌디아민 염산염과 트리포스겐의 반응의 종료 시점이 상기 단계 (ii)에서 측정된 상기 반응용액의 색상 및 투명도에 따라 결정될 수 있다. 상기 반응 종료 시점은 상기 반응용액이 투명한 연갈색으로 변한 시점 이후일 수 있다.
일례로서 상기 반응기는 투시창을 구비하고, 상기 반응용액의 색상 및 투명도의 측정이 상기 투시창을 통해 수행될 수 있다.
상기 반응기는 1단 이상의 콘덴서와 연결되고, 상기 반응기 내에서 발생한 가스가 상기 1단 이상의 콘덴서로 이송된 후, 상기 가스 중에 존재하는 상기 제 2 유기 용매가 응축되어 상기 반응기로 회수될 수 있다.
상기 1단 이상의 콘덴서는 제 1 스크러버 및 제 2 스크러버와 연결되고, 상기 반응기로부터 상기 1단 이상의 콘덴서로 이송된 가스가 염화수소 가스 및 포스겐 가스를 포함하며, 상기 제 1 스크러버가 상기 염화수소 가스를 물에 용해시켜 수용액을 생성하고, 상기 제 2 스크러버가 상기 포스겐 가스를 NaOH 수용액에 의해 중화시킬 수 있다.
또한 상기 반응기가 1단 이상의 증류기와 연결되고, 상기 반응용액이 상기 1단 이상의 증류기로 이송되며, 상기 1단 이상의 증류기가 상기 반응용액으로부터 메타크실릴렌디이소시아네이트 및 제 2 유기 용매를 분리할 수 있다.
상기 분리된 제 2 유기 용매는 상기 메타크실릴렌디아민 염산염과 트리포스겐의 반응에 재활용될 수 있다.
도 2는 메타크실릴렌디아민 염산염과 트리포스겐의 반응을 위한 공정 장치의 예시를 나타낸 것이다.
먼저, 제 1 탱크(T-1)에 제 2 유기 용매 및 트리포스겐을 채우고 온수 환류 등에 의해 일정 온도를 유지한다. 반응기(R-1)의 내부를 질소로 치환하고 여기에 제 2 유기 용매를 투입하고 교반하면서, 메타크실릴렌디이소시아네이트 염산염을 서서히 투입하고 반응기의 내부를 일정 온도로 유지하면서 교반한다.
이후 제 1 탱크(T-1)로부터 제 2 유기 용매 중의 트리포스겐 용액을 반응기(R-1)에 서서히 투입한다. 상기 제 2 유기 용매 중의 트리포스겐 용액의 투입은 1회 또는 2회 이상 나누어 수행하며, 이때 반응기(R-1)의 내부 온도를 일정하게 유지하면서 교반을 수행한다. 투입이 완료된 후, 일정 시간 더 교반하면서 추가 반응을 수행한다. 일례로서, 반응기(R-1)에 구비된 투시창(G-1)을 통해 육안으로 반응용액의 색상 및 투명도를 관찰한다. 다른 예로서, 반응기(R-1)에 구비된 투시창(G-1)을 통해 광학기기로 반응용액의 색상 및 투명도를 측정한다. 상기 광학기기는 디지털카메라, 스펙트로미터, 광학분석장비 등을 포함할 수 있다.
반응기(R-1) 내부에 존재하는 가스(제 2 유기 용매, 염화수소, 포스겐 등)는 제 1 콘덴서(C-1)로 이송된다. 제 1 콘덴서(C-1)에서 냉각에 의해 제 2 유기 용매가 1차 응축되어 반응기(R-1)로 회수되고 나머지 가스는 제 2 콘덴서(C-2)로 이송된다. 제 2 콘덴서(C-2)에서 냉각에 의해 제 2 유기 용매가 2차 응축되어 반응기(R-1)로 회수되고 나머지 가스는 제 3 콘덴서(C-3)로 이송된다. 제 3 콘덴서(C-3)에서 냉각에 의해 제 2 유기 용매가 3차 응축되어 반응기(R-1)로 회수된다.
이와 같이 다단의 콘덴서를 거치면서 제 2 유기 용매를 제거한 이후 나머지 가스(염화수소, 포스겐 등)는 제 1 스크러버(S-1)로 이송된다. 제 1 스크러버(S-2)에서 염화수소 가스를 물에 용해시켜 염산 수용액을 얻어서 제 2 탱크(T-2)에 저장하고 나머지 가스는 제 2 스크러버(S-2)로 이송된다. 제 2 스크러버(S-2)에서 제 3 탱크(T-3)에 저장되어 있던 수산화나트륨 수용액을 이용하여 포스겐(COCl2) 가스를 중화시켜 제거할 수 있다.
반응기(R-1)에서 얻은 반응용액은 제 1 증류기(D-1) 및 제 2 증류기(D-2)로 순차적으로 이송되며 1차 증류 및 2차 증류를 거치면서, 상기 반응용액으로부터 메타크실릴렌디이소시아네이트 및 제 2 유기 용매를 분리한다.
상기 반응용액으로부터 분리된 제 2 유기 용매는 용매 회수기(V-1)으로 이송되어 보관될 수 있으며, 이후 상기 메타크실릴렌디아민 염산염과 트리포스겐의 반응에 재활용될 수 있다.
또한, 상기 반응용액으로부터 분리된 메타크실릴렌디이소시아네이트는 여과 및 건조 등을 더 거쳐 최종 제품으로 제공될 수 있다.
[광학 렌즈의 제조방법]
상기 구현예에서 제조된 디이소시아네이트를 다른 성분과 조합함으로써 광학 재료용 조성물을 제조할 수 있다. 즉 상기 광학 재료용 조성물은 상기 구현예에 따라 제조된 디이소시아네이트, 및 티올 또는 에피설피드를 포함한다. 또한 상기 광학 재료용 조성물을 혼합하고 몰드에서 가열 경화함으로써 광학 렌즈를 제조할 수 있다.
일 구현예에 따른 광학 렌즈의 제조방법은 오르쏘크실릴렌디아민, 메타크실릴렌디아민, 파라크실릴렌디아민, 노보넨디아민, 수소화크실릴렌디아민 및 이소포론디아민으로 이루어진 군에서 선택되는 1종 이상의 디아민을 준비하는 단계; 상기 디아민을 염산 수용액과 제 1 유기 용매 중에서 반응시켜 디아민 염산염을 얻는 단계; 상기 디아민 염산염을 트리포스겐과 제 2 유기 용매 중에서 반응시켜 디이소시아네이트를 얻는 단계; 및 상기 디이소시아네이트를 티올 또는 에피설피드와 혼합하고 몰드에서 중합 및 경화시키는 단계를 포함한다.
상기 티올은 2개 이상의 SH기를 포함하는 폴리티올일 수 있으며, 지방족, 지환족, 또는 방향족 골격을 가질 수 있다. 상기 에피설피드는 2개 이상의 티오에폭시기를 가질 수 있으며, 지방족, 지환족, 또는 방향족 골격을 가질 수 있다.
상기 티올의 구체적인 예는 비스(2-머캅토에틸)설피드, 4-머캅토메틸-1,8-디머캅토-3,6-디티아옥탄, 2,3-비스(2-머캅토에틸티오)프로판-1-티올, 2,2-비스(머캅토메틸)-1,3-프로판디티올, 테트라키스(머캅토메틸)메탄, 2-(2-머캅토에틸티오)프로판-1,3-디티올, 2-(2,3-비스(2-머캅토에틸티오)프로필티오)에탄티올, 비스(2,3-디머캅토프로판닐)설피드, 비스(2,3-디머캅토프로판닐)디설피드, 1,2-비스(2-머캅토에틸티오)-3-머캅토프로판, 1,2-비스(2-(2-머캅토에틸티오)-3-머캅토프로필티오)에탄, 비스(2-(2-머캅토에틸티오)-3-머캅토프로필)설피드, 비스(2-(2-머캅토에틸티오)-3-머캅토프로필)디설피드, 2-(2-머캅토에틸티오)-3-2-머캅토-3-[3-머캅토-2-(2-머캅토에틸티오)-프로필티오]프로필티오-프로판-1-티올, 2,2 -비스-(3-머캅토-프로피오닐옥시메틸)-부틸 에스테르, 2-(2-머캅토에틸티오)-3-(2-(2-[3-머캅토-2-(2-머캅토에틸티오)-프로필티오]에틸티오)에틸티오)프로판-1-티올, (4R,11S)-4,11-비스(머캅토메틸)-3,6,9,12-테트라티아테트라데칸-1,14-디티올, (S)-3-((R-2,3-디머캅토프로필)티오)프로판-1,2-디티올, (4R,14R)-4,14-비스(머캅토메틸)-3,6,9,12,15-펜타티아헵탄-1,17-디티올, (S)-3-((R-3-머캅토-2-((2-머캅토에틸)티오)프로필)티오)프로필)티오)-2-((2-머캅토에틸)티오)프로판-1-티올, 3,3'-디티오비스(프로판-1,2-디티올), (7R,11S)-7,11-비스(머캅토메틸)-3,6,9,12,15-펜타티아헵타데칸-1,17-디티올, (7R,12S)-7,12-비스(머캅토메틸)-3,6,9,10,13,16-헥사티아옥타데칸-1,18-디티올, 5,7-디머캅토메틸-1,11-디머캅토-3,6,9-트리티아운데칸, 4,7-디머캅토메틸-1,11-디머캅토-3,6,9-트리티아운데칸, 4,8-디머캅토메틸-1,11-디머캅토-3,6,9-트리티아운데칸, 펜타에리트리톨 테트라키스(3-머캅토프로피오네이트), 트라이메틸올프로판 트리스(3-머캅토프로피오네이트), 펜타에트리톨테트라키스(2-머캅토아세테이트), 비스펜타에리트리톨-에테르-헥사키스(3-머캅토프로피오네이트), 1,1,3,3-테트라키스(머캅토메틸티오)프로판, 1,1,2,2-테트라키스(머캅토메틸티오)에탄, 4,6-비스(머캅토메틸티오)-1,3-디티안, 2-(2,2-비스(머캅토디메틸티오)에틸)-1,3-디티안, 2,5-비스머캅토메틸-1,4-디티안, 비스(머캅토메틸-3,6,9-트리티아-1,11-운데칸디티올 등을 포함한다.
바람직하게는, 상기 티올은 2-(2-머캅토에틸티오)프로판-1,3-디티올, 2,3-비스(2-머캅토에틸티오)프로판-1-티올, 2-(2,3-비스(2-머캅토에틸티오)프로필티오)에탄티올, 1,2-비스(2-머캅토에틸티오)-3-머캅토프로판, 1,2-비스(2-(2-머캅토에틸티오)-3-머캅토프로필티오)-에탄, 비스(2-(2-머캅토에틸티오)-3-머캅토프로필)설피드, 2-(2-머캅토에틸티오)-3-2-머캅토-3-[3-머캅토-2-(2-머캅토에틸티오)-프로필티오]프로필티오-프로판-1-티올, 2,2'-티오디에탄티올, 4,14-비스(머캅토메틸)-3,6,9,12,15-펜타티아헥타데칸-1,17-디티올, 2-(2-머캅토에틸티오)-3-[4-(1-{4-[3-머캅토-2-(2-머캅토에틸티오)-프로폭시]-페닐}-1-메틸에틸)-페녹시]-프로판-1-티올, 펜타에리트리톨테트라키스(3-머캅토프로피오네이트), 펜타에리트리톨머캅토아세테이트, 트리메티올프로판트리스머캅토프로피오네이트, 글리세롤트리머캅토프로피오네이트, 디펜타에피트리톨헥사머캅토프로피오네이트, 2,5-비스머캅토메틸-1,4-디티안 등일 수 있다.
상기 티올은 상기 예시 화합물들 중 중 어느 하나 또는 둘 이상일 수 있으나, 이들로 한정되는 것은 아니다.
또한, 상기 에피설피드의 구체적인 예는 비스(β-에피티오프로필티오)메탄, 1,2-비스(β-에피티오프로필티오)에탄, 1,3-비스(β-에피티오프로필티오)프로판, 1,2-비스(β-에피티오프로필티오)프로판, 1-(β-에피티오프로필티오)-2-(β-에피티오프로필티오메틸)프로판, 1,4-비스(β-에피티오프로필티오)부탄, 1,3-비스(β-에피티오프로필티오)부탄, 1-(β-에피티오프로필티오)-3-(β-에피티오프로필티오메틸)부탄, 1,5-비스(β-에피티오프로필티오)펜탄, 1-(β-에피티오프로필티오)-4-(β-에피티오프로필티오메틸)펜탄, 1,6-비스(β-에피티오프로필티오)헥산, 1-(β-에피티오프로필티오)-5-(β-에피티오프로필티오메틸)헥산, 1-(β-에피티오프로필티오)-2-[(2-β-에피티오프로필티오에틸)티오]에탄, 1-(β-에피티오프로필티오)-2-[[2-(2-β-에피티오프로필티오에틸)티오에틸]티오]에탄, 테트라키스(β-에피티오프로필티오메틸)메탄, 1,1,1-트리스(β-에피티오프로필티오메틸)프로판, 1,5-비스(β-에피티오프로필티오)-2-(β-에피티오프로필티오메틸)-3-티아펜탄, 1,5-비스(β-에피티오프로필티오)-2,4-비스(β-에피티오프로필티오메틸)-3-티아펜탄, 1-(β-에피티오프로필티오)-2,2-비스(β-에피티오프로필티오메틸)-4-티아헥산, 1,5,6-트리스(β-에피티오프로필티오)-4-(β-에피티오프로필티오메틸)-3-티아헥산, 1,8-비스(β-에피티오프로필티오)-4-(β-에피티오프로필티오메틸)-3,6-디티아옥탄, 1,8-비스(β-에피티오프로필티오)-4,5-비스(β-에피티오프로필티오메틸)-3,6-디티아옥탄, 1,8-비스(β-에피티오프로필티오)-4,4-비스(β-에피티오프로필티오메틸)-3,6-디티아옥탄, 1,8-비스(β-에피티오프로필티오)-2,4,5-트리스(β-에피티오프로필티오메틸)-3,6-디티아옥탄, 1,8-비스(β-에피티오프로필티오)-2,5-비스(β-에피티오프로필티오메틸)-3,6-디티아옥탄, 1,9-비스(β-에피티오프로필티오)-5-(β-에피티오프로필티오메틸)-5-[(2-β-에피티오프로필티오에틸)티오메틸]-3,7-디티아노난, 1,10-비스(β-에피티오프로필티오)-5,6-비스[(2-β-에피티오프로필티오에틸)티오]-3,6,9-트리티아데칸, 1,11-비스(β-에피티오프로필티오)-4,8-비스(β-에피티오프로필티오메틸)-3,6,9-트리티아운데칸, 1,11-비스(β-에피티오프로필티오)-5,7-비스(β-에피티오프로필티오메틸)-3,6,9-트리티아운데칸, 1,11-비스(β-에피티오프로필티오)-5,7-[(2-β-에피티오프로필티오에틸)티오메틸]-3,6,9-트리티아운데칸, 1,11-비스(β-에피티오프로필티오)-4,7-비스(β-에피티오프로필티오메틸)-3,6,9-트리티아운데칸, 1,3-비스(β-에피티오프로필티오)시클로헥산, 1,4-비스(β-에피티오프로필티오)시클로헥산, 1,3-비스(β-에피티오프로필티오메틸)시클로헥산, 1,4-비스(β-에피티오프로필티오메틸)시클로헥산, 비스[4-(β-에피티오프로필티오)시클로헥실]메탄, 2,2-비스[4-(β-에피티오프로필티오)시클로헥실]프로판, 비스[4-(β-에피티오프로필티오)시클로헥실] 설피드, 2,5-비스(β-에피티오프로필티오메틸)-1,4-디티안, 2,5-비스(β-에피티오프로필티오에틸티오메틸)-1,4-디티안, 1,3-비스(β-에피티오프로필티오)벤젠, 1,4-비스(β-에피티오프로필티오)벤젠, 1,3-비스(β-에피티오프로필티오메틸)벤젠, 1,4-비스(β-에피티오프로필티오메틸)벤젠, 비스[4-(β-에피티오프로필티오)페닐]메탄, 2,2-비스[4-(β-에피티오프로필티오)페닐]프로판, 비스[4-(β-에피티오프로필티오)페닐] 설피드, 비스[4-(β-에피티오프로필티오)페닐] 술폰, 4,4'-비스(β-에피티오프로필티오)비페닐 등을 포함한다.
상기 에피설피드는 상기 예시 화합물들 중 어느 하나 또는 둘 이상일 수 있으나, 이들로 한정되는 것은 아니다. 또한 상기 에피설피드는 이의 티오에폭시기의 수소 중 적어도 1개가 메틸기로 치환된 화합물일 수도 있다.
상기 광학 재료용 조성물은 상기 디이소시아네이트 및 상기 티올 또는 에피설피드를 혼합 상태로 포함하거나 또는 분리된 상태로 포함할 수 있다. 즉, 상기 중합성 조성물 내에서, 이들은 서로 접촉하여 배합된 상태이거나, 또는 서로 접촉하지 않도록 분리된 상태일 수 있다.
상기 광학 재료용 조성물은 상기 티올 또는 에피설피드를 상기 디이소시아네이트와 2:8 내지 8:2, 3:7 내지 7:3, 또는 4:6 내지 6:4의 중량비로 포함할 수 있다.
상기 광학 재료용 조성물 및 광학 렌즈의 제조 시에 목적에 따라 촉매, 사슬 연장제, 가교제, 자외선 안정제, 산화 방지제, 착색 방지제, 염료, 충전제, 이형제 등을 더 첨가할 수 있다.
이들 티올 또는 에피설피드를 디이소시아네이트 및 기타 첨가제와 혼합하고 탈포한 후, 몰드에 주입하고 저온에서 고온으로 서서히 승온하면서 서서히 중합시키고, 이를 가열함으로써 수지를 경화하여 광학 렌즈를 제조할 수 있다.
상기 중합 반응의 온도는 예를 들어 20℃ 내지 150℃일 수 있고, 구체적으로 25℃ 내지 120℃일 수 있다. 또한, 반응 속도를 조절하기 위해서, 폴리티오우레탄의 제조에 통상적으로 이용되는 반응 촉매가 첨가될 수 있으며, 이의 구체적인 종류는 앞서 예시한 바와 같다.
또한 상기 제조된 광학 렌즈에는 필요에 따라 반사 방지, 고경도 부여, 내마모성 향상, 내약품성 향상, 김서림 방지성 부여, 표면 연마, 대전방지처리, 하드코트 처리, 무반사 코팅 처리, 염색 처리 등의 물리적 또는 화학적 처리가 추가로 실시될 수 있다.
상기 방법에 의해 제조된 광학 렌즈는 투명성과 굴절율 등의 광학성 특성이 우수하다. 예를 들어, 상기 광학 렌즈는 1.60 이상의 굴절율을 가질 수 있고, 구체적으로 1.60 내지 1.67의 굴절률을 가질 수 있다. 또한, 상기 광학 렌즈는 아베수가 30 내지 50일 수 있고, 구체적으로 30 내지 45, 또는 31 내지 40일 수 있다. 또한, 상기 광학 렌즈는 광투과율이 80% 이상, 85% 이상, 또는 87% 이상일 수 있으며, 이는 전광선 투과율일 수 있다.
이하 실시예를 통해 보다 구체적으로 설명하나, 이들 범위로 한정되지 않는다.
<디아민 염산염의 제조>
실시예 1
5L 4구 반응기에 35% 염산 수용액 963.5g(9.25mol)을 투입하고 교반하면서 반응기 내부온도를 15~20℃로 냉각하였다. 여기에 메타크실릴렌디아민(m-XDA) 600g(4.4mol)을 반응기 온도를 20~50℃로 유지하면서 1시간 속도로 투입하였다. 투입 완료 후 반응기 내부 온도를 10~20℃로 냉각하고 1시간 교반 후, 유기 용매로 디에틸에테르(Et2O) 1200g을 추가 투입하고, 내부 온도를 -5~0℃로 냉각하여 30분~1시간 동안 추가 교반하였다. 반응 완료 후 필터를 사용하여 진공 여과를 실시하고, 여과된 디에틸에테르는 회수하여 재사용하였다. 상기 디에틸에테르의 회수율은 73%이었다. 진공 여과 후 메타크실릴렌디아민(m-XDA) 염산염을 얻을 수 있었으며, 잔류된 유기 용매 및 수분 제거를 위해 반응기 외부 온도 90~100℃, 진공펌프 0.1 Torr 의 조건에서 건조를 실시하여 최종 메타크실릴렌디아민(m-XDA) 염산염을 얻었다. 얻어진 m-XDA 염산염은 미색의 고체 형태이며, 수율은 88%이었으며, 수분 함유량은 2%이었다.
실시예 2
5L 4구 반응기에 35% 염산 수용액 986.5g(9.47mol)을 투입하고 교반하면서 반응기 내부온도를 15~20℃로 냉각하였다. 여기에 m-XDA 600g(4.4mol)을 반응기 온도를 20~50℃로 유지하면서 1시간 속도로 투입하였다. 투입 완료 후 반응기 내부 온도를 10~20℃로 냉각하고 1시간 교반 후, 유기 용매로 이소프로판올(i-PrOH) 1260g을 추가 투입하고, 내부 온도를 -5~0℃로 냉각하여 30분~1시간 동안 추가 교반하였다. 반응 완료 후 필터를 사용하여 진공 여과를 실시하고, 여과된 이소프로판올은 회수하여 재사용하였다. 이때 이소프로판올의 회수율은 75%이었다. 진공 여과 후 m-XDA 염산염을 얻을 수 있었으며, 잔류된 유기 용매 및 수분 제거를 위해 반응기 외부 온도 90~100℃, 진공펌프 0.1 Torr의 조건에서 건조를 실시하여 최종 m-XDA 염산염을 얻었다. 얻어진 m-XDA 염산염은 미색의 고체 형태이며, 수율은 88%이었으며, 수분 함유량은 2%이었다.
실시예 3
5L 4구 반응기에 35% 염산 수용액 1009.4g(9.69mol)을 투입하고 교반하면서 반응기 내부온도를 15~20℃로 냉각하였다. 여기에 m-XDA 600g(4.4mol)을 반응기 온도를 20~50℃로 유지하면서 1시간 속도로 투입하였다. 투입 완료 후 반응기 내부 온도를 10~20℃로 냉각하고 1시간 교반 후, 테트라하이드로퓨란(THF) 1320g을 추가 투입하고, 내부 온도를 -5~0℃로 냉각하여 30분~1시간 동안 추가 교반하였다. 반응 완료 후 필터를 사용하여 진공 여과를 실시하고, 여과된 테트라하이드로퓨란은 회수하여 재사용하였다. 테트라하이드로퓨란의 회수율은 82%이었다. 진공 여과 후 m-XDA 염산염을 얻을 수 있었으며, 잔류된 용매 및 수분 제거를 위해 반응기 외부 온도 90~100℃, 진공펌프 0.1 Torr의 조건에서 건조를 실시하여 최종 m-XDA 염산염을 얻었다. 얻어진 m-XDA 염산염은 미색의 고체 형태이며, 수율은 91%이었으며, 수분 함유량은 3%이었다.
실시예 4
5L 4구 반응기에 35% 염산 수용액 1032.3g(9.91mol)을 투입하고 교반하면서 반응기 내부온도를 15~20℃로 냉각하였다. 여기에 m-XDA 600g(4.4mol)을 반응기 온도를 20~50℃로 유지하면서 1시간 속도로 투입하였다. 투입 완료 후 반응기 내부 온도를 10~20℃로 냉각하고 1시간 교반 후, 이소부탄올(i-BuOH) 1440g을 추가 투입하고, 내부 온도를 -5~0℃로 냉각하여 30분~1시간 동안 추가 교반하였다. 반응 완료 후 필터를 사용하여 진공 여과를 실시하고, 여과된 이소부탄올은 회수하여 재사용하였다. 이소부탄올의 회수율은 82%이었다. 진공 여과 후 m-XDA 염산염을 얻을 수 있었으며, 잔류된 용매 및 수분 제거를 위해 반응기 외부 온도 90~100℃, 진공펌프 0.08 Torr의 조건에서 건조를 실시하여 최종 m-XDA 염산염을 얻었다. 얻어진 m-XDA 염산염은 미색의 고체 형태이며, 수율은 92%이었으며, 수분 함유량은 3%이었다.
실시예 5
5L 4구 반응기에 35% 염산 수용액 1055.4g(10.13mol)을 투입하고 교반하면서 반응기 내부온도를 15~20℃로 냉각하였다. 여기에 m-XDA 600g(4.4mol)을 반응기 온도를 20~50℃로 유지하면서 1시간 속도로 투입하였다. 투입 완료 후 반응기 내부 온도를 10~20℃로 냉각하고 1시간 교반 후, 메틸에틸케톤(MEK) 1500g을 추가 투입하고, 내부 온도를 -5~0℃로 냉각하여 30분~1시간 동안 추가 교반하였다. 반응 완료 후 필터를 사용하여 진공 여과를 실시하고, 여과된 메틸에틸케톤은 회수하여 재사용하였다. 메틸에틸케톤의 회수율은 82%이었다. 진공 여과 후 m-XDA 염산염을 얻을 수 있었으며, 잔류된 용매 및 수분 제거를 위해 반응기 외부 온도 90~100℃, 진공펌프 0.05 Torr의 조건에서 건조를 실시하여 최종 m-XDA 염산염을 얻었다. 얻어진 m-XDA 염산염은 미색의 고체 형태이며, 수율은 92%이었으며, 수분 함유량은 1%이었다.
비교예 1
실시예 1과 동일한 반응기 내에, 반응 용매로서 오르소디클로로벤젠(ODCB) 846g을 투입하고, 원료조에 m-XDI 136.2g(1.0mol) 및 ODCB 621g을 투입했다(전체 아민 농도 8.5중량%). 다음에, 대기압하에 있어서, 반응기 내의 온도를 120℃로 승온했다. 그 후, 염화수소 가스 취입관으로부터 염화수소 가스를 투입을 개시하고, 동시에, 원료조로부터 용매로 희석한 아민을, 원료 장입 펌프로 투입하고 2시간 걸려서 전량을 투입했다. 반응 종료 후, 얻어진 염산염 슬러리(수율 90%)는 유동성이 낮았고, 염산염을 분리하는 과정에서 염산염이 반응기 내에 다량으로 남았다.
비교예 2
실시예 1과 동일한 절차를 반복하되, 유기 용매를 이용하지 않고 디아민 염산염을 제조하였다(수율 49%).
구 분 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 비교예 1 비교예 2
염산 수용액 963.5g 986.5g 1009.4g 1032.3g 1055.3g HCl 가스 963.5g
반응기 내부온도 20~50℃ 20~50℃ 20~50℃ 20~50℃ 20~50℃ 120℃ 20~50℃
m-XDA 600g 600g 600g 600g 600g 136.2g 600g
유기 용매 Et2O1200g i-PrOH1260g THF1320g i-BuOH1440g MEK1500g ODCB846+621g -
진공 조건 0.1 Torr 0.1 Torr 0.1 Torr 0.08 Torr 0.05 Torr - 0.1 Torr
염산염 수율 88% 88% 91% 92% 92% 90% 49%
염산염수분 함유량 2% 2% 3% 3% 1% - -
<디이소시아네이트의 제조>
실시예 6
5L 4구 반응기 내부를 질소로 치환하고, 여기에 톨루엔 3400g을 투입하고 교반하면서, 상기 실시예 1에서 최종 얻어진 m-XDA 염산염 800g을 서서히 투입하고 반응기 내부를 135℃를 유지하면서 교반하였다. 이후 트리포스겐(BTC) 378.5g을 톨루엔 200g에 용해한 용액을 일차적으로 10~14시간에 걸쳐 투입한 이후, BTC 378.5g을 톨루엔 200g에 용해한 용액을 2차적으로 투입하며, 이때의 반응기 내부 온도는 135~140℃를 유지하였다. BTC 용액의 총 투입시간은 33시간이었으며, 투입이 완료되면 3~4시간 동안 추가 반응을 실시하고, 90~110℃ 온도로 냉각하였으며, 과잉의 COCl2는 질소로 퍼징하여 분해시켰다. 반응이 완료된 이후, 1차로 50~60℃ 온도에서 톨루엔을 증류하여 제거하고, 2차로 120℃에서 증류함으로써 메타크실릴렌디이소시아네이트(m-XDI)를 수득하였으며, 1차로 증류한 톨루엔의 회수율은 85%이었다. 최종 수득된 m-XDI의 순도는 99.5%로 측정되었으며, 수율은 84%이었다.
실시예 7
5L 4구 반응기 내부를 질소로 치환하고, 여기에 에틸벤젠 3400g을 투입하고 교반하면서, 상기 실시예 2에서 얻어진 m-XDA 염산염 800g을 서서히 투입하고 반응기 내부를 140℃를 유지하면서 교반하였다. 이후 BTC 378.5g을 에틸벤젠 200g에 용해한 용액을 일차적으로 10~14시간에 걸쳐 투입한 이후, BTC 378.5g을 에틸벤젠 200g에 용해한 용액을 2차적으로 투입하며, 이때의 반응기 내부 온도는 140~145℃를 유지하였다. BTC 용액의 총 투입시간은 31시간이었으며, 투입이 완료되면 3~4시간 동안 추가 반응을 실시하고, 90~110℃ 온도로 냉각하였으며, 과잉의 COCl2는 질소로 퍼징하여 분해시켰다. 반응이 완료된 이후, 1차로 50~60℃ 온도에서 에틸벤젠을 증류하여 제거하고, 2차로 120℃에서 증류함으로써 m-XDI를 수득하였으며, 1차로 증류한 에틸벤젠의 회수율은 85%이었다. 최종 수득된 m-XDI의 순도는 99.7%로 측정되었으며, 수율은 86%이었다.
실시예 8
5L 4구 반응기 내부를 질소로 치환하고, 여기에 오르소디클로로벤젠(ODCB) 3400g을 투입하고 교반하면서, 상기 실시예 3에서 얻어진 m-XDA 염산염 800g을 서서히 투입하고 반응기 내부를 145℃를 유지하면서 교반하였다. 이후 BTC 416.5g을 ODCB 200g에 용해한 용액을 일차적으로 10~14시간에 걸쳐 투입한 이후, BTC 416.5g을 ODCB 200g에 용해한 용액을 2차적으로 투입하며, 이때의 반응기 내부 온도는 145~150℃를 유지하였다. BTC 용액의 총 투입시간은 28시간이었으며, 투입이 완료되면 3~4시간 동안 추가 반응을 실시하고, 90~110℃ 온도로 냉각하였으며, 과잉의 COCl2는 질소로 퍼징하여 분해시켰다. 반응이 완료된 이후 1차로 50~60℃ 온도에서 ODCB를 증류하여 제거하고, 2차로 120℃에서 증류함으로써 m-XDI를 수득하였으며, 1차로 증류한 ODCB의 회수율은 88%이었다. 최종 수득된 m-XDI의 순도는 99.8%로 측정되었으며, 수율은 90%이었다.
실시예 9
5L 4구 반응기 내부를 질소로 치환하고, 여기에 사이클로헥산 3400g을 투입하고 교반하면서, 상기 실시예 4에서 얻어진 m-XDA 염산염 800g을 서서히 투입하고 반응기 내부를 145℃를 유지하면서 교반하였다. 이후 BTC 454g을 사이클로헥산 200g에 용해한 용액을 일차적으로 10~14시간에 걸쳐 투입한 이후, BTC 454g을 사이클로헥산 200g에 용해한 용액을 2차적으로 투입하며, 이때의 반응기 내부 온도는 145~150℃를 유지하였다. BTC 용액의 투입시간은 총 30시간이었으며, 투입이 완료되면 3~4시간 동안 추가 반응을 실시하고, 90~110℃ 온도로 냉각하였으며, 과잉의 COCl2는 질소로 퍼징하여 분해시켰다. 반응이 완료된 이후 1차로 50~60℃ 온도에서 사이클로헥산을 증류하여 제거하고, 2차로 120℃에서 증류함으로써 m-XDI를 수득하였으며, 1차로 증류한 사이클로헥산의 회수율은 87%이었다. 최종 수득된 m-XDI의 순도는 99.5%로 측정되었으며, 수율은 88%이었다.
실시예 10
5L 4구 반응기 내부를 질소로 치환하고, 여기에 모노클로로벤젠 3400g을 투입하고 교반하면서, 상기 실시예 5에서 얻어진 m-XDA 염산염 800g을 서서히 투입하고 반응기 내부를 150℃를 유지하면서 교반하였다. 이후 BTC 454g을 모노클로로벤젠 200g에 용해한 용액을 일차적으로 12시간에 걸쳐 투입한 이후, BTC 454g을 모노클로로벤젠 200g에 용해한 용액을 2차적으로 투입하며, 이때의 반응기 내부 온도는 150~155℃를 유지하였다. BTC 용액의 투입시간은 총 29시간이었으며, 투입이 완료되면 3~4시간 동안 추가 반응을 실시하고, 90~110℃ 온도로 냉각하였으며, 과잉의 COCl2는 질소로 퍼징하여 분해시켰다. 반응이 완료된 이후 1차로 50~60℃ 온도에서 모노클로로벤젠을 증류하여 제거하고, 2차로 120℃에서 증류함으로써 m-XDI를 수득하였으며, 1차로 증류한 모노클로로벤젠의 회수율은 86%이었다. 최종 수득된 m-XDI의 순도는 99.6%로 측정되었으며, 수율은 90%이었다.
비교예 3
반응기 내에 있어서 비교예 1의 염산염 슬러리를 160℃로 승온 후, 포스겐 취입관으로부터, 포스겐 가스를 100 g/hr(1.0 mol/hr)으로 취입하고, 온도를 유지하면서 8시간 반응시켰다. 반응 종료 후, 질소를 퍼징하여 미반응 포스겐 가스 및 염화수소 가스를 제거하였다. 그리고, 반응액을 여과하고, 미반응 염산염 8.2g(건조 중량)을 여과에 의해 제거했다. 얻어진 여액을 탈용매하여, 불순물(CBi)를 1.1중량% 함유하는 순도 96.2%의 m-XDI 183.3g(순도환산수율 93.71 mol%)을 얻었다.
구 분 실시예 6 실시예 7 실시예 8 실시예 9 실시예 10 비교예 3
m-XDA 염산염 실시예 1800g 실시예 2800g 실시예 3800g 실시예 4800g 실시예 5800g 비교예 1슬러리
유기 용매 톨루엔 3400g 에틸벤젠 3400g ODCB3400g 사이클로헥산 3400g 모노클로로벤젠 3400g -
반응기내부온도 135-140℃ 140-145℃ 145-150℃ 145-150℃ 150-155℃ -
BTC 757g 757g 833g 908g 908g 포스겐가스
유기 용매 400g 400g 400g 400g 400g -
용매 회수율 85% 85% 88% 87% 86% -
반응온도 >135℃ >140℃ >145℃ >145℃ >150℃ -
총 투입시간 33시간 31시간 28시간 30시간 29시간 -
m-XDI 수율 84% 86% 90% 88% 90% -
순도(%) 99.5% 99.7% 99.8% 99.5% 99.6% 96.2%
실시예 8A
도 2와 같은 투시창을 구비한 반응기를 포함하는 공정 장치를 구성하고, 이를 이용하여 상기 실시예 8의 절차에 따라 m-XDI를 제조하였다.
5L 4구 반응기 내부를 질소로 치환하고, 여기에 오르소디클로로벤젠(ODCB) 3400g을 투입하고 교반하면서, 상기 실시예 3에서 얻어진 m-XDA 염산염 800g을 서서히 투입하고 반응기 내부를 145℃를 유지하면서 교반하였다. 이후 BTC 416.5g을 ODCB 200g에 용해한 용액을 일차적으로 10~14시간에 걸쳐 투입한 이후, BTC 416.5g을 ODCB 200g에 용해한 용액을 2차적으로 투입하며, 이때의 반응기 내부 온도는 145~150℃를 유지하였다. BTC 용액의 총 투입시간은 28시간이었으며, 투입이 완료되면 3~4시간 동안 추가 반응을 실시하였다.
반응 중에 투시창을 통해 반응기 내 반응용액의 색상 및 투명도를 육안으로 관찰하였고, 반응용액이 투명한 연갈색으로 관찰되는 시점에 반응용액의 일부를 채취하여 광학장비를 통해 색상 및 투명도를 정밀 분석하여 반응의 종료 시점을 결정하였다.
반응이 종료된 후 반응용액은 90~110℃ 온도로 냉각하였으며, 과잉의 COCl2는 질소로 퍼징하여 분해시켰다. 반응이 완료된 이후 1차로 50~60℃ 온도에서 ODCB를 증류하여 제거하고, 2차로 120℃에서 증류함으로써 m-XDI를 수득하였으며, 1차로 증류한 ODCB의 회수율은 88%이었다. 최종 수득된 m-XDI의 순도는 99.8%로 측정되었으며, 수율은 90%이었다.
실시예 8B 및 8C
상기 실시예 8A와 동일한 절차를 수행하되, m-XDA 염산염과 BTC의 반응 당량, 반응 온도 또는 반응 시간을 변경하여, 다양한 색상 및 투명도의 반응용액을 얻고, 이로부터 상기 실시예 8A와 동일한 방식으로 최종 m-XDI를 얻었다.
상기 실시예 8A 내지 8C의 과정에서 얻은 반응용액의 색상 및 투명도, 및 최종 m-XDI의 수율 및 순도를 측정하여 아래 표에 정리하였다. m-XDI의 수율은 80% 이상일 경우 O로, 80% 미만일 경우 X로 표시하였고, m-XDI의 순도는 95% 이상일 경우 O로, 95% 미만일 경우 X로 표시하였다.
구 분 실시예 8A 실시예 8B 실시예 8C
반응용액 투명도 투명 불투명 투명
반응용액 색상 연갈색 연갈색 흑갈색
m-XDI 수율 O X O
m-XDI 순도 O O X
상기 표에서 보듯이, m-XDA 염산염과 BTC의 반응용액의 색상 및 투명도를 관찰하여 반응 종료 시점을 결정함으로써, 공정의 효율성 뿐만 아니라 최종 제품의 품질도 향상시킬 수 있음을 확인할 수 있다.
<광학 재료용 조성물 및 광학 렌즈의 제조>
실시예 11~13
상기 실시예 6에 의해 제조된 메타크실릴렌디이소시아네이트(m-XDI)를 포함하는 제1액과, 티올을 포함하는 제2액을 아래 표의 비율로 혼합하여 광학 재료용 조성물을 제조하였다.
성 분 (중량부) 실시예 11 실시예 12 실시예 13
제1액 m-XDI 52 46.92 50.09
DBTC 0.015 0.015 0.015
ZelecTM UN 0.1 0.1 0.1
TinuvinTM 329 0.05 0.05 0.05
제2액 GST 48 - -
DMMD - 53.08 -
BET - - 49.41
DBTC: dibutyltin dichloride, 촉매, Aldrich사
ZelecTM UN: 이형제, Aldrich사
TinuvinTM 329: UV 차단제, BASF사
GST: 1,2-비스(2-머캅토에틸티오)-3-머캅토프로판
DMMD: 2,5-비스머캅토메틸-1,4-디티안
BET: 비스(머캅토메틸-3,6,9-트리티아-1,11-운데칸디티올
실시예 14~16
상기 실시예 11~13의 광학 재료용 조성물을 경화하여 각각 실시예 14~16에 해당하는 광학 렌즈를 제조하였다. 제조된 광학렌즈의 물성을 하기 표에 나타내었다.
구 분 실시예 14 실시예 15 실시예 16
굴절율(nd20) 1.66 1.66 1.66
아베수(20℃) 32 32 32
비중 1.35 1.38 1.37
투과율(%) 91 91 91
상기 표에서 보듯이, 실시예에 따른 광학 재료용 조성물로 제조한 광학 렌즈는, 굴절율이 높고 투과율이 높아 양질의 광학 렌즈로 사용되기에 적합하다.

Claims (15)

  1. 메타크실릴렌디아민을 염산 수용액과 제 1 유기 용매 중에서 반응시켜 메타크실릴렌디아민 염산염을 얻는 단계; 및
    상기 메타크실릴렌디아민 염산염을 트리포스겐과 제 2 유기 용매 중에서 반응시켜 메타크실릴렌디이소시아네이트를 얻는 단계를 포함하는, 메타크실릴렌디이소시아네이트의 제조방법.
     
  2. 제 1 항에 있어서,
    상기 염산 수용액이 20 중량% 내지 45 중량%의 농도를 갖는, 메타크실릴렌디이소시아네이트의 제조방법.
     
  3. 제 1 항에 있어서,
    상기 메타크실릴렌디아민 및 상기 염산 수용액이 20℃ 내지 40℃의 온도에서 1 : 2 내지 5의 당량비로 반응에 투입되는, 메타크실릴렌디이소시아네이트의 제조방법.
     
  4. 제 1 항에 있어서,
    상기 메타크실릴렌디아민 염산염 및 상기 트리포스겐이 1 : 1 내지 5의 당량비로 반응에 투입되고,
    상기 메타크실릴렌디아민 염산염과 상기 트리포스겐의 반응이 130℃ 내지 160℃의 온도에서 5시간 내지 100시간 동안 수행되는, 메타크실릴렌디이소시아네이트의 제조방법.
     
  5. 제 1 항에 있어서,
    상기 제 1 유기 용매가 상기 메타크실릴렌디아민의 중량 대비 1배 내지 2배의 양으로 반응에 투입되고,
    상기 제 2 유기 용매가 상기 메타크실릴렌디아민 염산염의 중량 대비 3배 내지 5배의 양으로 반응에 투입되는, 메타크실릴렌디이소시아네이트의 제조방법.
     
  6. 제 1 항에 있어서,
    상기 메타크실릴렌디이소시아네이트의 제조방법이,
    상기 메타크실릴렌디아민 염산염을 얻는 단계에서 발생되는 불순물을 상기 제 1 유기 용매와 함께 제거하는 단계;를 더 포함하는, 메타크실릴렌디이소시아네이트의 제조방법.
     
  7. 제 1 항에 있어서,
    상기 메타크실릴렌디아민과 상기 염산 수용액의 반응이
    (1a) 제 1 반응기에 상기 염산 수용액을 투입하는 단계;
    (1b) 상기 제 1 반응기에 상기 메타크실릴렌디아민을 추가로 투입하고 교반하는 단계; 및
    (1c) 상기 제 1 반응기에 상기 제 1 유기 용매를 추가로 투입하고 교반하는 단계를 순차적으로 포함하는, 메타크실릴렌디이소시아네이트의 제조방법.
     
  8. 제 1 항에 있어서,
    상기 메타크실릴렌디아민 염산염과 상기 트리포스겐의 반응이
    (2a) 제 2 반응기에 상기 제 2 유기 용매를 투입하는 단계;
    (2b) 상기 제 2 반응기에 상기 메타크실릴렌디아민 염산염을 추가로 투입하고 교반하는 단계; 및
    (2c) 상기 제 2 반응기에 상기 트리포스겐을 추가로 투입하고 교반하는 단계를 순차적으로 포함하는, 메타크실릴렌디이소시아네이트의 제조방법.
     
  9. 제 1 항에 있어서,
    상기 메타크실릴렌디이소시아네이트가
    상기 메타크실릴렌디아민 염산염과 상기 트리포스겐의 반응의 결과물을
    40℃ 내지 60℃에서 2시간 내지 8시간 동안 1차 증류한 후,
    100℃ 내지 120℃에서 2시간 내지 10시간 동안 2차 증류하여 얻어진 것인, 메타크실릴렌디이소시아네이트의 제조방법.
     
  10. 제 1 항에 있어서,
    상기 메타크실릴렌디아민 염산염 및 트리포스겐으로부터 메타크실릴렌디이소시아네이트를 얻는 단계가,
    (i) 상기 메타크실릴렌디아민 염산염을 트리포스겐과 상기 제 2 유기 용매 중에서 반응시켜 반응용액을 얻는 단계;
    (ii) 상기 반응용액의 색상 및 투명도를 측정하는 단계; 및
    (iii) 상기 반응용액으로부터 메타크실릴렌디이소시아네이트를 얻는 단계를 포함하는, 메타크실릴렌디이소시아네이트의 제조방법.
     
  11. 제 10 항에 있어서,
    상기 단계 (i) 및 상기 단계 (ii)가 동시에 수행되고,
    상기 단계 (i)에서 상기 메타크실릴렌디아민 염산염과 트리포스겐의 반응의 종료 시점이 상기 단계 (ii)에서 측정된 상기 반응용액의 색상 및 투명도에 따라 결정되는, 메타크실릴렌디이소시아네이트의 제조방법.
     
  12. 제 11 항에 있어서,
    상기 반응 종료 시점이 상기 반응용액이 투명한 연갈색으로 변한 시점 이후인, 메타크실릴렌디이소시아네이트의 제조방법.
     
  13. 오르쏘크실릴렌디아민, 메타크실릴렌디아민, 파라크실릴렌디아민, 노보넨디아민, 수소화크실릴렌디아민 및 이소포론디아민으로 이루어진 군에서 선택되는 1종 이상의 디아민을 준비하는 단계;
    상기 디아민을 염산 수용액과 제 1 유기 용매 중에서 반응시켜 디아민 염산염을 얻는 단계; 및
    상기 디아민 염산염을 트리포스겐과 제 2 유기 용매 중에서 반응시켜 디이소시아네이트를 얻는 단계를 포함하는, 디이소시아네이트의 제조방법.
     
  14. 제 13 항에 있어서,
    상기 디이소시아네이트가 오르쏘크실릴렌디이소시아네이트, 메타크실릴렌디이소시아네이트, 파라크실릴렌디이소시아네이트, 노보넨디이소시아네이트, 수소화크실릴렌디이소시아네이트 및 이소포론디이소시아네이트으로 이루어진 군에서 선택되는 1종 이상이고, 99.5% 이상의 순도를 갖는, 디이소시아네이트의 제조방법.
     
  15. 오르쏘크실릴렌디아민, 메타크실릴렌디아민, 파라크실릴렌디아민, 노보넨디아민, 수소화크실릴렌디아민 및 이소포론디아민으로 이루어진 군에서 선택되는 1종 이상의 디아민을 준비하는 단계;
    상기 디아민을 염산 수용액과 제 1 유기 용매 중에서 반응시켜 디아민 염산염을 얻는 단계;
    상기 디아민 염산염을 트리포스겐과 제 2 유기 용매 중에서 반응시켜 디이소시아네이트를 얻는 단계; 및
    상기 디이소시아네이트를 티올 또는 에피설피드와 혼합하고 몰드에서 중합 및 경화시키는 단계를 포함하는, 광학 렌즈의 제조방법.
PCT/KR2019/006832 2018-06-07 2019-06-05 디이소시아네이트 및 광학 렌즈의 제조방법 WO2019235862A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/734,645 US20210230352A1 (en) 2018-06-07 2019-06-05 Method for manufacturing diisocyanate and optical lens
CN201980038601.2A CN112292413B (zh) 2018-06-07 2019-06-05 制造二异氰酸酯及光学镜片的方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20180065666 2018-06-07
KR10-2018-0065668 2018-06-07
KR10-2018-0065667 2018-06-07
KR10-2018-0065666 2018-06-07
KR20180065668 2018-06-07
KR20180065667 2018-06-07

Publications (1)

Publication Number Publication Date
WO2019235862A1 true WO2019235862A1 (ko) 2019-12-12

Family

ID=68769475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006832 WO2019235862A1 (ko) 2018-06-07 2019-06-05 디이소시아네이트 및 광학 렌즈의 제조방법

Country Status (4)

Country Link
US (1) US20210230352A1 (ko)
KR (3) KR102408416B1 (ko)
CN (1) CN112292413B (ko)
WO (1) WO2019235862A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112920374A (zh) * 2019-12-06 2021-06-08 Skc株式会社 用于光学镜片的二异氰酸酯组合物及其制备方法
US11760719B2 (en) * 2019-12-06 2023-09-19 Skc Co., Ltd. Diamine composition, and method of preparing diisocyanate composition

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11964931B2 (en) 2019-12-05 2024-04-23 Sk Pucore Co., Ltd. Method of preparing diisocyanate composition and optical lens
US11518737B2 (en) 2019-12-05 2022-12-06 Skc Co., Ltd. Method of preparing diisocyanate composition and optical lens
US11731936B2 (en) * 2019-12-06 2023-08-22 Skc Co., Ltd. Diisocyanate composition, preparation method thereof and optical material using same
US11634383B2 (en) * 2019-12-06 2023-04-25 Skc Co., Ltd. Method of preparing diisocyanate composition
US11932591B2 (en) * 2019-12-06 2024-03-19 Skc Co., Ltd. Method of preparing diisocyanate composition and optical lens
KR102456421B1 (ko) * 2019-12-06 2022-10-19 에스케이씨 주식회사 디이소시아네이트 조성물 및 광학 렌즈의 제조방법
US11339121B2 (en) * 2019-12-06 2022-05-24 Skc Co., Ltd. Method of preparing diisocyanate composition
KR102394396B1 (ko) * 2020-04-20 2022-05-06 에스케이씨 주식회사 디이소시아네이트 조성물 및 이를 이용하여 제조된 광학 렌즈
JP2023541640A (ja) * 2020-09-18 2023-10-03 ケーエス ラボラトリーズ カンパニー リミテッド 非塩素化誘導体を含むイソシアネート化合物の製造方法及びその組成物
KR20230081351A (ko) * 2021-11-30 2023-06-07 한화솔루션 주식회사 디이소시아네이트의 제조방법
CN114940858B (zh) * 2022-06-15 2023-03-14 武汉长盈鑫科技有限公司 一种制导光缆用特种外涂覆层

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2790513B2 (ja) * 1989-02-23 1998-08-27 三井化学株式会社 キシリレンジイソシアネートの製造方法
US20170210702A1 (en) * 2014-04-11 2017-07-27 Covestro Deutschland Ag Method for producing xylylene diisocyanates in the gaseous phase
WO2017174765A1 (fr) * 2016-04-07 2017-10-12 Vencorex France Procédé de préparation des xylylène diisocyanates xdi
WO2017179575A1 (ja) * 2016-04-11 2017-10-19 三井化学株式会社 キシリレンジイソシアネート組成物、樹脂および重合性組成物
KR101842254B1 (ko) * 2017-05-17 2018-03-27 에스케이씨 주식회사 안정성 및 반응성이 개선된 자이릴렌디이소시아네이트 조성물, 및 이를 이용한 광학 렌즈

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3492331A (en) * 1966-12-20 1970-01-27 Upjohn Co 4 - nitro - 2,6 - dichlorophenyl isocyanate and preparation of organic isocyanates
JPS61194057A (ja) * 1985-02-25 1986-08-28 Asahi Chem Ind Co Ltd 芳香族トリイソシアナ−ト
KR940001948A (ko) 1992-07-06 1994-02-16 정상문 조립식 경량칸막이 및 천정판넬의 페인팅 방법
US5523467A (en) * 1994-03-22 1996-06-04 Mitsui Toatsu Chemicals, Inc. Process for the preparation of aliphatic polyisocyanates
DE10129233A1 (de) * 2001-06-19 2003-01-02 Basf Ag Verfahren zur Herstellung von Isocyanaten
JP2008508269A (ja) * 2004-07-28 2008-03-21 ハンツマン・インターナショナル・エルエルシー ポリイソシアネートの製造法
EP1908749A4 (en) * 2005-07-22 2010-05-26 Mitsui Chemicals Inc PROCESS FOR PREPARING ISOCYANATE, ISOCYANATE MADE ACCORDING TO IT AND USE OF ISOCYANATE
CN1931834A (zh) * 2005-09-13 2007-03-21 杭州崇舜化学有限公司 一种苯二亚甲基二异氰酸酯的合成方法
JP5699128B2 (ja) * 2009-04-08 2015-04-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se イソシアネートの製造方法
KR20120076329A (ko) * 2010-12-29 2012-07-09 주식회사 케이오씨솔루션 우레탄계 광학재료용 수지의 제조방법과 이를 위한 수지 조성물 및 제조된 광학재료
CN102659631B (zh) * 2011-12-24 2014-05-07 德州绿邦化工有限公司 一步合成乙基异氰酸酯的方法
CN106164709B (zh) * 2014-03-28 2019-12-20 豪雅镜片泰国有限公司 光学构件用多异氰酸酯单体组合物、光学构件及其制造方法
CN106349110A (zh) * 2015-07-17 2017-01-25 大东树脂化学股份有限公司 制备脂肪族二异氰酸酯的二步法及一锅化合成法
JP6912997B2 (ja) * 2016-10-27 2021-08-04 三洋化成工業株式会社 含フッ素脂肪族アミン塩酸塩の製造方法
CN106674056B (zh) * 2016-11-14 2019-03-05 湖南海利化工股份有限公司 一种氢化苯二亚甲基二异氰酸酯的制备方法
KR101854429B1 (ko) * 2016-12-29 2018-05-03 한화케미칼 주식회사 지방족 이소시아네이트의 제조 방법
CN106748887B (zh) * 2017-01-11 2019-01-15 黄河三角洲京博化工研究院有限公司 一种苯二亚甲基二异氰酸酯的制备方法
KR20190086257A (ko) * 2018-01-12 2019-07-22 우리화인켐 주식회사 광학재료용 이소시아네이트 화합물의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2790513B2 (ja) * 1989-02-23 1998-08-27 三井化学株式会社 キシリレンジイソシアネートの製造方法
US20170210702A1 (en) * 2014-04-11 2017-07-27 Covestro Deutschland Ag Method for producing xylylene diisocyanates in the gaseous phase
WO2017174765A1 (fr) * 2016-04-07 2017-10-12 Vencorex France Procédé de préparation des xylylène diisocyanates xdi
WO2017179575A1 (ja) * 2016-04-11 2017-10-19 三井化学株式会社 キシリレンジイソシアネート組成物、樹脂および重合性組成物
KR101842254B1 (ko) * 2017-05-17 2018-03-27 에스케이씨 주식회사 안정성 및 반응성이 개선된 자이릴렌디이소시아네이트 조성물, 및 이를 이용한 광학 렌즈

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112920374A (zh) * 2019-12-06 2021-06-08 Skc株式会社 用于光学镜片的二异氰酸酯组合物及其制备方法
CN112920374B (zh) * 2019-12-06 2023-05-30 Skc株式会社 用于光学镜片的二异氰酸酯组合物及其制备方法
US11760719B2 (en) * 2019-12-06 2023-09-19 Skc Co., Ltd. Diamine composition, and method of preparing diisocyanate composition

Also Published As

Publication number Publication date
KR102408416B1 (ko) 2022-06-14
KR102408415B1 (ko) 2022-06-14
KR20190139153A (ko) 2019-12-17
CN112292413B (zh) 2022-09-20
KR20190139151A (ko) 2019-12-17
KR102148975B1 (ko) 2020-08-28
US20210230352A1 (en) 2021-07-29
KR102148975B9 (ko) 2022-12-29
CN112292413A (zh) 2021-01-29
KR20190139152A (ko) 2019-12-17

Similar Documents

Publication Publication Date Title
WO2019235862A1 (ko) 디이소시아네이트 및 광학 렌즈의 제조방법
WO2018012803A1 (ko) 광학 재료용 방향족 폴리티올 화합물
WO2021206269A1 (ko) 폴리티올 화합물의 제조 방법과 이를 포함한 광학 재료용 중합성 조성물 및 광학 렌즈
WO2017160016A1 (ko) 이중 경화가 가능한 저온가교형 블록이소시아네이트 및 이를 포함하는 조성물
WO2013069965A1 (ko) 폴리티올 화합물의 제조 방법 및 이를 포함하는 광학재료용 중합성 조성물
WO2018151501A1 (ko) 폴리올 또는 폴리티올 화합물, 그의 제조 방법, 그로부터 제조된 투명한 폴리우레탄계 수지 및 광학체
WO2022146093A1 (ko) 이소시아네이트 화합물의 제조 방법
WO2022119271A1 (ko) 자일릴렌디이소시아네이트 조성물 및 이를 포함하는 광학 조성물
WO2024106985A1 (ko) 자일렌 디이소시아네이트 조성물 및 이의 제조방법
WO2020101248A1 (ko) 경화성 조성물 및 이의 경화물을 포함하는 광학 부재
WO2023101379A1 (ko) 이소시아네이트 조성물 및 광학용 조성물
WO2024048993A1 (ko) 이소시아네이트 조성물
WO2021201459A1 (ko) 티오우레탄계 광학재료용 수지 조성물과 티오우레탄계 광학재료용 수지의 제조방법
KR20210070832A (ko) 디이소시아네이트 조성물 및 광학 렌즈의 제조방법
WO2023101404A1 (ko) 이소시아네이트 조성물 및 이의 제조방법
WO2024049033A1 (ko) 이소시아네이트 조성물
US11932591B2 (en) Method of preparing diisocyanate composition and optical lens
US11964931B2 (en) Method of preparing diisocyanate composition and optical lens
US11634383B2 (en) Method of preparing diisocyanate composition
US11987541B2 (en) Method of preparing diisocyanate composition
WO2022055221A1 (ko) 폴리티올 조성물 및 이를 포함하는 광학 조성물
KR102456421B1 (ko) 디이소시아네이트 조성물 및 광학 렌즈의 제조방법
KR102217752B1 (ko) 디이소시아네이트 조성물 및 광학 렌즈의 제조방법
WO2019209046A2 (ko) 보관안정성이 개선된 폴리티올의 제조방법
WO2022050716A1 (ko) 자일릴렌디이소시아네이트 조성물 및 이를 포함하는 광학용 중합성 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814473

Country of ref document: EP

Kind code of ref document: A1