WO2019225179A1 - 制御装置および制御方法 - Google Patents

制御装置および制御方法 Download PDF

Info

Publication number
WO2019225179A1
WO2019225179A1 PCT/JP2019/015248 JP2019015248W WO2019225179A1 WO 2019225179 A1 WO2019225179 A1 WO 2019225179A1 JP 2019015248 W JP2019015248 W JP 2019015248W WO 2019225179 A1 WO2019225179 A1 WO 2019225179A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
valve
learning
operating point
Prior art date
Application number
PCT/JP2019/015248
Other languages
English (en)
French (fr)
Inventor
章広 小森
佐藤 真也
勝洋 星野
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112019001382.3T priority Critical patent/DE112019001382T5/de
Priority to JP2020521078A priority patent/JP7026217B2/ja
Publication of WO2019225179A1 publication Critical patent/WO2019225179A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0088Adaptive recalibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/43Engines
    • B60Y2400/442Exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a control device and a control method.
  • This LP-EGR is provided with an EGR valve for adjusting the amount of exhaust gas recirculated to the intake side, and the amount of exhaust gas recirculated to the intake side is adjusted by controlling the opening of the EGR valve. Control is performed so that the EGR rate becomes the target EGR rate.
  • feed forward (FF) control and feedback (Feed Back: FB) control are used to improve the accuracy of the LP-EGR control.
  • the correction value of the opening degree of the EGR valve is stored as a learned value, and the control accuracy of the EGR valve can be improved by using the learned value stored in the next operation.
  • Patent Document 1 discloses a control device that can prevent misfiring and rotational fluctuations by preventing mislearning of the control amount of the EGR valve, and can suppress a decrease in fuel consumption. .
  • an object of the present invention is to provide a control device capable of improving the accuracy of valve control by increasing the learning opportunities for valve operation when the vehicle is used.
  • a vehicle including an internal combustion engine having at least one valve, a motor for driving the vehicle, and a generator driven by the internal combustion engine, control for controlling the operation of the valve
  • An internal combustion engine control unit that controls the internal combustion engine so that an operating point of the internal combustion engine becomes a preset operating point for learning in a motor drive mode in which the vehicle is driven by the motor;
  • a valve operation learning unit that learns the operation of the valve in a state in which the operation point of the internal combustion engine is controlled to be the learning operation point by the internal combustion engine control unit.
  • control device capable of improving the accuracy of valve control by increasing the learning opportunities of valve operation when the vehicle is used.
  • FIG. 1 is a schematic configuration diagram of a hybrid vehicle 100 equipped with a control device 70 according to the first embodiment.
  • the hybrid vehicle 100 includes an internal combustion engine 10 and a generator 20 that is coaxially connected to the internal combustion engine 10.
  • the generator 20 or the generator 20 is connected to the hybrid vehicle 100 by the internal combustion engine 10.
  • a hybrid vehicle that uses the internal combustion engine 10 only for driving a generator 20 or a vehicle-mounted device different from the generator 20 and does not use it for direct driving of the vehicle may be called a series hybrid vehicle.
  • a power converter 30 is connected to the generator 20, and the power converter 30 converts the three-phase AC power generated by the generator 20 into DC power.
  • a battery 40 is connected to the power converter 30, and the DC power converted by the power converter 30 is stored in the battery 40.
  • the hybrid vehicle 100 is equipped with a motor 50 for driving the hybrid vehicle 100, and the electric power stored in the battery 40 is supplied to the motor 50 via the power converter 30.
  • the driving force of the motor 50 is transmitted to the axle 65 via the reduction gear 60, and the driving force is generated in the hybrid vehicle 100 when the tire 66 is rotated by the rotation of the axle 65.
  • the internal combustion engine 10 is started when the remaining amount of the battery 40 is less than a predetermined threshold value, and drives the generator 20 to charge the battery 40.
  • a control device 70 Electric Control Unit: ECU
  • ECU Electronic Control Unit
  • FIG. 2 is a schematic configuration diagram of the internal combustion engine 10.
  • the internal combustion engine 10 includes an air flow sensor 11 that measures the amount of air newly sucked from outside, a compressor 12 that performs supercharging to suck more intake gas, An intercooler 13 that cools the supplied suction gas and a throttle valve 15 that adjusts the amount of suction gas sucked into the cylinder 14 are provided.
  • a throttle sensor 151 for detecting the throttle opening degree of the throttle valve 15 is provided in the vicinity of the throttle valve 15.
  • a spark plug 141 that ignites the mixed gas in the cylinder 14 of each cylinder, a fuel injector 142 that injects fuel into the cylinder 14 of each cylinder, and a mixed gas of fuel and air that flows into the cylinder 14 is compressed.
  • the piston 143 that adjusts, the intake valve 144 that adjusts the amount of mixed gas flowing into the cylinder 14, the exhaust valve 145 that discharges the exhaust gas after combustion, and the signal of the signal rotor 147 attached to the crankshaft 146 are detected.
  • a crank angle sensor 148 and a water temperature sensor 149 for measuring the cooling water temperature of the internal combustion engine 10 are provided.
  • the internal combustion engine 10 is provided with a turbine 16 that transmits the kinetic energy of the exhaust gas to the compressor 12 through a shaft, and a three-way catalyst 17 that purifies harmful substances in the exhaust gas.
  • An A / F sensor 171 that detects the concentration of oxygen contained in the exhaust gas is provided in the vicinity of the three-way catalyst 17.
  • an exhaust passage downstream of the three-way catalyst 17 (turbine 16) and an intake passage upstream of the compressor 12 are connected to suck a part of exhaust gas (hereinafter also referred to as EGR gas) from the exhaust passage.
  • a low-pressure EGR pipe 18 returning to the flow path and an EGR valve 19 for adjusting a return amount of EGR gas to the intake flow path provided in the low-pressure EGR pipe 18 are provided.
  • an EGR cooler 181 for cooling EGR gas flowing through the low pressure EGR pipe is provided on the upstream side of the EGR valve 19.
  • Output signals from various sensors such as the throttle sensor 151, the air flow sensor 11, the crank angle sensor 148, the water temperature sensor 149, the A / F sensor 171, and the accelerator sensor 80 (see FIG. 3) are input to the control device 70.
  • FIG. 3 is a block diagram illustrating the hardware configuration of the control device 70.
  • output signals from the various sensors described above are input to the input circuit 71.
  • signal processing such as noise removal of output signals from various sensors in the input circuit 71
  • the signal processed signal is transmitted to the input / output port 72.
  • the signal transmitted to the input / output port 72 is stored in the RAM 73.
  • the signal stored in the RAM 73 is processed by the CPU 74.
  • a control program describing the contents of the arithmetic processing is written in advance in the ROM 75, and each function is implemented by the CPU 74 executing the control program written in the ROM 75, and predetermined arithmetic processing is performed by each of the implemented functions. Is done.
  • a value representing the operation amount of each actuator calculated by the CPU 74 according to the control program is stored in the RAM 73 and then transmitted to the input / output port 72.
  • a drive signal for controlling the opening degree of various valves such as the EGR valve 19 is output via a valve drive circuit 76 to a motor (not shown) that drives the various valves.
  • a drive signal for realizing the target opening degree of the throttle valve 15 is output via a throttle valve drive circuit 77 to a motor (not shown) that drives the throttle valve 15.
  • the drive signal of the fuel injection device 142 is set to an ON / OFF signal that turns ON when the valve is opened and OFF when the valve is closed, and is amplified to a sufficient energy for the fuel injection device 142 to drive the fuel injection device 142. And supplied to the fuel injection device 142.
  • the operation signal output to the spark plug 141 is set to an ON / OFF signal that is ON when current is supplied to a primary coil (not shown) provided in the ignition output circuit 79 and OFF when no current is supplied. Is done.
  • the ignition timing of the spark plug 141 is the time when the current changes from ON to OFF.
  • a signal supplied to the spark plug 141 set in the input / output port 72 is amplified to a sufficient energy necessary for ignition by the ignition output circuit 79 and then supplied to the spark plug 141.
  • the control device 70 performs feedback control that sequentially corrects the fuel injection amount or the intake air amount using the output value of the A / F sensor 171 so that the purification efficiency of the three-way catalyst 17 is optimized.
  • the internal combustion engine 10 when the CPU 74 of the control device 70 determines that it is necessary to learn the opening degree of the EGR valve 19, the internal combustion engine 10 is in the generator drive mode in which only the generator 20 is driven by the internal combustion engine 10.
  • the internal combustion engine 10 is controlled so that the operating point becomes a learning operating point set according to the frequency of use of the EGR valve 19 (for example, high frequency usage), and feedback control is performed in a steady state at the learning operating point. Is performed, the correction value of the opening degree of the EGR valve 19 is learned.
  • the generator 20 is driven by the internal combustion engine 10 to start power generation.
  • the internal combustion engine 10 is driven in the driving
  • the CPU 74 determines that learning of the operation of the EGR valve 19 is necessary, the operating point of the internal combustion engine 10 in the internal combustion engine 10 driving the generator 20 is determined.
  • the internal combustion engine 10 (engine speed and engine torque) is controlled so that becomes a learning operation point preset for learning (for example, learning operation points 310 to 340).
  • FIG. 4 illustrates the case where four learning operation points 310, 320, 330, and 340 are set as learning operation points of the EGR valve 19, but the number of learning operation points set is limited to this. Instead, the number and position of the operating points can be determined arbitrarily.
  • the operating point of the internal combustion engine 10 means an operating state determined by the rotational speed and torque of the internal combustion engine 10.
  • the CPU 74 has an internal combustion engine control unit 741 that controls the internal combustion engine 10 so that the operating points of the internal combustion engine 10 become preset operating points 310 to 340 (see FIG. 4).
  • a valve operation learning unit 742 that learns the operation of the EGR valve 19 in a state where the operation point of the internal combustion engine 10 is controlled to be the learning operation points 310 to 340 by the internal combustion engine control unit 741;
  • the processing in the internal combustion engine control unit 741 and the valve operation learning unit 742 is performed in a generator drive mode in which only the generator 20 is driven by the internal combustion engine 10 and a vehicle-mounted device (not shown) different from the generator 20 is not driven. Executed.
  • the hybrid vehicle 100 is driven by the motor 50, and thus the above-described generator drive mode may be referred to as a motor drive mode.
  • the internal combustion engine 10 does not directly drive an in-vehicle device (not shown) other than the generator 20, so that the internal combustion engine 10 can be operated arbitrarily. You can drive at the spot.
  • the CPU 74 has an operating point setting unit 743 that sets a plurality of learning operating points within the operating range of the internal combustion engine 10.
  • the operating point setting unit 743 is a learning operating point (for example, a diagram) based on the frequency that the operating point of the internal combustion engine 10 passes when the internal combustion engine 10 drives a vehicle-mounted device (not shown) different from the generator 20. Learning operation points 310 to 340) shown in FIG.
  • the operating point setting unit 743 passes relatively frequently (for example, a plurality of times or a predetermined number of times or more) compared to other operating points when driving the in-vehicle device (not shown) by the internal combustion engine 10.
  • Set the operating point as the operating point for learning. Note that the fact that the operating point of the internal combustion engine 10 passes relatively frequently means that the EGR valve 19 is frequently used.
  • the CPU 74 has a valve control unit 744 that controls the EGR valve 19 based on the operation of the EGR valve 19 learned by the valve operation learning unit 742.
  • the valve control unit 744 outputs a drive signal based on the operation of the valve opening amount of the EGR valve 19 learned by the valve operation learning unit 742 to the valve drive circuit 76 when the operation state of the internal combustion engine 10 is an excessive state.
  • a drive signal for driving the EGR valve 19 is output to a valve drive motor (not shown) via the valve drive circuit 76, and the drive of the EGR valve 19 is controlled.
  • a plurality of learning operating points 310 to 340 for learning the operation of the EGR valve 19 are preset by the operating point setting unit 743.
  • the internal combustion engine 10 mounted on the hybrid vehicle 100 starts power generation by driving the generator 20 after the internal combustion engine 10 is started when the remaining amount of the battery 40 is low.
  • the CPU 74 of 70 can learn the opening correction value of the EGR valve 19.
  • the internal combustion engine control unit 741 controls the engine speed and the engine torque of the internal combustion engine 10 so that the operation points of the internal combustion engine 10 become preset learning operation points 310 to 340 in the generator drive mode.
  • the valve operation learning unit 742 controls the engine speed and the engine torque of the internal combustion engine 10 by the internal combustion engine control unit 741 so that the operation point of the internal combustion engine 10 becomes the learning operation points 310 to 340 set in advance. In this state, feedback control is performed as shown in FIG. 5, and a correction value for the opening degree of the EGR valve 19 when the internal combustion engine 10 is in a steady state is stored in the RAM 73.
  • the valve operation learning unit 742 stores the opening correction value of the EGR valve 19 in the steady state at all the learning operation points in the RAM 73, so that the opening correction value of the EGR valve 19 at each learning operation point ( Learning).
  • the internal combustion engine controller 741 learns the operating point of the internal combustion engine 10 after learning of the opening correction values (operations) of the EGR valve 19 at all the learning operating points 310 to 340 set in advance.
  • the engine speed and engine torque of the internal combustion engine 10 are controlled so as to return to the operating point at which optimum fuel consumption is achieved from the points 310 to 340.
  • the valve operation learning unit 742 determines whether to start learning the correction value of the opening degree of the EGR valve 19 (step 110), and determines that it is the learning start timing (step 111: Yes), Proceed to step 112. On the other hand, when it is determined that it is not the learning start timing (step 111: No), the valve operation learning unit 742 returns to step 110 and waits until it is determined as the learning start timing.
  • step 112: Yes When the valve operation learning unit 742 determines that there is a request to shift to the generator drive mode in which only the generator is driven by the internal combustion engine 10 (step 112: Yes), the in-vehicle device other than the generator 20 in the internal combustion engine 10 Since the opening correction value of the EGR valve 19 can be learned without driving the control, the process proceeds to step 113.
  • step S112: No when the valve operation learning unit 742 determines that there is no request for shifting to the generator drive mode, the internal combustion engine 10 is used to drive an in-vehicle device other than the generator 20, and EGR Since learning of the opening correction value of the valve 19 cannot be performed, the process waits until it is determined that there is a request to shift to the generator drive mode.
  • the operating point setting unit 743 sets the operating point of the internal combustion engine 10 based on the frequency at which the operating point of the internal combustion engine 10 passes (for example, the learning operating point 310 shown in FIG. 4). ⁇ 340), the engine speed and engine torque of the internal combustion engine 10 are controlled (step 113).
  • the valve operation learning unit 742 learns the correction value of the opening degree of the EGR valve 19 at each of the plurality of learning operation points 310 to 340 set by the operation point setting unit 743 (step 114).
  • the valve operation learning unit 742 After the learning of the opening correction value of the EGR valve 19 at a predetermined learning operation point (for example, the learning operation point 310) is completed, the valve operation learning unit 742 performs all other learning operations set in advance. It is determined whether or not learning of the opening correction value of the EGR valve 19 at the points (for example, the learning operation points 320 to 340) has been completed (step 115), and the EGR valve 19 is opened at all the learning operation points. When it is determined that the learning of the degree correction value has been completed (step 115: Yes), the process proceeds to step 116 and it is determined that the learning control is finished.
  • the internal combustion engine control unit 741 controls the engine speed and the engine torque of the internal combustion engine 10 so that the operating point of the internal combustion engine 10 becomes an operating point at which the fuel efficiency is optimal (step 117).
  • the valve operation learning unit 742 determines that learning of the opening correction value of the EGR valve 19 at all learning operation points has not been completed (step 115: No)
  • the valve operation learning unit 742 returns to step 112 and sets other preset values. Steps 112 to 115 are continued until it is determined that learning of the opening correction value of the EGR valve 19 at all the learning operation points (for example, the learning operation points 320 to 340) has been performed.
  • An internal combustion engine 10 having at least one valve (for example, a throttle valve 15 or an EGR valve 19), a motor 50 that drives the hybrid vehicle 100, and a generator 20 that is driven by the internal combustion engine 10 are provided.
  • the internal combustion engine control unit 741 that controls the internal combustion engine 10 so as to be the learning operation points 310 to 340), and the internal combustion engine control unit 741 controls the operation point of the internal combustion engine 10 to be the learning operation point.
  • a valve operation learning unit 742 that learns the operation of the valve in the state.
  • the operating point can be freely changed within the operating range of the internal combustion engine 10.
  • the valve operation can be learned even at an operating point where the internal combustion engine 10 passes in a transient state. Therefore, the valve operation learning unit 742 of the control device 70 can increase the valve operation learning opportunity when the vehicle is used, and can improve the control accuracy of the valve.
  • the operation point setting unit 743 that sets a plurality of learning operation points within the operation range of the internal combustion engine 10 is used.
  • the operation point setting unit 743 sets a plurality of learning operation points within the operation range of the internal combustion engine 10, so that the valve operation learning unit 742 has the internal combustion engine 10 as a plurality of learning operation points.
  • the valve operation can be learned in such a controlled state. As a result, it is possible to appropriately learn the valve operation according to the operating state of the internal combustion engine 10 in which the hybrid vehicle 100 is traveling, and to improve the valve control accuracy.
  • the internal combustion engine 10 is provided so as to be able to drive the generator 20 and a vehicle-mounted device (not shown) different from the generator 20, and the valve operation learning unit 742 After the engine 10 is switched to the generator drive mode in which only the generator 20 is driven, the operation of the valve is controlled in a state where the operation point of the internal combustion engine 10 is controlled to be the learning operation point by the internal combustion engine control unit 741. It was set as the structure which learns.
  • the engine control unit 741 can control the operating point of the internal combustion engine 10 to an arbitrary point within the operating range. Therefore, the valve operation learning unit 742 can learn the valve operation at an arbitrary learning operation point of the internal combustion engine 10 and can increase the valve operation learning opportunity.
  • the operating point setting unit 743 sets the learning operating point based on the frequency at which the operating point of the internal combustion engine 10 passes when the internal combustion engine 10 drives the in-vehicle device (not shown). The configuration is set.
  • valve operation learning unit 742 can appropriately learn the valve operation at the operation point where the valve is frequently used in the operation of the internal combustion engine 10. Therefore, the control accuracy of the valve can be effectively increased with minimal learning.
  • the valve is the EGR valve 19 that adjusts the recirculation amount of the exhaust gas from the exhaust passage to the intake passage of the internal combustion engine 10, and the operating point setting unit 743
  • the learning operation point is set in the EGR region.
  • the operating point setting unit 743 can learn the opening correction value of the EGR valve 19 at the learning operating point set in the EGR region of the internal combustion engine 10.
  • EGR control based on the learning result of the opening correction value can be performed with high accuracy. Therefore, as a result of accurate feedback control so that the actual EGR rate becomes the target EGR rate, the fuel consumption of the internal combustion engine 10 and the exhaust gas can be reduced.
  • the EGR rate means the ratio of the recirculated EGR gas to the total of the air newly sucked into the intake side and the recirculated EGR gas.
  • the EGR valve 19 is an EGR valve that adjusts the recirculation amount of the exhaust gas to the exhaust passage downstream of the turbine 16 of the internal combustion engine 10 and the intake passage upstream of the compressor 12.
  • the operating point setting unit 743 sets the learning operating point within the EGR region of the internal combustion engine 10.
  • the EGR valve 19 is an EGR valve provided in the low pressure EGR system, the opening correction value of the EGR valve 19 in the low pressure EGR system in which the EGR region of the internal combustion engine 10 is wide is accurately learned. Can do. Therefore, also in the low pressure EGR system, it is possible to reduce the fuel consumption of the internal combustion engine 10 and reduce the exhaust gas.
  • valve operation learning unit 742 has a valve control unit 744 that controls the EGR valve 19 based on the operation of the EGR valve 19 learned.
  • valve control unit 744 can appropriately perform the valve opening control of the EGR valve 19 based on the opening correction value of the EGR valve 19 learned by the valve operation learning unit 742.
  • the operating point setting unit 743 stores operating points that frequently pass during the transient operation of the internal combustion engine 10 in a storage device such as the RAM 73. Then, the valve operation learning unit 742 controls the internal combustion engine 10 so as to shift the operation point of the internal combustion engine 10 to the operation point read from the RAM 73 based on the operation point stored in the RAM 73 or the like, and then the EGR valve 19. The point of learning the opening correction value is different from the embodiment described above.
  • the operating point setting unit 743 sets a plurality of operating points that are set in advance based on the frequency at which the operating point of the internal combustion engine 10 passes in an operating state such as a steady state or a transient state of the internal combustion engine 10 such as the RAM 73.
  • the operating point setting unit 743 stores, in the RAM 73, operating points that pass more than other operating points of the internal combustion engine 10 in an operating state such as a steady state or a transient state.
  • the valve operation learning unit 742 determines whether to start learning the opening correction value of the EGR valve 19 (step 121), and when it is determined that the learning start timing is reached (step 122: Yes), the step Proceed to 123. On the other hand, when it is determined that it is not the learning start timing (step 122: No), the valve operation learning unit 742 returns to step 120 and waits until it is determined as the learning start timing.
  • step 123: Yes When the valve operation learning unit 742 determines that there is a request to shift to the generator drive mode in which only the generator is driven by the internal combustion engine 10 (step 123: Yes), the in-vehicle device other than the generator 20 in the internal combustion engine 10 Since it is possible to learn the opening correction value of the EGR valve 19 without driving, the process proceeds to step 124.
  • step S123: No when the valve operation learning unit 742 determines that there is no request for shifting to the generator drive mode, the internal combustion engine 10 is used to drive an in-vehicle device other than the generator 20, and EGR Since learning of the opening correction value of the valve 19 cannot be performed, the process waits until it is determined that there is a request to shift to the generator drive mode.
  • the operation point setting unit 743 reads the operation point stored in the RAM 73 or the like in step 120, and sets the read operation point as a learning operation point. Then, the internal combustion engine control unit 741 controls the engine speed and the engine torque of the internal combustion engine 10 so that the operation point of the internal combustion engine 10 becomes the learning operation point read from the RAM 73 (step 124).
  • the valve operation learning unit 742 learns the opening correction value of the EGR valve 19 at each of the plurality of learning operation points set by the operation point setting unit 743 (step 125).
  • the valve operation learning unit 742 After learning of the opening correction value of the EGR valve 19 at a predetermined learning operation point, the valve operation learning unit 742 opens the opening of the EGR valve 19 at all other preset learning operation points. It is determined whether or not learning of the correction value has been completed (step 126), and when it is determined that learning of the opening correction value of the EGR valve 19 at all learning operation points has been completed (step 126: Yes), step 127 is performed. It is determined that the learning control is finished by proceeding to. Then, the internal combustion engine control unit 741 controls the engine speed and the engine torque of the internal combustion engine 10 so that the operating point of the internal combustion engine 10 becomes an operating point at which the fuel efficiency is optimal (step 128).
  • valve operation learning unit 742 determines that learning of the opening correction value of the EGR valve 19 at all learning operation points has not been completed (step 126: No)
  • the valve operation learning unit 742 returns to step 123 and sets other preset values. Steps 123 to 126 are continued until it is determined that learning of the opening correction value of the EGR valve 19 at all the learning operation points is performed.
  • the operating point setting unit 743 has a plurality of operating points set according to the frequency with which the operating point of the internal combustion engine 10 passes (for example, the number of times that the operating point passes within a predetermined time is different).
  • the internal combustion engine controller 741 determines that the operating point of the internal combustion engine 10 is the operating point (learning operating point) stored in the RAM 73.
  • the internal combustion engine 10 is controlled. Therefore, the valve operation learning unit 742 can learn the opening correction value of the EGR valve 19 based on the operation point (learning operation point) that has been frequently passed in the operation of the internal combustion engine 10 in the past.
  • the 19 learnings can be appropriately performed based on the past results.
  • the valve operation learning unit 742 of the CPU 74 learns the opening correction value of the EGR valve 19 when the difference between the target EGR rate and the actual EGR rate is equal to or greater than a predetermined threshold. This is a difference from the first embodiment and the second embodiment described above.
  • the operating point setting unit 743 sets a plurality of operating points that are set in advance based on the frequency at which the operating point of the internal combustion engine 10 passes in an operating state such as a steady state or a transient state of the internal combustion engine 10 such as the RAM 73. Pre-stored in the storage device (step 130). For example, the operating point setting unit 743 stores, in the RAM 73, operating points that pass more than other operating points of the internal combustion engine 10 in an operating state such as a steady state or a transient state.
  • the valve operation learning unit 742 determines whether or not to start learning the opening correction value of the EGR valve 19 (step 131).
  • the valve operation learning unit 742 acquires from the hybrid vehicle 100 the target EGR rate at the operation point that is preset according to the frequency (for example, predetermined) that the operation point of the internal combustion engine 10 passes and stored in the RAM 73 or the like.
  • the difference with the actual EGR rate in the current operation is compared (step 132). If it is determined that the difference is equal to or greater than a certain threshold value (step 133: Yes), it is determined that learning is necessary and the process proceeds to step S134. If it is determined that the difference is less than a certain threshold (step S133: No), the difference between the target EGR rate and the actual EGR rate is small, so that it is determined that there is no need for learning, and the process is terminated.
  • step 134: Yes When the valve operation learning unit 742 determines that there is a request to shift to the generator drive mode in which only the generator is driven by the internal combustion engine 10 (step 134: Yes), the in-vehicle device other than the generator 20 in the internal combustion engine 10 Since it is possible to learn the opening correction value of the EGR valve 19 without driving the valve, the routine proceeds to step 135.
  • step S134: No when the valve operation learning unit 742 determines that there is no request for shifting to the generator drive mode, the internal combustion engine 10 is used to drive an in-vehicle device other than the generator 20, and EGR Since learning of the opening correction value of the valve 19 cannot be performed, the process waits until it is determined that there is a request to shift to the generator drive mode.
  • the operation point setting unit 743 reads the operation point stored in the RAM 73 or the like in step 130, and sets the read operation point as a learning operation point. Then, the internal combustion engine control unit 741 controls the engine speed and the engine torque of the internal combustion engine 10 so that the operation point of the internal combustion engine 10 becomes the learning operation point read from the RAM 73 (step 135).
  • the valve operation learning unit 742 learns the opening correction value of the EGR valve 19 at each of a plurality of learning operation points (for example, the learning operation points 310 to 340) set by the operation point setting unit 743 (step 136).
  • the valve operation learning unit 742 After learning of the opening correction value of the EGR valve 19 at a predetermined learning operation point, the valve operation learning unit 742 opens the opening of the EGR valve 19 at all other preset learning operation points. It is determined whether or not learning of the correction value has been completed (step 137), and if it is determined that learning of the opening correction value of the EGR valve 19 at all learning operation points has been completed (step 137: Yes), step 138 is completed. It is determined that the learning control is finished by proceeding to. Then, the internal combustion engine control unit 741 controls the engine speed and the engine torque of the internal combustion engine 10 so that the operating point of the internal combustion engine 10 becomes an operating point at which the fuel efficiency is optimal (step 139).
  • valve operation learning unit 742 determines that learning of the opening correction value of the EGR valve 19 at all learning operation points has not been completed (step 137: No)
  • the valve operation learning unit 742 returns to step 134 and sets other preset values. Steps 134 to 137 are continued until it is determined that learning of the opening correction value of the EGR valve 19 at all the learning operation points is performed.
  • the valve operation learning unit 742 of the CPU 74 sets the target EGR rate set in advance according to the operation state of the internal combustion engine 10 and the actual actual EGR rate in the same operation state of the internal combustion engine 10. When it is determined that the difference is greater than or equal to the threshold value, it is determined that learning of the operation of the EGR valve 19 is necessary.
  • the valve operation learning unit 742 does not need to learn the opening correction value of the EGR valve 19 when the difference between the target EGR rate and the actual EGR rate does not deviate more than a predetermined threshold. By determining, it is possible to prevent the internal combustion engine control unit 741 from performing unnecessary control of the operating point of the internal combustion engine 10 as the learning operating point, and to reduce the fuel consumption of the internal combustion engine 10. Further, since the valve operation learning unit 742 compares the target EGR rate and the actual EGR rate in real time at a predetermined cycle and determines the necessity of learning of the EGR valve 19, it is necessary to learn the EGR valve 19. Can be done efficiently with timing.
  • the control device 70 according to the present invention is applied to a series hybrid vehicle in which the internal combustion engine 10 drives the generator 20 and another vehicle-mounted device different from the generator 20 and does not directly drive the hybrid vehicle 100.
  • the control device 70 may be applied to control other types of hybrid vehicles.
  • the control device 70 according to the present invention may be applied to a control device for a parallel hybrid vehicle in which the vehicle is driven by either the motor 50 or the internal combustion engine 10.
  • the internal combustion engine 10 is provided so that the generator 20 and the hybrid vehicle 100 can be driven, and the valve operation learning unit 742 is in a generator drive mode in which only the generator 20 is driven by the internal combustion engine 10.
  • the operation of the EGR valve 19 may be learned in a state in which the operation point of the internal combustion engine 10 is controlled by the internal combustion engine control unit 741 to be the learning operation point.
  • the operating point of the internal combustion engine 10 is determined as the operating state (steady state) of the parallel hybrid vehicle. And an operation point for learning that frequently passes in a transient state). Therefore, since the valve operation learning unit 742 can learn the EGR valve 19 not only in the steady state but also in the transient state, it is possible to increase the valve learning opportunities. As a result, the control device 70 can appropriately learn the operation of the EGR valve 19 and can improve the accuracy of EGR control by performing feedback control.
  • the learning control of the EGR valve 19 has been described as an example.
  • the embodiment is not limited to the EGR valve 19 as long as it is a valve provided in the internal combustion engine 10.
  • a throttle valve 15 or the like may be used.
  • a valve other than that provided in the internal combustion engine 10 may be used.
  • the internal combustion engine 10 can arbitrarily change the operating point in a steady state or a transient operating state, and in this state, the valve operation learning unit 742 causes the internal combustion engine 10 to be an arbitrary learning operating point. In a controlled state, valve learning can be performed appropriately.
  • the present invention is not limited to the one having all the configurations of the above-described embodiment, and a part of the configuration of the above-described embodiment is replaced with the configuration of another embodiment.
  • the configuration of the above-described embodiment may be replaced with the configuration of another embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

車両使用時のバルブ動作の学習機会を増加させることによって、バルブ制御の精度向上を図ることができる制御装置を提供する。そのため、少なくとも一つ以上のバルブ(例えば、スロットルバルブ15やEGRバルブ19)を有する内燃機関10と、ハイブリッド車両100を駆動するモータ50と、内燃機関10により駆動される発電機20とを備えたハイブリッド車両100において、バルブの動作を制御する制御装置70であって、モータ50によりハイブリッド車両100を駆動するモータ駆動モードにおいて、内燃機関10の動作点が予め設定された学習用動作点となるように内燃機関10を制御する内燃機関制御部741と、内燃機関制御部741により内燃機関10の動作点が学習用動作点となるように制御された状態でバルブの動作の学習を行うバルブ動作学習部742と、を有する構成とした。

Description

制御装置および制御方法
 本発明は、制御装置および制御方法に関する。
 近年、モータと内燃機関とが搭載されたハイブリッド車両が普及している。このようなハイブリッド車両では、車両の運動状況に応じてモータ又は内燃機関の高効率な動作領域を中心に駆動することで、低燃費や低排気性能を実現することができる。
 一方、ハイブリッド車両の更なる低燃費及び低排気性能を実現するため、内燃機関の熱効率の向上が求められており、そのための技術の一つとして、排気ガスの一部を外部配管を通して吸気側に還流させる外部EGR(Exhaust Gas Recirculation)が知られている。外部EGRは、さらに高圧EGR(High Pressure-EGR:HP-EGR)と低圧EGR(Low Pressure-EGR:LP-EGR)とに分けられ、LP-EGRは、HP-EGRよりもEGRの適用領域(以下、EGR領域とも言う)が広いという利点がある。
 このLP-EGRには排気ガスの吸気側への還流量を調節するEGRバルブが設けられており、EGRバルブの開度を制御することで排気ガスの吸気側への還流量が調整されて実EGR率が目標EGR率になるように制御される。EGRバルブの制御として、フィードフォワード(Feed Forward:FF)制御とフィードバック(Feed Back:FB)制御とを用いることで、LP-EGR制御の精度を高めている。さらにEGRバルブのフィードバック制御において、EGRバルブの開度の補正値を学習値として記憶すると共に、次回の運転時に記憶した学習値を利用することでEGRバルブの制御精度を高めることができる。
 しかしながら、この種のLP-EGRでは、EGRバルブから吸気側のシリンダまでの経路(パス)が長いため、フィードバック制御時におけるEGRの応答遅れが大きくなってしまう。LP-EGRにフィードバック制御を適用して目標EGR率と実EGR率との差分を解消するようにEGRバルブを制御しても、前述した応答遅れに起因して差分の解消に時間がかかるため、EGRバルブが過剰に動作してしまう。この結果、EGRバルブの制御において、制御量のオーバーシュートやアンダーシュートが生じてしまうことがある。このような制御量のオーバーシュートやアンダーシュートを防止するためにフィードバック制御のゲインを小さくする方法が考えられる。しかしながらゲインを小さくするとフィードバック制御が収束するまでの時間が長くなり、特に制御量が急激に変化する過渡運転時のフィードバック制御や学習制御には不向きであり、その状態で制御を実施した場合には誤学習を行ってしまう恐れがある。
 特許文献1には、EGRバルブの制御量の誤学習を防止することにより、失火の発生や回転変動を抑制することができ、また燃費の低下を抑制することができる制御装置が開示されている。
特開2010-216436号公報
 特許文献1に開示された制御装置では、誤学習防止のためにEGRバルブの学習は内燃機関の定常運転時のみに行うように制限しており、内燃機関の回転数やアクセル開度から予め設けられた所定の閾値を超えると内燃機関が過渡運転状態であると判断し、EGRバルブの学習を禁止している(図9参照)。
 しかしながら、実際の車両の運転が定常運転で行われるシーンは少なく、学習の機会が限られてしまうという問題がある。また、運転者の運転の仕方によって学習できる運転領域が決まってしまい、EGR制御の精度向上が求められる運転領域での学習が必ずしも実施できるとは限らないという問題があった。この問題は、EGRバルブに限らず、内燃機関に設けられる他のバルブについても同様のことが言える。
 したがって、本発明は、車両使用時のバルブ動作の学習機会を増加させることによって、バルブ制御の精度向上を図ることができる制御装置を提供することを目的とする。
 上記課題を解決するため、少なくとも一つ以上のバルブを有する内燃機関と、車両を駆動するモータと、前記内燃機関により駆動される発電機とを備えた車両において、前記バルブの動作を制御する制御装置であって、前記モータにより前記車両を駆動するモータ駆動モードにおいて、前記内燃機関の動作点が予め設定された学習用動作点となるように前記内燃機関を制御する内燃機関制御部と、前記内燃機関制御部により前記内燃機関の動作点が前記学習用動作点となるように制御された状態で前記バルブの動作の学習を行うバルブ動作学習部と、を有する制御装置とした。
 本発明によれば、車両使用時のバルブ動作の学習機会を増加させることによって、バルブ制御の精度向上を図ることができる制御装置を提供することができる。
第1の実施の形態にかかる制御装置が搭載されたハイブリッド車両の概略構成図である。 内燃機関の概略構成図である。 制御装置のハードウェア構成を説明するブロック図である。 内燃機関の動作領域における学習用動作点を説明する図である。 EGRバルブの開度の制御を説明する図である。 制御装置による基本制御のフローチャートである。 第2の実施の形態にかかる制御装置による基本制御のフローチャートである。 第3の実施の形態にかかる制御装置による基本制御のフローチャートである。 従来例にかかるEGR制御を説明する図である。
 以下、本発明の実施の形態について図面を用いて詳細に説明する。実施形態では、本発明にかかる制御装置70を、内燃機関10に設けられたEGRバルブ19の動作の学習及び制御に適用した場合を例示して説明する。
<ハイブリッド車両の構成>
 図1は、第1の実施の形態にかかる制御装置70が搭載されたハイブリッド車両100の概略構成図である。
 図1に示すように、ハイブリッド車両100には、内燃機関10と、当該内燃機関10と同軸に接続された発電機20とが搭載されており、内燃機関10により発電機20又は発電機20とは異なる車載装置とが選択的に駆動されるようになっている。このように、内燃機関10を発電機20又は発電機20とは異なる車載装置の駆動のみに使用し、車両の直接的な駆動には使用しないハイブリッド車両をシリーズハイブリッド車両と呼んでもよい。発電機20には電力変換器30が接続されており、この電力変換器30は、発電機20により発電された3相交流電力を直流電力に変換する。電力変換器30にはバッテリ40が接続されており、電力変換器30で変換された直流電力はバッテリ40に蓄積される。また、ハイブリッド車両100には、当該ハイブリッド車両100を駆動するためのモータ50が搭載されており、電力変換器30を介してバッテリ40に蓄積された電力がモータ50に供給される。モータ50の駆動力は減速ギア60を介して車軸65に伝達され、車軸65の回転によりタイヤ66が回転することでハイブリッド車両100に駆動力が発生する。内燃機関10は、バッテリ40の残量が所定の閾値より少なくなると始動し、発電機20を駆動してバッテリ40の充電を行う。また、内燃機関10には、制御装置70(Electronic Control Unit:ECU)が接続されており、制御装置70により内燃機関10に設けられた各種バルブの開弁動作の制御や各種バルブの開弁動作の学習などが行われる。
<内燃機関の構成>
 次に内燃機関10の構成を説明する。
 図2は、内燃機関10の概略構成図である。
 図2に示すように、内燃機関10には、外部から新規に吸入した空気の吸入量を測定するエアフローセンサ11と、より多くの吸気ガスを吸入するために過給を行うコンプレッサ12と、過給された吸入ガスを冷却するインタークーラ13と、シリンダ14内に吸入する吸入ガスの量を調整するスロットルバルブ15が設けられている。スロットルバルブ15の近傍には、スロットルバルブ15のスロットル開度を検出するためのスロットルセンサ151が設けられている。各気筒のシリンダ14内の混合ガスに点火する点火プラグ141と、各気筒のシリンダ14の中に燃料を噴射する燃料噴射装置142と、シリンダ14内に流入した燃料と空気との混合ガスを圧縮するピストン143と、シリンダ14に流入する混合ガスの量を調整する吸気バルブ144と、燃焼後の排気ガスを排出する排気バルブ145と、クランク軸146に取り付けられたシグナルロータ147の信号を検出するクランク角度センサ148と、内燃機関10の冷却水温を測定する水温センサ149とを有して構成されている。
 また、内燃機関10には、排気ガスの運動エネルギを、シャフトを介してコンプレッサ12に伝えるタービン16と、排気ガス中の有害物質を浄化する三元触媒17とが設けられている。三元触媒17の近傍には排気ガス中に含まれる酸素濃度を検出するA/Fセンサ171が設けられている。さらに三元触媒17(タービン16)よりも下流の排気流路とコンプレッサ12よりも上流の吸気流路とを接続して排気ガス(以下、EGRガスとも言う)の一部を排気流路から吸気流路へ還流する低圧EGR配管18と、この低圧EGR配管18に設けられたEGRガスの吸気流路への還流量を調整するEGRバルブ19とが設けられている。また、EGRバルブ19の上流側には、低圧EGR配管を通流するEGRガスを冷却するEGRクーラ181が設けられている。
 前述したスロットルセンサ151、エアフローセンサ11、クランク角度センサ148、水温センサ149、A/Fセンサ171、アクセルセンサ80(図3参照)などの各種センサの出力信号は制御装置70に入力される。
<制御装置>
 次に制御装置70のハードウェア構成を説明する。
 図3は、制御装置70のハードウェア構成を説明するブロック図である。
 図3に示すように、制御装置70では、前述した各種センサからの出力信号が入力回路71に入力される。入力回路71において各種センサからの出力信号のノイズ除去などの信号処理を行った後、信号処理後の信号は入出力ポート72に送信される。入出力ポート72に送信された信号はRAM73に記憶される。
 RAM73に記憶された信号はCPU74で演算処理される。演算処理の内容を記述した制御プログラムは、ROM75に予め書き込まれており、CPU74がROM75に書き込まれた制御プログラムを実行することで各機能が実装され、この実装された各機能により所定の演算処理が行われる。CPU74が制御プログラムにしたがって演算した各アクチュエータの操作量を表す値はRAM73に記憶された後、入出力ポート72に送信される。例えば、EGRバルブ19などの各種バルブの開度を制御するための駆動信号はバルブ駆動回路76を介して各種バルブを駆動するモータ(図示せず)に出力される。またスロットルバルブ15の目標開度を実現するための駆動信号はスロットル弁駆動回路77を介してスロットルバルブ15を駆動するモータ(図示せず)に出力される。また燃料噴射装置142の駆動信号は、開弁時ON、閉弁時OFFとなるON/OFF信号がセットされ、燃料噴射装置駆動回路78で燃料噴射装置142を駆動するために十分なエネルギに増幅されて燃料噴射装置142に供給される。また点火プラグ141に出力する作動信号は、点火出力回路79に設けられた一次コイル(図示せず)への電流の通流時はONとなり非通流時はOFFとなるON/OFF信号がセットされる。なお点火プラグ141の点火時期は電流がONからOFFに変化する時点である。入出力ポート72にセットされた点火プラグ141に供給される信号は、点火出力回路79で点火に必要な十分なエネルギに増幅された後、点火プラグ141に供給される。制御装置70は、A/Fセンサ171の出力値を用いて三元触媒17の浄化効率が最適となるように燃料噴射量もしくは吸入空気量を逐次補正するフィードバック制御を行う。
 本発明は、制御装置70のCPU74が、EGRバルブ19の開度を学習する必要があると判断した場合に、内燃機関10で発電機20のみを駆動する発電機駆動モード中に、内燃機関10の動作点がEGRバルブ19の使用頻度(例えば、高頻度の使用)に応じて設定された学習用動作点となるように内燃機関10を制御し、その学習用動作点における定常状態でフィードバック制御を行った後、EGRバルブ19の開度の補正値の学習を行うものである。
 前述したように、内燃機関10の出力を発電機20の駆動とそれ以外の車載装置の駆動とに用いるハイブリッド(シリーズハイブリッド)車両100では、バッテリ40の残量が閾値以下になった場合に、内燃機関10により発電機20を駆動して発電を開始する。
内燃機関10がバッテリ40を充電するために発電機20を駆動している場合、内燃機関10は最適な燃費となる運転領域にて駆動される。実施の形態では、図4に示すように、CPU74は、EGRバルブ19の動作の学習が必要であると判断した場合、発電機20を駆動中の内燃機関10において、当該内燃機関10の動作点が学習用に予め設定された学習用動作点(例えば、学習用動作点310~340)となるように内燃機関10(エンジン回転数とエンジントルク)を制御する。図4では、EGRバルブ19の学習用動作点として4つの学習用動作点310、320、330、340を設定する場合を例示しているが、学習用動作点の設定数はこれに限定されるものではなく、動作点の設定数や位置は任意に決めることができる。ここで、内燃機関10の動作点とは、内燃機関10の回転数とトルクとにより決まる動作状態を意味する。
 図3に示すように、CPU74は、内燃機関10の動作点が予め設定された学習用動作点310~340(図4参照)となるように内燃機関10を制御する内燃機関制御部741と、内燃機関制御部741により内燃機関10の動作点が学習用動作点310~340となるように制御された状態においてEGRバルブ19の動作の学習を行うバルブ動作学習部742とを有する。これら内燃機関制御部741とバルブ動作学習部742での処理は、内燃機関10で発電機20のみを駆動し、発電機20とは異なる車載装置(図示せず)は駆動しない発電機駆動モードにおいて実行される。なお、内燃機関10で発電機20のみを駆動している状態では、ハイブリッド車両100はモータ50により駆動される状態であるので、前述した発電機駆動モードをモータ駆動モードとも言ってもよい。この発電機駆動モード(又はモータ駆動モード)において、内燃機関10は、発電機20以外の他の車載装置(図示せず)の直接的な駆動をしていないため、内燃機関10を任意の動作点で運転することができる。
 またCPU74は、内燃機関10の動作範囲内で学習用動作点を複数設定する動作点設定部743を有する。動作点設定部743は、内燃機関10が発電機20とは異なる車載装置(図示せず)を駆動する際に内燃機関10の動作点が通過する頻度に基づいて学習用動作点(例えば、図4に示す学習用動作点310~340)を設定する。例えば、動作点設定部743は、内燃機関10により車載装置(図示せず)を駆動する際に、他の動作点と比べて比較的頻繁に通過(例えば、複数回又は所定回数以上通過)する動作点を学習用動作点として設定する。なお内燃機関10の動作点が比較的頻繁に通過するということは、EGRバルブ19が頻繁に使用されることを意味している。
 またCPU74は、バルブ動作学習部742が学習したEGRバルブ19の動作に基づいて、EGRバルブ19を制御するバルブ制御部744を有する。バルブ制御部744は、内燃機関10の動作状態が過度状態である場合にバルブ動作学習部742で学習したEGRバルブ19の開弁量の動作に基づく駆動信号をバルブ駆動回路76に出力する。これにより、EGRバルブ19を駆動する駆動信号が、バルブ駆動回路76を介してバルブ駆動用のモータ(図示せず)に出力され、EGRバルブ19の駆動が制御される。
 前述したように、内燃機関10の動作点の通過頻度に基づいて、EGRバルブ19の動作の学習を行うための複数の学習用動作点310~340が動作点設定部743により予め設定されている。そして、ハイブリッド車両100において、ハイブリッド車両100に搭載された内燃機関10は、バッテリ40の残量が少ない場合、内燃機関10の始動後、発電機20を駆動して発電を開始するため、制御装置70のCPU74はEGRバルブ19の開度補正値の学習を行うことが可能となる。内燃機関制御部741は、発電機駆動モードにおいて、内燃機関10の動作点が予め設定された学習用動作点310~340となるように、内燃機関10のエンジン回転数とエンジントルクを制御する。バルブ動作学習部742は、内燃機関制御部741により内燃機関10のエンジン回転数とエンジントルクを各々制御して内燃機関10の動作点が予め設定された学習用動作点310~340になった定常状態で、図5に示すようにフィードバック制御を実施し、内燃機関10が定常状態時におけるEGRバルブ19の開度に対する補正値をRAM73に記憶する。バルブ動作学習部742は、全ての学習用動作点での定常状態時におけるEGRバルブ19の開度補正値をRAM73に記憶することで、各学習用動作点におけるEGRバルブ19の開度補正値(動作)の学習を行う。内燃機関制御部741は、予め設定された全ての学習用動作点310~340でのEGRバルブ19の開度補正値(動作)の学習が終了した後、内燃機関10の動作点を学習用動作点310~340から最適な燃費となる動作点に戻すように内燃機関10のエンジン回転数とエンジントルクを制御する。
<制御方法>
 次に、図6を用いて、前述したEGRバルブ19の動作の学習制御の制御方法を説明する。
 バルブ動作学習部742は、EGRバルブ19の開度の補正値の学習を開始するか否かの判断を実施し(ステップ110)、学習開始タイミングであると判断した場合(ステップ111:Yes)、ステップ112に進む。一方、バルブ動作学習部742は、学習開始タイミングでないと判断した場合(ステップ111:No)、ステップ110に戻り、学習開始タイミングと判断するまで待つ。
 バルブ動作学習部742は、内燃機関10により発電機のみが駆動される発電機駆動モードへの移行要求があると判断した場合(ステップ112:Yes)、内燃機関10で発電機20以外の車載装置を駆動せずEGRバルブ19の開度補正値の学習が可能となるので、ステップ113に進む。一方、バルブ動作学習部742は、発電機駆動モードへの移行要求がないと判断した場合(ステップS112:No)、内燃機関10が発電機20以外の車載装置の駆動に使用されており、EGRバルブ19の開度補正値の学習が実施できないため、発電機駆動モードへの移行要求があると判断するまで待つ。
 そして、動作点設定部743は、内燃機関10の動作点を、内燃機関10の動作点が通過する頻度に基づいて予め設定された学習用動作点(例えば、図4に示す学習用動作点310~340)となるように、内燃機関10のエンジン回転数とエンジントルクを制御する(ステップ113)。
 バルブ動作学習部742は、動作点設定部743で設定された複数の学習用動作点310~340の各々でEGRバルブ19の開度の補正値の学習を行う(ステップ114)。
 バルブ動作学習部742は、所定の学習用動作点(例えば、学習用動作点310)でのEGRバルブ19の開度補正値の学習が終わった後、予め設定された他の全ての学習用動作点(例えば、学習用動作点320~340)でのEGRバルブ19の開度補正値の学習が終了したか否かを判断し(ステップ115)、全ての学習用動作点におけるEGRバルブ19の開度補正値の学習が終わったと判断した場合(ステップ115:Yes)、ステップ116に進み学習制御を終了すると判断する。そして、内燃機関制御部741は、内燃機関10の動作点が、燃費が最適となる動作点となるように内燃機関10のエンジン回転数とエンジントルクを制御する(ステップ117)。一方、バルブ動作学習部742は、全ての学習用動作点におけるEGRバルブ19の開度補正値の学習が終わっていないと判断した場合(ステップ115:No)、ステップ112に戻り、予め設定した他の全ての学習用動作点(例えば、学習用動作点320~340)におけるEGRバルブ19の開度補正値の学習を行ったと判断するまで、ステップ112~ステップ115の処理を続ける。
 以上説明した通り、第1の実施形態では、
(1)少なくとも一つ以上のバルブ(例えば、スロットルバルブ15やEGRバルブ19)を有する内燃機関10と、ハイブリッド車両100を駆動するモータ50と、内燃機関10により駆動される発電機20とを備えたハイブリッド車両100において、バルブの動作を制御する制御装置70であって、モータ50によりハイブリッド車両100を駆動するモータ駆動モードにおいて、内燃機関10の動作点が予め設定された学習用動作点(例えば、学習用動作点310~340)となるように内燃機関10を制御する内燃機関制御部741と、内燃機関制御部741により内燃機関10の動作点が学習用動作点となるように制御された状態でバルブの動作の学習を行うバルブ動作学習部742と、を有する構成とした。
 このように構成すると、内燃機関10が発電機20のみを駆動し、ハイブリッド車両100がモータ50により駆動されるモータ駆動モードでは、内燃機関10の動作範囲内で動作点を自由に変動させることができ、内燃機関10が過渡状態で通過するような動作点であってもバルブ動作の学習を行うことができる。よって、制御装置70のバルブ動作学習部742は、車両使用時のバルブ動作の学習機会を増加させることができ、バルブの制御精度を向上させることができる。
(2)また前述したように、内燃機関10の動作範囲内で学習用動作点を複数設定する動作点設定部743を有する構成とした。
 このように構成すると、動作点設定部743により内燃機関10の動作範囲内で複数の学習用動作点が設定されるので、バルブ動作学習部742は、内燃機関10が複数の学習用動作点となるように制御された状態でバルブ動作の学習を行うことができる。この結果、ハイブリッド車両100が走行中の内燃機関10の運転状態に応じたバルブ動作の学習を適切に行うことができると共に、バルブの制御精度を向上させることができる。
(3)また前述したように、内燃機関10は、発電機20と当該発電機20とは異なる車載装置(図示せず)とを駆動可能に設けられており、バルブ動作学習部742は、内燃機関10で発電機20のみを駆動する発電機駆動モードに切り換えられた後に、内燃機関制御部741により内燃機関10の動作点が学習用動作点となるように制御された状態でバルブの動作の学習を行う構成とした。
 このように構成すると、内燃機関10が発電機20のみを駆動する発電機駆動モードに切り換えられた後では、内燃機関10の出力は車載装置(図示せず)の駆動には影響しないので、内燃機関制御部741は内燃機関10の動作点を動作範囲内の任意の点に制御することができる。よって、バルブ動作学習部742は、内燃機関10の任意の学習用動作点でバルブ動作の学習を行うことができ、バルブ動作の学習機会を増加させることができる。
(4)また前述したように、動作点設定部743は、内燃機関10が車載装置(図示せず)を駆動する際に内燃機関10の動作点が通過する頻度に基づいて学習用動作点を設定する構成とした。
 このように構成すると、バルブ動作学習部742は、内燃機関10の運転においてバルブを高頻度に使用する動作点におけるバルブ動作の学習を適切に行うことができる。よって、最小限の学習でバルブの制御精度を効果的に高めることができる。
(5)また前述したように、バルブは、内燃機関10の排気流路から吸気流路への排気ガスの還流量を調整するEGRバルブ19であり、動作点設定部743は、内燃機関10のEGR領域内で学習用動作点を設定する構成とした。
 このように構成すると、動作点設定部743は、EGRバルブ19の開度補正値の学習を、内燃機関10のEGR領域内で設定された学習用動作点で行うことができ、EGRバルブ19の開度補正値の学習結果に基づくEGR制御を精度よく行うことができる。よって、実EGR率を目標EGR率となるようにフィードバック制御を精度よく行える結果、内燃機関10の低燃費化と排気ガスの低減を行うことができる。ここで、EGR率とは、吸気側に新規に吸入された空気及び還流されたEGRガスの合計に対する、還流されたEGRガスの割合を言う。
(6)また前述したように、EGRバルブ19は、内燃機関10のタービン16よりも下流の排気流路とコンプレッサ12よりも上流の吸気流路への排気ガスの還流量を調整するEGRバルブであり、動作点設定部743は、内燃機関10のEGR領域内で学習用動作点を設定する構成とした。
 このように構成すると、EGRバルブ19は低圧EGRシステムに設けられたEGRバルブであるので、内燃機関10のEGR領域が広い低圧EGRシステムにおけるEGRバルブ19の開度補正値の学習を精度よく行うことができる。よって、低圧EGRシステムにおいても、内燃機関10の低燃費化と排気ガスの低減を行うことができる。
(7)また前述したように、バルブ動作学習部742が学習したEGRバルブ19の動作に基づいて、EGRバルブ19を制御するバルブ制御部744を有する構成とした。
 このように構成すると、バルブ制御部744は、バルブ動作学習部742で学習したEGRバルブ19の開度補正値に基づいて、EGRバルブ19の開弁制御を適切に行うことができる。
<第2の実施の形態>
 次に、図7を用いて、本発明にかかる第2の実施形態を説明する。
 第2の実施形態では、動作点設定部743は、内燃機関10の過渡状態の動作において頻繁に通過する動作点をRAM73などの記憶装置に記憶する。そしてバルブ動作学習部742は、RAM73などに記憶された動作点に基づいて内燃機関10の動作点を、RAM73から読み込んだ動作点に移行するように内燃機関10を制御した後、EGRバルブ19の開度補正値の学習を行う点が前述した実施形態と異なる点である。
 初めに、動作点設定部743は、内燃機関10の定常状態又は過渡状態などの運転状態において、内燃機関10の動作点の通過する頻度に基づいて予め設定される複数の動作点をRAM73などの記憶装置に予め記憶する(ステップ120)。例えば、動作点設定部743は、定常状態又は過渡状態などの運転状態において、内燃機関10の他の動作点よりも多く通過する動作点をRAM73に記憶する。
 バルブ動作学習部742は、EGRバルブ19の開度補正値の学習を開始するか否かの判断を実施し(ステップ121)、学習開始タイミングであると判断した場合(ステップ122:Yes)、ステップ123に進む。一方、バルブ動作学習部742は、学習開始タイミングでないと判断した場合(ステップ122:No)、ステップ120に戻り、学習開始タイミングと判断するまで待つ。
 バルブ動作学習部742は、内燃機関10により発電機のみが駆動される発電機駆動モードへの移行要求があると判断した場合(ステップ123:Yes)、内燃機関10で発電機20以外の車載装置を駆動せずEGRバルブ19の開度補正値の学習が可能となるので、ステップ124に進む。一方、バルブ動作学習部742は、発電機駆動モードへの移行要求がないと判断した場合(ステップS123:No)、内燃機関10が発電機20以外の車載装置の駆動に使用されており、EGRバルブ19の開度補正値の学習が実施できないため、発電機駆動モードへの移行要求があると判断するまで待つ。
 動作点設定部743は、ステップ120でRAM73などに記憶された動作点を読み込み、読み込んだ動作点を学習用動作点に設定する。そして、内燃機関制御部741は、内燃機関10の動作点をRAM73から読み込んだ学習用動作点となるように内燃機関10のエンジン回転数とエンジントルクの制御を行う(ステップ124)。
 バルブ動作学習部742は、動作点設定部743で設定された複数の学習用動作点の各々でEGRバルブ19の開度補正値の学習を行う(ステップ125)。
 バルブ動作学習部742は、所定の学習用動作点でのEGRバルブ19の開度補正値の学習が終わった後、予め設定された他の全ての学習用動作点でのEGRバルブ19の開度補正値の学習が終了したか否かを判断し(ステップ126)、全ての学習用動作点におけるEGRバルブ19の開度補正値の学習が終わったと判断した場合(ステップ126:Yes)、ステップ127に進み学習制御を終了すると判断する。そして、内燃機関制御部741は、内燃機関10の動作点が、燃費が最適となる動作点となるように内燃機関10のエンジン回転数とエンジントルクを制御する(ステップ128)。一方、バルブ動作学習部742は、全ての学習用動作点におけるEGRバルブ19の開度補正値の学習が終わっていないと判断した場合(ステップ126:No)、ステップ123に戻り、予め設定した他の全ての学習用動作点におけるEGRバルブ19の開度補正値の学習を行ったと判断するまで、ステップ123~ステップ126の処理を続ける。
 以上説明した通り、第2の実施形態では、動作点設定部743は、内燃機関10の動作点が通過する頻度に応じて設定された複数の動作点(例えば、所定時間で通過する回数が他の動作点よりも多い動作点)を予めRAM73に記憶しておき、内燃機関制御部741は、内燃機関10の動作点がRAM73に記憶された動作点(学習用動作点)となるように当該内燃機関10を制御する。よって、バルブ動作学習部742は、過去に内燃機関10の運転で頻繁に通過した動作点(学習用動作点)に基づいてEGRバルブ19の開度補正値の学習を行うことができ、EGRバルブ19の学習を過去の実績に基づいて適切に行うことができる。
<第3の実施の形態>
 次に、図3を用いて、本発明にかかる第3の実施形態を説明する。
 第3の実施形態では、CPU74のバルブ動作学習部742は、目標EGR率と実EGR率との差が所定の閾値以上である場合に、EGRバルブ19の開度補正値の学習を行う点が前述した第1の実施形態及び第2の実施形態と異なる点である。
 初めに、動作点設定部743は、内燃機関10の定常状態又は過渡状態などの運転状態において、内燃機関10の動作点の通過する頻度に基づいて予め設定される複数の動作点をRAM73などの記憶装置に予め記憶する(ステップ130)。例えば、動作点設定部743は、定常状態又は過渡状態などの運転状態において、内燃機関10の他の動作点よりも多く通過する動作点をRAM73に記憶する。
 バルブ動作学習部742は、EGRバルブ19の開度補正値の学習を開始するか否かの判断を実施する(ステップ131)。そして、バルブ動作学習部742は、内燃機関10の動作点が通る頻度(例えば、所定)に応じて予め設定され、RAM73などに記憶された動作点における目標EGR率と、ハイブリッド車両100から取得した現在の動作における実EGR率との差を比較し(ステップ132)、差が一定の閾値以上であると判断した場合(ステップ133:Yes)、学習の必要性があると判断してステップS134に進み、差が一定の閾値未満であると判断した場合(ステップS133:No)、目標EGR率と実EGR率との乖離は少ないため学習の必要性はないと判断して処理を終了する。
 バルブ動作学習部742は、内燃機関10により発電機のみが駆動される発電機駆動モードへの移行要求があると判断した場合(ステップ134:Yes)、内燃機関10で発電機20以外の車載装置を駆動せずEGRバルブ19の開度補正値の学習が可能となるので、ステップ135に進む。一方、バルブ動作学習部742は、発電機駆動モードへの移行要求がないと判断した場合(ステップS134:No)、内燃機関10が発電機20以外の車載装置の駆動に使用されており、EGRバルブ19の開度補正値の学習が実施できないため、発電機駆動モードへの移行要求があると判断するまで待つ。
 動作点設定部743は、ステップ130でRAM73などに記憶された動作点を読み込み、読み込んだ動作点を学習用動作点に設定する。そして、内燃機関制御部741は、内燃機関10の動作点をRAM73から読み込んだ学習用動作点となるように内燃機関10のエンジン回転数とエンジントルクの制御を行う(ステップ135)。
 バルブ動作学習部742は、動作点設定部743で設定された複数の学習用動作点(例えば、学習用動作点310~340)の各々でEGRバルブ19の開度補正値の学習を行う(ステップ136)。
 バルブ動作学習部742は、所定の学習用動作点でのEGRバルブ19の開度補正値の学習が終わった後、予め設定された他の全ての学習用動作点でのEGRバルブ19の開度補正値の学習が終了したか否かを判断し(ステップ137)、全ての学習用動作点におけるEGRバルブ19の開度補正値の学習が終わったと判断した場合(ステップ137:Yes)、ステップ138に進み学習制御を終了すると判断する。そして、内燃機関制御部741は、内燃機関10の動作点が、燃費が最適となる動作点となるように内燃機関10のエンジン回転数とエンジントルクを制御する(ステップ139)。一方、バルブ動作学習部742は、全ての学習用動作点におけるEGRバルブ19の開度補正値の学習が終わっていないと判断した場合(ステップ137:No)、ステップ134に戻り、予め設定した他の全ての学習用動作点におけるEGRバルブ19の開度補正値の学習を行ったと判断するまで、ステップ134~ステップ137の処理を続ける。
(8)前述したように、CPU74のバルブ動作学習部742は、内燃機関10の動作状態に応じて予め設定された目標EGR率と、内燃機関10の同一の動作状態での実際の実EGR率との差が閾値以上であると判断した場合、EGRバルブ19の動作の学習が必要であると判断する構成とした。
 このように構成すると、バルブ動作学習部742は、目標EGR率と実EGR率との差が所定の閾値以上乖離していない場合にはEGRバルブ19の開度補正値の学習の必要がないと判断することで、内燃機関制御部741により内燃機関10の動作点が学習用動作点となる制御が不必要に行われることを防止し、内燃機関10の燃費低減を図ることができる。また、バルブ動作学習部742は、目標EGR率と実EGR率との比較を所定の周期でリアルタイムに行いEGRバルブ19の学習の必要性を判断しているので、EGRバルブ19の学習を必要なタイミングで効率的に行うことができる。
 なお前述した実施の形態では、内燃機関10により発電機20と発電機20とは異なる他の車載装置とを駆動しハイブリッド車両100を直接駆動しないシリーズハイブリッド車両に本発明にかかる制御装置70を適用した場合を例示して説明したが、制御装置70を他のタイプのハイブリッド車両の制御に適用してもよい。例えば、本発明にかかる制御装置70を、車両がモータ50と内燃機関10の何れかにより駆動されるパラレルハイブリッド車両の制御装置に適用してもよい。具体的には、内燃機関10は、発電機20とハイブリッド車両100とを駆動可能に設けられており、バルブ動作学習部742は、内燃機関10で発電機20のみを駆動する発電機駆動モードに切り換えられた後に、内燃機関制御部741により内燃機関10の動作点が学習用動作点となるように制御された状態でEGRバルブ19の動作の学習を行う構成としてもよい。このように構成すると、内燃機関10で発電機20のみを駆動しハイブリッド車両100の直接駆動には関与しない発電機駆動モードにおいて、内燃機関10の動作点を、パラレルハイブリッド車両の運転状態(定常状態及び過渡状態)において頻繁に通過する任意の学習用動作点に制御することができる。よって、バルブ動作学習部742は、EGRバルブ19の学習を定常状態だけでなく過渡状態でも行うことができるためにバルブの学習機会を増やすことができる。この結果、制御装置70では、EGRバルブ19の動作の学習を適切に行うことができると共に、フィードバック制御を行うことでEGR制御の精度を向上させることができる。
 また、前述した実施形態では、EGRバルブ19の学習制御を行う場合を例示して説明したが、内燃機関10に設けられているバルブであれば、EGRバルブ19に限定されるものではなく、例えばスロットルバルブ15などでも良い。また、内燃機関10に設けられている以外のバルブでも良い。
 また、前述した発電機駆動モードは、モータ50によりハイブリッド車両100を駆動している状態であれば、内燃機関10で発電機20を駆動している状態だけでなく、発電機20を駆動していない負荷の少ない状態も含む。よって、内燃機関10は、定常状態や過渡状態の運転状態において動作点を任意に変動させることができ、この状態でバルブ動作学習部742は内燃機関10が任意の学習用動作点となるように制御された状態で、バルブの学習を適切に行うことができる。
 以上、本発明の実施の形態の一例を説明したが、本発明は、前述した実施の形態を全て組み合わせてもよく、何れか2つ以上の実施の形態を任意に組み合わせても好適である。
 また、本発明は、前述した実施の形態の全ての構成を備えているものに限定されるものではなく、前述した実施の形態の構成の一部を、他の実施の形態の構成に置き換えてもよく、また、前述した実施の形態の構成を、他の実施の形態の構成に置き換えてもよい。
 また、前述した実施の形態の一部の構成について、他の実施の形態の構成に追加、削除、置換をしてもよい。
 10:ハイブリッド車両、11:エアフローセンサ、12:コンプレッサ、13:インタークーラ、14:シリンダ、141:点火プラグ、142:燃料噴射装置、143:ピストン、144:吸気バルブ、145:排気バルブ、146:クランク軸、147:シグナルロータ、148:クランク角度センサ、149:水温センサ、15:スロットルバルブ、151:スロットルセンサ、16:タービン、17:三元触媒、171:A/Fセンサ、18:EGR流路、181:EGRクーラ、19:EGRバルブ、20:発電機、30:電力変換器、40:バッテリ、50:モータ、60:減速ギア、65:車軸、66:タイヤ、70:制御装置、71:入力回路、72:入出力ポート、73:RAM、74:CPU、741:内燃機関制御部、742:バルブ動作学習部、743:動作点設定部、744:バルブ制御部、75:ROM、76:バルブ駆動回路、77:スロットル弁駆動回路、78:燃料噴射装置駆動回路、79:点火出力回路、100:ハイブリッド車両

Claims (11)

  1.  少なくとも一つ以上のバルブを有する内燃機関と、車両を駆動するモータと、前記内燃機関により駆動される発電機とを備えた車両において、前記バルブの動作を制御する制御装置であって、
     前記モータにより前記車両を駆動するモータ駆動モードにおいて、
     前記内燃機関の動作点が予め設定された学習用動作点となるように前記内燃機関を制御する内燃機関制御部と、
     前記内燃機関制御部により前記内燃機関の動作点が前記学習用動作点となるように制御された状態で前記バルブの動作の学習を行うバルブ動作学習部と、を有する制御装置。
  2.  前記内燃機関の動作範囲内で前記学習用動作点を複数設定する動作点設定部を有する請求項1に記載の制御装置。
  3.  前記内燃機関は、前記発電機と当該発電機とは異なる車載装置とを駆動可能に設けられており、
     前記バルブ動作学習部は、前記内燃機関で前記発電機のみを駆動する発電機駆動モードに切り換えられた後に、前記内燃機関制御部により前記内燃機関の動作点が前記学習用動作点となるように制御された状態で前記バルブの動作の学習を行う請求項2に記載の制御装置。
  4.  前記内燃機関は、前記発電機と前記車両とを駆動可能に設けられており、
     前記バルブ動作学習部は、前記内燃機関で前記発電機のみを駆動する発電機駆動モードに切り換えられた後に、前記内燃機関制御部により前記内燃機関の動作点が前記学習用動作点となるように制御された状態で前記バルブの動作の学習を行う請求項2に記載の制御装置。
  5.  前記動作点設定部は、前記内燃機関が前記車載装置を駆動する際に前記内燃機関の動作点が通過する頻度に基づいて前記学習用動作点を設定する請求項3に記載の制御装置。
  6.  前記動作点設定部は、前記内燃機関が前記車両を駆動する際に前記内燃機関の動作点が通過する頻度に基づいて前記学習用動作点を設定する請求項4に記載の制御装置。
  7.  前記バルブは、前記内燃機関の排気流路から吸気流路への排気ガスの還流量を調整するEGRバルブであり、
     前記動作点設定部は、前記内燃機関のEGR領域内で前記学習用動作点を設定する請求項5または請求項6に記載の制御装置。
  8.  前記バルブは、前記内燃機関のタービンよりも下流の排気流路とコンプレッサよりも上流の吸気流路への排気ガスの還流量を調整するEGRバルブであり、
     前記動作点設定部は、前記内燃機関のEGR領域内で前記学習用動作点を設定する請求項7に記載の制御装置。
  9.  前記バルブ動作学習部は、前記内燃機関の動作状態に応じて予め設定された目標EGR率と、前記内燃機関の同一の動作状態での実際の実EGR率との差が閾値以上であると判断した場合、前記EGRバルブの動作の学習が必要であると判断する請求項8に記載の制御装置。
  10.  前記バルブ動作学習部が学習した前記バルブの動作に基づいて、前記バルブを制御するバルブ制御部を有する請求項1に記載の制御装置。
  11.  少なくとも一つ以上のバルブを有する内燃機関と、車両を駆動するモータと、前記内燃機関により駆動される発電機とを備えた車両において、前記バルブの動作を制御する制御方法であって、
     前記モータにより前記車両を駆動するモータ駆動モードであるか否かを判断するステップと、
     前記モータ駆動モードであると判断した場合、前記内燃機関の動作点が予め設定された学習用動作点となるように前記内燃機関を制御するステップと、
     前記内燃機関を制御するステップにより前記内燃機関の動作点が前記学習用動作点となるように制御された状態で前記バルブの動作の学習を行うステップと、を有する制御方法。
PCT/JP2019/015248 2018-05-25 2019-04-08 制御装置および制御方法 WO2019225179A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112019001382.3T DE112019001382T5 (de) 2018-05-25 2019-04-08 Steuergerät und steuerverfahren
JP2020521078A JP7026217B2 (ja) 2018-05-25 2019-04-08 制御装置および制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018100448 2018-05-25
JP2018-100448 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019225179A1 true WO2019225179A1 (ja) 2019-11-28

Family

ID=68616938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015248 WO2019225179A1 (ja) 2018-05-25 2019-04-08 制御装置および制御方法

Country Status (3)

Country Link
JP (1) JP7026217B2 (ja)
DE (1) DE112019001382T5 (ja)
WO (1) WO2019225179A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11549427B2 (en) * 2020-04-17 2023-01-10 Caterpillar Inc. Engine and fan system having an electric motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193137A (ja) * 2004-12-15 2006-07-27 Toyota Motor Corp ハイブリッド車両の内燃機関制御装置及び方法
JP2009108759A (ja) * 2007-10-30 2009-05-21 Toyota Motor Corp 内燃機関の制御装置
JP2014213819A (ja) * 2013-04-30 2014-11-17 トヨタ自動車株式会社 ハイブリッド自動車
JP2015067052A (ja) * 2013-09-27 2015-04-13 株式会社デンソー 発電制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193137A (ja) * 2004-12-15 2006-07-27 Toyota Motor Corp ハイブリッド車両の内燃機関制御装置及び方法
JP2009108759A (ja) * 2007-10-30 2009-05-21 Toyota Motor Corp 内燃機関の制御装置
JP2014213819A (ja) * 2013-04-30 2014-11-17 トヨタ自動車株式会社 ハイブリッド自動車
JP2015067052A (ja) * 2013-09-27 2015-04-13 株式会社デンソー 発電制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11549427B2 (en) * 2020-04-17 2023-01-10 Caterpillar Inc. Engine and fan system having an electric motor

Also Published As

Publication number Publication date
DE112019001382T5 (de) 2021-01-21
JPWO2019225179A1 (ja) 2021-04-30
JP7026217B2 (ja) 2022-02-25

Similar Documents

Publication Publication Date Title
JP4186438B2 (ja) 無段変速機を備えた車両の制御装置
WO2014132544A1 (ja) 内燃機関の制御装置
JP6394529B2 (ja) エンジンの制御装置
KR101601157B1 (ko) 터보차저와 슈퍼차저를 갖는 엔진 시스템
US20180274461A1 (en) Turbocharged engine control device
US10066541B2 (en) Physics-based vehicle turbocharger control techniques
EP2653704B1 (en) Internal combustion engine control apparatus
JP5649343B2 (ja) 内燃機関の吸気絞り弁制御方法
CN117028042B (zh) 发动机控制方法、发动机***及车辆
WO2017046947A1 (ja) 内燃機関の制御装置及び内燃機関の制御方法
US20180266341A1 (en) Control device of internal-combustion engine
WO2019225179A1 (ja) 制御装置および制御方法
JP2008223710A (ja) 内燃機関の排気還流装置
US8229654B2 (en) Device for limiting output of internal combustion engine when the engine has abnormality
CN111417772B (zh) 车辆用内燃机的控制方法以及控制装置
JP2009149229A (ja) ハイブリッド車両の出力制御装置
JP7485026B2 (ja) 内燃機関の制御方法および制御装置
JP5565378B2 (ja) 内燃機関の制御システム
CN111433445B (zh) 车辆用内燃机的控制方法以及控制装置
JP4858237B2 (ja) 内燃機関の制御装置
WO2022264482A1 (ja) 内燃機関の制御装置
WO2020260914A1 (ja) 車両制御方法および車両制御装置
JP2008019730A (ja) 内燃機関の排気還流装置
JP2004360691A (ja) 車両の内燃機関の運転方法および装置
JP4114031B2 (ja) 内燃機関の排気ガス再循環装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521078

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19807165

Country of ref document: EP

Kind code of ref document: A1