WO2019225393A1 - 車載用の電源装置 - Google Patents

車載用の電源装置 Download PDF

Info

Publication number
WO2019225393A1
WO2019225393A1 PCT/JP2019/019066 JP2019019066W WO2019225393A1 WO 2019225393 A1 WO2019225393 A1 WO 2019225393A1 JP 2019019066 W JP2019019066 W JP 2019019066W WO 2019225393 A1 WO2019225393 A1 WO 2019225393A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive path
voltage
switching element
voltage conversion
unit
Prior art date
Application number
PCT/JP2019/019066
Other languages
English (en)
French (fr)
Inventor
一輝 増田
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to US17/058,216 priority Critical patent/US11180097B2/en
Priority to DE112019002643.7T priority patent/DE112019002643T5/de
Priority to CN201980030266.1A priority patent/CN112074429B/zh
Publication of WO2019225393A1 publication Critical patent/WO2019225393A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an in-vehicle power supply device.
  • the storage battery and a load connected to the storage battery may be separated and stand by when the IG is off. In this standby state, the charge stored in the capacity component in the load is discharged, and the difference between the terminal voltage of the storage battery and the voltage of the load increases. If the storage battery and the load are connected in a state where the difference between the terminal voltage of the storage battery and the voltage of the load is large, a large inrush current is generated between the storage battery and the load.
  • Patent Document 1 As a technique for solving this type of problem, a technique as described in Patent Document 1 has been proposed.
  • a large inrush current is generated between the storage battery and the load by precharging the capacity component in the load using a step-up DCDC converter before connecting the storage battery and the load. That is holding down.
  • the switching element which is a main element for performing the voltage conversion operation must be driven by the driver, and for that purpose, it is necessary to supply power to the driver.
  • a configuration in which a plurality of switching elements are used in parallel or a converter is connected in parallel to be multiphased is used. Due to the increase in the number of parallel connections, etc., the current (drive current) output to the switching element via the driver tends to increase.
  • the present invention has been made to solve at least one of the above-described problems, and even when the power supply voltage is lowered, a situation occurs in which the control unit that receives power supply from the power supply cannot control the precharge operation.
  • An object of the present invention is to realize an in-vehicle power supply device that can suppress this.
  • the in-vehicle power supply device configured to be supplied through the first conductive path
  • the power from the second power supply unit is configured to be supplied through the second conductive path
  • the capacitance component is the first.
  • a switch unit that is electrically connected to a conductive path and switches between an on state that allows energization from the first power source unit to the capacitive component side and an off state that blocks the current between the first power source unit and the capacitive component.
  • the voltage applied to the first conductive path is stepped down and applied to the second conductive path, or the voltage applied to the second conductive path is boosted and the first conductive path is provided.
  • An in-vehicle power supply device applied to a conductive path, A drive switching element and a first inductor that perform an on / off operation in response to a first control signal that is alternately switched between an on signal and an off signal are provided, and the first conductive path is turned on and off by the drive switching element.
  • a first voltage conversion unit that performs a first voltage conversion operation of stepping down a voltage applied to the second conductive path and applying it to the second conductive path;
  • a backflow preventing switching element that is provided in the second conductive path and blocks the flow of current to the first voltage conversion unit in the second conductive path during an off operation;
  • a second inductor provided between the first voltage conversion unit and the backflow prevention switching element in the second conductive path, and provided in series with the backflow prevention switching element;
  • a semiconductor element comprising a diode or a switching element having one end electrically connected between the second inductor and the backflow preventing switching element in the second conductive path and the other end electrically connected to a reference conductive path
  • a control unit for outputting the first control signal to at least the driving switching element;
  • the in-vehicle power supply device can cause the second voltage conversion unit to perform the second voltage conversion operation in response to the establishment of the predetermined precharge condition, so that at least the second voltage conversion is performed in this way. If the switch unit is switched from the off state to the on state after the operation is performed, the switch unit is switched from the off state to the on state in a state where the charging of the capacitance component has progressed to some extent. Immediately after that, an inrush current flowing into the capacitive component from the first power supply unit can be suppressed. In addition, when the control unit causes the second voltage conversion unit to perform the second voltage conversion operation in response to establishment of a predetermined precharge condition, one of the plurality of semiconductor switching elements constituting the backflow prevention switching element.
  • the second control signal is applied only to the element of the part, “the power necessary for the control part to drive the switching element for preventing the backflow accompanying the second voltage conversion operation” can be suppressed. Therefore, even when the voltage of the power source that supplies power to the control unit decreases, it is difficult for the control unit to perform the control of the precharge operation (control of the second voltage conversion operation).
  • FIG. 1 is a block diagram schematically illustrating a configuration of an in-vehicle power supply system including an in-vehicle power supply device according to a first embodiment. It is the block diagram which illustrated concretely the composition of the voltage converter contained in the in-vehicle power supply device. It is the flowchart which illustrated the flow of the pre-charge performed by the control part contained in the vehicle-mounted power supply device.
  • the in-vehicle power supply device of the present invention may include a plurality of third conductive paths that serve as power supply paths from the second conductive paths to the control unit.
  • the plurality of third conductive paths are connected in parallel between the second conductive path and the control unit, and the voltage applied to the conductive path on the second conductive path side is boosted to any of the third conductive paths.
  • a voltage generation unit that applies an output voltage to the conductive path on the control unit side may be provided. According to this configuration, even when the voltage applied to the second conductive path is small, the voltage generation unit boosts the voltage applied to the conductive path on the second conductive path side to increase the voltage on the control unit side. An output voltage can be applied. Therefore, even when the voltage applied to the second conductive path is small, it is easy to ensure the drive voltage necessary for the operation of the control unit.
  • the control unit applies the second control signal only to one semiconductor switching element among the plurality of semiconductor switching elements constituting the backflow prevention switching element in response to establishment of a predetermined precharge condition, and the second voltage conversion unit
  • the second voltage conversion operation may be performed. According to this configuration, since the number of driving semiconductor switching elements can be minimized when performing the second voltage conversion operation, the power consumed during the second voltage conversion operation can be further reduced. Can do.
  • the semiconductor element unit may be a switching element.
  • the switching element when the switching element is turned on, when a current smaller than the critical current of the second inductor or the first inductor flows, the reverse current generated in the second inductor or the first inductor ( Hereinafter, the reverse current) can be passed through the reference conductive path without being stored in the switching element.
  • the output width (duty) of the backflow prevention switching element is the reverse current. Can prevent unintentional changes.
  • control unit turns on the driving switching element during a period in which the second voltage conversion unit performs the second voltage conversion operation. In this way, the voltage drop that occurs in the drive switching element during the second voltage conversion operation can be further reduced.
  • an FET is used as the driving switching element, and the FET is turned off during the second voltage conversion operation, and the current flows from the second conductive path side to the first conductive path side using only the FET body diode as the energization path.
  • a method is also conceivable, there is a concern about loss in the body diode.
  • the driving switching element is turned on during the period in which the second voltage conversion unit performs the second voltage conversion operation, this loss can be reliably reduced.
  • the vehicle-mounted power supply device 1 (hereinafter also referred to as the power supply device 1) according to the first embodiment is a part of the vehicle-mounted power supply system 100 (hereinafter also referred to as the power supply system 100) illustrated in FIG.
  • the power supply system 100 includes a first power supply unit 90, a second power supply unit 92, a first load 94, a second load 96, the power supply device 1, and the like.
  • the power supply system 100 can supply power to the first load 94 using the first power supply unit 90 as a power supply source, and the second power supply unit 92 is added to the capacity component of the first load 94 discharged when the ignition switch is turned off.
  • the system is configured as a power supply source that can be charged (precharged) via the power supply device 1.
  • the first power supply unit 90 is a portion that can supply power to the first load 94 or the second load 96, and is configured as a known vehicle-mounted battery such as a lithium ion battery.
  • the first power supply unit 90 has a high potential side terminal electrically connected to the first conductive path 10 and a low potential side terminal electrically connected to a reference conductive path (ground portion) (not shown).
  • a predetermined output voltage is applied to the first conductive path 10.
  • the first power supply unit 90 is electrically connected to the first load 94 and the power supply device 1 through the first conductive path 10 when the switch unit 98 provided in the first conductive path 10 is switched from the off state to the on state. Connected.
  • the second power supply unit 92 is a part that can supply power to the first load 94 or the second load 96, and is configured as a known vehicle-mounted battery such as a lead battery.
  • the second power supply unit 92 has a high potential side terminal electrically connected to the second conductive path 12 and a low potential side terminal electrically connected to a ground portion (not shown). A predetermined output voltage is applied to 12.
  • the second power supply unit 92 is electrically connected to the second load 96 and the power supply device 1 through the second conductive path 12.
  • the first load 94 includes a capacitive component, and this capacitive component corresponds to an example of the capacitive component of the present invention.
  • the first load 94 is electrically connected to the first conductive path 10 and is connected to the power supply device 1 via the first conductive path 10.
  • the capacitance component may be a capacitor or the like, or may be another capacitance component.
  • the second load 96 includes a capacitive component.
  • the second load 96 is electrically connected to the second conductive path 12 and is connected to the power supply device 1 via the second conductive path 12.
  • the power supply device 1 can step down the voltage applied to the first conductive path 10 and apply it to the second conductive path 12, and step up or step down the voltage applied to the second conductive path 12.
  • 10 is configured as a device that can be applied.
  • the power supply device 1 includes a first voltage detection unit 80, a first current detection unit 84, a second voltage detection unit 82, a second current detection unit 86, a voltage conversion device 20, a control unit 88, and the like.
  • the first voltage detector 80 is configured as a known voltage detector, for example, and detects and outputs the voltage of the first conductive path 10. Specifically, a voltage output from the power supply device 1 to the first load 94 is detected, and a value reflecting the detected voltage (output voltage) (for example, the voltage of the first conductive path 10 itself or a divided value). Etc.) are output as detection values.
  • the first current detector 84 is configured as a known current detector, for example, and detects and outputs a current output from the power supply device 1 to the first load 94.
  • the resistor has a resistor and a differential amplifier interposed in the first conductive path 10, and the voltage across the resistor is input to the differential amplifier, and is generated in the resistor by the current flowing through the first conductive path 10. The amount of voltage drop is amplified by a differential amplifier and output as a detection value.
  • the second voltage detector 82 is configured as a known voltage detector, for example, and detects and outputs the voltage of the second conductive path 12. Specifically, a voltage output from the power supply device 1 to the second load 96 is detected, and a value reflecting the detected voltage (output voltage) (for example, the voltage itself of the second conductive path 12 or a divided value). Etc.) are output as detection values.
  • the second current detection unit 86 is configured as a known current detector, for example, and detects and outputs a current flowing through the second conductive path 12. Specifically, it has a resistor and a differential amplifier interposed in the second conductive path 12, and the voltage across the resistor is input to the differential amplifier, and is generated in the resistor by the current flowing through the second conductive path 12. The amount of voltage drop is amplified by a differential amplifier and output as a detection value.
  • the voltage converter 20 includes a plurality of first voltage converters 21 provided in parallel to each other, and is configured as a multiphase DCDC converter.
  • the voltage converter 20 has one end electrically connected to the first conductive path 10 and the other end electrically connected to the second conductive path 12, and the voltage applied to the first conductive path 10.
  • the voltage applied to the second conductive path 12 can be stepped down and the voltage applied to the second conductive path 12 can be stepped up and applied to the first conductive path 10.
  • the control unit 88 is a part that controls the operation of the voltage conversion device 20, and mainly includes a control circuit, a first drive unit 50, and a second drive unit 32.
  • the control circuit in the control unit 88 is configured as a microcomputer, for example, and includes an arithmetic device such as a CPU, a memory such as a ROM or a RAM, an AD converter, and the like.
  • the control unit 88 is supplied with power from the first power supply unit 90 or the second power supply unit 92.
  • the control unit 88 is electrically connected to the first voltage detection unit 80, the second voltage detection unit 82, the first current detection unit 84, and the second current detection unit 86, and acquires the detection value of each detection unit. obtain.
  • the control unit 88 has a function of determining a duty ratio based on the acquired detection value and a function of generating and outputting a PWM signal having the determined duty ratio.
  • the control unit 88 individually controls the plurality of first voltage conversion units 21 by generating the PWM signal SG1 and outputting the PWM signal SG1 to the first drive unit 50 provided in each of the first voltage conversion units 21.
  • the first voltage converter 21 (voltage converter 20) can be controlled to step up or step down.
  • the power supply device 1 includes a plurality of first voltage conversion units 21, a plurality of backflow prevention switching elements 24, a second inductor 26, a switching element 28, a capacitor 30, a second driving unit 32, and signal generation.
  • a circuit 34 and the like are provided.
  • a plurality (all) of the first voltage converters 21 are provided in parallel with each other.
  • Each of the first voltage converters 21 is configured as a synchronous rectification step-up / step-down DCDC converter.
  • the first voltage converter 21 steps down the voltage applied to the first conductive path 10 and applies it to the second conductive path 12.
  • a conversion operation may be performed.
  • each of the first voltage converters 21 has one end electrically connected to the first conductive path 10 and the other end electrically connected to the second conductive path 12.
  • Each of the first voltage converters 21 includes a high-side switching element 40, a low-side switching element 42, and a first inductor 44.
  • the switching element 40 is configured as an N-channel MOSFET, the first conductive path 10 is electrically connected to the drain, the drain of the switching element 42 and the one end of the first inductor 44 are connected to the source. Is connected.
  • a drain of the switching element 42 is connected to a connection point between the switching element 40 and the first inductor 44.
  • the source of the switching element 42 is electrically connected to the reference conductive path.
  • the switching element 40 corresponds to an example of a driving switching element.
  • the first voltage converters 21 each include a high-side capacitor 46 and a low-side capacitor 48.
  • One end of the capacitor 46 is connected to the first conductive path 10, and the other end is electrically connected to the reference conductive path.
  • One end of the capacitor 48 is connected to the second conductive path 12, and is connected to the other end of the first inductor 44 and one end of the second inductor 26 via the second conductive path 12. The other end of the capacitor 48 is electrically connected to the reference conductive path.
  • a plurality of first drive units 50 are provided respectively corresponding to the plurality of first voltage conversion units 21.
  • the first drive unit 50 corresponds to an example of a drive unit, and switches on signals (PWM signals) for alternately turning on each of the switching elements 40 and 42 based on the PWM signal SG1 generated by the control unit 88. Applied to the gates of the elements 40 and 42.
  • PWM signals signals for alternately turning on each of the switching elements 40 and 42 based on the PWM signal SG1 generated by the control unit 88.
  • the PWM signal output from the first drive unit 50 to the switching elements 40 and 42 corresponds to an example of a control signal.
  • the PWM signal output from the first driving unit 50 to the switching elements 40 and 42 is also referred to as a control signal.
  • the plurality (all) of the backflow prevention switching elements 24 have a configuration in which a plurality of semiconductor switching elements 24A, 24B, 24C... Are connected in parallel, and all of the semiconductor switching elements 24A, 24B, 24C. It has a function of interrupting the flow of current to the first voltage converter 21 side in the second conductive path 12 during the off operation.
  • each of the plurality of semiconductor switching elements 24A, 24B, 24C... Is configured as an N-channel type MOSFET, and each drain is on the second power supply section 92 side in the second conductive path 12.
  • Each of the sources is electrically connected to the conductive path on the first voltage conversion unit 21 side in the second conductive path 12.
  • the second inductor 26 is provided between the first voltage converter 21 and the backflow prevention switching element 24 in the second conductive path 12 and is provided in series with the backflow prevention switching element 24. Specifically, one end of the second inductor 26 is electrically connected to a connection point between the first inductor 44 and the capacitor 48 of each first voltage conversion unit 21, and the other end is a backflow prevention switching element. 24 sources and the drain of the switching element 28 are electrically connected.
  • the switching element 28 corresponds to an example of a semiconductor element unit, and is configured as, for example, a MOSFET.
  • the switching element 28 has a drain (one end) electrically connected between the second inductor 26 and the backflow prevention switching element 24 in the second conductive path 12 and a source (the other end) electrically connected to the reference conductive path. It is connected.
  • the capacitor 30 has one end connected to the second power source 92 side of the backflow prevention switching element 24 in the second conductive path 12 and the other end electrically connected to the reference conductive path.
  • the second voltage conversion unit 22 is configured by the backflow prevention switching element 24, the second inductor 26, and the switching element 28 (semiconductor element unit).
  • the second voltage converter 22 constitutes a synchronous rectification step-up / step-down DCDC converter.
  • the first voltage converter 21 side of the second conductive path 12 is used as the output conductive path 12B, and the first voltage converter
  • the side opposite to the 21 side is the input side conductive path 12A, and a second voltage conversion operation can be performed in which the voltage applied to the input side conductive path 12A is stepped down to apply the output voltage to the output side conductive path 12B.
  • the second drive unit 32 Based on the PWM signal SG ⁇ b> 2 generated by the control unit 88, the second drive unit 32 generates an on signal (PWM signal) for alternately turning on each of the backflow prevention switching element 24 and the switching element 28. Applied to the gates of the element 24 and the switching element 28.
  • the PWM signal output from the second drive unit 32 to the backflow prevention switching element 24 corresponds to an example of a second control signal.
  • the PWM signal that the second drive unit 32 outputs to the backflow prevention switching element 24 is also referred to as a control signal.
  • a control signal from the second drive unit 32 is directly applied to the gates of some of the backflow prevention switching elements 24A among the plurality of backflow prevention switching elements 24 (one in the first embodiment), The control signal from the second drive unit 32 is supplied to the other backflow prevention switching element 24B via the signal generation circuit 34.
  • the signal generation circuit 34 is provided between the second drive unit 32 and the gate of the backflow prevention switching element 24B.
  • the signal generation circuit 34 blocks the control signal output from the second drive unit 32 to the backflow prevention switching element 24B based on the blocking instruction signal SG3 output from the control unit 88.
  • a third conductive path 60 is provided between the second conductive path 12 and the first drive unit 50 and the second drive unit 32.
  • the third conductive path 60 is configured so that a part thereof is in parallel.
  • a diode 62 is provided in one conductive path configured in parallel, and a diode 64 and a voltage generation unit 66 are provided in the other conductive path. Is provided.
  • the diode 62 has an anode connected to the second conductive path 12 and a cathode connected to the first drive unit 50 and the second drive unit 32.
  • the voltage generation unit 66 is connected in series to the diode 64 and is provided on the second power supply unit 92 side of the diode 64.
  • the diode 64 has an anode connected to the voltage generation unit 66 and a cathode connected to the first drive unit 50 and the second drive unit 32.
  • the voltage generation unit 66 is configured as a booster circuit, for example, and boosts the voltage input from the second conductive path 12 side based on the boost instruction signal SG4 from the control unit 88 to boost the first drive unit 50 and the second drive unit 50. It can output to the drive part 32 side.
  • the operation of the power supply device 1 will be described.
  • the power supply device 1 switches the switch unit 98 from the off state to the on state in order to supply power from the first power supply unit 90 to the first load 94
  • a large current is suddenly applied to the capacitance component existing in the first load 94.
  • the operation of precharging the capacitive component of the first load 94 using the power of the second power supply unit 92 can be performed.
  • the control unit 88 is configured to repeatedly execute the precharge control shown in FIG. 3, and determines whether or not a predetermined precharge condition is satisfied with the start of the precharge control of FIG.
  • the precharge condition may be, for example, “the switch unit 98 (eg, the ignition switch) has been switched from the off state to the on state”, or may be a predetermined condition other than this.
  • the control unit 88 determines that the precharge condition is satisfied in step S1
  • the control unit 88 causes the second voltage conversion unit 22 to start the second voltage conversion operation in step S2.
  • the second voltage conversion unit 22 steps down the voltage applied to the input side conductive path 12A of the second conductive path 12 in accordance with a control signal given from the outside, and the output side conductive path 12B. It is the operation applied to. Specifically, it is realized as follows.
  • the control unit 88 determines whether or not the switching condition is satisfied in step S3 after starting the second voltage conversion operation in step S2. Specifically, in step S3, the control unit 88 determines whether or not the voltage of the first conductive path 10 is equal to or higher than a predetermined threshold based on the detection value of the first voltage detection unit 80, and the first conductive path If the voltage of 10 is less than the predetermined threshold value, the process proceeds to No in step S3. If the voltage of the first conductive path 10 is equal to or higher than the predetermined threshold value, the process proceeds to Yes in step S3, and the second voltage conversion operation is performed in step S4. To the third voltage conversion operation.
  • control unit 88 determines the duty ratio based on the detection value of the first voltage detection unit 80 or the first current detection unit 84, and generates the PWM signal SG2 having the determined duty ratio.
  • the PWM signal SG ⁇ b> 2 is output to the second drive unit 32.
  • the second drive unit 32 receiving the PWM signal SG2 outputs a control signal having a duty ratio of the PWM signal SG2 to one switching element 24A of the backflow prevention switching elements 24, and is complementary to the control signal.
  • the PWM signal is output to the switching element 28.
  • the synchronous rectification step-down operation in which the switching element 28 is turned off when the switching element 24A is turned on and the switching element 28 is turned on when the switching element 24 is turned off is reduced in dead time.
  • the control signal from the second drive unit 32 is also input to the signal generation circuit 34.
  • the signal generation circuit 34 When the signal SG3 is a cutoff instruction signal, the signal generation circuit 34 outputs an off signal to the switching elements 24B and 24C. At this time, the switching elements 24B and 24C are turned off. Further, when the signal SG3 is a permission signal, the signal generation circuit 34 outputs the same signal as the signal output from the second drive unit 32 to the gate of the switching element 24A to the switching elements 24B and 24C.
  • the control unit 88 is a signal that is input to the signal generation circuit 34 while the second voltage conversion unit 22 performs the second voltage conversion operation (while the control signal is output to the gate of the switching element 24A).
  • the switching elements 24B and 24C are maintained in the OFF state while the second voltage conversion unit 22 is performing the second voltage conversion operation. That is, while the second voltage conversion unit 22 is performing the second voltage conversion operation, the control signal output by the second drive unit 32 is output only to the switching element 24A, and the switching elements 24B and 24C are turned off. Since the state is maintained, only the switching element 24A is turned on / off.
  • the second voltage conversion unit 22 steps down the voltage applied to the input side conductive path 12A.
  • a second voltage conversion operation is performed so as to be applied to the output side conductive path 12B.
  • a feedback calculation is performed to calculate the duty so that the voltage applied to the first conductive path 10 approaches a desired target voltage lower than the output voltage when the second power supply unit 92 is fully charged.
  • the control is repeated so that the voltage applied to the first conductive path 10 approaches the desired target voltage.
  • the capacitance component of the first load 94 is charged.
  • step S3 When it is determined that the predetermined switching condition is satisfied in step S3, that is, when it is determined that the voltage of the first conductive path 10 is equal to or higher than the predetermined threshold, the control unit 88 in step S4, the second voltage conversion unit 22 is determined. The second voltage conversion operation by is terminated, and the third voltage conversion operation by the first voltage conversion unit 21 is started. The third voltage conversion operation performs a synchronous rectification boosting operation in the voltage conversion device 20 by alternately applying an ON signal based on the PWM signal SG1 to the switching elements 40 and 42 from the first drive unit 50, In this operation, the voltage applied to the second conductive path 12 is boosted and applied to the first conductive path 10.
  • the control unit 88 stops outputting the cutoff instruction signal SG3 to the signal generation circuit 34 and outputs an ON signal to the second drive unit 32.
  • the second drive unit 32 receiving this ON signal outputs an ON signal to all the switching elements 24A, 24B, 24C,... Constituting the backflow prevention switching element 24 and outputs an OFF signal to the switching element 28. To do. Therefore, during the third voltage conversion operation, all the switching elements 24A, 24B, 24C... Constituting the backflow prevention switching element 24 are maintained in the on state, and the switching element 28 is maintained in the off state.
  • the control unit 88 determines the duty ratio based on the detection value of the first voltage detection unit 80 or the first current detection unit 84, and generates the PWM signal SG1 having the determined duty ratio. Specifically, the feedback calculation for calculating the duty is repeated so that the voltage applied to the first conductive path 10 approaches a desired target voltage that is higher than the output voltage when the second power supply unit 92 is fully charged, Control is performed so that the voltage applied to the conductive path 10 approaches a desired target voltage.
  • the control unit 88 outputs the PWM signal SG ⁇ b> 1 generated in this way only to the first drive unit 50 corresponding to one first voltage conversion unit 21 among the plurality of first voltage conversion units 21.
  • the first drive unit 50 having received the PWM signal SG1 outputs a control signal having a duty ratio of the PWM signal SG1 to the switching element 42 and switches a control signal complementary to the control signal (PWM signal SG1). Output to the element 40. That is, when the switching element 42 is turned on, the switching element 40 is turned off, and when the switching element 42 is turned off, the synchronous rectification control that turns on the switching element 40 sets the dead time. Execute in the form.
  • the control unit 88 outputs an off signal to the first drive unit 50 of the other first voltage conversion unit 21 among the plurality of first voltage conversion units 21.
  • the first driving unit 50 to which the off signal is input maintains the corresponding switching elements 40 and 42 in the off state.
  • a third voltage conversion operation is performed in which the voltage applied to the second conductive path 12 is boosted and applied to the first conductive path 10.
  • charges can be further accumulated with respect to the capacitance component of the first load 94 in which charges are accumulated in the second voltage conversion operation, and the charge voltage of the capacitance component is further increased. Can do.
  • control unit 88 determines whether or not a predetermined precharge end condition is satisfied in step S5.
  • the predetermined precharge end condition is, for example, “the voltage of the first conductive path 10 exceeds a predetermined voltage”.
  • step S5 When it is determined in step S5 that the precharge end condition is not satisfied, the control unit 88 repeats step S5 until the precharge end condition is satisfied. During this time, charging of the capacitive component of the first load 94 proceeds.
  • step S5 the control unit 88 ends the third voltage conversion operation in step S6. That is, the output of the PWM signal SG1, the PWM signal SG2, the cutoff instruction signal SG3, and the boost instruction signal SG4 is stopped. Thereby, the precharge to the first load 94 is completed.
  • the control unit 88 switches the switch unit 98 from the off state to the on state after finishing the third voltage conversion operation in step S6.
  • the switch unit 98 can be switched to the on state while the capacity component of the first load 94 is charged to some extent, a situation in which a large current flows into the capacity component of the first load 94 is unlikely to occur.
  • the voltage converter 20 performs the above-described step-down operation, and steps down the voltage applied to the first conductive path 10 to reduce the second conductive path. It is sufficient to function so as to apply a desired output voltage.
  • the control unit 88 outputs the boost instruction signal SG4 to the voltage generation unit 66 during the first voltage conversion operation, the second voltage conversion operation, or the third voltage conversion operation.
  • the voltage generation unit 66 boosts the input voltage (voltage applied to the second conductive path 12) and outputs it to the anode side of the diode 64 during the period when the boost instruction signal SG4 is given.
  • the control unit 88 may output the boost instruction signal SG4 during any or all of the periods during the first voltage conversion operation, the second voltage conversion operation, and the third voltage conversion operation.
  • the boost instruction signal SG4 may be output only when the voltage applied to the two conductive paths 12 is equal to or lower than a predetermined value.
  • the second voltage conversion unit 22 is configured to include the backflow prevention switching element 24, the second inductor 26, and the switching element 28 (semiconductor element unit).
  • the first voltage conversion unit 21 side from itself is the output side conductive path 12B
  • the opposite side of the first voltage conversion unit 21 side is the input side conductive path 12A
  • the input side conductive path A second voltage conversion operation is performed in which the voltage applied to 12A is stepped down to apply the output voltage to the output-side conductive path 12B.
  • the backflow prevention switching element 24 has a configuration in which a plurality of semiconductor switching elements 24A, 24B, 24C,...
  • control unit 88 responds when a predetermined precharge condition is established.
  • the second control signal in which the ON signal and the OFF signal are alternately switched is given to only some of the plurality of semiconductor switching elements 24A, 24B, 24C... Constituting the backflow prevention switching element 24. Then, the second voltage conversion unit 22 is caused to perform the second voltage conversion operation.
  • the power supply device 1 can cause the second voltage conversion unit 22 to perform the second voltage conversion operation in accordance with the establishment of the predetermined precharge condition. Therefore, at least the second voltage conversion operation is performed as described above. If the switch unit 98 is switched from the off state to the on state after the switch is performed, the switch unit 98 is switched from the off state to the on state in a state where the charging of the capacitance component has progressed to some extent. The inrush current flowing into the capacitive component from the first power supply unit 90 immediately after switching can be suppressed.
  • control unit 88 causes the second voltage conversion unit 22 to perform the second voltage conversion operation in response to the establishment of a predetermined precharge condition
  • a plurality of semiconductor switching elements 24A constituting the backflow prevention switching element 24 are provided. , 24B, 24C,..., 24B, 24C,..., “A control unit for driving the backflow prevention switching element 24 in association with the second voltage conversion operation. It is possible to suppress the “power required by 88”. Therefore, even when the voltage of the power supply that supplies power to the control unit 88 is reduced, it is difficult for the control unit 88 to perform the precharge operation control (control of the second voltage conversion operation).
  • the power supply device 1 includes a plurality of third conductive paths 60 serving as power supply paths from the second conductive paths 12 to the control unit 88.
  • the plurality of third conductive paths 60 are connected in parallel between the second conductive path 12 and the control unit 88, and any of the third conductive paths 60 is connected to a conductive path on the second conductive path 12 side.
  • a voltage generation unit 66 is provided that boosts the applied voltage and applies an output voltage to the conductive path on the control unit 88 side. According to this configuration, even when the voltage applied to the second conductive path 12 is small, the voltage generating unit 66 boosts the voltage applied to the conductive path on the second conductive path 12 side to increase the control unit. An output voltage can be applied to the conductive path on the 88 side. Therefore, even when the voltage applied to the second conductive path 12 is small, a drive voltage necessary for the operation of the control unit 88 is easily secured.
  • control unit 88 applies only to one semiconductor switching element among the plurality of semiconductor switching elements 24A, 24B, 24C,... Constituting the backflow prevention switching element 24 in response to establishment of a predetermined precharge condition.
  • a second control signal is given to cause the second voltage converter 22 to perform a second voltage conversion operation. According to this configuration, since the number of driving semiconductor switching elements can be minimized when performing the second voltage conversion operation, the power consumed during the second voltage conversion operation can be further reduced. Can do.
  • the semiconductor element portion is the switching element 28. Therefore, for example, when the switching element 28 is turned on, when a current smaller than the critical current of the second inductor 26 or the first inductor 44 flows, the reverse direction generated in the second inductor 26 or the first inductor 44 is generated.
  • a current hereinafter also referred to as a reverse current
  • the reverse current can be passed through the reference conductive path without being stored in the switching element 28. Accordingly, when the second voltage conversion operation is performed, the reverse current is prevented from being applied to the output from the backflow prevention switching element 24, and therefore the output width (duty) of the backflow prevention switching element 24 is reversed. Unintentional change due to the direction current can be suppressed.
  • control unit 88 turns on the driving switching element 40 during a period in which the second voltage conversion unit 22 performs the second voltage conversion operation. In this way, the voltage drop that occurs in the drive switching element 40 during the second voltage conversion operation can be further reduced.
  • an FET is used as the switching element 40, and the second conductive path is set with the switching element 40 (FET) turned off during the second voltage conversion operation and only the FET body diode is used as a current-carrying path.
  • FET switching element 40
  • the switching element 40 is turned on, this loss can be reliably reduced. Note that the switching element 42 may be maintained in the off state during the second voltage conversion operation.
  • control signal is output to only one of the plurality of backflow prevention switching elements 24 in the second voltage conversion operation, but two or more backflow prevention switching elements may be used in some cases.
  • the control signal may be output to 24.
  • the first power supply unit 90 (first load 94) side is set to the high voltage side
  • the second power supply unit 92 (second load 96) side is set to the low voltage side
  • the load 94) side may be the low voltage side
  • the second power supply unit 92 (second load 96) side may be the high voltage side. That is, the present invention can be applied to a configuration in which a low voltage side capacitance component is precharged.
  • the voltage generation unit 66 is provided in the third conductive path 60, but the voltage generation unit 66 may not be provided.
  • the control signal is output only to the switching element 40 of one first voltage conversion unit 21 among the plurality of first voltage conversion units 21. If it is the switching element 40 of the 1 voltage conversion part 21, you may make it output a control signal to the switching element 40 of two or more 1st voltage conversion parts 21.
  • the semiconductor element portion is a switching element, but may be a diode.
  • the anode is electrically connected to the reference conductive path
  • the cathode is electrically connected between the second inductor 26 and the backflow prevention switching element 24 in the second conductive path 12, and the second voltage conversion is performed.
  • the unit 22 may function as a diode-type DCDC converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

電源電圧が低下しても、この電源から電力供給を受ける制御部がプリチャージ動作を制御できなくなる事態が発生することを抑制する。 電源装置(1)において、逆流防止用スイッチング素子(24)は、複数の半導体スイッチング素子(24A,24B,24C)が並列に接続された構成をなす。制御部(88)は、所定のプリチャージ条件の成立に応じて、逆流防止用スイッチング素子(24)を構成する複数の半導体スイッチング素子(24A,24B,24C)のうちの一部の素子にのみオン信号とオフ信号とが交互に切り替わる第2制御信号を与えることで、第2電圧変換部(22)に第2の電圧変換動作を行わせる。

Description

車載用の電源装置
 本発明は、車載用の電源装置に関するものである。
 蓄電池を備えた車両では、蓄電池の消費電流を抑制するために、IGオフ時などにこの蓄電池とこの蓄電池に接続された負荷とを切り離して待機することがある。この待機状態のとき、この負荷内の容量成分に蓄えられていた電荷が放電され、蓄電池の端子電圧と負荷の電圧の差が大きくなる。蓄電池の端子電圧とこの負荷の電圧との差が大きい状態で蓄電池とこの負荷とを接続すると、蓄電池とこの負荷との間で大きな突入電流が生じてしまう。
 この種の問題を解決するための技術としては、特許文献1のような技術が提案されている。特許文献1の技術では、蓄電池と負荷とを接続する前に、昇圧型のDCDCコンバータを利用して負荷内の容量成分をプリチャージすることにより、蓄電池と負荷との間で大きな突入電流が生じることを抑えている。
特開2017-22805号公報
 ところで、DCDCコンバータによってプリチャージを行うためには、電圧変換動作を行う主要素となるスイッチング素子をドライバによって駆動しなければならず、そのためにはドライバに対して電力を供給する必要がある。一方、近年では、DCDCコンバータに要求される性能を満たすために、複数のスイッチング素子を並列にして利用したり、コンバータを並列に接続して多相化したりする構成が用いられており、このような並列数の増加等により、ドライバを介してスイッチング素子等に出力される電流(駆動電流)は増加する傾向にある。この結果、ドライバに電力を供給する電源とドライバとの間の経路に介在する抵抗成分やダイオード成分において、より大きな電圧降下が生じやすくなり、電源電圧(ドライバに電力を供給するための電源の電圧)が低下した場合に、ドライバが動作するために必要な大きさの電圧(閾値電圧)を満たせなくなるおそれがある。
 本発明は上述した課題の少なくとも一つを解決するためになされたものであり、電源電圧が低下しても、この電源から電力供給を受ける制御部がプリチャージ動作の制御を行えない事態が発生することを抑制し得る車載用の電源装置を実現することを目的とするものである。
 本発明の第1態様である車載用の電源装置は、
 第1電源部からの電力が第1導電路を介して供給される構成をなし、第2電源部からの電力が第2導電路を介して供給される構成をなし、容量成分が前記第1導電路に電気的に接続され、前記第1電源部と前記容量成分との間に前記第1電源部から前記容量成分側への通電を許容するオン状態と遮断するオフ状態とに切り替わるスイッチ部が設けられた車載用の電源システムにおいて、前記第1導電路に印加された電圧を降圧して第2導電路に印加、または前記第2導電路に印加された電圧を昇圧して前記第1導電路に印加する車載用の電源装置であって、
 オン信号とオフ信号とが交互に切り替えられる第1制御信号が与えられることに応じてオンオフ動作する駆動用スイッチング素子及び第1インダクタを備え、前記駆動用スイッチング素子のオンオフ動作により前記第1導電路に印加された電圧を降圧して前記第2導電路に印加する第1の電圧変換動作を行う第1電圧変換部と、
 前記第2導電路に設けられ、オフ動作時に前記第2導電路における前記第1電圧変換部側への電流の流れ込みを遮断する逆流防止用スイッチング素子と、
 前記第2導電路における前記第1電圧変換部と前記逆流防止用スイッチング素子との間に設けられ、前記逆流防止用スイッチング素子に対して直列に設けられる第2インダクタと、
 一端が前記第2導電路における前記第2インダクタと前記逆流防止用スイッチング素子との間に電気的に接続され、他端が基準導電路に電気的に接続されるダイオード又はスイッチング素子からなる半導体素子部と、
 少なくとも前記駆動用スイッチング素子に対して前記第1制御信号を出力する制御部と、
 を備え、
 前記逆流防止用スイッチング素子と前記第2インダクタと前記半導体素子部とを備え、前記第2導電路において、自身よりも前記第1電圧変換部側を出力側導電路とし、前記第1電圧変換部側とは反対側を入力側導電路とし、前記入力側導電路に印加された電圧を降圧して前記出力側導電路に出力電圧を印加する第2の電圧変換動作を行う第2電圧変換部が構成され、
 前記逆流防止用スイッチング素子は、複数の半導体スイッチング素子が並列に接続された構成をなし、
 前記制御部は、所定のプリチャージ条件の成立に応じて、前記逆流防止用スイッチング素子を構成する複数の前記半導体スイッチング素子のうちの一部の素子にのみオン信号とオフ信号とが交互に切り替わる第2制御信号を与えることで、前記第2電圧変換部に第2の電圧変換動作を行わせる。
 第1態様の車載用の電源装置は、所定のプリチャージ条件の成立に応じて第2電圧変換部に第2の電圧変換動作を行わせることができるため、少なくともこのように第2の電圧変換動作が行われた後にスイッチ部がオフ状態からオン状態に切り替えられる状況であれば、容量成分の充電がある程度進行した状況でスイッチ部がオフ状態からオン状態に切り替えられることになるため、その切り替え直後に第1電源部から容量成分に流れ込む突入電流を抑えることができる。
 しかも、所定のプリチャージ条件の成立に応じて制御部が第2電圧変換部に第2の電圧変換動作を行わせる場合に、逆流防止用スイッチング素子を構成する複数の半導体スイッチング素子のうちの一部の素子にのみ第2制御信号を与える構成であるため、「第2の電圧変換動作に伴って逆流防止用スイッチング素子を駆動するために制御部で必要となる電力」を抑えることができる。ゆえに、制御部に電力を与える電源の電圧が低下しても、制御部がプリチャージ動作の制御(第2の電圧変換動作の制御)を行えない事態は発生しにくくなる。
実施例1の車載用の電源装置を備えた車載用電源システムの構成を概略的に例示するブロック図である。 車載用の電源装置に含まれる電圧変換装置の構成を具体的に例示したブロック図である。 車載用の電源装置に含まれる制御部によってなされるプリチャージの流れを例示したフローチャートである。
 本発明の車載用の電源装置は、第2導電路から制御部への電力供給経路となる複数の第3導電路を備えていてもよい。そして、複数の第3導電路は、第2導電路と制御部との間に並列に接続され、いずれかの第3導電路には、第2導電路側の導電路に印加された電圧を昇圧して制御部側の導電路に出力電圧を印加する電圧生成部が設けられていてもよい。
 この構成によれば、第2導電路に印加された電圧が小さい場合であっても、電圧生成部は、第2導電路側の導電路に印加された電圧を昇圧して制御部側の導電路に出力電圧を印加することができる。よって、第2導電路に印加された電圧が小さい場合であっても、制御部の動作に必要な駆動電圧が確保されやすくなる。
 制御部は、所定のプリチャージ条件の成立に応じて、逆流防止用スイッチング素子を構成する複数の半導体スイッチング素子のうちの1つの半導体スイッチング素子にのみ第2制御信号を与え、第2電圧変換部に第2の電圧変換動作を行わせるようにしてもよい。
 この構成によれば、第2の電圧変換動作を行う際に半導体スイッチング素子の駆動数を最小限に抑えることができるため、第2の電圧変換動作の際に消費する電力をより一層小さく抑えることができる。
 また、本発明の車載用の電源装置において、半導体素子部は、スイッチング素子としてもよい。
 この構成によれば、例えば、スイッチング素子をオン状態にすることによって、第2インダクタや第1インダクタの臨界電流より小さな電流が流れた場合に第2インダクタや第1インダクタに生じる逆向きの電流(以降、逆向き電流ともいう)をスイッチング素子に蓄電することなく基準導電路に流すことができる。これにより、第2の電圧変換動作を行う場合、逆流防止用スイッチング素子からの出力に逆向き電流が加わることが防止されるため、逆流防止用スイッチング素子の出力の幅(デューティ)が逆向き電流によって意図せずに変化してしまうことを抑えることができる。
 また、本発明の車載用の電源装置において、制御部は、第2電圧変換部に第2の電圧変換動作を行わせる期間に、駆動用スイッチング素子をオン状態にする。このようにすれば、第2の電圧変換動作の際に駆動用スイッチング素子で生じる電圧降下をより小さく抑えることができる。
 例えば、駆動用スイッチング素子としてFETを用い、第2の電圧変換動作の際にFETをオフ状態にするとともにFETのボディダイオードのみを通電経路として第2導電路側から第1導電路側へと電流を流す方法も考えられるが、この方法では、ボディダイオードでの損失が懸念される。しかし、第2電圧変換部に第2の電圧変換動作を行わせる期間に駆動用スイッチング素子をオン状態にすれば、この損失を確実に低減することができる。
<実施例1>
 以下、本発明を具体化した実施例1について説明する。
 実施例1の車載用の電源装置1(以下、電源装置1ともいう)は、図1で示す車載用電源システム100(以下、電源システム100ともいう)の一部をなすものである。電源システム100は、第1電源部90、第2電源部92、第1負荷94、第2負荷96、電源装置1などを備える。電源システム100は、第1電源部90を電力供給源として第1負荷94に電力を供給し得るとともに、イグニッションスイッチオフ時などに放電した第1負荷94の容量成分に、第2電源部92を電力供給源とし電源装置1を介して蓄電(プリチャージ)し得るシステムとして構成されている。
 第1電源部90は、第1負荷94又は第2負荷96に電力を供給し得る部分であり、例えばリチウムイオン電池等の公知の車載バッテリとして構成されている。第1電源部90は、高電位側の端子が第1導電路10に電気的に接続されており、低電位側の端子が図示しない基準導電路(グラウンド部)に電気的に接続されており、第1導電路10に対して所定の出力電圧を印加する。第1電源部90は、第1導電路10に設けられたスイッチ部98がオフ状態からオン状態に切り替わると、第1導電路10を介して、第1負荷94及び電源装置1に電気的に接続される。
 第2電源部92は、第1負荷94又は第2負荷96に電力を供給し得る部分であり、例えば鉛バッテリ等の公知の車載バッテリとして構成されている。第2電源部92は、高電位側の端子が第2導電路12に電気的に接続されており、低電位側の端子が図示しないグラウンド部に電気的に接続されており、第2導電路12に対して所定の出力電圧を印加する。第2電源部92は第2導電路12を介して、第2負荷96及び電源装置1に電気的に接続される。
 第1負荷94は、容量成分を含んでおり、この容量成分が本発明の容量成分の一例に相当する。第1負荷94は、第1導電路10に電気的に接続されており、第1導電路10を介して電源装置1に接続されている。容量成分は、コンデンサなどであってもよく、その他の容量成分であってもよい。
 第2負荷96は、容量成分を含んでいる。第2負荷96は、第2導電路12に電気的に接続されており、第2導電路12を介して電源装置1に接続されている。
 電源装置1は、第1導電路10に印加された電圧を降圧して第2導電路12に印加し得るとともに、第2導電路12に印加された電圧を昇圧又は降圧して第1導電路10に印加し得る装置として構成されている。電源装置1は、第1電圧検出部80、第1電流検出部84、第2電圧検出部82、第2電流検出部86、電圧変換装置20、制御部88などを備える。
 第1電圧検出部80は、例えば公知の電圧検出器として構成されており、第1導電路10の電圧を検出して出力する。具体的には、電源装置1から第1負荷94に出力される電圧を検出して、検出した電圧(出力電圧)を反映した値(例えば、第1導電路10の電圧そのもの、或いは分圧値等)を検出値として出力する。
 第1電流検出部84は、例えば公知の電流検出器として構成されており、電源装置1から第1負荷94に出力される電流を検出して出力する。具体的には、第1導電路10に介在する抵抗器と差動増幅器とを有し、抵抗器の両端電圧が差動増幅器に入力され、第1導電路10を流れる電流によって抵抗器に生じた電圧降下量が差動増幅器で増幅され、検出値として出力されるようになっている。
 第2電圧検出部82は、例えば公知の電圧検出器として構成されており、第2導電路12の電圧を検出して出力する。具体的には、電源装置1から第2負荷96に出力される電圧を検出して、検出した電圧(出力電圧)を反映した値(例えば、第2導電路12の電圧そのもの、或いは分圧値等)を検出値として出力する。
 第2電流検出部86は、例えば公知の電流検出器として構成されており、第2導電路12を流れる電流を検出して出力する。具体的には、第2導電路12に介在する抵抗器と差動増幅器とを有し、抵抗器の両端電圧が差動増幅器に入力され、第2導電路12を流れる電流によって抵抗器に生じた電圧降下量が差動増幅器で増幅され、検出値として出力されるようになっている。
 電圧変換装置20は、互いに並列に設けられた複数の第1電圧変換部21を有しており、多相型のDCDCコンバータとして構成されている。電圧変換装置20は、一端が第1導電路10に電気的に接続されているとともに、他端が第2導電路12に電気的に接続されており、第1導電路10に印加された電圧を降圧して第2導電路12に印加し得るとともに、第2導電路12に印加された電圧を昇圧して第1導電路10に印加し得る構成をなす。
 制御部88は、電圧変換装置20の動作を制御する部分であり、主として、制御回路と、第1駆動部50と、第2駆動部32とを備えた構成をなす。制御部88において制御回路は、例えばマイクロコンピュータとして構成されており、CPU等の演算装置、ROM又はRAM等のメモリ、AD変換器等を有している。制御部88には、第1電源部90又は第2電源部92から電力が供給される。
 制御部88は、第1電圧検出部80、第2電圧検出部82、第1電流検出部84、第2電流検出部86に電気的に接続されており、各検出部の検出値を取得し得る。制御部88は、取得した検出値に基づいてデューティ比を決定する機能、及び決定したデューティ比のPWM信号を生成し出力する機能を有している。制御部88は、PWM信号SG1を生成して、第1電圧変換部21の各々に設けられた第1駆動部50に出力することによって、複数の第1電圧変換部21を個別に制御することができ、これにより第1電圧変換部21(電圧変換装置20)が昇圧又は降圧するように制御し得る。
 電源装置1は、図2に示すように、複数の第1電圧変換部21、複数の逆流防止用スイッチング素子24、第2インダクタ26、スイッチング素子28、コンデンサ30、第2駆動部32、信号生成回路34などを備える。
 複数(全て)の第1電圧変換部21は、互いに並列に設けられている。第1電圧変換部21は、各々、同期整流方式の昇降圧型DCDCコンバータとして構成されており、第1導電路10に印加された電圧を降圧して第2導電路12に印加する第1の電圧変換動作を行い得る。また、第1電圧変換部21は、各々、一端が第1導電路10に電気的に接続されるとともに、他端が第2導電路12に電気的に接続されている。
 第1電圧変換部21は、各々、ハイサイド側のスイッチング素子40と、ローサイド側のスイッチング素子42と、第1インダクタ44と、を備える。スイッチング素子40は、Nチャネル型のMOSFETとして構成されており、ドレインには第1導電路10が電気的に接続されており、ソースにはスイッチング素子42のドレインと、第1インダクタ44の一端とが接続されている。スイッチング素子40と第1インダクタ44との接続点には、スイッチング素子42のドレインが接続されている。スイッチング素子42のソースは基準導電路に電気的に接続されている。なお、スイッチング素子40が駆動用スイッチング素子の一例に相当する。
 第1電圧変換部21は、各々、ハイサイド側のコンデンサ46と、ローサイド側のコンデンサ48と、を備える。コンデンサ46の一端は第1導電路10に接続されており、他端は基準導電路に電気的に接続されている。コンデンサ48の一端は第2導電路12に接続されており、第2導電路12を介して、第1インダクタ44の他端及び第2インダクタ26の一端に接続されている。コンデンサ48の他端は基準導電路に電気的に接続されている。
 複数の第1電圧変換部21にそれぞれ対応して複数の第1駆動部50がそれぞれ設けられている。第1駆動部50は、駆動部の一例に相当し、制御部88で生成されたPWM信号SG1に基づき、スイッチング素子40,42のそれぞれを交互にオンするためのオン信号(PWM信号)をスイッチング素子40,42のゲートに印加する。なお、第1駆動部50がスイッチング素子40,42に出力するPWM信号が、制御信号の一例に相当する。以下では、第1駆動部50がスイッチング素子40,42に出力するPWM信号を制御信号ともいう。
 複数(全て)の逆流防止用スイッチング素子24は、複数の半導体スイッチング素子24A,24B,24C・・・が並列に接続された構成をなし、全ての半導体スイッチング素子24A,24B,24C・・・のオフ動作時に第2導電路12における第1電圧変換部21側への電流の流れ込みを遮断する機能を有する。具体的には、複数の半導体スイッチング素子24A,24B,24C・・・のそれぞれがNチャネル型のMOSFETとして構成されており、それぞれのドレインが、第2導電路12における第2電源部92側の導電路に電気的に接続され、それぞれのソースが、第2導電路12における第1電圧変換部21側の導電路に電気的に接続されている。
 第2インダクタ26は、第2導電路12における第1電圧変換部21と逆流防止用スイッチング素子24との間に設けられ、逆流防止用スイッチング素子24に対して直列に設けられている。具体的には、第2インダクタ26は、一端が各第1電圧変換部21の第1インダクタ44とコンデンサ48との接続点に電気的に接続されており、他端が各逆流防止用スイッチング素子24のソース及びスイッチング素子28のドレインに電気的に接続されている。
 スイッチング素子28は、半導体素子部の一例に相当し、例えばMOSFETとして構成されている。スイッチング素子28は、ドレイン(一端)が第2導電路12における第2インダクタ26と逆流防止用スイッチング素子24との間に電気的に接続され、ソース(他端)が基準導電路に電気的に接続されている。
 コンデンサ30は、一端が第2導電路12における逆流防止用スイッチング素子24よりも第2電源部92側に接続されており、他端が基準導電路に電気的に接続されている。
 本構成では、逆流防止用スイッチング素子24、第2インダクタ26、スイッチング素子28(半導体素子部)、によって第2電圧変換部22が構成される。この第2電圧変換部22は、同期整流方式の昇降圧型DCDCコンバータを構成し、第2導電路12において自身よりも第1電圧変換部21側を出力側導電路12Bとし、第1電圧変換部21側とは反対側を入力側導電路12Aとし、入力側導電路12Aに印加された電圧を降圧して出力側導電路12Bに出力電圧を印加する第2の電圧変換動作を行い得る。
 第2駆動部32は、制御部88で生成されたPWM信号SG2に基づき、逆流防止用スイッチング素子24及びスイッチング素子28のそれぞれを交互にオンするためのオン信号(PWM信号)を逆流防止用スイッチング素子24及びスイッチング素子28のゲートに印加する。なお、第2駆動部32が逆流防止用スイッチング素子24に出力するPWM信号が、第2制御信号の一例に相当する。以下では、第2駆動部32が逆流防止用スイッチング素子24に出力するPWM信号を制御信号ともいう。
 また、複数の逆流防止用スイッチング素子24のうち、一部(本実施例1では1つ)の逆流防止用スイッチング素子24Aのゲートには、第2駆動部32からの制御信号が直接与えられ、他の逆流防止用スイッチング素子24Bには、第2駆動部32からの制御信号が信号生成回路34を介して与えられる。
 信号生成回路34は、第2駆動部32と、逆流防止用スイッチング素子24Bのゲートとの間に設けられている。信号生成回路34は、制御部88から出力された遮断指示信号SG3に基づき、第2駆動部32から逆流防止用スイッチング素子24Bに出力される制御信号を遮断する。
 第2導電路12と第1駆動部50及び第2駆動部32との間には、第3導電路60が設けられている。第3導電路60は、一部が並列となるように構成されており、並列に構成された一方の導電路にはダイオード62が設けられ、他方の導電路にはダイオード64及び電圧生成部66が設けられている。ダイオード62は、アノードが第2導電路12に接続され、カソードが第1駆動部50及び第2駆動部32に接続されている。電圧生成部66は、ダイオード64に直列に接続されており、ダイオード64の第2電源部92側に設けられている。ダイオード64は、アノードが電圧生成部66に接続されており、カソードが第1駆動部50及び第2駆動部32に接続されている。電圧生成部66は、例えば昇圧回路として構成されており、制御部88からの昇圧指示信号SG4に基づき、第2導電路12側から入力された電圧を昇圧して第1駆動部50及び第2駆動部32側に出力し得る。
 次に電源装置1の動作について説明する。
 電源装置1は、第1負荷94に第1電源部90からの電力を供給すべくスイッチ部98をオフ状態からオン状態に切り替える場合、第1負荷94に存在する容量成分に急激に大電流が流れ込まないように、第2電源部92の電力を用いて第1負荷94の容量成分を事前に充電する動作(プリチャージ)を行い得る。
 制御部88は、図3で示すプリチャージ制御を繰り返し実行するようになっており、図3のプリチャージ制御の開始に伴い、所定のプリチャージ条件が成立したか否かを判断する。プリチャージ条件は、例えば「スイッチ部98(例えばイグニッションスイッチ)がオフ状態からオン状態に切り替わったこと」であってもよく、これ以外の所定条件であってもよい。
 制御部88は、ステップS1においてプリチャージ条件が成立したと判定した場合、ステップS2にて、第2電圧変換部22に第2の電圧変換動作を開始させる。第2の電圧変換動作は、第2電圧変換部22が、外部から与えられる制御信号に応じて第2導電路12の入力側導電路12Aに印加された電圧を降圧して出力側導電路12Bに印加する動作である。具体的には、以下のようにして実現される。
 制御部88は、ステップS2で第2の電圧変換動作を開始した後、ステップS3にて切替条件が成立したか否かを判定する。具体的には、制御部88は、ステップS3において、第1電圧検出部80の検出値に基づき、第1導電路10の電圧が所定閾値以上であるか否かを判定し、第1導電路10の電圧が所定閾値未満であれば、ステップS3でNoに進み、第1導電路10の電圧が所定閾値以上であれば、ステップS3でYesに進み、ステップS4において、第2の電圧変換動作から第3の電圧変換動作に切り替える。
 また、制御部88は、第1電圧検出部80又は第1電流検出部84の検出値に基づき、デューティ比を決定し、決定したデューティ比のPWM信号SG2を生成する。そして、このPWM信号SG2を第2駆動部32に出力する。このPWM信号SG2を入力した第2駆動部32は、PWM信号SG2のデューティ比の制御信号を逆流防止用スイッチング素子24のうちの1つのスイッチング素子24Aに出力し、この制御信号に対して相補的なPWM信号をスイッチング素子28に出力する。つまり、スイッチング素子24Aをオン動作させているときにスイッチング素子28をオフ動作させ、スイッチング素子24をオフ動作させているときにスイッチング素子28をオン動作させる同期整流方式の降圧動作を、デッドタイムを設定しつつ実行する。第2駆動部32からの制御信号は、信号生成回路34にも入力される。信号生成回路34は、信号SG3が遮断指示信号である場合に、スイッチング素子24B,24Cに対してオフ信号を出力し、このとき、スイッチング素子24B,24Cはオフ状態となる。また、信号生成回路34は、信号SG3が許可信号である場合、第2駆動部32からスイッチング素子24Aのゲートに出力される信号と同一の信号をスイッチング素子24B,24Cに出力する。制御部88は、第2電圧変換部22に第2の電圧変換動作を行わせている間(スイッチング素子24Aのゲートに制御信号を出力している間)は、信号生成回路34に入力する信号SG3を遮断指示信号とするため、第2電圧変換部22に第2の電圧変換動作を行わせている間は、スイッチング素子24B,24Cがオフ状態で維持される。つまり、第2電圧変換部22に第2の電圧変換動作を行わせている間は、第2駆動部32が出力した制御信号は、スイッチング素子24Aのみに出力され、スイッチング素子24B,24Cはオフ状態で維持されるため、スイッチング素子24Aのみがオンオフ動作する。
 このように、第2駆動部32からスイッチング素子24Aに対してPWM信号(制御信号)が与えられることにより、第2電圧変換部22は、入力側導電路12Aに印加された電圧を降圧して出力側導電路12Bに印加するように第2の電圧変換動作を行う。この第2の電圧変換動作では、第1導電路10に印加される電圧を第2電源部92の満充電時の出力電圧よりも低い所望の目標電圧に近づけるようにデューティを算出するフィードバック演算が繰り返され、第1導電路10に印加される電圧を所望の目標電圧に近づけるように制御がなされる。このように第2の電圧変換動作が行われている間は、第1負荷94の容量成分に充電がなされる。
 制御部88は、ステップS3において所定の切替条件が成立したと判定した場合、即ち、第1導電路10の電圧が所定閾値以上であると判定した場合、ステップS4において、第2電圧変換部22による第2の電圧変換動作を終了させ、第1電圧変換部21による第3の電圧変換動作を開始させる。第3の電圧変換動作は、第1駆動部50からスイッチング素子40,42に対してPWM信号SG1に基づくオン信号を交互に与えることによって電圧変換装置20において同期整流方式の昇圧動作を行い、第2導電路12に印加された電圧を昇圧して第1導電路10に印加する動作である。
 制御部88は、この第3の電圧変換動作中には、信号生成回路34に対する遮断指示信号SG3の出力を停止し、第2駆動部32にオン信号を出力する。このオン信号を入力した第2駆動部32は、逆流防止用スイッチング素子24を構成する全てのスイッチング素子24A,24B,24C・・・にオン信号を出力するとともに、スイッチング素子28にオフ信号を出力する。従って、第3の電圧変換動作中は、逆流防止用スイッチング素子24を構成する全てのスイッチング素子24A,24B,24C・・・がオン状態で維持され、スイッチング素子28がオフ状態で維持される。
 制御部88は、第1電圧検出部80又は第1電流検出部84の検出値に基づき、デューティ比を決定し、決定したデューティ比のPWM信号SG1を生成する。具体的には、第1導電路10に印加される電圧を第2電源部92の満充電時の出力電圧よりも高い所望の目標電圧に近づけるようにデューティを算出するフィードバック演算を繰り返し、第1導電路10に印加される電圧を所望の目標電圧に近づけるように制御を行う。制御部88は、このように生成したPWM信号SG1を、複数の第1電圧変換部21のうち1つの第1電圧変換部21に対応する第1駆動部50にのみ出力する。このPWM信号SG1を入力した第1駆動部50は、PWM信号SG1のデューティ比の制御信号をスイッチング素子42に出力するとともに、この制御信号(PWM信号SG1)に対して相補的な制御信号をスイッチング素子40に出力する。つまり、スイッチング素子42をオン動作させているときにスイッチング素子40をオフ動作させ、スイッチング素子42をオフ動作させているときにスイッチング素子40をオン動作させる同期整流方式の制御を、デッドタイムを設定した形で実行する。なお、制御部88は、複数の第1電圧変換部21のうち他の第1電圧変換部21の第1駆動部50にはオフ信号を出力する。このオフ信号が入力される第1駆動部50は、対応するスイッチング素子40,42をオフ状態で維持する。
 このようにして、第2導電路12に印加された電圧を昇圧して第1導電路10に印加する第3の電圧変換動作が行われる。この第3の電圧変換動作では、第2の電圧変換動作で電荷が蓄積された第1負荷94の容量成分に対して、更に電荷を蓄積させることができ、容量成分の充電電圧をより高めることができる。
 制御部88は、ステップS4にて第3の電圧変換動作を開始した後、ステップS5にて、所定のプリチャージ終了条件が成立したか否かを判定する。所定のプリチャージ終了条件は、例えば、「第1導電路10の電圧が所定電圧を超えたこと」などである。
 制御部88は、ステップS5においてプリチャージ終了条件が成立していないと判定した場合、プリチャージ終了条件が成立するまでステップS5を繰り返す。この間、第1負荷94の容量成分の充電が進行する。制御部88は、ステップS5においてプリチャージ終了条件が成立したと判定した場合、ステップS6にて第3の電圧変換動作を終了する。即ち、PWM信号SG1、PWM信号SG2、遮断指示信号SG3、及び昇圧指示信号SG4の出力を停止する。これにより第1負荷94へのプリチャージが完了する。
 制御部88は、ステップS6にて第3の電圧変換動作を終了させた後、例えば、スイッチ部98をオフ状態からオン状態に切り替える。こうすることで、第1負荷94の容量成分をある程度充電した状態で、スイッチ部98をオン状態に切り替えることができるため、第1負荷94の容量成分に大電流が流れ込むような事態が生じにくくなる。なお、ステップS6に応じてスイッチ部98をオン状態に切り替えた後には、電圧変換装置20に上述の降圧動作を行わせ、第1導電路10に印加された電圧を降圧して第2導電路に所望の出力電圧を印加するように機能すればよい。
 なお、本構成では、制御部88は、第1の電圧変換動作中、又は第2の電圧変換動作中、又は第3の電圧変換動作中に、電圧生成部66に対して昇圧指示信号SG4を出力し、電圧生成部66は、この昇圧指示信号SG4が与えられている期間に、入力電圧(第2導電路12に印加された電圧)を昇圧させてダイオード64のアノード側に出力する。なお、制御部88は、第1の電圧変換動作中、第2の電圧変換動作中、第3の電圧変換動作中のいずれか又は全ての期間に昇圧指示信号SG4を出力してもよく、第2導電路12に印加された電圧が所定値以下の場合にのみ昇圧指示信号SG4を出力してもよい。
 次に電源装置1の効果について例示する。
 上述した電源装置1は、逆流防止用スイッチング素子24と第2インダクタ26とスイッチング素子28(半導体素子部)とを備えた形で第2電圧変換部22が構成され、この第2電圧変換部22は、第2導電路12において、自身よりも第1電圧変換部21側を出力側導電路12Bとし、第1電圧変換部21側とは反対側を入力側導電路12Aとし、入力側導電路12Aに印加された電圧を降圧して出力側導電路12Bに出力電圧を印加する第2の電圧変換動作を行う。更に、逆流防止用スイッチング素子24は、複数の半導体スイッチング素子24A,24B,24C・・・が並列に接続された構成をなしており、制御部88は、所定のプリチャージ条件の成立に応じて、逆流防止用スイッチング素子24を構成する複数の半導体スイッチング素子24A,24B,24C・・・のうちの一部の素子にのみオン信号とオフ信号とが交互に切り替わる第2制御信号を与えることで、第2電圧変換部22に第2の電圧変換動作を行わせる。
 このように、電源装置1は、所定のプリチャージ条件の成立に応じて第2電圧変換部22に第2の電圧変換動作を行わせることができるため、少なくともこのように第2の電圧変換動作が行われた後にスイッチ部98がオフ状態からオン状態に切り替えられる状況であれば、容量成分の充電がある程度進行した状況でスイッチ部98がオフ状態からオン状態に切り替えられることになるため、その切り替え直後に第1電源部90から容量成分に流れ込む突入電流を抑えることができる。
 しかも、所定のプリチャージ条件の成立に応じて制御部88が第2電圧変換部22に第2の電圧変換動作を行わせる場合に、逆流防止用スイッチング素子24を構成する複数の半導体スイッチング素子24A,24B,24C・・・のうちの一部の素子にのみ第2制御信号を与える構成であるため、「第2の電圧変換動作に伴って逆流防止用スイッチング素子24を駆動するために制御部88で必要となる電力」を抑えることができる。ゆえに、制御部88に電力を与える電源の電圧が低下しても、制御部88がプリチャージ動作の制御(第2の電圧変換動作の制御)を行えない事態は発生しにくくなる。
 更に、電源装置1は、第2導電路12から制御部88への電力供給経路となる複数の第3導電路60を備える。そして、複数の第3導電路60は、第2導電路12と制御部88との間に並列に接続され、いずれかの第3導電路60には、第2導電路12側の導電路に印加された電圧を昇圧して制御部88側の導電路に出力電圧を印加する電圧生成部66が設けられている。この構成によれば、第2導電路12に印加された電圧が小さい場合であっても、電圧生成部66は、第2導電路12側の導電路に印加された電圧を昇圧して制御部88側の導電路に出力電圧を印加することができる。よって、第2導電路12に印加された電圧が小さい場合であっても、制御部88の動作に必要な駆動電圧が確保されやすくなる。
 更に、制御部88は、所定のプリチャージ条件の成立に応じて、逆流防止用スイッチング素子24を構成する複数の半導体スイッチング素子24A,24B,24C・・・のうちの1つの半導体スイッチング素子にのみ第2制御信号を与え、第2電圧変換部22に第2の電圧変換動作を行わせる。この構成によれば、第2の電圧変換動作を行う際に半導体スイッチング素子の駆動数を最小限に抑えることができるため、第2の電圧変換動作の際に消費する電力をより一層小さく抑えることができる。
 さらに、電源装置1では、半導体素子部をスイッチング素子28としている。このため、例えば、スイッチング素子28をオン状態にすることによって、第2インダクタ26や第1インダクタ44の臨界電流より小さな電流が流れた場合に第2インダクタ26や第1インダクタ44に生じる逆向きの電流(以降、逆向き電流ともいう)をスイッチング素子28に蓄電することなく基準導電路に流すことができる。これにより、第2の電圧変換動作を行う場合、逆流防止用スイッチング素子24からの出力に逆向き電流が加わることが防止されるため、逆流防止用スイッチング素子24の出力の幅(デューティ)が逆向き電流によって意図せずに変化してしまうことを抑えることができる。
 更に、制御部88は、第2電圧変換部22に第2の電圧変換動作を行わせる期間に、駆動用スイッチング素子40をオン状態にする。このようにすれば、第2の電圧変換動作の際に駆動用スイッチング素子40で生じる電圧降下をより小さく抑えることができる。
 例えば、図2のように、スイッチング素子40としてFETを用い、第2の電圧変換動作の際にスイッチング素子40(FET)をオフ状態にするとともにFETのボディダイオードのみを通電経路として第2導電路12側から第1導電路10側へと電流を流すようにすると、このボディダイオードでの損失が懸念されるが、第2電圧変換部22に第2の電圧変換動作を行わせる期間に駆動用スイッチング素子40をオン状態にすれば、この損失を確実に低減することができる。なお、第2の電圧変換動作中は、スイッチング素子42についてはオフ状態で維持すればよい。
 <他の実施例>
 本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
 実施例1では、第2の電圧変換動作において複数の逆流防止用スイッチング素子24のうち1つにのみ制御信号を出力するようにしたが、一部であれば2つ以上の逆流防止用スイッチング素子24に制御信号を出力するようにしてもよい。
 実施例1では、第1電源部90(第1負荷94)側を高電圧側とし第2電源部92(第2負荷96)側を低電圧側としたが、第1電源部90(第1負荷94)側を低電圧側とし第2電源部92(第2負荷96)側を高電圧側としてもよい。即ち、低電圧側の容量成分にプリチャージする構成に適用することもできる。
 実施例1では、第3導電路60において、電圧生成部66を設けるようにしたが、電圧生成部66を設けなくてもよい。
 実施例1では、第3の電圧変換動作において複数の第1電圧変換部21のうち1つの第1電圧変換部21のスイッチング素子40にのみ制御信号を出力するようにしたが、一部の第1電圧変換部21のスイッチング素子40であれば、2つ以上の第1電圧変換部21のスイッチング素子40に制御信号を出力するようにしてもよい。
 実施例1では、半導体素子部をスイッチング素子としたが、ダイオードとしてもよい。ダイオードとする場合、アノードを基準導電路に電気的に接続し、カソードを第2導電路12における第2インダクタ26と逆流防止用スイッチング素子24との間に電気的に接続し、第2電圧変換部22をダイオード方式のDCDCコンバータとして機能させればよい。
1…車載用の電源装置
10…第1導電路
12…第2導電路
12A…入力側導電路
12B…出力側導電路
21…第1電圧変換部
22…第2電圧変換部
24…逆流防止用スイッチング素子
24A,24B,24C…半導体スイッチング素子
26…第2インダクタ
28…スイッチング素子(半導体素子部)
40…スイッチング素子(駆動用スイッチング素子)
42…スイッチング素子(駆動用スイッチング素子)
44…第1インダクタ
60…第3導電路
66…電圧生成部
88…制御部
90…第1電源部
92…第2電源部
94…第1負荷
96…第2負荷
98…スイッチ部
100…車載用電源システム

Claims (5)

  1.  第1電源部からの電力が第1導電路を介して供給される構成をなし、第2電源部からの電力が第2導電路を介して供給される構成をなし、容量成分が前記第1導電路に電気的に接続され、前記第1電源部と前記容量成分との間に前記第1電源部から前記容量成分側への通電を許容するオン状態と遮断するオフ状態とに切り替わるスイッチ部が設けられた車載用の電源システムにおいて、前記第1導電路に印加された電圧を降圧して前記第2導電路に印加、または前記第2導電路に印加された電圧を昇圧して前記第1導電路に印加する車載用の電源装置であって、
     オン信号とオフ信号とが交互に切り替えられる第1制御信号が与えられることに応じてオンオフ動作する駆動用スイッチング素子及び第1インダクタを備え、前記駆動用スイッチング素子のオンオフ動作により前記第1導電路に印加された電圧を降圧して前記第2導電路に印加する第1の電圧変換動作を行う第1電圧変換部と、
     前記第2導電路に設けられ、オフ動作時に前記第2導電路における前記第1電圧変換部側への電流の流れ込みを遮断する逆流防止用スイッチング素子と、
     前記第2導電路における前記第1電圧変換部と前記逆流防止用スイッチング素子との間に設けられ、前記逆流防止用スイッチング素子に対して直列に設けられる第2インダクタと、
     一端が前記第2導電路における前記第2インダクタと前記逆流防止用スイッチング素子との間に電気的に接続され、他端が基準導電路に電気的に接続されるダイオード又はスイッチング素子からなる半導体素子部と、
     少なくとも前記駆動用スイッチング素子に対して前記第1制御信号を出力する制御部と、
     を備え、
     前記逆流防止用スイッチング素子と前記第2インダクタと前記半導体素子部とを備え、前記第2導電路において、自身よりも前記第1電圧変換部側を出力側導電路とし、前記第1電圧変換部側とは反対側を入力側導電路とし、前記入力側導電路に印加された電圧を降圧して前記出力側導電路に出力電圧を印加する第2の電圧変換動作を行う第2電圧変換部が構成され、
     前記逆流防止用スイッチング素子は、複数の半導体スイッチング素子が並列に接続された構成をなし、
     前記制御部は、所定のプリチャージ条件の成立に応じて、前記逆流防止用スイッチング素子を構成する複数の前記半導体スイッチング素子のうちの一部の素子にのみオン信号とオフ信号とが交互に切り替わる第2制御信号を与えることで、前記第2電圧変換部に第2の電圧変換動作を行わせる車載用の電源装置。
  2.  前記第2導電路から前記制御部への電力供給経路となる複数の第3導電路を備え、
     複数の前記第3導電路は、前記第2導電路と前記制御部との間に並列に接続され、いずれかの前記第3導電路には、前記第2導電路側の導電路に印加された電圧を昇圧して前記制御部側の導電路に出力電圧を印加する電圧生成部が設けられている請求項1に記載の車載用の電源装置。
  3.  前記制御部は、前記所定のプリチャージ条件の成立に応じて、前記逆流防止用スイッチング素子を構成する複数の前記半導体スイッチング素子のうちの1つの前記半導体スイッチング素子にのみ前記第2制御信号を与え、前記第2電圧変換部に第2の電圧変換動作を行わせる請求項1又は2に記載の車載用の電源装置。
  4.  前記半導体素子部は、スイッチング素子である請求項1乃至3のいずれか1項に記載の車載用の電源装置。
  5.  前記制御部は、前記第2電圧変換部に前記第2の電圧変換動作を行わせる期間に、前記駆動用スイッチング素子をオン状態にする請求項1乃至4のいずれか1項に記載の車載用の電源装置。
PCT/JP2019/019066 2018-05-24 2019-05-14 車載用の電源装置 WO2019225393A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/058,216 US11180097B2 (en) 2018-05-24 2019-05-14 In-vehicle power supply device
DE112019002643.7T DE112019002643T5 (de) 2018-05-24 2019-05-14 Fahrzeuginterne Energieversorgungseinrichtung
CN201980030266.1A CN112074429B (zh) 2018-05-24 2019-05-14 车载用电源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-099740 2018-05-24
JP2018099740A JP6922846B2 (ja) 2018-05-24 2018-05-24 車載用の電源装置

Publications (1)

Publication Number Publication Date
WO2019225393A1 true WO2019225393A1 (ja) 2019-11-28

Family

ID=68616093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019066 WO2019225393A1 (ja) 2018-05-24 2019-05-14 車載用の電源装置

Country Status (5)

Country Link
US (1) US11180097B2 (ja)
JP (1) JP6922846B2 (ja)
CN (1) CN112074429B (ja)
DE (1) DE112019002643T5 (ja)
WO (1) WO2019225393A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296186A (ja) * 2005-03-18 2006-10-26 Fujitsu Ltd スイッチングコンバータ
JP2017008577A (ja) * 2015-06-22 2017-01-12 シャープ株式会社 電動ブラインド制御システム及び制御装置
JP2017085810A (ja) * 2015-10-29 2017-05-18 トヨタ自動車株式会社 車両用電源システム
JP2017169260A (ja) * 2016-03-14 2017-09-21 株式会社デンソー 電力変換装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6275958B1 (en) * 1998-10-28 2001-08-14 International Business Machines Corporation Fault detection in a redundant power converter
DE10160266A1 (de) * 2001-12-07 2003-06-18 Daimler Chrysler Ag Verfahren und Anordnung zur Ruhestromversorgung eines Fahrzeugs mit einem Mehrspannungsbordnetz
JP3813876B2 (ja) * 2002-01-18 2006-08-23 矢崎総業株式会社 車両用電源装置
EP1703625A2 (en) 2005-03-18 2006-09-20 Fujitsu Limited Direct DC Converter
DE102006013524B4 (de) * 2006-03-23 2012-02-02 Infineon Technologies Ag Schaltwandler mit mehreren Wandlerstufen
US7889524B2 (en) * 2007-10-19 2011-02-15 Illinois Institute Of Technology Integrated bi-directional converter for plug-in hybrid electric vehicles
US8615341B2 (en) * 2008-10-23 2013-12-24 Mitsubishi Electric Corporation Propulsion control apparatus for electric vehicle
US8716999B2 (en) * 2011-02-10 2014-05-06 Draker, Inc. Dynamic frequency and pulse-width modulation of dual-mode switching power controllers in photovoltaic arrays
JP5865013B2 (ja) * 2011-10-27 2016-02-17 三洋電機株式会社 車両用の電源装置及びこの電源装置を備える車両
JP6174876B2 (ja) * 2013-03-21 2017-08-02 本田技研工業株式会社 2電源負荷駆動システム及び燃料電池自動車
CN104718695B (zh) * 2013-04-22 2017-07-21 富士电机株式会社 电力转换装置及其控制方法
JP6232935B2 (ja) * 2013-10-31 2017-11-22 株式会社オートネットワーク技術研究所 電源装置及び電源装置の異常判定方法
US10491095B2 (en) * 2014-10-06 2019-11-26 Ford Global Technologies, Llc Dynamic IGBT gate drive for vehicle traction inverters
JP2016141356A (ja) * 2015-02-05 2016-08-08 株式会社オートネットワーク技術研究所 自動車用電源装置及び自動車用電源装置の制御方法
KR102395148B1 (ko) * 2015-03-03 2022-05-09 삼성디스플레이 주식회사 Dc-dc 컨버터 및 이를 포함하는 표시 장치
JP2017022805A (ja) 2015-07-07 2017-01-26 トヨタ自動車株式会社 電気自動車
JP6459901B2 (ja) * 2015-10-28 2019-01-30 株式会社オートネットワーク技術研究所 多相コンバータ
JP2017212805A (ja) * 2016-05-25 2017-11-30 株式会社オートネットワーク技術研究所 車両用電圧変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296186A (ja) * 2005-03-18 2006-10-26 Fujitsu Ltd スイッチングコンバータ
JP2017008577A (ja) * 2015-06-22 2017-01-12 シャープ株式会社 電動ブラインド制御システム及び制御装置
JP2017085810A (ja) * 2015-10-29 2017-05-18 トヨタ自動車株式会社 車両用電源システム
JP2017169260A (ja) * 2016-03-14 2017-09-21 株式会社デンソー 電力変換装置

Also Published As

Publication number Publication date
CN112074429A (zh) 2020-12-11
US11180097B2 (en) 2021-11-23
JP6922846B2 (ja) 2021-08-18
US20210178998A1 (en) 2021-06-17
JP2019205291A (ja) 2019-11-28
DE112019002643T5 (de) 2021-02-25
CN112074429B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
JP6536466B2 (ja) 電源装置
JP6665821B2 (ja) 双方向dc−dcコンバータ
JP6358304B2 (ja) 車両用電源装置
WO2018070231A1 (ja) 車載用のバックアップ装置
US9214824B2 (en) Charging control circuit
JP5309535B2 (ja) 電動パワーステアリング装置
WO2007125949A1 (ja) 双方向dc-dcコンバータ
JP6751512B2 (ja) 車載用電源装置
WO2018079532A1 (ja) Dcdcコンバータ
JP6969505B2 (ja) 車載用の電源制御装置および車載用電源システム
WO2019225397A1 (ja) 車載用の電源装置
JP6635298B2 (ja) 充放電装置及び電源装置
WO2019225393A1 (ja) 車載用の電源装置
WO2018135330A1 (ja) 車載用電源装置
JP7276064B2 (ja) Dcdcコンバータ
JP5163240B2 (ja) 車両用電源システム
WO2019225396A1 (ja) 車載用電源装置
CN110168889B (zh) 车载用控制装置及车载用电源装置
WO2019225395A1 (ja) 車載用電源装置
WO2022234784A1 (ja) 電力変換装置
WO2024105905A1 (ja) 給電制御装置
JP2022090167A (ja) 車載用電源装置
JP2020054161A (ja) 電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807181

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19807181

Country of ref document: EP

Kind code of ref document: A1