WO2019230182A1 - 穀物の光沢測定装置 - Google Patents

穀物の光沢測定装置 Download PDF

Info

Publication number
WO2019230182A1
WO2019230182A1 PCT/JP2019/014342 JP2019014342W WO2019230182A1 WO 2019230182 A1 WO2019230182 A1 WO 2019230182A1 JP 2019014342 W JP2019014342 W JP 2019014342W WO 2019230182 A1 WO2019230182 A1 WO 2019230182A1
Authority
WO
WIPO (PCT)
Prior art keywords
gloss
grain
light
light source
unit
Prior art date
Application number
PCT/JP2019/014342
Other languages
English (en)
French (fr)
Inventor
坂本 尚志
剛志郎 梶山
Original Assignee
株式会社サタケ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サタケ filed Critical 株式会社サタケ
Priority to BR112020024228-4A priority Critical patent/BR112020024228A2/pt
Priority to US17/057,139 priority patent/US11631167B2/en
Priority to CN201980036886.6A priority patent/CN112236668B/zh
Publication of WO2019230182A1 publication Critical patent/WO2019230182A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/57Measuring gloss
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/143Sensing or illuminating at different wavelengths
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/56Extraction of image or video features relating to colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/845Objects on a conveyor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30128Food products
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/60Extraction of image or video features relating to illumination properties, e.g. using a reflectance or lighting model

Definitions

  • the present invention relates to a grain gloss measuring apparatus for measuring the gloss of the surface of grains such as polished rice and beans.
  • Gloss is one of the quality evaluation items for rice grains. Conventionally, the gloss of the surface of rice grains has been evaluated visually by an inspector. However, the visual evaluation is influenced by human sense and lacks objectivity. Accordingly, there is a problem that the gloss on the surface of the rice grains is not quantitatively evaluated by visual evaluation.
  • the gloss measuring device described in Patent Document 1 includes a channel (3) for supplying grain, a light irradiation device (13) for irradiating light on the surface of the grain, and detecting reflected light from the surface of the grain.
  • a light detection device (11) for capturing an image is included.
  • the gloss measuring device described in Patent Document 1 generates a histogram indicating the number of pixels for each different intensity value obtained from the image, calculates a deviation from the histogram, and determines the gloss of the grain based on the deviation. Includes a processing unit for determining the degree.
  • the gloss of the rice grain surface is quantitatively evaluated by quantifying the gloss of the rice grain.
  • the light detection device (11) simultaneously detects the reflected light from the rice grains as well as the reflected light from the rice grains. Therefore, the gloss measuring device described in Patent Document 1 cannot distinguish between the reflected light from the rice grains and the reflected light from the supply path. As a result, the gloss measuring apparatus described in Patent Document 1 cannot accurately measure the gloss of rice grains.
  • an object of the present invention is to provide a grain gloss measuring apparatus capable of accurately measuring grain gloss.
  • the present invention provides: A light source that emits light from an oblique direction to the grain measuring unit; A light receiving unit that receives reflected light from the measurement unit; In the grain gloss measurement device comprising: a gloss value calculation device that calculates the gloss value of the grain based on the reflected light received by the light receiving unit, The light source irradiates light having a wavelength different from that of the first light source from a first light source that irradiates light from one side to the measurement unit, and the other side that faces the first light source across the measurement unit.
  • the light receiving portion is disposed on the same side as the second light source
  • the gloss value calculating apparatus includes an image processing unit that identifies a grain region in the measurement unit based on reflected light of the light from the second light source received by the light receiving unit.
  • the gloss value calculation device identifies a gloss region in the measurement unit based on the reflected light of the light from the first light source received by the light receiving unit, and the reflected light of the light from the second light source received by the light receiving unit. It is preferable to include an image processing unit that specifies a grain region in the measurement unit based on the glossy region and identifies a glossy region of the grain based on the glossy region and the grain region.
  • the image processing unit generates a first binary image in which the gloss region in the measurement unit is a white region based on the amount of reflected light of the first light source received by the light receiving unit, and the light receiving unit receives the light.
  • a second binary image having a grain region in the measurement unit as a white region is generated based on the amount of reflected light of the second light source, and the grain is based on the first binary image and the second binary image. It is preferable to specify the gloss region.
  • the gloss value calculation device obtains an area (S1) of the grain region and an area (S2) of the gloss region of the grain, and based on the area ratio (S2 / S1) of the grain region and the gloss region of the grain. It is preferable to include a gloss value calculation unit that calculates the gloss value of the image.
  • the gloss value calculating device includes: a reference plate in which the amount of reflected light of the first light source received by the light receiving unit from the gloss region of the grain and the gloss level arranged in the measurement unit are specified. It is preferable to include a gloss value calculation unit that calculates the gloss value of the grain based on the amount of reflected light of the first light source that receives light.
  • the gloss value calculation unit obtains an integrated value (A2) of the amount of reflected light of the first light source received by the light receiving unit from the gloss region of the grain, and calculates the integrated value (A2) as an area of the reference plate ( S0) Converted to the integrated value (A2 ⁇ S0 / S1) of the reflected light amount corresponding to the case where polished rice (area (S1)) exists in the whole, the first light source of the first light source that receives the light from the reference plate It is preferable to calculate the gloss value of the grain based on a comparison with the integrated value (A0) of the amount of reflected light.
  • the gloss value calculation device obtains an integrated value (A2) of the amount of reflected light of the first light source received by the light receiving unit from the gloss region of the grain, and the area of the reference plate (S0) in which the gloss level is specified Converted to the integrated value (A2 ⁇ S0 / S1) of the amount of reflected light corresponding to the case where polished rice (area (S1)) is present as a whole, the light receiving unit receives light from the reference plate disposed in the measurement unit. It is preferable to include a gloss value calculation unit that calculates the gloss value of the grain based on the comparison with the integrated value (A0) of the amount of reflected light of the first light source.
  • the measurement unit has a horizontal measurement surface on which the grain is placed,
  • the first light source is disposed above one side of the measurement surface at an inclination angle of 60 to 75 degrees with respect to the vertical direction;
  • the second light source is disposed above the other side of the measurement surface at an inclination angle of 30 to 60 degrees with respect to the vertical direction;
  • the light receiving unit is disposed on the same side as the side on which the second light source is disposed and above the other side of the measurement surface at an inclination angle of 60 to 75 degrees with respect to the vertical direction.
  • the measurement surface is a predetermined range in the transport direction of a transport unit having a horizontal transport surface.
  • the second light source is a blue light source.
  • the light source has a first light source that emits light from one side to the measurement unit, and the first light source from the other side that faces the first light source and the measurement unit.
  • a second light source that irradiates light of a different wavelength
  • the light receiving unit is disposed on the same side as the second light source, and the gloss value calculating device receives light of the second light source received by the light receiving unit.
  • An image processing unit that identifies a grain region in the measurement unit based on reflected light is included. Therefore, by specifying the grain region in the measuring unit, the reflected light of the first light source received by the light receiving unit can be distinguished into the reflected light from the grain and the reflected light from the measuring unit. Therefore, according to the grain gloss measuring apparatus of the present invention, it is possible to accurately measure the grain gloss.
  • the gloss value calculation device specifies a gloss region in the measurement unit based on reflected light of the light from the first light source received by the light receiving unit, and the light receiving unit receives the light. If it includes an image processing unit that identifies a grain region in the measurement unit based on reflected light of the light from the second light source, and identifies a gloss region of the grain based on the gloss region and the grain region, By specifying the gloss region of the grain in the measurement unit, it is possible to accurately measure the gloss of the grain.
  • the gloss value calculation unit obtains the area of the grain area (S1) and the area of the grain gloss area (S2), and the area of the grain area and the grain gloss area. If the gloss value calculation unit for calculating the gloss value of the grain based on the ratio (S2 / S1) is included, the effect of the number of grains existing in the measurement unit can be eliminated to quantify the gloss of the grain. it can.
  • the gloss value calculation device is configured such that the amount of reflected light of the first light source received by the light receiving unit from the gloss area of the grain and the gloss level arranged in the measurement unit are If it includes a gloss value calculation unit that calculates the gloss value of grain based on the reflected light amount of the light of the first light source received by the light receiving unit from the identified reference plate, the Japanese Industrial Standard (JIS) Grain gloss can be quantified in accordance with the standards of the International Organization for Standardization (ISO).
  • JIS Japanese Industrial Standard
  • the gloss value calculation unit obtains an integrated value (A2) of the amount of reflected light of the first light source received by the light receiving unit from the gloss area of the grain, and the integrated value. (A2) is converted into an integrated value (A2 ⁇ S0 / S1) of the reflected light amount corresponding to the case where polished rice (area (S1)) exists in the entire area (S0) of the reference plate, If the gloss value of the grain is calculated based on the comparison with the integrated value (A0) of the reflected light amount of the light from the first light source received by the light receiving unit, the value of the gloss of the grain is considered in consideration of the degree of gloss. Can be
  • the measuring unit has a horizontal measuring surface on which the grain is placed, and the first light source has the measuring surface at an inclination angle of 60 to 75 degrees with respect to the vertical direction.
  • the second light source is disposed above the other side of the measurement surface at an inclination angle of 30 to 60 degrees with respect to the vertical direction, and the light receiving unit is disposed on the second light source. If it is arranged on the same side as the installed side and above the other side of the measurement surface at an inclination angle of 60 to 75 degrees with respect to the vertical direction, the grain placed on the measurement surface Gloss can be measured accurately.
  • the grain gloss measuring apparatus continuously measures the gloss of a grain being transported a plurality of times, assuming that the measurement surface is within a predetermined range in the transport direction of a transport unit having a horizontal transport surface. By obtaining the average value, the influence of grain posture and individual differences can be eliminated.
  • the grain gloss measuring device of the present invention can measure the whiteness (whiteness) of polished rice at the same time when the second light source is a blue light source and the grain is polished rice.
  • the gloss value of the polished rice can be corrected.
  • FIG. 1 is a schematic plan view of a grain gloss measuring device according to an embodiment of the present invention.
  • the schematic explanatory drawing which looked at the measurement part of the apparatus of FIG. 1 from the downstream of the conveyance part.
  • the gloss measurement flow figure of the grain using the apparatus of FIG. Grain value calculation flow chart of grain.
  • FIG. 1 is a schematic plan view of a grain gloss measuring apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic explanatory view of the measuring unit of the grain gloss measuring device according to the embodiment of the present invention as viewed from the downstream side of the conveying unit.
  • the grain gloss measuring device 1 according to the embodiment of the present invention includes a transport unit 2 that transports grain to a measurement unit 11, a light source 3 that irradiates light from an oblique direction to the measurement unit 11, and the measurement unit 11. And a gloss value calculation device 5 that calculates the gloss value of the grain based on the reflected light received by the light receiving unit 4.
  • the transport unit 2 includes a hopper 21 that supplies grain, and a vibration feeder 22 that places the grain supplied from the hopper 21 and transports the grain to the measurement unit 11.
  • the vibration feeder 22 has a horizontal conveyance surface, and a predetermined range in the conveyance direction of the conveyance surface is a measurement surface 221 in the measurement unit 11.
  • the light source 3 includes a first light source 31 that irradiates light from one side of the grain conveying direction to the measuring unit 11, and the other side facing the first light source 31 and the measuring unit 11.
  • a second light source 32 that irradiates light having a wavelength different from that of the first light source 31 is included.
  • the first light source 31 is disposed obliquely above one side of the measurement surface 221 at an inclination angle of 60 to 75 degrees, preferably 60 degrees with respect to the vertical direction.
  • the second light source 32 is disposed obliquely above the other side of the measurement surface 221 at an inclination angle of 30 to 60 degrees, preferably 30 degrees with respect to the vertical direction.
  • a red LED red light emitting diode
  • a blue LED blue light emitting diode
  • a camera incorporating an image sensor such as a CCD or a CMOS is used for the light receiving unit 4.
  • the camera 4 is disposed on the side on which the blue LED 32 is disposed and obliquely above the other side of the measurement surface 221 at an inclination angle of 60 to 75 degrees, preferably 75 degrees with respect to the vertical direction.
  • the camera 4 captures image data by capturing the measurement unit 11 irradiated with red light from the red LED 31 and with blue light from the blue LED 32. Accordingly, the camera 4 receives the reflected light of the red light from the measurement unit 11 and receives the reflected light of the blue light from the measurement unit 11.
  • the gloss value calculation device 5 includes an image processing unit 51 that generates a binary image based on the reflected light from the measurement unit 11 received by the camera 4 and identifies a grain region and a grain gloss region. Further, the gloss value calculation device 5 includes a gloss value calculation unit 52 that extracts information on the gloss value of the grain and calculates the gloss value of the grain.
  • FIG. 3 is a flow chart for measuring grain gloss using the grain gloss measuring apparatus according to the embodiment of the present invention.
  • the gloss measuring device 1 measures grain gloss by the following steps.
  • a case where the gloss of polished rice is measured as a grain is taken as an example.
  • Step 1 The polished rice supplied from the hopper 21 and placed on the conveyance surface of the vibration feeder 22 is conveyed in a thin layer toward the measuring unit 11.
  • step 2 To the measurement unit 11, red light is emitted from one side of the polished rice in the conveying direction by the red LED 31 and blue light is emitted from the other side by the blue LED 32, and the polished rice on the measurement surface 221 is imaged by the camera 4. .
  • the camera 4 since the camera 4 is disposed on the side facing the red LED 31, in addition to the reflected light of the red light from the polished rice surface, the red color from the surface of the measurement surface 221 where the polished rice is not present. The reflected light is received simultaneously. In addition, since the camera 4 is disposed on the same side as the blue LED 32, the reflected light of blue light from the surface of polished rice is received, but the blue light is regularly reflected on the measurement surface 221. The reflected light of blue light from the surface of the measurement surface 221 where the polished rice is not present is not received.
  • Image processing step 3 In the image processing unit 51, image data of the camera 4 is subjected to image processing, and a region of polished rice and a region of glossy portion of polished rice on the measurement surface 221 are specified.
  • step 4 Information on the gloss value of polished rice is extracted based on the image processing data of the image processing unit 51 and the imaging data of the camera 4, and the gloss value of polished rice is calculated.
  • step 5 The gloss value of the polished rice calculated by the gloss value calculation unit 52 is output as a numerical value to a display device such as a display.
  • FIG. 4 shows an example of a grain gloss value calculation flow.
  • the image processing unit 51 binarizes the output signal of the reflected light of the red light received by the camera 4, and sets the gloss region on the measurement surface 221 as a white region.
  • a first binary image that is specified in units is generated.
  • the image processing unit 51 binarizes the output signal of the reflected light of the blue light received by the camera 4 and specifies a polished rice area on the measurement surface 221 as a white area in a second unit. Generate a value image.
  • the image processing unit 51 compares the first binary image and the second binary image to identify a gloss area of polished rice in units of pixels.
  • the gloss value calculation unit 52 calculates the area (S1) of the polished rice region from the second binary image. In addition, the gloss value calculation unit 52 calculates the area (S2) of the gloss region of polished rice from the comparison result of the first binary image and the second binary image. Then, the gloss value calculation unit 52 calculates the gloss value of the polished rice based on the area ratio (S2 / S1) of the polished rice area and the polished rice gloss area.
  • the area (S1) of the polished rice region is obtained by counting the number of pixels of the white region in the second binary image.
  • the area (S2) of the polished rice gloss region is obtained by counting the number of pixels in the region specified by the comparison result of the first binary image and the second binary image.
  • the gloss value of polished rice is calculated based on the area ratio (S2 / S1) between the polished rice area and the polished rice gloss area. Therefore, the influence of the number of polished rice existing on the measurement surface 221 is eliminated, and the gloss of the polished rice is quantified.
  • the second light source 32 is a blue light source
  • the whiteness (whiteness) of the polished rice is measured simultaneously with the gloss value of the polished rice.
  • the amount of light reflected by the first light source 31 from the polished rice received by the camera 4 may vary depending on the whiteness of the polished rice. However, even in that case, the gloss value of the polished rice is corrected by measuring the whiteness.
  • FIG. 5 shows another example of the grain gloss value calculation flow.
  • the calculation flow of FIG. 5 differs from the calculation flow of FIG. 4 in the gloss value calculation process in the gloss value calculation step (step 4).
  • the gloss value of polished rice is calculated as a percentage in accordance with the definition of glossiness of Japanese Industrial Standard (JIS) shown in Equation 1.
  • JIS Japanese Industrial Standard
  • the gloss value calculation unit 52 reflects the reflected light amount of the red light received by the camera 4 from the gloss region of the polished rice specified by the image processing unit 51, and the gloss level.
  • the gloss value of polished rice is calculated based on the reflected light amount of the red light received by the camera 4 from the reference plate in which (G0) is specified.
  • the gloss value calculation unit 52 obtains an integrated value (A2) of the reflected light amount (the magnitude of the output signal of the reflected light) of the red light received by the camera 4 from the gloss region of the polished rice. .
  • the gloss value calculation unit 52 uses the integrated value (A2) of the reflected light amount corresponding to the case where polished rice (area (S1)) is present over the entire area (detection range) (S0) of the reference plate ( Convert to A2 ⁇ S0 / S1).
  • the gloss value calculation unit 52 calculates the gloss value of polished rice based on the comparison with the integrated value (A0) of the reflected light amount of the red light received by the camera 4 from the reference plate.
  • the gloss value of the polished rice is multiplied by the ratio (G0 / 100) of the glossiness (G0) of the reference plate to the reference value of the specular glossiness specified by JIS, as shown in FIG.
  • the gloss value is corrected to meet the JIS regulations.
  • the reflected light quantity of the red light from the reference plate received by the camera 4 is measured in advance before measuring the gloss of polished rice. Further, the amount of red light reflected from the reference plate received by the camera 4 is measured simultaneously with the measurement of polished rice gloss by placing the reference plate at a predetermined position of the measuring unit 11.
  • the area of the reference plate (detection range of reflected light from the reference plate received by the camera 4) (S0) may be measured in advance.
  • the gloss of polished rice is digitized in a form commensurate with a standard such as JIS. Further, according to the grain gloss value calculation flow shown in FIG. 5, since the integrated value (A1) of the reflected light amount of red light is used, the gloss of polished rice is quantified in consideration of the degree of gloss.
  • the second light source 32 is a blue light source
  • the whiteness (whiteness) of the polished rice is simultaneously measured. Therefore, even when the amount of reflected light of the first light source 21 from the polished rice received by the camera 4 varies depending on the whiteness of the polished rice, the gloss value of the polished rice is corrected by measuring the whiteness. Is done.
  • the light source 3 sandwiches the first light source 31 and the measurement unit 11 with the first light source 31 that irradiates the measurement unit 11 with light from one side.
  • the second light source 32 that irradiates light having a wavelength different from that of the first light source 31 from the opposite side
  • the camera 4 is disposed on the same side as the second light source 32
  • the gloss value calculating device 5 The image processing unit 51 for specifying the grain region in the measurement unit 11 based on the reflected light of the light from the second light source 32 received by the camera 4 is included. Therefore, the grain region in the measurement unit 11 is specified, and the reflected light of the first light source 31 received by the camera 4 is distinguished into the reflected light from the grain and the reflected light from the measurement unit 11.
  • the gloss value calculation device 5 uses the reflected light of the first light source 31 received by the camera 4 as a gloss region in the measurement unit 11.
  • the grain area in the measurement unit 11 is identified based on the reflected light of the second light source 32 received by the camera 4, and the grain gloss area is identified based on the gloss area and the grain area.
  • An image processing unit 51 is included. Therefore, the gloss area of the grain in the measurement unit 11 is specified, and the gloss of the grain can be accurately measured.
  • the measurement surface 221 of the measurement unit 11 is set to a predetermined range in the conveyance direction of the horizontal conveyance surface of the vibration feeder 22. Therefore, the gloss of the grain being conveyed is measured several times in succession. In addition, by determining the average value of the gloss, the effects of grain posture and individual differences are eliminated.
  • the transport unit 2 may be a turntable instead of the vibration feeder 22.
  • the grain measuring unit 11 is provided on the horizontal conveyance surface (measurement surface 221) of the vibration feeder 22.
  • the predetermined range of the cylinder may be the measurement unit.
  • the gloss of the grain being conveyed on the conveyance surface of the conveyance unit 2 is measured.
  • the gloss of the grain placed in a stationary state on the measurement surface may be measured.
  • a red light source is used as the first light source 31 and a blue light source is used as the second light source 32.
  • other color light sources having different wavelengths may be used.
  • a light source of white light and a filter may be combined so that light having different wavelengths is emitted from the first light source 31 and the second light source 32, respectively.
  • an LED light emitting diode
  • other illumination units such as a fluorescent lamp may be used.
  • the gloss value calculation device 5 can also calculate the grain gloss value by another gloss value calculation flow.
  • the image processing unit 51 specifies the grain region. The reflected light from the grain can be distinguished from the reflected light from the measuring unit. Therefore, the gloss of the grain is accurately measured.
  • the grain gloss measuring device of the present invention can accurately measure the grain gloss by specifying the grain area and specifying the grain gloss area. Further, the gloss measuring device can quantitatively evaluate the grain gloss by quantifying it. Therefore, the grain gloss measuring device of the present invention is extremely useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Geometry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

穀物の光沢を正確に測定することが可能な穀物の光沢測定装置を提供する。 穀物の測定部に対し斜め方向から光を照射する光源と、前記測定部からの反射光を受光する受光部と、前記受光部が受光する反射光に基づいて穀物の光沢値を算出する光沢値算出装置と、を備える穀物の光沢測定装置において、前記光源は、前記測定部に対し一方側から光を照射する第1光源と、前記第1光源と前記測定部を挟んで対向する他方側から前記第1光源と異なる波長の光を照射する第2光源を含み、前記受光部は、前記第2光源と同じ側に配設されてなり、前記光沢値算出装置は、前記受光部が受光する前記第2光源の光の反射光に基づいて前記測定部における穀物領域を特定する画像処理部を含むことを特徴とする。

Description

穀物の光沢測定装置
 本発明は、精白米や豆類等、穀物の表面の光沢を測定する穀物の光沢測定装置に関する。
 米粒の品質評価項目の一つとして光沢がある。従来、米粒表面の光沢は、検査員の目視による評価が行われている。しかし、目視による評価は、人の感覚に左右され客観性に欠けるものである。したがって、目視による評価では、米粒表面の光沢が定量的に評価されないという問題がある。
 そこで、米粒の光沢を光学的に測定する装置が提案されている(特許文献1を参照。)。
 特許文献1に記載された光沢測定装置は、穀物を供給するチャンネル(3)、穀物の表面に光を照射するための光照射装置(13)、穀物表面からの反射光を検知して穀物の画像をとらえる光検知装置(11)を含む。さらに、特許文献1に記載された光沢測定装置は、前記画像から得られる異なる強度値ごとの画素数を示すヒストグラムを生成し、該ヒストグラムから偏差を計算し、該偏差に基づいて穀物の光沢の度合いを決定する処理ユニットを含む。
 特許文献1に記載された光沢測定装置によれば、米粒の光沢を数値化することで米粒表面の光沢が定量的に評価される。
 しかしながら、特許文献1に記載された光沢測定装置は、前記光検知装置(11)が米粒からの反射光とともに、供給路からの反射光も同時に検知する。そのため、特許文献1に記載された光沢測定装置は、米粒からの反射光と供給路からの反射光とを区別することができない。結果として、特許文献1に記載された光沢測定装置は、米粒の光沢を正確に測定できない。
米国特許出願公開第2016/0320311号明細書
 そこで、本発明は、穀物の光沢を正確に測定することが可能な穀物の光沢測定装置を提供することを目的とする。
 上記目的を達成するため、本発明は、
穀物の測定部に対し斜め方向から光を照射する光源と、
 前記測定部からの反射光を受光する受光部と、
 前記受光部が受光する反射光に基づいて穀物の光沢値を算出する光沢値算出装置と、を備える穀物の光沢測定装置において、
 前記光源は、前記測定部に対し一方側から光を照射する第1光源と、前記第1光源と前記測定部を挟んで対向する他方側から前記第1光源と異なる波長の光を照射する第2光源を含み、
 前記受光部は、前記第2光源と同じ側に配設されてなり、
 前記光沢値算出装置は、前記受光部が受光する前記第2光源の光の反射光に基づいて前記測定部における穀物領域を特定する画像処理部を含むことを特徴とする。
 本発明は、
 前記光沢値算出装置が、前記受光部が受光する前記第1光源の光の反射光に基づいて前記測定部における光沢領域を特定し、前記受光部が受光する前記第2光源の光の反射光に基づいて前記測定部における穀物領域を特定し、前記光沢領域と前記穀物領域に基づいて穀物の光沢領域を特定する画像処理部を含むことが好ましい。
 本発明は、
 前記画像処理部が、前記受光部が受光する前記第1光源の光の反射光量に基づいて前記測定部における光沢領域を白色領域とする第1二値画像を生成し、前記受光部が受光する前記第2光源の光の反射光量に基づいて前記測定部における穀物領域を白色領域とする第2二値画像を生成し、前記第1二値画像と前記第2二値画像に基づいて前記穀物の光沢領域を特定することが好ましい。
 本発明は、
 前記光沢値算出装置が、前記穀物領域の面積(S1)と前記穀物の光沢領域の面積(S2)を求め、前記穀物領域と前記穀物の光沢領域の面積比(S2/S1)に基づいて穀物の光沢値を算出する光沢値算出部を含むことが好ましい。
 本発明は、
 前記光沢値算出装置が、前記穀物の光沢領域から前記受光部が受光する前記第1光源の光の反射光量と、前記測定部に配置される光沢度が特定された基準板から前記受光部が受光する前記第1光源の光の反射光量とに基づいて、穀物の光沢値を算出する光沢値算出部を含むことが好ましい。
 本発明は、
 前記光沢値算出部が、前記穀物の光沢領域から前記受光部が受光する前記第1光源の光の反射光量の積算値(A2)を求め、前記積算値(A2)を前記基準板の面積(S0)全体に精白米(面積(S1))が存在した場合に対応する反射光量の積算値(A2×S0/S1)に換算し、前記基準板から前記受光部が受光する前記第1光源の光の反射光量の積算値(A0)との比較に基づいて穀物の光沢値を算出することが好ましい。
 本発明は、
 前記光沢値算出装置が、前記穀物の光沢領域から前記受光部が受光する前記第1光源の光の反射光量の積算値(A2)を求め、光沢度が特定された基準板の面積(S0)全体に精白米(面積(S1))が存在した場合に対応する反射光量の積算値(A2×S0/S1)に換算し、前記測定部に配置される前記基準板から前記受光部が受光する前記第1光源の光の反射光量の積算値(A0)との比較に基づいて穀物の光沢値を算出する光沢値算出部を含むことが好ましい。
 本発明は、
 前記測定部が、穀物が載置される水平な測定面を有し、
 前記第1光源が、鉛直方向に対し60~75度の傾斜角で前記測定面の一方側上方に配設され、
 前記第2光源が、鉛直方向に対し30~60度の傾斜角で前記測定面の他方側上方に配設され、
 前記受光部が、前記第2光源が配設される側と同じ側であって、鉛直方向に対し60~75度の傾斜角で前記測定面の他方側上方に配設されることが好ましい。
 本発明は、
 前記測定面が、水平な搬送面を有する搬送部の搬送方向における所定範囲であることが好ましい。
 本発明は、
 前記第2光源が青色光源であることが好ましい。
 本発明の穀物の光沢測定装置は、光源が、測定部に対し一方側から光を照射する第1光源と、前記第1光源と前記測定部を挟んで対向する他方側から前記第1光源と異なる波長の光を照射する第2光源を含み、受光部が、前記第2光源と同じ側に配設されてなり、光沢値算出装置が、前記受光部が受光する前記第2光源の光の反射光に基づいて前記測定部における穀物領域を特定する画像処理部を含む。そのため、測定部における穀物領域を特定することで、前記受光部が受光する前記第1光源の光の反射光を、穀物からの反射光と測定部からの反射光に区別することができる。
 したがって、本発明の穀物の光沢測定装置によれば、穀物の光沢を正確に測定することが可能となる。
 本発明の穀物の光沢測定装置は、前記光沢値算出装置が、前記受光部が受光する前記第1光源の光の反射光に基づいて前記測定部における光沢領域を特定し、前記受光部が受光する前記第2光源の光の反射光に基づいて前記測定部における穀物領域を特定し、前記光沢領域と前記穀物領域に基づいて穀物の光沢領域を特定する画像処理部を含むこととすれば、測定部における穀物の光沢領域を特定することで、穀物の光沢を正確に測定することが可能となる。
 本発明の穀物の光沢測定装置は、前記光沢値算出装置が、前記穀物領域の面積(S1)と前記穀物の光沢領域の面積(S2)を求め、前記穀物領域と前記穀物の光沢領域の面積比(S2/S1)に基づいて穀物の光沢値を算出する光沢値算出部を含むこととすれば、測定部に存在する穀物の数の影響を排除して穀物の光沢を数値化することができる。
 本発明の穀物の光沢測定装置は、前記光沢値算出装置が、前記穀物の光沢領域から前記受光部が受光する前記第1光源の光の反射光量と、前記測定部に配置される光沢度が特定された基準板から前記受光部が受光する前記第1光源の光の反射光量とに基づいて、穀物の光沢値を算出する光沢値算出部を含むこととすれば、日本工業規格(JIS)や国際標準化機構(ISO)の規格に沿う形で穀物の光沢を数値化することができる。
 本発明の穀物の光沢測定装置は、前記光沢値算出部が、前記穀物の光沢領域から前記受光部が受光する前記第1光源の光の反射光量の積算値(A2)を求め、前記積算値(A2)を前記基準板の面積(S0)全体に精白米(面積(S1))が存在した場合に対応する反射光量の積算値(A2×S0/S1)に換算し、前記基準板から前記受光部が受光する前記第1光源の光の反射光量の積算値(A0)との比較に基づいて穀物の光沢値を算出することとすれば、光沢の度合いを考慮して穀物の光沢を数値化することができる。
 本発明の穀物の光沢測定装置は、前記測定部が、穀物が載置される水平な測定面を有し、前記第1光源が、鉛直方向に対し60~75度の傾斜角で前記測定面の一方側上方に配設され、前記第2光源が、鉛直方向に対し30~60度の傾斜角で前記測定面の他方側上方に配設され、前記受光部が、前記第2光源が配設される側と同じ側であって、鉛直方向に対し60~75度の傾斜角で前記測定面の他方側上方に配設されることとすれば、測定面上に載置される穀物の光沢を正確に測定することができる。
 本発明の穀物の光沢測定装置は、前記測定面が、水平な搬送面を有する搬送部の搬送方向における所定範囲であることとすれば、搬送中の穀物の光沢を連続して複数回測定し、その平均値を求めることで、穀物の姿勢や個体差による影響を排除することができる。
 本発明の穀物の光沢測定装置は、前記第2光源が青色光源であることとすれば、前記穀物が精白米の場合、同時に精白米の白度(白さ)を測定することができるので、前記受光部が受光する前記精白米からの前記第1光源の光の反射光量が前記精白米の白度により変化する可能性がある場合、精白米の光沢値を補正することができる。
本発明の実施の形態における穀物の光沢測定装置の概略平面図。 図1の装置の測定部を搬送部の下流側から見た概略説明図。 図1の装置を利用した穀物の光沢測定フロー図。 穀物の光沢値算出フロー図。 穀物の光沢値算出フロー図。
 本発明の実施の形態を図面に基づいて説明する。
 図1は本発明の実施の形態における穀物の光沢測定装置の概略平面図を示す。図2は本発明の実施の形態における穀物の光沢測定装置の測定部を搬送部の下流側から見た概略説明図を示す。
 本発明の実施の形態における穀物の光沢測定装置1は、穀物を測定部11に搬送する搬送部2と、前記測定部11に対し斜め方向から光を照射する光源3と、前記測定部11からの反射光を受光する受光部4と、前記受光部4が受光する反射光に基づいて穀物の光沢値を算出する光沢値算出装置5を備える。
 前記搬送部2は、穀物を供給するホッパー21と、前記ホッパー21から供給される穀物を載置して測定部11に搬送する振動フィーダー22を含む。前記振動フィーダー22は水平な搬送面を有し、前記搬送面の搬送方向における所定範囲を前記測定部11における測定面221とする。
 前記光源3は、前記測定部11に対し穀物の搬送方向の一側方から光を照射する第1光源31と、前記第1光源31と前記測定部11を挟んで対向する他側方から前記第1光源31と異なる波長の光を照射する第2光源32を含む。
 前記第1光源31は、鉛直方向に対し60~75度、好ましくは60度の傾斜角で前記
測定面221の一方側斜め上方に配設される。また、前記第2光源32は、鉛直方向に対し30~60度、好ましくは30度の傾斜角で前記測定面221の他方側斜め上方に配設される。
 ここでは、前記第1光源31として赤色LED(赤色発光ダイオード)、前記第2光源32として青色LED(青色発光ダイオード)が用いられる。
 前記受光部4には、CCDやCMOS等の撮像素子を内蔵するカメラが用いられる。
 前記カメラ4は、前記青色LED32が配設される側であって、鉛直方向に対し60~75度、好ましくは75度の傾斜角で前記測定面221の他方側斜め上方に配設される。
 前記カメラ4は、前記赤色LED31から赤色光が照射され、かつ、前記青色LED32から青色光が照射される前記測定部11を撮像して撮像データを取得する。これにより前記カメラ4は、前記測定部11からの前記赤色光の反射光を受光し、前記測定部11からの前記青色光の反射光を受光する。
 前記光沢値算出装置5には、コンピュータが用いられる。
 前記光沢値算出装置5は、前記カメラ4が受光する前記測定部11からの反射光に基づいて二値画像を生成し、穀物領域及び穀物の光沢領域を特定する画像処理部51を含む。また、前記光沢値算出装置5は、穀物の光沢値に関する情報を抽出し、穀物の光沢値を算出する光沢値算出部52を含む。
 図3は本発明の実施の形態における穀物の光沢測定装置を利用した穀物の光沢測定フロー図を示す。
 本発明の実施の形態において、前記光沢測定装置1は、以下の工程により穀物の光沢測定を行う。なお、ここでは、穀物として精白米の光沢を測定する場合を例とする。
(1)搬送工程(ステップ1)
 ホッパー21から供給され、振動フィーダー22の搬送面上に載置される精白米が、測定部11に向けて薄層状態で搬送される。
(2)撮像工程(ステップ2)
 測定部11に向けて、精白米の搬送方向の一側方から赤色LED31により赤色光、他側方から青色LED32により青色光が照射され、測定面221上の精白米がカメラ4で撮像される。
 その際、前記カメラ4は、前記赤色LED31と対向する側に配設されるため、精白米表面からの前記赤色光の反射光に加え、精白米が存在しない前記測定面221の表面から
の赤色光の反射光を同時に受光する。
 また、前記カメラ4は、前記青色LED32と同じ側に配設されるため、精白米表面からの青色光の反射光は受光するが、前記測定面221上において前記青色光は正反射されるため、前記精白米が存在しない前記測定面221の表面からの青色光の反射光は受光しない。
(3)画像処理工程(ステップ3)
 画像処理部51において、前記カメラ4の撮像データが画像処理され、前記測定面221上における精白米の領域及び精白米の光沢部分の領域が特定される。
(4)光沢値算出工程(ステップ4)
 光沢値算出部52において、前記画像処理部51の画像処理データや前記カメラ4の撮像データに基づいて精白米の光沢値に関する情報が抽出され、精白米の光沢値が算出される。
(5)出力工程(ステップ5)
 光沢値算出部52で算出された精白米の光沢値が、ディスプレイ等の表示装置等に数値により出力される。
 図4は穀物の光沢値算出フローの一例を示す。
 前記画像処理工程(ステップ3)において、前記画像処理部51は、前記カメラ4が受光する前記赤色光の反射光の出力信号を二値化し、前記測定面221上の光沢領域を白色領域として画素単位で特定する第1二値画像を生成する。
 また、前記画像処理部51は、前記カメラ4が受光する前記青色光の反射光の出力信号を二値化し、前記測定面221上の精白米領域を白色領域として画素単位で特定する第2二値画像を生成する。
 そして、前記画像処理部51は、前記第1二値画像と前記第2二値画像を比較照合することで、精白米の光沢領域を画素単位で特定する。
 次に、前記光沢値算出工程(ステップ4)において、前記光沢値算出部52は、前記第2二値画像から精白米領域の面積(S1)を算出する。
 また、前記光沢値算出部52は、前記第1二値画像と前記第2二値画像の比較照合結果から精白米の光沢領域の面積(S2)を算出する。
 そして、前記光沢値算出部52は、前記精白米領域と前記精白米の光沢領域の面積比(S2/S1)に基づいて精白米の光沢値を算出する。
 ここで、前記精白米領域の面積(S1)は、前記第2二値画像における白色領域の画素数がカウントされることで求められる。また、前記精白米の光沢領域の面積(S2)は、前記第1二値画像と前記第2二値画像の比較照合結果により特定された領域の画素数がカウントされることで求められる。
 図4に示す穀物の光沢値算出フローによれば、精白米の光沢値が精白米領域と精白米の光沢領域の面積比(S2/S1)に基づいて算出される。そのため、測定面221上に存在する精白米の数の影響が排除されて精白米の光沢が数値化される。
 なお、本発明の実施の形態では、前記第2光源32が青色光源とされているので、精白米の白度(白さ)が、精白米の光沢値と同時に測定される。
 前記カメラ4が受光する前記精白米からの第1光源31の光の反射光量は精白米の白度により変化する可能性がある。しかし、その場合でも前記白度が測定されることで精白米の光沢値が補正される。
 図5は穀物の光沢値算出フローの他の一例を示す。図5の算出フローは、図4の算出フロートと比べ、光沢値算出工程(ステップ4)における光沢値の算出処理が異なる。なお、図5の算出フローでは、数1に示す日本工業規格(JIS)の光沢度の定義に当てはめて、精白米の光沢値がパーセンテージで算出される。
Figure JPOXMLDOC01-appb-M000001
 前記光沢値算出工程(ステップ4)において、前記光沢値算出部52は、前記画像処理部51で特定した前記精白米の光沢領域から前記カメラ4が受光する前記赤色光の反射光量と、光沢度(G0)が特定された基準板から前記カメラ4が受光する前記赤色光の反射光量とに基づいて、精白米の光沢値を算出する。
 具体的には、前記光沢値算出部52は、前記精白米の光沢領域から前記カメラ4が受光する前記赤色光の反射光量(反射光の出力信号の大きさ)の積算値(A2)を求める。前記光沢値算出部52は、前記積算値(A2)を前記基準板の面積(検出範囲)(S0)全体に精白米(面積(S1))が存在した場合に対応する反射光量の積算値(A2×S0/S1)に換算する。前記光沢値算出部52は、前記基準板から前記カメラ4が受光する前記赤色光の反射光量の積算値(A0)との比較に基づいて精白米の光沢値を算出する。
 なお、前記精白米の光沢値は、図5に示すように、JISで規定される鏡面光沢度の基準値に対する前記基準板の光沢度(G0)の割合(G0/100)が乗算されることで、JISの規定に見合った光沢値の値に補正される。
 ここで、前記カメラ4が受光する前記基準板からの前記赤色光の反射光量は、精白米の光沢測定に先立ち、あらかじめ計測される。また、前記カメラ4が受光する前記基準板からの前記赤色光の反射光量は、前記測定部11の所定位置に前記基準板が配置されることで、精白米の光沢測定と同時に計測される。
 なお、前記基準板の面積(前記カメラ4が受光する前記基準板からの反射光の検出範囲)(S0)は、あらかじめ測定されていてもよい。
 図5に示す穀物の光沢値算出フローによれば、精白米の光沢がJIS等の規格に見合った形で数値化される。
 また、図5に示す穀物の光沢値算出フローによれば、赤色光の反射光量の積算値(A1)が用いられるので、光沢の度合いが考慮されて精白米の光沢が数値化される。
 なお、図5に示す穀物の光沢値算出フローの場合も、前記第2光源32が青色光源とされるので、精白米の白度(白さ)が同時に測定される。
 そのため、前記カメラ4が受光する前記精白米からの第1光源21の光の反射光量が精白米の白度により変化する場合でも、前記白度が測定されることで精白米の光沢値が補正される。
 上記本発明の実施の形態における穀物の光沢測定装置では、光源3が、測定部11に対し一方側から光を照射する第1光源31と、前記第1光源31と前記測定部11を挟んで対向する他方側から前記第1光源31と異なる波長の光を照射する第2光源32を含み、カメラ4が、前記第2光源32と同じ側に配設されてなり、光沢値算出装置5が、前記カメラ4が受光する前記第2光源32の光の反射光に基づいて前記測定部11における穀物領域を特定する画像処理部51を含む。そのため、前記測定部11における穀物領域が特定され、前記カメラ4が受光する前記第1光源31の光の反射光が穀物からの反射光と測定部11からの反射光に区別される。
 また、上記本発明の実施の形態における穀物の光沢測定装置では、光沢値算出装置5が、前記カメラ4が受光する前記第1光源31の光の反射光に基づいて前記測定部11における光沢領域を特定し、前記カメラ4が受光する前記第2光源32の光の反射光に基づいて前記測定部11における穀物領域を特定し、前記光沢領域と前記穀物領域に基づいて穀物の光沢領域を特定する画像処理部51を含む。そのため、前記測定部11における穀物の光沢領域が特定され、穀物の光沢を正確に測定することが可能となる。
 上記本発明の実施の形態における穀物の光沢測定装置では、測定部11における測定面221が、振動フィーダー22の水平な搬送面の搬送方向における所定範囲に設定されている。そのため、搬送中の穀物の光沢が連続して複数回測定される。また、その光沢の平均値を求めることで、穀物の姿勢や個体差による影響が排除される。
 上記本発明の実施の形態において、搬送部2は振動フィーダー22にかえてターンテーブルであってもよい。
 また、上記本発明の実施の形態では、前記振動フィーダー22の水平な搬送面(測定面221)上を穀物の測定部11とした。しかし、例えば穀物が透明な筒体内を流下する場合は、前記筒体の所定範囲が測定部であってもよい。
 上記本発明の実施の形態では、搬送部2の搬送面上を搬送される途中の穀物の光沢が測定されることとした。しかし、測定面上に静止した状態で載置される穀物の光沢が測定されるようにしてもよい。
 上記本発明の実施の形態では、第1光源31に赤色光源、第2光源32に青色光源が用いられることとしたが、それ以外にも波長の異なる他色の光源が用いられてもよい。また、白色光の光源とフィルターを組合せて、第1光源31と第2光源32からそれぞれ異なる波長の光が照射されるようにしてもよい。
 上記本発明の実施の形態では、光源にLED(発光ダイオード)を用いられることとした。しかし、蛍光灯など他の照明部が用いられてもよい。
 本発明の実施の形態における穀物の光沢測定装置は、前記光沢値算出装置5において他の光沢値算出フローにより穀物の光沢値を算出することもできる。
 本発明の実施の形態において、例えば米国特許出願公開第2016/0320311号明細書に記載された光沢算出フローにより穀物の光沢値を算出する場合でも、画像処理部51において穀物領域を特定することで、穀物からの反射光と測定部からの反射光を区別することができる。そのため、穀物の光沢が正確に測定される。
 以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に限定されるものでなく、発明の範囲を逸脱しない限りにおいてその構成を適宜変更できることはいうまでもない。
 本発明の穀物の光沢測定装置は、穀物領域を特定し、穀物の光沢領域を特定することで、穀物の光沢を正確に測定することが可能である。また、光沢測定装置は、穀物の光沢を数値化することで定量的に評価することができる。そのため、本発明の穀物の光沢測定装置は極めて有用である。
1   光沢測定装置
2   搬送部
21   ホッパー
22   振動フィーダー
221   測定面
3   光源
31   第1光源(赤色LED)
32   第2光源(青色LED)
4   受光部(カメラ)
5   光沢値算出装置(コンピュータ)
51   画像処理部
52   光沢値算出部

Claims (9)

  1.  穀物の測定部に対し斜め方向から光を照射する光源と、
     前記測定部からの反射光を受光する受光部と、
     前記受光部が受光する反射光に基づいて穀物の光沢値を算出する光沢値算出装置と、を備える穀物の光沢測定装置において、
     前記光源は、前記測定部に対し一方側から光を照射する第1光源と、前記第1光源と前記測定部を挟んで対向する他方側から前記第1光源と異なる波長の光を照射する第2光源を含み、
     前記受光部は、前記第2光源と同じ側に配設されてなり、
     前記光沢値算出装置は、前記受光部が受光する前記第2光源の光の反射光に基づいて前記測定部における穀物領域を特定する画像処理部を含むことを特徴とする穀物の光沢測定装置。
  2.  前記光沢値算出装置は、前記受光部が受光する前記第1光源の光の反射光に基づいて前記測定部における光沢領域を特定し、前記受光部が受光する前記第2光源の光の反射光に基づいて前記測定部における穀物領域を特定し、前記光沢領域と前記穀物領域に基づいて穀物の光沢領域を特定する画像処理部を含む請求項1記載の穀物の光沢測定装置。
  3.  前記画像処理部は、前記受光部が受光する前記第1光源の光の反射光量に基づいて前記測定部における光沢領域を白色領域とする第1二値画像を生成し、前記受光部が受光する前記第2光源の光の反射光量に基づいて前記測定部における穀物領域を白色領域とする第2二値画像を生成し、前記第1二値画像と前記第2二値画像に基づいて前記穀物の光沢領域を特定する請求項2記載の穀物の光沢測定装置。
  4.  前記光沢値算出装置は、前記穀物領域の面積と前記穀物の光沢領域の面積を求め、前記穀物領域と前記穀物の光沢領域の面積比に基づいて穀物の光沢値を算出する光沢値算出部を含む請求項2又は3記載の穀物の光沢測定装置。
  5.  前記光沢値算出装置は、前記穀物の光沢領域から前記受光部が受光する前記第1光源の光の反射光量と、前記測定部に配置される光沢度が特定された基準板から前記受光部が受光する前記第1光源の光の反射光量とに基づいて、穀物の光沢値を算出する光沢値算出部を含む請求項2又は3記載の穀物の光沢測定装置。
  6.  前記光沢値算出部は、前記穀物の光沢領域から前記受光部が受光する前記第1光源の光の反射光量の積算値を求め、前記積算値を前記基準板の面積全体に精白米が存在した場合に対応する反射光量の積算値に換算し、前記基準板から前記受光部が受光する前記第1光源の光の反射光量の積算値との比較に基づいて穀物の光沢値を算出する請求項5記載の穀物の光沢測定装置。
  7.  前記測定部は、穀物が載置される水平な測定面を有し、
     前記第1光源は、鉛直方向に対し60~75度の傾斜角で前記測定面の一方側上方に配設され、
     前記第2光源は、鉛直方向に対し30~60度の傾斜角で前記測定面の他方側上方に配設され、
     前記受光部は、前記第2光源が配設される側と同じ側であって、鉛直方向に対し60~75度の傾斜角で前記測定面の他方側上方に配設される請求項1乃至6のいずれかに記載の穀物の光沢測定装置。
  8.  前記測定面は、水平な搬送面を有する搬送部の搬送方向における所定範囲である請求項7記載の穀物の光沢測定装置。
  9.  前記第2光源は青色光源である請求項1乃至8のいずれかに記載の穀物の光沢測定装置。
PCT/JP2019/014342 2018-06-01 2019-03-29 穀物の光沢測定装置 WO2019230182A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112020024228-4A BR112020024228A2 (pt) 2018-06-01 2019-03-29 aparelho de medição de brilho de grãos
US17/057,139 US11631167B2 (en) 2018-06-01 2019-03-29 Grain gloss measurement apparatus
CN201980036886.6A CN112236668B (zh) 2018-06-01 2019-03-29 谷物的光泽测定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018106109A JP7087687B2 (ja) 2018-06-01 2018-06-01 穀物の光沢測定装置
JP2018-106109 2018-06-01

Publications (1)

Publication Number Publication Date
WO2019230182A1 true WO2019230182A1 (ja) 2019-12-05

Family

ID=68698069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014342 WO2019230182A1 (ja) 2018-06-01 2019-03-29 穀物の光沢測定装置

Country Status (5)

Country Link
US (1) US11631167B2 (ja)
JP (1) JP7087687B2 (ja)
CN (1) CN112236668B (ja)
BR (1) BR112020024228A2 (ja)
WO (1) WO2019230182A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3110206A1 (en) * 2018-11-07 2020-05-14 Marel Salmon A/S A food processing device and a method of providing images of food objects in a food processing device
JP7310714B2 (ja) * 2020-05-25 2023-07-19 株式会社サタケ 米粒品質測定装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59109249A (ja) * 1982-12-13 1984-06-23 株式会社 サタケ 精米装置
JP2001174412A (ja) * 1999-12-22 2001-06-29 Hokkaido ご飯外観の数値評価方法
JP2001514386A (ja) * 1997-08-22 2001-09-11 スペクトラ−フィジックス・ビジョンテック・オイ 移動表面の自動的な検査のための方法及び装置
JP2008256691A (ja) * 2007-04-06 2008-10-23 Xerox Corp 光沢又は光沢差等の表面特性の測定システム
JP2012525575A (ja) * 2009-04-30 2012-10-22 ビューラー ソーテックス リミテッド 連続して流れている粒状生産物の品質を測定する装置及びその方法
JP2013053932A (ja) * 2011-09-05 2013-03-21 Ricoh Co Ltd 光学センサ、画像形成装置及び判別方法
JP2016038222A (ja) * 2014-08-05 2016-03-22 株式会社リコー 試料測定装置および試料測定プログラム
US20160320311A1 (en) * 2013-12-30 2016-11-03 Buhler (India) Pvt. Ltd. Method and an Arrangement for Measuring the Gloss of Grains

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4483244A (en) 1982-12-13 1984-11-20 Satake Engineering Co., Ltd. Rice whitening apparatus
KR20000077034A (ko) * 1999-04-22 2000-12-26 사따께 사또루 입상물의 품질을 평가하기 위한 장치 및 방법
JP4797593B2 (ja) * 2005-03-10 2011-10-19 富士ゼロックス株式会社 光沢測定装置及びプログラム
JP2007033099A (ja) * 2005-07-25 2007-02-08 Fuji Xerox Co Ltd 光沢特性評価方法および光沢特性評価装置並びにプログラム
US7864320B2 (en) * 2007-04-19 2011-01-04 Xerox Corporation Method to minimize instrument differences in color management functions
CN102308199A (zh) * 2009-02-18 2012-01-04 株式会社堀场制作所 样品分析装置
EP2728342B2 (de) * 2012-11-06 2019-04-10 X-Rite Switzerland GmbH Handmessgerät zur Erfassung des visuellen Eindrucks eines Messobjekts
US20140129179A1 (en) * 2012-11-08 2014-05-08 Datacolor, Inc. System and apparatus for multi channel gloss measurements
EP3032241B1 (en) * 2014-12-11 2023-03-01 X-Rite Europe GmbH Method and apparatus for digitizing the appearance of a real material
WO2016098882A1 (ja) * 2014-12-19 2016-06-23 株式会社サタケ 穀粒品位判別装置
JP6635674B2 (ja) * 2015-05-11 2020-01-29 キヤノン株式会社 計測装置、計測方法およびプログラム
WO2017163500A1 (ja) * 2016-03-24 2017-09-28 株式会社サタケ 穀類の搗精度評価方法および染色液の製造方法
JP6569586B2 (ja) * 2016-04-22 2019-09-04 京セラドキュメントソリューションズ株式会社 トナー量検知センサー、および画像形成装置
WO2018084612A1 (ko) * 2016-11-02 2018-05-11 한국식품연구원 쌀의 품질측정 시스템, 쌀의 식미평가방법, 곡물의 발아율 예측 시스템 및 발아율 예측 방법
EP3384829A1 (en) * 2017-04-05 2018-10-10 Koninklijke Philips N.V. Skin gloss measurement for quantitative estimation of skin gloss
CN110998257B (zh) * 2017-05-03 2022-11-15 爱色丽瑞士有限公司 车辆颜色测量方法和装置
US10909723B2 (en) * 2017-06-13 2021-02-02 X-Rite, Incorporated Hyperspectral imaging spectrophotometer and system
EP3479756A1 (en) * 2017-11-02 2019-05-08 Koninklijke Philips N.V. Optical skin sensor and method for optically sensing skin parameters

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59109249A (ja) * 1982-12-13 1984-06-23 株式会社 サタケ 精米装置
JP2001514386A (ja) * 1997-08-22 2001-09-11 スペクトラ−フィジックス・ビジョンテック・オイ 移動表面の自動的な検査のための方法及び装置
JP2001174412A (ja) * 1999-12-22 2001-06-29 Hokkaido ご飯外観の数値評価方法
JP2008256691A (ja) * 2007-04-06 2008-10-23 Xerox Corp 光沢又は光沢差等の表面特性の測定システム
JP2012525575A (ja) * 2009-04-30 2012-10-22 ビューラー ソーテックス リミテッド 連続して流れている粒状生産物の品質を測定する装置及びその方法
JP2013053932A (ja) * 2011-09-05 2013-03-21 Ricoh Co Ltd 光学センサ、画像形成装置及び判別方法
US20160320311A1 (en) * 2013-12-30 2016-11-03 Buhler (India) Pvt. Ltd. Method and an Arrangement for Measuring the Gloss of Grains
JP2016038222A (ja) * 2014-08-05 2016-03-22 株式会社リコー 試料測定装置および試料測定プログラム

Also Published As

Publication number Publication date
US20210192713A1 (en) 2021-06-24
JP7087687B2 (ja) 2022-06-21
CN112236668A (zh) 2021-01-15
BR112020024228A2 (pt) 2021-02-17
JP2019211280A (ja) 2019-12-12
CN112236668B (zh) 2024-04-16
US11631167B2 (en) 2023-04-18

Similar Documents

Publication Publication Date Title
CN111684268B (zh) 食品检验辅助***、食品检验辅助装置和计算机程序
CN103575737B (zh) 缺陷检查方法及缺陷检查装置
TWI693397B (zh) 檢查管理系統、檢查管理裝置以及檢查管理方法
JP2009115613A (ja) 異物検査装置
WO2016063380A1 (ja) 包装体の検査装置
WO2019230182A1 (ja) 穀物の光沢測定装置
JP2009293999A (ja) 木材欠陥検出装置
JP4332122B2 (ja) 外観検査装置及びptp包装機
JP2009264915A (ja) 透明フィルムの外観検査方法およびその装置
JP2016090476A (ja) 異物検出方法
US6888954B2 (en) Device and method for recording images
JP2019148607A (ja) 検査装置
US8766222B2 (en) Method and apparatus for checking the usage state of documents of value
JP6699694B2 (ja) 検査システム、検査方法
KR101096790B1 (ko) 멀티 채널 카메라를 이용한 농산물 부피 측정장치
JP6969500B2 (ja) ダル仕上げ材表面の良否判定方法及び良否判定装置
JP4356015B2 (ja) 精白米の残留糠測定方法
JP2017133953A (ja) 錠剤検査装置
EP4130725A1 (en) Foreign matter inspection device
CN105874318B (zh) 一种测量谷物光泽的方法及装置
JP5063235B2 (ja) 錠剤検査装置及びptp包装機
JP6612100B2 (ja) 物品検査装置
JP6580937B2 (ja) 検査装置及び検査方法
JP5710408B2 (ja) 麺類のクラック検出装置、クラック検出方法および分別システム
JP6409606B2 (ja) キズ欠点検査装置およびキズ欠点検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020024228

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020024228

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201127

122 Ep: pct application non-entry in european phase

Ref document number: 19810241

Country of ref document: EP

Kind code of ref document: A1