WO2019233220A1 - 一种生物质锅炉水冷振动炉排的控制方法及*** - Google Patents

一种生物质锅炉水冷振动炉排的控制方法及*** Download PDF

Info

Publication number
WO2019233220A1
WO2019233220A1 PCT/CN2019/084745 CN2019084745W WO2019233220A1 WO 2019233220 A1 WO2019233220 A1 WO 2019233220A1 CN 2019084745 W CN2019084745 W CN 2019084745W WO 2019233220 A1 WO2019233220 A1 WO 2019233220A1
Authority
WO
WIPO (PCT)
Prior art keywords
damper
grate
vibration
boiler
ignition
Prior art date
Application number
PCT/CN2019/084745
Other languages
English (en)
French (fr)
Inventor
张喜
耿国
潘再生
Original Assignee
德普新源(香港)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德普新源(香港)有限公司 filed Critical 德普新源(香港)有限公司
Publication of WO2019233220A1 publication Critical patent/WO2019233220A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/22Systems for controlling combustion with a time programme acting through mechanical means, e.g. using cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls

Definitions

  • the invention relates to a boiler intelligent control technology, and more particularly, to a method and system for controlling a water-cooled vibration grate of a biomass boiler.
  • biomass fuel is burned on a vibrating grate in the hearth, and the fuel is sent from the feeder to the front of the grate.
  • the fuel is gradually preheated, dried, fired, combustion.
  • the vibration mechanism With the operation of the vibration mechanism, the fuel moves toward the rear of the grate while burning, until the ash is burned, and finally the ash falls into the slag opening behind the furnace.
  • the grate structure is shown in Figures 1 and 2.
  • the vibration grate is composed of a vibration mechanism, an air chamber, a grate support, and a cold wall of the furnace drainage.
  • the cold wall of the furnace drainage is composed of a full-membrane wall, and there are many small holes in it. After the primary air enters the bottom air chamber of the furnace, it enters the furnace through the small holes on the cold wall of the furnace drainage to provide the required oxygen for combustion.
  • the flexible pipe is used to supply water at the low end. Through the flexible pipe at the other end, the water is sent back to the boiler water wall.
  • the water-cooled wall of the grate is installed on the grate support, which is vibrated by a mechanical vibration system.
  • the grate support is mounted on the boiler base through springs, and the vibration power is provided by the grate driving motor.
  • the entire furnace drain cold wall is composed of 4 furnace drain cold walls in the left and right direction.
  • the two furnace drain cold walls in the middle move together, and the two furnace drain cold walls on the outside and the middle part move in a direction of 180. Angle.
  • the entire grate can be divided into three sections: high-end, middle, and low-end.
  • the fuel on the grate is also divided into three stages: ignition, combustion, and burnout.
  • the fuel is pushed into the grate through the feed port, and the primary air is mixed with the fuel on the grate through the air holes of the grate.
  • the fuel on the grate is quickly dried and ignited.
  • a certain layer of material should be maintained on the grate, and the fuel is completely consumed on the grate.
  • the grate will intermittently vibrate in the front-rear direction, and the slag will be at the lower end of the grate. Fall into the slag well.
  • Grate combustion must be monitored regularly to fully grasp the fuel combustion conditions in the grate and ash outlet area.
  • the slag burning slag burning condition is monitored through the flame television at the slag dropping opening, and the grate vibration is adjusted according to the slag burning condition.
  • the water-cooled vibrating grate is manually controlled by the operating staff.
  • the operating staff inputs the vibration frequency, vibration time, After the vibration interval time, the water-cooled vibration grate enters the cycle operation.
  • the operating personnel also need to manually adjust the primary damper, ignition damper, secondary damper, burnout damper, and delivery valve related to the grate vibration according to the furnace pressure, the amount of oxygen in the flue gas, and the combustion in the furnace. Induced draft fans and other equipment to maintain combustion in the furnace and stable operation of the boiler.
  • the present invention provides a method and system for controlling a water-cooled vibrating grate of a biomass boiler.
  • a method for controlling a water-cooled vibrating grate of a biomass boiler includes the following steps: setting a vibration opening degree of a primary damper, a vibration opening degree of an ignition damper, a vibration opening degree of a secondary damper, and a vibration opening degree of a burnout damper; Set the primary damper, ignition damper, secondary damper, and burnout damper; Step 2: Increase the output of the induced draft fan to reduce the pressure in the furnace; Step 3: Drive the water-cooled vibration grate to vibrate; Step 4: Output the opening of the primary damper, The ignition damper output opening, furnace pressure, secondary damper output opening, and burnout damper output opening are reset.
  • the amount of oxygen in the boiler flue gas is compared with the set threshold value.
  • the threshold is 3%.
  • step 1 before setting the primary damper, the ignition damper, the secondary damper, and the burnout damper, the following steps are further included:
  • the blower exits the automatic state, and the amount of air from the locked blower remains unchanged;
  • step 1 setting the primary damper, the ignition damper, the secondary damper, and the burnout damper includes the following steps:
  • Step 11 Set the secondary damper output opening degree to the secondary damper vibration opening degree, and set the burnout damper output opening degree to the burnout damper vibration opening degree;
  • Step 12 After the air volume of the secondary damper and the burn-out damper is stabilized, the primary damper output opening degree is set to the primary damper vibration opening degree, and the ignition damper output opening degree is set to the ignition damper vibration opening degree.
  • step 2 the furnace pressure is reduced to offset the increase in the furnace pressure caused by the increase in the amount of flue gas due to the intensified combustion during subsequent grate vibrations. It is possible to calculate the increase in the pressure in the furnace due to the increase in the amount of flue gas due to the intensification of combustion, so that how much pressure should be reduced here.
  • step 3 includes the following steps:
  • Step 31 Obtain the boiler load through a sensor installed in the boiler
  • Step 32 Calculate the water-cooled grate vibration time according to a first functional relationship between the water-cooled grate vibration time and the boiler load.
  • the first function is a multi-segment polyline curve.
  • the first function can also be modified.
  • the first correction coefficient is multiplied by the function value as the final output value.
  • the first correction coefficient is preferably [0.8, 1.2]. .
  • step 4 includes the following steps:
  • Step 41 reset the damper and the ignition damper once
  • Step 42 After the air volume of the air damper and the ignition damper is stabilized, the furnace pressure is reset;
  • Step 43 After the furnace pressure is reset, reset the secondary damper and the burnout damper;
  • Step 44 Return the primary damper, ignition damper, secondary damper, and burnout damper to the automatic state.
  • Step 45 Return the blower to the automatic state and unlock the output value of the blower.
  • the grate vibration control is in the process of repeated cycles, that is, the grate vibration is completed, and the new grate vibration restarts after the grate vibration interval time (that is, repeat steps 1-4 after the vibration interval time) ).
  • the calculation method of the grate vibration interval time includes: obtaining the rotation speed of the feeding system connected to the boiler, and calculating the vibration interval time according to a second function between the vibration interval time and the rotation speed.
  • the second function is a multi-stage polyline curve, and the second function
  • the correction is performed, for example, the second correction coefficient is multiplied by the function value as the final output value, and the second correction coefficient is preferably [0.8, 1.2].
  • a control system for a biomass boiler water-cooled vibration grate which includes a data acquisition module, a damper control module, a boiler pressure control module, and a grate vibration time calculation module;
  • Data acquisition module connected to the blower, primary damper, ignition damper, secondary damper, burnout damper, and induced draft of the biomass boiler, used to obtain the air volume of the blower and induced draft fan, to obtain the primary damper, ignition damper, secondary damper, fuel Exhaust door opening information; and transmit the information to the damper control module, grate vibration time calculation module and boiler pressure control module;
  • the damper control module is used for receiving the damper opening information transmitted by the data acquisition module and adjusting the damper opening;
  • the boiler pressure control module is used to receive the furnace pressure information sent by the data acquisition module, control the output of the induced fan, and then control the furnace pressure; the boiler pressure control module can also receive the boiler load information sent by the data acquisition module and send the information to the furnace Row vibration time calculation module;
  • Grate vibration time calculation module is used to receive the boiler load information sent by the boiler pressure control module and calculate the time of grate vibration.
  • the grate vibration time calculation module includes a first function generation unit, a first calculation unit, and a first correction unit; the first function generation unit is used to generate a function between the grate vibration time and the boiler load, and the function is a multi-stage Polyline curve; the first calculation unit is used to calculate the time of the grate vibration based on the boiler load information and the first function; the first correction unit is used to correct the time of the grate vibration, the first correction coefficient is [0.8, 1.2 ].
  • control system further includes a grate vibration interval time calculation module.
  • the grate vibration interval time calculation module is configured to receive the rotation speed of the feeding system connected to the boiler sent by the data acquisition module, and calculate the vibration interval time.
  • the grate vibration interval time calculation module includes a second function generation unit, a second calculation unit, and a second correction unit; a second function generation unit is configured to obtain a rotation speed of a feeding system connected to the boiler, and generate a vibration interval A function between time and rotation speed, the function is a multi-stage polyline curve; a second calculation unit for calculating the grate vibration interval time by the rotation speed and the second function; a second correction unit for correcting the grate vibration interval time, The second correction factor is [0.8, 1.2].
  • control system further includes an oxygen amount determination module for receiving the boiler oxygen amount information sent by the data acquisition module, and comparing the oxygen amount with a set threshold value.
  • the threshold value is 3%, and other modules of the control system work normally when the amount of oxygen is larger than the threshold, otherwise, no function of the control system needs to be operated except for collecting and determining the amount of oxygen.
  • one or more computer-readable storage media storing computer-readable instructions that, when executed by a device, cause the device to perform a method of controlling a water-cooled vibration grate according to the present invention.
  • the one or more computer-readable storage media in this aspect of the invention may be, for example, one or more non-transitory computer-readable media.
  • the furnace pressure fluctuation, combustion fluctuation and oxygen quantity fluctuation caused by the grate vibration process can be avoided; the function relationship between the boiler load and the grate vibration time is clarified, and the grate vibration time can be automatically set and controlled according to the boiler load.
  • the residence time of fuel on the grate; the function relationship between the feed rate of fuel entering the hearth and the grate vibration interval time is clarified.
  • the grate vibration interval time can be automatically set according to the feed rate of fuel entering the hearth to control the grate vibration. The amount of fuel.
  • FIG. 1 is a schematic structural diagram of a water-cooled grate of a biomass boiler
  • FIG. 2 is a schematic structural diagram of a biomass boiler with a water-cooled grate
  • FIG. 3 is an overall structural diagram of a boiler according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a grate vibration sequence according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a first function according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a second function according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of a control system according to an embodiment of the present invention.
  • the biomass boiler includes a feeding system, a blower, a boiler, and an induced draft fan.
  • the blower is connected to a primary damper, an ignition damper, a secondary damper, and a burnout damper, and sends air to the boiler through each damper.
  • the damper itself has an opening position sensor and controller, which can both collect the opening degree of the damper and control the opening degree.
  • the boiler is also provided with a boiler load collector and an oxygen amount collector, which are respectively used to collect and transmit boiler load data and oxygen amount information.
  • the air volume required for the boiler combustion is provided by the blower.
  • the main role of the blower is to provide the combustion air for the boiler combustion, adjust the air supply volume under different working conditions, and meet the combustion air demand in the furnace.
  • the primary air damper is used to adjust the primary air volume and send the primary air under the grate. It is mainly used to participate in the combustion of solid fuel on the grate and increase the combustion rate because the fuel and combustion wind on the grate will be sufficient when the grate vibrates. Mixing, the combustion intensity will naturally increase, so the primary air volume should be reduced during vibration.
  • the ignition damper is used to adjust the ignition air volume.
  • the ignition damper is located above the feed port. It is mainly used to provide the required ignition air volume to the biomass fuel and accelerate the release of combustible gas in the fuel because the fuel on the grate will be caused when the grate vibrates. Fully mixed with the combustion wind, the release of combustible gas in the fuel is accelerated, so the amount of ignition air should be reduced when vibrating.
  • the secondary air flap and the burn-out air flap are used to adjust the secondary air flow and the burn-out air volume. The secondary air and the burn-out air are fully mixed with the flue gas in the furnace to supplement the combustion air volume required for combustion. Promote the exhaustion of tiny combustibles and combustible gases in the furnace.
  • the secondary air volume and burn-out air volume should be increased when the grate vibrates.
  • the induced draft fan maintains a proper furnace pressure in the boiler by extracting the flue gas from the furnace and the flue. Because the combustion of fuel intensifies when the grate vibrates, the amount of flue gas in the furnace will increase. Therefore, the furnace pressure should be appropriately reduced and increased. Induced fan output.
  • the feed system feeds the amount of fuel required for combustion into the furnace. Changes in the fuel feed rate will cause changes in the interval between grate vibrations.
  • a method for controlling a water-cooled vibrating grate of a biomass boiler according to the present invention includes step 1: setting a primary damper vibration opening degree, an ignition damper vibration opening degree, a secondary damper vibration opening degree, and burnout. Throttle vibration opening degree, and set primary damper, ignition damper, secondary damper and burnout damper; Step 2: Increase induced fan output and reduce furnace pressure; Step 3: Drive water-cooled vibration grate vibration; Step 4: Primary damper Output opening degree, ignition damper output opening degree, furnace pressure, secondary damper output opening degree and burnout damper output opening degree are reset.
  • the combustion of fuel on the grate intensified, the flammable gas in the hearth increased, and the combustion status changed rapidly, resulting in a decrease in the amount of oxygen in the flue gas and an increase in the pressure in the hearth.
  • the primary air and ignition air volume should be reduced, and the secondary air and burned air volume should be increased. This adjustment keeps the total supply air volume unchanged, but the boiler air distribution changes because there is no change in the fuel volume. The total air volume does not need to be changed.
  • step 1 specifically includes the following steps:
  • the blower exits the automatic state, locks the output value of the blower, and keeps the total air volume unchanged.
  • the vibration opening value of the secondary air damper and the burn-out air damper is usually larger than the opening value during normal operation. Increasing the opening of the air damper can increase the air volume above the grate to adapt to the combustible gas and small particles of combustible material during subsequent grate vibrations. Increased demand for air volume.
  • the damper After the output opening degree is set, the damper has a certain hysteresis. When the air volume of the damper is stable, that is, the air volume reaches the air volume corresponding to the set vibration opening degree, for example, after 5 seconds, the next operation is performed.
  • step 2 because the air volume of different dampers is adjusted in step 1, the combustion, pressure in the furnace and the amount of oxygen in the flue gas will all change.
  • the furnace pressure increases, and the induced fan output needs to be appropriately increased to reduce the furnace pressure.
  • the furnace pressure may be recorded before the damper adjustment in step 1, and then the furnace pressure may be revised in step 2, such as reducing the furnace pressure by 200 Pa in one embodiment.
  • step 3 when the furnace pressure reaches the revised value and is stable (this time can be set using experience values, such as 5 seconds), the water-cooled grate can start to vibrate.
  • the fuel on the grate burns while moving towards the rear of the grate until it burns embers and finally falls into the slagging hole.
  • the longer the grate vibration time the more the fuel on the grate is mixed with the combustion wind, the faster the combustible gas is released, the more intense the combustion, the faster the combustion rate, and the corresponding residence time of fuel on the grate
  • the strain is short, so the fuel needs to move backward faster.
  • the boiler load rises the boiler needs more heat and the fuel entering the boiler will increase. This requires that the fuel burning rate on the grate is accelerated and the residence time of the fuel in the grate is shorter. Therefore, the grate vibration is required. It takes longer.
  • the grate vibration time is related to the boiler load.
  • the relationship between the grate vibration time and the boiler load is the first function f 1 (x).
  • the first function f 1 (x) is a multi-stage polyline curve. This function is calculated based on the design data of the vibrating grate and the boiler (those skilled in the art can get through the existing technical means).
  • the first function f 1 (x) can also be modified, and the grate vibration time obtained after the functional relationship of the boiler load is multiplied by the first correction factor K 1 to obtain and output the final grate vibration time.
  • the first correction coefficient K 1 by operating personnel vary according to factors actual boiler operating conditions and type of fuel calorific value output of the first function f 1 (x) that adjust, according to the project experience, typically 0.8-1.2 correction coefficient between.
  • This method of setting the grate vibration time clarifies the function relationship between the boiler load and the grate vibration time. It can automatically set the grate vibration time according to the boiler load and control the fuel residence time on the grate.
  • step 4 when the grate vibration is completed, the normal air volume distribution and furnace pressure are restored.
  • the following steps may be specifically included:
  • a set threshold such as 3%. If the amount of oxygen is less than the threshold, it cannot meet the requirements for the intensification of combustion when the grate is vibrated. Steps vibrate. Grate vibration control is in the process of repeated cycles. After the grate vibration is completed, it enters the grate vibration interval time. When the grate vibration interval time is over, the new grate vibration restarts.
  • This new method of operating the grate and related equipment during the grate vibration cycle can avoid hearth pressure fluctuations, combustion fluctuations, and oxygen fluctuations caused by grate vibrations.
  • the grate vibration interval time is related to the amount of fuel entering the furnace, and the amount of fuel entering the furnace is determined by the speed of the feeding system and the feeding time.
  • the feeding time When the speed of the feeding system is low, the feeding time will be longer and the interval between grate vibrations will be longer. Conversely, when the speed of the feeding system is high, the feeding time will be shorter and the interval between grate vibrations will be shorter. The time will also become shorter, so the grate vibration interval time is related to the speed of the feeding system.
  • the second function f 2 (x) between the grate vibration interval time and the speed of the feeding system is shown in Figure 6, the second function f 2 (x) is a multi-segment polyline curve, which is calculated based on the design data of the vibration grate and boiler.
  • the grate vibration interval time is calculated based on the functional relationship of the feeding system speed. The grate vibration interval time can also be corrected.
  • the final grate vibration interval time is output.
  • the second correction coefficient K 2 by operating personnel vary according to factors actual boiler operating conditions and the type of fuel, on the calorific value (x) is a function f 2 output from the second correction adjustment, according to the project experience, typically 0.8-1.2 correction coefficient between.
  • This method of setting the grate vibration interval time clarifies the function relationship between the feed rate of fuel entering the furnace and the grate vibration interval time.
  • the grate vibration interval time can be automatically set and controlled according to the feed rate of fuel entering the furnace. The amount of fuel on the grate.
  • the control method of the water-cooled vibrating grate disclosed herein may be implemented in a device configured to include a circuit system that executes the method, or may also be implemented using software stored on one or more computer-readable storage media.
  • the computer-readable medium includes computer-executable instructions that, when executed by a device, cause the device to perform the control method for a water-cooled vibration grate described above.
  • Such a computer-readable storage medium may be a non-transitory computer-readable medium, for example.
  • a control system for a water-cooled vibrating grate of a biomass boiler including a data acquisition module, a damper control module, a boiler pressure control module, and a grate vibration time calculation module; ,
  • Data acquisition module connected to the blower, primary damper, ignition damper, secondary damper, burnout damper, and induced draft of the biomass boiler, used to obtain the air volume of the blower and induced draft fan, to obtain the primary damper, ignition damper, secondary damper, fuel Exhaust door opening information; and transmit the information to the damper control module, grate vibration time calculation module and boiler pressure control module;
  • the damper control module is used for receiving the damper opening information transmitted by the data acquisition module, and adjusting the damper opening according to the set value, such as setting the opening of the primary damper to the vibration opening of the damper, etc .;
  • the boiler pressure control module is used to receive the furnace pressure information sent by the data acquisition module, control the output of the induced draft fan, and then control the furnace pressure, such as increasing the output of the induced fan to reduce the furnace pressure; the boiler pressure control module can also receive data acquisition The boiler load information sent by the module, and send the information to the grate vibration time calculation module;
  • Grate vibration time calculation module is used to receive the boiler load information sent by the boiler pressure control module and calculate the time of grate vibration.
  • the grate vibration time calculation module includes a first function generation unit, a first calculation module, and a first correction unit; a first function generation unit is used to generate a first function f 1 (x) between the grate vibration time and the boiler load This function is a multi-segment polyline curve.
  • the first function f 1 (x) is calculated based on the design data of the vibration grate and the boiler.
  • the first calculation module can be calculated based on the first function f 1 (x) and the boiler load.
  • the first correction unit is used to correct the grate vibration time obtained from the first calculation unit, and the first correction coefficient is changed by the operator according to the actual operating conditions of the boiler, fuel type, heating value and other factors
  • the output of the first function f 1 (x) is adjusted and adjusted.
  • the correction coefficient is usually between 0.8-1.2.
  • the control system may further include a grate vibration interval time calculation module.
  • the grate vibration interval time calculation module is configured to receive the rotation speed of the feeding system connected to the boiler sent by the data acquisition module, and calculate the vibration interval time.
  • the grate vibration interval calculation module includes a second function generation unit, a second calculation unit, and a second correction unit; the second function generation unit is used to obtain the rotation speed of the feeding system connected to the boiler, and generate the vibration interval time and rotation speed
  • the second function f 2 (x) between them, the second function f 2 (x) is a multi-stage polyline curve, and the second function f 2 (x) is calculated based on the design data of the vibration grate and the boiler;
  • the second The calculation unit can calculate the grate vibration interval time according to the rotation speed and the second function f 2 (x); the second correction unit is used to correct the grate vibration interval time obtained from the second calculation unit, and the second correction coefficient K 2
  • the operator adjusts and adjusts the output of the second function
  • control system further includes an oxygen amount determination module, configured to receive the boiler oxygen amount information sent by the data acquisition module, and determine the amount of oxygen and a set threshold.
  • the threshold value is 3%, and when the oxygen amount is greater than the threshold value, the control system works normally; otherwise, no function of the control system needs to run except to collect the oxygen amount and determine the oxygen amount, that is, to judge only the collected oxygen amount.
  • the control method and system for the boiler water-cooled vibrating grate of the present invention can enable the grate and the equipment related to the grate vibration to run automatically and sequentially according to a preset vibration cycle and sequence during the grate cycle vibration without manual intervention by the operator.
  • a preset vibration cycle and sequence during the grate cycle vibration without manual intervention by the operator.
  • the present invention also realizes automatic control of the grate vibration time and interval time, and changes the vibration time and interval time to be manually controlled by the operating personnel.
  • the grate vibration cycle it can be based on the amount of fuel entering the furnace and the change in the boiler load. Automatically adjust the vibration time and interval time of the grate, control the amount of fuel on the grate and the residence time of the fuel on the grate, which is conducive to better combustion of the fuel on the grate and reduce the carbon content of the slag and fly ash To improve fuel burnout rate and boiler efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Incineration Of Waste (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

一种生物质锅炉水冷振动炉排的控制方法及***,该***包括给料***、送风机、锅炉、引风机,送风机连接一次风门、点火风门、二次风门、燃尽风门,并通过各风门向锅炉送风,风门本身带有开度位置传感器和控制器,既能采集风门开度,又能控制开度大小,锅炉内还设置有锅炉负荷采集器和氧量采集器,分别用于采集和传送锅炉负荷数据和氧量信息;该控制方法为首先设置一次风门、点火风门、二次风门和燃尽风门振动开度并置位;其次增加引风机出力,降低炉膛压力;然后驱动水冷振动炉排振动;最后一次风门、点火风门、二次风门和燃尽风门输出开度及炉膛压力复位。该***和控制方法可以避免炉排振动过程中引起的炉膛压力波动、燃烧波动及氧量波动。

Description

一种生物质锅炉水冷振动炉排的控制方法及*** 技术领域
本发明涉及锅炉智能控制技术,更具体地,涉及一种生物质锅炉水冷振动炉排的控制方法及***。
背景技术
生物质电厂中,生物质燃料在炉膛中的振动炉排上燃烧,燃料由给料机送到炉排前部,在此处由于高温烟气和一次风的作用逐步预热、干燥、着火、燃烧。随着振动机构的工作,燃料边燃烧,边向炉排后部运动,直至燃烬,最后灰渣落入炉后的落渣口。炉排结构如图1和图2所示。
振动炉排由振动机构、风室、炉排支撑和炉排水冷壁组成,炉排水冷壁由全膜式壁组成,其上开有很多小孔。一次风进入炉底风室后再由炉排水冷壁上的小孔进入炉膛,为燃烧提供所需的氧。在低端采用挠性管供水,通过另一端挠性管,水被送回到锅炉水冷壁。炉排的水冷壁安装在炉排支撑上,炉排支撑通过机械振动***进行振动。炉排支撑通过弹簧安装在锅炉基座上,振动动力由炉排驱动电机提供。
整个炉排水冷壁在左右方向由4片炉排水冷壁组成,在炉排振动过程中,中间的两片炉排水冷壁一起移动,外边的两片炉排水冷壁与中间部分移动方向成180的角度。
整个炉排分为可分为高端、中部、低端三段,燃料在炉排上也分为着火、燃烧、燃尽三个阶段。
燃料通过给料口被推入到炉排上,一次风通过炉排的风孔与炉排上燃料混合,炉排上的燃料被迅速干燥并且点火燃烧。在运行中,炉排上应维持一定的 料层,燃料在炉排上完全燃尽。为了使炉排上的燃料及产生的炉渣能够沿着炉排向前运动,并且保持炉排上的料层无间隙的均匀分布,炉排会在前后方向间歇振动,炉渣会在炉排低端落入渣井。
炉排燃烧必须定期监视,这样能够完全掌握炉排和灰渣出口区域燃料的燃烧状况。通过落渣口的火焰电视监测炉排落渣的燃烬情况,并根据燃烬情况调整炉排的振动。
目前,在生物质锅炉运行中,水冷振动炉排都是由运行人员手动控制的,运行人员根据自己对锅炉运行状态、燃料情况的判断及运行经验,输入振动炉排的振动频率、振动时间、振动间隔时间后,水冷振动炉排进入周期循环运行中。在炉排周期循环运行过程中,运行人员还需要根据炉膛压力、烟气氧量及炉膛内的燃烧情况手动调节与炉排振动相关的一次风门、点火风门、二次风门、燃尽风门及送引风机等设备,以维持炉膛内燃烧及锅炉运行稳定。
现有炉排控制方法具有如下缺点:
(1)在炉排振动过程中,炉排上燃料松动燃烧加剧,炉膛内的燃烧状况迅速发生变化,热量释放值瞬间升高,这将导致烟气中氧量下降、可燃性气体增多,导致烟气中一氧化碳增多,炉膛压力升高。为了维持锅炉燃烧稳定,运行人员需要立刻进行燃烧调整,但燃烧调整涉及到锅炉的一次风门、点火风门、二次风门、燃尽风门及送引风机等设备,运行人员很难短时间内完成对所有设备的调整,并且必须保证操作顺序和调节量正确。操作顺序和调节量稍有偏差,在炉排振动时都会造成炉膛内形成紊流甚至爆燃,引起过低的烟气氧量及炉膛压力过大,将导致燃料的未燃烧损失增加,锅炉给料口回火造成炉前料仓着火以及锅炉停机的风险。
(2)在炉排振动过程中,振动时间、振动间隔时间无法根据锅炉运行及燃料量进行实时调整,不合理的振动时间及振动间隔时间会造成炉排上燃料量及燃料在炉排上的停留时间与锅炉负荷需求不一致,并且将影响炉膛内燃烧和锅炉效率。
(3)因为采用手动控制炉排,因此在运行过程中需要频繁的对设备进行操作,锅炉长时间运行工程中无法保证不出现人为操作失误,引起严重事故。
发明内容
为克服现有技术的上述缺陷,本发明提出一种生物质锅炉水冷振动炉排的控制方法及***。
根据本发明提出了一种生物质锅炉水冷振动炉排的控制方法,包括:步骤1:设置一次风门振动开度、点火风门振动开度、二次风门振动开度和燃尽风门振动开度,并对一次风门、点火风门、二次风门及燃尽风门置位;步骤2:增加引风机出力,降低炉膛压力;步骤3:驱动水冷振动炉排振动;步骤4:将一次风门输出开度、点火风门输出开度、炉膛压力、二次风门输出开度和燃尽风门输出开度复位。
进一步的,在步骤1之前,比较锅炉烟气中的氧量与设定阈值的大小,当氧量过低时,无法满足炉排振动时燃烧加剧的要求,炉排也就无需振动,当条件满足后,炉排振动才能进行振动。优选的,阈值为3%。
进一步的,在步骤1中,在对一次风门、点火风门、二次风门及燃尽风门置位之前,还包括以下步骤:
送风机退出自动状态,锁定送风机送出的风量维持不变;
将一次风门、点火风门、二次风门及燃尽风门退出自动状态,并记录当前风门开度。
进一步的,在步骤1中,对一次风门、点火风门、二次风门及燃尽风门置位包括以下步骤:
步骤11:将二次风门输出开度置位为二次风门振动开度,将燃尽风门输出开度置位为燃尽风门振动开度;
步骤12:当二次风门和燃尽风门的风量稳定后,将一次风门输出开度置位为一次风门振动开度,将点火风门输出开度置位为点火风门振动开度。
进一步的,在步骤2中,降低炉膛压力以抵消后续炉排振动时因燃烧加剧烟气量增多引起的炉膛压力增加。可以计算因燃烧加剧烟气量增多引起的炉膛压力增加值,从而得出此处要降低多少压力。
进一步的,步骤3包括以下步骤:
步骤31:通过设置在锅炉内的传感器获取锅炉负荷;
步骤32;根据水冷炉排振动时间和锅炉负荷之间的第一函数关系计算水冷炉排振动时间。
其中,第一函数为多段折线曲线,优选的,还可以对第一函数进行修正,比如,使用第一修正系数乘以函数值作为最终的输出值,第一修正系数优选为[0.8,1.2]。
进一步的,步骤4包括以下步骤:
步骤41:一次风门和点火风门复位;
步骤42:在一次风门和点火风门的风量稳定后,将炉膛压力复位;
步骤43:在炉膛压力复位后,将二次风门及燃尽风门复位;
步骤44:将一次风门、点火风门、二次风门及燃尽风门恢复自动状态。
步骤45:将送风机恢复自动状态,解除送风机输出值锁定。
进一步的,整个锅炉运行期间,炉排振动控制处于反复循环过程中,即炉排振动完成,经过炉排振动间隔时间后新的炉排振动重新开始(即经过振动间隔时间后重复步骤1-4)。
炉排振动间隔时间的计算方法包括:获取连接锅炉的给料***的转速,根据振动间隔时间与转速之间第二函数计算振动间隔时间,第二函数为多段折线曲线,还可以对第二函数进行修正,比如,使用第二修正系数乘以函数值作为最终的输出值,第二修正系数优选为[0.8,1.2]。
根据本发明的另一方面,提出一种生物质锅炉水冷振动炉排的控制***,包括数据采集模块、风门控制模块、锅炉压力控制模块和炉排振动时间计算模块;
数据采集模块,连接生物质锅炉的送风机、一次风门、点火风门、二次风门、燃尽风门和引风机,用于获取送风机和引风机的风量,获取一次风门、点火风门、二次风门、燃尽风门的开度信息;并将信息传送给风门控制模块、炉排振动时间计算模块和锅炉压力控制模块;
风门控制模块,用于接收数据采集模块传送的风门开度信息,调节风门开度;
锅炉压力控制模块,用于接收数据采集模块发送的炉膛压力信息,控制引风机的出力,进而控制炉膛压力;锅炉压力控制模块还能够接收数据采集模块发送的锅炉负荷信息,并将信息发送到炉排振动时间计算模块;
炉排振动时间计算模块,用于接收锅炉压力控制模块发送的锅炉负荷信息,并计算炉排振动的时间。
进一步的,炉排振动时间计算模块包括第一函数生成单元、第一计算单元和第一修正单元;第一函数生成单元,用于生成炉排振动时间与锅炉负荷之间的函数,函数为多段折线曲线;第一计算单元,用于通过锅炉负荷信息和第一函数计算炉排振动的时间;第一修正单元,用于对炉排振动的时间进行修正,第一修正系数为[0.8,1.2]。
进一步的,控制***还包括炉排振动间隔时间计算模块,炉排振动间隔时间计算模块用于接收数据采集模块发送的与锅炉连接的给料***的转速,计算振动间隔时间。
进一步的,炉排振动间隔时间计算模块包括第二函数生成单元、第二计算单元和第二修正单元;第二函数生成单元,用于获取与连接锅炉的给料***的转速,并生成振动间隔时间与转速之间的函数,函数为多段折线曲线;第二计算单元,用于通过转速和第二函数计算炉排振动间隔时间;第二修正单元,用于对炉排振动间隔时间进行修正,第二修正系数为[0.8,1.2]。
进一步的,控制***还包括氧量判定模块,用于接收数据采集模块发送的锅炉氧量信息,并比较氧量和设定阈值的大小。优选的,阈值为3%,当氧量大 于阈值时,控制***的其他模块才正常工作,否则除采集氧量和判定氧量外,控制***其他功能都无需运行。
根据本发明的另一方面,提供了存储计算机可读指令的一种或多种计算机可读存储介质,这些指令在被设备执行时致使该设备执行根据本发明的水冷振动炉排的控制方法。
本发明此方面的一种或多种计算机可读存储介质例如可以是一种或多种非暂时计算机可读介质。
通过本发明,可以避免炉排振动过程中引起的炉膛压力波动、燃烧波动及氧量波动;明确了锅炉负荷与炉排振动时间的函数关系,可以根据锅炉负荷自动设定炉排振动时间,控制燃料在炉排上的停留时间;明确了燃料进入炉膛的给料速率与炉排振动间隔时间的函数关系,可以根据燃料进入炉膛的给料速率自动设定炉排振动间隔时间,控制炉排上的燃料量。
附图说明
图1为生物质锅炉的水冷炉排结构示意图;
图2为带有水冷炉排的生物质锅炉的结构示意图;
图3为根据本发明一个实施例的锅炉总体结构图;
图4为根据本发明一个实施例的炉排振动顺序流程图;
图5为根据本发明一个实施例的第一函数示意图;
图6为根据本发明一个实施例的第二函数示意图;
图7为根据本发明一个实施例的控制***的结构图。
为了能明确实现本发明的实施例的结构,在图中标注了特定的尺寸、结构和器件,但这仅为示意需要,并非意图将本发明限定在该特定尺寸、结构、器件和环境中,根据具体需要,本领域的普通技术人员可以将这些器件和环境进行调整或者修改,所进行的调整或者修改仍然包括在后附的权利要求的范围中。
具体实施方式
下面结合附图和具体实施例对本发明提供的一种生物质锅炉水冷振动炉排的控制方法及***进行详细描述。
在以下的描述中,将描述本发明的多个不同的方面,然而,对于本领域内的普通技术人员而言,可以仅仅利用本发明的一些或者全部结构或者流程来实施本发明。为了解释的明确性而言,阐述了特定的数目、配置和顺序,但是很明显,在没有这些特定细节的情况下也可以实施本发明。在其他情况下,为了不混淆本发明,对于一些众所周知的特征将不再进行详细阐述。
如图3所示,生物质锅炉包括给料***、送风机、锅炉、引风机,送风机连接一次风门、点火风门、二次风门、燃尽风门,并通过各风门向锅炉送风。风门本身带有开度位置传感器和控制器,既能采集风门开度,又能控制开度大小。锅炉内还设置有锅炉负荷采集器和氧量采集器,分别用于采集和传送锅炉负荷数据和氧量信息。
锅炉燃烧所需的风量都由送风机提供,送风机的主要作用是为锅炉燃烧提供燃烧风,调节不同工况下的送风量,满足炉膛内的燃烧风需求,当炉排振动过程中,因为燃料量没有变化,所有送风机出口的风量也应该保持不变。一次风门用来调节一次风量,并将一次风送到炉排下方,主要用来参与炉排上固体燃料的燃烧,增加燃烧速率,因为在炉排振动时炉排上的燃料与燃烧风会充分混合,燃烧强度自然会提高,因此振动时应该减少一次风量。点火风门用来调节点火风量,点火风门位于给料口上方,主要用来向生物质燃料提供所需点火风量,加速燃料中可燃气体的释放,因为在炉排振动时会使炉排上的燃料与燃烧风充分混合,燃料中的可燃气体释放加快,因此振动时应该减少点火风量。二次风门和燃尽风门用来调节二次风量和燃尽风量,二次风和燃尽风在炉膛中与烟气的充分混合,补充燃烧所需的燃烧风量。促进炉膛中的微小可燃物及可燃气体燃尽。因为在炉排振动时炉膛中微小可燃物及可燃气体会增加,因此炉 排振动时应该增加二次风量和燃尽风量。引风机通过从炉膛及烟道中抽出烟气,维持锅炉中具有合适的炉膛压力,因为在炉排振动时燃料的燃烧加剧,炉膛内烟气量会增加,因此应该适当的降低炉膛压力,增大引风机出力。给料***向炉膛送入燃烧所需的燃料量,燃料给料速度的改变会引起炉排振动间隔时间的改变。
根据本发明提出的一种生物质锅炉水冷振动炉排的控制方法,如图4所示,包括步骤1:设置一次风门振动开度、点火风门振动开度、二次风门振动开度和燃尽风门振动开度,并对一次风门、点火风门、二次风门及燃尽风门置位;步骤2:增加引风机出力,降低炉膛压力;步骤3:驱动水冷振动炉排振动;步骤4:一次风门输出开度、点火风门输出开度、炉膛压力、二次风门输出开度和燃尽风门输出开度复位。
炉排振动过程中,炉排上的燃料燃烧加剧,炉膛内的可燃性气体增多,燃烧状况迅速发生变化,导致烟气中氧量下降和炉膛压力升高,为应对这个问题,振动过程中应改变配风分配,一次风及点火风量需减少,二次风和燃尽风量需增加,这样调整使总送风量保持不变,只是锅炉配风发生变化,因为在燃料量没有发生变化的情况下,总风量也无需变化。
在一个实施例中,步骤1具体包括如下步骤:
(1)送风机退出自动状态,锁定送风机输出值,保持总风量维持不变。
(2)将一次风门、点火风门、二次风门及燃尽风门退出自动状态。
(3)记录二次风门及燃尽风门当前开度,设置二次风门、燃尽风门振动开度,比如70%,然后将二次风门、燃尽风门输出开度置位为上述的振动开度。该二次风门和燃尽风门的振动开度值通常大于正常运行时的开度值,增加风门开度可以增加炉排上方的风量,以适应后续炉排振动时可燃性气体及小颗粒可燃物增多对风量的需求。
设置输出开度后,风门具有一定的滞后性,当风门的风量稳定,即风量达到设定的振动开度所对应的风量后,比如5秒后,再进行下一步的操作。
(4)记录一次风门及点火风门当前开度,设置一次风门、点火风门振动开度,比如30%,将这两个风门输出开度置位为振动开度,该一次风门和点火风门的振动开度值通常小于正常运行时的开度值,减少一次风门和点火风门开度可以分别减少从炉排下方及给料口上方进入的风量,以减少后续炉排振动时炉排上燃料的燃烧速率及可燃性气体的释放。当风门的风量稳定后再执行下一步操作。
在步骤2中,因为步骤1中调整了不同风门的风量,因此炉膛内的燃烧、压力和烟气中氧量都会产生变化,为了抵消这种后续炉排振动时因燃烧加剧烟气量增多引起的炉膛压力增加,需要适当增加引风机输出,以降低炉膛压力,这样,整个振动过程中就可以维持炉膛内的燃烧、压力稳定和烟气中氧量稳定。例如,可以在步骤1风门调整前记录炉膛压力,然后在步骤2中对炉膛压力进行修订,比如在一个实施例中,将炉膛压力降低200Pa。
在步骤3中,当炉膛压力达到修订值并稳定后(这个时间可以利用经验值设定,比如5秒),水冷炉排就可以开始振动了。
当炉排振动时,炉排上燃料一边燃烧,一边向炉排后部运动,直至燃烬,最后落入落渣口。炉排振动时间越长,炉排上的燃料与燃烧风混合越充分,可燃烧气体释放速度越快,燃烧也就愈加剧烈,燃烧速率也会变快,相应的在燃料在炉排上停留时间也应变短,因此要求燃料向后移动的速度也变快。当锅炉负荷升高时,锅炉需求的热量变多,进入锅炉的燃料也会增多,这就要求炉排上的燃料燃烧速率加快,燃料在炉排的停留时间变短,因此,需要炉排振动时间变长。反之,当锅炉负荷降低时,锅炉需求的热量变少,进入锅炉的燃料也会减少,这就要求炉排上的燃料燃烧速率减慢,燃料在炉排的停留时间变长,因此,需要炉排振动时间变短。所以炉排振动时间与锅炉负荷有关,炉排振动时间与锅炉负荷之间的关系为第一函数f 1(x),如图5所示,第一函数f 1(x)为多段折线曲线,此函数是根据振动炉排及锅炉的设计数据计算得出(本领域技术人员通过现有的技术手段就能够得出)。还可以对第一函数f 1(x)进行修正,根 据锅炉负荷经过函数关系后得到的炉排振动时间乘以第一修正系数K 1后,得到并输出最终的炉排振动时间。第一修正系数K 1由运行人员根据锅炉实际运行工况及燃料种类、热值等因素变化对第一函数f 1(x)的输出进行修正调整,根据项目经验,通常修正系数在0.8-1.2之间。
这种炉排振动时间的设定方法,明确了锅炉负荷与炉排振动时间的函数关系,可以根据锅炉负荷自动设定炉排振动时间,控制燃料在炉排上的停留时间。
在步骤4中,当炉排振动完成后,恢复正常的风量分配和炉膛压力。在一个实施例中,具体来说可以包括如下步骤:
(1)一次风门及点火风门取消置位振动开度值,恢复炉排振动前一次风门及点火风门开度值。
(2)在一次风门和点火风门的风量稳定后(比如间隔10秒后,减小因一次风量及点火风量增加对炉膛燃烧的影响),将炉膛压力恢复(比如,在上面描述的炉膛压力降低200Pa的实施例中,将炉膛压力恢复为原值)。
(3)炉膛压力恢复后(比如间隔5秒后),二次风门及燃尽风门取消置位振动开度值,恢复炉排振动前二次风门及燃尽风门开度值。
(4)将一次风门、点火风门、二次风门及燃尽风门恢复自动状态。
(5)将送风机恢复自动状态,解除送风机输出值锁定。
整个锅炉运行期间,首先判断烟气中氧量是否大于设定阈值,比如3%,如果氧量小于阈值,无法满足炉排振动时燃烧加剧的要求,当条件满足后,炉排才按上述的步骤进行振动。炉排振动控制处于反复循环过程中,炉排振动完成后,进入炉排振动间隔时间,当炉排振动间隔时间结束后,新的炉排振动重新开始。
这种新的炉排振动循环过程中炉排及关联设备的运行方法,可以避免炉排振动过程中引起的炉膛压力波动、燃烧波动及氧量波动。
在一个实施例中,当进入锅炉的燃料量达到一定量时,如果继续推进燃料,就会造成进料口下方的炉排上燃料比较多,炉排上的料层比较厚,不利于燃料 的充分燃烧,为了维持炉排上的料层厚度及炉排上的燃料总量与锅炉的设计值保持一致,就需要当燃料进入炉膛的燃料量达到一定量时,开始触发炉排振动,将进料口下方的燃料向前移动。因此,炉排振动间隔时间与进入炉膛的燃料量有关,而进入炉膛的燃料量是由给料***转速和进料时间决定的。当给料***转速变低时,进料时间就会变长,炉排振动间隔时间也会变长,反之,当给料***转速变高时,进料时间就会变短,炉排振动间隔时间也会变短,所以炉排振动间隔时间与给料***转速有关,炉排振动间隔时间与给料***转速之间的第二函数f 2(x)如图6所示,第二函数f 2(x)为多段折线曲线,是根据振动炉排及锅炉的设计数据计算得出的。炉排振动间隔时间根据给料***转速经过函数关系计算得出。还可以对炉排振动间隔时间进行修正,如乘以第二修正系数K 2后,输出最终的炉排振动间隔时间。第二修正系数K 2由运行人员根据锅炉实际运行工况及燃料种类、热值等因素变化对第二函数f 2(x)的输出进行修正调整,根据项目经验,通常修正系数在0.8-1.2之间。
这种炉排振动间隔时间的设定方法,明确了燃料进入炉膛的给料速率与炉排振动间隔时间的函数关系,可以根据燃料进入炉膛的给料速率自动设定炉排振动间隔时间,控制炉排上的燃料量。
本文所披露的水冷振动炉排的控制方法可以在被配置为包括执行该方法的电路***的设备中实施,或者也可利用存储在一种或多种计算机可读存储介质上的软件来实施。该计算机可读介质包括计算机可执行指令,这些指令被设备执行时致使该设备执行上述水冷振动炉排的控制方法。这样的计算机可读存储介质如可以是非暂时计算机可读介质。
根据本发明的另一方面,提出一种生物质锅炉水冷振动炉排的控制***,如图7所示,包括数据采集模块、风门控制模块、锅炉压力控制模块和炉排振动时间计算模块;其中,
数据采集模块,连接生物质锅炉的送风机、一次风门、点火风门、二次风门、燃尽风门和引风机,用于获取送风机和引风机的风量,获取一次风门、点 火风门、二次风门、燃尽风门的开度信息;并将信息传送给风门控制模块、炉排振动时间计算模块和锅炉压力控制模块;
风门控制模块,用于接收数据采集模块传送的风门开度信息,根据设定值调节风门开度,比如将一次风门的开度设置为一次风门的振动开度等;
锅炉压力控制模块,用于接收数据采集模块发送的炉膛压力信息,控制引风机的出力,进而控制炉膛压力,比如增加引风机的输出风量,从而降低炉膛压力;锅炉压力控制模块还能够接收数据采集模块发送的锅炉负荷信息,并将信息发送到炉排振动时间计算模块;
炉排振动时间计算模块,用于接收锅炉压力控制模块发送的锅炉负荷信息,并计算炉排振动的时间。炉排振动时间计算模块包括第一函数生成单元、第一计算模块和第一修正单元;第一函数生成单元,用于生成炉排振动时间与锅炉负荷之间的第一函数f 1(x),此函数为多段折线曲线,第一函数f 1(x)是根据振动炉排及锅炉的设计数据计算得出的;第一计算模块,可以根据第一函数f 1(x)和锅炉负荷计算炉排振动的时间;第一修正单元,用于对从第一计算单元得到的炉排振动时间进行修正,第一修正系数由运行人员根据锅炉实际运行工况及燃料种类、热值等因素变化对第一函数f 1(x)的输出进行修正调整,根据项目经验,通常修正系数在0.8-1.2之间。
控制***还可以包括炉排振动间隔时间计算模块,炉排振动间隔时间计算模块用于接收数据采集模块发送的与锅炉连接的给料***的转速,计算振动间隔时间。炉排振动间隔时间计算模块包括第二函数生成单元、第二计算单元和第二修正单元;第二函数生成单元,用于获取与锅炉连接的给料***的转速,并生成振动间隔时间与转速之间的第二函数f 2(x),第二函数f 2(x)为多段折线曲线,第二函数f 2(x)是根据振动炉排及锅炉的设计数据计算得出的;第二计算单元,可以根据转速和第二函数f 2(x)计算炉排振动间隔时间;第二修正单元,用于对从第二计算单元得到的炉排振动间隔时间进行修正,第二修正系数K 2由运行人员根据锅炉实际运行工况及燃料种类、热值等因素变化对第二函数f 2(x)的 输出进行修正调整,根据项目经验,通常修正系数在0.8-1.2之间。
进一步的,控制***还包括氧量判定模块,用于接收数据采集模块发送的锅炉氧量信息,并判断氧量和设定阈值的大小。优选的,阈值为3%,当氧量大于阈值时,控制***正常工作;否则除采集氧量和判定氧量外,控制***其他功能都无需运行,即只对采集的氧量进行判断。
本发明的锅炉水冷振动炉排的控制方法和***能够在炉排循环振动过程中使炉排及与炉排振动相关的设备按照预设的振动周期和顺序自动依次运行,无需运行人员手动干预,在整个炉排振动周期中,可以避免炉排振动时因炉排上燃料的大量可燃性气体的释放和进入炉膛的燃烧风量不合理,造成炉膛内瞬间爆燃引起的炉膛压力波动、烟气氧量下降以及主蒸汽压力、温度波动,甚至停炉风险。
此外,本发明还实现了对炉排振动时间及间隔时间的自动控制,改变了振动时间及间隔时间由运行人员手动控制,在炉排振动周期中可以根据进入炉膛的燃料量及锅炉负荷的变化,自动调整炉排的振动时间及间隔时间,控制炉排上的燃料量及燃料在炉排上的停留时间,有利于炉排上的燃料更好的燃烧,减少炉渣和飞灰的含碳量,提高燃料的燃尽率及锅炉效率。
最后应说明的是,以上实施例仅用以描述本发明的技术方案而不是对本技术方案进行限制,本发明在应用上可以延伸为其他的修改、变化、应用和实施例,并且因此认为所有这样的修改、变化、应用、实施例都在本发明的精神和教导范围内。

Claims (17)

  1. 一种生物质锅炉水冷振动炉排的控制方法,所述生物质锅炉包括送风机、锅炉、水冷振动炉排、与所述锅炉、水冷振动炉排和送风机相连的一次风门、点火风门、二次风门和燃尽风门,和与所述锅炉相连的引风机,其特征在于,所述方法包括下列步骤:
    步骤1:设置一次风门振动开度、点火风门振动开度、二次风门振动开度和燃尽风门振动开度,并对所述一次风门、点火风门、二次风门及燃尽风门置位;
    步骤2:增加所述引风机出力,降低炉膛压力;
    步骤3:驱动所述水冷振动炉排振动;
    步骤4:将所述一次风门输出开度、点火风门输出开度、炉膛压力、二次风门输出开度和燃尽风门输出开度复位。
  2. 根据权利要求1所述的控制方法,其特征在于,在所述步骤1之前,比较锅炉烟气中的氧量与设定阈值的大小。
  3. 根据权利要求2所述的控制方法,其特征在于,当氧量大于3%时,执行所述步骤1-4。
  4. 根据权利要求1所述的控制方法,其特征在于,在所述步骤1中,在对所述一次风门、点火风门、二次风门及燃尽风门置位之前,还包括以下步骤:
    将所述送风机退出自动状态,锁定送风机送出的风量维持不变;
    将所述一次风门、点火风门、二次风门及燃尽风门退出自动状态,并记录当前风门开度。
  5. 根据权利要求1所述的控制方法,其特征在于,在所述步骤1中,对所述一次风门、点火风门、二次风门及燃尽风门置位包括以下步骤:
    步骤11:将所述二次风门输出开度置位为所述二次风门振动开度,将所述燃尽风门输出开度置位为所述燃尽风门振动开度;
    步骤12:在所述二次风门和燃尽风门的风量稳定后,将所述一次风门输出开度置位为所述一次风门振动开度,将所述点火风门输出开度置位为所述点火 风门振动开度。
  6. 根据权利要求1所述的控制方法,其特征在于,在所述步骤2中,降低炉膛压力以抵消后续炉排振动时因燃烧加剧烟气量增多引起的炉膛压力增加。
  7. 根据权利要求1所述的控制方法,其特征在于,所述步骤3包括以下步骤:
    步骤31:通过设置在锅炉内的传感器获取锅炉负荷;
    步骤32;根据水冷炉排振动时间和锅炉负荷之间的第一函数关系计算所述水冷炉排振动时间。
  8. 根据权利要求7所述的控制方法,其特征在于,所述第一函数为多段折线曲线,所述第一函数能够由第一修正系数进行修正,所述第一修正系数取值为[0.8,1.2]。
  9. 根据权利要求1所述的控制方法,其特征在于,所述步骤4包括以下步骤:
    步骤41:将所述一次风门和点火风门复位;
    步骤42:在所述一次风门和点火风门的风量稳定后,将所述炉膛压力复位;
    步骤43:在所述炉膛压力复位后,将所述二次风门及燃尽风门复位;
    步骤44:将所述一次风门、点火风门、二次风门及燃尽风门恢复自动状态;
    步骤45:将所述送风机恢复自动状态,解除送风机输出值锁定。
  10. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    步骤5:获取连接锅炉的给料***的转速,根据振动间隔时间与所述转速之间第二函数计算所述振动间隔时间,经过所述振动间隔时间后重复所述步骤1-4。
  11. 根据权利要求10所述的方法,其特征在于,所述第二函数为多段折线曲线,所述第二函数能够由第二修正系数进行修正,所述第二修正系数为[0.8,1.2]。
  12. 一种生物质锅炉水冷振动炉排的控制***,其特征在于,所述***包 括数据采集模块、风门控制模块、锅炉压力控制模块和炉排振动时间计算模块;
    所述数据采集模块,连接所述生物质锅炉的送风机、一次风门、点火风门、二次风门、燃尽风门和引风机,用于获取所述送风机和引风机的风量,获取一次风门、点火风门、二次风门、燃尽风门的开度信息;并将所述信息传送给风门控制模块、炉排振动时间计算模块和锅炉压力控制模块;
    所述风门控制模块,用于接收所述数据采集模块传送的风门开度信息,调节风门开度;
    所述锅炉压力控制模块,用于接收所述数据采集模块发送的炉膛压力信息,控制所述引风机的出力,进而控制炉膛压力;所述锅炉压力控制模块还能够接收所述数据采集模块发送的锅炉负荷信息,并将所述锅炉负荷信息发送到所述炉排振动时间计算模块;
    所述炉排振动时间计算模块,用于接收所述锅炉压力控制模块发送的锅炉负荷信息,并计算炉排振动的时间。
  13. 根据权利要求12所述的控制***,其特征在于,所述炉排振动时间计算模块包括第一函数生成单元、第一计算单元和第一修正单元;
    所述第一函数生成单元,用于生成炉排振动时间与锅炉负荷之间的第一函数,所述第一函数为多段折线曲线;
    所述第一计算单元,用于通过所述锅炉负荷信息和所述第一函数计算所述炉排振动的时间;
    所述第一修正单元,用于对所述炉排振动的时间进行修正,第一修正系数为[0.8,1.2]。
  14. 根据权利要求12所述的控制***,其特征在于,所述控制***还包括炉排振动间隔时间计算模块,所述炉排振动间隔时间计算模块用于接收数据采集模块发送的与锅炉连接的给料***的转速,计算炉排振动间隔时间。
  15. 根据权利要求14所述的控制***,其特征在于,所述炉排振动间隔时间计算模块包括第二函数生成单元、第二计算单元和第二修正单元;
    所述第二函数生成单元,用于获取与连接锅炉的给料***的转速,并生成振动间隔时间与所述转速之间的函数,所述函数为多段折线曲线;
    所述第二计算单元,用于通过所述转速和所述第二函数计算所述炉排振动间隔时间;
    所述第二修正单元,用于对所述炉排振动间隔时间进行修正,第二修正系数为[0.8,1.2]。
  16. 根据权利要求12所述的控制***,其特征在于,所述控制***还包括氧量判定模块,所述氧量判定模块用于接收所述数据采集模块发送的锅炉氧量信息,并比较氧量与设定阈值的大小。
  17. 存储有计算机可读指令的一种或多种计算机可读存储介质,这些指令在被设备执行时致使该设备执行如权利要求1-11中任一项所述的方法。
PCT/CN2019/084745 2018-06-05 2019-04-28 一种生物质锅炉水冷振动炉排的控制方法及*** WO2019233220A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810569909.7 2018-06-05
CN201810569909.7A CN108800197A (zh) 2018-06-05 2018-06-05 一种生物质锅炉水冷振动炉排的控制方法及***

Publications (1)

Publication Number Publication Date
WO2019233220A1 true WO2019233220A1 (zh) 2019-12-12

Family

ID=64088639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084745 WO2019233220A1 (zh) 2018-06-05 2019-04-28 一种生物质锅炉水冷振动炉排的控制方法及***

Country Status (2)

Country Link
CN (1) CN108800197A (zh)
WO (1) WO2019233220A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108800197A (zh) * 2018-06-05 2018-11-13 北京德普新源科技发展有限公司 一种生物质锅炉水冷振动炉排的控制方法及***
KR102260500B1 (ko) * 2018-12-28 2021-06-03 주식회사 경동나비엔 보일러 및 보일러의 연소 제어방법
CN110500595B (zh) * 2019-07-17 2021-03-05 光大常高新环保能源(常州)有限公司 一种适用于马丁炉垃圾焚烧配风的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0754907B1 (en) * 1995-07-18 2000-10-18 FLS miljoe a/s A process for controlling the combustion in a boiler having a vibrating grate
CN101660766A (zh) * 2009-09-24 2010-03-03 中国电力科学研究院 一种振动炉排锅炉的炉膛压力控制方法
CN101725999A (zh) * 2009-12-11 2010-06-09 中国电力科学研究院 一种生物质振动炉排锅炉的负荷控制方法
CN103265992A (zh) * 2013-05-08 2013-08-28 大唐邓州生物质能热电有限责任公司 生物质锅炉用燃料及其燃烧工艺
CN108800197A (zh) * 2018-06-05 2018-11-13 北京德普新源科技发展有限公司 一种生物质锅炉水冷振动炉排的控制方法及***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017145B (zh) * 2012-12-11 2015-04-15 华北电力大学 带有炭燃烧池的生物质锅炉分段控制燃烧方法及***
CN203364165U (zh) * 2013-05-08 2013-12-25 大唐邓州生物质能热电有限责任公司 水冷振动炉排远方控制***
CN206469248U (zh) * 2017-02-24 2017-09-05 北京德普新源科技发展有限公司 生物质直燃发电炉排锅炉配风机构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0754907B1 (en) * 1995-07-18 2000-10-18 FLS miljoe a/s A process for controlling the combustion in a boiler having a vibrating grate
CN101660766A (zh) * 2009-09-24 2010-03-03 中国电力科学研究院 一种振动炉排锅炉的炉膛压力控制方法
CN101725999A (zh) * 2009-12-11 2010-06-09 中国电力科学研究院 一种生物质振动炉排锅炉的负荷控制方法
CN103265992A (zh) * 2013-05-08 2013-08-28 大唐邓州生物质能热电有限责任公司 生物质锅炉用燃料及其燃烧工艺
CN108800197A (zh) * 2018-06-05 2018-11-13 北京德普新源科技发展有限公司 一种生物质锅炉水冷振动炉排的控制方法及***

Also Published As

Publication number Publication date
CN108800197A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2019233220A1 (zh) 一种生物质锅炉水冷振动炉排的控制方法及***
CN109084324B (zh) 生物质锅炉的燃烧风量控制***及控制方法
EP0543480A2 (en) Apparatus for incinerating waste material
KR101530807B1 (ko) 배열 회수 보일러 및 발전 플랜트
WO2012113285A1 (zh) 燃烧器
WO2019223489A1 (zh) 一种生物质锅炉的锅炉负荷控制***及控制方法
JP2008145007A (ja) 石炭焚きボイラ装置
CN202709171U (zh) 一种燃煤蒸汽锅炉用燃烧控制***
CN104141958A (zh) 机械式垃圾焚烧炉排炉锅炉尾部烟气余热循环利用***及其自动控制方法
CN203810367U (zh) 一种燃煤工业锅炉过量空气系数自动调节***
CN107084404A (zh) 一种火电厂基于燃烧优化控制的精确配风方法
CN104296127A (zh) 一种生物质成型燃料的两段式燃烧装置及燃烧方法
CN106326562B (zh) 一种超临界循环流化床锅炉机组蓄能量化方法
CN207334775U (zh) 生物质燃气锅炉烟气排放氧含量监测分析控制装置
JP4413249B2 (ja) 火葬炉の燃焼制御システムおよび火葬炉の燃焼制御方法
KR20180016129A (ko) 고체 연료 보일러
CN105114960B (zh) 一种垃圾焚烧炉炉膛压力控制的方法
CN216244308U (zh) 一种炉排控制***
CN205245218U (zh) 一种锅炉***
CN105972609B (zh) 一种带负荷校正的垃圾炉焚烧自动控制方法及***
JP2010511852A (ja) バッチ式廃棄物ガス化工程
JP4989287B2 (ja) 木質ペレット燃焼器及びその運転方法
CN107957078A (zh) 一种生物质比例式燃烧控制***
CN107270330B (zh) 一种针对不同燃料特征的深度学习方法
JP4660525B2 (ja) 火葬炉の排気制御方法及びシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814455

Country of ref document: EP

Kind code of ref document: A1