WO2019229392A1 - Matrice pour la preparation d'une composition de regeneration cellulaire, tissulaire et/ou osseuse - Google Patents

Matrice pour la preparation d'une composition de regeneration cellulaire, tissulaire et/ou osseuse Download PDF

Info

Publication number
WO2019229392A1
WO2019229392A1 PCT/FR2019/051280 FR2019051280W WO2019229392A1 WO 2019229392 A1 WO2019229392 A1 WO 2019229392A1 FR 2019051280 W FR2019051280 W FR 2019051280W WO 2019229392 A1 WO2019229392 A1 WO 2019229392A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
cells
alginate
fibers
calcium
Prior art date
Application number
PCT/FR2019/051280
Other languages
English (en)
Inventor
Stéphane Lack
Christian Girardiere
Bernard Devauchelle
Jean-Pierre Marolleau
Anaïs BARRE
Sophie Le Ricousse
Original Assignee
Universite Amiens Picardie Jules Verne
Centre Hospitalier Universitaire Amiens - Picardie
Institut Faire Faces
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Amiens Picardie Jules Verne, Centre Hospitalier Universitaire Amiens - Picardie, Institut Faire Faces filed Critical Universite Amiens Picardie Jules Verne
Publication of WO2019229392A1 publication Critical patent/WO2019229392A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3834Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0084Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/04Alginic acid; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/08Coatings comprising two or more layers

Definitions

  • the subject of the present invention is a matrix for the preparation of a cellular, tissue and / or bone regeneration composition that can be used for pathological or traumatic repair or prevention. It is a biomaterial that can be used as a support for tissue engineering.
  • the matrix is intended to be seeded or not with cells, with or without addition of growth factors, so as to obtain said regeneration composition.
  • the composition can be used in general for reconstituting injured tissue and particularly for repairing hard tissue, such as bone tissue or cartilage, at a damaged tissue area.
  • Regenerative medicine is important to meet the growing needs in all these areas. Regenerative medicine is defined as a multidisciplinary approach that involves not only tissue engineering, but also chemistry, biomaterial science, biomechanics, and biotherapies with the discovery of stem cells. It offers many perspectives for the replacement of damaged tissues and the prevention of certain pathologies.
  • tissue engineering is to use a biomaterial, to seed it with appropriate cells, to add or not to add biologically active molecules to create a three-dimensional environment necessary and adapted to survival, proliferation, differentiation and the cellular organization towards the tissue to be regenerated. Many works have been implemented to produce biomaterials capable of supporting the formation of these new tissues.
  • the biomaterial is a support acting as a biological tissue that allows the adhesion of cells, their migration, proliferation and differentiation.
  • a biomaterial used in regenerative medicine must therefore meet many characteristics. He must :
  • biomaterials There are two main classes of biomaterials: natural biomaterials and synthetic biomaterials.
  • Certain natural biomaterials such as collagen, fibrinogen and hyaluronic acid have the property of being components of the native extracellular matrix, their main quality being their excellent biocompatibility.
  • Synthetic biomaterials have various advantages, including being able to be produced on a large scale, with a controlled manufacturing process, and are therefore less expensive. On the other hand, these biomaterials are generally easily manipulated. However, the use of these products can generate inflammatory reactions because these products are recognized as foreign body by the immune system of the recipient.
  • matrices consisting of a bio-resorbable carrier composed of natural derivatives or synthetic materials and one or more cell populations, to assist in the process of tissue repair with synthesis for example cartilage or bone, once these matrices implanted within a lesion.
  • matrices consisting of a bio-resorbable carrier composed of natural derivatives or synthetic materials and one or more cell populations, to assist in the process of tissue repair with synthesis for example cartilage or bone, once these matrices implanted within a lesion.
  • it remains improve the interface between materials and biological media, in particular by controlling the macrostructure of the material (pore size, morphology, distribution), to allow bioactivity and biofunctionality.
  • ES cells embryonic stem cells
  • CSA isolated from adult stem cells
  • iPS induced pluripotent stem cells
  • the embryonic stem cells derived from the embryo at a very early stage of its development are endowed with two important capacities: that of multiplying to infinity, by simple division (self-renewal), and that of giving birth to all types of embryos. cells of the body (pluripotency).
  • iPS Induced pluripotent stem cells
  • CSEs and iPS have been used instead to study tissue formation or fundamental mechanisms of development and are excellent models for understanding pathological phenomena.
  • Multipotent stem cells have the ability to differentiate into several cell types.
  • stem cells mesenchymal (CSM) isolated from fetal or adult tissues, are the most used for tissue engineering and can differentiate into osteoblasts, chondrocytes, adipocytes and myocytes in vitro.
  • Bone is an organ whose cellular composition is complex. It is highly vascularized and subject to constant remodeling.
  • the mineralized matrix of bone is composed of an organic phase (representing 35% of the dry weight of the matrix) mainly composed of collagen responsible for its rigidity, viscoelasticity and strength, and other proteins that form the necessary microenvironment cell functions, and a mineral phase of apatite carbonate (representing 65% of the dry weight of the matrix) for the structural reinforcement, its rigidity and mineral homeostasis.
  • the bone has intrinsic abilities of spontaneous consolidation after injury. However, in case of excessive lesions, it is necessary to intervene and the tissue transplantation and the auto transplants still remain the most used strategies. But the morbidity of the donor site (pain, inflammation, infections) and the amount of bone available are the limits of these therapeutic approaches.
  • the ideal matrix will be a support acting as a biological tissue (supporting tissue and extracellular matrix) that will respond to all the criteria mentioned above and which will in this case allow osteoconduction and osteoinduction.
  • the present invention aims to remedy the disadvantages mentioned above, by providing a matrix for the preparation of a cellular, tissue and / or bone regeneration composition, the matrix being in particular biocompatible and allowing good viability of the host cells and / or seeded cells.
  • the subject of the invention is thus a matrix for the preparation of a cellular, tissue and / or bone regeneration composition.
  • the matrix according to the invention comprises:
  • porous fibrous layer comprising hydrated calcium alginate fibers, said fibrous layer being capable of being seeded by cells
  • a gelled barrier layer comprising alginate, able to maintain the cells in the fibrous layer.
  • the fibrous layer allows cell culture, while the barrier layer, adjacent to the fibrous layer, serves as a support cell culture without risk of dissemination and thus loss of cells in the medium at the time of preparation.
  • Alginic acid and its derivatives (base conjugates, salts and esters) alginates are polysaccharides mainly obtained from a family of brown algae: laminaria or fucus.
  • Alginate is the common name for a family of polymers consisting of two monomers bonded together: mannuronate or mannuronic acid and guluronate or guluronic acid.
  • alginate The general formula of alginate is as follows:
  • the fibrous layer may comprise calcium alginate and sodium fibers, and the barrier layer may comprise sodium and calcium alginate.
  • the level of calcium complexed with alginate in the fibrous layer is preferably greater than the calcium level complexed with alginate in the barrier layer.
  • the level of sodium complexed with alginate in the fibrous layer is preferably lower than the level of sodium complexed with alginate in the barrier layer.
  • the hydrated calcium alginate fibers can be obtained by impregnating calcium alginate fibers with a (aqueous) sodium salt solution.
  • the barrier layer can be obtained by mixing the fibrous layer with an alginate salt or a sodium salt.
  • the hydrated calcium alginate fibers being obtained by hydration of calcium alginate fibers in the dry state, the weight per unit area of the calcium alginate fibers in the dry state is advantageously less than or equal to 170 g / m 2 , preferably between 120 and 170 g / m 2 .
  • a surface mass greater than or equal to 120 g / m 2 makes it possible to make the matrix less fragile and to handle it more easily, while a surface density of less than or equal to 170 g / m 2 makes it possible to obtain a matrix less dense, with optimal cell penetration.
  • the calcium alginate fibers may be selected from calcium alginate, calcium alginate / manganese, calcium / silver alginate, and calcium alginate / chitosan fibers.
  • the gelled barrier layer may comprise sodium alginate or an alginate derivative.
  • the gelled barrier layer may further comprise an alginate derivative, a cellulose derivative, a poloxamer or a derivative thereof, collagen, gelatin, chitosan or a derivative thereof.
  • the matrix can be obtained by hydrating a lyophilized or dried composition of hydrated calcium alginate fibers. Hydration can be performed with a solution of sodium alginate.
  • the subject of the invention is also a cellular, tissue and / or bone regeneration composition.
  • composition according to the invention comprises a matrix described above and cells.
  • said cells are not human embryonic stem cells.
  • the invention also relates to a composition described above for use for cellular, tissue and / or bone regeneration.
  • the subject of the invention is also a process for obtaining a matrix described above.
  • the method comprises the following steps:
  • the method may further comprise a step of seeding the matrix obtained with cells.
  • said cells are not human embryonic stem cells.
  • FIG. 1 diagrammatically illustrates the various steps of a method for obtaining a matrix according to the invention
  • FIG. 2 schematically illustrates a matrix according to the invention seeded with cells.
  • the matrix according to the invention is a hydrogel structured bilayer, the two layers being distinct and cohesive. It is thus advantageously composed of a layer of calcium and sodium alginate fibers hydrated, called fibrous layer, and a layer of calcium alginate and calcium dense and non-porous, called gel layer.
  • This matrix presents the same type of chemical environment: two layers both containing alginate in calcium or sodium form but with different ionic proportions. In the fibrous layer, the calcium level complexed with alginate is greater than that of the gel layer. Conversely, the sodium level is higher in the gel layer relative to the fibrous layer.
  • the gelled layer necessarily contains alginate but may further comprise one or more polymers, such as an alginate derivative, a cellulose derivative, a poloxamer or a derivative thereof, collagen, gelatin, chitosan or a derivatives, in order to improve, for example, the mechanical properties of this layer.
  • polymers such as an alginate derivative, a cellulose derivative, a poloxamer or a derivative thereof, collagen, gelatin, chitosan or a derivatives, in order to improve, for example, the mechanical properties of this layer.
  • the side composed of partially gelled alginate fibers (the fibrous layer) is of controlled density and has pores.
  • the density control is done during the manufacturing process by choosing the constituent elements of the fibrous layer.
  • This fibrous layer has an architecture and environment conducive to the culture or co-culture of different cell types (with or without growth factors), their survival, proliferation, differentiation and three-dimensional organization in vivo.
  • the gelled layer is advantageously very dense and non-porous, the cells can not integrate and cross.
  • the cells will therefore colonize only the fibrous layer of the matrix, the gel layer serving as a support for the fibrous layer limiting the loss of cells in the in vitro dissemination medium and thus the loss of cells during seeding.
  • This bilayer matrix may also contain proteins, growth factors, hormones, vesicles, in order to improve cell viability, proliferation and differentiation according to the cell type used.
  • the bilayer matrix can be seeded with cells, with or without growth factors.
  • the cells are then able to penetrate to the heart of the matrix. They will be retained by the second layer, dense, which acts as a barrier.
  • the matrices thus seeded are cultured in a culture medium adapted and specific to the cells chosen, whether or not containing growth factors, and allowing the viability and proliferation of the cells within the fibrous layer.
  • the gelled layer retains the cells on the fibrous portion or at the interface. Chemical continuity ensures good cell survival in the matrix.
  • the alginate bilayer matrix can be seeded with different cell types, with or without growth factors, depending on the tissue to be regenerated:
  • - somatic cells adults and differentiated used for their release of growth factors or molecules involved in the maintenance of the microenvironment, differentiation, inflammatory response or migration of other cell types;
  • MSCs mesenchymal stem cells
  • pluripotent iPS cells capable of dividing to infinity and differentiating into all tissues of the human body.
  • the cells may be stem cells, preferably stem cells selected from the group consisting of embryonic stem cells, pluripotent stem cells and adult stem cells, more preferably induced pluripotent stem (iPS) cells and / or adult stem cells. (THAT'S IT).
  • embryonic stem cells are not human embryonic stem cells.
  • the cells are not human embryonic stem cells obtained through the de novo destruction of human embryos or using publicly available human embryonic stem cell lines that initially originate from a process resulting in the destruction of embryos. humans. Combinations and cocultures can be implemented in this matrix.
  • mesenchymal stem cells may be co-cultured with other cell types such as endothelial cells (EC) or mononuclear cells (CMNs) containing, inter alia, EC precursors.
  • EC endothelial cells
  • CNSs mononuclear cells
  • VEGF growth factor, IL1 for example.
  • the base material is advantageously interleaved (non-woven) calcium alginate fibers 1 having a certain basis weight.
  • these fibers 1 are impregnated in a tank 3 with a certain volume of saline solution of known concentration, for example sodium. After a certain contact time, under the action of the salts 2, the calcium alginate will partially gel by ion exchange. It is thus obtained fibers of pluriionic alginate 4, for example of calcium-sodium alginate, and free calcium.
  • a higher or lower porosity will be obtained: the higher the initial basis weight, the lower the final porosity and vice versa.
  • the partially gelled fibers 4 will then be brought into contact with a known volume of one or more ionic polymers of determined concentration.
  • this step following ion exchange between the free calcium present in the hydrated fibers 4 and the ions contained in the solution 5, there is weak ionic crosslinking of the alginate, thus forming in situ the gelled layer 6 and the bilayer hydrogel will develop creating the matrix 7.
  • a matrix 7 composed of a layer 4 of partially gelled fibers having a certain porosity and a layer 6 of dense alginate gel having a very low porosity, the two layers 4 and 6, is finally obtained. being adjacent and integral with each other.
  • This matrix 7 may thus be provided for seeding or not of cells 8 and used in the patient or for research purposes (FIG. 2).
  • the fibrous portion is obtained by partial solubilization of intertwined calcium alginate fibers.
  • the initial basis weight has a direct impact on the final porosity of this layer. Indeed, the higher the initial basis weight, the lower the final porosity and vice versa.
  • the grammage is preferably less than or equal to 170 g / m 2 .
  • the porosity of the matrix can therefore be controlled and modified to obtain an ideal porosity according to the cell type to be seeded.
  • the control of the porosity via the initial grammage of the interlocked alginate fibers allows the production of a stable and homogeneous bilayer matrix between different batches of matrices.
  • Freeze-drying or drying the matrix makes it possible to sterilize it, and therefore to have a product free of bioburden, which is not likely to degrade over time and lose its physico-chemical characteristics.
  • This freeze-dried or dried matrix thus has the advantage of having a later expiry date.
  • the user will have at his disposal either a freshly fabricated matrix, directly usable, or a kit consisting of a dehydrated matrix and a solution of one or more polymers.
  • the cells are then seeded on the surface of the bilayer matrix, on the side composed of hydrated alginate fibers and therefore having the highest porosity.
  • the cells will then penetrate to the core of the matrix and be retained by the second gelled layer having a very low porosity.
  • the matrices thus seeded are brought into contact with suitable culture medium, supplemented with growth factors, allowing the viability and proliferation of the cells.
  • the surgeon will be able to implant it in the patient's damaged tissue area. Depending on the type of injury and the opinion of the surgeon, either the complete matrix, with the gel layer and the fibrous layer, will be implanted, or the two layers of the matrix will be separated and only the fibrous layer, containing the cells, will be preserved. to be implanted. The surgeon will also be able to implant in the patient the matrix alone, with or without biologically active molecules, without prior seeding of cells.
  • the invention is illustrated in a nonlimiting manner by the following example.
  • a bilayer matrix is cut into 0.5 x 0.5 cm samples. Each sample was rinsed twice for 3 to 4 hours at a temperature of 37 ° C in culture medium EGM2 ®, specific culture medium for endothelial cells, commercially available from Lonza. The samples are deposited in culture wells, fibrous face on top.
  • EGM2 ® specific culture medium for endothelial cells
  • the cells used in the case of bone regeneration can be: - mesenchymal stem cells (MSCs) present in bone marrow, adipose tissue, cord blood or in umbilical cord jelly.
  • MSCs - mesenchymal stem cells
  • Their in vitro characteristics are: the adhesion to the plastic support, the expression of the CD73, CD90 and CD105 surface markers and the absence of expression of the markers CD34, CD45, CD19 and HLA-DR. They have the ability to differentiate into osteoblasts, adipocytes and chondrocytes in vitro;
  • EC - endothelial cells
  • endothelial cells increase, in vitro and in vivo, the osteogenic differentiation of mesenchymal stem cells and mesenchymal stem cells stimulate the survival and growth of endothelial cells by paracrine action.
  • mesenchymal stem cells increase, in vitro and in vivo, the osteogenic differentiation of mesenchymal stem cells and mesenchymal stem cells stimulate the survival and growth of endothelial cells by paracrine action.
  • mesenchymal stem cells was important for cell survival and proliferation.
  • the matrices are cultured in each well in EGM2 ® culture medium (growth medium specific for endothelial cells, rich in growth factors, EGF, IGF, VEGF, bFGF, etc.).
  • This culture medium can be supplemented with growth factors (VEGF for example) to allow a better proliferation of cells.
  • the cells are thus left in culture for 24 to 96 hours at a temperature of 37 ° C. and with 5% of C0 2 .
  • the cells colonize the entire fibrous layer of the matrix: the gelled layer effectively and sustainably retains the cells in the fibrous layer without cell loss.
  • PKH-type dyes initials of their creator, Paul Karl Horan
  • MSCs After 24 hours, the viability of MSCs is estimated to be at least 95% and 60% for the EC. After 96 hours, MSCs and ECs are viable. Cell viability is greater when CSM and CE cells are cocultivated in the matrix.
  • Implantation of the matrix in vivo test
  • the two layers of the matrix are separated. Only the fibrous layer, containing the cells, is conserved and is implanted subcutaneously on the flank of immunodepressed nude mice. The mice are followed for two months, and weighed twice a week. The weight gain of the mice over time remained steady, and no abnormal behavior of the mice in the cage was observed. Moreover, after implantation of the fibrous layer, no inflammatory or infectious phenomenon has been observed, the matrices having been very well tolerated. No mouse died. After two months, the mice are sacrificed, the implants removed and the cells present identified.
  • the matrices are colonized with mouse MSCs (no endothelial cells found);
  • the human ECs formed a vessel demonstrating the proliferation and organization of the cells between them within the matrix after two months of implantation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Botany (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Materials For Medical Uses (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

Matrice (7) pour la préparation d'une composition de régénération cellulaire, tissulaire et/ou osseuse, caractérisée en ce qu'elle comprend : - une couche fibreuse (4) poreuse comprenant des fibres d'alginate de calcium hydratées, ladite couche fibreuse (4) étant apte à être ensemencée par des cellules (8), et - une couche barrière (6) gélifiée comprenant de l'alginate, apte à maintenir les cellules (8) dans la couche fibreuse (4).

Description

MATRICE POUR LA PREPARATION D’UNE COMPOSITION DE REGENERATION CELLULAIRE, TISSULAIRE ET/OU OSSEUSE
La présente invention a pour objet une matrice pour la préparation d’une composition de régénération cellulaire, tissulaire et/ou osseuse, utilisable pour de la réparation ou de la prévention, pathologique ou traumatique. Il s’agit d’un biomatériau pouvant servir de support pour l’ingénierie tissulaire. La matrice est destinée à être ensemencée ou non avec des cellules, avec ou sans ajout de facteurs de croissance, de manière à obtenir ladite composition de régénération. La composition peut être utilisée en général pour la reconstitution des tissus lésés et en particulier pour la réparation d’un tissu dur, comme le tissu osseux ou le cartilage, au niveau d'une zone endommagée du tissu.
Lors d’une lésion, qu’elle soit traumatique, pathologique ou induite, des mécanismes physiologiques complexes se mettent en place pour la réparation tissulaire et la cicatrisation. Ces mécanismes font appel à de nombreuses phases et sont le fruit d’interactions complexes entre des cellules ou entre des cellules et une matrice extracellulaire impliquant ou non des facteurs de croissance, le microenvironnement et l’activation de voies de signalisation cellulaire spécifiques. Ces interactions peuvent être augmentées, accélérées, ou inhibées par divers éléments tels que des agents hémostatiques, des drogues ou encore des facteurs de croissance.
Aujourd’hui, des chirurgiens, que ce soit en ophtalmologie, en stomatologie, en orthopédie, en chirurgie cardiovasculaire, en urologie, en néphrologie, ou encore en chirurgie esthétique, utilisent des biomatériaux dans leurs stratégies thérapeutiques. La médecine régénérative prend toute son importance pour répondre aux besoins grandissants dans tous ces domaines. La médecine régénérative est définie comme une approche multidisciplinaire qui implique non seulement l’ingénierie tissulaire, mais aussi la chimie, la science du biomatériau, la biomécanique et les biothérapies avec la découverte des cellules souches. Elle offre de nombreuses perspectives d’avenir dans le remplacement de tissus lésés et dans la prévention de certaines pathologies.
Le principe de l’ingénierie tissulaire consiste à utiliser un biomatériau, à l’ensemencer avec des cellules appropriées, à y ajouter ou non des molécules biologiquement actives permettant de créer un environnement tridimensionnel nécessaire et adapté à la survie, la prolifération, la différenciation et l’organisation cellulaire vers le tissu à régénérer. De nombreux travaux ont ainsi été mis en œuvre pour réaliser des biomatériaux capables de supporter la formation de ces nouveaux tissus.
Si cet objectif paraît assez simple, sa mise en œuvre est particulièrement complexe et représente un défi qui fait appel à de nombreux domaines scientifiques et technologiques. Cela suppose notamment de choisir le biomatériau idéal présentant une structure de soutien compatible avec tissu et élément de la matrice extracellulaire, de manière à ce que les cellules puissent s’organiser et former un tissu valide. Le biomatériau doit de plus permettre les interactions cellules-cellules entre les cellules cultivées et les cellules de l’hôte, et fournir un microenvironnement physiologique et physique particulier permettant de contrôler les fonctions cellulaires et de maîtriser le cycle cellulaire (prolifération, différenciation et fonctionnalisation). Il est possible d’y ajouter ou non des molécules capables de favoriser leur croissance, leur différenciation et d’intégrer les contraintes mécaniques auxquelles doit se plier le nouveau tissu.
Le biomatériau, la matrice, est donc un support agissant comme un tissu biologique qui permet l’adhésion des cellules, leur migration, leur prolifération et leur différenciation. Un biomatériau utilisé en médecine régénérative doit donc répondre à de nombreuses caractéristiques. Il doit :
- être biocompatible et donc ne pas dégrader le milieu biologique dans lequel il se trouve ni interférer avec lui ;
- être bioactif pour permettre le développement cellulaire ;
- présenter des caractéristiques physico-chimiques définies : par exemple il doit être poreux pour favoriser la croissance cellulaire, permettre le passage des nutriments et l’élimination des déchets produits;
- mimer le microenvironnement cellulaire spécifique à chaque tissu ;
- être capable de résister aux contraintes mécaniques spécifiques du tissu lésé.
Il existe deux grandes classes de biomatériaux : les biomatériaux naturels et les biomatériaux synthétiques.
Certains biomatériaux naturels comme le collagène, le fibrinogène, l’acide hyaluronique, ont la propriété d’être des composants de la matrice extracellulaire native, leur principale qualité étant leur excellente biocompatibilité.
Les biomatériaux synthétiques présentent divers avantages, notamment de pouvoir être produits à grande échelle, avec un procédé de fabrication contrôlé, et sont donc moins onéreux. D’autre part, ces biomatériaux sont généralement facilement manipulables. Cependant, l’utilisation de ces produits peut générer des réactions inflammatoires car ces produits sont reconnus comme corps étranger par le système immunitaire du receveur.
Des études précliniques et quelques rares essais cliniques démontrent la capacité de « matrices », constituées d’un support bio résorbable composé de dérivés naturels ou de matériaux synthétiques et d’une ou plusieurs populations cellulaires, à aider au processus de réparation tissulaire avec la synthèse, par exemple de cartilage ou d’os, une fois ces matrices implantées au sein d’une lésion. Il reste cependant à améliorer l’interface entre les matériaux et les milieux biologiques, notamment en contrôlant la macrostructure du matériau (taille des porosités, morphologie, distribution), afin de permettre la bioactivité et la biofonctionnalité.
Différents types cellulaires, seuls ou en association, ont déjà été testés dans le cadre de la régénération tissulaire : des cellules souches embryonnaires (CSE), d’origine fœtale (sang de cordon, cordon ombilical ou placenta) ou isolées de cellules souches adultes (CSA), des cellules souches pluripotentes induites (iPS) ou des cellules somatiques. Quels que soient l’origine et le type de cellules utilisées, les mécanismes de régénération des tissus font appel aux effets paracrines et/ou à une intégration - participation directe de ces cellules implantées à la formation du tissu lésé.
Les cellules souches embryonnaires issues de l’embryon à un stade très précoce de son développement sont douées de deux capacités importantes : celle de se multiplier à l’infini, par simple division (autorenouvèlement), et celle de donner naissance à tous les types de cellules de l’organisme (pluripotence).
Les cellules souches pluripotentes induites appelées iPS (pour "induced pluripotent stem cells" en langue anglaise) sont obtenues après prélèvement de pratiquement n’importe quel type cellulaire adulte et reprogrammation génétique pour restaurer cette capacité de pluripotence. Les iPS sont ainsi capables de se multiplier à l’infini et de se différencier en types de cellules qui composent un organisme adulte, exactement comme une cellule souche embryonnaire.
Compte tenu des questions éthiques et des contraintes de sécurité, les CSE et les iPS ont été plutôt utilisées pour étudier la formation des tissus ou les mécanismes fondamentaux du développement et constituent d’excellents modèles pour comprendre les phénomènes pathologiques.
Les cellules souches multipotentes ont la capacité de se différencier en plusieurs types cellulaires. Parmi ces cellules, les cellules souches mésenchymateuses (CSM), isolées de tissus fœtaux ou adultes, sont les plus utilisées pour l’ingénierie tissulaire et peuvent se différencier en ostéoblastes, chondrocytes, adipocytes et myocytes in vitro.
Le nombre de patients devant bénéficier d’une reconstruction osseuse chirurgicale ne cesse d’augmenter et les chirurgiens orthopédistes ou maxillo-faciaux sont à la recherche de techniques et de matériaux simples et garantissant une parfaite biosécurité pour le patient. Environ 2,2 millions de greffes osseuses sont réalisées chaque année dans le monde. L’os est un organe dont la composition cellulaire est complexe. Il est fortement vascularisé et est sujet à de constants remodelages. La matrice minéralisée de l’os est composée d’une phase organique (représentant 35% du poids sec de la matrice) principalement composée de collagène responsable de sa rigidité, sa viscoélasticité et sa solidité, et d’autres protéines qui forment le microenvironnement nécessaire aux fonctions cellulaires, et d’une phase minérale de carbonate d’apatite (représentant 65% du poids sec de la matrice) pour le renfort structural, sa rigidité et l’homéostasie minérale. L’os possède des capacités intrinsèques de consolidation spontanée après une blessure. Cependant, en cas de lésions trop importantes, il faut intervenir et la greffe de tissus et les auto transplantations restent encore les stratégies les plus utilisées. Mais la morbidité du site donneur (douleur, inflammation, infections) et la quantité d’os disponible constituent les limites de ces approches thérapeutiques.
Aujourd’hui, il n’existe pas de substitut osseux de référence malgré les études précliniques et cliniques démontrant la capacité de ces matrices à aider au processus de synthèse de tissus osseux. Le choix du chirurgien se fait donc en fonction de ses connaissances et des convictions du patient qui pourra préférer des substituts d’origine naturelle et non d’origine animale.
La matrice idéale sera un support agissant comme un tissu biologique (tissu de soutien et matrice extracellulaire) qui répondra à l’ensemble des critères cités ci-dessus et qui permettra dans ce cas précis l’ostéoconduction et l’ostéoinduction.
La présente invention vise à remédier aux inconvénients mentionnés ci-dessus, en proposant une matrice pour la préparation d’une composition de régénération cellulaire, tissulaire et/ou osseuse, la matrice étant notamment biocompatible et permettant une bonne viabilité des cellules hôtes et/ou des cellules ensemencées.
L’invention a ainsi pour objet une matrice pour la préparation d’une composition de régénération cellulaire, tissulaire et/ou osseuse.
La matrice selon l’invention comprend :
- une couche fibreuse poreuse comprenant des fibres d’alginate de calcium hydratées, ladite couche fibreuse étant apte à être ensemencée par des cellules, et
- une couche barrière gélifiée comprenant de l’alginate, apte à maintenir les cellules dans la couche fibreuse.
Ainsi, la couche fibreuse permet la culture cellulaire, tandis que la couche barrière, adjacente à la couche fibreuse, sert de support à la culture cellulaire sans risque de dissémination et donc de perte des cellules dans le milieu au moment de la préparation.
L'acide alginique et ses dérivés (base conjuguée, sels et esters) les alginates sont des polysaccharides principalement obtenus à partir d'une famille d'algues brunes : les laminaires ou les fucus.
L'alginate est le nom commun pour une famille de polymères formés de deux monomères liés ensemble : le mannuronate ou acide mannuronique et le guluronate ou acide guluronique.
La formule générale de l’alginate est la suivante :
Figure imgf000007_0001
La proportion et la distribution de ces deux monomères sont déterminantes pour une large expansion des propriétés physiques et chimiques de l'alginate, on parle ainsi de rapport mannuronique gluronique ou encore de rapport M/G. La composition chimique de l’alginate varie selon les diverses espèces d'algues, les différentes parties de la même plante et est sujette aux changements saisonniers. Néanmoins, par sélection de matières premières aux différentes propriétés, il est possible de fabriquer une variété d'alginate aux caractéristiques constantes.
La couche fibreuse peut comprendre des fibres d’alginate de calcium et de sodium, et la couche barrière peut comprendre de l’alginate de sodium et de calcium.
Le taux de calcium complexé à l’alginate dans la couche fibreuse est de préférence supérieur au taux de calcium complexé à l’alginate dans la couche barrière.
Le taux de sodium complexé à l’alginate dans la couche fibreuse est de préférence inférieur au taux de sodium complexé à l’alginate dans la couche barrière.
Les fibres d’alginate de calcium hydratées peuvent être obtenues par imprégnation de fibres d’alginate de calcium avec une solution (aqueuse) de sel de sodium.
La couche barrière peut être obtenue par mélange de la couche fibreuse avec un sel d’alginate ou un sel de sodium.
Les fibres d’alginate de calcium hydratées étant obtenues par hydratation de fibres d’alginate de calcium à l’état sec, la masse surfacique des fibres d’alginate de calcium à l’état sec est avantageusement inférieure ou égale à 170 g/m2, de préférence comprise entre 120 et 170 g/m2. Une masse surfacique supérieure ou égale à 120 g/m2 permet de rendre la matrice moins fragile et de la manipuler plus facilement, tandis qu’une masse surfacique inférieure ou égale à 170 g/m2 permet l’obtention d’une matrice moins dense, avec une pénétration optimale des cellules. Les fibres d’alginate de calcium peuvent être choisies parmi les fibres d’alginate de calcium, d’alginate de calcium/manganèse, d’alginate de calcium/argent, et d’alginate de calcium/chitosane.
La couche barrière gélifiée peut comprendre de l’alginate de sodium ou un dérivé d’alginate. La couche barrière gélifiée peut comprendre en outre un dérivé d’alginate, un dérivé de cellulose, un poloxamère ou un de ses dérivés, du collagène, de la gélatine, du chitosane ou un de ses dérivés.
La matrice peut être obtenue par hydratation d’une composition lyophilisée ou séchée de fibres d’alginate de calcium hydratées. L’hydratation peut être réalisée avec une solution d’alginate de sodium.
L’invention a également pour objet une composition de régénération cellulaire, tissulaire, et/ou osseuse.
La composition selon l’invention comprend une matrice décrite ci- dessus et des cellules. De préférence, lesdites cellules ne sont pas des cellules souches embryonnaires humaines.
L’invention a également pour objet une composition décrite ci- dessus pour une utilisation pour la régénération cellulaire, tissulaire, et/ou osseuse.
L’invention a également pour objet un procédé d’obtention d’une matrice décrite ci-dessus.
Le procédé comprend les étapes suivantes :
- imprégnation de fibres d’alginate de calcium avec une solution (aqueuse) de sel de sodium, de manière à obtenir des fibres d’alginate de calcium hydratées, et
- mise en contact des fibres hydratées avec une solution d’alginate de sodium.
Le procédé peut comprendre en outre une étape d’ensemencement de la matrice obtenue avec des cellules. De préférence, lesdites cellules ne sont pas des cellules souches embryonnaires humaines. L’invention sera mieux comprise et d’autres détails, caractéristiques et avantages de l’invention apparaîtront à la lecture de la description suivante faite à titre d’exemple non limitatif et en référence aux dessins annexés dans lesquels :
- la figure 1 illustre schématiquement les différentes étapes d’un procédé d’obtention d’une matrice selon l’invention, et
- la figure 2 illustre schématiquement une matrice selon l’invention ensemencée avec des cellules.
La matrice selon l’invention est un hydrogel structuré en bicouche, les deux couches étant distinctes et cohésives. Elle est ainsi avantageusement composée d’une couche de fibres d’alginate de calcium et de sodium hydratées, dite couche fibreuse, et d’une couche d’alginate de sodium et de calcium dense et non poreuse, dite couche gélifiée. Cette matrice présente le même type d’environnement chimique : deux couches contenant toutes les deux de l’alginate sous forme calcique ou sodique mais avec des proportions ioniques différentes. Dans la couche fibreuse, le taux de calcium complexé à l’alginate est supérieur à celui de la couche gel. Inversement, le taux de sodium est supérieur dans la couche gel par rapport à la couche fibreuse.
La couche gélifiée contient nécessairement de l’alginate mais peut comprendre en outre un ou plusieurs polymères, comme un dérivé d’alginate, un dérivé de cellulose, un poloxamère ou un de ses dérivés, du collagène, de la gélatine, du chitosane ou un de ses dérivés, afin d’améliorer par exemple les propriétés mécaniques de cette couche.
La face composée de fibres d’alginate partiellement gélifiées (la couche fibreuse) est de densité contrôlée et présente des pores. Le contrôle de la densité se fait lors du procédé de fabrication par le choix des éléments constitutifs de la couche fibreuse. Cette couche fibreuse présente une architecture et un environnement propices à la culture ou la coculture de différents types cellulaires (avec ou sans facteurs de croissance), à leur survie, prolifération, leur différenciation et leur organisation tridimensionnelle in vivo.
La couche gélifiée est quant à elle avantageusement très dense et non poreuse, les cellules ne peuvent pas s’intégrer et la traverser.
Ainsi, les cellules vont donc venir coloniser uniquement la couche fibreuse de la matrice, la couche gélifiée servant de support à la couche fibreuse limitant la perte de cellules dans le milieu in vitro de dissémination et donc la perte des cellules lors de l’ensemencement.
Cette matrice bicouche peut également contenir des protéines, des facteurs de croissance, des hormones, des vésicules, dans le but d’améliorer la viabilité, la prolifération et la différenciation cellulaire selon le type cellulaire utilisé.
La matrice bicouche peut être ensemencée avec des cellules, avec ou sans facteurs de croisssance.
Cet ensemencement doit être réalisé sur la couche fibreuse et donc présentant la porosité la plus élevée. Les cellules sont alors capables de pénétrer au cœur de la matrice. Elles seront retenues par la seconde couche, dense, qui joue le rôle de barrière. Les matrices ainsi ensemencées sont cultivées dans un milieu de culture adapté et spécifique des cellules choisies, contenant ou non des facteurs de croissance, et permettant la viabilité et la prolifération des cellules au sein de la couche fibreuse.
La couche gélifiée retient les cellules sur la partie fibreuse ou à l’interface. La continuité chimique assure une bonne survie cellulaire dans la matrice.
La matrice bicouche d’alginate peut être ensemencée avec différents types cellulaires, avec ou sans facteurs de croissance, selon le tissu à régénérer :
- les cellules somatiques (adultes et différenciées) utilisées pour leur libération de facteurs de croissance ou de molécules impliquées dans le maintien du microenvironnement, dans la différenciation, dans la réponse inflammatoire ou la migration d’autres types cellulaires ;
- les cellules souches adultes dont la capacité de différenciation en un type cellulaire est intéressante selon le tissu à régénérer (progéniteurs endothéliaux circulants (PEC), cellules souches musculaires...) ;
- les cellules souches multipotentes capables de se différencier en plusieurs types cellulaires de plusieurs feuillets embryonnaires. Parmi ces cellules, et compte tenu de leurs capacités de prolifération et de différenciation, les cellules souches mésenchymateuses (CSM) sont largement utilisées. Présentes dans la moelle osseuse et dans différents tissus, elles sont facilement isolables et ont une grande capacité de prolifération et de différenciation. De plus, il est maintenant démontré la participation de ces cellules, intégrées dans une matrice, à la morphogenèse des tissus osseux ou leur rôle dans la stimulation et le recrutement des cellules du microenvironnement par action paracrine ;
- les cellules souches embryonnaires ou cellules iPS pluripotentes capables de se diviser à l’infini et de se différencier en tous les tissus du corps humain.
Les cellules peuvent être des cellules souches, de préférence des cellules souches choisies dans le groupe constitué des cellules souches embryonnaires, des cellules souches pluripotentes et des cellules souches adultes, plus préférablement des cellules souches pluripotentes induites (iPS) ou/et des cellules souches adultes (CSA). De préférence, les cellules souches embryonnaires ne sont pas des cellules souches embryonnaires humaines.
Dans un mode de réalisation, les cellules ne sont pas des cellules souches embryonnaires humaines obtenues via la destruction de novo d'embryons humains ou qui utilisent des lignées de cellules souches embryonnaires humaines publiquement disponibles qui proviennent initialement d'un procédé entraînant la destruction des embryons humains. Des combinaisons et cocultures peuvent être mises en place dans cette matrice.
Par exemple, les cellules souches mésenchymateuses pourront être mises en coculture avec d’autres types cellulaires comme des cellules endothéliales (CE) ou des cellules mononuclées (CMN) contenant, entre autres, des précurseurs des CE. De nombreuses publications démontrent en effet le bénéfice fonctionnel de l’intégration de plusieurs types cellulaires dans les matrices et leur effet paracrine. De plus, le milieu de culture pourra être supplémenté avec différents facteurs de croissance (VEGF, IL1 par exemple).
Un procédé de préparation de la matrice va maintenant être décrit, en liaison avec les figures 1 et 2.
Le matériau de base est avantageusement des fibres d’alginate de calcium 1 entremêlées (non tissé), présentant un certain grammage.
Dans une première étape, et tel qu’illustré à la figure 1 , ces fibres 1 sont imprégnées dans un réservoir 3 avec un certain volume de solution saline de concentration connue, par exemple sodique. Après un certain temps de contact, sous l’action des sels 2, l’alginate de calcium va se gélifier partiellement par échange ionique. Il est ainsi obtenu des fibres d’alginate pluri-ionique 4, par exemple d’alginate de calcium-sodium, et du calcium libre. Suivant le grammage initial, on obtiendra à la fin de cette étape une porosité plus ou moins élevée : plus le grammage initial sera élevé, plus la porosité finale sera faible et inversement.
Dans une deuxième étape, les fibres partiellement gélifiées 4 vont ensuite être mises en contact avec un volume connu d’un ou plusieurs polymères ioniques 5 de concentration déterminée. Au cours de cette étape, suite à des échanges ioniques entre le calcium libre présent dans les fibres hydratées 4 et les ions contenus dans la solution 5, il y a réticulation ionique faible de l’alginate, formant ainsi in situ la couche gélifiée 6 et l’hydrogel bicouche va se développer créant la matrice 7. Il est obtenu finalement, après égouttage, une matrice 7 composée d’une couche 4 de fibres partiellement gélifiées présentant une certaine porosité et d’une couche 6 de gel d’alginate dense, présentant une très faible porosité, les deux couches 4 et 6 étant adjacentes et solidaires l’une de l’autre. Cette matrice 7 pourra ainsi être fournie pour ensemencement ou non de cellules 8 et utilisée chez le patient ou à des fins de recherche (figure 2).
La partie fibreuse est obtenue par solubilisation partielle de fibres d’alginate de calcium entremêlées. Le grammage initial a un impact direct sur la porosité finale de cette couche. En effet, plus le grammage initial sera élevé, plus la porosité finale sera faible et inversement. Le grammage est de préférence inférieur ou égal à 170 g/m2. La porosité de la matrice peut donc être contrôlée et modifiée pour obtenir une porosité idéale selon le type cellulaire à ensemencer. Le contrôle de la porosité via le grammage initial des fibres d’alginate entremêlées permet la production d’une matrice bicouche stable et homogène entre différents lots de matrices.
Il est également possible de lyophiliser ou de sécher les fibres d’alginate de calcium hydratées avec la solution saline, à la fin de la première étape. Une fois lyophilisées ou séchées, ces fibres pourront être stérilisées par irradiation, par exemple par rayonnement bêta. Les fibres seront fournies au futur utilisateur. Celui-ci devra les réhydrater avec une solution de polymères ioniques pour obtenir une matrice bicouche.
Le fait de lyophiliser ou de sécher la matrice permet de pouvoir la stériliser, et donc d’avoir un produit exempt de biocharge, qui ne risque pas de se dégrader dans le temps et de perdre ses caractéristiques physico chimiques. Cette matrice lyophilisée ou séchée présente donc l’avantage d’avoir une date de péremption plus tardive.
L’utilisateur aura ainsi à sa disposition soit une matrice fraîchement fabriquée, utilisable directement, soit un kit composé d’une matrice déshydratée et d’une solution d’un ou plusieurs polymères. Les cellules sont ensuite ensemencées à la surface de la matrice bicouche, sur la face composée de fibres d’alginate hydratées et donc présentant la porosité la plus élevée. Les cellules vont alors pénétrer au cœur de la matrice et être retenues par la seconde couche gélifiée présentant une porosité très faible. Les matrices ainsi ensemencées sont mises en contact avec du milieu de culture adapté, complémenté en facteurs de croissance, permettant la viabilité et la prolifération des cellules.
Une fois la matrice colonisée par les cellules, le chirurgien pourra l’implanter chez le patient dans la zone des tissus endommagés. Selon le type de blessure et l’avis du chirurgien, soit la matrice complète, avec la couche gélifiée et la couche fibreuse, sera implantée, soit les deux couches de la matrice seront séparées et seule la couche fibreuse, contenant les cellules, sera conservée pour être implantée. Le chirurgien aura également la possibilité d’implanter chez le patient la matrice seule, avec ou sans molécules biologiquement actives, sans ensemencement préalable de cellules.
L’invention est illustrée de manière non limitative par l’exemple qui suit.
Exemple : préparation d’une composition de régénération osseuse et tissulaire
Une matrice bicouche est découpée en échantillons de 0,5 x 0,5 cm. Chaque échantillon est doublement rincé pendant 3 à 4 h à une température de 37°C dans du milieu de culture EGM2®, milieu de culture spécifique des cellules endothéliales, commercialisé par la société Lonza. Les échantillons sont déposés dans des puits de culture, face fibreuse sur le dessus.
Les cellules utilisées dans le cas de la régénération osseuse peuvent être: - les cellules souches mésenchymateuses (CSM) présentes dans la moelle osseuse, les tissus adipeux, le sang de cordon ou dans la gelée de cordon ombilical. Leurs caractéristiques in vitro sont : l’adhérence au support plastique, l’expression des marqueurs de surface CD73, CD90 et CD105 et l’absence d’expression des marqueurs CD34, CD45, CD19 et HLA-DR. Elles ont la capacité à se différencier en ostéoblastes, adipocytes et chondrocytes in vitro ;
- les cellules endothéliales (CE) issues des progéniteurs du sang de cordon. Ces cellules constituent la paroi des vaisseaux, contrôlent le tonus vasculaire et jouent un rôle dans la néoangiogénèse. Elles sont mobilisées à partir de la moelle osseuse, issues des progéniteurs endothéliaux circulants. Ces cellules ont démontré leur capacité à se différencier en plusieurs types de cellules endothéliales et synthétisent des facteurs essentiels pour l’hémostase et autres processus cellulaires.
En coculture, ces deux types cellulaires coopèrent. En effet les cellules endothéliales augmentent, in vitro et in vivo, la différenciation ostéogénique des cellules souches mésenchymateuses et les cellules souches mésenchymateuses stimulent la survie et la croissance des cellules endothéliales par action paracrine. Une étude a démontré que le ratio entre les cellules souches mésenchymateuses et les cellules endothéliales était important pour la survie et la prolifération cellulaire.
Pour ce cas de régénération osseuse, plusieurs ensemencements ont été testés :
- les CSM humaines seules (1 million de cellules sur 0,25 cm2) ;
- les CE humaines seules (1 million de cellules sur 0,25 cm2) ;
- une coculture 50/50 CSM/CE d’origine humaine (500 000 cellules de chaque type cellulaire sur 0,25 cm2).
Les matrices sont cultivées dans chaque puits dans du milieu de culture EGM2® (milieu de culture spécifique aux cellules endothéliales, riche en facteurs de croissance, EGF, IGF, VEGF, bFGF...). Ce milieu de culture peut être additionné de facteurs de croissance (VEGF par exemple) pour permettre une meilleure prolifération des cellules. Les cellules sont ainsi laissées en culture durant 24 à 96 heures à une température de 37°C et avec 5% de C02.
Les cellules colonisent l’ensemble de la couche fibreuse de la matrice : la couche gélifiée retient de manière efficace et durable les cellules dans la couche fibreuse sans perte cellulaire.
Avant la mise en culture les membranes des cellules ont été marquées avec des colorants de type PKH (des initiales de leur créateur, Paul Karl Horan), tels que ceux décrits dans la publication Duttenhoefer F et al, 2013, European Cells and Material, pour permettre le suivi de la viabilité cellulaire.
Au bout de 24 h, on estime la viabilité des CSM à au moins 95% et à 60% pour les CE. Au bout de 96 h, les CSM et les CE sont viables. La viabilité cellulaire est plus importante lorsque les cellules CSM et CE sont cocultivées dans la matrice.
Pour une matrice fabriquée à partir d’un non tissé d’alginate de calcium présentant un grammage trop élevé (supérieur à 170 g/m2), on constate que la matrice devient moins poreuse et les cellules ensemencées pénètrent plus difficilement dans la matrice. Les cellules forment alors un tapis sur la surface de la matrice.
Implantation de la matrice : test in vivo
Une fois la matrice colonisée par les cellules, après 24h, les deux couches de la matrice sont séparées. Seule la couche fibreuse, contenant les cellules, est conservée et est implantée en sous-cutané sur le flanc de souris nude immunodéprimées. Les souris sont suivies pendant deux mois, et pesées deux fois par semaine. La prise de poids des souris au cours du temps est restée régulière, et aucun comportement anormal particulier des souris dans la cage n’a été observé. De plus, après implantation de la couche fibreuse, aucun phénomène inflammatoire ou infectieux n’a été observé, les matrices ayant été très bien tolérées. Aucune souris n’est décédée. Au bout de deux mois les souris sont sacrifiées, les implants prélevés et les cellules présentes identifiées.
Des marquages spécifiques des cellules humaines et murines ont montré que :
- deux mois après implantation, des cellules CE et CSM humaines initialement incluses sont retrouvées dans la matrice ;
- les matrices sont colonisées par des CSM de souris (pas de cellules endothéliales retrouvées) ;
- une synthèse de matrice de collagène, sans différence significative entre les conditions, est observée ;
- les CE humaines ont formé un vaisseau démontrant la prolifération et l’organisation des cellules entre elles au sein de la matrice après deux mois d’implantation.
Ces résultats démontrent que cette matrice est un support adéquat permettant la viabilité, la prolifération et la fonctionnalité des cellules ainsi que la colonisation par les cellules du receveur avec une interaction entre cellules ensemencées et cellules de l’hôte.

Claims

REVENDICATIONS
1. Matrice (7) pour la préparation d’une composition de régénération cellulaire, tissulaire et/ou osseuse, caractérisée en ce qu’elle comprend :
- une couche fibreuse (4) poreuse comprenant des fibres d’alginate de calcium hydratées, ladite couche fibreuse (4) étant apte à être ensemencée par des cellules (8), et
- une couche barrière (6) gélifiée comprenant de l’alginate, apte à maintenir les cellules (8) dans la couche fibreuse (4).
2. Matrice (7) selon la revendication 1 , caractérisée en ce que la couche fibreuse (4) comprend des fibres d’alginate de calcium et de sodium, et en ce que la couche barrière (6) comprend de l’alginate de sodium et de calcium.
3. Matrice (7) selon la revendication 2, caractérisée en ce que le taux de calcium complexé à l’alginate dans la couche fibreuse (4) est supérieur au taux de calcium complexé à l’alginate dans la couche barrière (6).
4. Matrice (7) selon la revendication 2 ou 3, caractérisée en ce que le taux de sodium complexé à l’alginate dans la couche fibreuse (4) est inférieur au taux de sodium complexé à l’alginate dans la couche barrière (6).
5. Matrice (7) selon l’une des revendications 1 à 4, caractérisée en ce que les fibres d’alginate de calcium hydratées sont obtenues par imprégnation de fibres d’alginate de calcium (1 ) avec une solution de sel de sodium (2).
6. Matrice (7) selon l’une des revendications 1 à 5, caractérisée en ce que la couche barrière (6) est obtenue par mélange de la couche fibreuse (4) avec un sel de sodium.
7. Matrice (7) selon l’une des revendications 1 à 6, caractérisée en ce que les fibres d’alginate de calcium hydratées étant obtenues par hydratation de fibres d’alginate de calcium à l’état sec, la masse surfacique des fibres d’alginate de calcium à l’état sec est inférieure ou égale à 170 g/m2.
8. Matrice (7) selon l’une des revendications 1 à 7, caractérisée en ce que les fibres d’alginate de calcium (1 ) sont choisies parmi les fibres d’alginate de calcium, d’alginate de calcium/manganèse, d’alginate de calcium/argent, et d’alginate de calcium/chitosane.
9. Matrice (7) selon l’une des revendications 1 à 8, caractérisée en ce que la couche barrière (6) gélifiée comprend de l’alginate de sodium ou un dérivé d’alginate.
10. Matrice (7) selon l’une des revendications 1 à 9, caractérisée en ce qu’elle est obtenue par hydratation d’une composition lyophilisée ou séchée de fibres d’alginate de calcium hydratées.
11. Composition de régénération cellulaire, tissulaire et/ou osseuse, caractérisée en ce qu’elle comprend une matrice (7) selon l’une des revendications 1 à 10 et des cellules.
12. Composition selon la revendication 11 , caractérisée en ce que lesdites cellules ne sont pas des cellules souches embryonnaires humaines
13. Composition selon la revendication 11 ou 12 pour une utilisation pour la régénération cellulaire, tissulaire, et/ou osseuse.
14. Procédé d’obtention d’une matrice (7) selon l’une des revendications 1 à 10, caractérisé en ce qu’il comprend les étapes suivantes :
- imprégnation de fibres d’alginate de calcium (1 ) avec une solution de sel de sodium (2), de manière à obtenir des fibres d’alginate de calcium hydratées (4), et
- mise en contact des fibres hydratées avec une solution d’alginate de sodium (5).
15. Procédé selon la revendication 14, caractérisé en ce qu’il comprend en outre une étape d’ensemencement de la matrice (7) obtenue avec des cellules (8).
16. Procédé selon la revendication 15, caractérisé en ce que lesdites cellules (8) ne sont pas des cellules souches embryonnaires humaines.
PCT/FR2019/051280 2018-05-30 2019-05-29 Matrice pour la preparation d'une composition de regeneration cellulaire, tissulaire et/ou osseuse WO2019229392A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1854630 2018-05-30
FR1854630A FR3081712B1 (fr) 2018-05-30 2018-05-30 Matrice pour la preparation d'une composition de regeneration cellulaire, tissulaire et/ou osseuse

Publications (1)

Publication Number Publication Date
WO2019229392A1 true WO2019229392A1 (fr) 2019-12-05

Family

ID=63557593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/051280 WO2019229392A1 (fr) 2018-05-30 2019-05-29 Matrice pour la preparation d'une composition de regeneration cellulaire, tissulaire et/ou osseuse

Country Status (2)

Country Link
FR (1) FR3081712B1 (fr)
WO (1) WO2019229392A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171610B1 (en) * 1998-04-24 2001-01-09 University Of Massachusetts Guided development and support of hydrogel-cell compositions
FR2974513A1 (fr) * 2011-04-26 2012-11-02 Univ Nancy 1 Henri Poincare Nouveaux biomateriaux multiphasiques et procede de fabrication
CN104189942A (zh) * 2014-09-09 2014-12-10 东华大学 一种抗菌型创伤敷料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171610B1 (en) * 1998-04-24 2001-01-09 University Of Massachusetts Guided development and support of hydrogel-cell compositions
FR2974513A1 (fr) * 2011-04-26 2012-11-02 Univ Nancy 1 Henri Poincare Nouveaux biomateriaux multiphasiques et procede de fabrication
CN104189942A (zh) * 2014-09-09 2014-12-10 东华大学 一种抗菌型创伤敷料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DUTTENHOEFER F ET AL., EUROPEAN CELLS AND MATERIAL, 2013

Also Published As

Publication number Publication date
FR3081712B1 (fr) 2020-08-14
FR3081712A1 (fr) 2019-12-06

Similar Documents

Publication Publication Date Title
US20220296783A1 (en) Composite biomaterials
Kim et al. Protein-reactive nanofibrils decorated with cartilage-derived decellularized extracellular matrix for osteochondral defects
Nicholas et al. Methodologies in creating skin substitutes
Xing et al. Natural extracellular matrix for cellular and tissue biomanufacturing
KR100771058B1 (ko) 지질이 제거된 인체 부피 대체용 또는 세포 배양용 지지체및 그 제조방법
US10434216B2 (en) Ultra-thin film silk fibroin/collagen composite implant and manufacturing method therefor
CN101184450B (zh) 由基质和血清组成的无细胞移植物
TW200539842A (en) Tissue engineered biomimetic hair follicle graft
JP6091414B2 (ja) 脱細胞化組織製品の調製方法、及び脱細胞化組織製品を備える移植片
Xia et al. Research progress of natural tissue-derived hydrogels for tissue repair and reconstruction
Szustak et al. Nanocellulose-based scaffolds for chondrogenic differentiation and expansion
CA2414521A1 (fr) Polymere biocompatible a structure tridimensionnelle a cellules communicantes, procede de preparation et application en medecine et en chirurgie
KR20130079791A (ko) 조직공학용 다공성 스캐폴드 및 이의 제조방법
Lee et al. Three-dimensional artificial skin construct bioprinted with a marine-based biocomposite
CN111773431B (zh) 一种仿肌腱支架材料的制备方法及其在肌腱损伤的再生修复中的应用
US20220340867A1 (en) Method for fabrication of extracellular matrix-induced self-assembly and fabrication of artificial tissue using same
WO2019229392A1 (fr) Matrice pour la preparation d'une composition de regeneration cellulaire, tissulaire et/ou osseuse
CN102114272A (zh) 一种负载季铵化壳聚糖和质粒dna复合粒子的皮肤再生材料的制备方法
KR101628677B1 (ko) 세포외기질 단백질-골미네랄 복합체를 함유하는 조직 구조 모사체 및 그 제조방법
KR101254771B1 (ko) 인체 부피 대체용 지지체의 제조방법, 인체 부피 대체용 지지체 및 펩타이드 추출물
Sharmin et al. Regenerative engineering: role of scaffolds, cells, and growth factors
KR20110011199A (ko) 창상치유용 인공피부 대용물질 및 그 제조방법
CA2682453C (fr) Procede d'obtention de structures tridimensionnelles destinees au genie tissulaire
Staňková et al. Argon plasma-modified bacterial nanocellulose: Cell-specific differences in the interaction with fibroblasts and endothelial cells
EP4359022A1 (fr) Procede de consolidation d'un hydrogel alginate / gelatine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19737181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19737181

Country of ref document: EP

Kind code of ref document: A1