WO2019233064A1 - 一种供热的方法及供热*** - Google Patents

一种供热的方法及供热*** Download PDF

Info

Publication number
WO2019233064A1
WO2019233064A1 PCT/CN2018/119560 CN2018119560W WO2019233064A1 WO 2019233064 A1 WO2019233064 A1 WO 2019233064A1 CN 2018119560 W CN2018119560 W CN 2018119560W WO 2019233064 A1 WO2019233064 A1 WO 2019233064A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water supply
supply flow
temperature
pump
Prior art date
Application number
PCT/CN2018/119560
Other languages
English (en)
French (fr)
Inventor
曾智勇
万绪财
余锐
Original Assignee
四川协成电力工程设计有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川协成电力工程设计有限公司 filed Critical 四川协成电力工程设计有限公司
Publication of WO2019233064A1 publication Critical patent/WO2019233064A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems

Definitions

  • the present application belongs to the field of heating technology, and particularly relates to a heating method and a heating system.
  • Heating is a major death project, which can provide stable and safe heat source power in cold winters, and guarantee the normal life and production of heating areas.
  • heating equipment when used for heating, it can only supply energy to the user end, and cannot use low-cost electricity for energy storage, resulting in the inability to use the stored heat to reheat and the heating cost is high.
  • the embodiments of the present application provide a heating method and a heating system to solve the problem that in the prior art, because low-cost electricity cannot be used for heat storage, the heat cannot be re-heated by using heat storage. High problem.
  • the first aspect of the embodiments of the present application provides a method for heating, which is applied to a heating system.
  • the heating system includes a first temperature monitoring unit, a second temperature monitoring unit, a first circulating water pump, and a second circulating water pump.
  • a heat storage device and a user terminal the first circulating water pump is connected to the user terminal, the second circulating water pump is respectively connected to the user terminal and the heat storage device, and the first temperature monitoring unit is provided at On the water supply pipe between the first circulating water pump and the user terminal, the second temperature monitoring is provided on a return water pipe between the first circulating water pump and the user terminal.
  • the heating method includes:
  • a target water supply flow rate is calculated based on the water supply temperature and the return water temperature.
  • the second water supply flow control command is used to instruct the second circulating water pump to deliver a preset maximum water supply flow Water to the client.
  • a third water supply flow is obtained according to the target water supply flow and the preset maximum water supply flow.
  • a second aspect of the embodiments of the present application provides a heating system.
  • the heating system includes a control unit, a first temperature monitoring unit, a second temperature monitoring unit, a first circulating water pump, a second circulating water pump, and a heat storage device.
  • the control unit is respectively connected to the first temperature monitoring unit, the second temperature monitoring unit, the first circulating water pump, the second circulating water pump, and the heat storage device, and the first A circulating water pump is connected to the user terminal, the second circulating water pump is connected to the user terminal and the heat storage device, and the first temperature monitoring unit is disposed on the first circulating water pump and the user terminal.
  • the second temperature monitoring is set on the water return pipeline between the first circulating water pump and the user terminal;
  • the control unit includes:
  • the temperature receiving subunit is configured to receive a water supply temperature sent by the first temperature monitoring unit and a return water temperature sent by the second temperature monitoring unit.
  • a target flow calculation subunit is configured to calculate a target water supply flow according to the water supply temperature and the return water temperature.
  • a first control subunit configured to control the heat storage device to store hot water if the current time belongs to a first preset time period, and send a first water supply flow control command to the first circulating water pump;
  • a water supply flow control command is used to instruct the first circulating water pump to output the water supply of the target water supply flow to the user terminal.
  • a second control subunit configured to send a second water supply flow control command to the second circulating water pump if the current time belongs to a second preset time period, and the second water supply flow control command is used to instruct the second
  • the circulating water pump delivers stored water with a preset maximum water supply flow to the user; obtains a third water supply flow according to the target water supply flow and the preset maximum water supply flow; sends a third water supply flow control command to the first cycle Water pump, the third water supply flow control command is used to instruct the first circulating water pump to output water at the third water supply flow to the user end.
  • the target water supply flow is calculated according to the water supply temperature and the return water temperature. If the current time belongs to the first preset time period, Then the heat storage device is controlled to store hot water, and a first water supply flow control command is sent to the first circulating water pump. The first water supply flow control command is used to instruct the first circulating water pump to output the water supply of the target water supply flow to the user terminal.
  • a second water supply flow control command is sent to the second circulating water pump, and the second water supply flow control command is used to instruct the second circulating water pump to deliver the stored water of the preset maximum water supply flow to the user end; according to the target
  • the water supply flow rate and the preset maximum water supply flow rate are used to obtain a third water supply flow rate;
  • a third water supply flow control command is sent to the first circulating water pump, and the third water supply flow control command is used to instruct the first circulating water pump to output the water supply of the third water supply flow rate to the user end .
  • the first preset Set the low-cost electricity corresponding to the time period for heat storage In the second preset time period, control the first circulating pump and the second circulating water pump to jointly deliver water to the user, make full use of the heat stored in the storage device, and effectively Reduced heating costs.
  • FIG. 1 is a schematic flowchart of an implementation of a heating method provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of an implementation process of a heating method provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a heating system according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a heating system according to an embodiment of the present application.
  • FIG. 1 shows an implementation process of a heating method provided by an embodiment of the present application.
  • the process execution body of the embodiment of the present application may be a control unit.
  • the method is applied to a heating system, where the heating system includes a first A temperature monitoring unit, a second temperature monitoring unit, a first circulating water pump, a second circulating water pump, a heat storage device, and a user terminal, the first circulating water pump is connected to the user terminal, and the second circulating water pump is respectively connected to the user terminal A user terminal is connected to the heat storage device, the first temperature monitoring unit is provided on a water supply pipe between the first circulating water pump and the user terminal, and the second temperature monitoring unit is provided on the first cycle On the return water pipe between the water pump and the user.
  • the process of this embodiment is detailed as follows:
  • step S101 a water supply temperature sent by a first temperature monitoring unit and a return water temperature sent by a second temperature monitoring unit are received.
  • control unit includes a terminal device, such as a computer.
  • the first temperature monitoring unit includes a first temperature sensor.
  • the first temperature sensor detects the temperature of the water supply in the water supply pipe, and sends the detected temperature of the water supply to the control unit.
  • water supply means water supply, which is water flowing to the user side, and return water is water flowing out from the user side.
  • the second temperature monitoring unit includes a second temperature sensor.
  • the second temperature sensor detects the temperature of the water supply in the return water pipe, and sends the detected return water temperature to the control unit.
  • hot water refers to water at a first preset temperature, for example, 55 ° C
  • cold water refers to water at a second preset temperature, for example, 17 ° C.
  • step S102 the target water supply flow rate is calculated based on the water supply temperature and the return water temperature.
  • step S102 includes:
  • G is the target water supply flow
  • T 1 is the water supply temperature
  • T 2 is the return water temperature
  • Q is the current heating load
  • C is the specific heat capacity of the water.
  • step S103 if the current time belongs to the first preset time period, the heat storage device is controlled to store hot water, and a first water supply flow control command is sent to the first circulating water pump.
  • the first water supply flow control command is used to instruct the first A circulating water pump outputs the water supplied by the target water supply flow to the user.
  • the first preset time period refers to a valley segment and / or a flat segment, that is, a period during which the valley electricity price and / or the flat electricity price are executed in the heating area.
  • the control unit acquires the current time every preset control time (for example, 0.5 hours), and detects whether the current time belongs to the first preset time period or the second preset time period. If it is detected that the current time belongs to the first preset time period, it means that the electricity price at the current time is low, and the heating equipment can be controlled to supply heat separately, and the heat storage equipment is controlled to store heat. If it is detected that the current time belongs to the second preset time period, If a time period is set, it means that the current electricity price is high, and the heat storage equipment and the heating equipment are controlled to supply heat together. Because the hot water stored in the heat storage equipment is limited, it cannot be used for heating alone.
  • preset control time for example, 0.5 hours
  • control unit when the control unit detects that the current time belongs to the first preset time period, it turns on the heat storage device, the heat storage device starts to operate, and stores hot water.
  • the heat storage device includes a hot water storage tank and an electric heater.
  • the control unit turns on the electric heater, the electric heater heats water in the hot water storage tank, and stores hot water.
  • the control unit when the control unit detects that the current time belongs to the first preset time period, it searches for the frequency corresponding to the target water supply flow, generates a first water supply flow control command, and sends the first water supply flow control command to the first water supply flow control command. Including the frequency corresponding to the target water supply flow, when the first circulating water pump receives the water supply flow control command, it adjusts its own frequency to the frequency corresponding to the target water supply flow, so that the first circulation water pump can output the water supply of the target water supply flow, thereby achieving Up the flow control.
  • the first circulating water pump is a variable frequency circulating water pump.
  • control unit when the control unit detects that the current time belongs to the first preset time period, it controls the heating equipment to heat the return water and heat the return water temperature to the water supply temperature.
  • step S104 if the current time belongs to the second preset time period, a second water supply flow control command is sent to the second circulating water pump, and the second water supply flow control command is used to instruct the second circulating water pump to deliver the preset maximum water supply flow.
  • the first preset time period is a peak period, that is, a period during which the peak electricity price is performed in the heating area, that is, a period during which the heating region has the highest power price, for example, 8:00 to 21:00.
  • control unit detects that the current time belongs to the second preset time period, it indicates that the current price of electricity is high and the heat storage equipment is required to provide auxiliary heating, and then the second circulating water pump is turned on, and the second circulating water pump Pump the hot water stored in the thermal storage device to the client.
  • the maximum water supply flow is the maximum water flow that can be delivered by the second circulating water pump. Since the hot water stored in the heat storage equipment is limited, in order to use the hot water stored in the heat storage equipment most effectively, that is, To minimize the overall power consumption of the heating system and the lowest cost, the researchers have obtained the maximum water supply flow through continuous experiments.
  • the second circulating water pump is a variable frequency circulating water pump.
  • the frequency corresponding to the maximum water supply flow rate is found, and a second water supply flow control command is generated and sent to the second circulating water pump.
  • the second water supply flow control command includes the frequency corresponding to the maximum water supply flow rate.
  • the self-frequency is adjusted to the frequency corresponding to the maximum water supply flow rate, so that the second circulation water pump can output the stored water of the maximum water supply flow rate, thereby achieving flow control.
  • the difference between the target water supply flow rate and the preset maximum water supply flow rate is calculated to obtain a third water supply flow rate.
  • the frequency corresponding to the third water supply flow rate is found, and a third flow control command is generated and sent to the first circulating water pump.
  • the third flow control command includes the frequency corresponding to the third water supply flow rate.
  • the self-frequency is adjusted to the frequency corresponding to the third water supply flow rate, so that the one circulating water pump can output the water supply with the maximum water supply flow rate to the user end, thereby realizing the heating of the heating equipment.
  • control heating device and the heat storage device are configured to jointly heat the return water and heat the return water temperature to the water supply temperature.
  • the heating system further includes a smoke monitoring unit and a water spray device.
  • the heating method further includes:
  • the smoke monitoring unit includes at least a smoke sensor.
  • control unit is connected to the smoke sensor and the water spraying device, respectively.
  • a smoke sensor and a water spraying device are placed at a location prone to fire.
  • the smoke sensor detects the smoke concentration at the location, and sends the smoke concentration to the control unit at a preset concentration collection time.
  • the control unit will The smoke concentration is compared with the preset concentration range. If the smoke concentration is greater than the preset concentration range, it means that a fire may occur at a location where the smoke concentration is greater than the preset concentration range. If the position where the smoke concentration is greater than the preset concentration range is used as the target position, turn on The water spray device corresponding to the target position, the water spray device sprays water.
  • the water spray device may include a spray head and a water tank connected to the spray head.
  • the method includes:
  • fire help information is sent to the fire control room, and the fire help information includes target location information.
  • the control unit controls the water spray device to spray water
  • the heating system further includes a first pressure monitoring unit, a second pressure monitoring unit, and a water supplement dosing pump connected to the control unit.
  • the first pressure monitoring unit is disposed between the first circulating water pump and the user terminal.
  • the second pressure monitoring is set on the water return pipeline between the first circulating water pump and the user end, and the method for heating further includes:
  • controlling the supplementary dosing pump to supplement water according to the pressure of the water supply pipeline and the pressure of the return pipeline includes:
  • controlling the water replenishment and dosing pump to replenish water until the current pressure difference decreases to the preset pressure difference includes:
  • the first pressure monitoring unit includes a first pressure sensor, and the first pressure sensor detects a water pressure of the water supply in the water supply pipe, obtains the water supply pipe pressure, and sends the water supply pipe pressure to the control unit.
  • the second pressure monitoring unit includes a second pressure sensor, and the second pressure sensor detects the water pressure of the return water in the return pipe, obtains the return pipe pressure, and sends the return pipe pressure to the control unit.
  • the water supply pipe pressure transmitted by the first pressure sensor and the water return pipe pressure transmitted by the second pressure sensor are received, and the difference between the water supply pipe pressure and the water return pipe pressure is calculated to obtain the current water return pipe and the water supply pipe.
  • the difference in water pressure is the current pressure difference.
  • the replenishment and dosing pump is controlled to replenish water, and after a preset time, the water supply pipe pressure sent by the first pressure sensor and the pressure sent by the second pressure sensor are continuously received.
  • Backwater pipeline pressure Recalculate the difference between the pressure of the water supply pipeline and the pressure of the backwater pipeline to get the current pressure difference. Compare the current pressure difference with the preset pressure difference. If the current pressure difference is greater than the preset pressure difference, the interval is preset. After that time, it continues to receive the water supply pipe pressure sent by the first pressure sensor and the water return pipe pressure sent by the second pressure sensor, and recalculates the current pressure difference. If the current pressure difference is not greater than the preset pressure difference, the water supply pump is controlled to stop the water supply.
  • the heating system further includes a water quality detector connected to the control unit.
  • At least one current water quality parameter value sent by the water quality detector is received, and if the current water quality parameter value is not equal to the corresponding standard value, the water replenishment and dosing pump is controlled to add medicine.
  • the step of controlling the rehydration dosing pump for dosing specifically includes:
  • the medicament addition control command is used to instruct the hydration dosing pump to output the medicament according to the medicament addition amount.
  • the water quality parameter may include PH (Hydrogen ion concentration, hydrogen ion concentration index), ammonia nitrogen, and so on.
  • the heating system further includes a water quality sampler connected to the water quality detector, and the water quality sampler is arranged on the water supply pipeline for collecting water samples and transmitting the water samples to the water quality detector through a hose.
  • the detector detects the water sample to obtain the current water quality parameter value, such as the current pH value of the water.
  • the water quality detector sends the current water quality parameter value to the control unit after a first preset time interval.
  • the standard value is a standard value of a water quality parameter.
  • each current water quality parameter value is compared with a corresponding standard value, for example, the current water quality parameter value is A and B, the standard value corresponding to A is a, and the standard value corresponding to B is b, respectively Compare A with a, B and b. If the current water quality parameter value is not equal to the standard value, calculate the difference between the current water quality parameter value and the corresponding standard value.
  • the hydration dosing pump when the hydration dosing pump receives the medicament addition control instruction, the hydration dosing pump outputs the medicament, and the output medicament dose is the medicament addition amount. For example, 20 ml of medicament A is output.
  • the quality of the return water After changing the quality of the water supply, the quality of the return water will be changed accordingly, thereby changing the water quality of all the water supply pipes and the water in the return pipes. It can also protect the pipes and extend the service life of the pipes. For example, if the pH of the water is too low, Corrosive to pipes.
  • the water supplement pressure pump is connected to at least one medicating device, and a medicating solenoid valve is installed at the bottom of each medicating device, and the medicinal solenoid valve is connected to the control unit, wherein the medicating device is filled with a medicinal agent.
  • a number is assigned to each dosing solenoid valve, and each number is unique. Obtain the medicine addition amount, the first flow rate, and the solenoid valve number corresponding to the difference from the preset medicine addition comparison table. Open the solenoid valve corresponding to the solenoid valve number, and the medicine adding device corresponding to the solenoid valve can output the medicine to the hydration dosing pump. The hydration dosing pump outputs the medicament to the water supply pipeline.
  • the supplementary water pressure pump may be a variable frequency water pump.
  • control unit sends a medicament delivery control command to the hydration dosing pump, the medicament delivery control command is used to instruct the hydration booster pump to deliver the first flow of medicament to the water supply pipeline, and the control unit calculates the shutdown based on the medicament addition amount and the first flow Time, when the closing time is reached, the solenoid valve corresponding to the solenoid valve number is closed.
  • the first circulating water pump by controlling the output of the first circulating water pump to supply water to the user terminal and controlling the heat storage device to store heat within the first preset time period, while satisfying the energy demand of the user terminal, the first The low-cost electricity corresponding to a preset period of time is used for heat storage.
  • the first circulating pump and the second circulating water pump are controlled to jointly deliver water to the user terminal, and the heat stored in the storage device is fully utilized. Effectively reduces heating costs.
  • FIG. 2 shows an implementation process of a heating method provided by another embodiment of the present application, and the process is detailed as follows:
  • step S201 a monitoring video sent by a monitoring device is received.
  • the heating system further includes a monitoring device.
  • the monitoring device is connected to the control unit.
  • the monitoring device is configured to collect a monitoring video including key equipment in a heating system.
  • the key equipment includes a first circulating water pump, a second circulating water pump, a heat storage device, a heating device, and the like.
  • the monitoring device transmits the captured monitoring video to the control unit in real time.
  • step S202 a video transmission request sent by a mobile terminal is received, and the video transmission request includes a mobile terminal number, a transmission method, and a transmission speed.
  • control unit may also perform wireless communication with the mobile terminal to implement remote communication.
  • the control unit may further include a Bluetooth communication sub-unit, a WIFI (WIreless-FIdelity, wireless fidelity) communication sub-unit, and the like.
  • a Bluetooth communication sub-unit a Wi-Fi sub-unit
  • WIFI WIreless-FIdelity, wireless fidelity
  • a video transmission request sent by a mobile terminal is received, and a mobile terminal number, a transmission method, and a transmission speed are proposed from the video transmission request.
  • the transmission method indicates a communication method in which the mobile terminal receives the monitoring video.
  • the transmission speed indicates the speed at which the surveillance video is transmitted from the control unit to the mobile terminal, for example, 10 Mbps (Million bits per second, megabits per second).
  • step S203 it is determined whether to send the monitoring video to the mobile terminal according to the transmission request.
  • control unit determines whether the mobile terminal is a legal user terminal according to a transmission request sent by the mobile terminal, and the legal user terminal indicates a user terminal that can obtain a monitoring video.
  • step S203 includes:
  • the mobile terminal number belongs to a preset number list, a connection is established with the mobile terminal based on the transmission method. After establishing a connection with the mobile terminal, the monitoring video is sent to the mobile terminal according to the transmission speed.
  • the mobile terminal it is determined whether the mobile terminal belongs to the preset number list. If the mobile terminal belongs to the preset number list, it indicates that the mobile terminal is a legitimate client, and then establishes a connection with the mobile terminal based on the transmission method. After establishing a connection with the mobile terminal, The monitoring video is sent to the mobile terminal according to the transmission speed. If it does not belong to the preset number list, it indicates that the mobile terminal is an illegal user terminal and sends connection failure information to the mobile terminal. The mobile terminal cannot obtain the monitoring video.
  • the transmission method included in the video transmission request sent by the mobile terminal is Bluetooth communication, and the transmission speed is 10 Mbps.
  • the mobile terminal number belongs to the mobile terminal list
  • a Bluetooth connection is established with the mobile terminal. After the Bluetooth connection is successfully established, real-time surveillance video is transmitted at 10Mbps.
  • the surveillance video is transmitted according to the transmission method and transmission speed required by the video requester, which greatly improves the transmission efficiency and reduces the number of video transmission failures.
  • the mobile terminal is a legitimate user terminal according to the mobile terminal number, thereby determining whether to transmit a monitoring video to the mobile terminal, and improving the security of transmission.
  • FIG. 3 shows a control unit 110 provided by an embodiment of the present application, which is used to execute the method steps in the embodiment corresponding to FIG. 1.
  • the system in the embodiment of the present application is applied to a heating system, and the heating system includes a control unit.
  • the first temperature monitoring unit, the second temperature monitoring unit, the first circulating water pump, the second circulating water pump, the heat storage device and the user terminal, the control unit is respectively connected with the first temperature monitoring unit, the second temperature monitoring unit, and the first circulating water pump
  • the second circulating water pump is connected to the heat storage device, the first circulating water pump is connected to the user side, the second circulating water pump is connected to the user side and the heat storage device, and the first temperature monitoring unit is arranged between the first circulating water pump and the user side
  • the second temperature monitoring is set on the water return pipeline between the first circulating water pump and the user terminal.
  • the control unit 110 includes:
  • the temperature receiving subunit 120 is configured to receive a water supply temperature sent by the first temperature monitoring unit and a return water temperature sent by the second temperature monitoring unit.
  • the target flow calculation subunit 130 is configured to calculate a target water supply flow according to a water supply temperature and a return water temperature.
  • the first control subunit 140 is configured to control the heat storage device to store hot water if the current time belongs to a first preset time period, and send a first water supply flow control command to the first circulating water pump, the first water supply flow control command The water supply for instructing the first circulating water pump to output the target water supply flow to the user end.
  • the second control sub-unit 150 is configured to send a second water supply flow control command to the second circulating water pump if the current time belongs to the second preset time period, and the second water supply flow control command is used to instruct the second circulating water pump to deliver a preset Store the maximum water supply flow to the user; get the third water supply flow according to the target water supply flow and the preset maximum water supply flow; send a third water supply flow control command to the first circulating water pump, and the third water supply flow control command is used to instruct the first
  • the circulating water pump outputs the water supply of the third water supply flow rate to the user end.
  • the target flow calculation sub-unit 130 includes:
  • Heating load acquisition module used to obtain the current heating load.
  • the target flow calculation module is used to calculate the target water supply flow based on the current heating load, water supply temperature and return water temperature using the following formula:
  • G is the target water supply flow
  • T 1 is the water supply temperature
  • T 2 is the return water temperature
  • Q is the current heating load
  • C is the specific heat capacity of the water.
  • the second control sub-unit 140 is further configured to:
  • the heating system further includes a smoke monitoring unit and a water spray device.
  • control unit 110 further includes:
  • the smoke density receiving unit is configured to receive the smoke density sent by the smoke monitoring unit.
  • the water spray control unit is configured to control the water spray device to spray water if the smoke concentration is greater than a preset concentration range.
  • the heating system further includes a monitoring device connected to the control unit.
  • FIG. 4 shows a schematic structural diagram of a control unit provided by another embodiment of the present application. It includes:
  • the video receiving subunit 160 is configured to receive a monitoring video sent by a monitoring device.
  • the transmission request receiving subunit 170 is configured to receive a video transmission request sent by a mobile terminal.
  • the video transmission request includes a mobile terminal number, a transmission method, and a transmission speed.
  • the transmission judging subunit 180 is configured to determine whether to send the monitoring video to the mobile terminal according to the transmission request.
  • the transmission judging sub-unit 180 includes:
  • a number judging module is used to judge whether the mobile terminal number belongs to a preset number list.
  • the first processing module is configured to establish a connection with the mobile terminal based on the transmission method if the mobile terminal number belongs to a preset number list, and after establishing a connection with the mobile terminal, send the monitoring video to the mobile terminal according to the transmission speed.
  • the second processing module is configured to send the connection failure information to the mobile terminal if the mobile terminal number does not belong to the preset number list.
  • control unit 110 further includes other functional modules / units, which are used to implement the method steps in each of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

一种供热的方法及供热***,该供热的方法包括步骤:若当前时刻属于第一预设时间段,则控制储热设备进行储存热水,并发送第一供水流量控制命令至第一循环水泵,第一供水流量控制命令用于指示循环水泵输送目标供水流量的供水至用户端(S103);若当前时刻属于第二预设时间段,则发送第二供水流量控制命令至第二循环水泵,第二供水流量控制命令用于指示第二循环水泵输送预设最大供水流量的储水至用户端,根据目标供水流量和预设最大供水流量得到第三供水流量,发送第三供水流量控制命令至第一循环水泵,第三供水流量控制命令用于指示第一循环水泵输送第三供水流量的供水至用户端(S104)。该供热方法有效降低了供热成本。

Description

一种供热的方法及供热*** 技术领域
本申请属于供热技术领域,尤其涉及一种供热的方法及供热***。
背景技术
供热属于一项重大民生工程,能够在寒冷冬天提供稳定、安全的热源动力,保障供暖区域的正常生活以及生产。
现有技术中,供热设备在进行供热时,只能对用户端进行供能,而不能利用低价电进行储能,导致不能利用储热重新供热,供热成本较高。
技术问题
有鉴于此,本申请实施例提供了一种供热的方法及供热***,以解决现有技术中由于不能利用低价电进行储热,导致不能利用储热重新供热,供热成本较高问题。
技术解决方案
本申请实施例的第一方面提供了一种供热的方法,应用于供热***,所述供热***包括第一温度监控单元、第二温度监控单元、第一循环水泵、第二循环水泵、储热设备和用户端,所述第一循环水泵与所述用户端连接,所述第二循环水泵分别与所述用户端和所述储热设备连接,所述第一温度监控单元设置在所述第一循环水泵和所述用户端之间的供水管道上,所述第二温度监控设置在所述第一循环水泵和所述用户端之间的回水管道上。
所述供热的方法包括:
接收所述第一温度监控单元发送的供水温度和第二温度监控单元发送的回水温度。
根据所述供水温度和所述回水温度计算目标供水流量。
若当前时刻属于第一预设时间段,则控制所述储热设备进行储存热水,并发送第一供水流量控制命令至所述第一循环水泵,所述第一供水流量控制命令用于指示所述第一循环水泵输出所述目标供水流量的供水至所述用户端。
若当前时刻属于第二预设时间段,则发送第二供水流量控制命令至所述第二循环水泵,所述第二供水流量控制命令用于指示所述第二循环水泵输送预设最大供水流量的储水至所述用户端。
根据所述目标供水流量和所述预设最大供水流量得到第三供水流量。
发送第三供水流量控制命令至所述第一循环水泵,所述第三供水流量控制命令用于指示所述第一循环水泵输出所述第三供水流量的供水至所述用户端。
本申请实施例的第二方面提供了一种供热***,所述供热***包括控制单元、第一温度监控单元、第二温度监控单元、第一循环水泵、第二循环水泵、储热设备和用户端,所述控制单元分别与所述第一温度监控单元、所述第二温度监控单元、所述第一循环水泵、所述第二循环水泵和所述储热设备连接,所述第一循环水泵与所述用户端连接,所述第二循环水泵分别与所述用户端和所述储热设备连接,所述第一温度监控单元设置在所述第一循环水泵和所述用户端之间的供水管道上,所述第二温度监控设置在所述第一循环水泵和所述用户端之间的回水管道上;
所述控制单元包括:
温度接收子单元,用于接收所述第一温度监控单元发送的供水温度和第二温度监控单元发送的回水温度。
目标流量计算子单元,用于根据所述供水温度和所述回水温度计算目标供水流量。
第一控制子单元,用于若当前时刻属于第一预设时间段,则控制所述储热设备进行储存热水,并发送第一供水流量控制命令至所述第一循环水泵,所述第一供水流量控制命令用于指示所述第一循环水泵输出所述目标供水流量的供水至所述用户端。
第二控制子单元,用于若当前时刻属于第二预设时间段,则发送第二供水流量控制命令至所述第二循环水泵,所述第二供水流量控制命令用于指示所述第二循环水泵输送预设最大供水流量的储水至所述用户端;根据所述目标供水流量和所述预设最大供水流量得到第三供水流量;发送第三供水流量控制命令至所述第一循环水泵,所述第三供水流量控制命令用于指示所述第一循环水泵输出所述第三供水流量的供水至所述用户端。
有益效果
本申请实施例通过接收第一温度监控单元发送的供水温度和第二温度监控单元发送的回水温度,根据供水温度和回水温度计算目标供水流量,若当前时刻属于第一预设时间段,则控制储热设备进行储存热水,并发送第一供水流量控制命令至第一循环水泵,第一供水流量控制命令用于指示第一循环水泵输出目标供水流量的供水至用户端,若当前时刻属于第二预设时间段,则发送第二供水流量控制命令至第二循环水泵,第二供水流量控制命令用于指示第二循环水泵输送预设最大供水流量的储水至用户端;根据目标供水流量和预设最大供水流量得到第三供水流量;发送第三供水流量控制命令至第一循环水泵,第三供水流量控制命令用于指示第一循环水泵输出第三供水流量的供水至用户端。本申请实施例通过在第一预设时间段内,控制第一循环水泵输出供水至用户端,并控制储热设备进行储热,从而在满足用户端的用能需求的同时,能够利用第一预设时间段对应的低价电进行储热,在第二预设时间段内,则控制第一循环循泵和第二循环水泵共同输送供水至用户端,充分利用储存设备储存的热量,有效地降低了供热成本。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的供热的方法的实现流程示意图;
图2是本申请一个实施例提供的供热的方法的实现流程示意图;
图3是本申请一个实施例提供的供热***的结构示意图;
图4是本申请一个实施例提供的供热***的结构示意图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定***结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的***、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。
实施例 1
图1示出了本申请的一个实施例提供的供热的方法的实现流程,本申请实施例的流程执行主体可以是控制单元,本方法应用于供热***,所述供热***包括第一温度监控单元、第二温度监控单元、第一循环水泵、第二循环水泵、储热设备和用户端,所述第一循环水泵与所述用户端连接,所述第二循环水泵分别与所述用户端和所述储热设备连接,所述第一温度监控单元设置在所述第一循环水泵和所述用户端之间的供水管道上,所述第二温度监控设置在所述第一循环水泵和所述用户端之间的回水管道上。本实施例过程详述如下:
在步骤S101中,接收第一温度监控单元发送的供水温度和第二温度监控单元发送的回水温度。
在本实施例中,控制单元包括终端设备,例如,电脑。
在本实施例中,第一温度监控单元包括第一温度传感器。
在本实施例中,第一温度传感器检测供水管道中供水的温度,并将检测到的供水温度发送至控制单元。
在本实施例中,供水表示给水,是流向用户端的水,回水是从用户端流出的水。
在本实施例中,第二温度监控单元包括第二温度传感器。
在本实施例中,第二温度传感器检测回水管道中供水的温度,并将检测到的回水温度发送至控制单元。
在一个实施例中,热水是指第一预设温度的水,例如,55℃,冷水是指第二预设温度的水,例如,17℃。
在步骤S102中,根据供水温度和回水温度计算目标供水流量。
在本申请的一个实施例中,步骤S102包括:
1)获取当前供热负荷。
2)根据当前供热负荷、供水温度和回水温度,利用以下公式计算目标供水流量:
G=(3.6*Q)/C*(T 1-T 2
其中:G为目标供水流量;T 1为供水温度;T 2为回水温度;Q为当前供热负荷;C为水的比热容。
在本实施例中,将获取到的当前供热负荷、供水温度和回水温度分别代入G=(3.6*Q)/C*(T 1-T 2)公式中,计算得到目标供水流量。
在步骤S103中,若当前时刻属于第一预设时间段,则控制储热设备进行储存热水,并发送第一供水流量控制命令至第一循环水泵,第一供水流量控制命令用于指示第一循环水泵输出目标供水流量的供水至用户端。
在本实施例中,第一预设时间段是指谷段和/或平段,即供暖区域执行谷电价和/或平电价的时段。
在本实施例中,控制单元每隔预设控制时间(例如,0.5小时)便获取当前时刻,并检测当前时刻属于第一预设时间段还是第二预设时间段。若检测到当前时刻属于第一预设时间段,则表示当前时刻的电价较低,可以控制供热设备进行单独供热,并控制储热设备进行储存热量,若检测到当前时刻属于第二预设时间段,则表示当前电价较高,便控制储热设备和供热设备一起进行供热,由于储热设备储存的热水是有限的,因此不能单独进行供热。
在本实施例中,当控制单元检测到当前时刻属于第一预设时间段时,便开启储热设备,储热设备便开始运行,储存热水。
以一个具体应用场景为例,储热设备包括储热水箱和电加热器,控制单元开启电加热器,电加热器加热储热水箱中的水,储存热水。
在本实施例中,当控制单元检测到当前时刻属于第一预设时间段时,查找目标供水流量对应的频率,生成第一供水流量控制命令发送至第一循环水泵,第一供水流量控制命令包括目标供水流量对应的频率,当第一循环水泵接收到供水流量控制命令后,将自身频率调节至目标供水流量对应的频率,从而该第一循环水泵便可以输出目标供水流量的供水,从而实现了流量的控制。
其中,第一循环水泵为变频循环水泵。
在一个实施例中,当控制单元检测到当前时刻属于第一预设时间段时,控制供热设备对回水进行加热,将回水温度加热至供水温度。
在步骤S104中,若当前时刻属于第二预设时间段,则发送第二供水流量控制命令至第二循环水泵,第二供水流量控制命令用于指示第二循环水泵输送预设最大供水流量的储水至用户端;根据目标供水流量和预设最大供水流量得到第三供水流量;发送第三供水流量控制命令至第一循环水泵,第三供水流量控制命令用于指示第一循环水泵输出第三供水流量的供水至用户端。
在本实施例中,第一预设时间段为峰段,即供暖区域执行峰电价的时段,即供暖区域电价最高的时段,例如,8点到21点。
在本实施例中,若控制单元检测到当前时刻属于第二预设时间段,则表示当前时刻的电价较高,需要储热设备进行辅助供热,便开启第二循环水泵,第二循环水泵将储热设备储存的热水抽送至用户端。
在本实施例中,最大供水流量为第二循环水泵所能输送的最大水流量,由于储热设备储存的热水是有限的,为了让储热设备储存的热水得到最有效的利用,即让供热***整体用电情况最少,成本最低,研究人员经过不断地实验,得到最大供水流量。
其中,第二循环水泵为变频循环水泵。
在本实施例中,查找最大供水流量对应的频率,生成第二供水流量控制命令发送至第二循环水泵,第二供水流量控制命令包括最大供水流量对应的频率,当第二循环水泵接收到第二供水流量控制命令后,将自身频率调节至最大供水流量对应的频率,从而该二循环水泵便可以输出最大供水流量的储水,实现了流量的控制。
在本申请的一个实施例中,计算目标供水流量和预设最大供水流量的差值,得到第三供水流量。
在本实施例中,查找第三供水流量对应的频率,生成第三流量控制命令发送至第一循环水泵,第三流量控制命令包括第三供水流量对应的频率,当第一循环水泵接收到第三供水流量控制命令后,将自身频率调节至第三供水流量对应的频率,从而该一循环水泵便可以输出最大供水流量的供水至用户端,实现了供热设备的供热。
在一个实施例中,当控制单元检测到当前时刻属于第二预设时间段时,控制供热设备和储热设备共同对回水进行加热,将回水温度加热至供水温度。
在本申请的一个实施例中,供热***还包括烟雾监控单元和喷水装置。
在本申请的一个实施例中,供热的方法还包括:
1)接收烟雾监控单元发送的烟雾浓度。
2)若烟雾浓度大于预设浓度范围,则控制喷水装置进行喷水。
在本实施例中,烟雾监控单元包括至少烟雾传感器。
在本实施例中,控制单元分别与烟雾传感器和喷水装置连接。
在本实施例中,在易发生火灾的位置放置烟雾传感器和喷水装置,烟雾传感器检测该位置的烟雾浓度,并间隔预设浓度采集时间将烟雾浓度发送至控制单元,控制单元将接收到的烟雾浓度与预设浓度范围进行比较,若烟雾浓度大于预设浓度范围,则表示烟雾浓度大于预设浓度范围的位置可能发生火灾,将烟雾浓度大于预设浓度范围的位置作为目标位置,则开启目标位置对应的喷水装置,喷水装置进行喷水。
其中,喷水装置可以包括喷头和与喷头连接的水箱。
在本实施例中,在所述控制喷水装置进行喷水之后,包括:
间隔预设火灾检测时间后重新接收目标位置的烟雾监控单元发送的烟雾浓度;
若重新接收的烟雾浓度仍大于预设浓度范围,则发送火灾求助信息至消防控制室,所述火灾求助信息包括目标位置信息。
在本实施例中,控制单元控制喷水装置进行喷水后,通过继续检测目标位置的烟雾浓度是否仍大于预设浓度范围来判断目标位置的火灾有没有被扑灭,若目标位置的烟雾浓度仍大于预设浓度范围,则表示火灾可能过大,则直接发送火灾求助信息至消防控制室,求助消防人员进行扑灭火灾,由于火灾求助信息包括目标位置信息,消防人员可以很快找到发生火灾的地方,减少寻找的时间。
在一个实施例中,供热***还包括与控制单元连接的第一压力监控单元、第二压力监控单元和补水加药泵,第一压力监控单元设置在第一循环水泵和用户端之间的供水管道上,第二压力监控设置在所述第一循环水泵和所述用户端之间的回水管道上,所述供热的方法还包括:
1)接收第一压力监控单元发送的供水管道压力和第二压力监控单元发送的回水管道压力。
2)根据供水管道压力和回水管道压力控制补水加药泵进行补水。
在一个实施例中,根据供水管道压力和回水管道压力控制补水加药泵进行补水,包括:
1)计算供水管道压力与回水管道压力的差值,得到当前压力差。
2)若当前压力差大于预设压力差,则控制补水加药泵进行补水直至当前压力差减小至预设压力差。
在一个实施例中,所述控制所述补水加药泵进行补水直至当前压力差减小至所述预设压力差,包括:
1)控制补水加药泵进行补水。
2)接收第一监控单元发送的供水管道压力和第二监控单元发送的回水管道压力。
3)计算供水管道压力与回水管道压力的差值,得到当前压力差。
4)若当前压力差大于预设压力差,则间隔预设时间后重接接收第一监控单元发送的供水管道压力和第二监控单元发送的回水管道压力。
5)若当前压力差不大于预设压力差,则控制补水加药泵停止补水。
在一个实施例中,第一压力监控单元包括第一压力传感器,第一压力传感器检测供水管道中供水的水压,得到供水管道压力,将供水管道压力发送至控制单元。
在一个实施例中,第二压力监控单元包括第二压力传感器,第二压力传感器检测回水管道中回水的水压,得到回水管道压力,将回水管道压力发送至控制单元。
在本实施例中,由于管线破损以及用户端散热装置的破损等会造成水的损失,从造成管道内水压不符合标准,因此,需要进行补水定压。
在本实施例中,接收第一压力传感器传送的供水管道压力和第二压力传感器传送的回水管道压力,计算供水管道压力和回水管道压力的差值,得到当前回水管道和供水管道中水压的差值,即得到当前压力差。
在本实施例中,当判断出当前压力差大于预设压力差时,便控制补水加药泵补水,经过预设时间后继续接收第一压力传感器发送的供水管道压力和第二压力传感器发送的回水管道压力,重新计算供水管道压力与回水管道压力的差值,得到当前压力差,将当前压力差与预设压力差进行比较,若当前压力差大于预设压力差,则间隔预设时间后再继续接收第一压力传感器发送的供水管道压力和第二压力传感器发送的回水管道压力,重新计算当前压力差,若当前压力差不大于预设压力差,则控制补水泵停止补水。
在一个实施例中,供热***还包括与控制单元连接的水质检测仪。
在一个实施例中,接收水质检测仪发送的至少一个当前水质参数值,若存在当前水质参数值不等于对应的标准值,则控制补水加药泵进行加药。
在本申请的一个实施例中,所述控制补水加药泵进行加药具体包括:
1)计算当前水质参数值与对应的标准值的差值。
2)从预设药剂添加对照表中获取差值对应的药剂添加量。
3)发送药剂添加控制命令至补水加药泵,药剂添加控制命令用于指示补水加药泵根据药剂添加量输出药剂。
在本实施例中,水质参数可以包括PH(Hydrogen ion concentration,氢离子浓度指数)和氨氮(ammonia nitrogen)等等。
在本实施例中,供热***还包括与水质检测仪连接的水质取样器,水质采样器设置在供水管道上,用于采集水样,并通过软管将水样输送至水质检测仪,水质检测仪检测水样,得到当前水质参数值,例如水的当前PH值。
在本实施例中,水质检测仪间隔第一预设时间后,便将当前水质参数值发送至控制单元。
在本实施例中,标准值是水质参数的标准值。
在本实施例中,将每个当前水质参数值与对应的标准值进行比较,例如,当前水质参数值分别为A和B,A对应的标准值是a,B对应的标准值为b,分别将A与a、B与b进行比较,若存在当前水质参数值与标准值不相等,则计算当前水质参数值与对应的标准值的差值。
在本实施例中,当补水加药泵接收到药剂添加控制指令后,补水加药泵便输出药剂,输出药剂量为药剂添加量,例如,输出20毫升的药剂A,由于水是循环的,当改变供水水质后,相应地也会改变回水水质,从而改变全部供水管道和回水管道内的水的水质,也可以保护管道,延长管道的使用寿命,例如,如果水的PH值过低,会腐蚀管道。
在本实施例中,补水加压泵与至少一个加药装置连接,每个加药装置底部安装有加药电磁阀,加药电磁阀与控制单元连接,其中,加药装置装有药剂。
在本实施例中,为每个加药电磁阀分配一个编号,每个编号都是唯一的。从预设药剂添加对照表中获取差值对应的药剂添加量、第一流量以及电磁阀编号,打开电磁阀编号对应的电磁阀,电磁阀对应的加药装置便可以输出药剂至补水加药泵,补水加药泵输出药剂至供水管道。
在本实施例中,补水加压泵可以为变频水泵。
进一步地,控制单元发送药剂输送控制命令至补水加药泵,药剂输送控制命令用于指示补水加压泵输送第一流量的药剂至供水管道,且控制单元根据药剂添加量和第一流量计算关闭时间,当达到关闭时间后,则关闭电磁阀编号对应的电磁阀。
在本实施例中,通过在第一预设时间段内,控制第一循环水泵输出供水至用户端,并控制储热设备进行储热,从而在满足用户端的用能需求的同时,能够利用第一预设时间段对应的低价电进行储热,在第二预设时间段内,则控制第一循环循泵和第二循环水泵共同输送供水至用户端,充分利用储存设备储存的热量,有效地降低了供热成本。
图2示出了本申请的另一个实施例提供的供热的方法的实现流程,其过程详述如下:
在步骤S201中,接收监控装置发送的监控视频。
在本申请的一个实施例中,供热***还包括监控装置。
在一个实施例中,监控装置与控制单元连接。
在本实施例中,监控装置用于采集包含供热***中关键设备的监控视频,关键设备包括第一循环水泵、第二循环水泵、储热设备和供热设备等等。
在本实施例中,监控装置将采集的到监控视频实时传输至控制单元。
在步骤S202中,接收移动终端发送的视频传输请求,视频传输请求包括移动终端编号、传输方式和传输速度。
在本实施中,控制单元还可以与移动终端进行无线通信,实现远程通信。
其中,控制单元还可以包括蓝牙通信子单元和WIFI(WIreless-FIdelity,无线保真)通信子单元等等。
在本实施例中,接收移动终端发送的视频传输请求,从视频传输请求中提出移动终端编号、传输方式和传输速度。
其中,传输方式表示移动终端接收监控视频的通信方式。
其中,传输速度表示监控视频从控制单元传输到移动终端的速度,例如,10Mbps(Million bits per second,兆位每秒)。
在步骤S203中,根据传输请求判断是否将监控视频发送至移动终端。
在本实施例中,控制单元根据移动终端发送的传输请求判断移动终端是否为合法用户端,合法用户端表示可以获取监控视频的用户端。
在本申请的一个实施例中,步骤S203包括:
1)判断移动终端编号是否属于预设编号列表。
2)若移动终端编号属于预设编号列表,则基于传输方式与移动终端建立连接,当与移动终端建立连接后,按照传输速度将监控视频发送至移动终端。
3)若移动终端编号不属于预设编号列表,则发送连接失败信息至移动终端。
在本实施例中,判断移动终端是否属于预设编号列表,若属于预设编号列表,则表明移动终端为合法用户端,便基于传输方式与移动终端建立连接,当与移动终端建立连接后,按照传输速度将监控视频发送至移动终端,若不属于预设编号列表,则表明移动终端为非法用户端,发送连接失败信息至移动终端,该移动终端不能获取监控视频。
以一个具体应用场景为例,移动终端发送的视频传输请求中包含的传输方式为蓝牙通信,传输速度为10Mbps,当该移动终端编号属于移动终端列表时,则与该移动终端建立蓝牙连接,当蓝牙连接建立成功后,则以10Mbps的速度传输实时监控视频。
在本实施例中,将监控视频按照视频请求方要求的传输方式和传输速度进行传输,极大地提高了传输效率,降低视频传输失败的次数。
在本实施例中,根据移动终端编号判断移动终端是否是合法用户端,从而决定是否传输监控视频至该移动终端,提高了传输的安全性。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
实施例 2
图3示出了本申请的一个实施例提供的控制单元110,用于执行图1所对应的实施例中的方法步骤,本申请实施例的***应用于供热***,供热***包括控制单元、第一温度监控单元、第二温度监控单元、第一循环水泵、第二循环水泵、储热设备和用户端,控制单元分别与第一温度监控单元、第二温度监控单元、第一循环水泵、第二循环水泵和储热设备连接,第一循环水泵与用户端连接,第二循环水泵分别与用户端和储热设备连接,第一温度监控单元设置在第一循环水泵和用户端之间的供水管道上,第二温度监控设置在第一循环水泵和用户端之间的回水管道上,控制单元110包括:
温度接收子单元120,用于接收第一温度监控单元发送的供水温度和第二温度监控单元发送的回水温度。
目标流量计算子单元130,用于根据供水温度和回水温度计算目标供水流量。
第一控制子单元140,用于若当前时刻属于第一预设时间段,则控制储热设备进行储存热水,并发送第一供水流量控制命令至第一循环水泵,第一供水流量控制命令用于指示第一循环水泵输出目标供水流量的供水至用户端。
第二控制子单元150,用于若当前时刻属于第二预设时间段,则发送第二供水流量控制命令至第二循环水泵,第二供水流量控制命令用于指示第二循环水泵输送预设最大供水流量的储水至用户端;根据目标供水流量和预设最大供水流量得到第三供水流量;发送第三供水流量控制命令至第一循环水泵,第三供水流量控制命令用于指示第一循环水泵输出第三供水流量的供水至用户端。
在本申请的一个实施例中,目标流量计算子单元130包括:
供热负荷获取模块,用于获取当前供热负荷。
目标流量计算模块,用于根据当前供热负荷、供水温度和回水温度,利用以下公式计算目标供水流量:
G=(3.6*Q)/C*(T 1-T 2
其中:G为目标供水流量;T 1为供水温度;T 2为回水温度;Q为当前供热负荷;C为水的比热容。
在本申请的一个实施例中,第二控制子单元140还用于:
计算目标供水流量和预设最大供水流量的差值,得到第三供水流量。
在本申请的一个实施例中,供热***还包括烟雾监控单元和喷水装置。
在本申请的一个实施例中,控制单元110还包括:
烟雾浓度接收单元,用于接收烟雾监控单元发送的烟雾浓度。
喷水控制单元,用于若烟雾浓度大于预设浓度范围,则控制喷水装置进行喷水。
如图4所示,在本申请的一个实施例中,供热***还包括与所述控制单元连接的监控装置,图4示出了本申请的另一个实施例提供的控制单元的结构示意图,其包括:
视频接收子单元160,用于接收监控装置发送的监控视频。
传输请求接收子单元170,用于接收移动终端发送的视频传输请求,视频传输请求包括移动终端编号、传输方式和传输速度。
传输判断子单元180,用于根据传输请求判断是否将监控视频发送至移动终端。
在本申请的一个实施例中,传输判断子单元180包括:
编号判断模块,用于判断移动终端编号是否属于预设编号列表。
第一处理模块,用于若移动终端编号属于预设编号列表,则基于传输方式与移动终端建立连接,当与移动终端建立连接后,按照传输速度将监控视频发送至移动终端。
第二处理模块,用于若移动终端编号不属于预设编号列表,则发送连接失败信息至移动终端。
在一个实施例中,控制单元110还包括其他功能模块/单元,用于实现实施例1中各实施例中的方法步骤。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种供热的方法,其特征在于,应用于供热***,所述供热***包括第一温度监控单元、第二温度监控单元、第一循环水泵、第二循环水泵、储热设备和用户端,所述第一循环水泵与所述用户端连接,所述第二循环水泵分别与所述用户端和所述储热设备连接,所述第一温度监控单元设置在所述第一循环水泵和所述用户端之间的供水管道上,所述第二温度监控设置在所述第一循环水泵和所述用户端之间的回水管道上;
    所述供热的方法包括:
    接收所述第一温度监控单元发送的供水温度和第二温度监控单元发送的回水温度;
    根据所述供水温度和所述回水温度计算目标供水流量;
    若当前时刻属于第一预设时间段,则控制所述储热设备进行储存热水,并发送第一供水流量控制命令至所述第一循环水泵,所述第一供水流量控制命令用于指示所述第一循环水泵输出所述目标供水流量的供水至所述用户端;
    若当前时刻属于第二预设时间段,则发送第二供水流量控制命令至所述第二循环水泵,所述第二供水流量控制命令用于指示所述第二循环水泵输送预设最大供水流量的储水至所述用户端;根据所述目标供水流量和所述预设最大供水流量得到第三供水流量;发送第三供水流量控制命令至所述第一循环水泵,所述第三供水流量控制命令用于指示所述第一循环水泵输出所述第三供水流量的供水至所述用户端。
  2. 如权利要求1所述的供热的方法,其特征在于,所述根据所述供水温度和所述回水温度计算目标供水流量,包括:
    获取当前供热负荷;
    根据所述当前供热负荷、所述供水温度和所述回水温度,利用以下公式计算所述目标供水流量:
    G=(3.6*Q)/C*(T 1-T 2
    其中:G为所述目标供水流量;T 1为所述供水温度;T 2为所述回水温度;Q为所述当前供热负荷;C为水的比热容。
  3. 如权利要求1所述的供热的方法,其特征在于,所述供热***还包括监控装置;
    所述供热的方法还包括:
    接收所述监控装置发送的监控视频;
    接收移动终端发送的视频传输请求,所述视频传输请求包括移动终端编号、传输方式和传输速度;
    根据所述传输请求判断是否将所述监控视频发送至所述移动终端。
  4. 如权利要求3所述的供热的方法,其特征在于,所述根据所述传输请求判断是否将所述监控视频发送至所述移动终端,包括:
    判断所述移动终端编号是否属于预设编号列表;
    若所述移动终端编号属于预设编号列表,则基于所述传输方式与所述移动终端建立连接,当与所述移动终端建立连接后,按照所述传输速度将所述监控视频发送至所述移动终端;
    若所述移动终端编号不属于预设编号列表,则发送连接失败信息至所述移动终端。
  5. 如权利要求1所述的供热的方法,其特征在于,所述根据所述目标供水流量和所述预设最大供水流量得到第三供水流量,包括:
    计算所述目标供水流量和所述预设最大供水流量的差值,得到所述第三供水流量。
  6. 如权利要求1所述的供热的方法,其特征在于,所述供热***还包括烟雾监控单元和喷水装置;
    所述供热的方法还包括:
    接收所述烟雾监控单元发送的烟雾浓度;
    若所述烟雾浓度大于预设浓度范围,则将所述烟雾浓度大于预设浓度范围的位置作为目标位置,控制所述喷水装置进行喷水。
  7. 如权利要求6所述的供热的方法,其特征在于,所述在控制所述喷水装置进行喷水之后,包括:
    间隔预设火灾检测时间后重新接收所述目标位置的烟雾监控单元发送的烟雾浓度;
    若重新接收的烟雾浓度仍大于所述预设浓度范围,则发送火灾求助信息至消防控制室,所述火灾求助信息包括目标位置信息。
  8. 如权利要求1所述的供热的方法,其特征在于,所述供热***还包括第一压力监控单元、第二压力监控单元和补水加药泵,所述第一压力监控单元设置在所述第一循环水泵和所述用户端之间的供水管道上,所述第二压力监控设置在所述第一循环水泵和所述用户端之间的回水管道上;
    所述供热的方法还包括:
    接收所述第一压力监控单元发送的供水管道压力和所述第二压力监控单元发送的回水管道压力;
    根据所述供水管道压力和所述回水管道压力控制所述补水加药泵进行补水。
  9. 如权利要求8所述的供热的方法,其特征在于,所述根据供水管道压力和回水管道压力控制补水加药泵进行补水,包括:
    计算所述供水管道压力与所述回水管道压力的差值,得到当前压力差;
    若所述当前压力差大于预设压力差,则控制所述补水加药泵进行补水直至当前压力差减小至预设压力差。
  10. 如权利要求8所述的供热的方法,其特征在于,所述供热***还包括水质检测仪;
    所述供热的方法还包括:
    接收所述水质检测仪发送的至少一个当前水质参数值,若存在当前水质参数值不等于对应的标准值,则控制所述补水加药泵进行加药;
  11. 如权利要求10所述的供热的方法,其特征在于,所述控制补水加药泵进行加药,包括:
    计算所述当前水质参数值与对应的标准值的差值;
    从预设药剂添加对照表中获取差值对应的药剂添加量;
    发送药剂添加控制命令至所述补水加药泵,所述药剂添加控制命令用于指示所述补水加药泵根据所述药剂添加量输出药剂。
  12. 一种供热***,其特征在于,所述供热***包括控制单元、第一温度监控单元、第二温度监控单元、第一循环水泵、第二循环水泵、储热设备和用户端,所述控制单元分别与所述第一温度监控单元、所述第二温度监控单元、所述第一循环水泵、所述第二循环水泵和所述储热设备连接,所述第一循环水泵与所述用户端连接,所述第二循环水泵分别与所述用户端和所述储热设备连接,所述第一温度监控单元设置在所述第一循环水泵和所述用户端之间的供水管道上,所述第二温度监控设置在所述第一循环水泵和所述用户端之间的回水管道上;
    所述控制单元包括:
    温度接收子单元,用于接收所述第一温度监控单元发送的供水温度和第二温度监控单元发送的回水温度;
    目标流量计算子单元,用于根据所述供水温度和所述回水温度计算目标供水流量;
    第一控制子单元,用于若当前时刻属于第一预设时间段,则控制所述储热设备进行储存热水,并发送第一供水流量控制命令至所述第一循环水泵,所述第一供水流量控制命令用于指示所述第一循环水泵输出所述目标供水流量的供水至所述用户端;
    第二控制子单元,用于若当前时刻属于第二预设时间段,则发送第二供水流量控制命令至所述第二循环水泵,所述第二供水流量控制命令用于指示所述第二循环水泵输送预设最大供水流量的储水至所述用户端;根据所述目标供水流量和所述预设最大供水流量得到第三供水流量;发送第三供水流量控制命令至所述第一循环水泵,所述第三供水流量控制命令用于指示所述第一循环水泵输出所述第三供水流量的供水至所述用户端。
  13. 如权利要求12所述的供热***,其特征在于,所述目标流量计算子单元包括:
    供热负荷获取模块,用于获取当前供热负荷;
    目标流量计算模块,用于根据所述当前供热负荷、所述供水温度和所述回水温度,利用以下公式计算所述目标供水流量:
    G=(3.6*Q)/C*(T 1-T 2
    其中:G为所述目标供水流量;T 1为所述供水温度;T 2为所述回水温度;Q为所述当前供热负荷;C为水的比热容。
  14. 如权利要求12所述的供热***,其特征在于,所述供热***还包括与所述控制单元连接的监控装置;
    所述控制单元还包括:
    视频接收子单元,用于接收所述监控装置发送的监控视频;
    传输请求接收子单元,用于接收移动终端发送的视频传输请求,所述视频传输请求包括移动终端编号、传输方式和传输速度;
    传输判断子单元,用于根据所述传输请求判断是否将所述监控视频发送至所述移动终端。
  15. 如权利要求14所述的供热***,其特征在于,所述传输判断子单元包括:
    编号判断模块,用于判断所述移动终端编号是否属于预设编号列表;
    第一处理模块,用于若所述移动终端编号属于预设编号列表,则基于所述传输方式与所述移动终端建立连接,当与所述移动终端建立连接后,按照所述传输速度将所述监控视频发送至所述移动终端;
    第二处理模块,用于若所述移动终端编号不属于预设编号列表,则发送连接失败信息至所述移动终端。
PCT/CN2018/119560 2018-06-07 2018-12-06 一种供热的方法及供热*** WO2019233064A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810580475.0 2018-06-07
CN201810580475.0A CN108870528A (zh) 2018-06-07 2018-06-07 一种供热的方法及供热***

Publications (1)

Publication Number Publication Date
WO2019233064A1 true WO2019233064A1 (zh) 2019-12-12

Family

ID=64337284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119560 WO2019233064A1 (zh) 2018-06-07 2018-12-06 一种供热的方法及供热***

Country Status (2)

Country Link
CN (1) CN108870528A (zh)
WO (1) WO2019233064A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108870528A (zh) * 2018-06-07 2018-11-23 四川协成电力工程设计有限公司 一种供热的方法及供热***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048397A (ja) * 2000-08-07 2002-02-15 Sanyo Electric Co Ltd ヒートポンプ式給湯装置の貯湯制御方法及びヒートポンプ式給湯装置
JP2011169515A (ja) * 2010-02-18 2011-09-01 Gastar Corp 太陽熱利用熱源装置
CN203586393U (zh) * 2012-11-16 2014-05-07 格兰富控股联合股份公司 热平衡机组及其控制装置
CN205174552U (zh) * 2015-10-29 2016-04-20 陕西华夏新能源科技有限公司 供热***智能远程控制装置
CN106979544A (zh) * 2017-04-07 2017-07-25 西安交通大学 一种空气源跨临界co2热泵与多熔点相变蓄热耦合供暖***
CN108870528A (zh) * 2018-06-07 2018-11-23 四川协成电力工程设计有限公司 一种供热的方法及供热***

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0035068A1 (fr) * 1980-02-29 1981-09-09 ATELIERS DE CONSTRUCTIONS ELECTRIQUES DE CHARLEROI (ACEC) Société Anonyme Accumulateur de chaleur par réservoir d'eau
CN102635890A (zh) * 2011-05-16 2012-08-15 大连船舶重工集团装备制造有限公司 电极热水锅炉畜热式供暖***
CN104515194B (zh) * 2013-09-26 2017-08-01 珠海格力电器股份有限公司 供暖***的控制方法及装置
CN103686085A (zh) * 2013-12-11 2014-03-26 东方网力科技股份有限公司 监控视频数据的处理方法、装置及***
CN205536068U (zh) * 2016-02-02 2016-08-31 辽宁鑫源重工有限公司 相变储能设备与双电锅炉联合供暖***
CN206919400U (zh) * 2017-06-07 2018-01-23 山西奥通环保自动锅炉有限公司 一种相变蓄热锅炉
CN107943171A (zh) * 2017-11-29 2018-04-20 深圳市亿兆互联技术有限公司 一种印刷车间智能控制***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048397A (ja) * 2000-08-07 2002-02-15 Sanyo Electric Co Ltd ヒートポンプ式給湯装置の貯湯制御方法及びヒートポンプ式給湯装置
JP2011169515A (ja) * 2010-02-18 2011-09-01 Gastar Corp 太陽熱利用熱源装置
CN203586393U (zh) * 2012-11-16 2014-05-07 格兰富控股联合股份公司 热平衡机组及其控制装置
CN205174552U (zh) * 2015-10-29 2016-04-20 陕西华夏新能源科技有限公司 供热***智能远程控制装置
CN106979544A (zh) * 2017-04-07 2017-07-25 西安交通大学 一种空气源跨临界co2热泵与多熔点相变蓄热耦合供暖***
CN108870528A (zh) * 2018-06-07 2018-11-23 四川协成电力工程设计有限公司 一种供热的方法及供热***

Also Published As

Publication number Publication date
CN108870528A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
CN103471176B (zh) 节能联动控制***及节能联动控制方法
WO2019233064A1 (zh) 一种供热的方法及供热***
CN112082272B (zh) 一种具有零冷水功能的热水器的工作方法
CN103576557B (zh) 基于节能的调压站防冻智能控制***及其控制方法
CN109612171A (zh) 一种宽温热泵联合用能***供水温度动态调节方法
CN109307306B (zh) 一种分布式供热的方法以及***
CN103776155A (zh) 一种恒温燃气热水器
CN102467133A (zh) 锅炉供水用全自动水位控制***
CN205843044U (zh) 多功能智能环保节能换热储存式电热水***设备
CN211230563U (zh) 天然气压力能应用***
CN210601547U (zh) 基于太阳能的热力储能***
JP2006343026A (ja) 集合住宅の暖房システム
CN218179008U (zh) 智能供暖***
CN214406230U (zh) 热水集中供应***及建筑
CN103768953B (zh) 对ro膜用热水消毒的装置及方法
JP2002289242A (ja) 燃料電池排熱回収システム
CN110529837A (zh) 一种基于余汽余热回收装置的控制***及方法
CN204438296U (zh) 工业烟气余热利用联合网络***
CN203501315U (zh) 一种智能供热监控站
CN210089041U (zh) 一种节能楼宇空调***
CN216667807U (zh) 一种热网首站换热器水位控制装置
CN111397209B (zh) 级联加热***及方法
WO2019080334A1 (zh) 数据中心供能***和方法
CN210980363U (zh) 级联加热***
CN214407060U (zh) 一种数据中心空调***补水管道伴热管***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921371

Country of ref document: EP

Kind code of ref document: A1