WO2019228276A1 - 扁平数据传输线缆 - Google Patents

扁平数据传输线缆 Download PDF

Info

Publication number
WO2019228276A1
WO2019228276A1 PCT/CN2019/088389 CN2019088389W WO2019228276A1 WO 2019228276 A1 WO2019228276 A1 WO 2019228276A1 CN 2019088389 W CN2019088389 W CN 2019088389W WO 2019228276 A1 WO2019228276 A1 WO 2019228276A1
Authority
WO
WIPO (PCT)
Prior art keywords
wires
data transmission
transmission cable
signal
conductor
Prior art date
Application number
PCT/CN2019/088389
Other languages
English (en)
French (fr)
Inventor
倪敏迪
Original Assignee
凡甲电子(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凡甲电子(苏州)有限公司 filed Critical 凡甲电子(苏州)有限公司
Publication of WO2019228276A1 publication Critical patent/WO2019228276A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/20Cables having a multiplicity of coaxial lines
    • H01B11/203Cables having a multiplicity of coaxial lines forming a flat arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0054Cables with incorporated electric resistances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0225Three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0241Disposition of insulation comprising one or more helical wrapped layers of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables
    • H01B7/0823Parallel wires, incorporated in a flat insulating profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables
    • H01B7/0853Juxtaposed parallel wires, fixed to each other without a support layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables
    • H01B7/0861Flat or ribbon cables comprising one or more screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/20Metal tubes, e.g. lead sheaths
    • H01B7/205Metal tubes, e.g. lead sheaths composed of aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/22Metal wires or tapes, e.g. made of steel
    • H01B7/226Helicoidally wound metal wires or tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/22Metal wires or tapes, e.g. made of steel
    • H01B7/228Metal braid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/53Fixed connections for rigid printed circuits or like structures connecting to cables except for flat or ribbon cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/117Pads along the edge of rigid circuit boards, e.g. for pluggable connectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09027Non-rectangular flat PCB, e.g. circular
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09372Pads and lands
    • H05K2201/094Array of pads or lands differing from one another, e.g. in size, pitch, thickness; Using different connections on the pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10356Cables

Definitions

  • the invention relates to a data transmission cable, in particular to a flat data transmission cable with high high-frequency transmission performance.
  • transmission cables can be used as a medium for electrical connection between two electronic devices and can stably perform the expected signal transmission operations. Therefore, transmission cables are commonly used in various electronic devices. Among them, the transmission cables connected to USB, HDMI, DVI, Displayport, SAS and other interfaces are popular with the public with high transmission rates, long distances, and high quality, and the number of uses is increasing.
  • the transmission cables have multiple metal wires inside.
  • the plurality of metal wires are basically covered with plastic or metal to form a cylindrical cable. This kind of cylindrical cable collectively designs a variety of metal wires, and it is easy to cause mutual interference between the wires, thereby affecting the transmission effect.
  • An object of the present invention is to provide a flat data transmission cable which can effectively prevent interference to improve signal transmission efficiency and stability.
  • the present invention provides a flat data transmission cable.
  • the data transmission cable includes a plurality of wires arranged side by side and a plastic layer integrally covering the periphery of the plurality of wires.
  • the wires have a central conductor, and The central axes of several conductors are located on the same plane; the plastic layer has an upper surface and a lower surface that are parallel to the plane on which the central axis of the conductor is located; and in the direction of the arrangement of the wires, the wires have At least two ground wires and a signal wire disposed between the two ground wires.
  • only two of the signal wires are provided between two adjacent ground wires, and two of the signal wires provided between two adjacent ground wires constitute A set of signal wires that transmit differential signals.
  • the ratio between the center distance of the wires in the signal wire group and the outer diameter of the conductor is 1.4 to 2.8, and the differential impedance between the wires in the signal wire group is 79 ⁇ to 106 ⁇ .
  • the ratio between the center distance of the wires in the aforementioned signal wire group and the outer diameter of the conductor thereof is 1.55 to 2.31, and the differential impedance between the wires in the signal wire group is 79 ⁇ to 91 ⁇ .
  • the center distance of the conductors in the signal conductor group is set to 0.28 mm to 0.52 mm, and the differential impedance between the conductors in the signal conductor group is 79 ⁇ to 91 ⁇ .
  • the ratio between the center distance of the wires in the signal wire group and the outer diameter of the conductor is 2.18 to 2.84, and the differential impedance between the wires in the signal wire group is 94 ⁇ to 106 ⁇ .
  • the center-to-center spacing of the wires in the signal wire group is set to 0.35 mm to 0.51 mm, and the differential impedance of the wires in the signal wire group is 94 ⁇ to 106 ⁇ .
  • each of the wires further includes a covering layer covering the conductor, and an outer diameter of the wires is equal to a center distance of adjacent wires.
  • the wires only have a ground wire and a signal wire group, and the number of the ground wires is one more than the number of the signal wire groups. In the arrangement direction of the wires, they are located at the edges of both sides.
  • the wire is a ground wire, and there is a group of the signal wire groups between each adjacent two ground wires.
  • the number of the signal wires is twice the number of the ground wires, and the signal wires are also disposed outside the ground wires, and in the arrangement direction of the wires, the signal wires.
  • the wires are signal wires.
  • the number of the ground wires is one more than the number of the signal wires.
  • the wires located at the two edges are ground wires.
  • the flat data transmission cable further includes a metal layer formed by spirally winding a metal strip on the outside of the insulating layer, the metal layer having at least an aluminum foil layer and an aluminum foil layer facing An adhesive layer on the side of the plastic layer. The metal layer is bonded and fixed to the outside of the plastic layer by hot-melting the adhesive layer.
  • the metal layer further includes an insulating layer disposed on a surface of the aluminum foil layer facing away from the plastic layer.
  • the metal strip has a width W, and in the length direction of the data transmission cable, the metal strip is wound N times, and the data transmission cable has a length L, the L ⁇ N * W; an overlapping cladding area is formed between two adjacent metal strips, and the width of the overlapping cladding area along the length of the data transmission cable is w, and the w occupies the width of the metal strip W 5% to 50%.
  • the width W of the metal strip is not less than half the overall line width of the data transmission cable.
  • the beneficial effect of the present invention is that the present invention provides at least one pair of ground wires and a signal wire between the ground wires, so that the ground wire can eliminate interference around the signal wires located therebetween, and ensure the signal transmission environment of the signal wires. This improves signal transmission efficiency and stability.
  • the design of the plastic layer can ensure the integrity of the data transmission cable of the present invention, avoid distortion or deformation of the cable as much as possible, and effectively maintain the arrangement manner of the signal wire and the ground wire.
  • FIG. 1 is a partial perspective view of a first preferred embodiment of a flat data transmission cable according to the present invention.
  • FIG. 2 is a front view of the data transmission cable shown in FIG. 1.
  • FIG. 2 is a front view of the data transmission cable shown in FIG. 1.
  • FIG. 3 is a top view of the data transmission cable shown in FIG. 1.
  • FIG. 4 is a front view of a second preferred embodiment of a data transmission cable according to the present invention.
  • FIG. 5 is a partial perspective view of a third preferred embodiment of a data transmission cable according to the present invention.
  • FIG. 6 is a top view of the data transmission cable shown in FIG. 5.
  • FIG. 7 is a front view of the data transmission cable shown in FIG. 5.
  • FIG. 8 is a front view of a fourth preferred embodiment of a data transmission cable according to the present invention.
  • 9a and 9b are schematic side views of a part of a structure of a fifth preferred embodiment of a data transmission cable according to the present invention.
  • Fig. 10 is a front view of the data transmission cable of the present invention shown in Fig. 9b.
  • FIG. 11a is a graph of impedance change of a bent portion of a conventional data transmission cable.
  • FIG. 11b is a graph of impedance variation of a bent portion of the data transmission cable shown in FIG. 9b.
  • FIG. 12 and FIG. 9b are graphs showing insertion loss coordinates of a bent data transmission cable according to the present invention.
  • the invention relates to a flat-type data transmission cable.
  • the data transmission cable at least includes a plurality of wires arranged side by side and a plastic layer integrally covering the plurality of wires. Detailed descriptions are given below with several preferred embodiments.
  • the data transmission cable 100 includes a plurality of wires 1 arranged side by side, a plastic layer 2 that integrally covers a plurality of the wires 1, and a metal layer 3 formed by spirally winding a metal strip on the outside of the plastic layer 2.
  • each of the wires 1 has a conductor 11 and a covering layer 12 covering the conductor 11.
  • the central axes of the conductors 11 of the wires 1 in the data transmission cable 100 are located on the same plane.
  • the plastic layer 2 is collectively formed outside the cladding layers 12 of a plurality of the conductors 11 so as to form a common single insulating layer; and the plastic layer 2 is formed parallel to a plane on which the central axis of the conductor 11 is located.
  • Upper and lower surfaces The arrangement of the upper and lower surfaces of the plastic layer 2 in parallel can effectively maintain the arrangement of the wires 1 and prevent distortion or folding; further, it can further facilitate the winding arrangement of the metal layer 3 and avoid An air interlayer appears between the plastic layer 2 and the metal layer 3.
  • the coating layer 12 can protect the conductor 11 well, and prevent problems such as short circuits caused by contact between adjacent conductors 11 during the molding process of the plastic layer 2. Furthermore, when the coating layer 12 is designed, the thickness of the plastic layer 2 can also be set to be as thin as possible to ensure that the relative positions of all the conductors 1 can be fixed, thereby reducing the thickness of the entire wire and enabling the data of the present invention.
  • the transmission cable 100 is softer and thinner.
  • the materials of the covering layer 12 and the plastic layer 2 are the same or similar; they are preferably made of similar materials, so that when the data transmission cable 100 of the present invention is molded, the plastic layer 2 and the covering layer 12 The combination is good, can achieve a good fusion, minimize the problem of delamination or air entry, and the molding effect is better.
  • the homogeneous material is a polyhydrocarbon compound, and further, the polyhydrocarbon compound is preferably a high-density polyethylene.
  • the above-mentioned cladding layer 12 and the plastic layer 2 may be set to be preferably made of a plastic material having a dielectric constant close to that of the air, so that the impedance of the cladding layer 12 and the plastic layer 2 is small, and the conductor 11 can be provided better Signal transmission environment, reduce signal propagation delay, reduce crosstalk between signals, ensure high-speed and effective transmission of signals, and reduce signal attenuation.
  • the above-mentioned embodiment of the wire 1 with the coating layer 12 is preferably capable of satisfying the distance between the outer edge of the conductor 11 and the outer edge of the plastic layer 2 in the thickness direction of the data transmission cable 100 from 0.1 mm to Between 0.45 mm, preferably between 0.15 mm and 0.25 mm.
  • the above distance is also the distance between the conductor 11 and the metal layer 3. It is one of the factors affecting the stable signal transmission of the wire 1, especially the high-frequency data transmission. The smaller the distance, the smaller the impedance and the higher the high-frequency performance. Well, at the same time, the smaller the thickness of the entire data transmission cable 100, the softer and thinner it becomes. However, when the thickness is too small, the metal layer 3 will affect the signal transmission of the conductor 11, and the above-mentioned interval of the present invention can better meet various needs.
  • the wire 1 may include only the conductor 11, that is, there is no separate coating layer 12 provided, and the whole is directly integrated by the plastic layer 2.
  • the covering and insulation can also achieve the purpose of the present invention, and adopting this arrangement can further reduce the thickness of the plastic layer 2 and further reduce the overall thickness of the data transmission cable 100.
  • the wires 1 are arranged at equal intervals. In the arrangement direction of the wires 1, the number of the wires 1 is between 3 and 50.
  • Several of the wires 1 have at least two ground wires and a signal wire disposed between the two ground wires. Therefore, it is possible to eliminate interference around the signal wires located therebetween through the ground wire, ensure the signal transmission environment of the signal wires, and thereby improve the signal transmission efficiency and stability.
  • the number of the signal wires between two adjacent ground wires is preferably set to two, and the two signal wires constitute for transmission Signal wire set for differential signals. That is, the signal conductor group is protected by a ground wire to ensure high-frequency transmission performance.
  • all the wires 1 include only the ground wire g and the signal wire group s, and the number of the ground wires g is one more than the number of the signal wire group s.
  • the two conductive wires 1 located on both sides of the conductive wires 1 are grounded wires g, and a set of signal conductive wires s is provided between two adjacent grounded wires g. Therefore, ground conductors can be provided on both sides of each signal conductor group for protection, further improving the high-frequency transmission characteristics of the entire data transmission cable.
  • the signal wire may further include a single-ended signal wire.
  • the number of signal wires is twice the number of ground wires; at this time, in the arrangement direction of wire 1, the The single-ended signal conductor can be disposed outside the ground conductor, that is, on both sides of the entire data transmission cable 100. Between the two single-ended signal conductors, a ground conductor and a signal conductor group are arranged in sequence.
  • the data transmission cable 100 may also be provided with only a few ground wires and single-ended signal wires; if it is adapted to a narrow Mini SAS product, the number of the ground wires is greater than the number of signal wires The number is one more, and the specific arrangement method is that the conductors 1 on both sides are grounding conductors, and the entire data transmission cable 100 is shielded and protected from both sides; and in the arrangement direction, the grounding conductors and signal conductors Alternate arrangement.
  • the outer diameters of the conductors 11 of several of the wires 1 are the same, and are preferably set such that the ratio between the center distance of the adjacent wires 1 and the outer diameter of the conductors 11 is 1.4 to 2.8;
  • This setting relationship can enable the differential impedance between the conductors 1 in the signal conductor group to be effectively reduced when the conductor 1 is set to have the aforementioned signal conductor group for transmitting differential signals, and effectively control the general requirements.
  • the coupling effect is enhanced to ensure long-distance transmission of high-frequency signals.
  • the wire 1 has the aforementioned signal wire group for transmitting a differential signal, and with the arrangement of the plastic layer 2 and the metal layer 3 described above, each group of the signal wire group is adjacent to each other.
  • the differential impedance of the signal conducting wire group is 79 ⁇ to 106 ⁇ .
  • the differential impedance between the conductors 1 in the signal conductor group can be controlled to 79 ⁇ To 91 ⁇ .
  • the outer diameter of the conductor 11 in this embodiment is 31 AWG or 32 AWG or 33 AWG.
  • each set of the signal wires is used.
  • the center distance of the conductors 1 in the group is set to 0.28mm to 0.52mm, which can ensure that the differential impedance between the conductors 1 in the signal conductor group is 79 ⁇ to 91 ⁇ .
  • the center distance of the conductors 1 in each of the signal conductor groups is set to 0.44 mm to 0.52 mm, which can ensure that the differential impedance between the conductors 1 in the signal conductor group is 79 ⁇ .
  • the differential impedance between the conductors 1 in the signal conductor group can be controlled to 85 ⁇ .
  • the center distance of the conductors 1 in each of the signal conductor groups is set to 0.36 mm to 0.44 mm, which can ensure that the differential impedance between the conductors 1 in the signal conductor group is 79 ⁇ to 91 ⁇ . .
  • the differential impedance between the wires 1 in the signal wire group can be controlled to 85 ⁇ .
  • the center distance of the conductors 1 in each of the signal conductor groups is set to 0.28 mm to 0.36 mm, which can ensure that the differential impedance between the conductors 1 in the signal conductor group is 79 ⁇ to 91 ⁇ . .
  • the differential impedance between the wires 1 in the signal wire group can be controlled to 85 ⁇ .
  • the differential impedance between the conductors 1 in the signal conductor group is 94 ⁇ to 106 ⁇ .
  • the outer diameter of the conductor 11 in the present invention is 33 AWG or 34 AWG; at this time, the center of the conductor 1 in each signal conductor group
  • the pitch is set to 0.35mm to 0.51mm, which can ensure that the differential impedance of the conductor 1 in the signal conductor group is 94 ⁇ to 106 ⁇ .
  • the center distance of the conductors 1 in each signal conductor group is set to 0.43 mm to 0.51 mm, which can ensure the difference between the conductors 1 in the signal conductor group.
  • the impedance is 94 ⁇ to 106 ⁇ ; specifically, when the center distance is 0.48mm, the differential impedance between the conductors 1 in the signal conductor group can be controlled to 100 ⁇ .
  • the center distance of the conductor 1 in each signal conductor group is set to 0.35 mm to 0.43 mm, which can ensure that the differential impedance of the conductor 1 in the signal conductor group is 94 ⁇ to 106 ⁇ ; specifically When the center distance is 0.4 mm, the differential impedance between the conductors 1 in the signal conductor group can be controlled to 100 ⁇ .
  • the wire 1 has a conductor 11 and a covering layer 12, and the data transmission cable 100 is arranged so that a center distance between the wires 1 is equal to an outer diameter of the wires 1, that is, adjacent to each other.
  • the wires 1 are arranged close to each other. This facilitates the overall molding control of the data transmission cable 100.
  • the plastic layer 2 is integrally covered on the outside of the plurality of wires 1, and the metal layer 3 is spirally wound around the plastic layer 2 with a metal tape, so that the metal layer 3 and the plastic layer 2 can be realized. Tightly wound and adhered, so that the covering of the metal layer 3 is more compact, and the data transmission cable 100 of the present invention can be made thinner and softer under the premise that the interference-resistant metal layer 3 is provided, and the overall thickness is controlled In the range of 0.3mm to 1mm.
  • the overall thickness of the wires 1 and the plastic layer 2 d2 can be controlled from 0.25mm to 0.8mm.
  • the overall thickness d2 of the wire 1 and the plastic layer 2 can be further controlled to 0.3 mm to 0.6 mm.
  • the covering layer 12 when the conductor 11 uses 32 AWG, when the covering layer 12 is provided, the covering layer 12 may be set to a thickness of about 0.1 mm, and the outer side of the wire 1 is a single-sided plastic layer in the thickness direction of the data transmission cable 100. 2 can be set to about 0.07mm, so that the overall thickness of the lead 1 and the plastic layer 2 is about 0.54mm.
  • the thickness of the cladding layer 12 and the plastic layer 2 can also be adjusted according to actual needs and technical capabilities, and is not limited to the specific setting of the embodiment in which the conductor 11 is a 32 AWG.
  • the metal layer 3 has at least an aluminum foil layer 31 and an adhesive layer 32 disposed on a side of the aluminum foil layer 31 facing the plastic layer 2 so that the metal layer 3 can pass through the adhesive layer. 32 is adhered and fixed on the outer surface of the plastic layer 2.
  • the arrangement of the aluminum foil layer 31 in the metal layer 3 can effectively shield external electromagnetic interference, that is, the conductor 11 of the signal wire group is effectively isolated from the outside world, and high-frequency and ultra-high-frequency signal transmission is guaranteed.
  • the metal layer 3 also has a fire prevention function, which can make the data transmission cable 100 reach a horizontal flame retardant grade FT-2 and a vertical flame retardant grade VW-1.
  • the metal layer 3 is arranged on the outer side of the plastic layer 2 by a spiral winding method through a metal strip, so that the tight winding and bonding between the metal layer 3 and the plastic layer 2 can be achieved, thereby ensuring shielding and fire prevention.
  • an adhesive layer 32 is provided on the side of the metal layer 3 facing the plastic layer 2, which can not only be directly bonded by means of bonding
  • the metal layer 3 is fixed on the outside of the plastic layer 2 without the intervention of the Mylar layer, so that the entire cable can be made thinner and softer; and the air can be discharged at the same time as the bonding, and because of the bonding and fixing, the The exhausted air cannot enter, achieving a dense effect, and then achieving a tight coating, good high-frequency transmission performance, and softness and thinness.
  • the adhesive layer 32 is configured to be fixedly connected to the plastic layer 2 and the aluminum foil layer 31 by hot melt, so as to facilitate the setting of the adhesive layer 32 and the winding of the metal layer 3, and at the same time increase the metal layer 3 and the plastic layer 2 strength and adhesion.
  • the metal layer 3 in the present invention also has an insulating layer (not shown) provided on the surface of the aluminum foil layer 31 facing away from the plastic layer 2. The arrangement of the insulating layer can replace the Mylar layer in the prior art and provide external insulation. At the same time, the aluminum foil layer 31 is protected.
  • the overall thickness d1 of the metal layer 3 may be set to 0.010 mm to 0.055 mm to minimize the entire data transmission line on the basis of external shielding.
  • the thickness of the cable 100 Preferably, the entire thickness d1 of the metal layer 3 is set to 0.015 mm to 0.025 mm.
  • the overall thickness of the data transmission cable 100 of the present invention can be further controlled to 0.35 mm to 0.65 mm.
  • the overall thickness of the wire 1 and the plastic layer 2 is about 0.54 mm
  • the thickness of the metal layer 3 is set to 0.045 mm
  • the thickness of the entire data transmission cable 100 can be 0.63 mm.
  • the thickness of the cladding layer 12, the plastic layer 2, and the metal layer 3 can also be adjusted according to actual needs and technical capabilities, and is not limited to the specific settings of the above embodiments.
  • the width of the metal strip is set to W, and in the length direction of the data transmission cable 100, the metal strip is wound N times,
  • the metal strip is satisfied so that L ⁇ N * W; with this setting, in addition to the winding setting described above, a dense and compact setting of the data transmission cable 100 can be ensured
  • it can also effectively reduce the impedance discontinuity that easily occurs when the cable is bent, thereby ensuring the stability of signal transmission, especially high-frequency signal transmission.
  • an overlapping cladding region 35 is formed between two adjacent metal strips, and the width of the overlapping cladding region 35 in the width direction of the metal strip is w, and the w occupies the width W of the metal strip. 5% to 50%.
  • the w is at least 0.5 mm; preferably, it is not less than 0.8 mm, and of course, it is preferably set to at least 1 mm. This can effectively ensure the winding continuity of the metal layer 3, and the data transmission cable 100 of the present invention is being bent. During such operations, the phenomenon of cracking of the metal layer 3 can be effectively avoided, and the phenomenon of impedance discontinuities can be effectively avoided, and the stability of signal transmission, especially high-frequency signal transmission, is more guaranteed.
  • the winding angle of the metal strip relative to the width direction of the data transmission cable 100 is 40 ° to 55 °, preferably 45 ° to 53 °; with this setting, the data transmission cable of the present invention can be made
  • the flexibility of 100 in the length direction is relatively uniform, and cracks are not easy to occur during bending.
  • the width W of the metal strip is set to be not less than half the overall line width of the data transmission cable 100, preferably not less than 0.75 times the line width, and most preferably not less than one time the line width.
  • this width setting the winding of the metal strip is more convenient and convenient to grasp the tightness of the winding, and at the same time, the softness of the entire data transmission cable 100 after winding can be guaranteed; in addition, this width setting It can also make the entire data transmission cable 100 overlap relatively less in a unit length, thereby further reducing the possibility of spreading when bending.
  • the number of the wires 1 is n
  • the overall line width of the data transmission cable 100 is set between d0 * n and d0 * (n + 2); further, the overall line width of the data transmission cable divided by n is 1 to 1.25 times d0; that is, the outer side of the wire 1 on both sides of the data transmission cable 100 in the width direction is still certain
  • the width of the plastic layer 2 is set, but the plastic layers 2 on both sides of the data transmission cable 100 in the width direction are not too much and increase the overall line width, thereby enabling effective protection of the wire 1 in as few cases as possible.
  • the weight of the data transmission cable 100 according to the present invention at a length of 1 cm unit is between 0.015 g and 0.30 g; further, at a length of 1 cm unit, the weight of the data transmission cable 100
  • the ratio of weight to the number of wires 1 is between 0.0080 and 0.0020. It can be seen that the data transmission cable 100 according to the present invention is not only flexible, high-frequency stable, but also more portable.
  • the data transmission cable 100 ′ in this embodiment further includes a cover disposed in The Mylar layer 4 on the outer side of the metal layer 3 'is described.
  • the metal layer 3 ' may include only the foregoing aluminum foil layer, or may include both the aluminum foil layer and the adhesive layer, or the metal layer 3' in the first preferred embodiment described above.
  • the insulating layer can be provided by the Mylar layer 4 again to provide a guarantee for the compaction effect of the metal layer 3 '.
  • the Mylar layer 4 is also spirally wound, and a side of the Mylar layer 4 facing the metal layer 3 'is also provided with an adhesive. After the hot-melt, the Mylar layer 4 is fixed to the outer side of the metal layer 3 ', so that the covering effect of the Mylar layer 4 is also as tight as the metal layer 3'.
  • the Mylar layer 4 and the metal layer 3 ' are cross-wound, so as to further ensure the winding of the metal layer 3', further reduce or avoid the occurrence of impedance discontinuities, and stabilize the signal transmission. Provide further protection.
  • FIG. 8 shows a fourth preferred embodiment of the present invention, which is basically the same as the embodiment shown in FIG. 7. The only difference is that the lead 1 ′ is not provided with the aforementioned covering of the conductor 11 ′. Layer 12 ', but is directly insulated and fixed by plastic layer 2'.
  • the present invention also provides a shaped data transmission cable 600.
  • the data transmission cable 600 The embodiments described above include a plurality of wires 6 arranged side by side, a plastic layer 7 integrally covering the periphery of the wires 6, and a metal layer 8 formed by spirally wrapping a metal material tape around the outside of the plastic layer 7.
  • the data transmission cable 600 in the length direction of the data transmission cable 600, has at least one bend 601, so that the data transmission cable 600 is formed at a bend
  • the first section 602 and the second section 603 on both sides form a stable bending angle between the first section 602 and the second section 603.
  • the data transmission cable 600 is arranged side by side, and the plastic layer 7 is integrally overmolded on the outside of the plurality of wires 6, so that the entire data transmission cable can be made thinner.
  • the metal material tape is spirally arranged on the outer side of the plastic layer 7, and the tight winding and bonding between the metal layer 8 and the plastic layer 7 can be realized, so that the covering of the metal layer 8 is more compact, and the data transmission cable of the present invention is made. 600 can be made thinner and softer on the premise of having interference shielding metal layer 8.
  • Combining the above two points can further enable the data transmission cable 600 of the present invention to achieve a stable bending operation in advance, without the need for assistance
  • a stable bending angle is achieved under the premise of the tool, and a data transmission cable 600 with a stable bending angle is provided to facilitate subsequent installation and connection in the device.
  • the bending position of the data transmission cable 600 according to the present invention has a predetermined bending angle.
  • the use of the above-mentioned plastic layer 7 and metal layer 8 of the present invention can make the stable bending angle and the predetermined bending angle of the present invention after bending.
  • the difference between the bend angles is less than 10 degrees.
  • the actual bending angle shown in FIG. 9b is 5 degrees larger than the predetermined bending angle of FIG. 9a.
  • the figure simply shows a case of bending and bending at 90 degrees in an example. In actual use, multiple angles and / or multiple bendings can be performed according to requirements.
  • FIG. 11a A schematic diagram of a test of a preferred embodiment of the data transmission cable 600.
  • the data transmission cable 600 is bent at multiple locations.
  • the fluctuation position is the bending position of the data transmission cable 600, but it can be seen that the average impedance change at the bend of the data transmission cable 600 of the present invention at least once,
  • the difference between the preset impedances of the data transmission cables is not greater than 2 ohms.
  • the impedance change of the data transmission cable 600 at each bend, or the difference from the preset impedance is not greater than 2 ohms.
  • the signal delay of the bent data transmission cable 600 of the present invention per unit length is not more than 5 picoseconds.
  • FIG. 12 mainly shows the insertion loss of the data transmission cable 600 with a bend in the present invention during signal transmission, where curve a is the signal transmission loss of the data transmission cable when flattened. b is the signal transmission loss of the bent data transmission cable 600 according to the present invention. It can be seen from the comparison of the figures that at the same frequency, the data transmission cable 600 according to the present invention is bent and folded after being bent. Compared with the insertion loss when the bend is flattened, the difference is less than 10%. In addition, the difference between the reflection loss of the data transmission cable 600 according to the present invention after bending and when the bend is flattened is less than 10%.
  • the arrangement of the metal layer 8 is the same as that of the first preferred embodiment shown in FIG. 1, and has an adhesive layer and an outer insulating layer, so as to further increase the bonding strength and resistance of the metal layer 8 and the plastic layer 7.
  • the outer protection of the aluminum foil layer further enhances the above-mentioned properties.
  • the data transmission cable 600 may have the aforementioned Mylar layer to further strengthen the protection of the outer metal layer 8.
  • the lead wires 6 in this embodiment are the same as those in the previous embodiments, and are preferably set in the arrangement direction of several of the lead wires 6,
  • the plurality of conductors 6 have a plurality of ground conductors and a pair of signal conductors disposed between each adjacent two ground conductors.
  • the foregoing pair of signal conductors constitute a differential signal conductor group; and the plurality of conductors 6 are arranged at equal intervals, and The conductor wires of the plurality of wires 6 have the same diameter. I won't repeat them here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Insulated Conductors (AREA)
  • Structure Of Printed Boards (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Communication Cables (AREA)

Abstract

本发明提供一种扁平数据传输线缆,其包括若干并排设置导线和一体包覆在若干所述导线***的塑胶层。所述导线具有中心导体,并且若干所述导体的中心轴线位于同一平面上。所述塑胶层具有与所述导体中心轴线所在平面相平行的上表面和下表面。在所述导线的排布方向上,若干所述导线具有至少两个接地导线和设置于两个接地导线之间的信号导线。

Description

扁平数据传输线缆
本申请要求了申请日为2018年06月01日、申请号为2018105569820、发明名称均为“数据传输线缆”,申请日为2018年10月24日、申请号为2018217305091、发明名称为“扁平数据传输线缆”,申请日为2018年10月24日、申请号为2018217324995,发明名称为“扁平数据传输线缆”等中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种数据传输线缆,尤其涉及一种高频传输性能较好的扁平数据传输线缆。
背景技术
在3C产业中,传输线缆可作为两个电子装置之间电性连接的媒介且可稳定的进行所预期的信号传输作业,因此,传输线缆普遍地应用于各种电子装置。其中与USB、HDMI、DVI、Displayport、SAS等接口连接的传输线缆具有传输速率高、距离远、质量高而受大众喜爱,使用数量也日益增加。该等传输线缆内部具有多条金属导线。该多条金属导线基本均采用塑胶或金属等包覆形成圆柱状线缆,该种圆柱状线缆将各种金属导线共同集束设计,各导线之间容易产生相互干扰,进而影响传输效果。
因此,有必要对现有的技术进行改进,以克服以上技术问题。
发明内容
本发明的目的在于提供一种可有效防干扰以提高信号传输效率和稳定性的扁平数据传输线缆。
为实现上述目的,本发明提供了一种扁平数据传输线缆,所述数据传输线缆包括若干并排设置导线和一体包覆在若干所述导线***的塑胶层,所述导线具有中心导体,并且若干所述导体的中心轴线位于同一平面上;所述塑胶层具有与所述导体中心轴线所在平面相平行的上表面和下表面;并且在所述导线的排布方向上,若干所述导线具有至少两个接地导线和设置于两个接地导线之间的信号导线。
作为本发明的进一步改进,所述信号导线在相邻两个接地导线之间的数量仅设置有两个,并且,设置于相邻两个接地导线之间的两个所述信号导线构成用于传输差分讯号的信号导线组。
作为本发明的进一步改进,所述信号导线组内导线的中心间距和导体外径之间的比值为1.4至2.8,所述信号导线组内导线之间的差分阻抗为79Ω至106Ω。
作为本发明的进一步改进,前述信号导线组内导线的中心间距和其导体外径之间的比值为1.55至2.31,所述信号导线组内导线之间的差分阻抗为79Ω至91Ω。
作为本发明的进一步改进,于导体外径采用31AWG或32AWG或33AWG时,所述信号导线组内导线的中心间距设置为0.28mm至0.52mm,所述信号导线组内导线之间的差分 阻抗为79Ω至91Ω。
作为本发明的进一步改进,所述信号导线组内导线的中心间距和其导体外径之间的比值为2.18至2.84,所述信号导线组内导线之间的差分阻抗为94Ω至106Ω。
作为本发明的进一步改进,于导体外径采用33AWG或34AWG时,所述信号导线组内导线的中心间距设置为0.35mm至0.51mm,所述信号导线组内导线的差分阻抗为94Ω至106Ω。
作为本发明的进一步改进,每一所述导线还具有包覆所述导体的包覆层,所述导线的外径等于相邻导线的中心间距。
作为本发明的进一步改进,若干所述导线仅具有接地导线和信号导线组,并且所述接地导线的数量比信号导线组的数量多一,在所述导线的排布方向上,位于两侧缘的导线为接地导线,并且每相邻两个接地导线之间具有一组所述信号导线组。
作为本发明的进一步改进,所述信号导线的数量是接地导线数量的两倍,所述信号导线还设置于所述接地导线外侧,并且在所述导线的排布方向上,位于两侧缘的导线为信号导线。
作为本发明的进一步改进,所述接地导线的数量比信号导线的数量多一,在所述导线的排布方向上,位于两侧缘的导线为接地导线。
作为本发明的进一步改进,所述扁平数据传输线缆还包括采用金属料带呈螺旋缠绕设置于所述绝缘层外侧而形成的金属层,所述金属层至少具有铝箔层和设置于铝箔层朝向塑料层一侧的粘结层,所述金属层藉由所述粘结层热熔后粘结固定于塑料层外侧。
作为本发明的进一步改进,所述金属层还具有设置于铝箔层背离塑胶层一侧表面的绝缘层。
作为本发明的进一步改进,所述金属料带具有宽度W,在所述数据传输线缆的长度方向上,所述金属料带缠绕有N圈,所述数据传输线缆具有长度L,所述L<N*W;相邻两圈金属料带之间形成有重叠包覆区域,该重叠包覆区域沿所述数据传输线缆长度方向之宽度为w,所述w占据金属料带宽度W的5%至50%。
作为本发明的进一步改进,所述金属料带的宽度W不小于所述数据传输线缆整体线宽的一半。
本发明的有益效果是:本发明通过设置至少一对接地导线,并且在接地导线之间设置信号导线,使得可通过接地导线排除位于其间的信号导线周围的干扰,保证信号导线的信号传输环境,进而提高信号传输效率和稳定性。再者,所述塑胶层的设计可保证本发明数据传输线缆的整体性,尽可能避免线缆发生扭曲或变形等现象,进而有效保持信号导线和接地导线的设置方式。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必 是按比例绘制的。附图中:
图1是本发明扁平数据传输线缆第一较佳实施例的部分立体示意图。
图2是图1所示数据传输线缆的前视图。
图3是图1所示数据传输线缆的俯视图。
图4是本发明数据传输线缆第二较佳实施例的前视图。
图5是本发明数据传输线缆第三较佳实施例的部分立体示意图。
图6是图5所示数据传输线缆的俯视图。
图7是图5所示数据传输线缆的前视图。
图8是本发明数据传输线缆第四较佳实施例的前视图。
图9a和图9b是本发明数据传输线缆第五较佳实施例的部分结构侧视示意图。
图10是图9b所示本发明数据传输线缆的前视图。
图11a是常规数据传输线缆折弯部分的阻抗变化坐标图。
图11b是图9b所示数据传输线缆折弯部分的阻抗变化坐标图。
图12图9b所示本发明具有折弯的数据传输线缆的***损耗坐标图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。
本发明涉及一种扁平型的数据传输线缆,该数据传输线缆至少包括有若干并排设置的导线和一体包覆若干所述导线的塑胶层。如下以几个优选实施例进行详细举例说明。
请一并参阅图1至图3所示为本发明数据传输线缆100的第一较佳实施例。所述数据传输线缆100包括若干并排设置的导线1、一体包覆若干所述导线1的塑胶层2和采用金属料带呈螺旋缠绕设置在所述塑胶层2外侧而形成的金属层3。
在本实施例中,每一所述导线1分别具有一导体11和包覆在所述导体11周围的包覆层12。所述数据传输线缆100中若干所述导线1的所述导体11中心轴线位于同一平面上。所述塑胶层2共同形成在若干所述导体11的所述包覆层12外侧,从而形成为公共单一绝缘层;并且所述塑胶层2形成有与所述导体11中心轴线所在平面相平行的上表面和下表面。所述塑胶层2平行的上表面和下表面的设置可有效保持所述导线1的排列设置,防止出现扭曲或折叠现象;再者,还可进一步方便所述金属层3的缠绕设置,避免在塑胶层2和金属层3之间出现空气夹层。
所述包覆层12可以很好地保护所述导体11,并且防止在塑胶层2成型过程中,相邻导体11接触而造成短路等问题。再者,具有包覆层12设计时,所述塑胶层2的厚度也可设置 为尽量轻薄,保证对所有导线1的相对位置进行固定即可,进而减小整线厚度,且使得本发明数据传输线缆100更为柔软轻薄。
所述包覆层12和塑胶层2的材料相同或相近设置;优选为采用同类材料制成,由此可使得本发明数据传输线缆100在进行成型时,塑胶层2和包覆层12的结合性较好,可以实现很好的融合,尽量减少分层问题或空气进入,成型效果较好。
进一步地,所述同类材料为聚烃类化合物,更进一步地,所述聚烃类化合物优选为高密度聚乙烯。
另外,上述包覆层12和塑胶层2可设置为优选采用介电系数接近空气的塑胶材料制成,如此可使得包覆层12和塑胶层2的阻抗较小,从而可提供导体11较好的信号传输环境,减少信号的传播延迟,降低信号之间的串扰,保证信号的高速有效传输,减小信号衰减。
上述具有包覆层12的导线1实施方式,最好能够满足使得在所述数据传输线缆100的厚度方向上,所述导体11外缘至塑胶层2外缘之间的距离在0.1mm至0.45mm之间,优选为0.15mm至0.25mm之间。上述距离也即为导体11与金属层3之间的距离,其为影响导线1进行稳定信号传输,特别是高频数据传输的要素之一,在距离越小时,阻抗越小,高频性能越好,同时整个数据传输线缆100的厚度也越小,更加柔软轻薄。然而在厚度过小时,金属层3则会对导体11的信号传输造成影响,本发明上述区间可较好的满足各方面需求。
当然,如图4所示为本发明的第二较佳实施例,所述导线1也可仅包括所述导体11,即无单独的所述包覆层12设置,直接通过塑胶层2进行整体的包覆和绝缘,也可达成本发明的目的,并且采用该种设置,可进一步降低所述塑胶层2的厚度,使得所述数据传输线缆100整体厚度进一步减薄。
进一步地,在本实施例中,将所述导线1等间距排列设置,在所述导线1的排布方向上,所述导线1的排布数量在3~50根之间。若干所述导线1具有至少两个接地导线和设置于两个接地导线之间的信号导线。由此,使得可通过接地导线排除位于其间的信号导线周围的干扰,保证信号导线的信号传输环境,进而提高信号传输效率和稳定性。
作为本发明的一较佳实施方式,为适应高速信号传输的发展需求,所述信号导线在相邻两个接地导线之间的数量优选设置为两个,并且该两个信号导线构成用于传输差分信号的信号导线组。即通过接地导线为信号导线组进行防护,保证高频传输性能。
进一步地,如图2所示,本发明第一较佳实施例中所有导线1仅包括接地导线g和所述信号导线组s,并且接地导线g的数量比信号导线组s的数量多一。优选地,在所述导线1的排布方向上,位于两侧缘的两个导线1为接地导线g,并且相邻两个接地导线g之间具有 一组信号导线组s。由此可使得每组信号导线组两侧均有接地导线进行防护,更进一步提升整个数据传输线缆的高频传输特性。
当然,作为本发明的另一较佳实施方式,为配合其他单端信号传输,所述信号导线还可具有单端信号导线。例如适应Mini SAS(Mini Serial Attached Small Computer System Interface,微型串行SCSI)产品设计,所述信号导线的数量是接地导线的数量的两倍;此时,在导线1的排布方向上,所述单端信号导线可设置在接地导线外侧,即位于整个数据传输线缆100的两侧缘,两个单端信号导线之间则依次排列设置有接地导线和信号导线组。
再者,作为本发明的又一实施方式,所述数据传输线缆100也可仅设置有若干接地导线和单端信号导线;如适应窄型Mini SAS产品,所述接地导线的数量比信号导线的数量多一,具体排布方式为,位于两侧缘的导线1为接地导线,从两侧缘开始为整个数据传输线缆100进行屏蔽防护;并且在排布方向上,接地导线和信号导线依次交替排布。
在本发明中,若干所述导线1的导体11外径相同,优选设置为,使得相邻所述导线1的中心间距与所述导体11的外径之间的比值为1.4至2.8;通过该种设置关系,可使得在所述导线1设置为具有前述用于传输差分信号的信号导线组时,使得所述信号导线组内导线1之间的差分阻抗得以有效减小,有效控制一般要求的75Ω至110Ω的范围内,耦合效应增强,保证高频信号的长距离传输。
作为本发明的一种较佳实施例,所述导线1具有前述用于传输差分信号的信号导线组,配合上述塑胶层2和金属层3的设置,使每组所述信号导线组的相邻导线1的中心间距与导体11的外径之间的比值为1.4至2.8时,所述信号导线组的差分阻抗为79Ω至106Ω。具体地,在每组前述信号导线组内导线1的中心间距和其导体11外径之间的比值为1.55至2.31时,可使得所述信号导线组内导线1之间的差分阻抗控制在79Ω至91Ω。
作为本发明的较佳实施方式,为进一步保证所述数据传输线缆100的柔软轻薄,本实施方式中所述导体11外径采用31AWG或32AWG或33AWG,此时,将每组所述信号导线组内导线1的中心间距设置为0.28mm至0.52mm,可保证所述信号导线组内导线1之间的差分阻抗为79Ω至91Ω。
其中,在导体11外径采用31AWG时,将每组所述信号导线组内导线1的中心间距设置为0.44mm至0.52mm,可保证所述信号导线组内导线1之间的差分阻抗为79Ω至91Ω;具体地,在中心间距为0.48mm时,可使所述信号导线组内导线1之间的差分阻抗控制在85Ω。
在导体11外径采用32AWG时,将每组所述信号导线组内导线1的中心间距设置为0.36mm至0.44mm,可保证所述信号导线组内导线1之间的差分阻抗为79Ω至91Ω。具体地,在中心间距为0.40mm时,可使所述信号导线组内导线1之间的差分阻抗控制在85Ω。
在导体11外径采用33AWG时,将每组所述信号导线组内导线1的中心间距设置为0.28mm至0.36mm,可保证所述信号导线组内导线1之间的差分阻抗为79Ω至91Ω。具体地,在中心间距为0.32mm时,可使所述信号导线组内导线1之间的差分阻抗控制在85Ω。
另外,在每组所述信号导线组内导线1的中心间距和其导体11外径之间的比值为2.18至2.84时,使得所述信号导线组内导线1之间的差分阻抗为94Ω至106Ω。
作为本发明的较佳实施方式,为进一步保证数据传输线缆100的柔软轻薄,本发明中所述导体11外径采用33AWG或34AWG;此时,每组所述信号导线组内导线1的中心间距设置为0.35mm至0.51mm,可保证所述信号导线组内导线1的差分阻抗为94Ω至106Ω。
其中,本实施方式中,在导体11外径采用33AWG时,将每组所述信号导线组内导线1的中心间距设置为0.43mm至0.51mm,可保证所述信号导线组内导线1的差分阻抗为94Ω至106Ω;具体地,在中心间距为0.48mm时,可使所述所述信号导线组内导线1之间的差分阻抗控制在100Ω。
在导体11外径采用34AWG时,将每组所述信号导线组内导线1的中心间距设置为0.35mm至0.43mm,可保证所述信号导线组内导线1的差分阻抗为94Ω至106Ω;具体地,在中心间距为0.4mm时,可使所述信号导线组内导线1之间的差分阻抗控制在100Ω。
优选地,本发明中所述导线1具有导体11和包覆层12,并且所述数据传输线缆100设置为使导线1之间的中心间距等于所述导线1的外径,即相邻所述导线1贴靠排布设置。如此方便对数据传输线缆100的整体成型控制。
如前述,所述塑胶层2一体包覆于若干导线1外侧,所述金属层3采用金属料带呈螺旋缠绕设置在所述塑胶层2外侧,可实现金属层3与塑胶层2之间的紧密缠绕贴合,使得金属层3的包覆更加紧实,且使得本发明数据传输线缆100在具有屏蔽干扰的金属层3的前提下,可以做得更薄,更柔软,将整体厚度控制在0.3mm至1mm的范围内。其中,结合上述所述导线1可以具有或者不具有前述包覆层12的两种实施例,在若干所述导线1由所述塑胶层2整体包覆后,导线1和塑胶层2的整体厚度d2可控制在0.25mm至0.8mm。结合上述导线1的导体11设置在31AWG至34AWG规格左右,可将所述导线1和塑胶层2的整体厚度d2进一步控制在0.3mm至0.6mm。进一步地,例如,在导体11采用32AWG时,设置包覆层12时,包覆层12可设置为0.1mm左右厚度,所述导线1外侧在数据传输线缆100 厚度方向上的单侧塑胶层2可设置为0.07mm左右,这样导线1和塑胶层2的整体厚度为0.54mm左右。当然,也可根据实际需求和技术能力进行包覆层12、塑胶层2的厚度调整,不限于上述导体11为32AWG的实施例的具体设置。
进一步地,在本实施例中,所述金属层3至少具有铝箔层31和设置于铝箔层31朝向塑胶层2一侧的粘结层32,从而使得金属层3可藉由所述粘结层32粘结固定在所述塑胶层2外侧表面上。其中所述金属层3中铝箔层31的设置,可有效屏蔽外界电磁干扰,即对信号导线组的导体11与外界进行有效隔绝,保证高频、超高频信号传输。此外,金属层3还具有防火功能,可使得所述数据传输线缆100达到水平阻燃等级FT-2和垂直阻燃等级VW-1。
再者,本发明一方面将金属层3设置为通过金属料带采用螺旋缠绕方式设置于塑胶层2外侧,可实现金属层3与塑胶层2之间的紧密缠绕贴合,在保证屏蔽和防火等性能的前提下,尽可能缩小所述数据传输线缆100的整体体积;另一方面,在金属层3朝向塑胶层2的一侧设置粘结层32,不仅可直接通过粘结的方式将金属层3固定在塑胶层2外侧,无需麦拉层的介入固定,使得整个线缆可以做得更薄,更柔软;而且在粘结的同时还可将空气排出,又因为粘结固定,使得排出的空气无法进入,达到密实的效果,进而达到紧密包覆,高频传输性能佳且柔软轻薄的效果。
优选地,所述粘结层32设置为采用热熔固定连接所述塑胶层2和铝箔层31,以方便粘结层32的设置,方便金属层3的缠绕,同时增加金属层3和塑胶层2的结合力度和密合性。本发明中所述金属层3还具有设置于铝箔层31背离塑胶层2一侧表面的绝缘层(未图示),该绝缘层的设置即可替代现有技术中的麦拉层,对外绝缘,同时保护铝箔层31。
进一步地,结合上述设置或不设置绝缘层的两种实施方式,所述金属层3的整体厚度d1可设置为0.010mm至0.055mm,以在实现对外屏蔽的基础上尽量减小整个数据传输线缆100的厚度。优选地,所述金属层3的整体厚度d1设置为0.015mm至0.025mm。
结合上述导体11、包覆层12和塑胶层2的整体设置,以及金属层3的厚度设置,可使得本发明数据传输线缆100的整体厚度进一步控制在0.35mm至0.65mm。例如,前述在导体11采用32AWG时,导线1和塑胶层2的整体厚度为0.54mm左右,结合金属层3的厚度设置为0.045mm时,可使得整个数据传输线缆100的厚度为0.63mm。当然,也可根据实际需求和技术能力进行包覆层12、塑胶层2和金属层3的厚度调整,不限于上述实施例的具体设置。
另外,相关本发明中螺旋缠绕的金属料带的选择,设定所述金属料带的宽度为W,在所述数据传输线缆100的长度方向上,所述金属料带缠绕有N圈,所述数据传输线缆100 具有长度L,则所述金属料带满足使得所述L<N*W;通过该种设置,除上述通过缠绕设置可保证所述数据传输线缆100的密实紧凑设置,进而尽量减小尺寸,且达到防火效果外,还可有效减少因线缆弯曲时容易产生的阻抗不连续的现象,由此保证信号传输、特别是高频信号传输的稳定性。
优选地,使得相邻两圈金属料带之间形成有重叠包覆区域35,该重叠包覆区域35沿所述金属料带宽度方向之宽度为w,所述w占据金属料带宽度W的5%至50%。所述w至少为0.5mm;优先为不少于0.8mm,当然最好设置为至少1mm,由此可有效保证金属层3的缠绕连续性,且在本发明数据传输线缆100在进行折弯等操作时,可有效避免金属层3出现裂开等现象,进而有效避免阻抗不连续的现象发生,更加保证信号传输、特别是高频信号传输时的稳定性。
进一步地,所述金属料带相较所述数据传输线缆100宽度方向的缠绕角度为40°至55°,优选为45°至53°;通过该种设置,可使得本发明数据传输线缆100在长度方向上的柔韧性较为均匀,且在进行弯曲时不易产生裂纹。
此外,本发明中将所述金属料带的宽度W设置为不小于所述数据传输线缆100整体线宽的一半,优选为不小于0.75倍的线宽,最好为不小于一倍线宽的宽度,在该种宽度设置下,所述金属料带的缠绕更加方便且方便把握缠绕的紧实程度,同时还可保证缠绕后整个数据传输线缆100的柔软度;另外,该种宽度设置还可使得整个数据传输线缆100在单位长度下的重叠部位相对较少,进而进一步减少弯曲时散开的可能性。
再者,假设本发明中相邻导线1之间具有中心间距d0,所述导线1数量为n,所述数据传输线缆100的整体线宽设置为介于d0*n和d0*(n+2)之间;进一步地,所述数据传输线缆的整体线宽除以n为d0的1至1.25倍;即保证所述数据传输线缆100宽度方向两侧缘的导线1外侧仍有一定宽度的塑胶层2的设置,但是数据传输线缆100宽度方向两侧塑胶层2又不至于太多而增加整体线宽,进而使得在尽可能少的情况下实现对导线1的有效保护。
通过上述各项设置,本发明所述数据传输线缆100在1公分单位长度下的重量在0.015g至0.30g之间;进一步地,在1公分单位长度下,所述数据传输线缆100的重量与导线1数量的比值在0.0080至0.0020之间。由此可知,本发明所述数据传输线缆100不仅柔韧性好、高频稳定性好、而且更加轻便。
请参阅图5至图7所示为本发明的第三较佳实施例,相较上述第一实施例来说,该实施例中所述数据传输线缆100’还包括有一包覆设置在所述金属层3’外侧的麦拉层4。
在该种设置下,所述金属层3’可仅包括前述铝箔层,也可同上述第一较佳实施例中的金属层3’可同时包括铝箔层和粘结层、或者同时还包括所述绝缘层;从而可再次通过麦拉层4来对所述金属层3’的包覆紧实效果提供保障。
进一步地,在本实施例中,所述麦拉层4也呈螺旋缠绕设置,并且所述麦拉层4朝向金属层3’的一侧也设置有粘结胶,所述粘结胶可经热熔后将所述麦拉层4固定于金属层3’外侧,以使得所述麦拉层4的包覆效果也同金属层3’一样较为紧实。优选地,所述麦拉层4与所述金属层3’采用交叉缠绕设置,如此可进一步对金属层3’的缠绕提供保障,进一步减少或避免发生阻抗不连续的现象,为信号传输稳定性提供进一步保障。
请参阅图8所示为本发明的第四较佳实施例,其与图7所示实施例基本相同,唯一的不同点仅在于所述导线1’未设置包覆导体11’的前述包覆层12’,而是由塑胶层2’直接进行绝缘包覆固定。
请参阅图9a、图9b和图10所示,结合上述本发明数据传输线缆100、100’等的设置可知,本发明还提供一种成型的数据传输线缆600,该数据传输线缆600同上述几个实施例,包括若干并排设置的导线6、一体包覆若干所述导线6***的塑胶层7和采用金属料带呈螺旋缠绕包覆于塑胶层7外侧而形成的金属层8。
进一步地,本实施例中,在所述数据传输线缆600的长度方向上,所述数据传输线缆600具有至少一次折弯601,从而使所述数据传输线缆600形成有位于折弯处两侧的第一段602和第二段603,所述第一段602和第二段603之间形成一稳定折弯角度。
同前述,本发明中数据传输线缆600一方面通过将导线6并排设置,并使塑胶层7一体包覆成型在若干导线6外侧,从而可使得整个数据传输线缆厚度较薄;另一方面采用金属料带呈螺旋缠绕设置在塑胶层7外侧,可实现金属层8与塑胶层7之间的紧密缠绕贴合,使得金属层8的包覆更加紧实,且使得本发明数据传输线缆600在具有屏蔽干扰的金属层8的前提下,可以做得更薄,更柔软;结合上述两点,可进一步使得本发明数据传输线缆600能够实现预先稳定的折弯操作,并且无需借助辅助工具的前提下实现稳定的折弯角度,进而提供一种具有稳定折弯角度的数据传输线缆600,方便后续的设备内的安装连接。
本发明所述数据传输线缆600的折弯处具有预定折弯角度,采用本发明上述塑胶层7和金属层8设置,可使得本发明经折弯后的所述稳定折弯角度和预定折弯角度之间的差值小于10度。如图9a和图9b对比示例,在预定折弯角度为90度时,图9b所示的实际折弯角度比图9a的预定折弯角度大5度。图中仅示例性地简单展示一处折弯及折弯90度的情况,实际使用时可根据需求进行多种角度和/或多次折弯。
另外,如图11a所示为常规数据传输线缆经折弯后进行测试的阻抗情况,可以看到弯折处的阻抗变化在13欧姆左右;而参图11b所示为本发明具有折弯的数据传输线缆600一较佳实施例的测试示意图,该实施例中将所述数据传输线缆600进行多处折弯,从图11b中可以看到,经测试时发现有部分位置处有微小的波动,该波动位置即为数据传输线缆600的折弯位置,但是可以看出,本发明的数据传输线缆600前述至少一次折弯的折弯处的平均阻抗变化、或者说与所述数据传输线缆的预设阻抗相差不大于2欧姆。具体地,所述数据传输线缆600在每一折弯处的阻抗变化、或者说与预设阻抗相比相差均不大于2欧姆。
再者,经测试,本发明具有折弯的所述数据传输线缆600在单位长度下的信号延迟不大于5皮秒。
请参阅图12所示,该图主要显示本发明具有折弯的数据传输线缆600在进行信号传输时的***损耗情况,其中曲线a为摊平时的数据传输线缆的信号传输损耗情况,曲线b为本发明具有折弯的数据传输线缆600的信号传输损耗情况,从图示比对可以看出,在同频率下,本发明所述数据传输线缆600在进行折弯后和将折弯处摊平时的***损耗相比,相差小于10%。此外,本发明所述数据传输线缆600在折弯后和将折弯处摊平时的反射损失相差小于10%。
优选地,所述金属层8的设置同前述图1所示的第一较佳实施例,具有粘结层和外绝缘层,如此更加增加所述金属层8与塑胶层7的结合强度和对铝箔层的外侧保护,进一步提升上述各项性能。
进一步地,所述数据传输线缆600还可如图5至图8所示,具有前述麦拉层,进一步加强对外侧金属层8的保护。
此外,前述其他实施例中的相关设置也基本适用于本实施例,例如,本实施例中所述导线6同前述各项实施例,优选设置为在若干所述导线6的排布方向上,若干所述导线6具有若干接地导线和设置于每相邻两个接地导线之间的一对信号导线,前述一对信号导线构成差分信号导线组;并且若干所述导线6等间距排布,且若干导线6的导体线径相同。此处不再赘述。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,例如,不同的实施例中的技术若可叠加使用以同时达到对应的效果,其方案也在本发明的保护范围内。本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (15)

  1. 一种扁平数据传输线缆,其特征在于:所述数据传输线缆包括若干并排设置导线和一体包覆在若干所述导线***的塑胶层,所述导线具有中心导体,并且若干所述导体的中心轴线位于同一平面上;所述塑胶层具有与所述导体中心轴线所在平面相平行的上表面和下表面;并且在所述导线的排布方向上,若干所述导线具有至少两个接地导线和设置于两个接地导线之间的信号导线。
  2. 如权利要求1所述的扁平数据传输线缆,其特征在于:所述信号导线在相邻两个接地导线之间的数量仅设置有两个,并且,设置于相邻两个接地导线之间的两个所述信号导线构成用于传输差分讯号的信号导线组。
  3. 如权利要求2所述的扁平数据传输线缆,其特征在于:所述信号导线组内导线的中心间距和导体外径之间的比值为1.4至2.8,所述信号导线组内导线之间的差分阻抗为79Ω至106Ω。
  4. 如权利要求3所述的扁平数据传输线缆,其特征在于:前述信号导线组内导线的中心间距和其导体外径之间的比值为1.55至2.31,所述信号导线组内导线之间的差分阻抗为79Ω至91Ω。
  5. 如权利要求4所述的扁平数据传输线缆,其特征在于:于导体外径采用31AWG或32AWG或33AWG时,所述信号导线组内导线的中心间距设置为0.28mm至0.52mm,所述信号导线组内导线之间的差分阻抗为79Ω至91Ω。
  6. 如权利要求3所述的扁平数据传输线缆,其特征在于:所述信号导线组内导线的中心间距和其导体外径之间的比值为2.18至2.84,所述信号导线组内导线之间的差分阻抗为94Ω至106Ω。
  7. 如权利要求6所述的扁平数据传输线缆,其特征在于:于导体外径采用33AWG或34AWG时,所述信号导线组内导线的中心间距设置为0.35mm至0.51mm,所述信号导线组内导线的差分阻抗为94Ω至106Ω。
  8. 如权利要求1所述的扁平数据传输线缆,其特征在于:每一所述导线还具有包覆所述导体的包覆层,所述导线的外径等于相邻导线的中心间距。
  9. 如权利要求2所述的扁平数据传输线缆,其特征在于:若干所述导线仅具有接地导线和信号导线组,并且所述接地导线的数量比信号导线组的数量多一,在所述导线的排布方向上,位于两侧缘的导线为接地导线,并且每相邻两个接地导线之间具有一组所述信号导线组。
  10. 如权利要求2所述的扁平数据传输线缆,其特征在于:所述信号导线的数量是接地导线数量的两倍,所述信号导线还设置于所述接地导线外侧,并且在所述导线的排布方向上,位于两侧缘的导线为信号导线。
  11. 如权利要求1所述的扁平数据传输线缆,其特征在于:所述接地导线的数量比信号导线的数量多一,在所述导线的排布方向上,位于两侧缘的导线为接地导线。
  12. 如权利要求1所述的扁平数据传输线缆,其特征在于:所述扁平数据传输线缆还包括采用金属料带呈螺旋缠绕设置于所述绝缘层外侧而形成的金属层,所述金属层至少具有铝箔层和设置于铝箔层朝向塑料层一侧的粘结层,所述金属层藉由所述粘结层热熔后粘结固定于塑料层外侧。
  13. 如权利要求12所述的扁平数据传输线缆,其特征在于:所述金属层还具有设置于铝箔层背离塑胶层一侧表面的绝缘层。
  14. 如权利要求12所述的扁平数据传输线缆,其特征在于:所述金属料带具有宽度W,在所述数据传输线缆的长度方向上,所述金属料带缠绕有N圈,所述数据传输线缆具有长度L,所述L<N*W;相邻两圈金属料带之间形成有重叠包覆区域,该重叠包覆区域沿所述数据传输线缆长度方向之宽度为w,所述w占据金属料带宽度W的5%至50%。
  15. 如权利要求14所述的扁平数据传输线缆,其特征在于:所述金属料带的宽度W不小于所述数据传输线缆整体线宽的一半。
PCT/CN2019/088389 2018-06-01 2019-05-24 扁平数据传输线缆 WO2019228276A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810556982.0 2018-06-01
CN201810556982 2018-06-01
CN201821730509.1 2018-10-24
CN201821732499.5 2018-10-24
CN201821732499 2018-10-24
CN201821730509 2018-10-24

Publications (1)

Publication Number Publication Date
WO2019228276A1 true WO2019228276A1 (zh) 2019-12-05

Family

ID=68692782

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/CN2019/088386 WO2019228274A1 (zh) 2018-06-01 2019-05-24 扁平数据传输线缆
PCT/CN2019/088388 WO2019228275A1 (zh) 2018-06-01 2019-05-24 扁平数据传输线缆
PCT/CN2019/088389 WO2019228276A1 (zh) 2018-06-01 2019-05-24 扁平数据传输线缆
PCT/CN2019/088391 WO2019228277A1 (zh) 2018-06-01 2019-05-24 线路板和电连接组件

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/088386 WO2019228274A1 (zh) 2018-06-01 2019-05-24 扁平数据传输线缆
PCT/CN2019/088388 WO2019228275A1 (zh) 2018-06-01 2019-05-24 扁平数据传输线缆

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088391 WO2019228277A1 (zh) 2018-06-01 2019-05-24 线路板和电连接组件

Country Status (3)

Country Link
US (4) US10772202B2 (zh)
CN (9) CN210110379U (zh)
WO (4) WO2019228274A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210110379U (zh) * 2018-06-01 2020-02-21 凡甲电子(苏州)有限公司 扁平数据传输线缆
CN209729555U (zh) * 2018-06-01 2019-12-03 凡甲电子(苏州)有限公司 扁平数据传输线缆
CN111029790A (zh) * 2019-12-30 2020-04-17 京信通信技术(广州)有限公司 天线、辅助装置及线夹组件
TWM611875U (zh) * 2021-01-18 2021-05-11 品威電子國際股份有限公司 發光排線結構
CN115458215A (zh) * 2021-05-21 2022-12-09 泰科电子(上海)有限公司 带状电缆
CN219761418U (zh) 2023-03-13 2023-09-26 深圳市和鑫晟智连科技有限公司 一种fpc排线和数据线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198888A (zh) * 2012-01-05 2013-07-10 日立电线株式会社 差动信号传输用电缆
CN106057348A (zh) * 2015-04-10 2016-10-26 日立金属株式会社 差动信号传输缆线以及多芯差动信号传输缆线
CN106847390A (zh) * 2016-08-31 2017-06-13 凡甲电子(苏州)有限公司 数据传输线缆
CN206584738U (zh) * 2017-02-21 2017-10-24 凡甲电子(苏州)有限公司 扁平线缆

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3735022A (en) * 1971-09-22 1973-05-22 A Estep Interference controlled communications cable
US4308421A (en) * 1978-01-18 1981-12-29 Virginia Plastics Company EMF Controlled multi-conductor cable
US4220807A (en) * 1978-06-12 1980-09-02 Akzona Incorporated Transmission cable
US4475006A (en) * 1981-03-16 1984-10-02 Minnesota Mining And Manufacturing Company Shielded ribbon cable
US5180890A (en) * 1991-03-03 1993-01-19 Independent Cable, Inc. Communications transmission cable
US5360944A (en) * 1992-12-08 1994-11-01 Minnesota Mining And Manufacturing Company High impedance, strippable electrical cable
US6630624B2 (en) * 2001-11-08 2003-10-07 Hon Hai Precision Ind. Co., Ltd. Electrical cable with grounding means
JP3794556B2 (ja) * 2001-12-03 2006-07-05 古河電気工業株式会社 フラット配線材を積層した積層配線材
US6765150B2 (en) * 2002-08-06 2004-07-20 Angus Hsieh Signal transmission cable structure
JP5309766B2 (ja) * 2008-03-03 2013-10-09 住友電気工業株式会社 シールドフラットケーブル
JP2010102975A (ja) * 2008-10-24 2010-05-06 Sumitomo Electric Ind Ltd シールドフラットケーブル
US7956290B2 (en) * 2009-03-20 2011-06-07 Sure-Fire Electrical Corporation High-frequency digital A/V cable
CN201465619U (zh) * 2009-08-05 2010-05-12 佛山市顺德区莱尔电子材料有限公司 Ffc线的绝缘热熔胶聚酰亚胺麦拉结构
TW201129263A (en) * 2010-02-12 2011-08-16 Sunplus Technology Co Ltd Circuit substrate
JP5468944B2 (ja) * 2010-03-12 2014-04-09 矢崎総業株式会社 押出しフレキシブルフラットケーブル
JP2011204503A (ja) * 2010-03-26 2011-10-13 Hitachi Cable Fine Tech Ltd フレキシブルフラットケーブル
JP2013058448A (ja) * 2011-09-09 2013-03-28 Hitachi Cable Fine Tech Ltd シールド付きフラットケーブル及びそれを用いたケーブルハーネス
JP5816055B2 (ja) * 2011-11-02 2015-11-17 矢崎総業株式会社 シールド電線
CN104898901B (zh) * 2014-03-05 2017-10-13 纬创资通股份有限公司 接垫结构以及触控面板
CN104347164A (zh) * 2014-10-17 2015-02-11 东莞市奕联实业有限公司 高速高带宽扁平电缆
CN204257244U (zh) * 2014-12-29 2015-04-08 安徽蒙特尔电缆集团有限公司 一种可弯折数字信号扁平电缆
CN204926884U (zh) * 2015-09-18 2015-12-30 安徽华润仪表线缆有限公司 一种交联聚乙烯屏蔽变频电缆
CN106997795A (zh) * 2016-01-22 2017-08-01 3M创新有限公司 电气电缆
CN205408281U (zh) * 2016-02-02 2016-07-27 嘉基电子科技(苏州)有限公司 电路板
CN205508453U (zh) * 2016-04-25 2016-08-24 安费诺电子装配(厦门)有限公司 一种用于视频/音频传输的扁平数据传输线
US10195878B2 (en) * 2016-10-27 2019-02-05 Hewlett-Packard Development Company, L.P. Apparatus for flexible flat cable
CN206441946U (zh) * 2016-12-28 2017-08-25 品威电子国际股份有限公司 软性扁平电缆结构和软性扁平电缆电连接器固定结构
CN107195397B (zh) * 2017-05-12 2019-04-30 番禺得意精密电子工业有限公司 线缆的制造方法及线缆
CN106998091A (zh) * 2017-06-05 2017-08-01 尚育生 一种新型手机支撑充电器
CN207319718U (zh) * 2017-08-25 2018-05-04 富士康(昆山)电脑接插件有限公司 扁平线缆
CN207266368U (zh) * 2017-08-30 2018-04-20 东莞铭基电子科技集团有限公司 线缆组件及其连接器与pcb板
CN210110379U (zh) * 2018-06-01 2020-02-21 凡甲电子(苏州)有限公司 扁平数据传输线缆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198888A (zh) * 2012-01-05 2013-07-10 日立电线株式会社 差动信号传输用电缆
CN106057348A (zh) * 2015-04-10 2016-10-26 日立金属株式会社 差动信号传输缆线以及多芯差动信号传输缆线
CN106847390A (zh) * 2016-08-31 2017-06-13 凡甲电子(苏州)有限公司 数据传输线缆
CN206584738U (zh) * 2017-02-21 2017-10-24 凡甲电子(苏州)有限公司 扁平线缆

Also Published As

Publication number Publication date
CN210112383U (zh) 2020-02-21
US10772202B2 (en) 2020-09-08
CN209980819U (zh) 2020-01-21
CN209980820U (zh) 2020-01-21
US10772201B2 (en) 2020-09-08
CN210110379U (zh) 2020-02-21
US10827612B2 (en) 2020-11-03
WO2019228274A1 (zh) 2019-12-05
US20190371492A1 (en) 2019-12-05
CN209980818U (zh) 2020-01-21
WO2019228277A1 (zh) 2019-12-05
CN110556199A (zh) 2019-12-10
US20190371491A1 (en) 2019-12-05
CN210110378U (zh) 2020-02-21
US10772203B2 (en) 2020-09-08
US20190373726A1 (en) 2019-12-05
US20190371493A1 (en) 2019-12-05
CN209980821U (zh) 2020-01-21
WO2019228275A1 (zh) 2019-12-05
CN110556200A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
WO2019228276A1 (zh) 扁平数据传输线缆
US10366811B2 (en) Parallel pair cable
CN209747165U (zh) 扁平数据传输线缆
TWI774945B (zh) 扁平數據傳輸線纜
WO2018040400A1 (zh) 数据传输线缆
WO2018040958A1 (zh) 数据传输线缆
US11551831B2 (en) Data transmission cable
TWI775668B (zh) 扁平數據傳輸線纜
TWI814316B (zh) 數據傳輸線纜
CN212647947U (zh) 数据传输线缆
TWM610644U (zh) 數據傳輸線纜
TWM619827U (zh) 數據傳輸線纜
TWM601889U (zh) 數據傳輸線纜
TWM609698U (zh) 數據傳輸線纜
TW201907613A (zh) 扁平數據傳輸線纜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812138

Country of ref document: EP

Kind code of ref document: A1