WO2019220625A1 - Transport device and work machine including the same - Google Patents

Transport device and work machine including the same Download PDF

Info

Publication number
WO2019220625A1
WO2019220625A1 PCT/JP2018/019316 JP2018019316W WO2019220625A1 WO 2019220625 A1 WO2019220625 A1 WO 2019220625A1 JP 2018019316 W JP2018019316 W JP 2018019316W WO 2019220625 A1 WO2019220625 A1 WO 2019220625A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
movable
work
offset amount
reference position
Prior art date
Application number
PCT/JP2018/019316
Other languages
French (fr)
Japanese (ja)
Inventor
壮志 野村
加藤 進一
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2020518927A priority Critical patent/JP7104782B2/en
Priority to PCT/JP2018/019316 priority patent/WO2019220625A1/en
Publication of WO2019220625A1 publication Critical patent/WO2019220625A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • B60L13/06Means to sense or control vehicle position or attitude with respect to railway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G35/00Mechanical conveyors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials

Definitions

  • This specification discloses the technique regarding a conveying apparatus and a working machine provided with the same.
  • the electronic component mounting apparatus described in Patent Document 1 includes an encoder, a storage device, and a control device.
  • the encoder detects the position of the unit base when the power is cut off.
  • the storage device stores a deviation amount between the detection position of the encoder and the origin position.
  • the control device performs control so that the unit base stops at a position that takes into account the amount of deviation stored in the storage device.
  • the electronic component mounting apparatus described in Patent Document 1 attempts to ensure the safety of the operator by matching the apparatus main body side partition member and the base side partition member when the power is shut off.
  • the linear conveyor described in Patent Document 2 includes an RF tag in each of a plurality of sliders.
  • the RF tag stores ID information (identification data) of the slider and position correction data for correcting the inherent movement error of the slider.
  • the movement error is measured using a measuring jig including a master unit member equivalent to the unit member on the fixed portion side and a laser length measuring device. Specifically, when the slider is moved from a predetermined starting point on the master unit member, one control section between the slider detection position detected by the sensor and the slider position measured by the laser length measuring device The error in is taken as the movement error.
  • the linear conveyor described in Patent Document 2 attempts to secure the positioning accuracy of the transport carriage by reducing the movement error between the sliders.
  • the present specification discloses a transport device capable of ensuring the positioning accuracy of the movable part and a work machine including the transport device.
  • the present specification includes at least one movable unit, at least one fixed unit, a drive unit, a position detection unit, at least one of a first storage unit and a second storage unit, and a movement control unit.
  • a conveying apparatus The movable part conveys a work object.
  • the fixed portion includes a track portion that guides the movement of the movable portion.
  • the drive unit includes a linear motor or a rotary motor, and moves the movable unit along the track unit.
  • One of the movable part and the fixed part is a first part, and the other of the movable part and the fixed part is a second part.
  • the position detection unit includes a detection unit provided at the first part and a detected part provided along the moving direction of the movable part at the second part, and detects the position of the movable part at the fixed part.
  • the first storage unit is provided in the first part, and stores a first offset amount that is an offset amount between a first reference position of the first part and a detection reference position of the detection unit.
  • the second storage unit is provided in the second part, and stores a second offset amount that is an offset amount between a second reference position of the second part and a detected reference position of the detected part.
  • the movement control unit uses the at least one of the first offset amount stored in the first storage unit and the second offset amount stored in the second storage unit to move the movable unit. Generate position command for.
  • the movement control unit uses at least one of the first offset amount stored in the first storage unit and the second offset amount stored in the second storage unit.
  • the position command of the movable part is generated. Therefore, the above-described transport device can detect errors between the first reference position of the first part and the detection reference position of the detection unit, and errors between the second reference position of the second part and the detection reference position of the detection part. At least one of them can be corrected, and the positioning accuracy of the movable part can be ensured.
  • FIG. 3 is a configuration diagram illustrating an example of a transport device 10.
  • 5 is a schematic diagram illustrating an example of a relationship among a first reference position M10, a detection reference position 510, a second reference position M20, and a detected reference position 520.
  • FIG. It is a schematic diagram which shows another example of the relationship between the 1st reference position M10, the detection reference position 510, the 2nd reference position M20, and the to-be-detected reference position 520.
  • It is a schematic diagram which shows another example of the relationship between the 1st reference position M10, the detection reference position 510, the 2nd reference position M20, and the to-be-detected reference position 520.
  • FIG. 3 is a configuration diagram illustrating an example of a power supply mode for supplying power to a movable unit 20.
  • FIG. FIG. 5 is a circuit diagram showing an example of the circuit configuration of FIG. 4.
  • 2 is a configuration diagram illustrating an example of a work machine 90.
  • FIG. It is a top view which shows an example of the state by which the work target object W1 is arrange
  • the conveying device 10 includes a movable unit 20, a fixed unit 30, a driving unit 40, a position detecting unit 50, a first storage unit 61, and a first storage unit 61. Both storage units 62 and a movement control unit 70 are provided.
  • the movable unit 20 conveys the work object W1.
  • the movable part 20 may be one or plural (in FIG. 1, for convenience of illustration, two).
  • the movable unit 20 can carry various work objects W1.
  • the movable unit 20 can convey, for example, equipment used on the production line, a workpiece to be processed on the production line, and the like.
  • the movable unit 20 can also transport a work object W1 of a work robot 80 described later, for example.
  • the work object W1 is mounted in each of the plurality of movable parts 20, but the plurality of movable parts 20 can also carry one work object W1 in cooperation.
  • the fixed portion 30 includes a track portion 3L that guides the movement of the movable portion 20.
  • the transport apparatus 10 includes a plurality of fixed portions 30, the plurality of fixed portions 30 are coupled along the moving direction (arrow X direction) of the movable portion 20, and the plurality of movable portions 20 are provided.
  • the track portion 3L is formed so that the fixed portions 30 can be sequentially moved.
  • the drive unit 40 includes a rotary motor 40R or a linear motor 40L, and moves the movable unit 20 along the track unit 3L.
  • the drive unit 40 of the present embodiment includes a rotary motor 40R and a motor control device 41 that drives and controls the rotary motor 40R.
  • the transport device 10 includes a plurality of movable units 20, and the rotary motor 40 ⁇ / b> R and the motor control device 41 are provided in each of the plurality of movable units 20.
  • the rotary motor 40R rotates the wheel connected via the speed reducer (both not shown) by rotating the rotor with respect to the stator, and moves the movable portion 20 along the track portion 3L. Move.
  • the rotary motor 40R various motors can be used, but a servo motor or a stepping motor is preferable.
  • the motor control device 41 can use a known servo amplifier.
  • the motor control device 41 can use a known driving driver. In either case, the motor control device 41 drives and controls the rotary motor 40R based on a position command transmitted from the movement control unit 70 described later. Thereby, the movable part 20 can move with respect to the fixed part 30 and is positioned at a predetermined position of the fixed part 30.
  • the position detection unit 50 includes a detection unit 51 and a detected unit 52, and detects the position of the movable unit 20 in the fixed unit 30.
  • the detection unit 51 is provided in the first part M1.
  • the detected part 52 is provided along the moving direction (arrow X direction) of the movable part 20 in the second part M2.
  • the position detector 50 can use a known position detector.
  • the position detector 50 for example, an optical position detector, a magnetic position detector, or the like can be used.
  • the position detection unit 50 causes the detected light to be reflected by the detected unit 52, and the detection unit 51 detects a pattern (scale) preset in the detected unit 52.
  • the position of the detection unit 51 in the detected unit 52 is detected.
  • the position detection unit 50 detects the position of the detection unit 51 in the detected unit 52 when the detection unit 51 detects a change in magnetic flux (for example, magnetic flux density) of the detected unit 52.
  • the motor control device 41 can control the detection unit 51, and the detection result is transmitted to the motor control device 41.
  • the transport device 10 includes a plurality of movable parts 20 and a plurality of fixed parts 30. Therefore, in the present embodiment, the detection unit 51 is provided in each of the plurality of movable units 20, and the detected unit 52 is provided in each of the plurality of fixed units 30.
  • the position detection unit 50 may include a detection unit 51 in each of the plurality of fixed units 30 and may include a detected unit 52 in each of the plurality of movable units 20.
  • the first storage unit 61 is provided in the first part M1, and stores a first offset amount E1 that is an offset amount between the first reference position M10 of the first part M1 and the detection reference position 510 of the detection unit 51.
  • the first reference position M10 can be set, for example, at the center of the first part M1 in the moving direction (arrow X direction) of the movable unit 20.
  • the detection reference position 510 can be set, for example, at the center of the detection unit 51 in the moving direction (arrow X direction) of the movable unit 20.
  • the second storage unit 62 is provided in the second part M2, and stores a second offset amount E2 that is an offset amount between the second reference position M20 of the second part M2 and the detected reference position 520 of the detected part 52.
  • the second reference position M20 can be set, for example, at the center of the second part M2 in the moving direction (arrow X direction) of the movable unit 20.
  • the detected reference position 520 can be set, for example, at the center of the detected portion 52 in the moving direction (arrow X direction) of the movable portion 20.
  • the first storage unit 61 and the second storage unit 62 are preferably provided in a non-volatile storage device (ROM: Read Only Memory).
  • ROM Read Only Memory
  • the nonvolatile storage device (ROM) can store various data even when power is not supplied.
  • ROM for example, a mask ROM that cannot rewrite stored data can be used.
  • ROM for example, a storage device capable of rewriting stored data such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), or the like can be used. In this case, the operator can rewrite the first offset amount E1 and the second offset amount E2 as necessary, and can easily cope with, for example, replacement of the position detection unit 50.
  • the first error between the first reference position M10 of the first part M1 and the detection reference position 510 of the detection unit 51 may adversely affect the positioning accuracy of the movable unit 20.
  • the first error may be caused by, for example, variations in manufacturing accuracy of machine parts that constitute the first part M1, variations in assembly accuracy of the detection unit 51, and the like.
  • the first offset amount E1 cancels the first error.
  • the second error between the second reference position M20 of the second part M2 and the detected reference position 520 of the detected part 52 may adversely affect the positioning accuracy of the movable part 20.
  • the second error may be caused by, for example, variations in manufacturing accuracy of the machine parts constituting the second part M2, variations in the assembly accuracy of the detected portion 52, and the like.
  • the second offset amount E2 cancels the second error. Furthermore, both the first error and the second error may adversely affect the positioning accuracy of the movable part 20. In this case, the first error and the second error are canceled using both the first offset amount E1 and the second offset amount E2.
  • the transport apparatus 10 includes at least one of the first storage unit 61 and the second storage unit 62 so that an error that adversely affects the positioning accuracy of the movable unit 20 can be corrected (can be canceled).
  • the operator may measure the first error and the second error with a known measuring device such as a laser length measuring device or a gauge in advance. For example, when the first error exceeds a predetermined threshold, the operator can determine that the first error has an adverse effect on the positioning accuracy of the movable unit 20. The same applies to the case where the second error exceeds the predetermined threshold, and the same applies to the case where both the first error and the second error exceed the predetermined threshold.
  • the operator can provide at least one of the first storage unit 61 and the second storage unit 62 in the transport device 10 according to the error exceeding the predetermined threshold.
  • the above-described work performed by the operator can be automated using a measuring device, a robot, or the like.
  • an increase in the amount of work associated with an increase in at least one of the first storage unit 61 and the second storage unit 62 can be reduced.
  • the first error and the second error shown in FIG. 1 are exaggerated for easy understanding of the error, but the actual error is very small.
  • the actual detected portion 52 is provided over the entire moving direction (arrow X direction) of the movable portion 20 in the second part M2, and the position detecting portion 50 is moved in the moving direction of the movable portion 20 ( The position of the movable portion 20 in the fixed portion 30 can be detected over the entire direction (arrow X direction).
  • the movement control unit 70 uses the at least one of the first offset amount E1 stored in the first storage unit 61 and the second offset amount E2 stored in the second storage unit 62 to move the movable unit 20 position commands are generated.
  • the transport apparatus 10 of the present embodiment includes both the first storage unit 61 and the second storage unit 62, and the movement control unit 70 includes a first offset amount E ⁇ b> 1 stored in the first storage unit 61, And the position command of the movable unit 20 can be generated using both of the second offset amount E2 stored in the second storage unit 62.
  • the movement control unit 70 of the present embodiment is provided so as to be communicable with the motor control device 41, and the movement control unit 70 receives the first storage unit 61 from the first storage unit 61 via the motor control device 41.
  • the offset amount E1 can be read.
  • the movement control unit 70 is provided so as to be communicable with the second storage unit 62, and the movement control unit 70 can read the second offset amount E ⁇ b> 2 from the second storage unit 62.
  • the movement control unit 70 transmits the generated position command of the movable unit 20 to the motor control device 41.
  • the movement control unit 70 can also directly read the first offset amount E1 from the first storage unit 61.
  • the communication described above may be wired or wireless.
  • the first reference position M10 of the first part M1 on the left side of FIG. 1 is positioned at the second reference position M20 of the second part M2 on the left side of FIG.
  • the second error is within a predetermined threshold (for convenience of explanation, the error is zero), and the first error exceeds the predetermined threshold.
  • the detection reference position 510 of the detection unit 51 is shifted from the first reference position M10 of the first part M1 by the first error in the left direction in the drawing in the moving direction of the movable unit 20 (arrow X direction).
  • the detected reference position 520 of the detected part 52 is set as the origin position.
  • the movement control unit 70 generates a position command for the movable unit 20 using the first offset amount E1. Specifically, the movement control unit 70 moves the detection reference position 510 of the detection unit 51 to a position shifted by the first offset amount E1 in the left direction from the original position in the movement direction (arrow X direction) of the movable unit 20. As described above, a position command for the movable unit 20 is generated. Thereby, the first reference position M10 of the first part M1 is positioned at the second reference position M20 of the second part M2.
  • the first error is within a predetermined threshold (for convenience of explanation, the error is zero), and the second error exceeds the predetermined threshold.
  • the detected reference position 520 of the detected part 52 is shifted from the second reference position M20 of the second part M2 by the second error in the left direction of the paper in the moving direction of the movable part 20 (arrow X direction).
  • the detected reference position 520 of the detected section 52 is set as the origin position.
  • the movement control unit 70 generates a position command for the movable unit 20 using the second offset amount E2.
  • the movement control unit 70 moves the detection reference position 510 of the detection unit 51 to a position shifted by the second offset amount E2 in the right direction from the original position in the movement direction (arrow X direction) of the movable unit 20.
  • a position command for the movable unit 20 is generated.
  • the first reference position M10 of the first part M1 is positioned at the second reference position M20 of the second part M2.
  • the movement control unit 70 generates a position command for the movable unit 20 using both the first offset amount E1 and the second offset amount E2. Specifically, the movement control unit 70 determines that the detection reference position 510 of the detection unit 51 is a predetermined amount (from the second offset amount E2 to the first offset amount E1) from the origin position in the moving direction (arrow X direction) of the movable unit 20. The position command of the movable part 20 is generated so as to move to a shifted position. Thereby, the first reference position M10 of the first part M1 is positioned at the second reference position M20 of the second part M2.
  • the detection reference position 510 of the detection unit 51 is movable relative to the origin position (the detection reference position 520 of the detection unit 52). Move in the left direction of the paper in the moving direction (arrow X direction).
  • the detection reference position 510 of the detection unit 51 moves in the right direction on the paper surface in the movement direction (arrow X direction) of the movable unit 20 with respect to the origin position. To do.
  • the detection reference position 510 of the detection unit 51 moves to the same position as the origin position in the movement direction (arrow X direction) of the movable unit 20.
  • the movement control unit 70 can generate a position command for the movable unit 20 in the same manner. Further, the detected reference position 520 of the detected part 52 is shifted from the second reference position M20 of the second part M2 by the second error in the right direction of the drawing in the moving direction of the movable part 20 (arrow X direction). Even in the case, the movement control unit 70 can generate the position command of the movable unit 20 in the same manner. Moreover, also about the form which combined the form mentioned already, the movement control part 70 can produce
  • the movement control unit 70 can generate position commands for each of the plurality of movable units 20.
  • the movement control unit 70 reads out the second offset amount E ⁇ b> 2 from the second storage unit 62 of the adjacent fixed unit 30 to determine the position of the movable unit 20.
  • Directives can be generated.
  • the movement control unit 70 repeats this, the movable unit 20 moves in order through the plurality of fixed units 30 and is positioned at the predetermined fixed unit 30.
  • the movement control unit 70 can also read the second offset amount E2 from the second storage unit 62 of each of the plurality of fixed units 30 in advance. Further, the movement control unit 70 can be provided in each of the plurality of fixed units 30.
  • the drive unit 40 can also include a linear motor 40L.
  • the linear motor 40L moves the movable portion 20 along the track portion 3L by moving the movable portion 20 that is a mover linearly with respect to the fixed portion 30 that is a stator.
  • the linear motor 40L can include a permanent magnet 43 provided in the movable part 20 that is the first part M1 and an electromagnet 42 provided in the fixed part 30 that is the second part M2.
  • the linear motor 40L includes an electromagnet 42 provided in the movable part 20 that is the first part M1 and a permanent magnet 43 provided in the fixed part 30 that is the second part M2.
  • the drive unit 40 includes a linear motor 40L and a motor control device 41 that drives and controls the linear motor 40L.
  • the transport apparatus 10 includes a plurality of movable parts 20 and a plurality of fixed parts 30.
  • the electromagnet 42 and the motor control device 41 are provided in each of the plurality of movable parts 20, and the permanent magnet 43 is provided in each of the plurality of fixed parts 30.
  • one movable part 20 is shown.
  • each of the plurality of fixed portions 30 includes a permanent magnet 43 corresponding to a predetermined number of magnetic pole pairs, with the N-pole permanent magnet 43 and the S-pole permanent magnet 43 as a pair.
  • the permanent magnets 43 corresponding to the predetermined number of magnetic pole pairs are arranged along the track portion 3L.
  • a permanent magnet 43 corresponding to one magnetic pole pair is shown for each of the plurality of fixed portions 30.
  • the track portion 3L can be curved in the moving direction of the movable portion 20 (arrow X direction).
  • the motor control device 41 supplies AC power to the electromagnet 42 to generate an alternating magnetic field.
  • the motor control device 41 can control the detection unit 51, and the detection result is transmitted to the motor control device 41.
  • the motor control device 41 controls the magnitude, current direction, and the like of AC power supplied to the electromagnet 42 based on the position command transmitted from the movement control unit 70.
  • the motor control device 41 determines the magnitude of AC power supplied to the electromagnet 42 based on the deviation between the position command transmitted from the movement control unit 70 and the detected position detected by the position detection unit 50.
  • the current direction can be controlled. Thereby, the movable part 20 can move with respect to the fixed part 30 and is positioned at a predetermined position of the fixed part 30.
  • the drive unit 40 includes the linear motor 40L.
  • the linear motor 40L includes an electromagnet 42 provided in the movable part 20 that is the first part M1, and a permanent magnet 43 provided in the fixed part 30 that is the second part M2.
  • the detection unit 51 is provided in the first part M1. Therefore, the drive unit 40 can perform both the control of the detection unit 51 and the control of the linear motor 40L by the control device (the motor control device 41 in the present modification) provided on the movable unit 20 side. These controls can be simplified.
  • drive power can be supplied to the movable unit 20.
  • the power supply form for supplying power to the movable unit 20 can take various forms.
  • power can be supplied to the movable unit 20 by a power supply device such as a battery, a contact power supply device such as an overhead wire, a non-contact power supply device, or the like.
  • electric power is supplied to the movable unit 20 by the non-contact power feeding device.
  • the fixed part 30 that is the second part M2 includes a power feeding element 32 that feeds AC power
  • the movable part 20 that is the first part M1 is a power receiving element that receives AC power from the power feeding element 32 in a non-contact manner. 21 is preferably provided.
  • the fixed portion 30 that is the second part M ⁇ b> 2 includes a feeding element 32 that feeds AC power.
  • a coil can be used as the power feeding element 32.
  • the power feeding element 32 is provided at a portion of the fixed portion 30 that can face the movable portion 20.
  • An AC power supply 31 and a power feeding side resonance element 31C are connected to the power feeding element 32 in series. Specifically, one end side of the output terminal of the AC power supply 31 is connected to one end side of the power feeding element 32. The other end side of the output terminal of the AC power supply 31 is connected to the other end side of the power feeding element 32 via the power feeding side resonance element 31C.
  • a capacitor can be used as the power supply side resonance element 31C, and forms a power supply side resonance circuit.
  • the AC power supply 31 includes, for example, a DC power supply unit that supplies DC power and a power conversion unit (both not shown) that converts DC power into AC power, and supplies AC power to the feed element 32.
  • the output frequency of the AC power supply 31 is not limited, but is preferably set based on the resonance frequencies of the power supply side resonance circuit and the power reception side resonance circuit. Specifically, the output frequency of the AC power supply 31 can be set between the resonance frequency of the power supply side resonance circuit and the resonance frequency of the power reception side resonance circuit.
  • the fixed unit 30 may be provided with a proximity sensor that detects the approach of the movable unit 20. In this case, the AC power supply 31 can supply AC power to the power feeding element 32 when the proximity sensor detects the approach of the movable part 20, compared to a case where AC power is always supplied, Power saving can be achieved.
  • the movable portion 20 that is the first part M ⁇ b> 1 includes a power receiving element 21 that receives AC power from the power feeding element 32 in a non-contact manner.
  • a power receiving element 21 for example, a coil can be used.
  • the power receiving element 21 is provided in a portion of the movable unit 20 that can face the fixed unit 30.
  • the power receiving element 21 is connected to the power receiving side resonance element 21 ⁇ / b> C in parallel and is connected to the rectifier circuit 22.
  • a capacitor can be used as the power reception side resonance element 21C, and forms a power reception side resonance circuit.
  • the rectifier circuit 22 includes a diode bridge in which a plurality of (four) diodes 22D are bridge-connected, and a smoothing capacitor 22C, and rectifies (full-wave rectifies) and smoothes AC power received by the power receiving element 21; Generate DC power.
  • one end side of the power receiving element 21 is connected to one end side of the power receiving side resonance element 21C, and is connected to the first input side terminal 22i1 of the diode bridge.
  • the other end side of the power receiving element 21 is connected to the other end side of the power receiving side resonance element 21C and is connected to the second input side terminal 22i2 of the diode bridge.
  • the first output side terminal 22o1 of the diode bridge is connected to one end side of the smoothing capacitor 22C, and is connected to the first output side terminal DC1 of the rectifier circuit 22.
  • the second output side terminal 22o2 of the diode bridge is connected to the other end side of the smoothing capacitor 22C and is connected to the second output side terminal DC2 of the rectifier circuit 22.
  • the power receiving element 21 can receive AC power from the power feeding element 32 in a contactless manner.
  • the AC power received by the power receiving element 21 from the power feeding element 32 is rectified (full-wave rectified) and smoothed by the rectifier circuit 22 and converted into DC power (in the figure, the DC voltage Vdc is shown).
  • the converted DC power is supplied to loads such as the motor control device 41, the detection unit 51, and the first storage unit 61 described above.
  • non-contact power feeding can be performed by, for example, an electromagnetic coupling method using coils for the power feeding element 32 and the power receiving element 21.
  • the power supply efficiency is improved by resonance by the power supply side resonance circuit and the power reception side resonance circuit.
  • the transport device 10 can perform non-contact power feeding by electrostatic coupling, magnetic field resonance, electromagnetic induction, or the like.
  • the movable unit 20 can also include a plurality of power receiving elements 21.
  • the rectifier circuit 22 can aggregate the AC power received by the plurality of power receiving elements 21 and rectify (full-wave rectification) and smooth the aggregated AC power to generate DC power.
  • the AC power supply 31 can also supply AC power to the plurality of power feeding elements 32 of the plurality of fixed portions 30.
  • one AC power supply 31 can supply AC power to each of the plurality of power feeding elements 32 provided in the plurality of fixed portions 30.
  • the AC power supply 31 is connected to the power feeding element 32 provided in the fixed portion 30 facing the movable portion 20 when the proximity sensor described above detects the approach of the movable portion 20. It is preferable to supply power.
  • the fixed part 30 that is the second part M2 includes the power feeding element 32 that feeds AC power, and the movable part 20 that is the first part M1 is not in contact with the power feeding element 32.
  • a power receiving element 21 that receives AC power is provided.
  • the conveying apparatus 10 can supply electric power to the movable part 20 which is the 1st site
  • Configuration Example of Work Machine 90 The work machine 90 includes the transfer device 10 and a work robot 80.
  • the transport apparatus 10 may be any of the forms described above.
  • the work robot 80 performs a predetermined work on the work target W ⁇ b> 1 transported and positioned by the transport device 10.
  • the work robot 80 includes an arm 822.
  • the arm 822 is a multi-axis (for example, five-axis) vertical articulated arm, and a plurality of (for example, six) links (first link 831 to sixth link 836) and each link can be rotated or swiveled.
  • a plurality of (for example, five) joints (first joint 841 to fifth joint 845) to be connected are provided.
  • Each joint is provided with a motor (not shown) for driving the corresponding joint and an encoder (not shown) for detecting the rotational position of the corresponding motor.
  • a motor for example, a servo motor can be used.
  • a rotary encoder can be used as the encoder.
  • a work tool as an end effector is detachably provided at the distal end link (sixth link 836) of the arm 822.
  • the work tool for example, an electromagnetic chuck, a mechanical chuck, a suction nozzle, or the like can be used.
  • the work tool attached to the tip link (sixth link 836) is appropriately selected according to the shape and material of the work object W1.
  • a camera 824 is attached to the distal end portion (fifth link 835) of the arm 822. The camera 824 can capture an image of the work target W1.
  • the work robot 80 is driven and controlled by a control device (not shown).
  • a detection signal is input to the control device from a sensor such as an encoder.
  • the control device outputs a drive signal to an actuator such as a motor.
  • the work robot 80 can perform a predetermined work in cooperation with the transfer device 10. As described above, the work object W1 is transported by the transport device 10 and positioned at a predetermined position.
  • the control device drives and controls the motor of the work robot 80 to move the work root attached to the distal end link (sixth link 836) of the arm 822 toward the work target W1.
  • the work robot 80 performs a predetermined work on the work target W1 using a work tool.
  • the control device captures the work target W1 with the camera 824, performs image processing on the captured image, and recognizes the position and orientation of the work target W1.
  • the control device calculates a target position (X coordinate, Y coordinate, and Z coordinate) and a target posture (rotation angle) of the work tool based on the position and posture of the work object W1.
  • the control device sets the target of each joint (first joint 841 to fifth joint 845) of arm 822. Set the position and target angle.
  • the control device drives and controls the corresponding motors so that the positions and angles of the joints (first joint 841 to fifth joint 845) coincide with the target position and target angle, and controls the work target W1.
  • the work tool is driven and controlled so that a predetermined work is performed.
  • the predetermined work includes a pick-up work for picking up the work object W1, an arrangement work for arranging the work object W1 at a predetermined position AR1 of the storage case C1, and a work object W1 being assembled to the predetermined part AP1 of the assembly portion AM1. It is preferable that at least pick-up work among the assembling work.
  • the work robot 80 shown in FIG. 6 can pick up the work object W1 that has been transported and positioned by the transport device 10, for example, using the work tool described above. Moreover, the work robot 80 can arrange the work object W1 at a predetermined position AR1 of the storage case C1 shown in FIG. 7A, for example.
  • This figure shows an example of a state in which the work object W1 is arranged at a predetermined position AR1 of the storage case C1.
  • the storage case C1 is divided into a plurality of areas, and the predetermined position AR1 indicates at least one of the plurality of areas (in the figure, one area).
  • the work robot 80 can arrange the work target W1 for each type of parts in the storage case C1.
  • the work robot 80 can also arrange the work object W1 in the storage case C1, for example, according to the external dimensions of the parts.
  • the work robot 80 can also arrange the work objects W1 in the order of work processes, for example.
  • the work robot 80 can also assemble the work object W1 to the predetermined part AP1 of the assembly portion AM1 shown in FIG. 7B.
  • the work robot 80 can pick up the work object W1 arranged in the storage case C1 and assemble the work object W1 to the predetermined part AP1 of the assembly part AM1.
  • the work robot 80 can also assemble the picked-up work object W1 to the predetermined part AP1 of the part to be assembled AM1 without arranging it in the storage case C1.
  • This figure shows an example of a state in which the work object W1 is assembled to the predetermined part AP1 of the assembly portion AM1.
  • the work robot 80 can assemble a predetermined component device that is the work target W1 to a predetermined device that is the assembly portion AM1. Further, the plurality of work robots 80 can cooperate to assemble the work object W1 to the predetermined part AP1 of the assembly portion AM1.
  • the transport device 10 and the work robot 80 are provided.
  • the work robot 80 performs a predetermined work on the work target W ⁇ b> 1 transported and positioned by the transport device 10.
  • the work machine 90 can perform a predetermined work in cooperation with the transfer device 10 and the work robot 80, and work efficiency is improved.
  • the predetermined work includes a pick-up work for picking up the work object W1, an arrangement work for arranging the work object W1 at a predetermined position AR1 of the storage case C1, and a predetermined part AP1 of the assembly portion AM1. It is at least a pick-up work of the assembling work to be assembled to the head.
  • the work machine 90 can perform at least a pick-up operation on the work object W ⁇ b> 1 transported and positioned by the transport device 10.
  • the movement control unit 70 includes at least one of the first offset amount E1 stored in the first storage unit 61 and the second offset amount E2 stored in the second storage unit 62.
  • the positioning accuracy of the movable part 20 is ensured by generating a position command for the movable part 20 using. Therefore, the work machine 90 can reduce the failure of the pick-up work due to a decrease in the positioning accuracy of the movable unit 20.
  • the work robot 80 is not limited to a form having an articulated arm.
  • the work robot 80 may be, for example, an orthogonal robot in which the work tool described above can move on a plane perpendicular to the moving direction (arrow X direction) of the movable unit 20.
  • the work robot 80 includes a transfer device that moves the work tool on a plane perpendicular to the moving direction (arrow X direction) of the movable unit 20.
  • the conveyance device 10 positions the movable unit 20 at a position where the work tool can reach.
  • the transfer device moves the work tool to perform a predetermined work.
  • the transport device 10 carries out the movable unit 20. In this way, the work robot 80 can also perform a predetermined work.
  • the movement control unit 70 includes the first offset amount E ⁇ b> 1 stored in the first storage unit 61 and the second offset stored in the second storage unit 62.
  • a position command for the movable unit 20 is generated using at least one of the amounts E2. Therefore, the transfer device 10 detects the error between the first reference position M10 of the first part M1 and the detection reference position 510 of the detection unit 51, and the detection of the second reference position M20 of the second part M2 and the detected part 52. At least one of the errors from the reference position 520 can be corrected, and the positioning accuracy of the movable part 20 can be ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Manipulator (AREA)
  • Non-Mechanical Conveyors (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Linear Motors (AREA)

Abstract

Provided is a transport device including a movable unit, a fixed unit, a drive unit, a position detection unit, at least one of a first storage unit and a second storage unit, and a movement control unit. The position detection unit includes a detection unit provided at a first part that is one of the movable unit and the fixed unit, and a detection target unit provided along the movement direction of the movable unit at a second part that is the other of the movable part and the fixed part. The first storage unit is provided at the first part and stores a first offset amount which is an offset amount of the first reference position of the first part and a detection reference position of the detection unit. The second storage part is provided at the second part and stores a second offset amount which is an offset amount of the second reference position of the second part and the detected reference position of the detection target unit. The movement control unit generates a position command for the movable unit by using at least one of the first offset amount stored in the first storage unit and the second offset amount stored in the second storage unit.

Description

搬送装置およびそれを備える作業機Conveying device and work machine including the same
 本明細書は、搬送装置およびそれを備える作業機に関する技術を開示する。 This specification discloses the technique regarding a conveying apparatus and a working machine provided with the same.
 特許文献1に記載の電子部品装着装置は、エンコーダ、記憶装置および制御装置を備えている。エンコーダは、電源が遮断されたときのユニットベースの位置を検出する。記憶装置は、エンコーダの検出位置と原点位置とのずれ量を格納する。制御装置は、記憶装置に格納されたずれ量を加味した位置にユニットベースが停止するように制御する。これらにより、特許文献1に記載の電子部品装着装置は、電源が遮断されたときに、装置本体側仕切部材とベース側仕切部材とを合致させて、作業者の安全を確保しようとしている。 The electronic component mounting apparatus described in Patent Document 1 includes an encoder, a storage device, and a control device. The encoder detects the position of the unit base when the power is cut off. The storage device stores a deviation amount between the detection position of the encoder and the origin position. The control device performs control so that the unit base stops at a position that takes into account the amount of deviation stored in the storage device. As a result, the electronic component mounting apparatus described in Patent Document 1 attempts to ensure the safety of the operator by matching the apparatus main body side partition member and the base side partition member when the power is shut off.
 また、特許文献2に記載のリニアコンベアは、複数のスライダの各々にRFタグを備えている。RFタグには、スライダのID情報(識別データ)と、当該スライダが有する固有の移動誤差を補正するための位置補正用データとが記憶されている。移動誤差は、固定部側のユニット部材と同等のマスタユニット部材と、レーザ測長器とを備える測定用治具を用いて測定される。具体的には、マスタユニット部材上の所定の移動起点からスライダを移動させたときに、センサによって検出されるスライダの検出位置と、レーザ測長器によって測定されるスライダの位置との一制御区間における誤差を移動誤差としている。これらにより、特許文献2に記載のリニアコンベアは、スライダ間の移動誤差を低減して搬送台車の位置決め精度を確保しようとしている。 In addition, the linear conveyor described in Patent Document 2 includes an RF tag in each of a plurality of sliders. The RF tag stores ID information (identification data) of the slider and position correction data for correcting the inherent movement error of the slider. The movement error is measured using a measuring jig including a master unit member equivalent to the unit member on the fixed portion side and a laser length measuring device. Specifically, when the slider is moved from a predetermined starting point on the master unit member, one control section between the slider detection position detected by the sensor and the slider position measured by the laser length measuring device The error in is taken as the movement error. As a result, the linear conveyor described in Patent Document 2 attempts to secure the positioning accuracy of the transport carriage by reducing the movement error between the sliders.
特開2006-100480号公報JP 2006-1000048 A 国際公開第2013/069201号International Publication No. 2013/069201
 搬送装置では、可動部の基準位置と位置検出器の検出基準位置との可動部側誤差が可動部の位置決め精度に悪影響を与える場合がある。また、固定部の基準位置と位置検出器の検出基準位置との固定部側誤差が可動部の位置決め精度に悪影響を与える場合もある。さらに、可動部側誤差および固定部側誤差の両方が可動部の位置決め精度に悪影響を与える場合もある。しかしながら、特許文献1および特許文献2に記載の発明では、これらの誤差を補正する手段を備えていないので、必ずしも可動部の位置決め精度が確保されているとは言えない。 In the transport apparatus, there may be an adverse effect on the positioning accuracy of the movable part due to the movable part side error between the reference position of the movable part and the detection reference position of the position detector. In addition, there may be an adverse effect on the positioning accuracy of the movable part due to the fixed part side error between the reference position of the fixed part and the detection reference position of the position detector. Furthermore, both the movable part side error and the fixed part side error may adversely affect the positioning accuracy of the movable part. However, since the inventions described in Patent Document 1 and Patent Document 2 do not include means for correcting these errors, it cannot always be said that the positioning accuracy of the movable part is ensured.
 このような事情に鑑みて、本明細書は、可動部の位置決め精度を確保することが可能な搬送装置およびそれを備える作業機を開示する。 In view of such circumstances, the present specification discloses a transport device capable of ensuring the positioning accuracy of the movable part and a work machine including the transport device.
 本明細書は、少なくとも一つの可動部と、少なくとも一つの固定部と、駆動部と、位置検出部と、第一記憶部および第二記憶部のうちの少なくとも一方と、移動制御部と、を具備する搬送装置を開示する。前記可動部は、作業対象物を搬送する。前記固定部は、前記可動部の移動を案内する軌道部を備える。前記駆動部は、リニアモータまたは回転型モータを備え前記軌道部に沿って前記可動部を移動させる。前記可動部および前記固定部のうちの一方を第一部位とし、前記可動部および前記固定部のうちの他方を第二部位とする。前記位置検出部は、前記第一部位に設けられる検出部と前記第二部位において前記可動部の移動方向に沿って設けられる被検出部とを備え前記固定部における前記可動部の位置を検出する。前記第一記憶部は、前記第一部位に設けられ前記第一部位の第一基準位置と前記検出部の検出基準位置とのオフセット量である第一オフセット量を記憶する。前記第二記憶部は、前記第二部位に設けられ前記第二部位の第二基準位置と前記被検出部の被検出基準位置とのオフセット量である第二オフセット量を記憶する。前記移動制御部は、前記第一記憶部に記憶されている前記第一オフセット量、および、前記第二記憶部に記憶されている前記第二オフセット量のうちの少なくとも一方を用いて前記可動部の位置指令を生成する。 The present specification includes at least one movable unit, at least one fixed unit, a drive unit, a position detection unit, at least one of a first storage unit and a second storage unit, and a movement control unit. Disclosed is a conveying apparatus. The movable part conveys a work object. The fixed portion includes a track portion that guides the movement of the movable portion. The drive unit includes a linear motor or a rotary motor, and moves the movable unit along the track unit. One of the movable part and the fixed part is a first part, and the other of the movable part and the fixed part is a second part. The position detection unit includes a detection unit provided at the first part and a detected part provided along the moving direction of the movable part at the second part, and detects the position of the movable part at the fixed part. . The first storage unit is provided in the first part, and stores a first offset amount that is an offset amount between a first reference position of the first part and a detection reference position of the detection unit. The second storage unit is provided in the second part, and stores a second offset amount that is an offset amount between a second reference position of the second part and a detected reference position of the detected part. The movement control unit uses the at least one of the first offset amount stored in the first storage unit and the second offset amount stored in the second storage unit to move the movable unit. Generate position command for.
 上記の搬送装置によれば、移動制御部は、第一記憶部に記憶されている第一オフセット量、および、第二記憶部に記憶されている第二オフセット量のうちの少なくとも一方を用いて、可動部の位置指令を生成する。よって、上記の搬送装置は、第一部位の第一基準位置と検出部の検出基準位置との誤差、および、第二部位の第二基準位置と被検出部の被検出基準位置との誤差のうちの少なくとも一方を補正することができ、可動部の位置決め精度を確保することができる。 According to the transport apparatus, the movement control unit uses at least one of the first offset amount stored in the first storage unit and the second offset amount stored in the second storage unit. The position command of the movable part is generated. Therefore, the above-described transport device can detect errors between the first reference position of the first part and the detection reference position of the detection unit, and errors between the second reference position of the second part and the detection reference position of the detection part. At least one of them can be corrected, and the positioning accuracy of the movable part can be ensured.
搬送装置10の一例を示す構成図である。FIG. 3 is a configuration diagram illustrating an example of a transport device 10. 第一基準位置M10、検出基準位置510、第二基準位置M20および被検出基準位置520の関係の一例示す模式図である。5 is a schematic diagram illustrating an example of a relationship among a first reference position M10, a detection reference position 510, a second reference position M20, and a detected reference position 520. FIG. 第一基準位置M10、検出基準位置510、第二基準位置M20および被検出基準位置520の関係の他の一例示す模式図である。It is a schematic diagram which shows another example of the relationship between the 1st reference position M10, the detection reference position 510, the 2nd reference position M20, and the to-be-detected reference position 520. 第一基準位置M10、検出基準位置510、第二基準位置M20および被検出基準位置520の関係の他の一例示す模式図である。It is a schematic diagram which shows another example of the relationship between the 1st reference position M10, the detection reference position 510, the 2nd reference position M20, and the to-be-detected reference position 520. 変形形態に係り、リニアモータ40Lを備える駆動部40の一例を示す構成図である。It is a block diagram which shows an example of the drive part 40 provided with the linear motor 40L according to a deformation | transformation form. 可動部20に電力を供給する電力供給形態の一例を示す構成図である。3 is a configuration diagram illustrating an example of a power supply mode for supplying power to a movable unit 20. FIG. 図4の回路構成の一例を示す回路図である。FIG. 5 is a circuit diagram showing an example of the circuit configuration of FIG. 4. 作業機90の一例を示す構成図である。2 is a configuration diagram illustrating an example of a work machine 90. FIG. 収納ケースC1の所定位置AR1に作業対象物W1が配置されている状態の一例を示す平面図である。It is a top view which shows an example of the state by which the work target object W1 is arrange | positioned in predetermined position AR1 of storage case C1. 作業対象物W1が被組み付け部AM1の所定部位AP1に組み付けられている状態の一例を示す平面図である。It is a top view which shows an example of the state by which the work target object W1 is assembled | attached to predetermined part AP1 of to-be-assembled part AM1.
 1.搬送装置10の構成例
 図1に示すように、本実施形態の搬送装置10は、可動部20と、固定部30と、駆動部40と、位置検出部50と、第一記憶部61および第二記憶部62の両方と、移動制御部70とを具備している。
1. Configuration Example of Conveying Device 10 As shown in FIG. 1, the conveying device 10 according to the present embodiment includes a movable unit 20, a fixed unit 30, a driving unit 40, a position detecting unit 50, a first storage unit 61, and a first storage unit 61. Both storage units 62 and a movement control unit 70 are provided.
 可動部20は、作業対象物W1を搬送する。可動部20は、一つであっても良く、複数(図1では、図示の便宜上、2つ)であっても良い。可動部20は、種々の作業対象物W1を搬送することができる。可動部20は、例えば、生産ラインで使用する機材、生産ラインで加工する加工対象物などを搬送することができる。また、可動部20は、例えば、後述する作業ロボット80の作業対象物W1を搬送することもできる。なお、同図では、複数の可動部20の各々において、作業対象物W1が搭載されているが、複数の可動部20が協働して一つの作業対象物W1を搬送することもできる。 The movable unit 20 conveys the work object W1. The movable part 20 may be one or plural (in FIG. 1, for convenience of illustration, two). The movable unit 20 can carry various work objects W1. The movable unit 20 can convey, for example, equipment used on the production line, a workpiece to be processed on the production line, and the like. In addition, the movable unit 20 can also transport a work object W1 of a work robot 80 described later, for example. In the figure, the work object W1 is mounted in each of the plurality of movable parts 20, but the plurality of movable parts 20 can also carry one work object W1 in cooperation.
 固定部30は、可動部20の移動を案内する軌道部3Lを備えている。固定部30は、一つであっても良く、複数(図1では、図示の便宜上、2つ)であっても良い。同図に示すように、搬送装置10が複数の固定部30を具備する場合、複数の固定部30は、可動部20の移動方向(矢印X方向)に沿って連結され、可動部20が複数の固定部30を順に移動可能に軌道部3Lが形成される。 The fixed portion 30 includes a track portion 3L that guides the movement of the movable portion 20. There may be one fixing portion 30 or a plurality of fixing portions 30 (in FIG. 1, for convenience of illustration). As shown in the figure, when the transport apparatus 10 includes a plurality of fixed portions 30, the plurality of fixed portions 30 are coupled along the moving direction (arrow X direction) of the movable portion 20, and the plurality of movable portions 20 are provided. The track portion 3L is formed so that the fixed portions 30 can be sequentially moved.
 駆動部40は、回転型モータ40Rまたはリニアモータ40Lを備え、軌道部3Lに沿って可動部20を移動させる。本実施形態の駆動部40は、回転型モータ40Rと、回転型モータ40Rを駆動制御するモータ制御装置41とを備えている。また、本実施形態では、搬送装置10が複数の可動部20を具備しており、回転型モータ40Rおよびモータ制御装置41は、複数の可動部20の各々に設けられている。回転型モータ40Rは、回転子が固定子に対して回転することにより、減速機を介して接続されている車輪を回転させて(いずれも図示略)、軌道部3Lに沿って可動部20を移動させる。 The drive unit 40 includes a rotary motor 40R or a linear motor 40L, and moves the movable unit 20 along the track unit 3L. The drive unit 40 of the present embodiment includes a rotary motor 40R and a motor control device 41 that drives and controls the rotary motor 40R. In the present embodiment, the transport device 10 includes a plurality of movable units 20, and the rotary motor 40 </ b> R and the motor control device 41 are provided in each of the plurality of movable units 20. The rotary motor 40R rotates the wheel connected via the speed reducer (both not shown) by rotating the rotor with respect to the stator, and moves the movable portion 20 along the track portion 3L. Move.
 回転型モータ40Rは、種々のモータを用いることができるが、サーボモータまたはステッピングモータであると好適である。回転型モータ40Rがサーボモータの場合、モータ制御装置41は、公知のサーボアンプを用いることができる。回転型モータ40Rがステッピングモータの場合、モータ制御装置41は、公知の駆動用ドライバを用いることができる。いずれの場合も、モータ制御装置41は、後述する移動制御部70から送信される位置指令に基づいて、回転型モータ40Rを駆動制御する。これにより、可動部20は、固定部30に対して移動することができ、固定部30の所定位置に位置決めされる。 As the rotary motor 40R, various motors can be used, but a servo motor or a stepping motor is preferable. When the rotary motor 40R is a servo motor, the motor control device 41 can use a known servo amplifier. When the rotary motor 40R is a stepping motor, the motor control device 41 can use a known driving driver. In either case, the motor control device 41 drives and controls the rotary motor 40R based on a position command transmitted from the movement control unit 70 described later. Thereby, the movable part 20 can move with respect to the fixed part 30 and is positioned at a predetermined position of the fixed part 30.
 ここで、可動部20および固定部30のうちの一方を第一部位M1とし、可動部20および固定部30のうちの他方を第二部位M2とする。位置検出部50は、検出部51と被検出部52とを備え、固定部30における可動部20の位置を検出する。検出部51は、第一部位M1に設けられる。被検出部52は、第二部位M2において、可動部20の移動方向(矢印X方向)に沿って設けられる。 Here, one of the movable part 20 and the fixed part 30 is a first part M1, and the other of the movable part 20 and the fixed part 30 is a second part M2. The position detection unit 50 includes a detection unit 51 and a detected unit 52, and detects the position of the movable unit 20 in the fixed unit 30. The detection unit 51 is provided in the first part M1. The detected part 52 is provided along the moving direction (arrow X direction) of the movable part 20 in the second part M2.
 位置検出部50は、公知の位置検出器を用いることができる。位置検出部50は、例えば、光学式位置検出器、磁気式位置検出器などを用いることができる。光学式位置検出器の場合、位置検出部50は、例えば、照射した光を被検出部52で反射させ、被検出部52に予め設定されているパターン(目盛)を検出部51が検出することにより、被検出部52における検出部51の位置を検出する。磁気式位置検出器の場合、位置検出部50は、検出部51が被検出部52の磁束(例えば、磁束密度など)の変動を検出することにより、被検出部52における検出部51の位置を検出する。いずれの場合も、モータ制御装置41は、検出部51を制御することができ、検出結果は、モータ制御装置41に送信される。 The position detector 50 can use a known position detector. As the position detector 50, for example, an optical position detector, a magnetic position detector, or the like can be used. In the case of an optical position detector, for example, the position detection unit 50 causes the detected light to be reflected by the detected unit 52, and the detection unit 51 detects a pattern (scale) preset in the detected unit 52. Thus, the position of the detection unit 51 in the detected unit 52 is detected. In the case of a magnetic position detector, the position detection unit 50 detects the position of the detection unit 51 in the detected unit 52 when the detection unit 51 detects a change in magnetic flux (for example, magnetic flux density) of the detected unit 52. To detect. In any case, the motor control device 41 can control the detection unit 51, and the detection result is transmitted to the motor control device 41.
 なお、図1に示すように、本実施形態では、第一部位M1は、可動部20であり、第二部位M2は、固定部30である。また、搬送装置10は、複数の可動部20と、複数の固定部30とを具備している。よって、本実施形態では、検出部51は、複数の可動部20の各々に設けられ、被検出部52は、複数の固定部30の各々に設けられている。位置検出部50は、複数の固定部30の各々に検出部51を備え、複数の可動部20の各々に被検出部52を備えることもできる。 In addition, as shown in FIG. 1, in this embodiment, the 1st site | part M1 is the movable part 20, and the 2nd site | part M2 is the fixing | fixed part 30. As shown in FIG. In addition, the transport device 10 includes a plurality of movable parts 20 and a plurality of fixed parts 30. Therefore, in the present embodiment, the detection unit 51 is provided in each of the plurality of movable units 20, and the detected unit 52 is provided in each of the plurality of fixed units 30. The position detection unit 50 may include a detection unit 51 in each of the plurality of fixed units 30 and may include a detected unit 52 in each of the plurality of movable units 20.
 第一記憶部61は、第一部位M1に設けられ、第一部位M1の第一基準位置M10と検出部51の検出基準位置510とのオフセット量である第一オフセット量E1を記憶する。第一基準位置M10は、例えば、可動部20の移動方向(矢印X方向)における第一部位M1の中心に設定することができる。検出基準位置510は、例えば、可動部20の移動方向(矢印X方向)における検出部51の中心に設定することができる。 The first storage unit 61 is provided in the first part M1, and stores a first offset amount E1 that is an offset amount between the first reference position M10 of the first part M1 and the detection reference position 510 of the detection unit 51. The first reference position M10 can be set, for example, at the center of the first part M1 in the moving direction (arrow X direction) of the movable unit 20. The detection reference position 510 can be set, for example, at the center of the detection unit 51 in the moving direction (arrow X direction) of the movable unit 20.
 第二記憶部62は、第二部位M2に設けられ、第二部位M2の第二基準位置M20と被検出部52の被検出基準位置520とのオフセット量である第二オフセット量E2を記憶する。第二基準位置M20は、例えば、可動部20の移動方向(矢印X方向)における第二部位M2の中心に設定することができる。被検出基準位置520は、例えば、可動部20の移動方向(矢印X方向)における被検出部52の中心に設定することができる。 The second storage unit 62 is provided in the second part M2, and stores a second offset amount E2 that is an offset amount between the second reference position M20 of the second part M2 and the detected reference position 520 of the detected part 52. . The second reference position M20 can be set, for example, at the center of the second part M2 in the moving direction (arrow X direction) of the movable unit 20. The detected reference position 520 can be set, for example, at the center of the detected portion 52 in the moving direction (arrow X direction) of the movable portion 20.
 第一記憶部61および第二記憶部62は、不揮発性記憶装置(ROM:Read Only Memory)に設けられると好適である。不揮発性記憶装置(ROM)は、電力が供給されていない状態においても、種々のデータを記憶しておくことができる。不揮発性記憶装置(ROM)は、例えば、記憶されているデータを書き換え不可能なマスクROMを用いることができる。また、不揮発性記憶装置(ROM)は、例えば、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)などの記憶されているデータを書き換え可能な記憶装置を用いることもできる。この場合、作業者は、第一オフセット量E1および第二オフセット量E2を必要に応じて書き換えることができ、例えば、位置検出部50の交換などの際に容易に対応することができる。 The first storage unit 61 and the second storage unit 62 are preferably provided in a non-volatile storage device (ROM: Read Only Memory). The nonvolatile storage device (ROM) can store various data even when power is not supplied. As the nonvolatile storage device (ROM), for example, a mask ROM that cannot rewrite stored data can be used. Further, as the nonvolatile storage device (ROM), for example, a storage device capable of rewriting stored data such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), or the like can be used. In this case, the operator can rewrite the first offset amount E1 and the second offset amount E2 as necessary, and can easily cope with, for example, replacement of the position detection unit 50.
 搬送装置10では、第一部位M1の第一基準位置M10と検出部51の検出基準位置510との第一誤差が、可動部20の位置決め精度に悪影響を与える場合がある。第一誤差は、例えば、第一部位M1を構成する機械部品の製造精度のばらつき、検出部51の組み付け精度のばらつきなどによって生じる可能性がある。第一オフセット量E1は、第一誤差を相殺する。また、第二部位M2の第二基準位置M20と被検出部52の被検出基準位置520との第二誤差が、可動部20の位置決め精度に悪影響を与える場合もある。第二誤差は、例えば、第二部位M2を構成する機械部品の製造精度のばらつき、被検出部52の組み付け精度のばらつきなどによって生じる可能性がある。第二オフセット量E2は、第二誤差を相殺する。さらに、第一誤差および第二誤差の両方が可動部20の位置決め精度に悪影響を与える場合もある。この場合、第一オフセット量E1および第二オフセット量E2の両方を用いて、第一誤差および第二誤差が相殺される。 In the transport device 10, the first error between the first reference position M10 of the first part M1 and the detection reference position 510 of the detection unit 51 may adversely affect the positioning accuracy of the movable unit 20. The first error may be caused by, for example, variations in manufacturing accuracy of machine parts that constitute the first part M1, variations in assembly accuracy of the detection unit 51, and the like. The first offset amount E1 cancels the first error. In addition, the second error between the second reference position M20 of the second part M2 and the detected reference position 520 of the detected part 52 may adversely affect the positioning accuracy of the movable part 20. The second error may be caused by, for example, variations in manufacturing accuracy of the machine parts constituting the second part M2, variations in the assembly accuracy of the detected portion 52, and the like. The second offset amount E2 cancels the second error. Furthermore, both the first error and the second error may adversely affect the positioning accuracy of the movable part 20. In this case, the first error and the second error are canceled using both the first offset amount E1 and the second offset amount E2.
 したがって、搬送装置10は、可動部20の位置決め精度に悪影響を与える誤差を補正可能(相殺可能)に、第一記憶部61および第二記憶部62のうちの少なくとも一方を具備すると好適である。具体的には、作業者は、予め、レーザ測長器、ゲージなどの公知の測定器によって、第一誤差および第二誤差を測定しておくと良い。作業者は、例えば、第一誤差が所定閾値を超えているときに、第一誤差が可動部20の位置決め精度に悪影響を与えると判断することができる。上述したことは、第二誤差が所定閾値を超えている場合についても同様に言え、第一誤差および第二誤差の両方が所定閾値を超えている場合についても同様に言える。作業者は、所定閾値を超えている誤差に応じて、第一記憶部61および第二記憶部62のうちの少なくとも一方を、搬送装置10に設けることができる。 Therefore, it is preferable that the transport apparatus 10 includes at least one of the first storage unit 61 and the second storage unit 62 so that an error that adversely affects the positioning accuracy of the movable unit 20 can be corrected (can be canceled). Specifically, the operator may measure the first error and the second error with a known measuring device such as a laser length measuring device or a gauge in advance. For example, when the first error exceeds a predetermined threshold, the operator can determine that the first error has an adverse effect on the positioning accuracy of the movable unit 20. The same applies to the case where the second error exceeds the predetermined threshold, and the same applies to the case where both the first error and the second error exceed the predetermined threshold. The operator can provide at least one of the first storage unit 61 and the second storage unit 62 in the transport device 10 according to the error exceeding the predetermined threshold.
 なお、作業者が行う上述した作業は、測定装置、ロボットなどを用いて自動化することができる。この場合、第一記憶部61および第二記憶部62のうちの少なくとも一方の増加に伴う作業量の増加を軽減することができる。また、図1に示す第一誤差および第二誤差は、誤差を分かり易くするために誇張して図示されているが、実際の誤差は、僅少である。さらに、実際の被検出部52は、第二部位M2において、可動部20の移動方向(矢印X方向)の全体に亘って設けられており、位置検出部50は、可動部20の移動方向(矢印X方向)の全体に亘って、固定部30における可動部20の位置を検出することができる。 Note that the above-described work performed by the operator can be automated using a measuring device, a robot, or the like. In this case, an increase in the amount of work associated with an increase in at least one of the first storage unit 61 and the second storage unit 62 can be reduced. Further, the first error and the second error shown in FIG. 1 are exaggerated for easy understanding of the error, but the actual error is very small. Furthermore, the actual detected portion 52 is provided over the entire moving direction (arrow X direction) of the movable portion 20 in the second part M2, and the position detecting portion 50 is moved in the moving direction of the movable portion 20 ( The position of the movable portion 20 in the fixed portion 30 can be detected over the entire direction (arrow X direction).
 移動制御部70は、第一記憶部61に記憶されている第一オフセット量E1、および、第二記憶部62に記憶されている第二オフセット量E2のうちの少なくとも一方を用いて、可動部20の位置指令を生成する。本実施形態の搬送装置10は、第一記憶部61および第二記憶部62の両方を具備しており、移動制御部70は、第一記憶部61に記憶されている第一オフセット量E1、および、第二記憶部62に記憶されている第二オフセット量E2の両方を用いて、可動部20の位置指令を生成することができる。 The movement control unit 70 uses the at least one of the first offset amount E1 stored in the first storage unit 61 and the second offset amount E2 stored in the second storage unit 62 to move the movable unit 20 position commands are generated. The transport apparatus 10 of the present embodiment includes both the first storage unit 61 and the second storage unit 62, and the movement control unit 70 includes a first offset amount E <b> 1 stored in the first storage unit 61, And the position command of the movable unit 20 can be generated using both of the second offset amount E2 stored in the second storage unit 62.
 具体的には、本実施形態の移動制御部70は、モータ制御装置41と通信可能に設けられており、移動制御部70は、モータ制御装置41を介して、第一記憶部61から第一オフセット量E1を読み出すことができる。また、移動制御部70は、第二記憶部62と通信可能に設けられており、移動制御部70は、第二記憶部62から第二オフセット量E2を読み出すことができる。さらに、移動制御部70は、モータ制御装置41に対して、生成した可動部20の位置指令を送信する。なお、移動制御部70は、第一記憶部61から第一オフセット量E1を直接読み出すこともできる。また、上述した通信は、有線であっても良く、無線であっても良い。 Specifically, the movement control unit 70 of the present embodiment is provided so as to be communicable with the motor control device 41, and the movement control unit 70 receives the first storage unit 61 from the first storage unit 61 via the motor control device 41. The offset amount E1 can be read. The movement control unit 70 is provided so as to be communicable with the second storage unit 62, and the movement control unit 70 can read the second offset amount E <b> 2 from the second storage unit 62. Furthermore, the movement control unit 70 transmits the generated position command of the movable unit 20 to the motor control device 41. The movement control unit 70 can also directly read the first offset amount E1 from the first storage unit 61. The communication described above may be wired or wireless.
 例えば、図1の紙面左の第一部位M1の第一基準位置M10を、同図の紙面左の第二部位M2の第二基準位置M20に位置決めする場合を想定する。まず、図2Aに示すように、第二誤差が所定閾値以内(説明の便宜上、誤差ゼロとする。)であり、第一誤差が所定閾値を超えている場合を想定する。なお、検出部51の検出基準位置510は、第一部位M1の第一基準位置M10に対して、可動部20の移動方向(矢印X方向)において紙面左方向に第一誤差分ずれており、被検出部52の被検出基準位置520を原点位置とする。この場合、移動制御部70は、第一オフセット量E1を用いて、可動部20の位置指令を生成する。具体的には、移動制御部70は、検出部51の検出基準位置510が、可動部20の移動方向(矢印X方向)において原点位置から紙面左方向に第一オフセット量E1ずれた位置に移動するように、可動部20の位置指令を生成する。これにより、第一部位M1の第一基準位置M10は、第二部位M2の第二基準位置M20に位置決めされる。 For example, it is assumed that the first reference position M10 of the first part M1 on the left side of FIG. 1 is positioned at the second reference position M20 of the second part M2 on the left side of FIG. First, as shown in FIG. 2A, it is assumed that the second error is within a predetermined threshold (for convenience of explanation, the error is zero), and the first error exceeds the predetermined threshold. The detection reference position 510 of the detection unit 51 is shifted from the first reference position M10 of the first part M1 by the first error in the left direction in the drawing in the moving direction of the movable unit 20 (arrow X direction). The detected reference position 520 of the detected part 52 is set as the origin position. In this case, the movement control unit 70 generates a position command for the movable unit 20 using the first offset amount E1. Specifically, the movement control unit 70 moves the detection reference position 510 of the detection unit 51 to a position shifted by the first offset amount E1 in the left direction from the original position in the movement direction (arrow X direction) of the movable unit 20. As described above, a position command for the movable unit 20 is generated. Thereby, the first reference position M10 of the first part M1 is positioned at the second reference position M20 of the second part M2.
 逆に、図2Bに示すように、第一誤差が所定閾値以内(説明の便宜上、誤差ゼロとする。)であり、第二誤差が所定閾値を超えている場合を想定する。なお、被検出部52の被検出基準位置520は、第二部位M2の第二基準位置M20に対して、可動部20の移動方向(矢印X方向)において紙面左方向に第二誤差分ずれており、被検出部52の被検出基準位置520を原点位置とする。この場合、移動制御部70は、第二オフセット量E2を用いて、可動部20の位置指令を生成する。具体的には、移動制御部70は、検出部51の検出基準位置510が、可動部20の移動方向(矢印X方向)において原点位置から紙面右方向に第二オフセット量E2ずれた位置に移動するように、可動部20の位置指令を生成する。これにより、第一部位M1の第一基準位置M10は、第二部位M2の第二基準位置M20に位置決めされる。 Conversely, as shown in FIG. 2B, it is assumed that the first error is within a predetermined threshold (for convenience of explanation, the error is zero), and the second error exceeds the predetermined threshold. The detected reference position 520 of the detected part 52 is shifted from the second reference position M20 of the second part M2 by the second error in the left direction of the paper in the moving direction of the movable part 20 (arrow X direction). The detected reference position 520 of the detected section 52 is set as the origin position. In this case, the movement control unit 70 generates a position command for the movable unit 20 using the second offset amount E2. Specifically, the movement control unit 70 moves the detection reference position 510 of the detection unit 51 to a position shifted by the second offset amount E2 in the right direction from the original position in the movement direction (arrow X direction) of the movable unit 20. As described above, a position command for the movable unit 20 is generated. Thereby, the first reference position M10 of the first part M1 is positioned at the second reference position M20 of the second part M2.
 最後に、図2Cに示すように、第一誤差および第二誤差の両方が所定閾値を超えている場合を想定する。この場合、想定する形態は、上述した図2Aに示す形態と、図2Bに示す形態とを組み合わせた形態になる。つまり、移動制御部70は、第一オフセット量E1および第二オフセット量E2の両方を用いて、可動部20の位置指令を生成する。具体的には、移動制御部70は、検出部51の検出基準位置510が、可動部20の移動方向(矢印X方向)において原点位置から所定量(第二オフセット量E2から第一オフセット量E1を減じた量)ずれた位置に移動するように、可動部20の位置指令を生成する。これにより、第一部位M1の第一基準位置M10は、第二部位M2の第二基準位置M20に位置決めされる。 Finally, as shown in FIG. 2C, it is assumed that both the first error and the second error exceed a predetermined threshold. In this case, the assumed form is a combination of the form shown in FIG. 2A and the form shown in FIG. 2B. That is, the movement control unit 70 generates a position command for the movable unit 20 using both the first offset amount E1 and the second offset amount E2. Specifically, the movement control unit 70 determines that the detection reference position 510 of the detection unit 51 is a predetermined amount (from the second offset amount E2 to the first offset amount E1) from the origin position in the moving direction (arrow X direction) of the movable unit 20. The position command of the movable part 20 is generated so as to move to a shifted position. Thereby, the first reference position M10 of the first part M1 is positioned at the second reference position M20 of the second part M2.
 なお、第一オフセット量E1が第二オフセット量E2と比べて大きい場合、検出部51の検出基準位置510は、原点位置(被検出部52の被検出基準位置520)に対して、可動部20の移動方向(矢印X方向)において紙面左方向に移動する。第一オフセット量E1が第二オフセット量E2と比べて小さい場合、検出部51の検出基準位置510は、原点位置に対して、可動部20の移動方向(矢印X方向)において紙面右方向に移動する。第一オフセット量E1と第二オフセット量E2とが同じ大きさの場合、検出部51の検出基準位置510は、可動部20の移動方向(矢印X方向)において原点位置と同じ位置に移動する。 When the first offset amount E1 is larger than the second offset amount E2, the detection reference position 510 of the detection unit 51 is movable relative to the origin position (the detection reference position 520 of the detection unit 52). Move in the left direction of the paper in the moving direction (arrow X direction). When the first offset amount E1 is smaller than the second offset amount E2, the detection reference position 510 of the detection unit 51 moves in the right direction on the paper surface in the movement direction (arrow X direction) of the movable unit 20 with respect to the origin position. To do. When the first offset amount E1 and the second offset amount E2 are the same size, the detection reference position 510 of the detection unit 51 moves to the same position as the origin position in the movement direction (arrow X direction) of the movable unit 20.
 また、検出部51の検出基準位置510が、第一部位M1の第一基準位置M10に対して、可動部20の移動方向(矢印X方向)において紙面右方向に第一誤差分ずれている場合も、移動制御部70は、同様にして、可動部20の位置指令を生成することができる。さらに、被検出部52の被検出基準位置520が、第二部位M2の第二基準位置M20に対して、可動部20の移動方向(矢印X方向)において紙面右方向に第二誤差分ずれている場合も、移動制御部70は、同様にして、可動部20の位置指令を生成することができる。また、既述した形態を組み合わせた形態についても、移動制御部70は、同様にして、可動部20の位置指令を生成することができる。 Further, when the detection reference position 510 of the detection unit 51 is deviated from the first reference position M10 of the first part M1 by the first error in the right direction on the paper in the moving direction of the movable unit 20 (arrow X direction). Similarly, the movement control unit 70 can generate a position command for the movable unit 20 in the same manner. Further, the detected reference position 520 of the detected part 52 is shifted from the second reference position M20 of the second part M2 by the second error in the right direction of the drawing in the moving direction of the movable part 20 (arrow X direction). Even in the case, the movement control unit 70 can generate the position command of the movable unit 20 in the same manner. Moreover, also about the form which combined the form mentioned already, the movement control part 70 can produce | generate the position command of the movable part 20 similarly.
 このようにして、移動制御部70は、複数の可動部20の各々の位置指令を生成することができる。また、一の可動部20が隣接する固定部30に移動する場合、移動制御部70は、隣接する固定部30の第二記憶部62から第二オフセット量E2を読み出して、可動部20の位置指令を生成することができる。移動制御部70がこれを繰り返すことにより、可動部20は、複数の固定部30を順に移動して、所定の固定部30において位置決めされる。なお、移動制御部70は、予め、複数の固定部30の各々の第二記憶部62から第二オフセット量E2を読み出しておくこともできる。また、移動制御部70は、複数の固定部30の各々に設けることもできる。 In this way, the movement control unit 70 can generate position commands for each of the plurality of movable units 20. When one movable unit 20 moves to the adjacent fixed unit 30, the movement control unit 70 reads out the second offset amount E <b> 2 from the second storage unit 62 of the adjacent fixed unit 30 to determine the position of the movable unit 20. Directives can be generated. When the movement control unit 70 repeats this, the movable unit 20 moves in order through the plurality of fixed units 30 and is positioned at the predetermined fixed unit 30. The movement control unit 70 can also read the second offset amount E2 from the second storage unit 62 of each of the plurality of fixed units 30 in advance. Further, the movement control unit 70 can be provided in each of the plurality of fixed units 30.
 2.駆動部40の変形形態
 駆動部40は、リニアモータ40Lを備えることもできる。リニアモータ40Lは、可動子である可動部20を、固定子である固定部30に対して直線状に移動させることにより、軌道部3Lに沿って可動部20を移動させる。また、リニアモータ40Lは、第一部位M1である可動部20に設けられる永久磁石43と、第二部位M2である固定部30に設けられる電磁石42とを備えることができる。しかしながら、リニアモータ40Lは、第一部位M1である可動部20に設けられる電磁石42と、第二部位M2である固定部30に設けられる永久磁石43とを備えると好適である。
2. Modification of Drive Unit 40 The drive unit 40 can also include a linear motor 40L. The linear motor 40L moves the movable portion 20 along the track portion 3L by moving the movable portion 20 that is a mover linearly with respect to the fixed portion 30 that is a stator. Further, the linear motor 40L can include a permanent magnet 43 provided in the movable part 20 that is the first part M1 and an electromagnet 42 provided in the fixed part 30 that is the second part M2. However, it is preferable that the linear motor 40L includes an electromagnet 42 provided in the movable part 20 that is the first part M1 and a permanent magnet 43 provided in the fixed part 30 that is the second part M2.
 図3に示すように、本変形形態の駆動部40は、リニアモータ40Lと、リニアモータ40Lを駆動制御するモータ制御装置41とを備えている。本変形形態においても、搬送装置10は、複数の可動部20および複数の固定部30を具備している。電磁石42およびモータ制御装置41は、複数の可動部20の各々に設けられ、永久磁石43は、複数の固定部30の各々に設けられている。なお、同図では、図示の便宜上、一つの可動部20が図示されている。 As shown in FIG. 3, the drive unit 40 according to the present modification includes a linear motor 40L and a motor control device 41 that drives and controls the linear motor 40L. Also in this modified embodiment, the transport apparatus 10 includes a plurality of movable parts 20 and a plurality of fixed parts 30. The electromagnet 42 and the motor control device 41 are provided in each of the plurality of movable parts 20, and the permanent magnet 43 is provided in each of the plurality of fixed parts 30. In the figure, for convenience of illustration, one movable part 20 is shown.
 また、複数の固定部30の各々は、N極の永久磁石43およびS極の永久磁石43を一対として、所定磁極対数分の永久磁石43を備えている。所定磁極対数分の永久磁石43は、軌道部3Lに沿って配置されている。なお、同図では、図示の便宜上、複数の固定部30の各々について、一磁極対分の永久磁石43が図示されている。また、実施形態および変形形態のいずれの形態においても、軌道部3Lは、可動部20の移動方向(矢印X方向)において湾曲させることもできる。 Further, each of the plurality of fixed portions 30 includes a permanent magnet 43 corresponding to a predetermined number of magnetic pole pairs, with the N-pole permanent magnet 43 and the S-pole permanent magnet 43 as a pair. The permanent magnets 43 corresponding to the predetermined number of magnetic pole pairs are arranged along the track portion 3L. In the drawing, for convenience of illustration, a permanent magnet 43 corresponding to one magnetic pole pair is shown for each of the plurality of fixed portions 30. Further, in both the embodiment and the modified embodiment, the track portion 3L can be curved in the moving direction of the movable portion 20 (arrow X direction).
 本変形形態のモータ制御装置41は、電磁石42に対して交流電力を供給し、交番磁界を発生させる。また、既述したように、モータ制御装置41は、検出部51を制御することができ、検出結果は、モータ制御装置41に送信される。モータ制御装置41は、移動制御部70から送信される位置指令に基づいて、電磁石42に供給する交流電力の大きさ、電流方向などを制御する。具体的には、モータ制御装置41は、移動制御部70から送信される位置指令と、位置検出部50によって検出された検出位置との偏差に基づいて、電磁石42に供給する交流電力の大きさ、電流方向などを制御することができる。これにより、可動部20は、固定部30に対して移動することができ、固定部30の所定位置に位置決めされる。 The motor control device 41 according to this modified embodiment supplies AC power to the electromagnet 42 to generate an alternating magnetic field. As described above, the motor control device 41 can control the detection unit 51, and the detection result is transmitted to the motor control device 41. The motor control device 41 controls the magnitude, current direction, and the like of AC power supplied to the electromagnet 42 based on the position command transmitted from the movement control unit 70. Specifically, the motor control device 41 determines the magnitude of AC power supplied to the electromagnet 42 based on the deviation between the position command transmitted from the movement control unit 70 and the detected position detected by the position detection unit 50. The current direction can be controlled. Thereby, the movable part 20 can move with respect to the fixed part 30 and is positioned at a predetermined position of the fixed part 30.
 本変形形態の搬送装置10によれば、駆動部40は、リニアモータ40Lを備える。また、リニアモータ40Lは、第一部位M1である可動部20に設けられる電磁石42と、第二部位M2である固定部30に設けられる永久磁石43とを備える。既述したように、第一部位M1には、検出部51が設けられる。よって、駆動部40は、可動部20側に設けられる制御装置(本変形形態では、モータ制御装置41)によって、検出部51の制御と、リニアモータ40Lの制御とを併せて行うことができ、これらの制御を簡素化することができる。 According to the transport apparatus 10 of this modification, the drive unit 40 includes the linear motor 40L. In addition, the linear motor 40L includes an electromagnet 42 provided in the movable part 20 that is the first part M1, and a permanent magnet 43 provided in the fixed part 30 that is the second part M2. As described above, the detection unit 51 is provided in the first part M1. Therefore, the drive unit 40 can perform both the control of the detection unit 51 and the control of the linear motor 40L by the control device (the motor control device 41 in the present modification) provided on the movable unit 20 side. These controls can be simplified.
 3.可動部20の電力供給形態
 既述した実施形態および変形形態のいずれの形態においても、可動部20には、駆動電力が供給可能になっている。可動部20に電力を供給する電力供給形態は、種々の形態をとり得る。可動部20には、例えば、バッテリなどの電源装置、架線などの接触給電装置、非接触給電装置などによって、電力を供給することができる。本形態では、非接触給電装置によって、可動部20に電力を供給する。この場合、第二部位M2である固定部30は、交流電力を給電する給電素子32を備え、第一部位M1である可動部20は、給電素子32から非接触で交流電力を受電する受電素子21を備えると好適である。
3. Power Supply Form of Movable Unit 20 In any of the embodiments and modified embodiments described above, drive power can be supplied to the movable unit 20. The power supply form for supplying power to the movable unit 20 can take various forms. For example, power can be supplied to the movable unit 20 by a power supply device such as a battery, a contact power supply device such as an overhead wire, a non-contact power supply device, or the like. In this embodiment, electric power is supplied to the movable unit 20 by the non-contact power feeding device. In this case, the fixed part 30 that is the second part M2 includes a power feeding element 32 that feeds AC power, and the movable part 20 that is the first part M1 is a power receiving element that receives AC power from the power feeding element 32 in a non-contact manner. 21 is preferably provided.
 図4および図5に示すように、第二部位M2である固定部30は、交流電力を給電する給電素子32を備えている。給電素子32は、例えば、コイルを用いることができる。給電素子32は、固定部30において、可動部20と対向可能な部位に設けられている。給電素子32には、交流電源31および給電側共振用素子31Cが直列接続されている。具体的には、交流電源31の出力端子の一端側は、給電素子32の一端側に接続されている。交流電源31の出力端子の他端側は、給電側共振用素子31Cを介して、給電素子32の他端側に接続されている。給電側共振用素子31Cは、例えば、コンデンサを用いることができ、給電側共振回路を形成する。 As shown in FIGS. 4 and 5, the fixed portion 30 that is the second part M <b> 2 includes a feeding element 32 that feeds AC power. For example, a coil can be used as the power feeding element 32. The power feeding element 32 is provided at a portion of the fixed portion 30 that can face the movable portion 20. An AC power supply 31 and a power feeding side resonance element 31C are connected to the power feeding element 32 in series. Specifically, one end side of the output terminal of the AC power supply 31 is connected to one end side of the power feeding element 32. The other end side of the output terminal of the AC power supply 31 is connected to the other end side of the power feeding element 32 via the power feeding side resonance element 31C. For example, a capacitor can be used as the power supply side resonance element 31C, and forms a power supply side resonance circuit.
 交流電源31は、例えば、直流電力を供給する直流電源部と、直流電力を交流電力に変換する電力変換部(いずれも図示略)とを備え、給電素子32に対して交流電力を供給する。交流電源31の出力周波数は、限定されないが、給電側共振回路および受電側共振回路の共振周波数に基づいて設定されていると好適である。具体的には、交流電源31の出力周波数は、給電側共振回路の共振周波数と、受電側共振回路の共振周波数との間に設定することができる。また、固定部30には、可動部20の接近を検出する近接センサを設けることもできる。この場合、交流電源31は、近接センサが可動部20の接近を検出しているときに、給電素子32に対して交流電力を供給することができ、常に交流電力を供給する場合と比べて、省電力化を図ることができる。 The AC power supply 31 includes, for example, a DC power supply unit that supplies DC power and a power conversion unit (both not shown) that converts DC power into AC power, and supplies AC power to the feed element 32. The output frequency of the AC power supply 31 is not limited, but is preferably set based on the resonance frequencies of the power supply side resonance circuit and the power reception side resonance circuit. Specifically, the output frequency of the AC power supply 31 can be set between the resonance frequency of the power supply side resonance circuit and the resonance frequency of the power reception side resonance circuit. Further, the fixed unit 30 may be provided with a proximity sensor that detects the approach of the movable unit 20. In this case, the AC power supply 31 can supply AC power to the power feeding element 32 when the proximity sensor detects the approach of the movable part 20, compared to a case where AC power is always supplied, Power saving can be achieved.
 図4および図5に示すように、第一部位M1である可動部20は、給電素子32から非接触で交流電力を受電する受電素子21を備えている。受電素子21は、例えば、コイルを用いることができる。受電素子21は、可動部20において、固定部30と対向可能な部位に設けられている。受電素子21には、受電側共振用素子21Cが並列接続されており、整流回路22と接続されている。受電側共振用素子21Cは、例えば、コンデンサを用いることができ、受電側共振回路を形成する。整流回路22は、複数(4つ)のダイオード22Dがブリッジ接続されているダイオードブリッジと、平滑コンデンサ22Cとを備え、受電素子21が受電した交流電力を整流(全波整流)および平滑して、直流電力を生成する。 As shown in FIGS. 4 and 5, the movable portion 20 that is the first part M <b> 1 includes a power receiving element 21 that receives AC power from the power feeding element 32 in a non-contact manner. As the power receiving element 21, for example, a coil can be used. The power receiving element 21 is provided in a portion of the movable unit 20 that can face the fixed unit 30. The power receiving element 21 is connected to the power receiving side resonance element 21 </ b> C in parallel and is connected to the rectifier circuit 22. For example, a capacitor can be used as the power reception side resonance element 21C, and forms a power reception side resonance circuit. The rectifier circuit 22 includes a diode bridge in which a plurality of (four) diodes 22D are bridge-connected, and a smoothing capacitor 22C, and rectifies (full-wave rectifies) and smoothes AC power received by the power receiving element 21; Generate DC power.
 具体的には、受電素子21の一端側は、受電側共振用素子21Cの一端側と接続され、ダイオードブリッジの第一入力側端子22i1と接続されている。受電素子21の他端側は、受電側共振用素子21Cの他端側と接続され、ダイオードブリッジの第二入力側端子22i2と接続されている。また、ダイオードブリッジの第一出力側端子22o1は、平滑コンデンサ22Cの一端側と接続され、整流回路22の第一出力側端子DC1と接続されている。ダイオードブリッジの第二出力側端子22o2は、平滑コンデンサ22Cの他端側と接続され、整流回路22の第二出力側端子DC2と接続されている。 Specifically, one end side of the power receiving element 21 is connected to one end side of the power receiving side resonance element 21C, and is connected to the first input side terminal 22i1 of the diode bridge. The other end side of the power receiving element 21 is connected to the other end side of the power receiving side resonance element 21C and is connected to the second input side terminal 22i2 of the diode bridge. The first output side terminal 22o1 of the diode bridge is connected to one end side of the smoothing capacitor 22C, and is connected to the first output side terminal DC1 of the rectifier circuit 22. The second output side terminal 22o2 of the diode bridge is connected to the other end side of the smoothing capacitor 22C and is connected to the second output side terminal DC2 of the rectifier circuit 22.
 給電素子32および受電素子21が対向すると、図5に示す回路が形成され、受電素子21は、給電素子32から非接触で交流電力を受電することが可能になる。受電素子21が給電素子32から受電した交流電力は、整流回路22によって整流(全波整流)および平滑され、直流電力(同図では、直流電圧Vdcが図示されている。)に変換される。変換された直流電力は、既述したモータ制御装置41、検出部51、第一記憶部61などの負荷に供給される。このように、本形態では、例えば、給電素子32および受電素子21にコイルを用いる電磁結合方式によって非接触給電を行うことができる。また、本形態では、給電側共振回路および受電側共振回路による共振によって、給電効率が向上されている。 When the power feeding element 32 and the power receiving element 21 face each other, the circuit shown in FIG. 5 is formed, and the power receiving element 21 can receive AC power from the power feeding element 32 in a contactless manner. The AC power received by the power receiving element 21 from the power feeding element 32 is rectified (full-wave rectified) and smoothed by the rectifier circuit 22 and converted into DC power (in the figure, the DC voltage Vdc is shown). The converted DC power is supplied to loads such as the motor control device 41, the detection unit 51, and the first storage unit 61 described above. Thus, in this embodiment, non-contact power feeding can be performed by, for example, an electromagnetic coupling method using coils for the power feeding element 32 and the power receiving element 21. Further, in this embodiment, the power supply efficiency is improved by resonance by the power supply side resonance circuit and the power reception side resonance circuit.
 なお、搬送装置10は、静電結合、磁界共鳴、電磁誘導などによって、非接触給電を行うこともできる。また、可動部20は、複数の受電素子21を備えることもできる。この場合、整流回路22は、複数の受電素子21が受電した交流電力を集約して、集約した交流電力を整流(全波整流)および平滑して直流電力を生成することができる。さらに、交流電源31は、複数の固定部30の複数の給電素子32に対して、交流電力を供給することもできる。例えば、一つの交流電源31が、複数の固定部30に設けられる複数の給電素子32の各々に対して、交流電力を供給することもできる。この場合、交流電源31は、既述した近接センサが可動部20の接近を検出しているときに、当該可動部20に対向する固定部30に設けられている給電素子32に対して、交流電力を供給すると好適である。 Note that the transport device 10 can perform non-contact power feeding by electrostatic coupling, magnetic field resonance, electromagnetic induction, or the like. The movable unit 20 can also include a plurality of power receiving elements 21. In this case, the rectifier circuit 22 can aggregate the AC power received by the plurality of power receiving elements 21 and rectify (full-wave rectification) and smooth the aggregated AC power to generate DC power. Furthermore, the AC power supply 31 can also supply AC power to the plurality of power feeding elements 32 of the plurality of fixed portions 30. For example, one AC power supply 31 can supply AC power to each of the plurality of power feeding elements 32 provided in the plurality of fixed portions 30. In this case, the AC power supply 31 is connected to the power feeding element 32 provided in the fixed portion 30 facing the movable portion 20 when the proximity sensor described above detects the approach of the movable portion 20. It is preferable to supply power.
 本形態の搬送装置10によれば、第二部位M2である固定部30は、交流電力を給電する給電素子32を備え、第一部位M1である可動部20は、給電素子32から非接触で交流電力を受電する受電素子21を備える。これにより、搬送装置10は、第二部位M2である固定部30から、第一部位M1である可動部20に対して、電力供給を行うことができる。よって、可動部20にバッテリなどの電源装置を搭載する場合と比べて、可動部20を小型化および軽量化し易い。 According to the transport device 10 of the present embodiment, the fixed part 30 that is the second part M2 includes the power feeding element 32 that feeds AC power, and the movable part 20 that is the first part M1 is not in contact with the power feeding element 32. A power receiving element 21 that receives AC power is provided. Thereby, the conveying apparatus 10 can supply electric power to the movable part 20 which is the 1st site | part M1 from the fixing | fixed part 30 which is the 2nd site | part M2. Therefore, compared with the case where a power supply device such as a battery is mounted on the movable part 20, the movable part 20 can be easily reduced in size and weight.
 4.作業機90の構成例
 作業機90は、搬送装置10と、作業ロボット80とを具備する。搬送装置10は、既述した形態のうちのいずれの形態であっても良い。作業ロボット80は、搬送装置10によって搬送され位置決めされた作業対象物W1に対して、所定の作業を行う。
4). Configuration Example of Work Machine 90 The work machine 90 includes the transfer device 10 and a work robot 80. The transport apparatus 10 may be any of the forms described above. The work robot 80 performs a predetermined work on the work target W <b> 1 transported and positioned by the transport device 10.
 図6に示すように、作業ロボット80は、アーム822を備えている。アーム822は、複数軸(例えば、5軸)の垂直多関節アームであり、複数(例えば、6つ)のリンク(第一リンク831~第六リンク836)と、各リンクを回転または旋回可能に連結する複数(例えば、5つ)の関節(第一関節841~第五関節845)とを備えている。各関節には、対応する関節を駆動するモータ(図示略)と、対応するモータの回転位置を検出するエンコーダ(図示略)とが設けられている。モータは、例えば、サーボモータを用いることができる。エンコーダは、例えば、ロータリエンコーダを用いることができる。 As shown in FIG. 6, the work robot 80 includes an arm 822. The arm 822 is a multi-axis (for example, five-axis) vertical articulated arm, and a plurality of (for example, six) links (first link 831 to sixth link 836) and each link can be rotated or swiveled. A plurality of (for example, five) joints (first joint 841 to fifth joint 845) to be connected are provided. Each joint is provided with a motor (not shown) for driving the corresponding joint and an encoder (not shown) for detecting the rotational position of the corresponding motor. As the motor, for example, a servo motor can be used. For example, a rotary encoder can be used as the encoder.
 アーム822の先端リンク(第六リンク836)には、エンドエフェクタである作業ツールが着脱可能に設けられている。作業ツールは、例えば、電磁チャック、メカニカルチャック、吸着ノズルなどを用いることができる。先端リンク(第六リンク836)に装着する作業ツールは、作業対象物W1の形状、素材に合わせて適宜選択される。また、アーム822の先端部(第五リンク835)には、カメラ824が取り付けられている。カメラ824は、作業対象物W1を撮像することができる。 A work tool as an end effector is detachably provided at the distal end link (sixth link 836) of the arm 822. As the work tool, for example, an electromagnetic chuck, a mechanical chuck, a suction nozzle, or the like can be used. The work tool attached to the tip link (sixth link 836) is appropriately selected according to the shape and material of the work object W1. A camera 824 is attached to the distal end portion (fifth link 835) of the arm 822. The camera 824 can capture an image of the work target W1.
 作業ロボット80は、制御装置(図示略)によって駆動制御される。制御装置には、エンコーダなどのセンサから検出信号が入力される。また、制御装置は、モータなどのアクチュエータに対して、駆動信号を出力する。作業ロボット80は、搬送装置10と協働して、所定の作業を行うことができる。既述したように、作業対象物W1は、搬送装置10によって搬送され、所定位置に位置決めされる。制御装置は、作業ロボット80のモータを駆動制御することにより、アーム822の先端リンク(第六リンク836)に装着された作業ルーツを、作業対象物W1に向けて移動させる。作業ロボット80は、作業ツールを用いて、作業対象物W1に対して所定の作業を行う。 The work robot 80 is driven and controlled by a control device (not shown). A detection signal is input to the control device from a sensor such as an encoder. The control device outputs a drive signal to an actuator such as a motor. The work robot 80 can perform a predetermined work in cooperation with the transfer device 10. As described above, the work object W1 is transported by the transport device 10 and positioned at a predetermined position. The control device drives and controls the motor of the work robot 80 to move the work root attached to the distal end link (sixth link 836) of the arm 822 toward the work target W1. The work robot 80 performs a predetermined work on the work target W1 using a work tool.
 具体的には、制御装置は、カメラ824によって作業対象物W1を撮像し、撮像画像を画像処理して、作業対象物W1の位置および姿勢を認識する。制御装置は、作業対象物W1の位置および姿勢に基づいて、作業ツールの目標位置(X座標、Y座標およびZ座標)並びに目標姿勢(回転角度)を算出する。制御装置は、算出した作業ツールの目標位置(X座標、Y座標およびZ座標)並びに目標姿勢(回転角度)に基づいて、アーム822の各関節(第一関節841~第五関節845)の目標位置および目標角度を設定する。制御装置は、各関節(第一関節841~第五関節845)の位置および角度が、目標位置および目標角度と一致するように、対応するモータを駆動制御すると共に、作業対象物W1に対して所定の作業が行なわれるように、作業ツールを駆動制御する。 Specifically, the control device captures the work target W1 with the camera 824, performs image processing on the captured image, and recognizes the position and orientation of the work target W1. The control device calculates a target position (X coordinate, Y coordinate, and Z coordinate) and a target posture (rotation angle) of the work tool based on the position and posture of the work object W1. Based on the calculated target position (X coordinate, Y coordinate, and Z coordinate) and target posture (rotation angle) of the work tool, the control device sets the target of each joint (first joint 841 to fifth joint 845) of arm 822. Set the position and target angle. The control device drives and controls the corresponding motors so that the positions and angles of the joints (first joint 841 to fifth joint 845) coincide with the target position and target angle, and controls the work target W1. The work tool is driven and controlled so that a predetermined work is performed.
 所定の作業は、作業対象物W1をピックアップするピックアップ作業、作業対象物W1を収納ケースC1の所定位置AR1に配置する配置作業、および、作業対象物W1を被組み付け部AM1の所定部位AP1に組み付ける組み付け作業のうちの少なくともピックアップ作業であると好適である。 The predetermined work includes a pick-up work for picking up the work object W1, an arrangement work for arranging the work object W1 at a predetermined position AR1 of the storage case C1, and a work object W1 being assembled to the predetermined part AP1 of the assembly portion AM1. It is preferable that at least pick-up work among the assembling work.
 図6に示す作業ロボット80は、例えば、既述した作業ツールを用いて、搬送装置10によって搬送され位置決めされた作業対象物W1をピックアップすることができる。また、作業ロボット80は、例えば、図7Aに示す収納ケースC1の所定位置AR1に作業対象物W1を配置することができる。同図は、収納ケースC1の所定位置AR1に作業対象物W1が配置されている状態の一例を示している。収納ケースC1は、複数の領域に区分されており、所定位置AR1は、複数の領域のうちの少なくとも一つの領域(同図では、一つの領域)を示している。例えば、作業対象物W1が複数の部品の集合物である場合、作業ロボット80は、収納ケースC1において、作業対象物W1を部品の種類毎に配置することができる。また、作業ロボット80は、例えば、収納ケースC1において、作業対象物W1を部品の外形寸法に応じて配置することもできる。さらに、作業ロボット80は、例えば、作業対象物W1を作業工程順に配置することもできる。 The work robot 80 shown in FIG. 6 can pick up the work object W1 that has been transported and positioned by the transport device 10, for example, using the work tool described above. Moreover, the work robot 80 can arrange the work object W1 at a predetermined position AR1 of the storage case C1 shown in FIG. 7A, for example. This figure shows an example of a state in which the work object W1 is arranged at a predetermined position AR1 of the storage case C1. The storage case C1 is divided into a plurality of areas, and the predetermined position AR1 indicates at least one of the plurality of areas (in the figure, one area). For example, when the work target W1 is an assembly of a plurality of parts, the work robot 80 can arrange the work target W1 for each type of parts in the storage case C1. Moreover, the work robot 80 can also arrange the work object W1 in the storage case C1, for example, according to the external dimensions of the parts. Furthermore, the work robot 80 can also arrange the work objects W1 in the order of work processes, for example.
 さらに、作業ロボット80は、図7Bに示す被組み付け部AM1の所定部位AP1に作業対象物W1を組み付けることもできる。この場合、作業ロボット80は、収納ケースC1に配置されている作業対象物W1をピックアップして、被組み付け部AM1の所定部位AP1に作業対象物W1を組み付けることができる。また、作業ロボット80は、ピックアップした作業対象物W1を収納ケースC1に配置することなく、被組み付け部AM1の所定部位AP1に組み付けることもできる。同図は、作業対象物W1が被組み付け部AM1の所定部位AP1に組み付けられている状態の一例を示している。作業ロボット80は、例えば、被組み付け部AM1である所定の装置に対して、作業対象物W1である所定の構成機器を組み付けることができる。また、複数の作業ロボット80が協働して、被組み付け部AM1の所定部位AP1に作業対象物W1を組み付けることもできる。 Furthermore, the work robot 80 can also assemble the work object W1 to the predetermined part AP1 of the assembly portion AM1 shown in FIG. 7B. In this case, the work robot 80 can pick up the work object W1 arranged in the storage case C1 and assemble the work object W1 to the predetermined part AP1 of the assembly part AM1. Further, the work robot 80 can also assemble the picked-up work object W1 to the predetermined part AP1 of the part to be assembled AM1 without arranging it in the storage case C1. This figure shows an example of a state in which the work object W1 is assembled to the predetermined part AP1 of the assembly portion AM1. For example, the work robot 80 can assemble a predetermined component device that is the work target W1 to a predetermined device that is the assembly portion AM1. Further, the plurality of work robots 80 can cooperate to assemble the work object W1 to the predetermined part AP1 of the assembly portion AM1.
 本形態の作業機90によれば、搬送装置10と作業ロボット80とを具備している。作業ロボット80は、搬送装置10によって搬送され位置決めされた作業対象物W1に対して、所定の作業を行う。これにより、作業機90は、搬送装置10および作業ロボット80が協働して、所定の作業を行うことができ、作業効率が向上する。 According to the working machine 90 of this embodiment, the transport device 10 and the work robot 80 are provided. The work robot 80 performs a predetermined work on the work target W <b> 1 transported and positioned by the transport device 10. Thereby, the work machine 90 can perform a predetermined work in cooperation with the transfer device 10 and the work robot 80, and work efficiency is improved.
 また、所定の作業は、作業対象物W1をピックアップするピックアップ作業、作業対象物W1を収納ケースC1の所定位置AR1に配置する配置作業、および、作業対象物W1を被組み付け部AM1の所定部位AP1に組み付ける組み付け作業のうちの少なくともピックアップ作業である。これにより、作業機90は、搬送装置10によって搬送され位置決めされた作業対象物W1に対して、少なくともピックアップ作業を行うことができる。既述したように、移動制御部70は、第一記憶部61に記憶されている第一オフセット量E1、および、第二記憶部62に記憶されている第二オフセット量E2のうちの少なくとも一方を用いて、可動部20の位置指令を生成することにより、可動部20の位置決め精度を確保する。よって、作業機90は、可動部20の位置決め精度の低下に起因するピックアップ作業の失敗などを軽減することができる。 The predetermined work includes a pick-up work for picking up the work object W1, an arrangement work for arranging the work object W1 at a predetermined position AR1 of the storage case C1, and a predetermined part AP1 of the assembly portion AM1. It is at least a pick-up work of the assembling work to be assembled to the head. As a result, the work machine 90 can perform at least a pick-up operation on the work object W <b> 1 transported and positioned by the transport device 10. As described above, the movement control unit 70 includes at least one of the first offset amount E1 stored in the first storage unit 61 and the second offset amount E2 stored in the second storage unit 62. The positioning accuracy of the movable part 20 is ensured by generating a position command for the movable part 20 using. Therefore, the work machine 90 can reduce the failure of the pick-up work due to a decrease in the positioning accuracy of the movable unit 20.
 なお、作業ロボット80は、多関節アームを備える形態に限定されない。作業ロボット80は、例えば、既述した作業ツールが、可動部20の移動方向(矢印X方向)に垂直な平面上を移動可能な直交ロボットであっても良い。この場合、作業ロボット80は、可動部20の移動方向(矢印X方向)に垂直な平面において、作業ツールを移動させる移載装置を備える。搬送装置10は、作業ツールが到達可能な位置に可動部20を位置決めする。移載装置は、作業ツールを移動させて、所定の作業を行わせる。所定の作業が完了すると、搬送装置10は、可動部20を搬出する。このようにして、作業ロボット80は、所定の作業を行うこともできる。 Note that the work robot 80 is not limited to a form having an articulated arm. The work robot 80 may be, for example, an orthogonal robot in which the work tool described above can move on a plane perpendicular to the moving direction (arrow X direction) of the movable unit 20. In this case, the work robot 80 includes a transfer device that moves the work tool on a plane perpendicular to the moving direction (arrow X direction) of the movable unit 20. The conveyance device 10 positions the movable unit 20 at a position where the work tool can reach. The transfer device moves the work tool to perform a predetermined work. When the predetermined work is completed, the transport device 10 carries out the movable unit 20. In this way, the work robot 80 can also perform a predetermined work.
 5.実施形態の効果の一例
 搬送装置10によれば、移動制御部70は、第一記憶部61に記憶されている第一オフセット量E1、および、第二記憶部62に記憶されている第二オフセット量E2のうちの少なくとも一方を用いて、可動部20の位置指令を生成する。よって、搬送装置10は、第一部位M1の第一基準位置M10と検出部51の検出基準位置510との誤差、および、第二部位M2の第二基準位置M20と被検出部52の被検出基準位置520との誤差のうちの少なくとも一方を補正することができ、可動部20の位置決め精度を確保することができる。
5. Example of Effect of Embodiment According to the transport device 10, the movement control unit 70 includes the first offset amount E <b> 1 stored in the first storage unit 61 and the second offset stored in the second storage unit 62. A position command for the movable unit 20 is generated using at least one of the amounts E2. Therefore, the transfer device 10 detects the error between the first reference position M10 of the first part M1 and the detection reference position 510 of the detection unit 51, and the detection of the second reference position M20 of the second part M2 and the detected part 52. At least one of the errors from the reference position 520 can be corrected, and the positioning accuracy of the movable part 20 can be ensured.
10:搬送装置、
20:可動部、21:受電素子、
30:固定部、3L:軌道部、32:給電素子、
40:駆動部、40L:リニアモータ、40R:回転型モータ、
42:電磁石、43:永久磁石、
50:位置検出部、
51:検出部、510:検出基準位置、
52:被検出部、520:被検出基準位置、
61:第一記憶部、62:第二記憶部、70:移動制御部、
80:作業ロボット、90:作業機、
M1:第一部位、M10:第一基準位置、
M2:第二部位、M20:第二基準位置、
E1:第一オフセット量、E2:第二オフセット量、
W1:作業対象物、
AM1:被組み付け部、AP1:所定部位、
C1:収納ケース、AR1:所定位置、
矢印X方向:可動部20の移動方向。
10: Conveying device,
20: movable part, 21: power receiving element,
30: fixed part, 3L: track part, 32: feeding element,
40: drive unit, 40L: linear motor, 40R: rotary motor,
42: electromagnet, 43: permanent magnet,
50: position detection unit,
51: detection unit, 510: detection reference position,
52: detected portion, 520: detected reference position,
61: first storage unit, 62: second storage unit, 70: movement control unit,
80: work robot, 90: work machine,
M1: first part, M10: first reference position,
M2: second part, M20: second reference position,
E1: first offset amount, E2: second offset amount,
W1: Work object
AM1: Assembly part, AP1: Predetermined part,
C1: storage case, AR1: predetermined position,
Arrow X direction: moving direction of the movable part 20.

Claims (5)

  1.  作業対象物を搬送する少なくとも一つの可動部と、
     前記可動部の移動を案内する軌道部を備える少なくとも一つの固定部と、
     リニアモータまたは回転型モータを備え前記軌道部に沿って前記可動部を移動させる駆動部と、
     前記可動部および前記固定部のうちの一方である第一部位に設けられる検出部と前記可動部および前記固定部のうちの他方である第二部位において前記可動部の移動方向に沿って設けられる被検出部とを備え前記固定部における前記可動部の位置を検出する位置検出部と、
     前記第一部位に設けられ前記第一部位の第一基準位置と前記検出部の検出基準位置とのオフセット量である第一オフセット量を記憶する第一記憶部、および、前記第二部位に設けられ前記第二部位の第二基準位置と前記被検出部の被検出基準位置とのオフセット量である第二オフセット量を記憶する第二記憶部のうちの少なくとも一方と、
     前記第一記憶部に記憶されている前記第一オフセット量、および、前記第二記憶部に記憶されている前記第二オフセット量のうちの少なくとも一方を用いて前記可動部の位置指令を生成する移動制御部と、
    を具備する搬送装置。
    At least one movable part for conveying the work object;
    At least one fixed part comprising a track part for guiding the movement of the movable part;
    A drive unit that includes a linear motor or a rotary motor and moves the movable unit along the track unit;
    Provided along the moving direction of the movable part in the detection part provided in the first part which is one of the movable part and the fixed part and the second part which is the other of the movable part and the fixed part. A position detector for detecting the position of the movable part in the fixed part,
    A first storage unit that is provided in the first part and stores a first offset amount that is an offset amount between the first reference position of the first part and the detection reference position of the detection part, and provided in the second part At least one of a second storage unit that stores a second offset amount that is an offset amount between the second reference position of the second part and the detected reference position of the detected unit;
    A position command of the movable part is generated using at least one of the first offset amount stored in the first storage unit and the second offset amount stored in the second storage unit. A movement control unit;
    A conveying apparatus comprising:
  2.  前記駆動部は、前記リニアモータを備え、
     前記リニアモータは、前記第一部位である前記可動部に設けられる電磁石と、前記第二部位である前記固定部に設けられる永久磁石とを備える請求項1に記載の搬送装置。
    The drive unit includes the linear motor,
    The transport apparatus according to claim 1, wherein the linear motor includes an electromagnet provided in the movable part that is the first part and a permanent magnet provided in the fixed part that is the second part.
  3.  前記第二部位である前記固定部は、交流電力を給電する給電素子を備え、
     前記第一部位である前記可動部は、前記給電素子から非接触で前記交流電力を受電する受電素子を備える請求項1または請求項2に記載の搬送装置。
    The fixed portion as the second part includes a power feeding element that feeds AC power,
    3. The transport device according to claim 1, wherein the movable portion that is the first part includes a power receiving element that receives the AC power in a non-contact manner from the power feeding element.
  4.  請求項1~請求項3のいずれか一項に記載の搬送装置と、
     前記搬送装置によって搬送され位置決めされた前記作業対象物に対して、所定の作業を行う作業ロボットと、
    を具備する作業機。
    A transport apparatus according to any one of claims 1 to 3,
    A work robot that performs a predetermined work on the work object transported and positioned by the transport device;
    A working machine comprising:
  5.  前記所定の作業は、前記作業対象物をピックアップするピックアップ作業、前記作業対象物を収納ケースの所定位置に配置する配置作業、および、前記作業対象物を被組み付け部の所定部位に組み付ける組み付け作業のうちの少なくとも前記ピックアップ作業である請求項4に記載の作業機。 The predetermined work includes a pick-up work for picking up the work object, an arrangement work for arranging the work object at a predetermined position of a storage case, and an assembling work for assembling the work object to a predetermined part of the assembly portion. The working machine according to claim 4, which is at least the pick-up work.
PCT/JP2018/019316 2018-05-18 2018-05-18 Transport device and work machine including the same WO2019220625A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020518927A JP7104782B2 (en) 2018-05-18 2018-05-18 Conveyor device and work equipment equipped with it
PCT/JP2018/019316 WO2019220625A1 (en) 2018-05-18 2018-05-18 Transport device and work machine including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/019316 WO2019220625A1 (en) 2018-05-18 2018-05-18 Transport device and work machine including the same

Publications (1)

Publication Number Publication Date
WO2019220625A1 true WO2019220625A1 (en) 2019-11-21

Family

ID=68539962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019316 WO2019220625A1 (en) 2018-05-18 2018-05-18 Transport device and work machine including the same

Country Status (2)

Country Link
JP (1) JP7104782B2 (en)
WO (1) WO2019220625A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6434107A (en) * 1987-07-28 1989-02-03 Tsubakimoto Chain Co Regulation of sensor for stepping motor
JP2010037092A (en) * 2008-08-07 2010-02-18 Sinfonia Technology Co Ltd Conveying device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2691319B1 (en) * 2011-03-31 2022-05-25 ATS Automation Tooling Systems Inc. Pallet-based position adjustment system
WO2014049815A1 (en) * 2012-09-28 2014-04-03 富士機械製造株式会社 Drive device
JP6797590B2 (en) * 2016-07-29 2020-12-09 株式会社Fuji Work machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6434107A (en) * 1987-07-28 1989-02-03 Tsubakimoto Chain Co Regulation of sensor for stepping motor
JP2010037092A (en) * 2008-08-07 2010-02-18 Sinfonia Technology Co Ltd Conveying device

Also Published As

Publication number Publication date
JPWO2019220625A1 (en) 2021-04-08
JP7104782B2 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
JP5561260B2 (en) Robot system and imaging method
US20190160682A1 (en) Robot system and method for controlling robot system
KR102029154B1 (en) Self-propelled articulated robot
CN109996653B (en) Working position correction method and working robot
US6986200B2 (en) Method for mounting parts
US20220324118A1 (en) Work robot system
CN107206916B (en) Movable power coupling and robot with movable power coupling
CN111470309B (en) Following robot and working robot system
US11173608B2 (en) Work robot and work position correction method
CN110103201B (en) Work robot system
CN117999185A (en) Energy transfer in a linear delivery system
WO2019220625A1 (en) Transport device and work machine including the same
KR20190139076A (en) A welding robot and a welding method using the same
CN112384334B (en) System and method for detecting and correcting robot payload position
WO2020049984A1 (en) Wireless valve manifold
WO2016186061A1 (en) Robot system and robot device
JP6343003B2 (en) Non-contact power feeding device
JP3500443B2 (en) Multi-degree-of-freedom machining system
JP7395707B2 (en) Contactless power supply system
JP2021028094A (en) Method for correcting implicit positioning of unmanned carrier
Shao et al. Application of a robotic system with mobile manipulator and vision positioning
US20230356410A1 (en) Holding device, control method, control device, and robot system
JP2013165280A (en) Wafer positioning apparatus and wafer sticking device with the same
JP2018015848A (en) Working machine
CN102958344B (en) Substrate apparatus for work

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518927

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918439

Country of ref document: EP

Kind code of ref document: A1