WO2019230760A1 - Pneumatic tire, and method for manufacturing pneumatic tire - Google Patents

Pneumatic tire, and method for manufacturing pneumatic tire Download PDF

Info

Publication number
WO2019230760A1
WO2019230760A1 PCT/JP2019/021224 JP2019021224W WO2019230760A1 WO 2019230760 A1 WO2019230760 A1 WO 2019230760A1 JP 2019021224 W JP2019021224 W JP 2019021224W WO 2019230760 A1 WO2019230760 A1 WO 2019230760A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
resin
resin layer
width direction
layer
Prior art date
Application number
PCT/JP2019/021224
Other languages
French (fr)
Japanese (ja)
Inventor
誓志 今
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2019230760A1 publication Critical patent/WO2019230760A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/70Annular breakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre

Definitions

  • the present invention relates to a pneumatic tire and a method for manufacturing a pneumatic tire.
  • This application claims priority based on Japanese Patent Application No. 2018-105470 filed in Japan on May 31, 2018, the entire contents of which are incorporated herein by reference.
  • a belt layer is used, for example, a tire width, in order to secure a desired tread rubber gauge and a ground contact shape, and thereby ensure the desired tire performance such as wear resistance.
  • it is required to have a non-linear cross-sectional shape in the tire width direction that is convexly curved toward the tire outer peripheral side at least partially in the direction cross section.
  • the belt layer in order to ensure the expected tire performance, it is the same as the belt layer, for example, at least a part in the tire width direction cross section, It is considered that it may be required to have a non-linear cross-sectional shape in the tire width direction that is convexly curved to the side.
  • a tire constituent member including a belt layer and a resin layer having a linear tire width direction cross-sectional shape is expanded.
  • a method of pressing against a mold forming surface having a non-linear cross-sectional shape is conceivable.
  • a belt layer having a plurality of cords having an inclination angle with respect to the tire circumferential direction of, for example, 10 ° or less has a very high rigidity in the tire circumferential direction, and therefore cannot be almost expanded. Therefore, it is difficult to give a non-linear tire width direction cross-sectional shape as expected to the resin layer by this method.
  • the present invention provides a pneumatic tire and a tire width that is simply and as expected as a resin layer having a cross-sectional shape in the tire width direction that is simply and as expected when the tire is manufactured. It aims at providing the manufacturing method of a pneumatic tire from which the resin layer which has a direction cross section shape is obtained.
  • the pneumatic tire of the present invention is In the tread part, A belt layer having a cord extending spirally in the tire circumferential direction or a plurality of cords having an inclination angle of 10 ° or less with respect to the tire circumferential direction; A resin layer; With The resin layer has a plurality of resin films arranged in each of the tire width direction and the tire circumferential direction.
  • the method for producing a pneumatic tire of the present invention includes: A method for producing the above pneumatic tire, On the molding drum, a plurality of the resin films are arranged in each of the width direction and the circumferential direction of the molding drum to form the resin layer, a resin layer forming step, Forming an unvulcanized tire provided with the belt layer and the resin layer; and A vulcanization step of vulcanizing the unvulcanized tire; including.
  • a resin layer having a cross-sectional shape in the tire width direction that is simply as expected can be obtained, and a pneumatic tire that is simply as expected
  • the manufacturing method of a pneumatic tire from which the resin layer which has a tire width direction cross-sectional shape is obtained can be provided.
  • FIG. 1 is a tire width direction cross-sectional view of a half of a tire, showing a pneumatic tire according to an embodiment of the present invention. It is a perspective view which decomposes
  • FIG. 3 is a perspective view schematically showing a resin layer in FIG. 2. It is a perspective view which shows an example of the molding drum used in a resin layer formation step. It is a perspective view which shows a part of molding drum of FIG. 4 with the cross section which follows the center axis line of a molding drum. It is a perspective view which shows a mode that the resin layer is formed on the molding drum of FIG.
  • pneumatic tire and the manufacturing method of the pneumatic tire according to the present invention can be used for any kind of pneumatic tire such as a pneumatic tire for passenger cars.
  • pneumatic tire for passenger cars In each figure, the same code
  • pneumatic tire In the present specification, the “pneumatic tire” is also simply referred to as “tire”.
  • FIG. 1 is a cross-sectional view in the tire width direction showing a tire half portion of a tire 1 according to an embodiment of the present invention.
  • 2 is a partially exploded perspective view showing the internal structure of the tire 1 of FIG.
  • FIG. 3 is a perspective view schematically showing the resin layer of FIG.
  • the tire 1 includes a tread portion 10, a pair of sidewall portions 11 that extend inward in the tire radial direction from both ends in the tire width direction of the tread portion 10, and the sidewall portions 11, respectively. It is comprised from a pair of bead part 12 which follows a tire radial direction inner side.
  • the tire 1 includes a bead core 30 in each bead portion 12, and between these bead cores 30, a carcass 20 including a carcass ply of at least one layer (one layer in the illustrated example) is in a toroidal shape. It extends.
  • the carcass 20 includes a bead core 30 from the innermost end in the tire radial direction of the main body 20a on each of the main body 20a that extends in a toroidal shape between the pair of bead cores 30 and the tire equatorial plane CL. And a pair of folded portions 20b folded toward the outer side in the tire width direction.
  • the tire 1 further includes a single belt layer 40 and a resin layer 50 on the tire outer peripheral side with respect to the crown region of the carcass 20 in the tread portion 10.
  • the tire 1 has only one belt layer 40.
  • the belt layer 40 is also referred to as a belt layer (hereinafter referred to as a “spiral belt layer”) that extends in a spiral shape in the tire circumferential direction and has a cord 41 covered with rubber (covered rubber) 42. ). More specifically, in the belt layer 40, one or a plurality of cords 41 covered with the rubber 42 are spirally wound around the rotation axis of the tire 1 a plurality of times while moving toward one side in the tire width direction. It is the state of being turned.
  • the angle ⁇ 1 (FIG.
  • the belt layer 40 has a plurality of cords 41 having an inclination angle ⁇ 1 (FIG. 2) on the acute angle side with respect to the tire circumferential direction of 10 ° or less and covered with rubber (covered rubber) 42.
  • ⁇ 1 inclination angle
  • the cord 41 constituting the belt layer 40 is wound around the rotation axis of the tire 1 at most for one tire circumference.
  • the angle ⁇ 1 on the acute angle side with respect to the tire circumferential direction of the cord 41 is preferably more than 0 ° and not more than 10 °, more preferably not less than 4 ° and not more than 7 °, and further preferably not less than 5 ° and not more than 6 °. is there.
  • the belt layer 40 is a spiral belt layer or a small inclined belt layer
  • examples of the cord 41 include a metal cord (steel cord, etc.), an organic fiber cord (aramid fiber cord, nylon fiber cord, etc.), carbon, and the like. A fiber cord or the like may be used.
  • the cord 41 can be made of a monofilament or a stranded wire.
  • the organic fiber cord a single fiber or a twist of a plurality of single fibers can be used.
  • the covering rubber 42 any known rubber material such as a rubber material usually used for belt coating rubber can be used.
  • the weight can be reduced as compared with the case where the conventional tire described above has two crossing belt layers.
  • the cord mainly occupies the weight of the belt layer. Therefore, reducing the weight of the cord for one belt layer greatly contributes to weight reduction.
  • shear stress tends to be concentrated between the crossing belt layers at the time of pantograph deformation, etc., which may reduce durability.
  • the durability of the tire 1 can be improved.
  • the belt layer 40 is a spiral belt layer as in this example or a small inclined belt layer, the circumferential rigidity of the tire 1 can be sufficiently secured, and as a result, the tire 1 Steering stability during straight travel and diameter growth prevention performance can be sufficiently secured.
  • the tire 1 may have two or more belt layers 40.
  • the width of the belt layer 40 in the tire width direction is preferably 90 to 120% of the tire ground contact width of the tire 1, for example.
  • the “tire contact width” means that the tire 1 is mounted on the applicable rim, filled with the specified internal pressure, and the outermost position in the tire width direction of the contact surface in the state where the maximum load is applied is used as the contact end. Mounted on the applicable rim, filled with the specified internal pressure, and defined as the distance in the tire width direction between the ground contact edges in a no-load state. Further, other dimensions, angles, shapes, radii of curvature, and the like in this specification are measured in a state in which a tire is mounted on an applicable rim, filled with a specified internal pressure, and in a no-load state.
  • rim is an industrial standard effective in the region where tires are produced and used.
  • JATMA YEAR BOOK of JATMA Japan Automobile Tire Association
  • ETRTO European STANDARDDS MANUAL of Tire and Rim Technical Organization
  • standard rims in application sizes described in YEAR BOOK of TRA The Tile and Rim Association, Inc.
  • TRA YEAR BOOK Design Rim ie, the above “rim” includes the current size plus the future
  • Sizes to be described in the future include the sizes described as “FUTURE DEVELOPMENTS” in the STANDARDS MANUAL 2013 edition of ETRTO.
  • the “specified internal pressure” refers to an air pressure (maximum air pressure) corresponding to the tire maximum load capacity of the standard such as JATMA in a tire of an applicable size. In the case of a size not described in the industry standard, the “specified internal pressure” refers to an air pressure (maximum air pressure) corresponding to a maximum load capacity specified for each vehicle on which a tire is mounted.
  • Maximum load load is the tire maximum load capacity of the standard such as JATMA for the tire of the applicable size, or, in the case of a size not described in the industry standard, the maximum load capacity defined for each vehicle on which the tire is mounted. Means the load corresponding to.
  • the resin layer 50 is disposed on the tire inner peripheral side of the belt layer 40 and on the tire outer peripheral side of the crown region of the carcass 20.
  • the resin layer 50 may be disposed on the tire outer peripheral side of the belt layer 40. If the tire 1 does not have the resin layer 50 and has only the belt layer 40, the tire 1 can hardly ensure rigidity in the tire width direction, and thus has sufficient in-plane shear rigidity. It cannot be secured. Therefore, sufficient tire motion performance such as steering stability during turning cannot be ensured.
  • the tire 1 since the tire 1 has the resin layer 50 in addition to the belt layer 40, the rigidity in the tire width direction can be supplemented, and thereby the in-plane shear rigidity and the tire motion performance can be improved. Tire performance can be ensured. Further, since the resin layer 50 does not have a cord that the belt layer has, and is made of a resin material lighter than rubber, the weight of the tire is reduced as compared with the case where the conventional two-layer crossing belt layer is provided. Is possible.
  • the resin layer 50 includes a plurality of resin films 51 arranged in each of the tire width direction and the tire circumferential direction.
  • the tire circumferential direction is indicated by a CD arrow
  • the tire width direction is indicated by a WD arrow.
  • the circumferential direction of the resin layer 50 corresponds to the tire circumferential direction
  • the width direction (center axis direction) of the resin layer 50 corresponds to the tire width direction.
  • the resin film 51 exists over the entire tire width direction and tire circumferential direction of the resin layer 50.
  • the resin films 51 adjacent to each other overlap each other in the thickness direction of the resin layer 50 and are fixed (welded and / or bonded) to each other at the overlapping portions.
  • the resin layer 50 is composed of the plurality of resin films 51 fixed to each other. 2 and 3, only a part of the plurality of resin films 51 constituting the resin layer 50 is shown for convenience, and the portion of the resin layer 50 constituted by the remaining resin films 51 is shown. It is indicated by a two-dot chain line.
  • the resin layer 50 has a non-linear tire width direction cross-sectional shape. More specifically, in this example, in the tire width direction cross section of the tire 1, the resin layer 50 is convexly curved toward the tire outer peripheral side at least at a part (all in this example).
  • each resin film 51 has a substantially quadrangular shape (specifically, a substantially rectangular shape) when viewed in a flat plane. Have the same shape and dimensions.
  • the resin layer 50 has a plurality of resin film rows 500 including a plurality of resin films 51 arranged in a row in one direction.
  • first arrangement direction (AD1) the direction in which the plurality of resin films 51 constituting the resin film array 500 is arranged.
  • the first arrangement direction AD1 is the tire width direction.
  • the plurality of resin film rows 500 constituting the resin layer 50 are arranged in a direction intersecting the first arrangement direction AD1.
  • the second arrangement direction AD2 is a direction perpendicular to the first arrangement direction AD1, and is a tire circumferential direction.
  • the resin layers 50 are preferably arranged in a line in an arbitrary first arrangement direction AD1 as in the examples of FIGS. 2 and 3 and the examples of FIGS. 7 to 12 described later. It is preferable that a plurality of resin film rows 500 each including a plurality of resin films 51 are provided, and the plurality of resin film rows 500 are arranged in a second arrangement direction AD2 that intersects the first arrangement direction AD1. .
  • first arrangement direction AD1 and the second arrangement direction AD2 are not limited to the tire width direction and the tire circumferential direction, respectively.
  • the first arrangement direction AD1 and the second arrangement direction AD2 may be directions inclined at acute angles with respect to the tire width direction and the tire circumferential direction, respectively. Further, the first arrangement direction AD1 and the second arrangement direction AD2 may cross each other non-perpendicularly.
  • the plurality of resin films 51 constituting the resin film array 500 are aligned in the same direction, and the edges 512 on both sides of the second arrangement direction AD ⁇ b> 2 forming the respective straight lines. Are arranged smoothly and continuously in the first arrangement direction AD1.
  • the plurality of resin films 51 constituting the resin film array 500 are fixed to each other in the first arrangement direction AD ⁇ b> 1 so as to overlap each other in the thickness direction of the resin layer 50.
  • a pair of resin film rows 500 adjacent to each other are fixed to each other in the second arrangement direction AD2 so as to overlap each other in the thickness direction of the resin layer 50.
  • a plurality of resin film rows 500 constituting the resin layer 50 includes a plurality of first resin film rows 501 arranged at predetermined positions in the first arrangement direction AD1, and a first arrangement direction with respect to the first resin film rows 501. It consists of a plurality of second resin film rows 502 arranged offset (displaced) in AD1, and the first resin film rows 501 and the second resin film rows 502 are alternately arranged in the second arrangement direction AD2. . That is, the pair of resin film rows 500 adjacent to each other in the second arrangement direction AD2 includes the first resin film row 501 and the second resin film row 502. In the example of FIG.
  • the offset distance OT in the first arrangement direction AD1 of the second resin film row 502 with respect to the first resin film row 501 is smaller than the width W1 in the first arrangement direction AD1 of the resin film 51 (that is, OT). ⁇ W1).
  • the offset distance OT and the width W1 are measured along the contour of the resin layer 50.
  • the plurality of resin films 51 positioned on the outermost side in the tire width direction are the edges in the first arrangement direction AD1 farther from the respective tire equatorial plane CL. 511 are arranged so as to be smoothly continuous in the second arrangement direction, and constitute an end portion 50e of the resin layer 50 in the tire width direction.
  • a plurality of resin films 51 are manufactured using a resin material (resin film manufacturing step).
  • a resin material for example, using a resin material, a wide range of resin sheets are formed by injection molding or extrusion molding, and then a plurality of resin films 51 are formed from the resin sheet by die cutting or laser processing. Get.
  • a plurality of resin films 51 may be respectively formed by injection molding or extrusion molding using a resin material.
  • a plurality of resin films 51 are arranged on the base member (in the example of FIG. 6, the molding drum 200) in each of the width direction and the circumferential direction of the molding drum 200. Then, the resin layer 50 is formed (resin layer forming step).
  • the molding drum 200 is configured in a substantially cylindrical shape, and the outer peripheral surface S of the molding drum 200 has a non-linear cross-sectional shape in the width direction. More specifically, in this example, at least a part of the molding drum 200 in the width direction cross section is convexly curved toward the outer peripheral side.
  • the width direction of the molding drum 200 is the central axis direction of the molding drum 200.
  • the width direction of the molding drum 200 is also referred to as “drum width direction”.
  • the circumferential direction of the molding drum 200 is also referred to as “drum circumferential direction”.
  • the molding drum 200 includes a plurality of drum members 201 that extend in the drum width direction and are arranged along the drum circumferential direction. Each of the plurality of drum members 201 can be reciprocated in the radial direction of the molding drum 200, so that the molding drum 200 can be contracted and expanded.
  • the plurality of resin films 51 are arranged on the outer peripheral surface S of the molding drum 200 that has been expanded to some extent as described above.
  • the resin layer 50 is integrated as a whole, and becomes a substantially cylindrical shape having a shape along the shape of the outer peripheral surface S of the molding drum 200. That is, in this example, the resin layer 50 has a non-linear cross-sectional shape in the width direction. More specifically, at least a part of the cross-section in the width direction of the resin layer 50 is curved to protrude outward. doing.
  • it is preferable that no adhesive is disposed between the resin layer 50 and the molding drum 200.
  • the resin film 51 disposed on the molding drum 200 is heated, for example, by applying hot air when performing the above-described fixing or at a different timing, and further, By pressing from above with a roller or the like, the shape of the resin film 51 and, consequently, the resin layer 50 is more consistent with the shape of the outer peripheral surface S of the molding drum 200, and the level difference between the resin films 51 is made to some extent. Since smoothing is possible, it is preferable.
  • the resin layer forming step may be performed manually or automatically by an apparatus. After the molding of the resin layer 50 on the molding drum 200, the resin layer 50 is released from the molding drum 200 by reducing the diameter of the molding drum 200.
  • the molding drum 200 may have an arbitrary configuration different from the examples shown in FIGS. Further, instead of the molding drum 200, an arbitrary base member having an outer surface having a desired cross-sectional shape in the width direction may be used. As described in the belt layer forming step described later, the belt layer 40 may be used as such a base member.
  • a belt layer 40 configured as a spiral belt layer or a small inclined belt layer is formed (belt layer forming step).
  • the belt layer forming step may be performed after the resin layer forming step, or may be performed before the resin layer forming step.
  • the belt layer 40 has a substantially cylindrical shape and is a spiral belt layer or a small inclined belt layer as described above, the rigidity in the circumferential direction is very high and the belt layer 40 can hardly be expanded. Therefore, in the belt layer forming step, it is preferable that the necessary cross-sectional shape in the tire width direction is finally given to the belt layer 40 by a method other than expansion.
  • the belt layer 40 is configured as a spiral belt layer and disposed on the tire outer peripheral side of the resin layer 50 as in the example of FIGS.
  • the cord 41 covered with the coating rubber 42 is spirally wound around the central axis of the resin layer 50 on the outer peripheral surface of the resin layer 50 to form the belt layer 40.
  • the belt layer 40 becomes a shape along the shape of the resin layer 50.
  • the winding work can be performed using the resin layer 50 as a base, the workability of the winding work is also excellent.
  • the belt layer formation is performed before the resin layer formation step.
  • the belt layer 40 is formed by spirally winding the cord 41 covered with the covering rubber 42 around the central axis of the resin layer 50 on the outer peripheral surface of the molding drum 200 (FIGS. 4 and 5).
  • a plurality of resin films 51 may be arranged on the outer peripheral surface of the belt layer 40 as described above to form the resin layer 50. That is, in this case, the base member in the resin layer forming step is the belt layer 40.
  • the belt layer 40 becomes a shape along the shape of the outer peripheral surface of the molding drum 200, and the resin layer 50 becomes a shape along the shape of the belt layer 40.
  • the necessary cross-sectional shape in the tire width direction may be imparted to the belt layer 40 by any method other than the method described above.
  • an unvulcanized tire including the resin layer 50 obtained in the resin layer forming step, the belt layer 40 obtained in the belt layer forming step, and the remaining tire constituent members is formed (molding step).
  • a tire constituent member (carcass 20 or the like) disposed on the tire inner periphery side with respect to the belt layer 40 and the resin layer 50 is expanded by a bladder or the like, and then the tire outer periphery of the tire constituent member expanded. It is preferable to obtain an unvulcanized tire by arranging the belt layer 40, the resin layer 50, and the tread rubber on the side.
  • the two crossing belt layers can be expanded while undergoing pantograph deformation.
  • a tire constituent member having two cylindrical crossing belt layers having a straight tire width direction cross-sectional shape is used as a method for imparting a non-linear tire width direction cross-sectional shape to the two crossing belt layers.
  • a method of expanding and pressing against a mold forming surface having a non-linear cross-sectional shape in the tire width direction is used.
  • the belt layer 40 is a spiral belt layer or a small inclined belt layer, and since the rigidity in the tire circumferential direction is very high, the belt layer 40 can hardly be expanded.
  • a tire constituent member including the belt layer 40 and the resin layer 50 having a linear tire width direction cross-sectional shape is expanded.
  • the resin layer 50 is constituted by the resin films 51 arranged in a plurality in each of the tire width direction and the tire circumferential direction, the outer surface of the desired cross-sectional shape in the tire width direction is formed.
  • the belt layer 40 need not be expanded and can be easily obtained.
  • the resin layer 50 having the cross-sectional shape in the tire width direction can be obtained. If the resin layer 50 is composed of the resin film 51 arranged in only one direction, the shape of the resin film 51 can be made to conform to the shape of the base member (molding drum 200, etc.) with high accuracy. As a result, the resin layer 50 having the cross-sectional shape in the tire width direction as expected cannot be obtained.
  • the resin layer 50 having the tire cross-sectional shape in the tire width direction as intended is manufactured uniformly using an extrusion die or the like.
  • the cross-sectional shape in the tire width direction required for the resin layer 50 (specifically, the diameter difference, the size of the radius of curvature and its distribution, etc.) is considered to vary.
  • Preparation of an extrusion die that is uniform for each product increases the manufacturing cost.
  • an expensive extrusion base or the like is unnecessary, and the resin layer 50 having various cross-sectional shapes in the tire width direction can be formed using the resin film 51 having the same shape and dimensions. Costs can be kept low, and the number of intermediate stocks can be reduced.
  • the outer circumferential surface S of the molding drum 200 is at least partially curved convexly toward the outer circumferential side.
  • the resin layer 50 is formed in the same shape as the outer peripheral surface S of the molding drum 200. That is, in the tire width direction cross section of the tire 1, the resin layer 50 is at least partially curved in a convex manner toward the tire outer peripheral side. As a result, the tire 1 can obtain a good tread rubber gauge and ground contact shape, and thereby good tire performance such as wear resistance can be obtained.
  • the outer circumferential surface S of the molding drum 200 is in the drum width direction of the outer circumferential surface S on both sides of the tire equatorial plane CL. It is preferable that the curvature radius Re ′ of the outer end side portion Sep is smaller than the curvature radius Rc ′ of the outer peripheral surface S in the drum width direction center side portion Scp (that is, Re ′ ⁇ Rc ′).
  • the “drum width direction outer end side portion Sep” of the outer peripheral surface S of the molding drum 200 on both sides with respect to the tire equatorial plane CL is the outer peripheral surface S of the molding drum 200 on each of both sides with respect to the tire equatorial plane CL. It is a portion located on the outermost side in the drum width direction and extending over 10 mm in the drum width direction.
  • the “drum width direction center side portion Scp” of the outer peripheral surface S of the molding drum 200 is located on the drum width direction center CL ′ of the outer peripheral surface S of the outer peripheral surface S of the molding drum 200 and the drum width direction center S ′. It is a part extending over 10 mm in the width direction.
  • the drum width direction center side portion Scp may be linear, that is, the radius of curvature Rc ′ of the drum width direction center side portion Scp may be infinite.
  • the resin layer 50 has a curvature radius Re of the outer end side portion 50ep of the resin layer 50 in the tire width direction. It is preferable that the radius is smaller than the radius of curvature Rc of the tire width direction center side portion 50cp of 50 (that is, Re ⁇ Rc).
  • the tire width direction outer end side portion 50ep of the resin layer 50 is a portion of the resin layer 50 that is located on the outermost side in the tire width direction and extends over 10 mm in the tire width direction.
  • the “tire width direction center side portion 50 cp” of the resin layer 50 is a portion of the resin layer 50 whose center in the tire width direction is located on the tire equatorial plane CL and extends over 10 mm in the tire width direction.
  • the tire width direction center side portion 50cp may be linear, that is, the radius of curvature Rc of the tire width direction center side portion 50cp may be infinite.
  • the outer circumferential surface S of the molding drum 200 has a radius of curvature over the entire surface in the drum width direction cross section of the molding drum 200 (FIG. 5). It is preferable that the width gradually decreases from the width direction center CL ′ toward the outside in the drum width direction. Further, from the viewpoint of obtaining good tire performance, in the cross section of the tire 1 in the tire width direction (FIG. 1), the resin layer 50 has a radius of curvature from the tire equatorial plane CL to the outer side in the tire width direction. It is preferable that the temperature gradually decreases.
  • the entire outer peripheral surface S of the molding drum 200 may be linear. In that case, in order to release the resin layer 50 from the molding drum 200, it is only necessary to slide the resin layer 50 in the drum width direction. Therefore, the molding drum 200 does not have to be capable of being reduced in diameter and expanded in diameter. Further, the resin layer 50 may be entirely linear in the tire width direction cross section of the tire 1.
  • the plurality of resin films 51 constituting the resin layer 50 can have various shapes and arrangements.
  • first to sixth modifications of the resin layer 50 will be described with reference to FIGS. 7 to 12, respectively.
  • FIGS. 7 to 12 only a part of the plurality of resin films 51 constituting the resin layer 50 is shown in a flat state for simplicity. 7 to 12, for ease of understanding, the tire circumferential direction is indicated by a CD arrow, and the tire width direction is indicated by a WD arrow in the posture when the resin layer 50 is incorporated in the tire 1. . 7 to 12, in each case, the resin layer 50 includes a plurality of resin films 51 arranged in the tire width direction and the tire circumferential direction.
  • the resin film 51 exists over the entirety of each of the resin layer 50 in the tire width direction and the tire circumferential direction.
  • the resin films 51 adjacent to each other overlap each other in the thickness direction of the resin layer 50 and are fixed (welded and / or bonded) to each other at the overlapping portions.
  • the resin layer 50 is composed of the plurality of resin films 51 fixed to each other.
  • each resin film 51 constituting the resin layer 50 has a substantially quadrangular shape (specifically, a substantially rectangular shape) when viewed in a flat plane.
  • the shapes and dimensions are the same as each other.
  • the resin layer 50 has a plurality of resin film rows 500 including a plurality of resin films 51 arranged in a row in the first arrangement direction AD1.
  • the first arrangement direction AD1 is inclined at an acute angle with respect to the tire width direction.
  • the angle on the acute angle side in the first arrangement direction AD1 with respect to the tire width direction is preferably more than 0 ° and not more than 80 °, for example.
  • the plurality of resin film rows 500 constituting the resin layer 50 are arranged in the second arrangement direction AD2.
  • the second arrangement direction AD2 is a direction perpendicular to the first arrangement direction AD1.
  • the plurality of resin films 51 constituting the resin film array 500 are aligned in the same direction, and the edges 512 on both sides of the second arrangement direction AD2 forming the respective straight lines are smoothly in the first arrangement direction AD1. They are arranged in a continuous manner.
  • the plurality of resin films 51 constituting the resin film array 500 are fixed to each other in the first arrangement direction AD ⁇ b> 1 so as to overlap each other in the thickness direction of the resin layer 50.
  • a pair of resin film rows 500 adjacent to each other are fixed to each other in the second arrangement direction AD2 so as to overlap each other in the thickness direction of the resin layer 50.
  • a pair of resin film rows 500 adjacent to each other are arranged offset (displaced) in the first arrangement direction AD1.
  • the offset distance OT in the first arrangement direction AD1 between a pair of resin film rows 500 adjacent to each other is smaller than the width W1 of the resin film 51 in the first arrangement direction AD1 (that is, OT ⁇ W1). .
  • the offset distance OT and the width W1 are measured along the contour of the resin layer 50.
  • each resin film 51 constituting the resin layer 50 has a substantially quadrangular shape (specifically, a substantially parallelogram) when viewed in a flat plane. And their shapes and dimensions are the same.
  • the resin layer 50 has a plurality of resin film rows 500 including a plurality of resin films 51 arranged in a row in the first arrangement direction AD1.
  • the first arrangement direction AD1 is inclined at an acute angle with respect to the tire width direction.
  • the angle on the acute angle side in the first arrangement direction AD1 with respect to the tire width direction is preferably more than 0 ° and not more than 80 °, for example.
  • the plurality of resin film rows 500 constituting the resin layer 50 are arranged in the second arrangement direction AD2. In the example of FIG.
  • the second arrangement direction AD2 is a direction that intersects the first arrangement direction AD1 in a non-perpendicular direction and is the tire circumferential direction.
  • the plurality of resin films 51 constituting the resin film array 500 are aligned in the same direction, and the edges 512 on both sides of the second arrangement direction AD2 forming the respective straight lines are smoothly in the first arrangement direction AD1. They are arranged in a continuous manner.
  • the plurality of resin films 51 constituting the resin film array 500 are fixed to each other in the first arrangement direction AD ⁇ b> 1 so as to overlap each other in the thickness direction of the resin layer 50.
  • a pair of resin film rows 500 adjacent to each other are fixed to each other in the second arrangement direction AD2 so as to overlap each other in the thickness direction of the resin layer 50.
  • the resin film rows 500 are not offset from each other in the first arrangement direction AD1, and are arranged at the same position in the first arrangement direction AD1. For this reason, the pair of resin films 51 adjacent to each other in the second arrangement direction AD2 are arranged so that the edges 511 on both sides of the first arrangement direction AD1 forming a straight line are smoothly continuous in the second arrangement direction AD2.
  • the first arrangement direction AD1 may be the tire width direction
  • the second arrangement direction AD2 may be a direction inclined at an acute angle (for example, greater than 0 ° and 80 ° or less) with respect to the tire circumferential direction.
  • the first arrangement direction AD1 may be the tire circumferential direction
  • the second arrangement direction AD2 may be the tire width direction.
  • each resin film 51 constituting the resin layer 50 has a substantially S shape when viewed in a flat plane, and each shape and dimension thereof. Are the same as each other.
  • the resin layer 50 has a plurality of resin film rows 500 including a plurality of resin films 51 arranged in a row in the first arrangement direction AD1.
  • the first arrangement direction AD1 is the tire width direction.
  • the plurality of resin film rows 500 constituting the resin layer 50 are arranged in the second arrangement direction AD2.
  • the second arrangement direction AD2 is a direction perpendicular to the first arrangement direction AD1, and is the tire circumferential direction.
  • the plurality of resin films 51 constituting the resin film array 500 are aligned in the same direction, and the edges 512 on both sides of the second arrangement direction AD2 forming a straight line are smooth in the first arrangement direction AD1. Are arranged in a row.
  • the plurality of resin films 51 constituting the resin film array 500 are fixed to each other in the first arrangement direction AD ⁇ b> 1 so as to overlap each other in the thickness direction of the resin layer 50.
  • a pair of resin film rows 500 adjacent to each other are fixed to each other in the second arrangement direction AD2 so as to overlap each other in the thickness direction of the resin layer 50.
  • the resin film rows 500 are not offset from each other in the first arrangement direction AD1, and are arranged at the same position in the first arrangement direction AD1.
  • the pair of resin films 51 adjacent to each other in the second arrangement direction AD2 has a second shape so that the edges 511 on both sides of the first arrangement direction AD1 forming the respective S-shapes are connected to form a wave shape. They are arranged in the arrangement direction AD2.
  • the first arrangement direction AD1 is a direction inclined at an acute angle (for example, greater than 0 ° and not more than 80 °) with respect to the tire width direction
  • the second arrangement direction AD2 is perpendicular to the first arrangement direction AD1. It is good also as a direction.
  • the first arrangement direction AD1 may be the tire circumferential direction
  • the second arrangement direction AD2 may be the tire width direction.
  • each resin film 51 constituting the resin layer 50 has a substantially triangular shape (specifically, a substantially right triangle) when viewed in a flat plane. Each has the same shape and dimensions.
  • the resin layer 50 has a plurality of resin film rows 500 including a plurality of resin films 51 arranged in a row in the first arrangement direction AD1.
  • the first arrangement direction AD1 is the tire width direction.
  • the plurality of resin film rows 500 constituting the resin layer 50 are arranged in the second arrangement direction AD2.
  • the second arrangement direction AD2 is a direction perpendicular to the first arrangement direction AD1, and is the tire circumferential direction.
  • the plurality of resin films 51 constituting the resin film array 500 are oriented so that their directions are alternately reversed. Specifically, two sides sandwiching a right angle are the first arrangement direction AD1 and the second arrangement direction, respectively.
  • the first resin film 51a oriented parallel to AD2 and the second resin film 51b oriented in the direction in which the first resin film 51 is inverted with respect to the hypotenuse are alternately arranged in the first arrangement direction AD1.
  • the plurality of resin films 51 constituting the resin film array 500 are arranged such that end edges 512 on either one side in the second arrangement direction AD2 forming the respective straight lines are smoothly continuous in the first arrangement direction AD1. It is arranged.
  • the plurality of resin films 51 constituting the resin film array 500 are fixed to each other in the first arrangement direction AD ⁇ b> 1 so as to overlap each other in the thickness direction of the resin layer 50.
  • a pair of resin film rows 500 adjacent to each other are fixed to each other in the second arrangement direction AD2 so as to overlap each other in the thickness direction of the resin layer 50.
  • the resin film rows 500 are not offset from each other in the first arrangement direction AD1, and are arranged at the same position in the first arrangement direction AD1.
  • the pair of resin films 51 adjacent to each other in the second arrangement direction AD2 has smooth edges 511 on either side of the first arrangement direction AD1 forming the respective straight lines in the second arrangement direction AD2. They are arranged in a continuous manner.
  • the first arrangement direction AD1 is a direction inclined at an acute angle (for example, greater than 0 ° and not more than 80 °) with respect to the tire width direction
  • the second arrangement direction AD2 is perpendicular to the first arrangement direction AD1. It is good also as a direction.
  • the first arrangement direction AD1 may be the tire circumferential direction
  • the second arrangement direction AD2 may be the tire width direction.
  • each resin film 51 constituting the resin layer 50 has a substantially hexagonal shape (specifically, a substantially regular hexagonal shape) when viewed in a flat plane. And their shapes and dimensions are the same.
  • the resin layer 50 has a plurality of resin film rows 500 including a plurality of resin films 51 arranged in a row in the first arrangement direction AD1.
  • the first arrangement direction AD1 is the tire width direction.
  • the plurality of resin film rows 500 constituting the resin layer 50 are arranged in the second arrangement direction AD2.
  • the second arrangement direction AD2 is a direction perpendicular to the first arrangement direction AD1, and is a tire circumferential direction.
  • the plurality of resin films 51 constituting the resin film array 500 are aligned in their respective directions.
  • a plurality of resin films 51 constituting the resin film array 500 and a part of each first arrangement direction AD ⁇ b> 1 are overlapped and fixed in the thickness direction of the resin layer 50.
  • a pair of resin film rows 500 adjacent to each other are fixed to each other in the second arrangement direction AD2 so as to overlap each other in the thickness direction of the resin layer 50.
  • the resin film rows 500 are not offset from each other in the first arrangement direction AD1, and are arranged at the same position in the first arrangement direction AD1.
  • the pair of resin films 51 adjacent to each other in the second arrangement direction AD2 are arranged so that the edges 511 on both sides of the first arrangement direction AD1 forming the respective straight lines are substantially smoothly continuous in the second arrangement direction AD2. It is arranged.
  • the first arrangement direction AD1 is a direction inclined at an acute angle (for example, greater than 0 ° and not more than 80 °) with respect to the tire width direction
  • the second arrangement direction AD2 is perpendicular to the first arrangement direction AD1. It is good also as a direction.
  • the first arrangement direction AD1 may be the tire circumferential direction
  • the second arrangement direction AD2 may be the tire width direction.
  • the sixth modification shown in FIG. 12 differs from the fifth modification shown in FIG. 11 only in that the resin film rows 500 are offset from each other in the first arrangement direction AD1. More specifically, the plurality of resin film rows 500 constituting the resin layer 50 are compared to the plurality of first resin film rows 501 and the first resin film rows 501 arranged at predetermined positions in the first arrangement direction AD1. And a plurality of second resin film rows 502 arranged offset (displaced) in the first arrangement direction AD1, and the first resin film rows 501 and the second resin film rows 502 are alternately arranged in the second arrangement direction AD2. Is arranged. In the example of FIG.
  • the offset distance OT in the first arrangement direction AD1 of the second resin film row 502 with respect to the first resin film row 501 is smaller than the width W1 in the first arrangement direction AD1 of the resin film 51 (that is, OT). ⁇ W1).
  • the offset distance OT and the width W1 are measured along the contour of the resin layer 50.
  • the examples of FIGS. 3, 8, 10, and 11 are located on the outermost side in the tire width direction on both sides of the tire equatorial plane CL.
  • the plurality of resin films 51 are arranged so that the edges 511 in the first arrangement direction AD1 farther from the respective tire equatorial planes CL are smoothly and linearly continuous in the second arrangement direction.
  • the plurality of resin films 51 positioned on the outermost side in the tire width direction are farther from the respective tire equatorial plane CL.
  • the edges 511 in the first arrangement direction AD1 extend so as to be non-linear in the second arrangement direction or discontinuously.
  • the plurality of resin films 51 positioned on the outermost side in the tire width direction on both sides of the tire equatorial plane CL are in the first arrangement direction AD1 farther from the respective tire equatorial plane CL.
  • the end edge 511 may constitute an end portion 50e of the resin layer 50 in the tire width direction.
  • the end portion 50e of the resin layer 50 in the tire width direction may be linear along the tire circumferential direction (examples of FIGS. 3, 8, 10, and 11), or in the tire circumferential direction. May be non-linear (examples of FIGS. 7, 9, and 12).
  • the end portion 50e of the resin layer 50 in the tire width direction is formed in a substantially cylindrical resin layer by fixing a plurality of resin films 51 in the resin layer forming step. After forming 50 (FIG. 3), the end portions on both sides in the width direction of the substantially cylindrical resin layer 50 may be cut vertically and cut off in the tire width direction.
  • the resin material constituting the resin layer 50 is preferably a thermoplastic resin or a thermoplastic elastomer, and a resin that is crosslinked by heat or an electron beam, Resins that are cured by thermal dislocation can also be used.
  • thermoplastic elastomers polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), polyester-based thermoplastic elastomer (TPC) And a dynamically cross-linked thermoplastic elastomer (TPV).
  • TPS such as SBS, SBBS, SIS or SBIS block polymer
  • the thermoplastic resin include polyurethane resin, polyolefin resin, vinyl chloride resin, polyamide resin and the like.
  • the resin material constituting the resin layer 50 can be welded to both rubber and metal when it contains a modified body of unsaturated styrene elastomer or PPE. The heat applied during the vulcanization facilitates welding with other tire constituent members.
  • the deflection temperature under load (0.45 MPa load) specified in ISO75-2 or ASTM D648 is 78 ° C.
  • the tensile yield strength specified in JIS K7113 is used.
  • a material having a tensile fracture elongation of 50% or more as defined in JIS K7113 and a Vicat softening temperature (Method A) as defined in JIS K7206 of 130 ° C. or more can be used.
  • the tensile elastic modulus (specified in JIS K7113: 1995) of the resin material constituting the resin layer 50 is preferably 50 MPa or more.
  • the tensile elasticity modulus of the resin material which comprises the resin layer 50 shall be 1000 Mpa or less.
  • the “resin material” in the present specification does not include rubber (an organic polymer substance exhibiting rubber elasticity at room temperature).
  • the thickness T1 (FIG. 1) of the resin layer 50 is non-uniform.
  • the resin layer 50 may be formed of the resin film 51 so that the thickness T1 of the resin layer 50 is uniform.
  • the maximum value of the thickness T1 of the resin layer 50 (the portion where the thickness T1 is maximized)
  • the thickness is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more.
  • the maximum value of the thickness T1 of the resin layer 50 is preferably 1000 ⁇ m or less and more preferably 500 ⁇ m or less from the viewpoint of ensuring good riding comfort performance of the tire 1 and from the viewpoint of weight reduction of the tire.
  • the resin layer 50 is located on the tire equatorial plane CL. From the viewpoint of improving tire performance such as tire movement performance, it is preferable that the center of the resin layer 50 in the tire width direction is located on the tire equatorial plane CL.
  • the width of the resin layer 50 in the tire width direction may be an arbitrary width, but may be, for example, 80 to 130% of the tire ground contact width.
  • the belt layer 40 is used in the belt layer forming step. From the viewpoint of easy winding work when forming the belt, it is preferable that the width of the resin layer 50 in the tire width direction is larger than the width of the belt layer 40 in the tire width direction.
  • the width of the resin layer 50 in the tire width direction may be larger, equal, or smaller than the width of the belt layer 40 in the tire width direction.
  • the resin film 51 is arranged in a uniform arrangement pattern over the entire resin layer 50 when the resin layer 50 is viewed in a flat plane. Therefore, the number of the resin films 51 in the unit tire width direction length, the maximum value of the thickness T1 of the resin layer 50 in the unit tire width direction length, and the volume of the resin layer 50 in the unit tire width direction length are tires. It is almost uniform along the width direction. However, the arrangement pattern, the number, and the like of the resin film 51 may be non-uniform throughout the resin layer 50.
  • the number of the resin films 51 in the unit tire width direction length, the maximum value of the thickness T1 of the resin layer 50 in the unit tire width direction length, and the volume of the resin layer 50 in the unit tire width direction length It may be non-uniform along the width direction.
  • the rigidity of the resin layer 50 can be adjusted for each region in the tire width direction, whereby the performance of the tire 1 can be adjusted. For example, it is possible to dispose more resin film 51 in the vicinity of the tire equator plane CL than in other portions, thereby making the rigidity in the vicinity of the tire equator plane CL higher than in other portions. Further, the size and shape of the resin film 51 may be non-uniform throughout the resin layer 50.
  • the resin films 51 are at least partially overlapped and fixed to each other, whereby the entire resin layer 50 is integrally formed. Therefore, when the tire 1 is manufactured, when the resin film 51 is arranged on the base member (molding drum 200 or the like) in the resin layer forming step, the shape of the resin film 51 and the resin layer 50 is more accurately determined. It is possible to follow the shape of the base member. Therefore, the resin layer 50 having a tire width direction cross-sectional shape as expected can be obtained more simply. In addition, when the resin layer 50 is released from the base member (such as the molding drum 200) or when the resin layer 50 is assembled with other tire constituent members, the resin layer 50 becomes easy to handle and workability is improved. .
  • each resin film 51 moves large, and can improve tire performance.
  • the resin films 51 do not have to be fixed to each other.
  • the resin films 51 do not need to overlap each other.
  • the resin films 51 may be in contact with each other at their outer edge portions (sides) or may be separated from each other.
  • the resin films 51 may be arranged so that the resin layers 50 have a mesh shape. .
  • the belt layer 40 may have a configuration in which the cord 41 is covered with a coating resin instead of the configuration in which the cord 41 is covered with the covering rubber 42.
  • the belt layer 40 can be reduced in weight.
  • the coating resin can be formed, for example, by coating a molten coating resin on the outer peripheral side of the cord 41 and solidifying by cooling.
  • the resin material constituting the coating resin the same type of resin material as that described above for the resin layer 50 can be used, but a different type of resin material can also be used.
  • the pneumatic tire and the method for manufacturing a pneumatic tire according to the present invention can be used for any kind of pneumatic tire such as a pneumatic tire for a passenger car.
  • SYMBOLS 1 Pneumatic tire (tire), 10: Tread part, 11: Side wall part, 12: Bead part, 20: Carcass, 20a: Main body part, 20b: Folding part, 30: Bead core, 40: Belt layer, 40e: 51: Cord end, 41: Cord, 42: Cover rubber (rubber), 50: Resin layer, 50cp: Tire width direction center side part, 50e: Tire width direction end part, 50ep: Tire width direction outer end side part, 51 51a, 51b: resin film, 200: molding drum, 201: drum member, 500, 501, 502: resin film row, 511: edge in the first arrangement direction, 512: edge in the second arrangement direction, AD1: First arrangement direction, AD2: Second arrangement direction, CL: Tire equatorial plane, CD: Tire circumferential direction, S: Outer circumferential surface of molding drum, Scp: Drum width direction center side , Sep: drum width direction outer end side portion, WD: tire width direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Tyre Moulding (AREA)

Abstract

A pneumatic tire 1 is provided, in a tread portion 10, with a belt layer 40 including a cord extending in a helical shape in the circumferential direction of the tire, or a plurality of cords having an angle of inclination at most equal to 10° relative to the circumferential direction of the tire, and a resin layer 50, wherein the resin layer includes a plurality of resin films 51 arranged in each of the width direction of the tire and the circumferential direction of the tire.

Description

空気入りタイヤ、及び、空気入りタイヤの製造方法Pneumatic tire and method for manufacturing pneumatic tire
 本発明は、空気入りタイヤ、及び、空気入りタイヤの製造方法に関する。
 本願は、2018年5月31日に、日本に出願された特願2018-105470号に基づく優先権を主張するものであり、その内容の全文をここに援用する。
The present invention relates to a pneumatic tire and a method for manufacturing a pneumatic tire.
This application claims priority based on Japanese Patent Application No. 2018-105470 filed in Japan on May 31, 2018, the entire contents of which are incorporated herein by reference.
 従来より、空気入りタイヤにおいては、カーカスのタイヤ外周側に、コードを層間で互いに逆向きで交差する方向に配列した2層のベルト層(交錯ベルト層)が配置されることが多い(例えば、特許文献1)。しかしながら、このような構成においては、タイヤの重量が重くなるという問題があった。
 一方、近年の空気入りタイヤとして、トレッド部に、タイヤ周方向に対する傾斜角度が10°以下(例えば4°~7°)である複数のコードを有するベルト層(実働補強材層)と、樹脂層(ポリマー補強要素)と、を備えたものがある(例えば、特許文献2)。このような構成によれば、特許文献1のように2層の交錯ベルト層を備える場合に比べて、軽量化を可能にしつつ、タイヤ性能の低下を抑制できるとされている。
Conventionally, in a pneumatic tire, two belt layers (crossing belt layers) in which cords are arranged in directions opposite to each other between layers are often arranged on the outer periphery side of a carcass tire (for example, Patent Document 1). However, in such a configuration, there is a problem that the weight of the tire increases.
On the other hand, as a recent pneumatic tire, a belt layer (working reinforcing material layer) having a plurality of cords having an inclination angle with respect to the tire circumferential direction of 10 ° or less (for example, 4 ° to 7 °) in a tread portion, and a resin layer (Polymer reinforcing element) is provided (for example, Patent Document 2). According to such a configuration, it is said that a reduction in tire performance can be suppressed while enabling weight reduction as compared to a case where two crossing belt layers are provided as in Patent Document 1.
日本国特開平10-35220号公報Japanese Patent Laid-Open No. 10-35220 日本国特開2013-539734号公報Japanese Unexamined Patent Publication No. 2013-539734
 一般的に、空気入りタイヤにおいては、所期したトレッドゴムのゲージや接地形状を確保し、それにより所期した耐摩耗性等のタイヤ性能を確保するために、ベルト層が、例えば、タイヤ幅方向断面において少なくとも一部分でタイヤ外周側に凸に湾曲したような、非直線状のタイヤ幅方向断面形状を有することが求められる場合が多い。
 そして、特許文献2のような空気入りタイヤにおいては、所期したタイヤ性能を確保するために、ベルト層と同様に、樹脂層に対しても、例えば、タイヤ幅方向断面において少なくとも一部分でタイヤ外周側に凸に湾曲したような、非直線状のタイヤ幅方向断面形状を有することが求められる場合があると考えられる。
 タイヤ製造時において樹脂層に非直線状のタイヤ幅方向断面形状を付与する手法としては、例えば、直線状のタイヤ幅方向断面形状を有するベルト層及び樹脂層を備えたタイヤ構成部材を、拡張させて、非直線状の断面形状を有する金型成形面に押し当てる手法が考えられる。しかし、タイヤ周方向に対する傾斜角度が例えば10°以下である複数のコードを有するベルト層は、タイヤ周方向の剛性が非常に高いため、ほとんど拡張させることができない。よって、この手法によって樹脂層に所期したとおりの非直線状のタイヤ幅方向断面形状を付与することは難しい。
 なお、タイヤ周方向に対する傾斜角度が10°以下である複数のコードを有するベルト層に代えて、タイヤ周方向に螺旋状に延在するコードを有するベルト層を備えた空気入りタイヤについても、上記と同様のことが考えられる。
In general, in a pneumatic tire, a belt layer is used, for example, a tire width, in order to secure a desired tread rubber gauge and a ground contact shape, and thereby ensure the desired tire performance such as wear resistance. In many cases, it is required to have a non-linear cross-sectional shape in the tire width direction that is convexly curved toward the tire outer peripheral side at least partially in the direction cross section.
And in the pneumatic tire like patent document 2, in order to ensure the expected tire performance, it is the same as the belt layer, for example, at least a part in the tire width direction cross section, It is considered that it may be required to have a non-linear cross-sectional shape in the tire width direction that is convexly curved to the side.
As a method for imparting a non-linear tire width direction cross-sectional shape to the resin layer at the time of tire manufacture, for example, a tire constituent member including a belt layer and a resin layer having a linear tire width direction cross-sectional shape is expanded. Thus, a method of pressing against a mold forming surface having a non-linear cross-sectional shape is conceivable. However, a belt layer having a plurality of cords having an inclination angle with respect to the tire circumferential direction of, for example, 10 ° or less has a very high rigidity in the tire circumferential direction, and therefore cannot be almost expanded. Therefore, it is difficult to give a non-linear tire width direction cross-sectional shape as expected to the resin layer by this method.
Note that, in place of the belt layer having a plurality of cords having an inclination angle of 10 ° or less with respect to the tire circumferential direction, a pneumatic tire including a belt layer having a cord extending spirally in the tire circumferential direction is also described above. The same thing can be considered.
 本発明は、タイヤ製造時において、簡単に、所期したとおりのタイヤ幅方向断面形状を有する樹脂層が得られるようにされた、空気入りタイヤ、及び、簡単に、所期したとおりのタイヤ幅方向断面形状を有する樹脂層が得られる、空気入りタイヤの製造方法を提供することを目的とする。 The present invention provides a pneumatic tire and a tire width that is simply and as expected as a resin layer having a cross-sectional shape in the tire width direction that is simply and as expected when the tire is manufactured. It aims at providing the manufacturing method of a pneumatic tire from which the resin layer which has a direction cross section shape is obtained.
 本発明の空気入りタイヤは、
 トレッド部に、
  タイヤ周方向に螺旋状に延在するコード又はタイヤ周方向に対する傾斜角度が10°以下である複数のコードを有する、ベルト層と、
  樹脂層と、
を備え、
 前記樹脂層は、タイヤ幅方向及びタイヤ周方向のそれぞれに複数ずつ配置された樹脂フィルムを有する。
The pneumatic tire of the present invention is
In the tread part,
A belt layer having a cord extending spirally in the tire circumferential direction or a plurality of cords having an inclination angle of 10 ° or less with respect to the tire circumferential direction;
A resin layer;
With
The resin layer has a plurality of resin films arranged in each of the tire width direction and the tire circumferential direction.
 本発明の空気入りタイヤの製造方法は、
 上記の空気入りタイヤを製造する方法であって、
 成型ドラム上で、前記樹脂フィルムを前記成型ドラムの幅方向及び周方向のそれぞれに複数ずつ配置して、前記樹脂層を形成する、樹脂層形成ステップと、
 前記ベルト層及び前記樹脂層を備えた未加硫タイヤを成形する、成形ステップと、
 前記未加硫タイヤを加硫する、加硫ステップと、
を含む。
The method for producing a pneumatic tire of the present invention includes:
A method for producing the above pneumatic tire,
On the molding drum, a plurality of the resin films are arranged in each of the width direction and the circumferential direction of the molding drum to form the resin layer, a resin layer forming step,
Forming an unvulcanized tire provided with the belt layer and the resin layer; and
A vulcanization step of vulcanizing the unvulcanized tire;
including.
 本発明によれば、タイヤ製造時において、簡単に、所期したとおりのタイヤ幅方向断面形状を有する樹脂層が得られるようにされた、空気入りタイヤ、及び、簡単に、所期したとおりのタイヤ幅方向断面形状を有する樹脂層が得られる、空気入りタイヤの製造方法を提供することができる。 According to the present invention, at the time of manufacturing a tire, a resin layer having a cross-sectional shape in the tire width direction that is simply as expected can be obtained, and a pneumatic tire that is simply as expected The manufacturing method of a pneumatic tire from which the resin layer which has a tire width direction cross-sectional shape is obtained can be provided.
本発明の一実施形態に係る空気入りタイヤを示す、タイヤ半部のタイヤ幅方向断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a tire width direction cross-sectional view of a half of a tire, showing a pneumatic tire according to an embodiment of the present invention. 図1の空気入りタイヤの内部構造を一部分解して示す、斜視図である。It is a perspective view which decomposes | disassembles and shows a part of internal structure of the pneumatic tire of FIG. 図2の樹脂層を概略的に示す、斜視図である。FIG. 3 is a perspective view schematically showing a resin layer in FIG. 2. 樹脂層形成ステップにおいて用いられる成型ドラムの一例を示す、斜視図である。It is a perspective view which shows an example of the molding drum used in a resin layer formation step. 図4の成型ドラムの一部を、成型ドラムの中心軸線に沿う断面とともに示す、斜視図である。It is a perspective view which shows a part of molding drum of FIG. 4 with the cross section which follows the center axis line of a molding drum. 樹脂層形成ステップにおいて樹脂層が図4の成型ドラム上で形成される様子を概略的に示す、斜視図である。It is a perspective view which shows a mode that the resin layer is formed on the molding drum of FIG. 4 in a resin layer formation step. 樹脂層の第1変形例を説明するための図面である。It is drawing for demonstrating the 1st modification of a resin layer. 樹脂層の第2変形例を説明するための図面である。It is drawing for demonstrating the 2nd modification of a resin layer. 樹脂層の第3変形例を説明するための図面である。It is drawing for demonstrating the 3rd modification of a resin layer. 樹脂層の第4変形例を説明するための図面である。It is drawing for demonstrating the 4th modification of a resin layer. 樹脂層の第5変形例を説明するための図面である。It is drawing for demonstrating the 5th modification of a resin layer. 樹脂層の第6変形例を説明するための図面である。It is drawing for demonstrating the 6th modification of a resin layer.
 以下、本発明に係る空気入りタイヤ、及び、空気入りタイヤの製造方法の実施形態について、図面を参照しながら例示説明する。
 本発明に係る空気入りタイヤ、及び、空気入りタイヤの製造方法は、例えば乗用車用空気入りタイヤ等、任意の種類の空気入りタイヤに利用できるものである。
 各図において共通する構成要素には同一の符号を付している。
 本明細書では、「空気入りタイヤ」を、単に「タイヤ」ともいう。
Hereinafter, embodiments of a pneumatic tire and a method for manufacturing a pneumatic tire according to the present invention will be described with reference to the drawings.
The pneumatic tire and the manufacturing method of the pneumatic tire according to the present invention can be used for any kind of pneumatic tire such as a pneumatic tire for passenger cars.
In each figure, the same code | symbol is attached | subjected to the common component.
In the present specification, the “pneumatic tire” is also simply referred to as “tire”.
 図1は、本発明の一実施形態のタイヤ1のタイヤ半部を示すタイヤ幅方向断面図である。図2は、図1のタイヤ1の内部構造を一部分解して示す、斜視図である。図3は、図2の樹脂層を概略的に示す、斜視図である。
 図1及び図2に示すように、タイヤ1は、トレッド部10と、トレッド部10のタイヤ幅方向両端部からそれぞれタイヤ径方向内側へ延びる一対のサイドウォール部11と、サイドウォール部11からそれぞれタイヤ径方向内側に連続する一対のビード部12と、から構成されている。また、タイヤ1は、各ビード部12にビードコア30を備えており、これらのビードコア30どうしの間には、少なくとも一層(図の例では1層)のカーカスプライを含むカーカス20が、トロイド状に延びている。図の例において、カーカス20は、一対のビードコア30どうしの間をトロイド状に延びる本体部20aと、タイヤ赤道面CLに対する両側のそれぞれにおいて、本体部20aのタイヤ径方向最内端から、ビードコア30の周りでタイヤ幅方向外側に向けて折り返された、一対の折り返し部20bと、を含んでいる。タイヤ1は、さらに、トレッド部10におけるカーカス20のクラウン域よりもタイヤ外周側において、1層のベルト層40と、樹脂層50と、を備えている。
FIG. 1 is a cross-sectional view in the tire width direction showing a tire half portion of a tire 1 according to an embodiment of the present invention. 2 is a partially exploded perspective view showing the internal structure of the tire 1 of FIG. FIG. 3 is a perspective view schematically showing the resin layer of FIG.
As shown in FIGS. 1 and 2, the tire 1 includes a tread portion 10, a pair of sidewall portions 11 that extend inward in the tire radial direction from both ends in the tire width direction of the tread portion 10, and the sidewall portions 11, respectively. It is comprised from a pair of bead part 12 which follows a tire radial direction inner side. Further, the tire 1 includes a bead core 30 in each bead portion 12, and between these bead cores 30, a carcass 20 including a carcass ply of at least one layer (one layer in the illustrated example) is in a toroidal shape. It extends. In the illustrated example, the carcass 20 includes a bead core 30 from the innermost end in the tire radial direction of the main body 20a on each of the main body 20a that extends in a toroidal shape between the pair of bead cores 30 and the tire equatorial plane CL. And a pair of folded portions 20b folded toward the outer side in the tire width direction. The tire 1 further includes a single belt layer 40 and a resin layer 50 on the tire outer peripheral side with respect to the crown region of the carcass 20 in the tread portion 10.
 タイヤ1は、ベルト層40を1層のみ有している。
 本例において、ベルト層40は、タイヤ周方向に螺旋状に延在するとともにゴム(被覆ゴム)42で被覆されたコード41を有しているベルト層(以下、「スパイラルベルト層」ともいう。)である。より具体的に、ベルト層40は、ゴム42で被覆された1本又は複数本のコード41が、タイヤ幅方向の一方側へ向かいながらタイヤ1の回転軸線の周りを複数回にわたって螺旋状に巻回された状態のものである。コード41のタイヤ周方向に対する鋭角側の角度θ1(図2)は、10°以下が好適であり、5°以下がより好適であり、1°以下がさらに好適である。
 ただし、ベルト層40は、スパイラルベルト層である代わりに、タイヤ周方向に対する鋭角側の傾斜角度θ1(図2)が10°以下であるともにゴム(被覆ゴム)42で被覆された複数のコード41を有しているベルト層(以下、「小傾斜ベルト層」ともいう。)でもよい。この場合、ベルト層40を構成するコード41は、最大、タイヤ1周分にわたって、タイヤ1の回転軸線の周りで巻回されている。この場合、コード41のタイヤ周方向に対する鋭角側の角度θ1は、0°超10°以下が好適であり、4°以上7°以下がより好適であり、5°以上6°以下がさらに好適である。
 ベルト層40は、スパイラルベルト層又は小傾斜ベルト層のいずれである場合でも、コード41としては、例えば、金属コード(スチールコード等)、有機繊維コード(アラミド繊維コード、ナイロン繊維コード等)、カーボン繊維コード等を用いるとよい。コード41は、モノフィラメント又は撚り線等からなるものとすることができる。有機繊維コードは、単繊維又は複数本の単繊維を撚り合わせたものを用いることができる。被覆ゴム42は、ベルトコーティングゴムに通常用いるゴム材料等、任意の既知のゴム材料を用いることができる。
 本実施形態では、タイヤ1が、ベルト層40を1層のみ有しているので、上述した従来のタイヤにおいて2層の交錯ベルト層を有する場合に比べて、軽量化が可能になる。なお、ベルト層の重量は、主に、コードが占めている。よって、ベルト層1層分のコードの重量を削減できることは、軽量化に大きく寄与する。
 また、上述した従来のタイヤにおいて2層の交錯ベルト層を有する場合は、交錯ベルト層間で、パンタグラフ変形時等においてせん断応力が集中し易く、それにより耐久性が低下するおそれがあるが、本実施形態では、タイヤ1が2層の交錯ベルト層を有していないので、タイヤ1の耐久性を向上できる。
 また、ベルト層40が、本例のようにスパイラルベルト層である場合、又は、小傾斜ベルト層である場合は、タイヤ1の周方向剛性を十分に確保することができ、ひいては、タイヤ1の直進時の操縦安定性や、径成長防止性能を、十分に確保できる。
 ただし、タイヤ1は、ベルト層40を2層以上有していてもよい。
The tire 1 has only one belt layer 40.
In this example, the belt layer 40 is also referred to as a belt layer (hereinafter referred to as a “spiral belt layer”) that extends in a spiral shape in the tire circumferential direction and has a cord 41 covered with rubber (covered rubber) 42. ). More specifically, in the belt layer 40, one or a plurality of cords 41 covered with the rubber 42 are spirally wound around the rotation axis of the tire 1 a plurality of times while moving toward one side in the tire width direction. It is the state of being turned. The angle θ1 (FIG. 2) on the acute angle side of the cord 41 with respect to the tire circumferential direction is preferably 10 ° or less, more preferably 5 ° or less, and further preferably 1 ° or less.
However, instead of being a spiral belt layer, the belt layer 40 has a plurality of cords 41 having an inclination angle θ1 (FIG. 2) on the acute angle side with respect to the tire circumferential direction of 10 ° or less and covered with rubber (covered rubber) 42. May be a belt layer (hereinafter also referred to as a “small inclined belt layer”). In this case, the cord 41 constituting the belt layer 40 is wound around the rotation axis of the tire 1 at most for one tire circumference. In this case, the angle θ1 on the acute angle side with respect to the tire circumferential direction of the cord 41 is preferably more than 0 ° and not more than 10 °, more preferably not less than 4 ° and not more than 7 °, and further preferably not less than 5 ° and not more than 6 °. is there.
Whether the belt layer 40 is a spiral belt layer or a small inclined belt layer, examples of the cord 41 include a metal cord (steel cord, etc.), an organic fiber cord (aramid fiber cord, nylon fiber cord, etc.), carbon, and the like. A fiber cord or the like may be used. The cord 41 can be made of a monofilament or a stranded wire. As the organic fiber cord, a single fiber or a twist of a plurality of single fibers can be used. As the covering rubber 42, any known rubber material such as a rubber material usually used for belt coating rubber can be used.
In the present embodiment, since the tire 1 has only one belt layer 40, the weight can be reduced as compared with the case where the conventional tire described above has two crossing belt layers. Note that the cord mainly occupies the weight of the belt layer. Therefore, reducing the weight of the cord for one belt layer greatly contributes to weight reduction.
In addition, when the conventional tire described above has two crossing belt layers, shear stress tends to be concentrated between the crossing belt layers at the time of pantograph deformation, etc., which may reduce durability. In the embodiment, since the tire 1 does not have two crossing belt layers, the durability of the tire 1 can be improved.
Further, when the belt layer 40 is a spiral belt layer as in this example or a small inclined belt layer, the circumferential rigidity of the tire 1 can be sufficiently secured, and as a result, the tire 1 Steering stability during straight travel and diameter growth prevention performance can be sufficiently secured.
However, the tire 1 may have two or more belt layers 40.
 ベルト層40のタイヤ幅方向の幅は、例えば、タイヤ1のタイヤ接地幅の90~120%であると、好適である。
 ここで、「タイヤ接地幅」は、タイヤ1を適用リムに装着し、規定内圧を充填し、最大負荷荷重を負荷した状態での接地面のタイヤ幅方向最外側位置を接地端として、タイヤを適用リムに装着し、規定内圧を充填し、無負荷状態とした状態での接地端間のタイヤ幅方向距離とする。
 また、本明細書内のその他の寸法、角度、形状、曲率半径等は、タイヤを適用リムに装着して、規定内圧を充填し、無負荷状態とした状態で測定されるものとする。
 本明細書において、「適用リム」とは、タイヤが生産され、使用される地域に有効な産業規格であって、日本ではJATMA(日本自動車タイヤ協会) のJATMA YEAR BOOK、欧州ではETRTO(The European Tyre and Rim Technical Organisation)のSTANDARDS MANUAL、米国ではTRA(The Tire and Rim Association, Inc.)のYEAR BOOK等に記載されている、または将来的に記載される適用サイズにおける標準リム(ETRTOのSTANDARDS MANUALではMeasuring Rim、TRAのYEAR BOOKではDesign Rim)を指す(すなわち、上記の「リム」には、現行サイズに加えて将来的に上記産業規格に含まれ得るサイズも含む。「将来的に記載されるサイズ」の例としては、ETRTOのSTANDARDS MANUAL 2013年度版において「FUTURE DEVELOPMENTS」として記載されているサイズを挙げることができる。)が、上記産業規格に記載のないサイズの場合は、タイヤのビード幅に対応した幅のリムをいう。また、「規定内圧」は、適用サイズのタイヤにおける上記JATMA等の規格のタイヤ最大負荷能力に対応する空気圧(最高空気圧)をいう。なお、上記産業規格に記載のないサイズの場合は、「規定内圧」は、タイヤを装着する車両ごとに規定される最大負荷能力に対応する空気圧(最高空気圧)をいうものとする。「最大負荷荷重」は、適用サイズのタイヤにおける上記JATMA等の規格のタイヤ最大負荷能力、又は、上記産業規格に記載のないサイズの場合は、タイヤを装着する車両ごとに規定される最大負荷能力に対応する荷重を意味する。
The width of the belt layer 40 in the tire width direction is preferably 90 to 120% of the tire ground contact width of the tire 1, for example.
Here, the “tire contact width” means that the tire 1 is mounted on the applicable rim, filled with the specified internal pressure, and the outermost position in the tire width direction of the contact surface in the state where the maximum load is applied is used as the contact end. Mounted on the applicable rim, filled with the specified internal pressure, and defined as the distance in the tire width direction between the ground contact edges in a no-load state.
Further, other dimensions, angles, shapes, radii of curvature, and the like in this specification are measured in a state in which a tire is mounted on an applicable rim, filled with a specified internal pressure, and in a no-load state.
In this specification, “applicable rim” is an industrial standard effective in the region where tires are produced and used. In Japan, JATMA YEAR BOOK of JATMA (Japan Automobile Tire Association), in Europe, ETRTO (The European) STANDARDDS MANUAL of Tire and Rim Technical Organization, standard rims in application sizes described in YEAR BOOK of TRA (The Tile and Rim Association, Inc.) in the United States, etc. Refers to Measuring Rim, and TRA YEAR BOOK Design Rim (ie, the above “rim” includes the current size plus the future) Examples of “sizes to be described in the future” include the sizes described as “FUTURE DEVELOPMENTS” in the STANDARDS MANUAL 2013 edition of ETRTO. ) Is a rim having a width corresponding to the bead width of the tire when the size is not described in the industry standard. The “specified internal pressure” refers to an air pressure (maximum air pressure) corresponding to the tire maximum load capacity of the standard such as JATMA in a tire of an applicable size. In the case of a size not described in the industry standard, the “specified internal pressure” refers to an air pressure (maximum air pressure) corresponding to a maximum load capacity specified for each vehicle on which a tire is mounted. “Maximum load load” is the tire maximum load capacity of the standard such as JATMA for the tire of the applicable size, or, in the case of a size not described in the industry standard, the maximum load capacity defined for each vehicle on which the tire is mounted. Means the load corresponding to.
 図1及び図2に示すように、本例において、樹脂層50は、ベルト層40のタイヤ内周側、かつ、カーカス20のクラウン域のタイヤ外周側に、配置されている。ただし、これに代えて又は加えて、樹脂層50は、ベルト層40のタイヤ外周側に配置されてもよい。
 仮に、タイヤ1が樹脂層50を有しておらず、ベルト層40のみを有する場合、タイヤ1は、タイヤ幅方向の剛性を殆ど確保することができず、ひいては、面内せん断剛性を十分に確保することができない。そのため、旋回時の操縦安定性等のタイヤ運動性能を十分に確保することができない。
 一方、本実施形態においては、タイヤ1が、ベルト層40に加えて、樹脂層50を有するので、タイヤ幅方向の剛性を補うことができ、それにより、面内せん断剛性ひいてはタイヤ運動性能等のタイヤ性能を確保することができる。
 また、樹脂層50は、ベルト層が有するようなコードを有さず、また、ゴムよりも軽い樹脂材料からなるため、従来の2層の交錯ベルト層を備えた場合に比べて、タイヤの軽量化が可能である。
As shown in FIGS. 1 and 2, in this example, the resin layer 50 is disposed on the tire inner peripheral side of the belt layer 40 and on the tire outer peripheral side of the crown region of the carcass 20. However, instead of or in addition to this, the resin layer 50 may be disposed on the tire outer peripheral side of the belt layer 40.
If the tire 1 does not have the resin layer 50 and has only the belt layer 40, the tire 1 can hardly ensure rigidity in the tire width direction, and thus has sufficient in-plane shear rigidity. It cannot be secured. Therefore, sufficient tire motion performance such as steering stability during turning cannot be ensured.
On the other hand, in the present embodiment, since the tire 1 has the resin layer 50 in addition to the belt layer 40, the rigidity in the tire width direction can be supplemented, and thereby the in-plane shear rigidity and the tire motion performance can be improved. Tire performance can be ensured.
Further, since the resin layer 50 does not have a cord that the belt layer has, and is made of a resin material lighter than rubber, the weight of the tire is reduced as compared with the case where the conventional two-layer crossing belt layer is provided. Is possible.
 図2及び図3に示すように、樹脂層50は、タイヤ幅方向及びタイヤ周方向のそれぞれに複数ずつ配置された樹脂フィルム51を有している。
 図3では、理解のし易さのため、樹脂層50をタイヤ1に組み込んだときの姿勢における、タイヤ周方向をCD矢印により示し、タイヤ幅方向をWD矢印により示している。図6~図12についても同様である。樹脂層50の周方向はタイヤ周方向に対応し、樹脂層50の幅方向(中心軸線方向)はタイヤ幅方向に対応する。
 樹脂フィルム51は、本例において、樹脂層50のタイヤ幅方向及びタイヤ周方向のそれぞれの全体にわたって存在している。互いに隣接する樹脂フィルム51どうしは、それぞれの一部分で、樹脂層50の厚み方向に重なっているとともに、その重なった部分で互いに固着(溶着及び/又は接着)されている。いいかえれば、樹脂層50は、互いに固着された、これら複数の樹脂フィルム51から構成されている。なお、図2及び図3では、便宜のため、樹脂層50を構成する複数の樹脂フィルム51のうちの一部のみを示しており、残りの樹脂フィルム51によって構成された樹脂層50の部分を二点鎖線で示している。
 図1及び図2に示すように、本例において、樹脂層50は、非直線状のタイヤ幅方向断面形状を有している。より具体的に、本例では、タイヤ1のタイヤ幅方向断面において、樹脂層50は、その少なくとも一部分(本例では全部)で、タイヤ外周側に凸に湾曲している。
As shown in FIGS. 2 and 3, the resin layer 50 includes a plurality of resin films 51 arranged in each of the tire width direction and the tire circumferential direction.
In FIG. 3, for ease of understanding, in the posture when the resin layer 50 is incorporated in the tire 1, the tire circumferential direction is indicated by a CD arrow, and the tire width direction is indicated by a WD arrow. The same applies to FIGS. 6 to 12. The circumferential direction of the resin layer 50 corresponds to the tire circumferential direction, and the width direction (center axis direction) of the resin layer 50 corresponds to the tire width direction.
In this example, the resin film 51 exists over the entire tire width direction and tire circumferential direction of the resin layer 50. The resin films 51 adjacent to each other overlap each other in the thickness direction of the resin layer 50 and are fixed (welded and / or bonded) to each other at the overlapping portions. In other words, the resin layer 50 is composed of the plurality of resin films 51 fixed to each other. 2 and 3, only a part of the plurality of resin films 51 constituting the resin layer 50 is shown for convenience, and the portion of the resin layer 50 constituted by the remaining resin films 51 is shown. It is indicated by a two-dot chain line.
As shown in FIGS. 1 and 2, in this example, the resin layer 50 has a non-linear tire width direction cross-sectional shape. More specifically, in this example, in the tire width direction cross section of the tire 1, the resin layer 50 is convexly curved toward the tire outer peripheral side at least at a part (all in this example).
 図2及び図3に示すように、本例において、各樹脂フィルム51は、それぞれを平面に展開して観たときに、それぞれの形状が略四角形(具体的には略長方形)であり、それぞれの形状及び寸法が互いに同じである。
 樹脂層50は、一方向に一列に配列された複数の樹脂フィルム51からなる樹脂フィルム列500を複数列有している。以下では、樹脂フィルム列500を構成する複数の樹脂フィルム51が配列された方向を、「第1配列方向(AD1)」という。図2の例において、第1配列方向AD1は、タイヤ幅方向である。
 また、樹脂層50を構成する複数列の樹脂フィルム列500どうしは、第1配列方向AD1に交差する方向に配列されている。以下では、樹脂層50を構成する複数列の樹脂フィルム列500どうしが配列された方向を、「第2配列方向(AD2)」という。図2の例において、第2配列方向AD2は、第1配列方向AD1に対し垂直な方向であり、タイヤ周方向である。
As shown in FIGS. 2 and 3, in this example, each resin film 51 has a substantially quadrangular shape (specifically, a substantially rectangular shape) when viewed in a flat plane. Have the same shape and dimensions.
The resin layer 50 has a plurality of resin film rows 500 including a plurality of resin films 51 arranged in a row in one direction. Hereinafter, the direction in which the plurality of resin films 51 constituting the resin film array 500 is arranged is referred to as “first arrangement direction (AD1)”. In the example of FIG. 2, the first arrangement direction AD1 is the tire width direction.
The plurality of resin film rows 500 constituting the resin layer 50 are arranged in a direction intersecting the first arrangement direction AD1. Hereinafter, a direction in which a plurality of resin film rows 500 constituting the resin layer 50 are arranged is referred to as a “second arrangement direction (AD2)”. In the example of FIG. 2, the second arrangement direction AD2 is a direction perpendicular to the first arrangement direction AD1, and is a tire circumferential direction.
 なお、樹脂層50を構成する複数の樹脂フィルム51について、「タイヤ幅方向及びタイヤ周方向のそれぞれに複数ずつ配置された」とは、例えば、複数の樹脂フィルム51が一方向のみに配列された場合を除く趣旨であり、好ましくは、図2及び図3の例や後述の図7~図12の各例のように、樹脂層50が、任意の第1配列方向AD1に一列に配列された複数の樹脂フィルム51からなる樹脂フィルム列500を複数列有しており、これら複数列の樹脂フィルム列500が、第1配列方向AD1に交差する第2配列方向AD2に配列されているのがよい。ただし、第1配列方向AD1及び第2配列方向AD2は、それぞれタイヤ幅方向及びタイヤ周方向であることには限定されない。第1配列方向AD1及び第2配列方向AD2は、それぞれ、タイヤ幅方向及びタイヤ周方向に対して鋭角に傾斜した方向でもよい。また、第1配列方向AD1及び第2配列方向AD2は、互いに非垂直に交差していてもよい。 In addition, about the some resin film 51 which comprises the resin layer 50, "it has arranged two or more in each of a tire width direction and a tire circumferential direction" means that the some resin film 51 was arranged only in one direction, for example In other words, the resin layers 50 are preferably arranged in a line in an arbitrary first arrangement direction AD1 as in the examples of FIGS. 2 and 3 and the examples of FIGS. 7 to 12 described later. It is preferable that a plurality of resin film rows 500 each including a plurality of resin films 51 are provided, and the plurality of resin film rows 500 are arranged in a second arrangement direction AD2 that intersects the first arrangement direction AD1. . However, the first arrangement direction AD1 and the second arrangement direction AD2 are not limited to the tire width direction and the tire circumferential direction, respectively. The first arrangement direction AD1 and the second arrangement direction AD2 may be directions inclined at acute angles with respect to the tire width direction and the tire circumferential direction, respectively. Further, the first arrangement direction AD1 and the second arrangement direction AD2 may cross each other non-perpendicularly.
 図2及び図3の例において、樹脂フィルム列500を構成する複数の樹脂フィルム51どうしは、それぞれの向きが揃えられており、それぞれの直線状をなす第2配列方向AD2両側の端縁512どうしが第1配列方向AD1に滑らかに連続するように配列されている。また、樹脂フィルム列500を構成する複数の樹脂フィルム51は、それぞれの第1配列方向AD1の一部分どうしが、樹脂層50の厚み方向に重なって固着されている。
 互いに隣接する一対の樹脂フィルム列500は、それぞれの第2配列方向AD2の一部分どうしが、樹脂層50の厚み方向に重なって固着されている。
 樹脂層50を構成する複数列の樹脂フィルム列500は、第1配列方向AD1における所定位置に配置された複数の第1樹脂フィルム列501と、第1樹脂フィルム列501に対して第1配列方向AD1にオフセット(変位)して配置された複数の第2樹脂フィルム列502とからなり、第1樹脂フィルム列501と第2樹脂フィルム列502とが第2配列方向AD2に交互に配置されている。すなわち、第2配列方向AD2に互いに隣接する一対の樹脂フィルム列500は、第1樹脂フィルム列501と第2樹脂フィルム列502とからなる。図2の例において、第1樹脂フィルム列501に対する第2樹脂フィルム列502の第1配列方向AD1のオフセット距離OTは、樹脂フィルム51の第1配列方向AD1の幅W1よりも小さい(すなわち、OT<W1)。なお、オフセット距離OT、幅W1は、樹脂層50の輪郭に沿って測るものとする。
 図2の例において、タイヤ赤道面CLに対する両側において、タイヤ幅方向の最も外側に位置している複数の樹脂フィルム51は、それぞれのタイヤ赤道面CLから遠いほうの第1配列方向AD1の端縁511どうしが、第2配列方向に滑らかに連続するように配列されているとともに、樹脂層50のタイヤ幅方向の端部50eを構成している。
In the example of FIGS. 2 and 3, the plurality of resin films 51 constituting the resin film array 500 are aligned in the same direction, and the edges 512 on both sides of the second arrangement direction AD <b> 2 forming the respective straight lines. Are arranged smoothly and continuously in the first arrangement direction AD1. In addition, the plurality of resin films 51 constituting the resin film array 500 are fixed to each other in the first arrangement direction AD <b> 1 so as to overlap each other in the thickness direction of the resin layer 50.
A pair of resin film rows 500 adjacent to each other are fixed to each other in the second arrangement direction AD2 so as to overlap each other in the thickness direction of the resin layer 50.
A plurality of resin film rows 500 constituting the resin layer 50 includes a plurality of first resin film rows 501 arranged at predetermined positions in the first arrangement direction AD1, and a first arrangement direction with respect to the first resin film rows 501. It consists of a plurality of second resin film rows 502 arranged offset (displaced) in AD1, and the first resin film rows 501 and the second resin film rows 502 are alternately arranged in the second arrangement direction AD2. . That is, the pair of resin film rows 500 adjacent to each other in the second arrangement direction AD2 includes the first resin film row 501 and the second resin film row 502. In the example of FIG. 2, the offset distance OT in the first arrangement direction AD1 of the second resin film row 502 with respect to the first resin film row 501 is smaller than the width W1 in the first arrangement direction AD1 of the resin film 51 (that is, OT). <W1). The offset distance OT and the width W1 are measured along the contour of the resin layer 50.
In the example of FIG. 2, on both sides of the tire equatorial plane CL, the plurality of resin films 51 positioned on the outermost side in the tire width direction are the edges in the first arrangement direction AD1 farther from the respective tire equatorial plane CL. 511 are arranged so as to be smoothly continuous in the second arrangement direction, and constitute an end portion 50e of the resin layer 50 in the tire width direction.
 以下、図4~図6を参照しつつ、以上に説明した構成を有する空気入りタイヤ1を製造する方法を、例示的に説明する。 Hereinafter, a method for manufacturing the pneumatic tire 1 having the above-described configuration will be exemplarily described with reference to FIGS.
  -樹脂フィルム製造ステップ-
 まず、樹脂材料を用いて、複数の樹脂フィルム51を製造する(樹脂フィルム製造ステップ)。樹脂フィルム製造ステップにおいては、例えば、樹脂材料を用いて、幅広い樹脂シートを射出成形又は押出成形等により成形し、その後、型抜き成形又はレーザ加工等により、前記樹脂シートから、複数の樹脂フィルム51を得る。あるいは、樹脂材料を用いて、射出成形又は押出成形等により複数の樹脂フィルム51をそれぞれ成形してもよい。
-Resin film manufacturing steps-
First, a plurality of resin films 51 are manufactured using a resin material (resin film manufacturing step). In the resin film manufacturing step, for example, using a resin material, a wide range of resin sheets are formed by injection molding or extrusion molding, and then a plurality of resin films 51 are formed from the resin sheet by die cutting or laser processing. Get. Alternatively, a plurality of resin films 51 may be respectively formed by injection molding or extrusion molding using a resin material.
  -樹脂層形成ステップ-
 樹脂フィルム製造ステップの後、図6に示すように、土台部材(図6の例では、成型ドラム200)上で、樹脂フィルム51を成型ドラム200の幅方向及び周方向のそれぞれに複数ずつ配置して、樹脂層50を形成する(樹脂層形成ステップ)。
 本例において、成型ドラム200は、図4及び図5に示すように、略円筒状に構成されており、成型ドラム200の外周面Sは、非直線状の幅方向断面形状を有しており、より具体的に、本例では、成型ドラム200の幅方向断面において、少なくとも一部分で、外周側に凸に湾曲している。
 なお、成型ドラム200の幅方向は、成型ドラム200の中心軸線方向である。本明細書では、成型ドラム200の幅方向を、「ドラム幅方向」ともいう。また、成型ドラム200の周方向を、「ドラム周方向」ともいう。
 また、本例において、成型ドラム200は、それぞれドラム幅方向に延在するとともに、ドラム周方向に沿って配列された、複数のドラム部材201を有している。これらの複数のドラム部材201は、それぞれ成型ドラム200の径方向に往復移動可能にされており、これにより、成型ドラム200を縮径及び拡径できるようにされている。
 そして、樹脂層形成ステップにおいては、ある程度拡径された状態にある成型ドラム200の外周面S上に、上述のごとく複数の樹脂フィルム51を配置していく。このとき、樹脂フィルム51どうしを少なくとも一部分で互いに重ねながら、その重なった部分で樹脂フィルム51どうしを固着(溶着及び/又は接着)させる。これにより、最終的に得られる樹脂層50が、全体として一体となり、成型ドラム200の外周面Sの形状に沿った形状を有する略円筒形状になる。すなわち、樹脂層50は、本例において、非直線状の幅方向断面形状を有しており、より具体的には、樹脂層50の幅方向断面において、少なくとも一部分で、外周側に凸に湾曲している。ここで、樹脂層50を成型ドラム200から容易に離型できるようにする観点から、樹脂層50と成型ドラム200との間には、接着剤を配置しないことが好適である。
 なお、樹脂層形成ステップにおいては、上述の固着を行う際又はそれとは別のタイミングで、成型ドラム200上に配置された樹脂フィルム51に対して、例えば熱風を当てる等して加熱し、さらに、上からローラ等で押圧するようにすると、より確実に、樹脂フィルム51ひいては樹脂層50の形状が成型ドラム200の外周面Sの形状に沿うようになり、また、樹脂フィルム51間の段差をある程度平滑化できるので、好適である。
 樹脂層形成ステップは、手作業で行ってもよいし、装置によって自動的に行ってもよい。
 樹脂層50を成型ドラム200上で成形し終わった後は、成型ドラム200を縮径させることにより、樹脂層50を成型ドラム200から離型する。
 なお、成型ドラム200は、図4~図6に示す例とは異なる任意の構成からなるものでもよい。また、成型ドラム200の代わりに、所期する幅方向断面形状の外表面を有する任意の土台部材を用いてもよい。後述のベルト層形成ステップでも述べるように、このような土台部材として、ベルト層40を用いてもよい。
-Resin layer formation step-
After the resin film manufacturing step, as shown in FIG. 6, a plurality of resin films 51 are arranged on the base member (in the example of FIG. 6, the molding drum 200) in each of the width direction and the circumferential direction of the molding drum 200. Then, the resin layer 50 is formed (resin layer forming step).
In this example, as shown in FIGS. 4 and 5, the molding drum 200 is configured in a substantially cylindrical shape, and the outer peripheral surface S of the molding drum 200 has a non-linear cross-sectional shape in the width direction. More specifically, in this example, at least a part of the molding drum 200 in the width direction cross section is convexly curved toward the outer peripheral side.
The width direction of the molding drum 200 is the central axis direction of the molding drum 200. In this specification, the width direction of the molding drum 200 is also referred to as “drum width direction”. The circumferential direction of the molding drum 200 is also referred to as “drum circumferential direction”.
In this example, the molding drum 200 includes a plurality of drum members 201 that extend in the drum width direction and are arranged along the drum circumferential direction. Each of the plurality of drum members 201 can be reciprocated in the radial direction of the molding drum 200, so that the molding drum 200 can be contracted and expanded.
In the resin layer forming step, the plurality of resin films 51 are arranged on the outer peripheral surface S of the molding drum 200 that has been expanded to some extent as described above. At this time, while the resin films 51 are overlapped with each other at least partially, the resin films 51 are fixed (welded and / or bonded) at the overlapped portions. Thereby, the resin layer 50 finally obtained is integrated as a whole, and becomes a substantially cylindrical shape having a shape along the shape of the outer peripheral surface S of the molding drum 200. That is, in this example, the resin layer 50 has a non-linear cross-sectional shape in the width direction. More specifically, at least a part of the cross-section in the width direction of the resin layer 50 is curved to protrude outward. doing. Here, from the viewpoint of allowing the resin layer 50 to be easily released from the molding drum 200, it is preferable that no adhesive is disposed between the resin layer 50 and the molding drum 200.
In the resin layer forming step, the resin film 51 disposed on the molding drum 200 is heated, for example, by applying hot air when performing the above-described fixing or at a different timing, and further, By pressing from above with a roller or the like, the shape of the resin film 51 and, consequently, the resin layer 50 is more consistent with the shape of the outer peripheral surface S of the molding drum 200, and the level difference between the resin films 51 is made to some extent. Since smoothing is possible, it is preferable.
The resin layer forming step may be performed manually or automatically by an apparatus.
After the molding of the resin layer 50 on the molding drum 200, the resin layer 50 is released from the molding drum 200 by reducing the diameter of the molding drum 200.
The molding drum 200 may have an arbitrary configuration different from the examples shown in FIGS. Further, instead of the molding drum 200, an arbitrary base member having an outer surface having a desired cross-sectional shape in the width direction may be used. As described in the belt layer forming step described later, the belt layer 40 may be used as such a base member.
  -ベルト層形成ステップ-
 後述の成形ステップの前に、スパイラルベルト層又は小傾斜ベルト層として構成されるベルト層40を形成する(ベルト層形成ステップ)。ベルト層形成ステップは、樹脂層形成ステップの後に行われてもよいし、あるいは、樹脂層形成ステップの前に行われてもよい。
 ここで、ベルト層40は、略円筒状であり、上述のとおりスパイラルベルト層又は小傾斜ベルト層であるため、その周方向の剛性が非常に高く、ほとんど拡張させることができない。よって、ベルト層形成ステップでは、拡張以外の手法によって、ベルト層40に、最終的に必要なタイヤ幅方向断面形状が付与されると好適である。
 例えば、図1及び図2の例のように、ベルト層40が、スパイラルベルト層として構成され、かつ、樹脂層50のタイヤ外周側に配置された、タイヤ1を製造する場合は、樹脂層形成ステップの後に、ベルト層形成ステップにおいて、樹脂層50の外周面上で、被覆ゴム42により被覆されたコード41を樹脂層50の中心軸線の周りで螺旋状に巻回させてベルト層40を形成すると、好適である。これにより、ベルト層40が樹脂層50の形状に沿った形状になる。また、樹脂層50を土台として巻回作業をすることができるため、巻回作業の作業性にも優れている。
 あるいは、例えば、ベルト層40が、スパイラルベルト層として構成され、かつ、樹脂層50のタイヤ内周側に配置された、タイヤ1を製造する場合は、樹脂層形成ステップの前に、ベルト層形成ステップにおいて、上述した成型ドラム200(図4及び図5)の外周面上に、被覆ゴム42により被覆されたコード41を樹脂層50の中心軸線の周りで螺旋状に巻回させてベルト層40を形成し、その後、樹脂層形成ステップにおいて、ベルト層40の外周面上に、上述のように複数の樹脂フィルム51を配置していき、樹脂層50を形成するようにしてもよい。つまり、この場合、樹脂層形成ステップにおける土台部材は、ベルト層40である。これにより、ベルト層40が、成型ドラム200の外周面の形状に沿った形状になり、樹脂層50が、ベルト層40の形状に沿った形状になる。
 ただし、ベルト層40には、上述した方法以外の任意の方法で、必要なタイヤ幅方向断面形状が付与されてもよい。
-Belt layer formation step-
Before the molding step described later, a belt layer 40 configured as a spiral belt layer or a small inclined belt layer is formed (belt layer forming step). The belt layer forming step may be performed after the resin layer forming step, or may be performed before the resin layer forming step.
Here, since the belt layer 40 has a substantially cylindrical shape and is a spiral belt layer or a small inclined belt layer as described above, the rigidity in the circumferential direction is very high and the belt layer 40 can hardly be expanded. Therefore, in the belt layer forming step, it is preferable that the necessary cross-sectional shape in the tire width direction is finally given to the belt layer 40 by a method other than expansion.
For example, in the case of manufacturing the tire 1 in which the belt layer 40 is configured as a spiral belt layer and disposed on the tire outer peripheral side of the resin layer 50 as in the example of FIGS. After the step, in the belt layer forming step, the cord 41 covered with the coating rubber 42 is spirally wound around the central axis of the resin layer 50 on the outer peripheral surface of the resin layer 50 to form the belt layer 40. Then, it is suitable. Thereby, the belt layer 40 becomes a shape along the shape of the resin layer 50. Moreover, since the winding work can be performed using the resin layer 50 as a base, the workability of the winding work is also excellent.
Alternatively, for example, when manufacturing the tire 1 in which the belt layer 40 is configured as a spiral belt layer and disposed on the tire inner peripheral side of the resin layer 50, the belt layer formation is performed before the resin layer formation step. In the step, the belt layer 40 is formed by spirally winding the cord 41 covered with the covering rubber 42 around the central axis of the resin layer 50 on the outer peripheral surface of the molding drum 200 (FIGS. 4 and 5). Then, in the resin layer forming step, a plurality of resin films 51 may be arranged on the outer peripheral surface of the belt layer 40 as described above to form the resin layer 50. That is, in this case, the base member in the resin layer forming step is the belt layer 40. Thereby, the belt layer 40 becomes a shape along the shape of the outer peripheral surface of the molding drum 200, and the resin layer 50 becomes a shape along the shape of the belt layer 40.
However, the necessary cross-sectional shape in the tire width direction may be imparted to the belt layer 40 by any method other than the method described above.
  -成形ステップ-
 そして、樹脂層形成ステップにより得られた樹脂層50と、ベルト層形成ステップで得られたベルト層40と、残りのタイヤ構成部材とを備えた、未加硫タイヤを成形する(成形ステップ)。成形ステップにおいては、例えば、ベルト層40及び樹脂層50よりもタイヤ内周側に配置されるタイヤ構成部材(カーカス20等)をブラダー等により拡張させた後、拡張させたタイヤ構成部材のタイヤ外周側に、ベルト層40、樹脂層50、及びトレッドゴムを配置することにより、未加硫タイヤを得ると、好適である。
-Molding step-
Then, an unvulcanized tire including the resin layer 50 obtained in the resin layer forming step, the belt layer 40 obtained in the belt layer forming step, and the remaining tire constituent members is formed (molding step). In the molding step, for example, a tire constituent member (carcass 20 or the like) disposed on the tire inner periphery side with respect to the belt layer 40 and the resin layer 50 is expanded by a bladder or the like, and then the tire outer periphery of the tire constituent member expanded. It is preferable to obtain an unvulcanized tire by arranging the belt layer 40, the resin layer 50, and the tread rubber on the side.
  -加硫ステップ-
 その後、成形した未加硫タイヤを加硫する(加硫ステップ)。その後、加硫済みの空気入りタイヤ1が得られる。
-Vulcanization step-
Thereafter, the molded unvulcanized tire is vulcanized (vulcanization step). Thereafter, a vulcanized pneumatic tire 1 is obtained.
 ところで、特許文献1のような2層の交錯ベルト層を備えた空気入りタイヤの場合、2層の交錯ベルト層は、パンタグラフ変形をしながら拡張することができるため、一般的に、タイヤ製造時において2層の交錯ベルト層に非直線状のタイヤ幅方向断面形状を付与する手法としては、直線状のタイヤ幅方向断面形状を有する2層の円筒状の交錯ベルト層を備えたタイヤ構成部材を、拡張させて、非直線状のタイヤ幅方向断面形状を有する金型成形面に押し当てる手法が用いられる。
 しかし、本実施形態の空気入りタイヤ1においては、ベルト層40が、スパイラルベルト層又は小傾斜ベルト層であり、タイヤ周方向の剛性が非常に高いため、ほとんど拡張させることができない。よって、樹脂層50に非直線状のタイヤ幅方向断面形状を付与するために、例えば、直線状のタイヤ幅方向断面形状を有するベルト層40及び樹脂層50を備えたタイヤ構成部材を、拡張させて、非直線状のタイヤ幅方向断面形状を有する金型成形面に押し当てるといった手法を用いることは難しい。
 一方、本実施形態では、樹脂層50を、タイヤ幅方向及びタイヤ周方向のそれぞれに複数ずつ配置された樹脂フィルム51から構成するようにしたので、所期するタイヤ幅方向断面形状の外表面を有する土台部材(成型ドラム200等)の上で複数の樹脂フィルム51をタイヤ幅方向及びタイヤ周方向のそれぞれに複数ずつ配置するだけで、ベルト層40を拡張させる必要無しに、簡単に、所期したとおりのタイヤ幅方向断面形状を有する樹脂層50を得ることができる。仮に、樹脂層50を、ある一方向のみに配列された樹脂フィルム51から構成した場合は、樹脂フィルム51の形状を、さほど精度良く、土台部材(成型ドラム200等)の形状に沿わせることができず、ひいては、所期したとおりのタイヤ幅方向断面形状を有する樹脂層50を得ることができない。
 なお、所期したとおりのタイヤ幅方向断面形状を有する樹脂層50を、押し出し口金等を用いて、一品一様で製造することも考えられる。しかし、空気入りタイヤ1のタイヤサイズや構造によって、樹脂層50に求められるタイヤ幅方向断面形状(具体的には、径差、曲率半径の大きさやその分布等)は様々であると考えられ、一品一様で押し出し口金等を準備することは、製造コストが高くなる。この点、本実施形態によれば、高価な押し出し口金等が不要であり、同じ形状及び寸法の樹脂フィルム51を用いて、多種多様のタイヤ幅方向断面形状の樹脂層50を形成できるので、製造コストを低く抑えることができ、また、中間在庫の種類も少なくて済む。
By the way, in the case of a pneumatic tire provided with two crossing belt layers as in Patent Document 1, the two crossing belt layers can be expanded while undergoing pantograph deformation. As a method for imparting a non-linear tire width direction cross-sectional shape to the two crossing belt layers, a tire constituent member having two cylindrical crossing belt layers having a straight tire width direction cross-sectional shape is used. A method of expanding and pressing against a mold forming surface having a non-linear cross-sectional shape in the tire width direction is used.
However, in the pneumatic tire 1 of the present embodiment, the belt layer 40 is a spiral belt layer or a small inclined belt layer, and since the rigidity in the tire circumferential direction is very high, the belt layer 40 can hardly be expanded. Therefore, in order to give a non-linear tire width direction cross-sectional shape to the resin layer 50, for example, a tire constituent member including the belt layer 40 and the resin layer 50 having a linear tire width direction cross-sectional shape is expanded. Thus, it is difficult to use a method of pressing against a molding surface having a non-linear cross-sectional shape in the tire width direction.
On the other hand, in the present embodiment, since the resin layer 50 is constituted by the resin films 51 arranged in a plurality in each of the tire width direction and the tire circumferential direction, the outer surface of the desired cross-sectional shape in the tire width direction is formed. By simply arranging a plurality of resin films 51 in the tire width direction and the tire circumferential direction on a base member (such as the molding drum 200), the belt layer 40 need not be expanded and can be easily obtained. Thus, the resin layer 50 having the cross-sectional shape in the tire width direction can be obtained. If the resin layer 50 is composed of the resin film 51 arranged in only one direction, the shape of the resin film 51 can be made to conform to the shape of the base member (molding drum 200, etc.) with high accuracy. As a result, the resin layer 50 having the cross-sectional shape in the tire width direction as expected cannot be obtained.
In addition, it is also conceivable that the resin layer 50 having the tire cross-sectional shape in the tire width direction as intended is manufactured uniformly using an extrusion die or the like. However, depending on the tire size and structure of the pneumatic tire 1, the cross-sectional shape in the tire width direction required for the resin layer 50 (specifically, the diameter difference, the size of the radius of curvature and its distribution, etc.) is considered to vary. Preparation of an extrusion die that is uniform for each product increases the manufacturing cost. In this respect, according to the present embodiment, an expensive extrusion base or the like is unnecessary, and the resin layer 50 having various cross-sectional shapes in the tire width direction can be formed using the resin film 51 having the same shape and dimensions. Costs can be kept low, and the number of intermediate stocks can be reduced.
 図1~図6を参照して上述した例では、上述したように、成型ドラム200のドラム幅方向断面において、成型ドラム200の外周面Sは、少なくとも一部分で、外周側に凸に湾曲している。また、樹脂層50は、成型ドラム200の外周面Sと同じ形状に形成されている。すなわち、タイヤ1のタイヤ幅方向断面において、樹脂層50は、少なくとも一部分で、タイヤ外周側に凸に湾曲している。これにより、タイヤ1が、良好なトレッドゴムのゲージや接地形状を得ることができ、それにより、良好な耐摩耗性等のタイヤ性能を得ることができる。 In the example described above with reference to FIGS. 1 to 6, as described above, in the drum width direction cross section of the molding drum 200, the outer circumferential surface S of the molding drum 200 is at least partially curved convexly toward the outer circumferential side. Yes. The resin layer 50 is formed in the same shape as the outer peripheral surface S of the molding drum 200. That is, in the tire width direction cross section of the tire 1, the resin layer 50 is at least partially curved in a convex manner toward the tire outer peripheral side. As a result, the tire 1 can obtain a good tread rubber gauge and ground contact shape, and thereby good tire performance such as wear resistance can be obtained.
 同様に、良好なタイヤ性能を得る観点からは、成型ドラム200のドラム幅方向断面(図5)において、成型ドラム200の外周面Sは、タイヤ赤道面CLに対する両側における外周面Sのドラム幅方向外端側部分Sepの曲率半径Re’が、外周面Sのドラム幅方向中心側部分Scpの曲率半径Rc’よりも小さい(すなわち、Re’<Rc’)と、好適である。ここで、タイヤ赤道面CLに対する両側における成型ドラム200の外周面Sの「ドラム幅方向外端側部分Sep」は、成型ドラム200の外周面Sのうち、タイヤ赤道面CLに対する両側のそれぞれにおいて、ドラム幅方向の最も外側に位置するとともにドラム幅方向に10mmにわたって延在する部分である。成型ドラム200の外周面Sの「ドラム幅方向中心側部分Scp」は、成型ドラム200の外周面Sのうち、ドラム幅方向中心が外周面Sのドラム幅方向中心CL’上に位置するとともにドラム幅方向に10mmにわたって延在する部分である。なお、ドラム幅方向断面においてドラム幅方向中心側部分Scpは直線状でもよく、すなわち、ドラム幅方向中心側部分Scpの曲率半径Rc’は無限大でもよい。
 また、良好なタイヤ性能を得る観点からは、タイヤ1のタイヤ幅方向断面(図1)において、樹脂層50は、樹脂層50のタイヤ幅方向外端側部分50epの曲率半径Reが、樹脂層50のタイヤ幅方向中心側部分50cpの曲率半径Rcよりも小さい(すなわち、Re<Rc)と、好適である。ここで、樹脂層50の「タイヤ幅方向外端側部分50ep」は、樹脂層50のうち、タイヤ幅方向の最も外側に位置するとともにタイヤ幅方向に10mmにわたって延在する部分である。樹脂層50の「タイヤ幅方向中心側部分50cp」は、樹脂層50のうち、タイヤ幅方向中心がタイヤ赤道面CL上に位置するとともにタイヤ幅方向に10mmにわたって延在する部分である。なお、タイヤ幅方向断面においてタイヤ幅方向中心側部分50cpは直線状でもよく、すなわち、タイヤ幅方向中心側部分50cpの曲率半径Rcは無限大でもよい。
Similarly, from the viewpoint of obtaining good tire performance, in the drum width direction cross section of the molding drum 200 (FIG. 5), the outer circumferential surface S of the molding drum 200 is in the drum width direction of the outer circumferential surface S on both sides of the tire equatorial plane CL. It is preferable that the curvature radius Re ′ of the outer end side portion Sep is smaller than the curvature radius Rc ′ of the outer peripheral surface S in the drum width direction center side portion Scp (that is, Re ′ <Rc ′). Here, the “drum width direction outer end side portion Sep” of the outer peripheral surface S of the molding drum 200 on both sides with respect to the tire equatorial plane CL is the outer peripheral surface S of the molding drum 200 on each of both sides with respect to the tire equatorial plane CL. It is a portion located on the outermost side in the drum width direction and extending over 10 mm in the drum width direction. The “drum width direction center side portion Scp” of the outer peripheral surface S of the molding drum 200 is located on the drum width direction center CL ′ of the outer peripheral surface S of the outer peripheral surface S of the molding drum 200 and the drum width direction center S ′. It is a part extending over 10 mm in the width direction. In the drum width direction cross section, the drum width direction center side portion Scp may be linear, that is, the radius of curvature Rc ′ of the drum width direction center side portion Scp may be infinite.
Further, from the viewpoint of obtaining good tire performance, in the tire width direction cross section (FIG. 1) of the tire 1, the resin layer 50 has a curvature radius Re of the outer end side portion 50ep of the resin layer 50 in the tire width direction. It is preferable that the radius is smaller than the radius of curvature Rc of the tire width direction center side portion 50cp of 50 (that is, Re <Rc). Here, “the tire width direction outer end side portion 50ep” of the resin layer 50 is a portion of the resin layer 50 that is located on the outermost side in the tire width direction and extends over 10 mm in the tire width direction. The “tire width direction center side portion 50 cp” of the resin layer 50 is a portion of the resin layer 50 whose center in the tire width direction is located on the tire equatorial plane CL and extends over 10 mm in the tire width direction. In the tire width direction cross section, the tire width direction center side portion 50cp may be linear, that is, the radius of curvature Rc of the tire width direction center side portion 50cp may be infinite.
 同様に、良好なタイヤ性能を得る観点からは、成型ドラム200のドラム幅方向断面(図5)において、成型ドラム200の外周面Sは、その全体にわたって、その曲率半径が、外周面Sのドラム幅方向中心CL’からドラム幅方向外側に向かって徐々に小さくなると、好適である。
 また、良好なタイヤ性能を得る観点からは、タイヤ1のタイヤ幅方向断面(図1)において、樹脂層50は、その全体にわたって、その曲率半径が、タイヤ赤道面CLからタイヤ幅方向外側に向かって徐々に小さくなると、好適である。
Similarly, from the viewpoint of obtaining good tire performance, the outer circumferential surface S of the molding drum 200 has a radius of curvature over the entire surface in the drum width direction cross section of the molding drum 200 (FIG. 5). It is preferable that the width gradually decreases from the width direction center CL ′ toward the outside in the drum width direction.
Further, from the viewpoint of obtaining good tire performance, in the cross section of the tire 1 in the tire width direction (FIG. 1), the resin layer 50 has a radius of curvature from the tire equatorial plane CL to the outer side in the tire width direction. It is preferable that the temperature gradually decreases.
 ただし、成型ドラム200のドラム幅方向断面において、成型ドラム200の外周面Sは、その全体が、直線状であってもよい。その場合、成型ドラム200から樹脂層50を離型するにあたっては、樹脂層50をドラム幅方向にスライドさせるだけで済むため、成型ドラム200は、縮径及び拡径が可能である必要はない。
 また、樹脂層50は、タイヤ1のタイヤ幅方向断面において、その全体が、直線状であってもよい。
However, in the cross section in the drum width direction of the molding drum 200, the entire outer peripheral surface S of the molding drum 200 may be linear. In that case, in order to release the resin layer 50 from the molding drum 200, it is only necessary to slide the resin layer 50 in the drum width direction. Therefore, the molding drum 200 does not have to be capable of being reduced in diameter and expanded in diameter.
Further, the resin layer 50 may be entirely linear in the tire width direction cross section of the tire 1.
 なお、図2及び図3の例以外にも、樹脂層50を構成する複数の樹脂フィルム51は、様々な形状及び配列のしかたが可能である。
 以下、樹脂層50の第1変形例~第6変形例を、それぞれ図7~図12を参照しながら説明する。なお、図7~図12では、簡単のため、樹脂層50を構成する複数の樹脂フィルム51のうちの一部のみを、平面に展開した状態で示している。また、図7~図12では、理解のし易さのため、樹脂層50をタイヤ1に組み込んだときの姿勢における、タイヤ周方向をCD矢印により示し、タイヤ幅方向をWD矢印により示している。図7~図12の例では、いずれも、樹脂層50が、タイヤ幅方向及びタイヤ周方向のそれぞれに複数ずつ配置された樹脂フィルム51を有している。樹脂フィルム51は、樹脂層50のタイヤ幅方向及びタイヤ周方向のそれぞれの全体にわたって存在している。互いに隣接する樹脂フィルム51どうしは、それぞれの一部分で、樹脂層50の厚み方向に重なっているとともに、その重なった部分で互いに固着(溶着及び/又は接着)されている。いいかえれば、樹脂層50は、互いに固着された、これら複数の樹脂フィルム51から構成されている。
In addition to the examples in FIGS. 2 and 3, the plurality of resin films 51 constituting the resin layer 50 can have various shapes and arrangements.
Hereinafter, first to sixth modifications of the resin layer 50 will be described with reference to FIGS. 7 to 12, respectively. In FIGS. 7 to 12, only a part of the plurality of resin films 51 constituting the resin layer 50 is shown in a flat state for simplicity. 7 to 12, for ease of understanding, the tire circumferential direction is indicated by a CD arrow, and the tire width direction is indicated by a WD arrow in the posture when the resin layer 50 is incorporated in the tire 1. . 7 to 12, in each case, the resin layer 50 includes a plurality of resin films 51 arranged in the tire width direction and the tire circumferential direction. The resin film 51 exists over the entirety of each of the resin layer 50 in the tire width direction and the tire circumferential direction. The resin films 51 adjacent to each other overlap each other in the thickness direction of the resin layer 50 and are fixed (welded and / or bonded) to each other at the overlapping portions. In other words, the resin layer 50 is composed of the plurality of resin films 51 fixed to each other.
 図7に示す第1変形例において、樹脂層50を構成する各樹脂フィルム51は、それぞれを平面に展開して観たときに、それぞれの形状が略四角形(具体的には略長方形)であり、それぞれの形状及び寸法が互いに同じである。
 樹脂層50は、第1配列方向AD1に一列に配列された複数の樹脂フィルム51からなる樹脂フィルム列500を複数列有している。図7の例において、第1配列方向AD1は、タイヤ幅方向に対して鋭角で傾斜している。タイヤ幅方向に対する第1配列方向AD1の鋭角側の角度は、例えば0°超80°以下が好適である。
 また、樹脂層50を構成する複数列の樹脂フィルム列500どうしは、第2配列方向AD2に配列されている。図7の例において、第2配列方向AD2は、第1配列方向AD1に対し垂直な方向である。
 樹脂フィルム列500を構成する複数の樹脂フィルム51どうしは、それぞれの向きが揃えられており、それぞれの直線状をなす第2配列方向AD2両側の端縁512どうしが第1配列方向AD1に滑らかに連続するように配列されている。また、樹脂フィルム列500を構成する複数の樹脂フィルム51は、それぞれの第1配列方向AD1の一部分どうしが、樹脂層50の厚み方向に重なって固着されている。
 互いに隣接する一対の樹脂フィルム列500は、それぞれの第2配列方向AD2の一部分どうしが、樹脂層50の厚み方向に重なって固着されている。
 互いに隣接する一対の樹脂フィルム列500どうしは、互いに第1配列方向AD1にオフセット(変位)して配置されている。図7の例において、互いに隣接する一対の樹脂フィルム列500どうしの第1配列方向AD1のオフセット距離OTは、樹脂フィルム51の第1配列方向AD1の幅W1よりも小さい(すなわち、OT<W1)。なお、オフセット距離OT、幅W1は、樹脂層50の輪郭に沿って測るものとする。
In the first modification shown in FIG. 7, each resin film 51 constituting the resin layer 50 has a substantially quadrangular shape (specifically, a substantially rectangular shape) when viewed in a flat plane. The shapes and dimensions are the same as each other.
The resin layer 50 has a plurality of resin film rows 500 including a plurality of resin films 51 arranged in a row in the first arrangement direction AD1. In the example of FIG. 7, the first arrangement direction AD1 is inclined at an acute angle with respect to the tire width direction. The angle on the acute angle side in the first arrangement direction AD1 with respect to the tire width direction is preferably more than 0 ° and not more than 80 °, for example.
Further, the plurality of resin film rows 500 constituting the resin layer 50 are arranged in the second arrangement direction AD2. In the example of FIG. 7, the second arrangement direction AD2 is a direction perpendicular to the first arrangement direction AD1.
The plurality of resin films 51 constituting the resin film array 500 are aligned in the same direction, and the edges 512 on both sides of the second arrangement direction AD2 forming the respective straight lines are smoothly in the first arrangement direction AD1. They are arranged in a continuous manner. In addition, the plurality of resin films 51 constituting the resin film array 500 are fixed to each other in the first arrangement direction AD <b> 1 so as to overlap each other in the thickness direction of the resin layer 50.
A pair of resin film rows 500 adjacent to each other are fixed to each other in the second arrangement direction AD2 so as to overlap each other in the thickness direction of the resin layer 50.
A pair of resin film rows 500 adjacent to each other are arranged offset (displaced) in the first arrangement direction AD1. In the example of FIG. 7, the offset distance OT in the first arrangement direction AD1 between a pair of resin film rows 500 adjacent to each other is smaller than the width W1 of the resin film 51 in the first arrangement direction AD1 (that is, OT <W1). . The offset distance OT and the width W1 are measured along the contour of the resin layer 50.
 図8に示す第2変形例において、樹脂層50を構成する各樹脂フィルム51は、それぞれを平面に展開して観たときに、それぞれの形状が略四角形(具体的には略平行四辺形)であり、それぞれの形状及び寸法が互いに同じである。
 樹脂層50は、第1配列方向AD1に一列に配列された複数の樹脂フィルム51からなる樹脂フィルム列500を複数列有している。図8の例において、第1配列方向AD1は、タイヤ幅方向に対して鋭角で傾斜している。タイヤ幅方向に対する第1配列方向AD1の鋭角側の角度は、例えば0°超80°以下が好適である。
 また、樹脂層50を構成する複数列の樹脂フィルム列500どうしは、第2配列方向AD2に配列されている。図8の例において、第2配列方向AD2は、第1配列方向AD1に対し非垂直に交差する方向であり、タイヤ周方向である。
 樹脂フィルム列500を構成する複数の樹脂フィルム51どうしは、それぞれの向きが揃えられており、それぞれの直線状をなす第2配列方向AD2両側の端縁512どうしが第1配列方向AD1に滑らかに連続するように配列されている。また、樹脂フィルム列500を構成する複数の樹脂フィルム51は、それぞれの第1配列方向AD1の一部分どうしが、樹脂層50の厚み方向に重なって固着されている。
 互いに隣接する一対の樹脂フィルム列500は、それぞれの第2配列方向AD2の一部分どうしが、樹脂層50の厚み方向に重なって固着されている。
 各樹脂フィルム列500どうしは、第1配列方向AD1において互いにオフセットされておらず、それぞれ第1配列方向AD1において同じ位置に配置されている。このため、第2配列方向AD2に互いに隣接する一対の樹脂フィルム51は、それぞれの直線状をなす第1配列方向AD1両側の端縁511どうしが第2配列方向AD2に滑らかに連続するように配列されている。
 ただし、図8の例において、第1配列方向AD1をタイヤ幅方向とし、第2配列方向AD2をタイヤ周方向に対し鋭角(例えば0°超80°以下)で傾斜した方向としてもよい。あるいは、第1配列方向AD1をタイヤ周方向とし、第2配列方向AD2をタイヤ幅方向としてもよい。
In the second modification shown in FIG. 8, each resin film 51 constituting the resin layer 50 has a substantially quadrangular shape (specifically, a substantially parallelogram) when viewed in a flat plane. And their shapes and dimensions are the same.
The resin layer 50 has a plurality of resin film rows 500 including a plurality of resin films 51 arranged in a row in the first arrangement direction AD1. In the example of FIG. 8, the first arrangement direction AD1 is inclined at an acute angle with respect to the tire width direction. The angle on the acute angle side in the first arrangement direction AD1 with respect to the tire width direction is preferably more than 0 ° and not more than 80 °, for example.
Further, the plurality of resin film rows 500 constituting the resin layer 50 are arranged in the second arrangement direction AD2. In the example of FIG. 8, the second arrangement direction AD2 is a direction that intersects the first arrangement direction AD1 in a non-perpendicular direction and is the tire circumferential direction.
The plurality of resin films 51 constituting the resin film array 500 are aligned in the same direction, and the edges 512 on both sides of the second arrangement direction AD2 forming the respective straight lines are smoothly in the first arrangement direction AD1. They are arranged in a continuous manner. In addition, the plurality of resin films 51 constituting the resin film array 500 are fixed to each other in the first arrangement direction AD <b> 1 so as to overlap each other in the thickness direction of the resin layer 50.
A pair of resin film rows 500 adjacent to each other are fixed to each other in the second arrangement direction AD2 so as to overlap each other in the thickness direction of the resin layer 50.
The resin film rows 500 are not offset from each other in the first arrangement direction AD1, and are arranged at the same position in the first arrangement direction AD1. For this reason, the pair of resin films 51 adjacent to each other in the second arrangement direction AD2 are arranged so that the edges 511 on both sides of the first arrangement direction AD1 forming a straight line are smoothly continuous in the second arrangement direction AD2. Has been.
However, in the example of FIG. 8, the first arrangement direction AD1 may be the tire width direction, and the second arrangement direction AD2 may be a direction inclined at an acute angle (for example, greater than 0 ° and 80 ° or less) with respect to the tire circumferential direction. Alternatively, the first arrangement direction AD1 may be the tire circumferential direction, and the second arrangement direction AD2 may be the tire width direction.
 図9に示す第3変形例において、樹脂層50を構成する各樹脂フィルム51は、それぞれを平面に展開して観たときに、それぞれの形状が略S字形状であり、それぞれの形状及び寸法が互いに同じである。
 樹脂層50は、第1配列方向AD1に一列に配列された複数の樹脂フィルム51からなる樹脂フィルム列500を複数列有している。図9の例において、第1配列方向AD1は、タイヤ幅方向である。
 また、樹脂層50を構成する複数列の樹脂フィルム列500どうしは、第2配列方向AD2に配列されている。図9の例において、第2配列方向AD2は、第1配列方向AD1に対し垂直な方向であり、タイヤ周方向である。
 樹脂フィルム列500を構成する複数の樹脂フィルム51どうしは、それぞれの向きが揃えられており、それぞれの直線状をなす第2配列方向AD2両側の端縁512どうしが、第1配列方向AD1に滑らかに連続するように配列されている。また、樹脂フィルム列500を構成する複数の樹脂フィルム51は、それぞれの第1配列方向AD1の一部分どうしが、樹脂層50の厚み方向に重なって固着されている。
 互いに隣接する一対の樹脂フィルム列500は、それぞれの第2配列方向AD2の一部分どうしが、樹脂層50の厚み方向に重なって固着されている。
 各樹脂フィルム列500どうしは、第1配列方向AD1において互いにオフセットされておらず、それぞれ第1配列方向AD1において同じ位置に配置されている。このため、第2配列方向AD2に互いに隣接する一対の樹脂フィルム51は、それぞれのS字形状をなす第1配列方向AD1両側の端縁511どうしが連なって、波形状をなすように、第2配列方向AD2に配列されている。
 ただし、図9の例において、第1配列方向AD1をタイヤ幅方向に対し鋭角(例えば0°超80°以下)で傾斜した方向とし、第2配列方向AD2を第1配列方向AD1に対し垂直な方向としてもよい。あるいは、第1配列方向AD1をタイヤ周方向とし、第2配列方向AD2をタイヤ幅方向としてもよい。
In the third modified example shown in FIG. 9, each resin film 51 constituting the resin layer 50 has a substantially S shape when viewed in a flat plane, and each shape and dimension thereof. Are the same as each other.
The resin layer 50 has a plurality of resin film rows 500 including a plurality of resin films 51 arranged in a row in the first arrangement direction AD1. In the example of FIG. 9, the first arrangement direction AD1 is the tire width direction.
Further, the plurality of resin film rows 500 constituting the resin layer 50 are arranged in the second arrangement direction AD2. In the example of FIG. 9, the second arrangement direction AD2 is a direction perpendicular to the first arrangement direction AD1, and is the tire circumferential direction.
The plurality of resin films 51 constituting the resin film array 500 are aligned in the same direction, and the edges 512 on both sides of the second arrangement direction AD2 forming a straight line are smooth in the first arrangement direction AD1. Are arranged in a row. In addition, the plurality of resin films 51 constituting the resin film array 500 are fixed to each other in the first arrangement direction AD <b> 1 so as to overlap each other in the thickness direction of the resin layer 50.
A pair of resin film rows 500 adjacent to each other are fixed to each other in the second arrangement direction AD2 so as to overlap each other in the thickness direction of the resin layer 50.
The resin film rows 500 are not offset from each other in the first arrangement direction AD1, and are arranged at the same position in the first arrangement direction AD1. For this reason, the pair of resin films 51 adjacent to each other in the second arrangement direction AD2 has a second shape so that the edges 511 on both sides of the first arrangement direction AD1 forming the respective S-shapes are connected to form a wave shape. They are arranged in the arrangement direction AD2.
However, in the example of FIG. 9, the first arrangement direction AD1 is a direction inclined at an acute angle (for example, greater than 0 ° and not more than 80 °) with respect to the tire width direction, and the second arrangement direction AD2 is perpendicular to the first arrangement direction AD1. It is good also as a direction. Alternatively, the first arrangement direction AD1 may be the tire circumferential direction, and the second arrangement direction AD2 may be the tire width direction.
 図10に示す第4変形例において、樹脂層50を構成する各樹脂フィルム51は、それぞれを平面に展開して観たときに、それぞれの形状が略三角形(具体的には略直角三角形)であり、それぞれの形状及び寸法が互いに同じである。
 樹脂層50は、第1配列方向AD1に一列に配列された複数の樹脂フィルム51からなる樹脂フィルム列500を複数列有している。図10の例において、第1配列方向AD1は、タイヤ幅方向である。
 また、樹脂層50を構成する複数列の樹脂フィルム列500どうしは、第2配列方向AD2に配列されている。図10の例において、第2配列方向AD2は、第1配列方向AD1に対し垂直な方向であり、タイヤ周方向である。
 樹脂フィルム列500を構成する複数の樹脂フィルム51どうしは、向きが交互に反転するように指向されており、具体的には、直角を挟む2辺がそれぞれ第1配列方向AD1及び第2配列方向AD2に平行に指向された第1樹脂フィルム51aと、第1樹脂フィルム51をその斜辺に対し反転させた向きに指向された第2樹脂フィルム51bとが、第1配列方向AD1に交互に配列されている。また、樹脂フィルム列500を構成する複数の樹脂フィルム51は、それぞれの直線状をなす第2配列方向AD2のいずれか一方側の端縁512どうしが第1配列方向AD1に滑らかに連続するように配列されている。また、樹脂フィルム列500を構成する複数の樹脂フィルム51は、それぞれの第1配列方向AD1の一部分どうしが、樹脂層50の厚み方向に重なって固着されている。
 互いに隣接する一対の樹脂フィルム列500は、それぞれの第2配列方向AD2の一部分どうしが、樹脂層50の厚み方向に重なって固着されている。
 各樹脂フィルム列500どうしは、第1配列方向AD1において互いにオフセットされておらず、それぞれ第1配列方向AD1において同じ位置に配置されている。このため、第2配列方向AD2に互いに隣接する一対の樹脂フィルム51どうしは、それぞれの直線状をなす第1配列方向AD1のいずれか一方側の端縁511どうしが第2配列方向AD2に滑らかに連続するように配列されている。
 ただし、図10の例において、第1配列方向AD1をタイヤ幅方向に対し鋭角(例えば0°超80°以下)で傾斜した方向とし、第2配列方向AD2を第1配列方向AD1に対し垂直な方向としてもよい。あるいは、第1配列方向AD1をタイヤ周方向とし、第2配列方向AD2をタイヤ幅方向としてもよい。
In the fourth modified example shown in FIG. 10, each resin film 51 constituting the resin layer 50 has a substantially triangular shape (specifically, a substantially right triangle) when viewed in a flat plane. Each has the same shape and dimensions.
The resin layer 50 has a plurality of resin film rows 500 including a plurality of resin films 51 arranged in a row in the first arrangement direction AD1. In the example of FIG. 10, the first arrangement direction AD1 is the tire width direction.
Further, the plurality of resin film rows 500 constituting the resin layer 50 are arranged in the second arrangement direction AD2. In the example of FIG. 10, the second arrangement direction AD2 is a direction perpendicular to the first arrangement direction AD1, and is the tire circumferential direction.
The plurality of resin films 51 constituting the resin film array 500 are oriented so that their directions are alternately reversed. Specifically, two sides sandwiching a right angle are the first arrangement direction AD1 and the second arrangement direction, respectively. The first resin film 51a oriented parallel to AD2 and the second resin film 51b oriented in the direction in which the first resin film 51 is inverted with respect to the hypotenuse are alternately arranged in the first arrangement direction AD1. ing. In addition, the plurality of resin films 51 constituting the resin film array 500 are arranged such that end edges 512 on either one side in the second arrangement direction AD2 forming the respective straight lines are smoothly continuous in the first arrangement direction AD1. It is arranged. In addition, the plurality of resin films 51 constituting the resin film array 500 are fixed to each other in the first arrangement direction AD <b> 1 so as to overlap each other in the thickness direction of the resin layer 50.
A pair of resin film rows 500 adjacent to each other are fixed to each other in the second arrangement direction AD2 so as to overlap each other in the thickness direction of the resin layer 50.
The resin film rows 500 are not offset from each other in the first arrangement direction AD1, and are arranged at the same position in the first arrangement direction AD1. For this reason, the pair of resin films 51 adjacent to each other in the second arrangement direction AD2 has smooth edges 511 on either side of the first arrangement direction AD1 forming the respective straight lines in the second arrangement direction AD2. They are arranged in a continuous manner.
However, in the example of FIG. 10, the first arrangement direction AD1 is a direction inclined at an acute angle (for example, greater than 0 ° and not more than 80 °) with respect to the tire width direction, and the second arrangement direction AD2 is perpendicular to the first arrangement direction AD1. It is good also as a direction. Alternatively, the first arrangement direction AD1 may be the tire circumferential direction, and the second arrangement direction AD2 may be the tire width direction.
 図11に示す第5変形例において、樹脂層50を構成する各樹脂フィルム51は、それぞれを平面に展開して観たときに、それぞれの形状が略六角形(具体的には略正六角形)であり、それぞれの形状及び寸法が互いに同じである。
 樹脂層50は、第1配列方向AD1に一列に配列された複数の樹脂フィルム51からなる樹脂フィルム列500を複数列有している。図11の例において、第1配列方向AD1は、タイヤ幅方向である。
 また、樹脂層50を構成する複数列の樹脂フィルム列500どうしは、第2配列方向AD2に配列されている。図11の例において、第2配列方向AD2は、第1配列方向AD1に対し垂直な方向であり、タイヤ周方向である。
 樹脂フィルム列500を構成する複数の樹脂フィルム51どうしは、それぞれの向きが揃えられている。また、樹脂フィルム列500を構成する複数の樹脂フィルム51、それぞれの第1配列方向AD1の一部分どうしが、樹脂層50の厚み方向に重なって固着されている。
 互いに隣接する一対の樹脂フィルム列500は、それぞれの第2配列方向AD2の一部分どうしが、樹脂層50の厚み方向に重なって固着されている。
 各樹脂フィルム列500どうしは、第1配列方向AD1において互いにオフセットされておらず、それぞれ第1配列方向AD1において同じ位置に配置されている。このため、第2配列方向AD2に互いに隣接する一対の樹脂フィルム51は、それぞれの直線状をなす第1配列方向AD1両側の端縁511どうしが第2配列方向AD2にほぼ滑らかに連続するように配列されている。
 ただし、図11の例において、第1配列方向AD1をタイヤ幅方向に対し鋭角(例えば0°超80°以下)で傾斜した方向とし、第2配列方向AD2を第1配列方向AD1に対し垂直な方向としてもよい。あるいは、第1配列方向AD1をタイヤ周方向とし、第2配列方向AD2をタイヤ幅方向としてもよい。
In the fifth modification shown in FIG. 11, each resin film 51 constituting the resin layer 50 has a substantially hexagonal shape (specifically, a substantially regular hexagonal shape) when viewed in a flat plane. And their shapes and dimensions are the same.
The resin layer 50 has a plurality of resin film rows 500 including a plurality of resin films 51 arranged in a row in the first arrangement direction AD1. In the example of FIG. 11, the first arrangement direction AD1 is the tire width direction.
Further, the plurality of resin film rows 500 constituting the resin layer 50 are arranged in the second arrangement direction AD2. In the example of FIG. 11, the second arrangement direction AD2 is a direction perpendicular to the first arrangement direction AD1, and is a tire circumferential direction.
The plurality of resin films 51 constituting the resin film array 500 are aligned in their respective directions. In addition, a plurality of resin films 51 constituting the resin film array 500 and a part of each first arrangement direction AD <b> 1 are overlapped and fixed in the thickness direction of the resin layer 50.
A pair of resin film rows 500 adjacent to each other are fixed to each other in the second arrangement direction AD2 so as to overlap each other in the thickness direction of the resin layer 50.
The resin film rows 500 are not offset from each other in the first arrangement direction AD1, and are arranged at the same position in the first arrangement direction AD1. For this reason, the pair of resin films 51 adjacent to each other in the second arrangement direction AD2 are arranged so that the edges 511 on both sides of the first arrangement direction AD1 forming the respective straight lines are substantially smoothly continuous in the second arrangement direction AD2. It is arranged.
However, in the example of FIG. 11, the first arrangement direction AD1 is a direction inclined at an acute angle (for example, greater than 0 ° and not more than 80 °) with respect to the tire width direction, and the second arrangement direction AD2 is perpendicular to the first arrangement direction AD1. It is good also as a direction. Alternatively, the first arrangement direction AD1 may be the tire circumferential direction, and the second arrangement direction AD2 may be the tire width direction.
 図12に示す第6変形例においては、各樹脂フィルム列500どうしが、第1配列方向AD1において互いにオフセットされている点のみで、図11に示す第5変形例とは異なる。より具体的に、樹脂層50を構成する複数列の樹脂フィルム列500は、第1配列方向AD1における所定位置に配置された複数の第1樹脂フィルム列501と、第1樹脂フィルム列501に対して第1配列方向AD1にオフセット(変位)して配置された複数の第2樹脂フィルム列502とからなり、第1樹脂フィルム列501と第2樹脂フィルム列502とが第2配列方向AD2に交互に配置されている。図12の例において、第1樹脂フィルム列501に対する第2樹脂フィルム列502の第1配列方向AD1のオフセット距離OTは、樹脂フィルム51の第1配列方向AD1の幅W1よりも小さい(すなわち、OT<W1)。なお、オフセット距離OT、幅W1は、樹脂層50の輪郭に沿って測るものとする。 The sixth modification shown in FIG. 12 differs from the fifth modification shown in FIG. 11 only in that the resin film rows 500 are offset from each other in the first arrangement direction AD1. More specifically, the plurality of resin film rows 500 constituting the resin layer 50 are compared to the plurality of first resin film rows 501 and the first resin film rows 501 arranged at predetermined positions in the first arrangement direction AD1. And a plurality of second resin film rows 502 arranged offset (displaced) in the first arrangement direction AD1, and the first resin film rows 501 and the second resin film rows 502 are alternately arranged in the second arrangement direction AD2. Is arranged. In the example of FIG. 12, the offset distance OT in the first arrangement direction AD1 of the second resin film row 502 with respect to the first resin film row 501 is smaller than the width W1 in the first arrangement direction AD1 of the resin film 51 (that is, OT). <W1). The offset distance OT and the width W1 are measured along the contour of the resin layer 50.
 なお、上述した図3、図7~図12の各例のうち、図3、図8、図10、図11の各例は、タイヤ赤道面CLに対する両側において、タイヤ幅方向の最も外側に位置している複数の樹脂フィルム51は、それぞれのタイヤ赤道面CLから遠いほうの第1配列方向AD1の端縁511どうしが、第2配列方向に滑らかに直線状に連続するように配列されている。一方、図7、図9、図12の各例は、タイヤ赤道面CLに対する両側において、タイヤ幅方向の最も外側に位置している複数の樹脂フィルム51は、それぞれのタイヤ赤道面CLから遠いほうの第1配列方向AD1の端縁511どうしが、第2配列方向に非直線状をなすように、あるいは不連続に、延在している。しかし、いずれの例においても、タイヤ赤道面CLに対する両側において、タイヤ幅方向の最も外側に位置している複数の樹脂フィルム51は、それぞれのタイヤ赤道面CLから遠いほうの第1配列方向AD1の端縁511によって、樹脂層50のタイヤ幅方向の端部50eを構成してよい。いいかえれば、樹脂層50のタイヤ幅方向の端部50eは、タイヤ周方向に沿って直線状をなしていてもよいし(図3、図8、図10、図11の例)、タイヤ周方向に沿って非直線状をなしていてもよい(図7、図9、図12の例)。
 あるいは、図3、図7~図12の各例において、樹脂層50のタイヤ幅方向の端部50eは、樹脂層形成ステップにおいて、複数の樹脂フィルム51どうしを固着させて略円筒状の樹脂層50(図3)を形成した後に、略円筒状の樹脂層50の幅方向の両側の端部分をタイヤ幅方向に垂直に裁断して切り捨てることにより、形成されてもよい。
Of the examples of FIGS. 3 and 7 to 12 described above, the examples of FIGS. 3, 8, 10, and 11 are located on the outermost side in the tire width direction on both sides of the tire equatorial plane CL. The plurality of resin films 51 are arranged so that the edges 511 in the first arrangement direction AD1 farther from the respective tire equatorial planes CL are smoothly and linearly continuous in the second arrangement direction. . On the other hand, in each example of FIGS. 7, 9, and 12, on both sides of the tire equatorial plane CL, the plurality of resin films 51 positioned on the outermost side in the tire width direction are farther from the respective tire equatorial plane CL. The edges 511 in the first arrangement direction AD1 extend so as to be non-linear in the second arrangement direction or discontinuously. However, in both examples, the plurality of resin films 51 positioned on the outermost side in the tire width direction on both sides of the tire equatorial plane CL are in the first arrangement direction AD1 farther from the respective tire equatorial plane CL. The end edge 511 may constitute an end portion 50e of the resin layer 50 in the tire width direction. In other words, the end portion 50e of the resin layer 50 in the tire width direction may be linear along the tire circumferential direction (examples of FIGS. 3, 8, 10, and 11), or in the tire circumferential direction. May be non-linear (examples of FIGS. 7, 9, and 12).
Alternatively, in each of the examples of FIGS. 3 and 7 to 12, the end portion 50e of the resin layer 50 in the tire width direction is formed in a substantially cylindrical resin layer by fixing a plurality of resin films 51 in the resin layer forming step. After forming 50 (FIG. 3), the end portions on both sides in the width direction of the substantially cylindrical resin layer 50 may be cut vertically and cut off in the tire width direction.
 上述した各例において、樹脂層50(ひいては樹脂フィルム51)を構成する樹脂材料は、熱可塑性樹脂または熱可塑性エラストマーであるのが好適であり、また、熱や電子線によって架橋が生じる樹脂や、熱転位によって硬化する樹脂を用いることもできる。熱可塑性エラストマーとしては、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリアミド系熱可塑性エラストマー(TPA)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)、動的架橋型熱可塑性エラストマー(TPV)等が挙げられ、特に、SBS、SBBS、SISまたはSBISブロックポリマーのようなTPSであると、好適である。また、熱可塑性樹脂としては、ポリウレタン樹脂、ポリオレフィン樹脂、塩化ビニル樹脂、ポリアミド樹脂等が挙げられる。さらに、樹脂層50(ひいては樹脂フィルム51)を構成する樹脂材料は、不飽和スチレン系エラストマーの変性体や、PPEを含む場合は、ゴム及び金属のいずれとも溶着が可能であるため、タイヤの加硫時に加えられる熱によって、他のタイヤ構成部材と溶着しやすくなる。さらに、熱可塑性樹脂としては、例えば、ISO75-2又はASTM D648に規定されている荷重たわみ温度(0.45MPa荷重時)が78°C以上、かつ、JIS K7113に規定される引張降伏強さが10MPa以上、かつ、同じくJIS K7113に規定される引張破壊伸びが50%以上、かつ、JIS K7206に規定されるビカット軟化温度(A法)が130°C以上であるものを用いることができる。樹脂層50を構成する樹脂材料の引張弾性率(JIS K7113:1995に規定される)は、50MPa以上が好ましい。また、樹脂層50を構成する樹脂材料の引張弾性率は、1000MPa以下とすることが好ましい。
 なお、本明細書でいう「樹脂材料」には、ゴム(常温でゴム弾性を示す有機高分子物質)は含まれないものとする。
In each example described above, the resin material constituting the resin layer 50 (and thus the resin film 51) is preferably a thermoplastic resin or a thermoplastic elastomer, and a resin that is crosslinked by heat or an electron beam, Resins that are cured by thermal dislocation can also be used. As thermoplastic elastomers, polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), polyester-based thermoplastic elastomer (TPC) And a dynamically cross-linked thermoplastic elastomer (TPV). Particularly, TPS such as SBS, SBBS, SIS or SBIS block polymer is preferable. Examples of the thermoplastic resin include polyurethane resin, polyolefin resin, vinyl chloride resin, polyamide resin and the like. Further, the resin material constituting the resin layer 50 (and thus the resin film 51) can be welded to both rubber and metal when it contains a modified body of unsaturated styrene elastomer or PPE. The heat applied during the vulcanization facilitates welding with other tire constituent members. Further, as a thermoplastic resin, for example, the deflection temperature under load (0.45 MPa load) specified in ISO75-2 or ASTM D648 is 78 ° C. or more, and the tensile yield strength specified in JIS K7113 is used. A material having a tensile fracture elongation of 50% or more as defined in JIS K7113 and a Vicat softening temperature (Method A) as defined in JIS K7206 of 130 ° C. or more can be used. The tensile elastic modulus (specified in JIS K7113: 1995) of the resin material constituting the resin layer 50 is preferably 50 MPa or more. Moreover, it is preferable that the tensile elasticity modulus of the resin material which comprises the resin layer 50 shall be 1000 Mpa or less.
The “resin material” in the present specification does not include rubber (an organic polymer substance exhibiting rubber elasticity at room temperature).
 上述した各例では、樹脂層50の厚み方向に重なる樹脂フィルム51の数が、樹脂層50の部分毎に異なるため、樹脂層50の厚みT1(図1)は非均一である。ただし、樹脂層50の厚みT1が均一になるように、樹脂フィルム51によって樹脂層50を形成してもよい。
 いずれの場合においても、タイヤ1の面内せん断剛性ひいては運動性能を向上させる観点や、樹脂層50の耐久性の観点から、樹脂層50の厚みT1の最大値(厚みT1が最大になる部分の厚み)は、10μm以上が好適であり、20μm以上がより好適である。一方、タイヤ1の良好な乗り心地性能を確保する観点や、タイヤの軽量化の観点から、樹脂層50の厚みT1の最大値は、1000μm以下が好適であり、500μm以下がより好適である。
In each example described above, since the number of the resin films 51 overlapping in the thickness direction of the resin layer 50 is different for each portion of the resin layer 50, the thickness T1 (FIG. 1) of the resin layer 50 is non-uniform. However, the resin layer 50 may be formed of the resin film 51 so that the thickness T1 of the resin layer 50 is uniform.
In any case, from the viewpoint of improving the in-plane shear rigidity of the tire 1 and thus the kinematic performance and the durability of the resin layer 50, the maximum value of the thickness T1 of the resin layer 50 (the portion where the thickness T1 is maximized) The thickness is preferably 10 μm or more, more preferably 20 μm or more. On the other hand, the maximum value of the thickness T1 of the resin layer 50 is preferably 1000 μm or less and more preferably 500 μm or less from the viewpoint of ensuring good riding comfort performance of the tire 1 and from the viewpoint of weight reduction of the tire.
 本例において、樹脂層50は、タイヤ赤道面CL上に位置している。タイヤ運動性能等のタイヤ性能を向上させる観点からは、樹脂層50のタイヤ幅方向の中心が、タイヤ赤道面CL上に位置していると、好適である。 In this example, the resin layer 50 is located on the tire equatorial plane CL. From the viewpoint of improving tire performance such as tire movement performance, it is preferable that the center of the resin layer 50 in the tire width direction is located on the tire equatorial plane CL.
 樹脂層50のタイヤ幅方向の幅は、任意の幅としてよいが、例えば、タイヤ接地幅の80~130%とすることができる。
 なお、上述したように、例えばベルト層形成ステップにおいて、樹脂層5を土台として、その外周面上にスパイラルベルト層からなるベルト層40を形成する場合(図1及び図2)は、ベルト層40を形成する際の巻回作業のし易さの観点から、樹脂層50のタイヤ幅方向の幅が、ベルト層40のタイヤ幅方向の幅よりも大きいと、好適である。ただし、上述したいずれの例においても、樹脂層50のタイヤ幅方向の幅は、ベルト層40のタイヤ幅方向の幅に対して、大きくてもよく、等しくてもよく、あるいは小さくてもよい。
The width of the resin layer 50 in the tire width direction may be an arbitrary width, but may be, for example, 80 to 130% of the tire ground contact width.
As described above, for example, in the belt layer forming step, when the belt layer 40 formed of the spiral belt layer is formed on the outer peripheral surface of the resin layer 5 as a base (FIGS. 1 and 2), the belt layer 40 is used. From the viewpoint of easy winding work when forming the belt, it is preferable that the width of the resin layer 50 in the tire width direction is larger than the width of the belt layer 40 in the tire width direction. However, in any of the above-described examples, the width of the resin layer 50 in the tire width direction may be larger, equal, or smaller than the width of the belt layer 40 in the tire width direction.
 図3、図7~図12の各例において、樹脂層50を平面に展開して観たときに、樹脂層50の全体にわたって、樹脂フィルム51は、均一な配置パターンで配置されている。そのため、単位タイヤ幅方向長さにおける樹脂フィルム51の数や、単位タイヤ幅方向長さにおける樹脂層50の厚さT1の最大値や、単位タイヤ幅方向長さにおける樹脂層50の体積は、タイヤ幅方向に沿ってほぼ均一である。
 しかし、樹脂フィルム51の配置パターンや数等は、樹脂層50の全体にわたって非均一でもよい。すなわち、単位タイヤ幅方向長さにおける樹脂フィルム51の数や、単位タイヤ幅方向長さにおける樹脂層50の厚さT1の最大値や、単位タイヤ幅方向長さにおける樹脂層50の体積は、タイヤ幅方向に沿って非均一でもよい。この場合、タイヤ幅方向の領域ごとに樹脂層50の剛性を調整し、それによりタイヤ1の性能を調整することができる。例えば、タイヤ赤道面CL近傍に樹脂フィルム51を他の部分よりも多く配置し、それにより、タイヤ赤道面CL近傍での剛性を他の部分よりも高くする、といったことも可能である。
 また、樹脂フィルム51の大きさや形状は、樹脂層50の全体にわたって非均一でもよい。
In each example of FIGS. 3 and 7 to 12, the resin film 51 is arranged in a uniform arrangement pattern over the entire resin layer 50 when the resin layer 50 is viewed in a flat plane. Therefore, the number of the resin films 51 in the unit tire width direction length, the maximum value of the thickness T1 of the resin layer 50 in the unit tire width direction length, and the volume of the resin layer 50 in the unit tire width direction length are tires. It is almost uniform along the width direction.
However, the arrangement pattern, the number, and the like of the resin film 51 may be non-uniform throughout the resin layer 50. That is, the number of the resin films 51 in the unit tire width direction length, the maximum value of the thickness T1 of the resin layer 50 in the unit tire width direction length, and the volume of the resin layer 50 in the unit tire width direction length It may be non-uniform along the width direction. In this case, the rigidity of the resin layer 50 can be adjusted for each region in the tire width direction, whereby the performance of the tire 1 can be adjusted. For example, it is possible to dispose more resin film 51 in the vicinity of the tire equator plane CL than in other portions, thereby making the rigidity in the vicinity of the tire equator plane CL higher than in other portions.
Further, the size and shape of the resin film 51 may be non-uniform throughout the resin layer 50.
 図3、図7~図12の各例においては、樹脂フィルム51どうしが、少なくとも一部分で、重なっているとともに互いに固着されており、それにより、樹脂層50の全体が一体に構成されている。そのため、タイヤ1の製造時において、樹脂層形成ステップにおいて土台部材(成型ドラム200等)上で樹脂フィルム51を配置していく際に、より精度よく、樹脂フィルム51ひいては樹脂層50の形状を、土台部材の形状に沿わせることができる。よって、より簡単に、所期したとおりのタイヤ幅方向断面形状を有する樹脂層50が得られる。また、樹脂層50を土台部材(成型ドラム200等)から離型する際や、樹脂層50を他のタイヤ構成部材とアセンブルする際等において、樹脂層50を扱いやすくなり、作業性が向上する。また、タイヤ1の転動時において、各樹脂フィルム51が大きく動くのを抑制でき、タイヤ性能を向上できる。
 ただし、樹脂フィルム51どうしは、互いに固着されていなくてもよい。
 また、樹脂フィルム51どうしは、互いに重なっていなくてもよく、例えば、それぞれの外縁部(辺)どうしで接触していてもよいし、あるいは、互いから離間していてもよい。
 また、図3、図7~図12の各例においては、樹脂層50を構成する複数の樹脂フィルム51どうしの間に隙間が無く、それにより、樹脂層50がその全体にわたって連続している。ただし、樹脂層50を構成する複数の樹脂フィルム51どうしの間には、隙間があってもよく、例えば、樹脂フィルム51どうしは、樹脂層50が網目状をなすように、配置されてもよい。
In each example of FIGS. 3 and 7 to 12, the resin films 51 are at least partially overlapped and fixed to each other, whereby the entire resin layer 50 is integrally formed. Therefore, when the tire 1 is manufactured, when the resin film 51 is arranged on the base member (molding drum 200 or the like) in the resin layer forming step, the shape of the resin film 51 and the resin layer 50 is more accurately determined. It is possible to follow the shape of the base member. Therefore, the resin layer 50 having a tire width direction cross-sectional shape as expected can be obtained more simply. In addition, when the resin layer 50 is released from the base member (such as the molding drum 200) or when the resin layer 50 is assembled with other tire constituent members, the resin layer 50 becomes easy to handle and workability is improved. . Moreover, when the tire 1 rolls, it can suppress that each resin film 51 moves large, and can improve tire performance.
However, the resin films 51 do not have to be fixed to each other.
Moreover, the resin films 51 do not need to overlap each other. For example, the resin films 51 may be in contact with each other at their outer edge portions (sides) or may be separated from each other.
Further, in each example of FIGS. 3 and 7 to 12, there is no gap between the plurality of resin films 51 constituting the resin layer 50, so that the resin layer 50 is continuous throughout. However, there may be a gap between the plurality of resin films 51 constituting the resin layer 50. For example, the resin films 51 may be arranged so that the resin layers 50 have a mesh shape. .
 上述した各例において、ベルト層40は、コード41を被覆ゴム42で被覆した構成に代えて、コード41を被覆樹脂で被覆した構成からなるものでもよい。この場合、ベルト層40を軽量化できる。被覆樹脂は、例えば、溶融状態の被覆樹脂をコード41の外周側に被覆し、冷却により固化させることによって形成することができる。被覆樹脂を構成する樹脂材料は、樹脂層50について上述した樹脂材料と同じ種類の樹脂材料を用いることができるが、異なる種類の樹脂材料を用いることもできる。 In each of the above-described examples, the belt layer 40 may have a configuration in which the cord 41 is covered with a coating resin instead of the configuration in which the cord 41 is covered with the covering rubber 42. In this case, the belt layer 40 can be reduced in weight. The coating resin can be formed, for example, by coating a molten coating resin on the outer peripheral side of the cord 41 and solidifying by cooling. As the resin material constituting the coating resin, the same type of resin material as that described above for the resin layer 50 can be used, but a different type of resin material can also be used.
 本発明に係る空気入りタイヤ、及び、空気入りタイヤの製造方法は、例えば乗用車用空気入りタイヤ等、任意の種類の空気入りタイヤに利用できるものである。 The pneumatic tire and the method for manufacturing a pneumatic tire according to the present invention can be used for any kind of pneumatic tire such as a pneumatic tire for a passenger car.
1:空気入りタイヤ(タイヤ)、 10:トレッド部、 11:サイドウォール部、12:ビード部、 20:カーカス、 20a:本体部、 20b:折り返し部、30:ビードコア、 40:ベルト層、 40e:幅方向端面、 41:コード、 42:被覆ゴム(ゴム)、 50:樹脂層、 50cp:タイヤ幅方向中心側部分、 50e:タイヤ幅方向の端部、 50ep:タイヤ幅方向外端側部分、 51、51a、51b:樹脂フィルム、 200:成型ドラム、 201:ドラム部材、 500、501、502:樹脂フィルム列、 511:第1配列方向の端縁、 512:第2配列方向の端縁、 AD1:第1配列方向、 AD2:第2配列方向、 CL:タイヤ赤道面、 CD:タイヤ周方向、 S:成型ドラムの外周面、 Scp:ドラム幅方向中心側部分、 Sep:ドラム幅方向外端側部分、 WD:タイヤ幅方向 
 
DESCRIPTION OF SYMBOLS 1: Pneumatic tire (tire), 10: Tread part, 11: Side wall part, 12: Bead part, 20: Carcass, 20a: Main body part, 20b: Folding part, 30: Bead core, 40: Belt layer, 40e: 51: Cord end, 41: Cord, 42: Cover rubber (rubber), 50: Resin layer, 50cp: Tire width direction center side part, 50e: Tire width direction end part, 50ep: Tire width direction outer end side part, 51 51a, 51b: resin film, 200: molding drum, 201: drum member, 500, 501, 502: resin film row, 511: edge in the first arrangement direction, 512: edge in the second arrangement direction, AD1: First arrangement direction, AD2: Second arrangement direction, CL: Tire equatorial plane, CD: Tire circumferential direction, S: Outer circumferential surface of molding drum, Scp: Drum width direction center side , Sep: drum width direction outer end side portion, WD: tire width direction

Claims (5)

  1.  トレッド部に、
      タイヤ周方向に螺旋状に延在するコード又はタイヤ周方向に対する傾斜角度が10°以下である複数のコードを有する、ベルト層と、
      樹脂層と、
    を備え、
     前記樹脂層は、タイヤ幅方向及びタイヤ周方向のそれぞれに複数ずつ配置された樹脂フィルムを有する、空気入りタイヤ。
    In the tread part,
    A belt layer having a cord extending spirally in the tire circumferential direction or a plurality of cords having an inclination angle of 10 ° or less with respect to the tire circumferential direction;
    A resin layer;
    With
    The said resin layer is a pneumatic tire which has the resin film arrange | positioned two or more by each in the tire width direction and the tire circumferential direction.
  2.  前記樹脂フィルムどうしは、少なくとも一部分で、重なっているとともに互いに固着されている、請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the resin films overlap at least partially and are fixed to each other.
  3.  タイヤ幅方向断面において、前記樹脂層は、少なくとも一部分で、タイヤ外周側に凸に湾曲している、請求項1又は2に記載の空気入りタイヤ。 3. The pneumatic tire according to claim 1, wherein in the tire width direction cross section, the resin layer is at least partially curved convexly toward the tire outer peripheral side.
  4.  請求項1~3のいずれか一項に記載の空気入りタイヤを製造する方法であって、
     成型ドラム上で、前記樹脂フィルムを前記成型ドラムの幅方向及び周方向のそれぞれに複数ずつ配置して、前記樹脂層を形成する、樹脂層形成ステップと、
     前記ベルト層及び前記樹脂層を備えた未加硫タイヤを成形する、成形ステップと、
     前記未加硫タイヤを加硫する、加硫ステップと、
    を含む、空気入りタイヤの製造方法。
    A method for producing the pneumatic tire according to any one of claims 1 to 3,
    On the molding drum, a plurality of the resin films are arranged in each of the width direction and the circumferential direction of the molding drum to form the resin layer, a resin layer forming step,
    Forming an unvulcanized tire provided with the belt layer and the resin layer; and
    A vulcanization step of vulcanizing the unvulcanized tire;
    A method for manufacturing a pneumatic tire, comprising:
  5.  前記成型ドラムの幅方向断面において、前記成型ドラムの外周面は、少なくとも一部分で、外周側に凸に湾曲している、請求項4に記載の空気入りタイヤの製造方法。
     
    5. The method for manufacturing a pneumatic tire according to claim 4, wherein in the cross section in the width direction of the molding drum, the outer circumferential surface of the molding drum is at least partially curved convexly toward the outer circumferential side.
PCT/JP2019/021224 2018-05-31 2019-05-29 Pneumatic tire, and method for manufacturing pneumatic tire WO2019230760A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018105470A JP2019209748A (en) 2018-05-31 2018-05-31 Pneumatic tire and method for manufacturing pneumatic tire
JP2018-105470 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019230760A1 true WO2019230760A1 (en) 2019-12-05

Family

ID=68698246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021224 WO2019230760A1 (en) 2018-05-31 2019-05-29 Pneumatic tire, and method for manufacturing pneumatic tire

Country Status (2)

Country Link
JP (1) JP2019209748A (en)
WO (1) WO2019230760A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187408A (en) * 2000-12-22 2002-07-02 Bridgestone Corp Composite reinforced rubber material, its production method, and pneumatic tire using it
JP2012523340A (en) * 2009-04-09 2012-10-04 ソシエテ ド テクノロジー ミシュラン Tire with radial carcass reinforcement
JP2016128316A (en) * 2015-01-09 2016-07-14 錦湖タイヤ株式会社Kumho Tire Co., Inc. Cap ply of pneumatic tire and production method thereof
JP2016193725A (en) * 2010-10-13 2016-11-17 カンパニー ジェネラレ デ エスタブリシュメンツ ミシュラン Tire for passenger vehicle having radial carcass reinforcement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187408A (en) * 2000-12-22 2002-07-02 Bridgestone Corp Composite reinforced rubber material, its production method, and pneumatic tire using it
JP2012523340A (en) * 2009-04-09 2012-10-04 ソシエテ ド テクノロジー ミシュラン Tire with radial carcass reinforcement
JP2016193725A (en) * 2010-10-13 2016-11-17 カンパニー ジェネラレ デ エスタブリシュメンツ ミシュラン Tire for passenger vehicle having radial carcass reinforcement
JP2016128316A (en) * 2015-01-09 2016-07-14 錦湖タイヤ株式会社Kumho Tire Co., Inc. Cap ply of pneumatic tire and production method thereof

Also Published As

Publication number Publication date
JP2019209748A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP7083741B2 (en) Pneumatic radial tires for passenger cars
WO2019230773A1 (en) Pneumatic tire
JP2018197072A (en) Pneumatic tire
JP2003011610A (en) Pneumatic tire
JP2022173595A (en) Automobile pneumatic radial tire
WO2018235499A1 (en) Bead member, pneumatic tire, and assembly
EP3000620A1 (en) Pneumatic radial tire for a passenger car having ultra fine steel cords for a carcass ply
WO2019230760A1 (en) Pneumatic tire, and method for manufacturing pneumatic tire
JP3614239B2 (en) Pneumatic radial tire for passenger cars
JP2022164930A (en) Automobile pneumatic radial tire
JP2019202638A (en) Pneumatic tire
WO2019239898A1 (en) Pneumatic tire
WO2019244776A1 (en) Pneumatic tyre
JPH1148706A (en) Pneumatic radial tire and manufacture thereof
WO2020004064A1 (en) Pneumatic tire
WO2019230767A1 (en) Pneumatic tire and method for manufacturing pneumatic tire
JP6959895B2 (en) Manufacturing method for pneumatic tires and resin-coated belts
WO2019244775A1 (en) Pneumatic tire
JP7128271B2 (en) pneumatic tire
JP7329106B2 (en) Pneumatic radial tires for passenger cars
JP6987022B2 (en) Pneumatic tires and manufacturing methods for pneumatic tires
JP6930943B2 (en) Pneumatic tires
JP7198071B2 (en) Pneumatic radial tires for passenger cars
JP3608588B2 (en) Pneumatic radial tire for automobile
JP6850124B2 (en) Pneumatic tires and their carcass ply members

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811841

Country of ref document: EP

Kind code of ref document: A1