WO2019227381A1 - 控制气雾生成装置中气雾产生的方法和气雾生成装置 - Google Patents

控制气雾生成装置中气雾产生的方法和气雾生成装置 Download PDF

Info

Publication number
WO2019227381A1
WO2019227381A1 PCT/CN2018/089227 CN2018089227W WO2019227381A1 WO 2019227381 A1 WO2019227381 A1 WO 2019227381A1 CN 2018089227 W CN2018089227 W CN 2018089227W WO 2019227381 A1 WO2019227381 A1 WO 2019227381A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
aerosol
heating
target temperature
heating device
Prior art date
Application number
PCT/CN2018/089227
Other languages
English (en)
French (fr)
Inventor
***
Original Assignee
绿烟实业(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 绿烟实业(深圳)有限公司 filed Critical 绿烟实业(深圳)有限公司
Priority to PCT/CN2018/089227 priority Critical patent/WO2019227381A1/zh
Publication of WO2019227381A1 publication Critical patent/WO2019227381A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection

Definitions

  • the present disclosure relates to the technical field of a heated non-combustion aerosol-generating device, and more particularly, the present disclosure relates to an aerosol-forming substrate for controlling an aerosol-generating product in the device to generate an aerosol to continuously or repeatedly heat the aerosol-forming substrate.
  • the field of control methods and corresponding heated non-combustion aerosol generating devices that allows the generated aerosols to have consistent desired characteristics.
  • the existing heating type non-combustion aerosol generating device can heat the aerosol-generating products to generate smoke for users to inhale by, for example, a plug-in electric heating baking method, and the temperature of the heater is controlled to be within a specific temperature range. So that the aerosol-generating article does not generate and release undesired volatile compounds or even burn.
  • the user expects that the electronic aerosol generating device can generate an aerosol that has consistent characteristics, that is, does not change with time, during use, but this is not easy to achieve, because in a continuous or repeated heating process, a part of it is more than
  • the characteristics of the aerosol-forming substrate that generates aerosols for a duration of 5 seconds but not more than 30 seconds are significantly changed due to the amount and distribution of aerosol-forming components remaining in the substrate, and because of the substrate temperature.
  • heating the aerosol-forming substrate to a lower temperature can produce different proportions of volatile elements, which will change the aerosol aroma.
  • users will also experience changes in aroma, taste, and mouthfeel.
  • the existing electronic aerosol generating device is set to always provide a constant temperature during use, that is, a single temperature that does not change over time: after the aerosol generating device is activated, it transmits electrical energy to the heater until it reaches the target temperature, after which the heater remains The target temperature is maintained until the aerosol-generating device is deactivated.
  • the amount of key aerosol components such as nicotine or glycerol
  • the amount of key aerosol components peaks during this process and then decreases as the matrix is depleted and thermal diffusion becomes weaker.
  • the delivery volume of key aerosol components decreases over time during the user's puffing process.
  • the present disclosure proposes a method for controlling the generation of an aerosol by an aerosol-generating product in an aerosol-generating device.
  • the aerosol-generating device includes: a heating device for heating the aerosol-generating product;
  • the method for supplying electric power includes controlling in a pre-heating mode to increase a heating device from an initial temperature to a first target temperature to enter a smoking mode, and the method further includes controlling the temperature of the heating device in a smoking mode such that:
  • the first stage keeps the heating device at a first target temperature for a predetermined duration, and reduces the first target temperature to a second target temperature lower than the first target temperature in the second stage, which is characterized in that the second stage controls The second target temperature is maintained until the end of the smoking mode, wherein the first target temperature and the second target temperature are selected such that an aerosol is continuously generated during the first and second phases.
  • the above method on the one hand simplifies the control of the heating device, on the other hand, it can also save the power of the cigarette rod battery and extend the battery life.
  • the present disclosure also proposes a method for controlling the generation of an aerosol by an aerosol-generating product in an aerosol-generating device.
  • the aerosol-generating device includes: a heating device for heating the aerosol-generating product;
  • the heating device provides a power source for electrical energy.
  • the method includes controlling the heating device to rise from an initial temperature to a first target temperature to enter a smoking mode in a pre-heating mode.
  • the method further includes controlling the temperature of the heating device in a smoking mode such that : Maintaining the heating device at a first target temperature for a predetermined duration in the first stage, and lowering the first target temperature to a second target temperature lower than the first target temperature in the second stage, characterized in that the second stage
  • the method further includes at least one stepped heating step, and the method includes controlling the temperature of the heating device to be higher than a second target temperature during the at least one stepped heating step and maintaining a predetermined duration. Time, wherein the first target temperature, the second target temperature, and the temperature in the at least one stepped heating stage are selected So that in a first phase, the second phase and during at least one stage of the stepped raised continuously generate an aerosol.
  • This method can provide aerosols with consistent and stable characteristics and quantity during the continuous or repeated heating of the aerosol-forming substrate, and maintain the smoothness of the generated aerosol delivery volume in the middle and late stages of smoking, thereby better ensuring
  • the smoking taste of the user can also better and fully adapt to the types of smoking products produced by different tobacco companies, so as to obtain the best consistent and stable characteristics and aerosol amount of aerosol, thereby ensuring the best smoking experience for the user.
  • aerosol-generating product is equivalent to "smoke product", which means a product including an aerosol-forming substrate or a smoking substrate, which can release volatile substances Compounds, these volatile compounds can form aerosols, and such volatile compounds can be released by heating the aerosol to form a matrix.
  • the aerosol-forming substrate may conveniently be part of an aerosol-generating article or a smoking article.
  • an aerosol is a suspension of solid particles or droplets or both solid particles and droplets in a gas, such as air.
  • the aerosol-forming substrate may include a tobacco-containing material that includes volatile tobacco flavoring compounds that are released from the substrate upon heating.
  • the aerosol-forming substrate may include a tobacco-free material.
  • the aerosol-forming substrate may further include an aerosol-forming agent.
  • suitable aerosol-forming agents are glycerol and propylene glycol.
  • the aerosol-generating article or smoking article generates an aerosol that can be directly inhaled into the user's lungs through the user's mouth.
  • the aerosol-generating article or smoking article may be disposable.
  • the term "aerosol-generating article" is generally used below.
  • the above-mentioned method proposed by the present disclosure also includes one or more of the following features that can be considered individually or combined in any technically feasible manner:
  • the upper limit of the allowable temperature range is between 450 ° C and 500 ° C, and the lower limit is between 250 ° C and 300 ° C;
  • the first target temperature is between 300 ° C and 450 ° C, and the second target temperature is between 300 ° C and 400 ° C;
  • the predetermined target temperature of the first target temperature in the first phase does not exceed 30 seconds
  • Controlling the temperature of the heating device in the smoke mode includes: based on the real-time temperature measured at or near the heating device directly, adjusting the power supplied to the heating device accordingly to adjust its temperature;
  • Controlling the temperature of the heating device in the smoke mode includes: based on the real-time resistance value of the heating device when it is supplied with electric energy measured by a temperature detection resistor connected in series between the power supply and the heating device, and accordingly adjusting the power supplied to the heating device to adjust Its temperature
  • the method further comprises: detecting a user's suction of the aerosol-generating device, and ending a corresponding phase in the smoking mode after detecting a predetermined number of user's puffs;
  • the method further comprises: identifying the type of aerosol-generating article and / or characteristics of the aerosol-forming substrate contained therein; adjusting electrical power control of the heating device to control according to the identified type of aerosol-generating article and / or identified characteristics Its temperature
  • the method comprises at least two stepped heating stages
  • the method comprises more than three stepwise heating stages.
  • the present disclosure also relates to an aerosol-generating device capable of realizing the foregoing method, comprising: a heating device for heating an aerosol-generating product in the aerosol-generating device; a power source for supplying electric power to the heating device; A circuit for supplying power from a power source to a heating device, the circuit being arranged to control the heating device to rise from an initial temperature to a first target temperature to enter a smoke mode in a pre-heating mode, and the circuit is further arranged to be in a smoke mode
  • the temperature of the heating device is controlled such that: in the first phase, the heating device is maintained at the first target temperature for a predetermined duration, and in the second phase, the first target temperature is lowered to a second target temperature lower than the first target temperature, which It is characterized in that the circuit is arranged to control to maintain the second target temperature until the end of the smoking mode in the second phase, wherein the first target temperature and the second target temperature are selected such that during the first phase and the second phase Continuous generation of aerosol, which is called
  • the aerosol generating device especially the heated non-combustion aerosol generating device, can realize the above two different smoke generation control methods at the same time by means of its circuit arrangement, thereby fully adapting to different tobaccos.
  • the above-mentioned aerosol generating device proposed by the present disclosure further includes one or more of the following features that can be considered individually or combined in any technically feasible manner:
  • the circuit is arranged to perform control of the temperature of the heating device, so that the temperature of the heating device is maintained within the allowable temperature range in different stages in the smoke mode;
  • the circuit is arranged to switch between different phases according to a predetermined duration of the different phases in the smoke mode
  • the aerosol-generating device comprises means for detecting a user's puffing of the aerosol-generating device, wherein the circuit is arranged to end the corresponding phase in the smoking mode after detecting a predetermined number of user puffs ;
  • the aerosol-generating device comprises means for identifying the type of aerosol-generating article and / or characteristics of the aerosol-forming substrate contained therein, wherein the circuit is arranged to be based on the identified aerosol-generating article type and / or the identified Characteristic adjustment: Control the electric energy of the heating device to adjust its temperature;
  • the aerosol-generating device includes a device that directly measures the real-time temperature at or near the heating element, wherein the circuit is arranged to adjust the electrical energy provided to the heating element accordingly to adjust its temperature based on the measured real-time temperature;
  • the temperature measurement detection resistor is connected in series between the power supply and the heating device to determine the real-time resistance value of the heating device when it is supplied with electrical energy.
  • the circuit is arranged to adjust the direction to the heating device based on the real-time resistance value measured by the temperature detection resistance.
  • the electrical energy provided to adjust its temperature;
  • the aerosol generating device as described above is a heating type non-burning aerosol generating device, which includes a heating type non-burning smoking equipment device and an aerosol generating product contained in the smoking equipment device.
  • FIG. 1 schematically shows a structural diagram of basic elements of a heating type non-combustion aerosol generating device
  • FIG. 2 is a schematic diagram of a temperature distribution of a heating device according to an embodiment of the present disclosure in a preheating phase and a smoking phase,
  • FIG. 3 shows a schematic diagram of an actual temperature distribution of the heating device according to FIG. 2, which also shows a temperature drop portion after the aerosol generating device is deactivated;
  • FIG. 4 is a schematic diagram of a temperature distribution of a heating device according to another embodiment of the present disclosure in a preheating phase and a smoking phase;
  • FIG. 5 is a schematic diagram of an actual temperature distribution of the heating device according to FIG. 4, in which a temperature drop portion after the aerosol generating device is deactivated is not shown;
  • FIG. 6 schematically illustrates a simple control circuit diagram for temperature measurement and temperature control of a heating device of a heating type non-combustion smoking equipment according to the present disclosure.
  • the terms “installation”, “connected”, “connected”, “connected”, “fixed” and other terms shall be understood in a broad sense, unless otherwise specified and defined, for example, fixed connection, or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components.
  • fixed connection or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components.
  • the present disclosure relates to an electrically-heated non-combustion aerosol generating device 100, which includes smoking equipment, particularly an electrically-heated non-combustion smoke rod 101, and an aerosol-generating product F commonly known as a smoke bomb.
  • smoking equipment particularly an electrically-heated non-combustion smoke rod 101
  • aerosol-generating product F commonly known as a smoke bomb.
  • smoke rod the term "smoke rod”.
  • FIG. 1 The interior of an embodiment of the aerosol generating device is simply shown in FIG. 1, and its components are not drawn to scale and for reasons of simplicity and clarity of the illustration, components that are not related to the solution of the present disclosure are omitted.
  • the smoke rod 101 includes a heating cavity 31 into which the aerosol-generating product F is inserted, and further includes a heating device 30, a power source 70, and a controller unit 50.
  • the controller unit 50 is connected to the heating device 30 and the power source 70.
  • the controller unit may also be connected to a user interface such as a button or a display 60 for transmitting information about the cigarette rod to the user, such as displaying system information, such as battery power. , Temperature, status of the aerosol-generating article, other information, or a combination thereof.
  • the aerosol-generating product F has been pushed into the heating cavity 31 to be in contact with the heat-generating device 30.
  • the aerosol-generating product is inserted into the aerosol-forming substrate of the aerosol-generating product.
  • the aerosol-generating product F can be contained completely in the heating cavity, or it can be partially contained in the heating cavity. Aerosol-generating product F will release a series of volatile compounds at different heating temperatures. By controlling the operating temperature of the tobacco rod 101 to be lower than the release temperature of some volatile compounds, the release or formation of some harmful smoke components can be avoided. The user inhales the generated aerosol by smoking through the mouth of the cigarette rod or directly through the filter part of the aerosol-generating product.
  • the power source provided in the housing of the cigarette rod 101 may be any suitable power source, such as a DC voltage source of a battery.
  • a DC voltage source of a battery for example, it is a rechargeable lithium-ion battery.
  • the power source may be a nickel metal hydride battery, a nickel cadmium battery, or a lithium-based battery.
  • the heat generating device is also called a heater, and may take any suitable form, such as the heat generating sheet 30 shown in the figure. It may also be in the form of a heated pin or rod that passes through the center of the aerosol-generating article when heated.
  • the heat generating device may take the form of a case or a substrate or a resistive metal plate having different conductive portions.
  • the heating device may be a disk heater or a combination of a disk heater and a heating pin or rod, and may also include a heating wire or wire, such as Ni-Cr (nickel-chromium), platinum, gold, silver, tungsten Or alloy wire or heating plate.
  • the heat generating device may be deposited in or on a rigid carrier material.
  • one or more heat generating devices may be provided as needed, and the heat generating devices may be appropriately arranged so as to most efficiently heat the aerosol-generating article. In the following, as an example and for simplicity, the term "heating device" is used.
  • the cigarette rod 101 may include a device for detecting an aerosol-generating product, for detecting the presence of the aerosol-generating product F that contacts the heat generating device 30 on the heat transfer path, and / Or its characteristics, and sends a signal of the presence of the aerosol-generating article F to the controller unit 50 connected to the device.
  • the cigarette rod 101 is provided with an interface 40 at an end remote from the heating chamber 31, and the interface 40 can be connected to the controller unit 50.
  • This interface can be connected with external devices such as smart terminals, such as mobile phones, Pads, computers, etc. to transmit related information such as temperature detection signals, temperature adjustment information, etc. in a one-way or two-way manner.
  • the interface 40 may also be designed for charging at the same time. In this case, the interface 40 is connected to the battery 70 (not shown in the figure here).
  • the heated non-combustion smoke rod 101 may further be provided with an extractor 20 and a casing 10 cooperating with the extractor if necessary.
  • the first end of the extractor 20 is installed in the heating cavity 31, and the second end of the extractor 20 is provided with an insertion cavity 21 into which the aerosol-generating product F is inserted.
  • the casing 10 is hollow and is sleeved on the side of the end of the cigarette rod 101 provided with the heating cavity.
  • the housing 10 is arranged here so that the extractor 20 can be moved into or out of the heating chamber 31 in a rotating or translational manner.
  • the controller unit 50 Generally, during the operation of the heated non-combustion aerosol generating device, in order to enhance the user experience, a certain temperature monitoring and control of the heating device is required. This is generally done by the controller unit 50.
  • the controller unit may be configured to receive related information and transform the received information to generate an output.
  • the controller unit may include any type of computing device, computing circuit, or any type of processor or processing circuit capable of executing a series of instructions stored in a memory.
  • the controller unit may include multiple processors and / or a multi-core central processing unit (CPU) and may include any type of processor, such as a microprocessor, digital signal processor, microcontroller, and the like.
  • the controller unit may also include a memory to store data and / or algorithms to execute a series of instructions.
  • the term "memory” may include a mechanism that provides (e.g., stores and / or transmits) information in a machine-readable format such as a processor, computer, or digital processing device.
  • the memory may include read-only memory (ROM), random-access memory (RAM), magnetic disk storage media, optical storage media, flash memory devices, or any other volatile or non-volatile storage device.
  • ROM read-only memory
  • RAM random-access memory
  • magnetic disk storage media e.g., magnetic disks, optical storage media, flash memory devices, or any other volatile or non-volatile storage device.
  • the code or instructions contained on it can be represented by carrier signals, infrared signals, digital signals, and other similar signals.
  • microcontroller will be used as an example for explanation where the controller unit 50 includes a microcontroller (MCU). But it is reminded that this is not restrictive.
  • the heating temperature of the heat generating device 30 is controlled by a microcontroller, the operating temperature of the heat generating device 30 needs to be detected.
  • the microcontroller 50 controls the on-off of the switch between the battery 70 and the heating device 30 based on the measured temperature signal, thereby achieving precise control of the temperature of the heated non-burning smoking equipment, for example, to meet the temperature of different aerosol-generating products demand.
  • the temperature of the heating device 30 is rapidly increased from the ambient temperature to the first target temperature—this is generally referred to as a pre-heating mode.
  • the temperature is raised to about 10 seconds at time t1.
  • the first target temperature T1 of about 380 ° C. is able to generate smoke, thereby entering a smoke mode.
  • the temperature T1 is within the allowable temperature range anyway.
  • the allowable temperature range depends on the aerosol-forming substrate in the aerosol-generating article, which releases some volatile compounds at different temperatures. Some of the volatile compounds released from the aerosol-forming substrate are formed only by the heating process. Each volatile compound is released above a specific release temperature. By controlling the maximum operating temperature below the release temperature of some volatile compounds, the release or formation of these components can be avoided. The maximum operating temperature is also selected to ensure that the substrate does not burn under normal operating conditions. That is, within a permissible temperature range, a desired volatile compound is vaporized from the aerosol-forming substrate, and an undesired compound with a higher vaporization temperature is not vaporized; the permissible temperature range is naturally lower than under normal operating conditions (i.e. , Normal temperature, pressure, humidity, user's suction action and air composition) substrate combustion temperature.
  • the heating device in the smoke mode, is maintained for a period of time, such as 15 seconds, and generally does not exceed 30 seconds after rising to the first target temperature.
  • the first stage of rapidly increasing the temperature to, for example, 380 ° C, or a temperature close to the maximum allowable temperature, is to bake out the smoke in the aerosol-generating product, commonly known as a smoke bomb, at the fastest speed to meet the smoking needs of users.
  • the heating element of the heating sheet is inserted in the middle position of the aerosol-generating product, for example, the matrix of the middle part of the aerosol-generating product has been fully used over time. It is necessary to emit smoke through the periphery of the matrix to satisfy the user's smoking. demand. However, because of the heat conduction, if the surrounding smoke-forming substrate is to form smoke, it is necessary to quickly raise the temperature of the heating sheet to ensure a sufficient smoke output of the aerosol-generating product. Of course, other heating methods are not excluded.
  • the temperature of the heating device 30 decreases from the first target temperature T1 to the second target temperature T2 at time t2, for example, about 350 ° C.
  • the second target temperature T2 is also within the allowable temperature range and is lower than the first target temperature T1.
  • the second target temperature is maintained until the smoking rod is deactivated, that is, the smoking mode ends, and is maintained until time t3.
  • the second target temperature T2 is maintained for about 4.5 minutes.
  • the smoking experience duration is about 313 seconds
  • the first stage duration is set to about 30 seconds
  • the second stage duration is set to about 270 seconds.
  • the respective durations of the first and second target temperatures actually depend on the type of aerosol-generating article, the composition and content of the aerosol-forming substrate contained therein, and the like.
  • the foregoing examples are therefore not restrictive and can be determined on a case-by-case basis.
  • This setup which includes only two stages, is therefore conducive to saving the power of the cigarette rod battery and extending its life.
  • the heating control of the heating device by the smoke rod circuit is simpler.
  • the temperature of the heating device 30 also rises rapidly from the ambient temperature to the first target temperature.
  • the temperature T1 is within the allowable temperature range anyway. That is, within a permissible temperature range, a desired volatile compound is vaporized from the aerosol-forming substrate, and an undesired compound with a higher vaporization temperature is not vaporized; the permissible temperature range is naturally lower than under normal operating conditions (i.e. , Normal temperature, pressure, humidity, user's suction action and air composition) substrate combustion temperature.
  • the heating device is maintained for a period of time t1'-t1, for example, 30 seconds after rising to the first target temperature.
  • the first stage of rapid temperature rise to, for example, 380 ° C. is to bake out the smoke in the aerosol-generating article commonly known as a smoke bomb at the fastest speed to meet the smoking needs of users.
  • the heating element of the heating sheet is inserted in the middle position of the aerosol-generating product, for example, the matrix of the middle part of the aerosol-generating product has been fully used over time. It is necessary to emit smoke through the periphery of the matrix to satisfy the user's smoking. demand.
  • the peripheral smoke-forming substrate is to form smoke, it is necessary to quickly increase the temperature of the heating sheet to ensure the smoke output of the aerosol-generating product.
  • the temperature of the heating device 30 decreases from the first target temperature T1 to the second target temperature T2 at time t2, for example, 345 ° C.
  • the second target temperature T2 is also within the allowable temperature range and is lower than the first target temperature T1.
  • the second target temperature is not maintained until the tobacco rod is deactivated.
  • the second target temperature is maintained, for example, about 140 seconds (t2'-t2).
  • stepped heating stages Three such stepped heating stages are shown in the schematic diagram shown in FIG. 4. In the practical application example shown in FIG. 5, there are five such stepwise heating stages. That is, the number of stepped heating stages can be determined according to specific conditions, which is not restrictive here.
  • the so-called "staircase” heating phase is clearly shown in Figure 4.
  • the temperature is maintained for a period of time (t3'-t3) after rising from T2 to T3, and it is maintained for a period of time (t4'-t4) after rising from T3 to T4. ), And it stays for a period of time (t5'-t5) after rising from T4 to T5.
  • the first stage is held for 30 seconds, and the second stage is held for 142 seconds.
  • the five stepwise heating stages each last 30 seconds: the first stepwise heating stage (at 355 ° C) is held for 34 seconds, the second stepwise heating stage is held for 30 seconds (at 360 ° C); the third stepwise heating stage is held 33 seconds (at 364 ° C); the fourth stepped temperature rise stage was held for 33 seconds (at 371 ° C); the fifth stepped temperature rise stage was held for 36 seconds (at 377 ° C).
  • the total heat cycle or smoking experience was 371 seconds.
  • this type of stepwise heating phase is only a linear heating phase compared to the prior art, which can make the delivery volume of the generated aerosol stable in the middle and late stages of the smoking phase. Keep it better to better ensure the smoking experience.
  • the upper limit of the allowable temperature range may be within 450 ° C to 500 ° C, and the lower limit thereof may be within 250 ° C to 300 ° C.
  • the temperature T1 of the first stage can be selected from 300 ° C to 450 ° C
  • the temperature T2 of the second stage can be selected from 300 ° C to 400 ° C.
  • T2 is less than T1. They are It is selected so that the smoke can be continuously generated so that the amount of smoke formed during the smoking period and the smoke characteristics are substantially the same.
  • the temperature of each stepped stage is higher than the second temperature T2, and can be based on The specific situation is less than, equal to, or higher than the first temperature T1, but is always maintained within the allowable temperature range.
  • the temperature at the above stage is a parameter that will affect the taste of the user inhaling the smoke.
  • the actual selection of the above temperature range depends on the type of aerosol-generating products sold by different tobacco companies.
  • the corresponding time and temperature parameters can be adjusted according to the aerosol-generating products produced by various tobacco companies, because the specific temperature is mainly determined by the Due to the smoke emission characteristics of aerosol-generating products, the current aerosol-generating products produced by each tobacco company may be different.
  • the optimal heating curve depends on a number of factors and can be determined empirically for a given aerosol-generating device as well as the substrate geometry and composition of the substrate.
  • smoking equipment may include more than one heat-generating device, and the arrangement of the heat-generating device may also affect the exhaustion of the substrate and the effect of heat diffusion.
  • Each heating device can be controlled to have a different heating curve.
  • the shape and size of the substrate associated with the heat generating device can also be important factors.
  • a dedicated temperature sensor can be set to detect its temperature, or its temperature can be determined by monitoring the resistivity of the heating device. For the latter, the resistivity is known to increase with increasing temperature, so the resistivity known at any given time can be used to derive the actual operating temperature of the heating device.
  • a control circuit as shown in FIG. 6 may be considered.
  • a temperature detection resistor Rs is connected in series between the battery 70 and the heating device 30.
  • the resistance value r of the temperature detection resistance Rs is known, and the current flowing through the temperature detection resistance Rs is equal to the current flowing through the temperature detection resistance and then through the heating device 30.
  • the voltage across the resistor Rs is V2-V1
  • a comparison amplifier unit Am is further connected in parallel at both ends of the temperature measurement detection resistor Rs.
  • the battery voltage will be constant at a relatively fixed voltage value, and the battery voltage value U source represents the current two-end voltage of the heating device, and the battery voltage can be directly measured by the microcontroller 50, it is based on
  • the current real-time heating device resistance value R real at the current specific temperature is R source / I real .
  • the microcontroller can compare the real-time heating device resistance value with the preset The resistance value corresponding to the temperature of the heating device is compared.
  • the microcontroller performs corresponding control through PWM control according to the comparison result: If the resistance value of the real-time heating device is equal to the preset resistance value corresponding to the preset target temperature, it indicates that the temperature of the heating device has reached the preset target temperature, then the micro control The heater can reduce the power supply to the heating device 30 through the switch Q1 to maintain the temperature; if the real-time resistance value is less than the preset resistance value, control the supply of additional power to the heating device 30 to increase its temperature to a preset target temperature ; If the real-time resistance value is greater than the preset resistance value, the control reduces, or even suspends, the supply of power to the heating device to reduce its temperature to a preset target temperature.
  • the temperature of the heating device can be monitored at a preset time period, for example, every few milliseconds or every 100 milliseconds. This monitoring can be performed continuously or when only the heating device is supplied with power.
  • This method does not need to provide an additional temperature sensor, nor does it need to calculate the actual temperature of the heat-generating device, and allows the heating temperature of the heat-generating device to be controlled with high accuracy, so it is particularly suitable for implementing the above-mentioned temperature profile proposed by the present disclosure.
  • the predetermined duration and target temperature of the above-mentioned phases during smoking can be stored in the microcontroller 50, forming part of its operating software. But it can also be stored in a lookup table so that the microcontroller can select different curves. The user can manually select different curves according to the type of aerosol-generating article, the specific substrate to be heated, and / or his personal preference through the corresponding interface on the cigarette rod.
  • the smoking equipment may further include a device for identifying an aerosol-generating article type and / or a smoke-forming substrate, such as an optical reader, and automatically select a corresponding heating curve based on the identified result.
  • only relevant target temperatures can be stored in the memory of the microcontroller
  • the transition between different phases is triggered by, for example, the number of puffs obtained by a flow sensor, so that the microprocessor can be configured to terminate the first phase after two puffs and the second after another fifteen puffs Phase (example in Figure 2-3), or configured to terminate the first phase after two puffs, the second phase after five puffs, then the first stepped phase after three puffs, and three more Terminate the second stepped phase after suction, and terminate the third stepped phase after the other three suctions.
  • the predetermined number of puffs may generally be between 5-20 puffs.
  • the transitions between different phases can also take place based on their respective predetermined durations.
  • the above embodiments can more fully adapt to aerosol-generating products of different tobacco companies, and achieve a uniform and stable delivery of aerosols during heating of the substrate.
  • the present disclosure may include any feature or combination of features implicitly or explicitly disclosed herein, or a summary thereof, and is not limited to any of the limited scope listed above. Any of the elements, features, and / or structural arrangements described herein may be combined in any suitable manner.

Landscapes

  • Control Of Resistance Heating (AREA)

Abstract

一种气雾生成装置及控制气雾生成的方法,包括发热器件(30)和控制器单元(50)。将发热器件(30)从初始温度升高到第一目标温度以进入发烟模式,在第一目标温度持续一定时间后降温到第二目标温度保持直到发烟模式结束,或者在第二目标温度阶段之后还有一阶梯式升温阶段,升温阶段中的温度高于第二温度并保持预定持续时间。第一、第二温度和阶梯式升温阶段中的温度选择能连续产生气雾,从而获得一定量的特性稳定的气雾。

Description

控制气雾生成装置中气雾产生的方法和气雾生成装置 技术领域
本公开涉及一种加热式非燃烧气雾生成装置的技术领域,本公开特别是涉及用于控制装置中气雾生成制品的气雾形成基体产生气雾以在连续或反复加热气雾形成基体时使生成的气雾都具有一致的期望特性的控制方法和相应的加热式非燃烧气雾生成装置的领域。
背景技术
随着现代社会中人对身体健康的关注度上升,人们逐渐意识到了通过将气雾生成制品燃烧以供用户吸食这一传统抽烟方式对身体的危害,因此产生了加热式非燃烧气雾生成装置。现有的加热式非燃烧气雾生成装置可通过例如***式电加热的烘烤方式来加热气雾生成制品以产生烟雾来供用户吸食,而且加热器温度被控制处于特定的温度范围内,以使气雾生成制品不会产生和释放不期望的挥发性化合物甚至燃烧。
事实上,使用者期望电子气雾生成装置在使用过程时能够产生始终特性一致即不随时间变化的气雾,但这并不容易实现,因为一般在连续或反复加热过程中,其一部分在多于5秒而不超过30秒的持续时间内产生气雾的气雾形成基体的特性由于基体中剩余的气雾形成成分的量和分布、以及由于基体温度会显著发生改变。例如,相比于气雾形成基体加热到最佳温度,气雾形成基体加热到较低的温度时可以产生不同比例的挥发性元素,这会改变气雾香味。另外,随着携带尼古丁和可能的香料的气雾形成基体的消耗,使用者也会感受到香味、味道和口感变化。
已知现有的电子气雾生成装置设置成在使用中始终提供恒定的温度即不随时间变化的单一温度:在气雾生成装置启用后向加热器传输电能直到其达到目标温度,之后加热器保持处于该目标温度直到气雾生成装置停用。利用这种保持恒定的温度,关键气雾成分如尼古丁或甘油的量在此过程中达到峰值,然后随着基体耗尽及热扩散变弱而下降。因此关键气雾成分如尼古丁或甘油的传送量在使用者抽吸过程中会随时间减少。
为此曾提出过这样一种方案:使用时,使加热器上升到第一温度、然后下降到第 二温度、最后再次线性升高到第三温度,以在使用过程时能够产生不随时间变化的气雾。
这种方案尽管还是令人满意的,但仍可以进一步改进完善。
发明内容
为此,本公开提出一种用于控制气雾生成装置中的气雾生成制品产生气雾的方法,气雾生成装置包括:用于加热气雾生成制品的发热器件;以及用于向发热器件提供电能的电源,所述方法包括在预加热模式控制使发热器件从初始温度升高到第一目标温度以进入发烟模式,所述方法还包括在发烟模式控制发热器件温度,使得:在第一阶段使发热器件在一段预定持续时间保持在第一目标温度,在第二阶段使第一目标温度下降到低于第一目标温度的第二目标温度,其特征在于,在第二阶段控制使第二目标温度保持直到发烟模式结束,其中,第一目标温度、第二目标温度选择成使得在所述第一阶段、第二阶段期间连续产生气雾。
上述方法一方面简化了发热器件控制,另一方面还能节约烟杆电池电能,延长电池使用时限。
为此,本公开另外还提出一种用于控制气雾生成装置中的气雾生成制品产生气雾的方法,气雾生成装置包括:用于加热气雾生成制品的发热器件;以及用于向发热器件提供电能的电源,所述方法包括在预加热模式控制使发热器件从初始温度升高到第一目标温度以进入发烟模式,所述方法还包括在发烟模式控制发热器件温度,使得:在第一阶段使发热器件在一段预定持续时间保持在第一目标温度,在第二阶段使第一目标温度下降到低于第一目标温度的第二目标温度,其特征在于,第二阶段后还包括至少一个阶梯式升温阶段,所述方法包括在所述至少一个阶梯式升温阶段控制使发热器件在所述至少一个阶梯式升温阶段中的温度高于第二目标温度并且保持一段预定持续时间,其中,第一目标温度、第二目标温度和所述至少一个阶梯式升温阶段中的温度选择成使得在第一阶段、第二阶段和所述至少一个阶梯式升温阶段的期间连续产生气雾。
这种方法能使得在连续或反复加热烟雾形成基体的期间提供具有一致稳定特性及量的气雾,在发烟中后期中使得产生的气雾的传送量平稳性保持更佳,从而更好确保使用者抽烟口感,也能更好地、全面适应不同烟草公司所出的发烟制品类型,从而 获得最佳的一致稳定的特性和气雾量的气雾,因而保证使用者最佳抽烟体验。
这里需要说明一下的是,术语“气雾生成制品”,等同于“发烟制品”,意指包括气雾形成基体或发烟基体的制品,该气雾形成基体或发烟基体能够释放易挥发化合物,这些易挥发化合物可形成气雾,这样的易挥发化合物可以通过加热气雾形成基体而释放。气雾形成基体可以方便地是气雾生成制品或发烟制品的一部分。如对于本领域的技术人员已知的那样,气雾是固体颗粒或液滴或者固体颗粒和液滴两者在气体(如空气)中的悬浮物。气雾形成基体可以包括含烟草的材料,该含烟草的材料包含易挥发烟草调味化合物,这些易挥发烟草调味化合物在加热时从基体释放。可选择地,气雾形成基体可以包括无烟草材料。气雾形成基体还可以包括气雾形成剂。适当的气雾形成剂的例子是甘油和丙二醇。气雾生成制品或发烟制品产生通过用户的嘴直接可吸入到用户的肺中的气雾。气雾生成制品或发烟制品可以是一次性的。下文一般使用术语“气雾生成制品”。
此外,本公开提出的上述方法还包括可以单独考虑或以技术上任何可行的方式结合的如下一个或多个特征:
-控制使发热器件温度在发烟模式下的不同阶段保持在容许温度范围内;
-容许温度范围的上限在450℃-500℃之间,而其下限在250℃-300℃之间;
-第一目标温度在300℃-450℃之间,第二目标温度在300℃-400℃之间;
-第一目标温度在第一阶段的预定持续时间不超过30秒;
-在发烟模式控制发热器件温度包括:基于直接测量的发热器件处或其附近处的实时温度,相应调整向发热器件提供的电能以调整其温度;
-在发烟模式控制发热器件温度包括:基于利用串联在电源与发热器件之间的测温检测电阻测定的发热器件在被供给电能时的实时阻值,相应调整向发热器件提供的电能以调整其温度;
-根据在发烟模式下不同阶段的预定持续时间进行不同阶段之间的转换;
-所述方法还包括:检测使用者对气雾生成装置的抽吸,并且在检测到预定的使用者抽吸次数之后结束发烟模式下的相应阶段;
-所述方法还包括:识别气雾生成制品类型和/或其所含烟雾形成基体的特性;根据所识别的气雾生成制品类型和/或所识别的特性调整对发热器件的电能控制以控制其温度;
-所述方法包括至少两个阶梯式升温阶段;
-所述方法包括三个以上的阶梯式升温阶段。
本公开还涉及能实现前述方法的一种气雾生成装置,包括:用于加热气雾生成装置中的气雾生成制品的发热器件;用于向发热器件提供电能的电源;以及用于控制从电源到发热器件的电能供应的电路,所述电路被布置成在预加热模式控制使发热器件从初始温度升高到第一目标温度以进入发烟模式,所述电路还布置成在发烟模式控制发热器件温度,使得:在第一阶段使发热器件在一段预定持续时间保持在第一目标温度,在第二阶段使第一目标温度下降到低于第一目标温度的第二目标温度,其特征在于,所述电路布置成在第二阶段控制使第二目标温度保持直到发烟模式结束,其中,第一目标温度、第二目标温度选择成使得在所述第一阶段、第二阶段期间连续产生气雾,这称为第一电路控制方式;和/或,所述电路布置成能在第二阶段后的至少一个阶梯式升温阶段控制使发热器件在所述至少一个阶梯式升温阶段中的温度高于第二目标温度并且保持一段预定持续时间,其中,第一目标温度、第二目标温度和所述至少一个阶梯式升温阶段中的温度选择成使得在第一阶段、第二阶段和所述至少一个阶梯式升温阶段的期间连续产生气雾,这称为第二电路控制方式;在同时具备第一和第二电路控制方式的情况下,第一、第二电路控制方式的选择手动地或自动地进行。
这里要指出的是,根据本公开的这种气雾生成装置、尤其是加热式非燃烧气雾生成装置借助其电路布置能同时实现上述两种不同的烟雾产生控制方法,从而全面地适应不同烟草公司所出的气雾生成制品类型和特性,而获得最佳的一致稳定的特性和气雾量的气雾,保证令人满意的抽烟体验,还可以节约电池电能。
另外,本公开提出的上述气雾生成装置还包括可以单独考虑或以技术上任何可行的方式结合的如下一个或多个特征:
-所述电路布置成执行控制发热器件温度,使发热器件的温度在发烟模式下的不同阶段保持在容许温度范围内;
-所述电路布置成根据在发烟模式下不同阶段的预定持续时间进行不同阶段之间的转换;
-所述气雾生成装置包括用于检测使用者对气雾生成装置的抽吸的装置,其中,所述电路布置成在检测到预定的使用者抽吸次数之后结束发烟模式下的相应阶段;
-所述气雾生成装置包括识别气雾生成制品类型和/或其所含烟雾形成基体的特性的装置,其中,所述电路布置成根据所识别的气雾生成制品类型和/或所识别的特性调整对发热器件的电能控制以调整其温度;
-所述气雾生成装置包括直接测量的发热器件处或其附近处的实时温度的装置,其中,所述电路布置成基于测得的实时温度相应调整向发热器件提供的电能以调整其温度;
-测温检测电阻串联在电源与发热器件之间以测定发热器件在被供给电能时的实时阻值,所述电路布置成基于测温检测电阻测定的所述实时阻值,相应调整向发热器件提供的电能以调整其温度;
-在具备第二电路控制方式的情况下,阶梯式升温阶段为至少两个;
-在具备第二电路控制方式的情况下,阶梯式升温阶段为三个以上。
根据本公开的上述方法具有前述类似的优点。
如上所述的气雾生成装置是加热式非燃烧气雾生成装置,包括加热式非燃烧烟具设备和容纳在烟具设备中的气雾生成制品。
参照示例性实施例的如下详细描述并结合附图和根据附带的权利要求书,可以更全面地明白本公开的其它目的、特征和细节。
本领域技术人员通过参照下面列出的附图阅读相应实施例的如下详细描述,将会明白相应实施例以及各种另外的实施例的优点。此外,下面所讨论的附图的各个特征没有必要按比例绘制。附图中的各个特征和元件的尺寸可以扩大或缩小,以更清楚地示出本公开的实施例。
附图说明
下面结合附图和实施例对本公开进一步的说明,其中相同的参考标号在整个附图及其描述中指代相似或相同的元件。
附图中:
图1示意性示出加热式非燃烧气雾生成装置的基本元件的结构图;
图2是根据本公开的一实施例的发热器件在预热阶段和发烟阶段的温度分布的示意图,
图3表示根据图2的发热器件的实际温度分布的示意图,其中还示出了气雾生成装置停用后的温度下降部分;
图4是根据本公开的另一实施例的发热器件在预热阶段和发烟阶段的温度分布的示意图;
图5是根据图4的发热器件的实际温度分布的示意图,其中未示出气雾生成装置停用后的温度下降部分;
图6示意性表示根据本公开的用于加热式非燃烧烟具设备的发热器件测温和控温的简单控制电路图。
具体实施方式
下面描述本公开的相关说明性实施例。在本说明书中,仅为了解释起见,在附图中示意性地描绘各个***、方法、结构和装置,但未描述实际***、方法、结构和装置的所有特征,比如熟知的功能或结构并未详细描述,以避免不必要的细节使得本公开模糊不清。当然应该明白,在任何实际应用时,需要作出许多具体实施决策以达到开发者或使用者的特定目标,并且需要遵从与***相关和行业相关的限制,这些特定目标可能随着实际应用的不同而不同。此外,应该明白,这样的具体实施决策虽然是复杂的且耗费大量时间的,然而这对于受益于本申请的本领域普通技术人员来说是例行任务。
本文使用的术语和短语应该被理解和解释为具有与相关领域技术人员对这些术语和短语的理解一致的含义。本文的术语或短语的一致用法不意在暗示术语或短语的特殊定义,即,与本领域技术人员所理解的普通和惯常含义不同的定义。对于意在具有特殊含义的术语或短语,即,与技术人员所理解的不同的含义,这种特殊定义将在说明书中以定义方式明确列出,直接且毫不含糊地给出术语或短语的特殊定义。
除非内容要求,否则在下文的整个说明书以及权利要求中,词语“包括”及其变型、诸如“包含”将以开放式的、包容的意义来解释,也就是如“包括但不限于”。
在本说明书的整个描述中,参考术语“一实施例”、“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、步骤、材料或者特点包含于本公开的至少一个实施例或示例中。因而,整个该说明书中不同地方出现的短语“在一个实施例中”或者“在一实施例中”不是必须都涉及相同实施例。而且,描述的具体特征、结构、步骤、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
正如在本说明书和所附的权利要求中使用的,除非另有明确的规定和限定,单数形式的不定冠词“一”以及定冠词“该”包括一个或多个指称对象。还应该注意的是,除 非另有明确的规定和限定,术语“或”从意思上来说一般包括“和/或”。为了这种说明的目的,以“A或B”的形式的词组意味着“(A)、(B)或者(A和B)”。为了说明的目的,以“A、B或C中的至少一个”的形式的词组意味着“(A)、(B)、(C)、(A和B)、(A和C)、(B和C)或者(A、B和C)”。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“联接”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
下面将结合附图详细说明本公开的特定实施例。
参见图1,本公开涉及一种电加热式非燃烧气雾生成装置100,其包括烟具设备、尤其电加热式非燃烧烟杆101和俗称烟弹的气雾生成制品F。出于简便起见,下面采用术语“烟杆”进行相关描述。
图1中简单示出气雾生成装置一实施例的内部,其元件不是按比例绘制并且出于图示简单清楚的原因,省去了与本公开方案不相关的元器件。
如图1所示,典型地,烟杆101包括供气雾生成制品F***的加热腔31,还包括发热器件30、电源70和控制器单元50。控制器单元50与发热器件30以及电源70相连接,控制器单元还可连接到使用者界面如按钮或显示器60,用以向使用者传送关于烟杆的信息,例如显示***信息,例如电池电量、温度、气雾生成制品的状态、其它信息或其组合。图1中,气雾生成制品F已被推压到加热腔31内部以与发热器件30接触,这里是发热器件***气雾生成制品的气雾形成基体内部。另外,气雾生成制品F事实上可以完全容纳在加热腔中,也可以部分容纳在加热腔中。气雾生成制品F会在不同加热温度下释放系列挥发性化合物。通过控制烟杆101的操作温度使其低于一些挥发性化合物的释放温度,可避免一些有害烟气成分的释放或形成。使用者相应地通过烟杆口部或直接通过气雾生成制品的滤嘴部来进行抽吸而吸食所产生的气雾。
设置在烟杆101的壳体内的电源可以是任何适当的电源,例如为电池的DC电压源。例如,其为可充电锂离子电池。可替代地,电源可以是镍金属氢化物电池、镍镉电池或锂基电池。
发热器件又称加热器,可以采用任何适当形式,例如图示的发热片30。其也可呈加热时穿过气雾生成制品中心的加热针或棒的形式。可替代地,发热器件可采用具 有不同导电部分的壳体或基板或电阻金属板的形式。可替换地,发热器件可以是圆盘加热器或圆盘加热器与加热针或棒的组合,也可以包括加热线或丝,例如Ni-Cr(镍-铬)、铂、金、银、钨或合金线或加热板。可选而非必要地,发热器件可以沉积在刚性载体材料中或之上。另外可以根据需要设置一个或更多个发热器件,发热器件可被适当地布置以便最有效地加热气雾生成制品。下文中作为示例说明和简单起见,采用术语“发热器件”。
此外尽管图中未示出,但可选地,烟杆101可包括用于检测气雾生成制品的器件,用以检测在传热路径上接触发热器件30的气雾生成制品F的存在和/或其特性,且将气雾生成制品F的存在的信号发送给与该器件相连的控制器单元50。
需要时,烟杆101在远离加热腔31的一端开设有接口40,该接口40可与控制器单元50连接。可以通过该接口与外部设备如智能终端,例如手机、Pad、电脑等相连以便以单向或双向的方式传递相关信息例如温度检测信号、调温信息等。另外,接口40也可设计成同时用于充电,在这种情况下接口40与电池70相连(这里图中未示出)。
如图1所示,以非限制性的方式,加热式非燃烧烟杆101必要时还可设置有提取器20和与提取器协同运行的外壳10。提取器20的第一端安装于加热腔31中,其第二端开设有供气雾生成制品F***的***腔21。外壳10中空设置,套接在烟杆101的设有加热腔的端部侧上。外壳10这里布置成使得能以旋转的方式或者以平移的方式使提取器20进入到加热腔31中或从加热腔31脱出。
通常,在加热式非燃烧气雾生成装置工作的过程中,为了增强用户体验,需要对发热器件进行一定的温度监测和控制。这一般通过控制器单元50进行。
典型地,控制器单元可设置用以接收相关信息并变换所接收的信息以生成输出。该控制器单元可包括任意类型的计算装置、计算电路或者任意类型的处理器或能够执行存储在存储器中的一系列指令的处理电路。该控制器单元可包括多个处理器和/或多核中央处理单元(CPU)并且可包括任意类型的处理器,诸如微处理器、数字信号处理器、微控制器等。该控制器单元还可包括存储器以存储数据和/或算法以执行一系列指令。
而术语“存储器”可包括提供(例如,存储和/或传送)以由诸如处理器、计算机或数字处理设备的机器可读格式的信息的机构。例如,存储器可包括只读存储器(ROM)、随机存取存储器(RAM)、磁盘存储介质、光学存储介质、闪存设备或任意其他易失性 或非易失性存储设备。包含在其上的代码或指令可由载波信号、红外信号、数字信号和其他相似的信号表示。
在下文中,将在控制器单元50包括微控制器(MCU)的情况下使用术语“微控制器”进行示例性说明。但提醒的是,这并非限制性的。
如上所述,在利用微控制器控制发热器件30的加热温度时,需要对发热器件30的操作温度进行检测。
微控制器50基于所测得的温度信号控制电池70与发热器件30之间的开关通断,从而实现对加热式非燃烧烟具设备温度的精确控制,例如用以满足不同气雾生成制品的温度需求。
如前所述,已知现有的电子烟具设备设置成在使用中始终提供不随时间变化的单一温度,从而导致关键气雾成分如尼古丁或甘油的传送量在此过程中达到峰值后会随着基体耗尽及热扩散变弱而随时间减少。
针对此曾提出过前述过的设置三个温度阶段的方案。
但在本公开中,另外提出了其它一些方案以改进完善前述方案。下面将结合图2-3和图4-5对此进行说明。
在图2-3所示的实施例中,发热器件30的温度从环境温度快速升高至第一目标温度——这一般称为预加热模式,这里例如以10秒左右在时刻t1升高到大约380℃的第一目标温度T1以能产生烟雾,从而进入到发烟模式。当然,无论如何该温度T1都处于在容许的温度范围内。
事实上,容许温度范围取决于气雾生成制品中的气雾形成基体,气雾形成基体在不同温度下释放一些挥发性化合物。从气雾形成基体释放的挥发性化合物中的一些仅通过加热过程形成。每种挥发性化合物在处于特有的释放温度以上时被释放。通过将最大操作温度控制在一些挥发性化合物的释放温度以下,可避免这些成分的释放或形成。最大操作温度还被选择成确保在正常操作条件下基质不会燃烧。也就是,在容许的温度范围内,期望的挥发性化合物从气雾形成基体汽化,而汽化温度较高的不期望的化合物不会汽化;该容许温度范围自然也低于正常操作情况下(即,正常的温度、压力、湿度、使用者抽吸动作和空气成分)基体的燃烧温度。
另外从图3中可看出,在发烟模式,发热器件在升至第一目标温度后保持一段时间例如15秒,一般不超过30秒。
该快速升温到例如380℃、或者接近最大容许温度的温度的第一阶段是为了以最 快速度将俗称烟弹的气雾生成制品内的烟雾烘烤出来,以满足用户吸烟的需要。由于这里例如为发热片的发热器件***气雾生成制品的中间位置,因而随着时间推移,气雾生成制品中间部分的基体已经完全被利用,需要通过***的基体出烟以满足使用者的抽烟需求。然而,因为导热的关系,要让***的烟雾形成基体形成烟雾,就需要快速升高发热片温度,以此来保障气雾生成制品的足够出烟量。当然也并不排除其它加热方式。
然后在第二阶段,发热器件30的温度从第一目标温度T1在时刻t2下降至第二目标温度T2,例如350℃左右。第二目标温度T2当然也在所述容许温度范围内,且低于第一目标温度T1。
但与前述现有技术不同的是,该第二目标温度一直保持至烟杆停用即发烟模式结束即保持直到时刻t3。例如以烟杆大约5分钟的工作时间来说,第二目标温度T2保持大约4.5分钟。具体地,在图3示例中,吸烟体验持续时间约313秒,第一阶段持续时间设定约30秒,第二阶段持续时间设定约270秒。
然而,第一和第二目标温度各自的持续时间实际取决于气雾生成制品类型、其所含的气雾形成基体的成分和含量等。前述举例因而并非限制性的,可以根据具体情况予以确定。
这种包括仅两个阶段的设置因而有利于节约烟杆电池电能,延长其使用时限。另外烟杆电路对发热器件的加热控制也更简单。
下面对图4-5所示的另一实施例进行说明。
在图4-5所示的该另一实施例中,发热器件30的温度从环境温度同样快速升高至第一目标温度,这里例如用6秒左右在时刻t1升高到大约380℃的第一目标温度T1。当然,无论如何该温度T1都处于在容许的温度范围内。也就是,在容许的温度范围内,期望的挥发性化合物从气雾形成基体汽化,而汽化温度较高的不期望的化合物不会汽化;该容许温度范围自然也低于正常操作情况下(即,正常的温度、压力、湿度、使用者抽吸动作和空气成分)基体的燃烧温度。另外从图5中可看出,发热器件在升至第一目标温度后保持一段时间t1’-t1例如30秒。当然如果需要,也可以第一目标温度达到后马上下降。
类似地,该快速升温到例如380℃的第一阶段是为了以最快速度将俗称烟弹的气雾生成制品内的烟雾烘烤出来,以满足用户吸烟的需求。由于这里例如为发热片的发热器件***气雾生成制品的中间位置,因而随着时间推移,气雾生成制品中间部分的 基体已经完全被利用,需要通过***的基体出烟以满足使用者的抽烟需求。然而,因为导热的关系,要让***的烟雾形成基体形成烟雾,就需要快速升高发热片温度,以此来保障气雾生成制品的出烟量。
然后在第二阶段,发热器件30的温度在时刻t2从第一目标温度T1下降至第二目标温度T2,例如345℃。第二目标温度T2当然也在所述容许温度范围内,且低于第一目标温度T1。
但与前一实施例不同的是,这里,第二目标温度并没有保持至烟杆停用。在该示例中,第二目标温度保持例如140秒左右(t2’-t2)。
此外如图4-5所示,在第二阶段后还具有至少一个阶梯式升温阶段。
在图4所示的原理图中表示出三个这类阶梯式升温阶段。而在图5所示的实际应用示例中存在五个这样的阶梯式升温阶段。也就是阶梯式升温阶段的数量可根据具体情况而定,这里并非限制性的。
所谓“阶梯式”升温阶段,如图4清楚所示,例如温度从T2上升至T3后保持一段持续时间(t3’-t3),而从T3上升至T4后保持一段持续时间(t4’-t4),而从T4上升至T5后保持一段持续时间(t5’-t5)如此这般。
例如在图5中,第一阶段保持30秒,第二阶段保持142秒。而五个阶梯式升温阶段各持续30来秒:第一阶梯式升温阶段(在355℃)保持34秒,第二阶梯式升温阶段保持30秒(在360℃);第三阶梯式升温阶段保持33秒(在364℃);第四阶梯式升温阶段保持33秒(在371℃);第五阶梯式升温阶段保持36秒(在377℃)。总计加热循环或吸烟体验时间为371秒。
同样地,如前所述,这些温度始终都处在所述容许温度范围之内。
而对于一些类型的气雾生成制品来说,这类阶梯式升温阶段相对于现有技术的仅一个直线性升温阶段,可以在发烟阶段的中后期中使得产生的气雾的传送量平稳性保持更佳,从而更好保证使用者抽烟口感体验。
另外需要指出的是,尽管如图2-5所示,上述温度阶段都是平滑线,但在实际产品温控中,由于不可能达到百分百准确,因而会出现极微小波动。
此外,对于这类电加热式非燃烧气雾生成装置来说,其容许温度范围的上限可以在450℃-500℃内,而其下限可以在250℃-300℃内。
对于图2-3的前述示例而言,其第一阶段的温度T1可以在300℃-450℃中选择,而第二阶段的温度T2可以在300℃-400℃中选择,T2小于T1,它们选择成能连续产 生烟雾而使在发烟期间形成的烟雾量和烟雾特性基本一致。
对于图4-5的示例而言,对于在第二阶段后的所述至少一个、优选不少于两个的阶梯式升温阶段,各阶梯式阶段的温度高于第二温度T2,而可以根据具体情况小于、等于或高于第一温度T1,但始终保持在容许温度范围内。
对于一些类型的气雾生成制品或烟雾形成基体,需要在第二阶段后再升高发热器件温度以补偿基体耗尽和热扩散减弱引起的气雾传送量的减少。但相对一个直线性升温阶段,设置至少一个、优选两个或三个以上的阶梯式升温阶段,能更大程度地补偿这种减少,使得气雾量传送量和特性在抽吸中后期的稳定一致性进一步增强。
需要指出的是,上述阶段的温度是会影响使用者抽吸烟雾的口感的参数。而且,上述温度范围实际的选用取决于不同烟草公司市售气雾生成制品的类型,可以根据各家烟草公司出的气雾生成制品调整相应的时间与温度参数,这是因为具体温度高低主要取决于气雾生成制品的出烟特性,而目前每家烟草公司出的气雾生成制品可能都有差异。
而且已知地,最佳加热曲线取决于多种因素并且对于指定的气雾生成装置以及基体几何形状和基体成分可根据经验确定这种最佳加热曲线。例如,烟具设备可包括多于一个的发热器件,并且发热器件的布置方式也会影响基体的耗尽和热扩散效果。可控制每个发热器件以具有不同的加热曲线。与发热器件相关的基体的形状和尺寸也可以是重要因素。
为按照如图2-3所示或如图4-5所示的温度分布控制对发热器件的加热,或者可以设置专用温度传感器检测其温度,或者通过监控发热器件电阻率确定其温度。对于后者,已知电阻率随着温度增加而增加,因而在任何给定时间获知的电阻率可被用来推导发热器件的实际操作温度。
另外,为实现对发热器件温度的精确检测和精确调控以符合上述温度分布线图之一,可以考虑如图6所示的控制电路。
如图6所示,在电池70与发热器件30之间串联有测温检测电阻Rs。
首先,测温检测电阻Rs的阻值r是已知的,流过测温检测电阻Rs的电流与经过测温检测电阻继而流过发热器件30的电流是相等的,由此通过检测测温检测电阻Rs的两端电压即V2-V1,则可以通过欧姆定律I=U/R来计算出通过发热片的实时电流I =(V2-V1)/r。可选地,出于进一步提高检测准确性考虑,在测温检测电阻Rs的两端还并联有比较放大器单元Am。
继而,由于电池电压会恒定在一个相对固定的电压值并且该电池电压值U源即代表发热器件的当前的两端电压,而电池电压是可由微控制器50直接测定的,因此基于前面已经确定的通过发热片的实时电流值I ,可以再次通过欧姆定律R=U/I计算出在当前特定温度下的当前实时的发热器件阻值R实=U /I
然后,通过查询储存在微控制器的存储器中的有关与预设的发热器件温度相对应的预设的发热器件阻值表,则微控制器可以将实时的发热器件阻值同与预设的发热器件温度对应的阻值进行比较。
最后微控制器根据比较结果通过PWM控制进行相应调控:如果实时的发热器件阻值同与预设目标温度对应的预设阻值相等,则表明发热器件温度已经达到预设目标温度,则微控制器可通过开关Q1控制减少对发热器件30的电能供给以维持该温度;如果实时阻值小于预设阻值,则控制向发热器件30供给额外供给电能以使其温度升高到预设目标温度;如果实时阻值大于预设阻值,则控制减少、甚至暂停给发热器件供给电能以使其温度降低到预设目标温度。
另外,可以在预先设定的时间周期例如每几毫秒或每100毫秒对发热器件温度进行监测。这种监测可以连续进行,也可以在仅供给发热器件电能时进行。
这种方法无需设置另外的温度传感器,也不需要计算发热器件的实际温度,并且允许以高精确度控制发热器件的加热温度,因此特别适合实现本公开这里提出的上述温度分布图。
事实上,在发烟期间的上述阶段的预定持续时间和目标温度可以被存储在微控制器50中,构成其运行软件的一部分。但其也可以存储在查找表中,从而微控制器可选择不同的曲线。使用者可根据气雾生成制品类型、待加热的特定基体和/或其个人偏好通过烟杆上的相应接口手动地选择不同的曲线。另外,烟具设备还可包括用于识别气雾生成制品类型和/或烟雾形成基体的装置如光学读取器和基于所识别的结果自动地选择相应的加热曲线。
可替换地,仅相关目标温度(对于图2-3的示例,T1、T2;对于图4-5的示例,T1、T2、T3、T4、T5……)可存储在微控制器的存储器中,在不同阶段之间的转变由例如通过流量传感器所获得的抽吸次数触发,使得微处理器可配置成在两次抽吸之后终止第一阶段,在另十五次抽吸之后终止第二阶段(图2-3示例),或者配置成成在两次抽吸之后终止第一阶段,在另五次抽吸之后终止第二阶段,然后三次抽吸后终止第一阶梯式阶段,再三次抽吸后终止第二阶梯式阶段,另三次抽吸后终止第三阶梯 式阶段等。预定的抽吸次数可以一般在5-20次抽吸之间。可替换地,在不同阶段之间的转变也可基于其各自的预定持续时间进行。
相对于三个阶段的现有技术方案,上述实施例能更全面地适应不同烟草公司的气雾生成制品产品,实现加热其基体过程中气雾的均匀稳定传送。
本公开可以包括在此隐含或明确公开的任何特征或特征组合或其概括,不局限于上述罗列的任何限定的范围。在此所述的有关任何元件、特征和/或结构布置可以以任何适合的方式组合。
以上公开的特定实施例仅是示例性的,对于受益于本文的教导的本领域技术人员来说显然的是,可以以不同但等同的方式修改和实施本公开。例如,可以按不同的顺序执行上述方法步骤。此外,除了以下权利要求中所述的之外,并不限制本文示出的构造或设计的细节。因此显然的是,可对以上公开的具体实施例进行改变和修改,并且所有这些变型都被认为是落入本公开的范围和精神之内。因此,本文寻求的保护在所附的权利要求中列出。

Claims (22)

  1. 一种用于控制气雾生成装置中的气雾生成制品产生气雾的方法,气雾生成装置包括:用于加热气雾生成制品的发热器件;以及用于向发热器件提供电能的电源,所述方法包括在预加热模式控制使发热器件从初始温度升高到第一目标温度以进入发烟模式,所述方法还包括在发烟模式控制发热器件温度,使得:在第一阶段使发热器件在一段预定持续时间保持在第一目标温度,在第二阶段使第一目标温度下降到低于第一目标温度的第二目标温度,其特征在于,在第二阶段控制使第二目标温度保持直到发烟模式结束,其中,第一目标温度、第二目标温度选择成使得在所述第一阶段、第二阶段期间连续产生气雾。
  2. 一种用于控制气雾生成装置中的气雾生成制品产生气雾的方法,气雾生成装置包括:用于加热气雾生成制品的发热器件;以及用于向发热器件提供电能的电源,所述方法包括在预加热模式控制使发热器件从初始温度升高到第一目标温度以进入发烟模式,所述方法还包括在发烟模式控制发热器件温度,使得:在第一阶段使发热器件在一段预定持续时间保持在第一目标温度,在第二阶段使第一目标温度下降到低于第一目标温度的第二目标温度,其特征在于,第二阶段后还包括至少一个阶梯式升温阶段,所述方法包括在所述至少一个阶梯式升温阶段控制使发热器件在所述至少一个阶梯式升温阶段中的温度高于第二目标温度并且保持一段预定持续时间,其中,第一目标温度、第二目标温度和所述至少一个阶梯式升温阶段中的温度选择成使得在第一阶段、第二阶段和所述至少一个阶梯式升温阶段的期间连续产生气雾。
  3. 如权利要求1或2所述的方法,其中,控制使发热器件温度在发烟模式下的不同阶段保持在容许温度范围内。
  4. 如权利要求3所述的方法,其中,容许温度范围的上限在450℃-500℃之间,而其下限在250℃-300℃之间。
  5. 如权利要求4所述的方法,其中,第一目标温度在300℃-450℃之间,第二目标温度在300℃-400℃之间。
  6. 如权利要求1或2所述的方法,其中,第一目标温度在第一阶段的预定持续时间不超过30秒。
  7. 如权利要求1或2所述的方法,其中,在发烟模式控制发热器件温度包括:基于直接测量的发热器件处或其附近处的实时温度,相应调整向发热器件提供的电能以 调整其温度。
  8. 如权利要求1或2所述的方法,其中,在发烟模式控制发热器件温度包括:基于利用串联在电源与发热器件之间的测温检测电阻测定的发热器件在被供给电能时的实时阻值,相应调整向发热器件提供的电能以调整其温度。
  9. 如权利要求1或2所述的方法,其中,根据在发烟模式下不同阶段的预定持续时间进行不同阶段之间的转换。
  10. 如权利要求1或2所述的方法,其中,所述方法还包括:检测使用者对气雾生成装置的抽吸,并且在检测到预定的使用者抽吸次数之后结束发烟模式下的相应阶段。
  11. 如权利要求1或2所述的方法,其中,所述方法还包括:识别气雾生成制品类型和/或其所含烟雾形成基体的特性;根据所识别的气雾生成制品类型和/或所识别的特性调整对发热器件的电能控制以控制其温度。
  12. 如权利要求2所述的方法,其中,所述方法包括至少两个阶梯式升温阶段。
  13. 如权利要求12所述的方法,其中,所述方法包括三个以上的阶梯式升温阶段。
  14. 一种气雾生成装置,包括:用于加热气雾生成装置中的气雾生成制品的发热器件;用于向发热器件提供电能的电源;以及用于控制从电源到发热器件的电能供应的电路,所述电路被布置成在预加热模式控制使发热器件从初始温度升高到第一目标温度以进入发烟模式,所述电路还布置成在发烟模式控制发热器件温度,使得:在第一阶段使发热器件在一段预定持续时间保持在第一目标温度,在第二阶段使第一目标温度下降到低于第一目标温度的第二目标温度,其特征在于,所述电路布置成在第二阶段控制使第二目标温度保持直到发烟模式结束,其中,第一目标温度、第二目标温度选择成使得在所述第一阶段、第二阶段期间连续产生气雾,这称为第一电路控制方式;和/或,所述电路布置成能在第二阶段后的至少一个阶梯式升温阶段控制使发热器件在所述至少一个阶梯式升温阶段中的温度高于第二目标温度并且保持一段预定持续时间,其中,第一目标温度、第二目标温度和所述至少一个阶梯式升温阶段中的温度选择成使得在第一阶段、第二阶段和所述至少一个阶梯式升温阶段的期间连续产生气雾,这称为第二电路控制方式;在同时具备第一和第二电路控制方式的情况下,第一、第二电路控制方式的选择手动地或自动地进行。
  15. 如权利要求14所述的气雾生成装置,其中,所述电路布置成执行控制发热器件温度,使发热器件的温度在发烟模式下的不同阶段保持在容许温度范围内。
  16. 如权利要求14所述的气雾生成装置,其中,所述电路布置成根据在发烟模式下不同阶段的预定持续时间进行不同阶段之间的转换。
  17. 如权利要求14所述的气雾生成装置,其中,所述气雾生成装置包括用于检测使用者对气雾生成装置的抽吸的装置,所述电路布置成在检测到预定的使用者抽吸次数之后结束发烟模式下的相应阶段。
  18. 如权利要求14所述的气雾生成装置,其中,所述气雾生成装置包括识别气雾生成制品类型和/或其所含烟雾形成基体的特性的装置,所述电路布置成根据所识别的气雾生成制品类型和/或所识别的特性调整对发热器件的电能控制以调整其温度。
  19. 如权利要求14至18中任一项所述的气雾生成装置,其中,所述气雾生成装置包括直接测量的发热器件处或其附近处的实时温度的装置,所述电路布置成基于测得的实时温度相应调整向发热器件提供的电能以调整其温度。
  20. 如权利要求14至18中任一项所述的气雾生成装置,其中,测温检测电阻串联在电源与发热器件之间以测定发热器件在被供给电能时的实时阻值,所述电路布置成基于测温检测电阻测定的所述实时阻值,相应调整向发热器件提供的电能以调整其温度。
  21. 如权利要求14所述的气雾生成装置,其中,在具备第二电路控制方式的情况下,阶梯式升温阶段为至少两个。
  22. 如权利要求21所述的气雾生成装置,其中,在具备第二电路控制方式的情况下,阶梯式升温阶段为三个以上。
PCT/CN2018/089227 2018-05-31 2018-05-31 控制气雾生成装置中气雾产生的方法和气雾生成装置 WO2019227381A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/089227 WO2019227381A1 (zh) 2018-05-31 2018-05-31 控制气雾生成装置中气雾产生的方法和气雾生成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/089227 WO2019227381A1 (zh) 2018-05-31 2018-05-31 控制气雾生成装置中气雾产生的方法和气雾生成装置

Publications (1)

Publication Number Publication Date
WO2019227381A1 true WO2019227381A1 (zh) 2019-12-05

Family

ID=68697788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089227 WO2019227381A1 (zh) 2018-05-31 2018-05-31 控制气雾生成装置中气雾产生的方法和气雾生成装置

Country Status (1)

Country Link
WO (1) WO2019227381A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111202268A (zh) * 2020-01-06 2020-05-29 郝敏 一种智能超声波雾化器及其控制方法
CN112353016A (zh) * 2020-10-30 2021-02-12 安徽中烟工业有限责任公司 一种红外辐射加热烟具的智能温控方法
CN112369722A (zh) * 2020-05-08 2021-02-19 湖北中烟工业有限责任公司 加热不燃烧装置和温度控制方法
WO2021144429A1 (en) * 2020-01-17 2021-07-22 Nicoventures Trading Limited Aerosol-generating device
CN113142684A (zh) * 2021-04-13 2021-07-23 深圳麦克韦尔科技有限公司 加热控制方法及电子雾化装置
CN113383998A (zh) * 2020-09-29 2021-09-14 重庆中烟工业有限责任公司 一种用于调控双烟弹加热不燃烧烟气溶胶烟雾的方法和装置
CN113892680A (zh) * 2021-10-26 2022-01-07 湖北中烟工业有限责任公司 一种基于温度热场的低温卷烟烟支规格优化方法及装置
WO2022049019A1 (en) * 2020-09-01 2022-03-10 Philip Morris Products S.A. Aerosol-generating device operable in an aerosol-releasing mode and in a pause mode
EP4111887A4 (en) * 2020-04-02 2023-05-17 Shenzhen Merit Technology Co., Ltd. DEVICE AND METHOD FOR GENERATION OF HEATED AEROSOL
US11789476B2 (en) 2021-01-18 2023-10-17 Altria Client Services Llc Heat-not-burn (HNB) aerosol-generating devices including intra-draw heater control, and methods of controlling a heater
WO2023222598A1 (en) * 2022-05-16 2023-11-23 Philip Morris Products S.A. Profile selection for aerosol-generating device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0371282A2 (en) * 1988-11-30 1990-06-06 R.J. Reynolds Tobacco Company Aerosol delivery article
CN103230100A (zh) * 2013-05-21 2013-08-07 广东中烟工业有限责任公司 一种新型电子烟
CN104116138A (zh) * 2014-06-24 2014-10-29 深圳市麦克韦尔科技有限公司 电子烟及其控制方法
CN107095343A (zh) * 2017-05-24 2017-08-29 惠州市新泓威科技有限公司 电子烟具的加热方法
CN107296301A (zh) * 2017-08-18 2017-10-27 深圳市卓力能电子有限公司 一种加热非燃烧电子烟的功率与温度分时控制方法及烟具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0371282A2 (en) * 1988-11-30 1990-06-06 R.J. Reynolds Tobacco Company Aerosol delivery article
CN103230100A (zh) * 2013-05-21 2013-08-07 广东中烟工业有限责任公司 一种新型电子烟
CN104116138A (zh) * 2014-06-24 2014-10-29 深圳市麦克韦尔科技有限公司 电子烟及其控制方法
CN107095343A (zh) * 2017-05-24 2017-08-29 惠州市新泓威科技有限公司 电子烟具的加热方法
CN107296301A (zh) * 2017-08-18 2017-10-27 深圳市卓力能电子有限公司 一种加热非燃烧电子烟的功率与温度分时控制方法及烟具

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111202268A (zh) * 2020-01-06 2020-05-29 郝敏 一种智能超声波雾化器及其控制方法
WO2021144429A1 (en) * 2020-01-17 2021-07-22 Nicoventures Trading Limited Aerosol-generating device
JP7469481B2 (ja) 2020-01-17 2024-04-16 ニコベンチャーズ トレーディング リミテッド エアロゾル生成デバイス
EP4111887A4 (en) * 2020-04-02 2023-05-17 Shenzhen Merit Technology Co., Ltd. DEVICE AND METHOD FOR GENERATION OF HEATED AEROSOL
EP4023087A4 (en) * 2020-05-08 2023-10-18 China Tobacco Hubei Industrial Corporation Limited HEATING-NON-COMBUSTION APPARATUS AND TEMPERATURE REGULATION METHOD
CN112369722A (zh) * 2020-05-08 2021-02-19 湖北中烟工业有限责任公司 加热不燃烧装置和温度控制方法
WO2022049019A1 (en) * 2020-09-01 2022-03-10 Philip Morris Products S.A. Aerosol-generating device operable in an aerosol-releasing mode and in a pause mode
CN113383998A (zh) * 2020-09-29 2021-09-14 重庆中烟工业有限责任公司 一种用于调控双烟弹加热不燃烧烟气溶胶烟雾的方法和装置
CN113383998B (zh) * 2020-09-29 2024-03-22 重庆中烟工业有限责任公司 一种用于调控双烟弹加热不燃烧烟气溶胶烟雾的方法和装置
CN112353016A (zh) * 2020-10-30 2021-02-12 安徽中烟工业有限责任公司 一种红外辐射加热烟具的智能温控方法
US11789476B2 (en) 2021-01-18 2023-10-17 Altria Client Services Llc Heat-not-burn (HNB) aerosol-generating devices including intra-draw heater control, and methods of controlling a heater
CN113142684A (zh) * 2021-04-13 2021-07-23 深圳麦克韦尔科技有限公司 加热控制方法及电子雾化装置
CN113892680A (zh) * 2021-10-26 2022-01-07 湖北中烟工业有限责任公司 一种基于温度热场的低温卷烟烟支规格优化方法及装置
WO2023222598A1 (en) * 2022-05-16 2023-11-23 Philip Morris Products S.A. Profile selection for aerosol-generating device

Similar Documents

Publication Publication Date Title
WO2019227381A1 (zh) 控制气雾生成装置中气雾产生的方法和气雾生成装置
JP6937401B2 (ja) 加熱式エアロゾル発生装置、及び一貫した特性のエアロゾルを発生させる方法
CN108618207A (zh) 控制气雾生成装置中气雾产生的方法和气雾生成装置
EP2967140B1 (en) Heating control arrangement for an electronic smoking article and associated system and method
JP6062457B2 (ja) 空気流検出を備えるエアロゾル発生装置
JP2023540475A (ja) 吸煙頻度に基づく加熱プロファイルを有する喫煙装置
US20230363454A1 (en) Electronic smoking simulation device with resistance recording and replay
JP7465953B2 (ja) エアロゾル生成装置
WO2023193647A1 (zh) 气溶胶产生装置及统计用户的抽吸口数的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920502

Country of ref document: EP

Kind code of ref document: A1