WO2019215852A1 - Treatment tool - Google Patents

Treatment tool Download PDF

Info

Publication number
WO2019215852A1
WO2019215852A1 PCT/JP2018/017981 JP2018017981W WO2019215852A1 WO 2019215852 A1 WO2019215852 A1 WO 2019215852A1 JP 2018017981 W JP2018017981 W JP 2018017981W WO 2019215852 A1 WO2019215852 A1 WO 2019215852A1
Authority
WO
WIPO (PCT)
Prior art keywords
divided
region
transfer plate
heat transfer
resistance pattern
Prior art date
Application number
PCT/JP2018/017981
Other languages
French (fr)
Japanese (ja)
Inventor
和哉 笹口
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2018/017981 priority Critical patent/WO2019215852A1/en
Publication of WO2019215852A1 publication Critical patent/WO2019215852A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes

Definitions

  • the present invention relates to a treatment instrument.
  • Patent Literature 1 a treatment tool that treats a target portion by applying energy to a portion to be treated in a living tissue (hereinafter referred to as a target portion) (see, for example, Patent Document 1).
  • the treatment tool described in Patent Literature 1 includes a pair of jaws that grip a target site.
  • One jaw is provided with the following heat transfer plate and heating element.
  • the heat transfer plate is made of a conductive material such as copper.
  • the heat transfer plate has a first surface that transfers heat to the target site in contact with the target site, and a second surface that forms a front and back surface with the first surface.
  • the heating element is disposed on the second surface and generates heat when energized. That is, the heat transfer plate transmits heat from the heating element to the target site.
  • the jaws and the heat transfer plate have a curved shape extending along a curve from the proximal end side to the distal end side in order to facilitate peeling of the living tissue.
  • the two first and second divided bodies obtained by dividing the heat transfer plate by the divided surfaces shown below have different heat capacities.
  • the dividing surface is perpendicular to the width direction and has the center when a curved axis extending in the longitudinal direction of the second surface passing through the center position in the width direction of the second surface of the heat transfer plate is the center axis.
  • the first divided body on the outer peripheral side with respect to the divided surface is more than the second divided body on the inner peripheral side with respect to the divided surface. Has a large volume. For this reason, the first divided body has a larger heat capacity than the second divided body.
  • the heat transfer plate is biased due to the difference in heat capacity between the first and second divided bodies described above. . That is, there is a problem that the heat distribution of the heat transfer plate cannot be made uniform.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a treatment instrument that can equalize the heat distribution of a heat transfer plate.
  • the treatment tool according to the present invention includes a first surface that transfers heat to the living tissue in contact with the living tissue, and the first surface. And a heat transfer plate having a front and back second surface, and a resistance pattern disposed on the second surface and generating heat when energized, and the heat transfer by the first divided surface or the second divided surface.
  • the plurality of divided bodies include a first divided body and a second divided body having a lower heat capacity than the first divided body
  • the first central axis is an axis that passes through the center position in the longitudinal direction of the second surface and extends in the width direction of the second surface
  • the split surface is orthogonal to the longitudinal direction and the first surface
  • the second dividing surface passes through the center position in the width direction of the second surface, and passes through the central axis of the second surface.
  • the axis extending in the longitudinal direction is the second central axis, it is a plane that is orthogonal to the width direction and passes through the second central axis, and the resistance pattern includes the first divided body and the second central axis.
  • the resistance value in the first divided region constituted by the first divided body of the second surface and the second constituted by the second divided body in accordance with the ratio of the heat capacity to the divided body of The resistance value in the divided region is set, and the resistance value in the first divided region is higher than the resistance value in the second divided region.
  • the treatment tool according to the present invention can equalize the heat distribution of the heat transfer plate.
  • FIG. 1 is a diagram showing a treatment system according to the first embodiment.
  • FIG. 2 is a diagram illustrating the gripping portion.
  • FIG. 3 is a diagram illustrating a treatment unit.
  • FIG. 4 is a diagram illustrating a treatment unit according to the second embodiment.
  • FIG. 5 is a diagram illustrating a treatment unit according to the third embodiment.
  • FIG. 6 is a diagram illustrating a treatment unit according to the fourth embodiment.
  • FIG. 7 is a diagram illustrating a treatment unit according to the fifth embodiment.
  • FIG. 8 is a diagram illustrating a treatment unit according to the sixth embodiment.
  • FIG. 1 is a diagram showing a treatment system 1 according to the first embodiment.
  • the treatment system 1 treats the target portion by applying thermal energy to a portion to be treated in the living tissue (hereinafter referred to as a target portion).
  • the said treatment means joining and incision of an object part, for example.
  • the treatment system 1 includes a treatment tool 2, a control device 3, and a foot switch 4.
  • the treatment tool 2 is, for example, a surgical treatment tool for treating a target site while passing through the abdominal wall.
  • the treatment tool 2 includes a handle 5, a shaft 6, and a grip portion 7.
  • the handle 5 is a part that the surgeon holds by hand.
  • the handle 5 is provided with an operation knob 51 as shown in FIG.
  • the shaft 6 has a substantially cylindrical shape, and one end is connected to the handle 5 (FIG. 1).
  • a grip portion 7 is attached to the other end of the shaft 6.
  • An opening / closing mechanism (illustrated) is provided inside the shaft 6 for opening and closing the first and second gripping members 8 and 9 (FIG. 1) constituting the gripping portion 7 in accordance with the operation of the operation knob 51 by the operator. Abbreviation) is provided.
  • an electric cable C (FIG. 1) connected to the control device 3 is disposed inside the shaft 6 from one end side to the other end side via the handle 5.
  • FIG. 2 is a diagram illustrating the gripping unit 7.
  • the gripping part 7 is a part that treats the target part while holding the target part.
  • the grip portion 7 includes first and second grip members 8 and 9.
  • the first and second grasping members 8 and 9 are configured to be openable and closable in the direction of the arrow R1 (FIG. 2) according to the operation of the operation knob 51 by the operator.
  • the first gripping member 8 is disposed at a position facing the second gripping member 9. As shown in FIG. 2, the first gripping member 8 includes a jaw 10, a support member 11, and a treatment unit 12.
  • the jaw 10 is a portion in which a part of the shaft 6 extends to the distal end side, and is formed in a long shape extending in the longitudinal direction from the distal end of the grip portion 7 toward the proximal end.
  • the longitudinal direction of the grip portion 7 is not a direction along a straight line. Specifically, the longitudinal direction is such that the second gripping member 9 is located on the upper side with respect to the first gripping member 8 and is viewed from the proximal end side toward the distal end side.
  • the jaw 10 has a curved shape extending in the longitudinal direction (FIG. 2).
  • the “longitudinal direction” described below means the longitudinal direction of the grip portion 7.
  • the “width direction” described below means a direction that is parallel to the surface 101 and extends in a curved shape in a state orthogonal to the longitudinal direction.
  • the surface 101 on the second gripping member 9 side of the jaw 10 is such that the first and second gripping members 8, 9 are gripped by the first and second gripping members 8, 9. It is comprised by the flat surface orthogonal to the direction A1 (FIG. 2) which mutually opposes.
  • the jaw 10 supports the support member 11 and the treatment portion 12 by the surface 101. Examples of the material constituting the jaw 10 described above include metal materials such as stainless steel and titanium.
  • the support member 11 is a long flat plate extending in the longitudinal direction, and is fixed on the surface 101.
  • the support member 11 has substantially the same outer shape as the surface 101 when viewed along the direction A1.
  • the surface 111 (FIG. 2) on the second gripping member 9 side of the support member 11 is configured by a flat surface orthogonal to the direction A1.
  • the support member 11 supports the treatment portion 12 by the surface 111.
  • the material constituting the support member 11 described above include a material having a lower thermal conductivity than the heat transfer plate 13 and the jaw 10 constituting the treatment portion 12, for example, a resin material such as PEEK (polyether ether ketone). can do.
  • FIG. 3 is a diagram showing the treatment unit 12. Specifically, FIG. 3 is a perspective view of the treatment portion 12 as viewed from the second surface 132 side.
  • the treatment unit 12 generates heat energy under the control of the control device 3.
  • the treatment section 12 includes a heat transfer plate 13 and a heater 14.
  • the heat transfer plate 13 is a flat plate extending in the longitudinal direction.
  • the length dimension of the heat transfer plate 13 in the longitudinal direction is set smaller than the length dimension of the surface 111 in the longitudinal direction.
  • the width dimension of the heat transfer plate 13 is set smaller than the width dimension of the surface 111.
  • the treatment section 12 is fixed to the surface 111 in a posture in which the heater 14 is sandwiched between the heat transfer plate 13 and the support member 11.
  • the surface on the second gripping member 9 side is in contact with the target site while the target site is gripped by the first and second gripping members 8 and 9. That is, the said surface functions as the 1st surface 131 (FIG. 2) based on this invention which transfers the heat
  • “applying heat energy to the target part” means that heat from the heater 14 is transmitted to the target part.
  • the first surface 131 is configured by a flat surface orthogonal to the direction A1, as shown in FIG.
  • the second surface 132 (FIG. 3) that forms the front and back surfaces of the first surface 131 is also configured by a flat surface orthogonal to the direction A ⁇ b> 1.
  • the material constituting the heat transfer plate 13 described above include high thermal conductivity copper, silver, aluminum, molybdenum, tungsten, graphite, or a composite material thereof.
  • the axis extending in the longitudinal direction through the center position in the width direction of the second surface 132 corresponds to the second center axis Ax2 (FIG. 3) according to the present invention.
  • a plane orthogonal to the width direction and passing through the second central axis Ax2 corresponds to the second divided plane F2 (FIG. 3) according to the present invention.
  • the heat transfer plate 13 is virtually divided into first and second divided bodies B1 and B2 (FIG. 3) by the second dividing surface F2.
  • the first divided body B1 on the outer peripheral side with respect to the second divided surface F2 is formed with respect to the second divided surface F2.
  • the volume is larger than the second divided body B2 on the inner peripheral side. That is, the first divided body B1 has a larger heat capacity than the second divided body B2.
  • region comprised by 1st division body B1 among the 2nd surfaces 132 is corresponded to 1st division area Ar1 (FIG. 3) which concerns on this invention.
  • region comprised by 2nd division body B2 among the 2nd surfaces 132 is corresponded to 2nd division area Ar2 (FIG. 3) which concerns on this invention. That is, the second surface 132 is divided into two regions, the first and second divided regions Ar1 and Ar2.
  • the heater 14 is a seat heater that generates heat when energized.
  • the heater 14 includes a substrate 15 and an electric resistance pattern 16.
  • the substrate 15 is a flat plate made of an electrically insulating material such as polyimide and extending in the longitudinal direction.
  • the longitudinal dimension of the substrate 15 is set to be smaller than the longitudinal dimension of the second surface 132.
  • the width dimension of the substrate 15 is set to be smaller than the width dimension of the second surface 132.
  • the substrate 15 is fixed to the second surface 132 with the central axis extending in the longitudinal direction passing through the center position in the width direction and the second central axis Ax2 when viewed along the direction A1.
  • the electrical resistance pattern 16 is obtained by processing a platinum thin film, and includes a pair of lead wire connecting portions 161 and a resistance pattern 162 as shown in FIG.
  • the electrical resistance pattern 16 is formed by patterning a platinum thin film formed by vapor deposition or sputtering on the plate surface 150 (FIG. 3) on the side of the substrate 15 that is away from the second surface 132 by photolithography. Is done.
  • the material of the electrical resistance pattern 16 is not limited to a platinum thin film, and a conductive thin film material such as nickel or titanium may be employed.
  • the electrical resistance pattern 16 is not limited to a configuration in which a thin film is patterned on the plate surface 150, and a configuration in which a thick film paste material such as ruthenium oxide is formed on the plate surface 150 by a printing technique may be adopted. Absent.
  • the pair of lead wire connecting portions 161 is provided on the base end side in a state of being parallel to the width direction on the plate surface 150.
  • a pair of lead wire C1 (FIG. 3) which comprises the electric cable C is electrically connected to a pair of lead wire connection part 161, respectively.
  • the resistance pattern 162 extends on the plate surface 150 while meandering from the proximal end side to the distal end side in a wavy manner, and is folded at the distal end side to extend while meandering in a wavy shape toward the proximal end side. It has a letter shape. Further, both ends of the resistance pattern 162 are connected to a pair of lead wire connecting portions 161, respectively. A voltage is applied to the resistance pattern 162 through the pair of lead wires C1 and the pair of lead wire connecting portions 161 under the control of the control device 3. As a result, the resistance pattern 162 generates heat.
  • the total length, line width, and thickness of the resistance pattern 162 are set as shown below.
  • the line width and thickness are all uniform from one end connected to one lead wire connecting portion 161 to the other end connected to the other lead wire connecting portion 161.
  • the entire length of the first portion 1621 (FIG. 3) located in the first divided region Ar1 is located in the second divided region Ar2. It is set larger than the entire length of the second portion 1622 (FIG. 3). Then, by making the overall lengths of the first and second parts 1621 and 1622 different from each other, the ratio of the resistance value of the first part 1621 and the resistance value of the second part 1622 is the first divided body.
  • the ratio of the heat capacity of B1 and the heat capacity of the second divided body B2 is set to be approximately the same.
  • the ratio of the heat capacity of the first divided body B1 and the heat capacity of the second divided body B2 is “3: 2”
  • the resistance value of the first portion 1621 and the resistance of the second portion 1622 The ratio to the value is also set to “3: 2”. That is, in the resistance pattern 162, the resistance value of the first part 1621 is higher than the resistance value of the second part 1622.
  • the second grip member 9 has a long shape extending in the longitudinal direction.
  • the second gripping member 9 is pivotally supported at the base end side so as to be rotatable with respect to the shaft 6 about the fulcrum P0 (FIG. 2), and opens and closes with respect to the first gripping member 8.
  • the first gripping member 8 (jaw 10) is fixed to the shaft 6 and the second gripping member 9 is pivotally supported by the shaft 6.
  • the present invention is not limited to this.
  • a configuration may be adopted in which both the first and second gripping members 8 and 9 are pivotally supported by the shaft 6 and the first and second gripping members 8 and 9 are opened and closed by rotating. Absent.
  • first gripping member 8 is pivotally supported by the shaft 6, the second gripping member 9 is fixed to the shaft 6, and the first gripping member 8 is rotated to rotate the second gripping member 9.
  • a configuration that opens and closes may be adopted.
  • the foot switch 4 is a part operated by a surgeon with a foot. And according to the said operation to the foot switch 4, ON / OFF of the electricity supply from the control apparatus 3 to the treatment tool 2 (heater 14) is switched. Note that the means for switching on and off is not limited to the foot switch 4, and a switch operated by hand or the like may be employed.
  • the control device 3 includes a CPU (Central Processing Unit) and the like, and comprehensively controls the operation of the treatment instrument 2 according to a predetermined control program.
  • CPU Central Processing Unit
  • the first divided body B1 in the heat transfer plate 13 has a larger heat capacity than the second divided body B2 in the heat transfer plate 13.
  • the resistance pattern 162 has a first portion 1621 located in the first divided region Ar1 constituting the first divided body B1 according to the ratio of the heat capacities of the first and second divided bodies B1 and B2.
  • the resistance value of the second part 1622 located in the second divided region Ar2 constituting the second divided body B2 is set, and the resistance value of the first part 1621 is the second value It is higher than the resistance value of the region 1622.
  • the heat generation amount of the resistance pattern 162 in the first divided body B1 having a large heat capacity is made larger than the heat generation amount of the resistance pattern 162 in the second divided body B2 having a small heat capacity. Therefore, the heat distribution of the heat transfer plate 13 can be made uniform. That is, the treatment performance of the target portion can be maintained at the desired treatment performance regardless of where the target portion is in contact with the first surface 131.
  • FIG. 4 is a diagram illustrating the treatment unit 12A according to the second embodiment. Specifically, FIG. 4 is a view of the treatment portion 12A as viewed from the second surface 132 side.
  • the shape of the resistance pattern 162 is changed with respect to the treatment section 12 (heater 14) described in the first embodiment.
  • the electrical resistance pattern 16A is used.
  • the total length, line width, and thickness of the resistance pattern 162A constituting the electrical resistance pattern 16A are set as follows.
  • the line width and thickness are connected from one end connected to one lead wire connecting portion 161 to the other lead wire connecting portion 161 in the same manner as the resistor pattern 162 described in the first embodiment. All are uniform up to the other end.
  • the pitch P1 (FIG. 4) corresponding to the wavy period of the first portion 1621 located in the first divided region Ar1 is the second
  • the pitch P2 is set smaller than the pitch P2 (FIG. 4) corresponding to the wavy period of the second portion 1622 located in the divided area Ar2.
  • the total length of the first part 1621 is set larger than the total length of the second part 1622.
  • part 1622 is mentioned above by making the pitch (full length) in the 1st, 2nd site
  • the ratio of the heat capacity of the first divided body B1 and the heat capacity of the second divided body B2 is set to be approximately the same.
  • FIG. 5 is a diagram illustrating the treatment unit 12B according to the third embodiment. Specifically, FIG. 5 is a view of the treatment portion 12B as viewed from the second surface 132 side.
  • the shape of the resistance pattern 162 is changed with respect to the treatment section 12 (heater 14) described in the first embodiment.
  • the electrical resistance pattern 16B is adopted.
  • the total length, line width, and thickness of the resistance pattern 162B constituting the electrical resistance pattern 16B are set as shown below.
  • the thickness is from one end connected to one lead wire connecting portion 161 to the other end connected to the other lead wire connecting portion 161 in the same manner as the resistance pattern 162 described in the first embodiment. All are uniform.
  • the entire length of the first portion 1621 located in the first divided region Ar1 is the same as that of the resistance pattern 162 described in the first embodiment.
  • it is set to be larger than the entire length of the second portion 1622 located in the second divided region Ar2.
  • the line width W1 (FIG.
  • the ratio between the resistance value of the first part 1621 and the resistance value of the second part 1622 is as described above by making the total length and the line width in the first and second parts 1621 and 1622 different from each other.
  • the ratio of the heat capacity of the first divided body B1 and the heat capacity of the second divided body B2 is set to be approximately the same.
  • the first and second portions 1621 and 1622 have the same overall length, and the first and second portions 1621 and 1622 have different line widths, thereby reducing the resistance of the first portion 1621.
  • the ratio between the value and the resistance value of the second portion 1622 may be set to be substantially the same as the ratio between the heat capacity of the first divided body B1 and the heat capacity of the second divided body B2.
  • FIG. 6 is a diagram illustrating a treatment unit 12C according to the fourth embodiment. Specifically, FIG. 6 is an enlarged perspective view of a part of the treatment section 12C on the second surface 132 side.
  • the shape of the resistance pattern 162 is changed with respect to the treatment section 12 (heater 14) described in the first embodiment.
  • the electrical resistance pattern 16C is adopted.
  • the total length, line width, and thickness of the resistance pattern 162C constituting the electrical resistance pattern 16C are set as follows.
  • the line width is from one end connected to one lead wire connecting portion 161 to the other end connected to the other lead wire connecting portion 161, similarly to the resistance pattern 162 described in the first embodiment. All are uniform.
  • the total length of the first portion 1621 located in the first divided region Ar1 is the same as that of the resistance pattern 162 described in the first embodiment.
  • it is set to be larger than the entire length of the second portion 1622 located in the second divided region Ar2.
  • the thickness T1 (FIG.
  • the first portion 1621 is set smaller than the thickness T2 (FIG. 6) of the second portion 1622.
  • the ratio between the resistance value of the first part 1621 and the resistance value of the second part 1622 is as described above by making the total length and thickness in the first and second parts 1621 and 1622 different from each other.
  • the ratio of the heat capacity of the first divided body B1 and the heat capacity of the second divided body B2 is set to be approximately the same.
  • the first and second portions 1621 and 1622 have the same overall length, and the first and second portions 1621 and 1622 have different thicknesses, thereby reducing the resistance of the first portion 1621.
  • the ratio between the value and the resistance value of the second portion 1622 may be set to be substantially the same as the ratio between the heat capacity of the first divided body B1 and the heat capacity of the second divided body B2.
  • FIG. 7 is a diagram illustrating a treatment unit 12D according to the fifth embodiment. Specifically, FIG. 7 is a perspective view of the treatment portion 12D as viewed from the second surface 132 side.
  • the heat transfer plate 13 and the heater 14 are compared to the treatment section 12 described in the first embodiment.
  • the heat transfer plate 13D and the heater 14D having different shapes are employed.
  • the grip portion 7 extends linearly from the distal end toward the proximal end. That is, in the fifth embodiment, the “longitudinal direction” described below is a direction along a straight line unlike the first embodiment described above.
  • the heat transfer plate 13 ⁇ / b> D is a trapezoidal flat plate extending in the longitudinal direction. Specifically, the heat transfer plate 13D has a trapezoidal shape with a width dimension that decreases toward the tip. Note that the axis passing through the center position in the longitudinal direction of the second surface 132 and extending in the width direction corresponds to the first center axis Ax1 (FIG. 7) according to the present invention.
  • a plane orthogonal to the longitudinal direction and passing through the first central axis Ax1 corresponds to the first divided plane F1 (FIG. 7) according to the present invention.
  • the heat transfer plate 13D is virtually divided into first and second divided bodies B1 and B2 (FIG. 7) by the first dividing surface F1.
  • the first divided body B1 on the proximal end side with respect to the first divided surface F1 is formed on the first divided surface F1.
  • the volume is larger than that of the second divided body B2 on the tip side. That is, the first divided body B1 has a larger heat capacity than the second divided body B2.
  • region comprised by 1st division body B1 among the 2nd surfaces 132 is corresponded to 1st division area Ar1 (FIG. 7) which concerns on this invention.
  • region comprised by 2nd division body B2 among the 2nd surfaces 132 is corresponded to 2nd division area Ar2 (FIG. 7) which concerns on this invention. That is, the second surface 132 is divided into two regions, the first and second divided regions Ar1 and Ar2.
  • the substrate 15D is a trapezoidal flat plate extending in the longitudinal direction as shown in FIG.
  • the length dimension of the substrate 15 ⁇ / b> D in the longitudinal direction is set to be smaller than the length dimension of the second surface 132 in the longitudinal direction.
  • the width dimension of the substrate 15 ⁇ / b> D is set smaller than the width dimension of the second surface 132.
  • the substrate 15D has a central axis extending in the longitudinal direction passing through the center position in the width direction and having a central axis extending in the longitudinal direction passing through the center position in the width direction on the second surface 132. It is fixed to the second surface 132 in a matching state.
  • the pair of lead wire connecting portions 161 constituting the electric resistance pattern 16 ⁇ / b> D is provided at the corner portion on the base end side in a state of being parallel to the width direction on the plate surface 150.
  • the resistance pattern 162D constituting the electrical resistance pattern 16D has a shape that extends from the pair of lead wire connection portions 161 while meandering in a wavy manner and is connected to each other on the tip side.
  • the total length, line width, and thickness of the resistance pattern 162D are set as follows. In the resistance pattern 162D, the line width and thickness are all uniform from one end connected to one lead wire connecting portion 161 to the other end connected to the other lead wire connecting portion 161.
  • the entire length of the first portion 1621 (FIG. 7) located in the first divided region Ar1 is located in the second divided region Ar2. It is set to be larger than the entire length of the second portion 1622 (FIG. 7).
  • the ratio between the resistance value of the first part 1621 and the resistance value of the second part 1622 can be determined by making the overall lengths of the first and second parts 1621 and 1622 different from each other. Similarly to 1, the ratio of the heat capacity of the first divided body B1 and the heat capacity of the second divided body B2 is set to be substantially the same.
  • the treatment section 12D according to the fifth embodiment described above is employed, the same effects as those of the first embodiment described above can be obtained.
  • the first and second portions 1621 and 1622 similarly to the second to fourth embodiments described above, the first and second portions 1621 and 1622 have different overall lengths, line widths, or thicknesses, so that the first The ratio of the resistance value of the first part 1621 and the resistance value of the second part 1622 may be set to be substantially the same as the ratio of the heat capacity of the first divided body B1 and the heat capacity of the second divided body B2. Absent.
  • FIG. 8 is a diagram showing the treatment unit 12E according to the sixth embodiment. Specifically, FIG. 8 is a perspective view of the treatment portion 12E viewed from the second surface 132 side and from the proximal end side.
  • the heat transfer plate 13 and the heater 14 compared to the treatment section 12 described in the first embodiment, the heat transfer plate 13 and the heater 14 (the substrate 15 and the electric resistance pattern 16).
  • the heat transfer plate 13E and the heater 14E (the substrate 15E and the electric resistance pattern 16E) having different shapes are employed.
  • the gripping portion 7 extends linearly from the distal end toward the proximal end. That is, in the sixth embodiment, the “longitudinal direction” described below is a direction along a straight line unlike the first embodiment described above. As shown in FIG. 7, the heat transfer plate 13 ⁇ / b> E extends in the longitudinal direction. Further, unlike the first embodiment described above, the first surface 131 has a convex shape. The heat transfer plate 13E has a triangular prism shape.
  • shaft which passes along the center position of the width direction of the 2nd surface 132, and extends to a longitudinal direction is corresponded to 2nd center axis Ax2 (FIG. 8) which concerns on this invention.
  • a plane orthogonal to the width direction and passing through the second central axis Ax2 corresponds to the second divided plane F2 (FIG. 7) according to the present invention.
  • the position of the convex vertex on the first surface 131 is located on the right side in FIG. 8 with respect to the second divided surface F2. For this reason, when the heat transfer plate 13E is virtually divided into the first and second divided bodies B1 and B2 (FIG.
  • the first surface 131 including the convex vertex is included.
  • One divided body B1 has a larger volume than the second divided body B2. That is, the first divided body B1 has a larger heat capacity than the second divided body B2.
  • region comprised by 1st division body B1 among the 2nd surfaces 132 is corresponded to 1st division area Ar1 (FIG. 8) which concerns on this invention.
  • region comprised by 2nd division body B2 among the 2nd surfaces 132 is corresponded to 2nd division area Ar2 (FIG. 8) which concerns on this invention. That is, the second surface 132 is divided into two regions, the first and second divided regions Ar1 and Ar2.
  • the substrate 15E is a rectangular flat plate extending in the longitudinal direction, as shown in FIG.
  • the longitudinal dimension of the substrate 15E is set smaller than the longitudinal dimension of the second surface 132.
  • the width dimension of the substrate 15E is set smaller than the width dimension of the second surface 132.
  • the substrate 15E is fixed to the second surface 132 in a state where the central axis extending in the longitudinal direction through the central position in the width direction matches the second central axis Ax2. .
  • the pair of lead wire connecting portions 161 constituting the electric resistance pattern 16 ⁇ / b> E is provided on the base end side in a state of being parallel to the width direction on the plate surface 150.
  • the resistance pattern 162E that constitutes the electrical resistance pattern 16E has a U-shape extending in a meandering manner on the plate surface 150, similarly to the resistance pattern 162 described in the first embodiment. Then, both ends of the resistance pattern 162E are connected to the pair of lead wire connecting portions 161, respectively.
  • the total length, line width, and thickness of the resistance pattern 162E are set as follows.
  • the line width and thickness are connected from one end connected to one lead wire connecting portion 161 to the other lead wire connecting portion 161 in the same manner as the resistance pattern 162 described in the first embodiment. All are uniform up to the other end.
  • the pitch P1 (FIG. 8) corresponding to the wavy period of the first portion 1621 located in the first divided region Ar1 is the second
  • the pitch P2 is set to be smaller than the pitch P2 (FIG. 8) corresponding to the wavy period of the second portion 1622 located in the divided area Ar2. That is, the total length of the first part 1621 is set larger than the total length of the second part 1622.
  • part 1622 is mentioned above by making the pitch (full length) in the 1st, 2nd site
  • the ratio of the heat capacity of the first divided body B1 and the heat capacity of the second divided body B2 is set to be approximately the same.
  • the treatment unit 12E according to the sixth embodiment described above is employed, the same effects as those of the first embodiment described above can be obtained.
  • the first portion is changed by making the line widths or thicknesses of the first and second portions 1621 and 1622 different from each other.
  • the ratio of the resistance value of 1621 and the resistance value of the second portion 1622 may be set to be substantially the same as the ratio of the heat capacity of the first divided body B1 and the heat capacity of the second divided body B2.
  • the present invention should not be limited only by the above-described first to sixth embodiments.
  • the heat transfer plate 13 13D, 13E
  • a highly thermally conductive ceramic material such as aluminum nitride or alumina having electrical insulation properties and heat resistance is adopted.
  • the substrate 15 (15D, 15E) is brought into direct contact with the target site, and thermal energy is applied from the substrate 15 (15D, 15E) to the target site. That is, the said board
  • the heat transfer plate 13 (13D, 13E) is virtually divided by one of the first and second divided surfaces F1, F2, and the first and second divided bodies B1, Although the resistance values in the first and second divided regions Ar1 and Ar2 are set based on the magnitude relationship of the heat capacity of B2, the heat transfer plate 13 (13D and 13E is formed by both the first and second divided surfaces F1 and F2. ) Can be easily conceived by those skilled in the art. Even in this case, if there is a difference in the heat capacity of the divided bodies when virtually divided by one of the first and second divided surfaces F1 and F2 and compared in resistance value, the scope of rights of the present application is assumed. be able to.
  • the four divided bodies when virtually divided by the first and second divided surfaces F1 and F2 have different heat capacities.
  • a divided body having a large heat capacity and a divided body having a small heat capacity can be achieved by setting the resistance value in the same manner as in the first embodiment described above.
  • the treatment section 12 (12A to 12E) is provided only on the first gripping member 8, but this is not restrictive. Treatment sections 12 (12A to 12E) may be provided on both the first and second gripping members 8 and 9.
  • the first surface 131 is a flat surface.
  • the first surface 131 is not limited to this, and may be a convex shape or another shape such as a concave shape. The same applies to the second gripping member 9 side.
  • the configuration for applying thermal energy to the target portion is employed.
  • the configuration is not limited to this, and a configuration for applying high-frequency energy or ultrasonic energy in addition to thermal energy is employed. It doesn't matter. Note that “applying high-frequency energy to the target part” means flowing a high-frequency current to the target part. Further, “applying ultrasonic energy to the target part” means applying ultrasonic vibration to the target part.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

This treatment tool comprises a heat transfer plate 13 and a resistance pattern 162 arranged on a second face 132 of the heat transfer plate 13 and generating heat when energized. When the heat transfer plate 13 is partitioned into a plurality of partition bodies by a second partitioning plane F2, the plurality of partition bodies include a first partition body B1 and a second partition body B2 having a heat capacity lower than that of the first partition body B1. When a second central axis Ax2 is the axis passing through the center position of the second face 132 in the width direction and extending in the length direction thereof, the second partitioning plane F2 is the plane passing through the second central axis Ax2 while being orthogonal to the width direction. The resistance pattern 162 is configured such that a ratio is set between the resistance value in a first partition region Ar1 on the second face 132 constituted by the first partition body B1 and the resistance value in a second partition region Ar2 on the second face 132 constituted by the second partition body B2 according to the heat capacity ratio between the first and second partition bodies B1, B2, and the resistance value in the first partition region Ar1 is higher than the resistance value in the second partition region Ar2.

Description

処置具Treatment tool
 本発明は、処置具に関する。 The present invention relates to a treatment instrument.
 従来、生体組織における処置の対象となる部位(以下、対象部位と記載)に対してエネルギを付与することによって当該対象部位を処置する処置具が知られている(例えば、特許文献1参照)。
 特許文献1に記載の処置具は、対象部位を把持する一対のジョーを備える。そして、一方のジョーには、以下に示す伝熱板及び発熱体が設けられている。
 伝熱板は、銅等の導電性材料によって構成されている。そして、伝熱板は、対象部位に接触した状態で当該対象部位に対して熱を伝達する第1の面と、当該第1の面と表裏をなす第2の面とを有する。
 発熱体は、第2の面に配設され、通電によって発熱する。すなわち、伝熱板は、発熱体からの熱を対象部位に伝達する。
2. Description of the Related Art Conventionally, there has been known a treatment tool that treats a target portion by applying energy to a portion to be treated in a living tissue (hereinafter referred to as a target portion) (see, for example, Patent Document 1).
The treatment tool described in Patent Literature 1 includes a pair of jaws that grip a target site. One jaw is provided with the following heat transfer plate and heating element.
The heat transfer plate is made of a conductive material such as copper. The heat transfer plate has a first surface that transfers heat to the target site in contact with the target site, and a second surface that forms a front and back surface with the first surface.
The heating element is disposed on the second surface and generates heat when energized. That is, the heat transfer plate transmits heat from the heating element to the target site.
特開2003-144451号公報JP 2003-144451 A
 ところで、特許文献1に記載の処置具では、生体組織を剥離し易くするために、ジョー及び伝熱板は、基端側から先端側に向けて、曲線に沿って延在した湾曲形状を有する。すなわち、以下に示す分割面によって伝熱板を分割した2つの第1,第2の分割体は、互いに熱容量が異なるものとなる。
 分割面は、伝熱板における第2の面の幅方向の中心位置を通り当該第2の面の長手方向に延びる曲線状の軸を中心軸とした場合に、幅方向に直交するとともに当該中心軸を通る曲面である。すなわち、分割面によって伝熱板を分割した2つの分割体のうち、当該分割面に対して外周側の第1の分割体は、当該分割面に対して内周側の第2の分割体よりも体積が大きい。このため、第1の分割体は、第2の分割体よりも熱容量が大きい。
 そして、発熱体から伝熱板に対して一様に熱を投入した場合には、上述した第1,第2の分割体の熱容量の違いによって、当該伝熱板に熱の偏りが生じてしまう。すなわち、伝熱板の熱分布を均等にすることができない、という問題がある。
By the way, in the treatment tool described in Patent Document 1, the jaws and the heat transfer plate have a curved shape extending along a curve from the proximal end side to the distal end side in order to facilitate peeling of the living tissue. . That is, the two first and second divided bodies obtained by dividing the heat transfer plate by the divided surfaces shown below have different heat capacities.
The dividing surface is perpendicular to the width direction and has the center when a curved axis extending in the longitudinal direction of the second surface passing through the center position in the width direction of the second surface of the heat transfer plate is the center axis. A curved surface that passes through an axis. That is, of the two divided bodies obtained by dividing the heat transfer plate by the divided surface, the first divided body on the outer peripheral side with respect to the divided surface is more than the second divided body on the inner peripheral side with respect to the divided surface. Has a large volume. For this reason, the first divided body has a larger heat capacity than the second divided body.
When heat is uniformly supplied from the heating element to the heat transfer plate, the heat transfer plate is biased due to the difference in heat capacity between the first and second divided bodies described above. . That is, there is a problem that the heat distribution of the heat transfer plate cannot be made uniform.
 本発明は、上記に鑑みてなされたものであって、伝熱板の熱分布を均等にすることができる処置具を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a treatment instrument that can equalize the heat distribution of a heat transfer plate.
 上述した課題を解決し、目的を達成するために、本発明に係る処置具は、生体組織に接触した状態で当該生体組織に対して熱を伝達する第1の面と、当該第1の面と表裏をなす第2の面とを有する伝熱板と、前記第2の面に配設され、通電によって発熱する抵抗パターンとを備え、第1の分割面または第2の分割面によって前記伝熱板を複数の分割体に分割した場合に、当該複数の分割体は、第1の分割体と、当該第1の分割体よりも熱容量の低い第2の分割体とを含み、前記第1の分割面は、前記第2の面の長手方向の中心位置を通り当該第2の面の幅方向に延びる軸を第1の中心軸とした場合に、前記長手方向に直交するとともに当該第1の中心軸を通る面であり、前記第2の分割面は、前記第2の面の前記幅方向の中心位置を通り前記長手方向に延びる軸を第2の中心軸とした場合に、前記幅方向に直交するとともに当該第2の中心軸を通る面であり、前記抵抗パターンは、前記第1の分割体と前記第2の分割体との熱容量の比に応じて、前記第2の面のうち前記第1の分割体によって構成される第1の分割領域における抵抗値と前記第2の分割体によって構成される第2の分割領域における抵抗値との比が設定され、前記第1の分割領域における抵抗値は前記第2の分割領域における抵抗値よりも高い。 In order to solve the above-described problems and achieve the object, the treatment tool according to the present invention includes a first surface that transfers heat to the living tissue in contact with the living tissue, and the first surface. And a heat transfer plate having a front and back second surface, and a resistance pattern disposed on the second surface and generating heat when energized, and the heat transfer by the first divided surface or the second divided surface. When the hot plate is divided into a plurality of divided bodies, the plurality of divided bodies include a first divided body and a second divided body having a lower heat capacity than the first divided body, When the first central axis is an axis that passes through the center position in the longitudinal direction of the second surface and extends in the width direction of the second surface, the split surface is orthogonal to the longitudinal direction and the first surface The second dividing surface passes through the center position in the width direction of the second surface, and passes through the central axis of the second surface. When the axis extending in the longitudinal direction is the second central axis, it is a plane that is orthogonal to the width direction and passes through the second central axis, and the resistance pattern includes the first divided body and the second central axis. The resistance value in the first divided region constituted by the first divided body of the second surface and the second constituted by the second divided body in accordance with the ratio of the heat capacity to the divided body of The resistance value in the divided region is set, and the resistance value in the first divided region is higher than the resistance value in the second divided region.
 本発明に係る処置具によれば、伝熱板の熱分布を均等にすることができる。 The treatment tool according to the present invention can equalize the heat distribution of the heat transfer plate.
図1は、本実施の形態1に係る処置システムを示す図である。FIG. 1 is a diagram showing a treatment system according to the first embodiment. 図2は、把持部を示す図である。FIG. 2 is a diagram illustrating the gripping portion. 図3は、処置部を示す図である。FIG. 3 is a diagram illustrating a treatment unit. 図4は、本実施の形態2に係る処置部を示す図である。FIG. 4 is a diagram illustrating a treatment unit according to the second embodiment. 図5は、本実施の形態3に係る処置部を示す図である。FIG. 5 is a diagram illustrating a treatment unit according to the third embodiment. 図6は、本実施の形態4に係る処置部を示す図である。FIG. 6 is a diagram illustrating a treatment unit according to the fourth embodiment. 図7は、本実施の形態5に係る処置部を示す図である。FIG. 7 is a diagram illustrating a treatment unit according to the fifth embodiment. 図8は、本実施の形態6に係る処置部を示す図である。FIG. 8 is a diagram illustrating a treatment unit according to the sixth embodiment.
 以下に、図面を参照して、本発明を実施するための形態(以下、実施の形態)について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付している。 DETAILED DESCRIPTION Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Furthermore, the same code | symbol is attached | subjected to the same part in description of drawing.
(実施の形態1)
 〔処置システムの概略構成〕
 図1は、本実施の形態1に係る処置システム1を示す図である。
 処置システム1は、生体組織における処置の対象となる部位(以下、対象部位と記載)に対して熱エネルギを付与することによって、当該対象部位を処置する。ここで、当該処置とは、例えば、対象部位の接合及び切開を意味する。この処置システム1は、図1に示すように、処置具2と、制御装置3と、フットスイッチ4とを備える。
(Embodiment 1)
[Schematic configuration of treatment system]
FIG. 1 is a diagram showing a treatment system 1 according to the first embodiment.
The treatment system 1 treats the target portion by applying thermal energy to a portion to be treated in the living tissue (hereinafter referred to as a target portion). Here, the said treatment means joining and incision of an object part, for example. As illustrated in FIG. 1, the treatment system 1 includes a treatment tool 2, a control device 3, and a foot switch 4.
 〔処置具の構成〕
 処置具2は、例えば、腹壁を通した状態で対象部位を処置するための外科医療用処置具である。この処置具2は、図1に示すように、ハンドル5と、シャフト6と、把持部7とを備える。
 ハンドル5は、術者が手で持つ部分である。そして、このハンドル5には、図1に示すように、操作ノブ51が設けられている。
 シャフト6は、略円筒形状を有し、一端がハンドル5に対して接続されている(図1)。また、シャフト6の他端には、把持部7が取り付けられている。そして、このシャフト6の内部には、術者による操作ノブ51の操作に応じて、把持部7を構成する第1,第2の把持部材8,9(図1)を開閉させる開閉機構(図示略)が設けられている。また、このシャフト6の内部には、制御装置3に対して接続された電気ケーブルC(図1)がハンドル5を経由することによって一端側から他端側まで配設されている。
[Configuration of treatment tool]
The treatment tool 2 is, for example, a surgical treatment tool for treating a target site while passing through the abdominal wall. As shown in FIG. 1, the treatment tool 2 includes a handle 5, a shaft 6, and a grip portion 7.
The handle 5 is a part that the surgeon holds by hand. The handle 5 is provided with an operation knob 51 as shown in FIG.
The shaft 6 has a substantially cylindrical shape, and one end is connected to the handle 5 (FIG. 1). In addition, a grip portion 7 is attached to the other end of the shaft 6. An opening / closing mechanism (illustrated) is provided inside the shaft 6 for opening and closing the first and second gripping members 8 and 9 (FIG. 1) constituting the gripping portion 7 in accordance with the operation of the operation knob 51 by the operator. Abbreviation) is provided. In addition, an electric cable C (FIG. 1) connected to the control device 3 is disposed inside the shaft 6 from one end side to the other end side via the handle 5.
 〔把持部の構成〕
 なお、以下で記載する「先端側」は、把持部7の先端側であって、図1中、左側を意味する。また、以下で記載する「基端側」は、把持部7のシャフト6側であって、図1中、右側を意味する。
 図2は、把持部7を示す図である。
 把持部7は、対象部位を把持した状態で当該対象部位を処置する部分である。この把持部7は、図1または図2に示すように、第1,第2の把持部材8,9を備える。
 第1,第2の把持部材8,9は、術者による操作ノブ51の操作に応じて、矢印R1(図2)方向に開閉可能に構成されている。
(Configuration of gripping part)
The “tip side” described below means the tip side of the gripping part 7 and means the left side in FIG. Further, the “base end side” described below means the right side in FIG. 1 on the shaft 6 side of the grip portion 7.
FIG. 2 is a diagram illustrating the gripping unit 7.
The gripping part 7 is a part that treats the target part while holding the target part. As shown in FIG. 1 or FIG. 2, the grip portion 7 includes first and second grip members 8 and 9.
The first and second grasping members 8 and 9 are configured to be openable and closable in the direction of the arrow R1 (FIG. 2) according to the operation of the operation knob 51 by the operator.
 〔第1の把持部材の構成〕
 第1の把持部材8は、第2の把持部材9に対向する位置に配設されている。この第1の把持部材8は、図2に示すように、ジョー10と、支持部材11と、処置部12とを備える。
 ジョー10は、シャフト6の一部を先端側に延在させた部分であり、把持部7の先端から基端に向かう長手方向に延在する長尺状に形成されている。本実施の形態1では、把持部7の長手方向は、直線に沿った方向ではない。具体的に、当該長手方向は、第2の把持部材9が第1の把持部材8に対して上方側に位置する状態で、基端側から見て、当該基端側から先端側に向かうにしたがって右側に向かう曲線に沿った方向である。すなわち、ジョー10は、当該長手方向に延在した湾曲形状を有する(図2)。本実施の形態1において、以下で記載する「長手方向」は、把持部7の長手方向を意味する。また、本実施の形態1において、以下で記載する「幅方向」は、面101に平行となり、長手方向に直交した状態で曲線状に延びる方向を意味する。
 ここで、ジョー10における第2の把持部材9側の面101は、第1,第2の把持部材8,9によって対象部位を把持した状態で当該第1,第2の把持部材8,9が互いに対向する方向A1(図2)に直交する平坦面によって構成されている。そして、ジョー10は、当該面101によって支持部材11及び処置部12を支持する。
 以上説明したジョー10を構成する材料としては、ステンレスやチタン等の金属材料を例示することができる。
[Configuration of first gripping member]
The first gripping member 8 is disposed at a position facing the second gripping member 9. As shown in FIG. 2, the first gripping member 8 includes a jaw 10, a support member 11, and a treatment unit 12.
The jaw 10 is a portion in which a part of the shaft 6 extends to the distal end side, and is formed in a long shape extending in the longitudinal direction from the distal end of the grip portion 7 toward the proximal end. In the first embodiment, the longitudinal direction of the grip portion 7 is not a direction along a straight line. Specifically, the longitudinal direction is such that the second gripping member 9 is located on the upper side with respect to the first gripping member 8 and is viewed from the proximal end side toward the distal end side. Therefore, it is the direction along the curve toward the right side. That is, the jaw 10 has a curved shape extending in the longitudinal direction (FIG. 2). In the first embodiment, the “longitudinal direction” described below means the longitudinal direction of the grip portion 7. In the first embodiment, the “width direction” described below means a direction that is parallel to the surface 101 and extends in a curved shape in a state orthogonal to the longitudinal direction.
Here, the surface 101 on the second gripping member 9 side of the jaw 10 is such that the first and second gripping members 8, 9 are gripped by the first and second gripping members 8, 9. It is comprised by the flat surface orthogonal to the direction A1 (FIG. 2) which mutually opposes. The jaw 10 supports the support member 11 and the treatment portion 12 by the surface 101.
Examples of the material constituting the jaw 10 described above include metal materials such as stainless steel and titanium.
 支持部材11は、長手方向に延在する長尺状の平板であり、面101上に固定される。この支持部材11は、方向A1に沿って見た場合に、面101と略同一の外形形状を有する。
 ここで、支持部材11における第2の把持部材9側の面111(図2)は、方向A1に直交する平坦面によって構成されている。そして、支持部材11は、当該面111によって処置部12を支持する。
 以上説明した支持部材11を構成する材料としては、処置部12を構成する伝熱板13及びジョー10よりも熱伝導率の低い材料、例えば、PEEK(ポリエーテルエーテルケトン)等の樹脂材料を例示することができる。
The support member 11 is a long flat plate extending in the longitudinal direction, and is fixed on the surface 101. The support member 11 has substantially the same outer shape as the surface 101 when viewed along the direction A1.
Here, the surface 111 (FIG. 2) on the second gripping member 9 side of the support member 11 is configured by a flat surface orthogonal to the direction A1. The support member 11 supports the treatment portion 12 by the surface 111.
Examples of the material constituting the support member 11 described above include a material having a lower thermal conductivity than the heat transfer plate 13 and the jaw 10 constituting the treatment portion 12, for example, a resin material such as PEEK (polyether ether ketone). can do.
 図3は、処置部12を示す図である。具体的に、図3は、処置部12を第2の面132側から見た斜視図である。
 処置部12は、制御装置3による制御の下、熱エネルギを発生する。この処置部12は、図3に示すように、伝熱板13と、ヒータ14とを備える。
 伝熱板13は、長手方向に延在する平板である。ここで、伝熱板13の長手方向の長さ寸法は、面111の長手方向の長さ寸法よりも小さく設定されている。また、伝熱板13における幅寸法は、面111における幅寸法よりも小さく設定されている。そして、処置部12は、伝熱板13と支持部材11とによってヒータ14を挟む姿勢で、面111に固定される。
FIG. 3 is a diagram showing the treatment unit 12. Specifically, FIG. 3 is a perspective view of the treatment portion 12 as viewed from the second surface 132 side.
The treatment unit 12 generates heat energy under the control of the control device 3. As shown in FIG. 3, the treatment section 12 includes a heat transfer plate 13 and a heater 14.
The heat transfer plate 13 is a flat plate extending in the longitudinal direction. Here, the length dimension of the heat transfer plate 13 in the longitudinal direction is set smaller than the length dimension of the surface 111 in the longitudinal direction. Further, the width dimension of the heat transfer plate 13 is set smaller than the width dimension of the surface 111. The treatment section 12 is fixed to the surface 111 in a posture in which the heater 14 is sandwiched between the heat transfer plate 13 and the support member 11.
 この伝熱板13において、第2の把持部材9側の面は、第1,第2の把持部材8,9によって対象部位を把持した状態で、当該対象部位に接触する。すなわち、当該面は、ヒータ14からの熱を当該対象部位に伝達する本発明に係る第1の面131(図2)として機能する。なお、「対象部位に対して熱エネルギを付与する」とは、ヒータ14からの熱を対象部位に伝達することを意味する。本実施の形態1では、第1の面131は、図2に示すように、方向A1に対して直交する平坦面によって構成されている。また、伝熱板13において、第1の面131と表裏をなす第2の面132(図3)も同様に、方向A1に対して直交する平坦面によって構成されている。
 以上説明した伝熱板13を構成する材料としては、高熱伝導性の銅、銀、アルミニウム、モリブデン、タングステン、グラファイト、あるいはそれらの複合材料を例示することができる。
In the heat transfer plate 13, the surface on the second gripping member 9 side is in contact with the target site while the target site is gripped by the first and second gripping members 8 and 9. That is, the said surface functions as the 1st surface 131 (FIG. 2) based on this invention which transfers the heat | fever from the heater 14 to the said object site | part. Note that “applying heat energy to the target part” means that heat from the heater 14 is transmitted to the target part. In the first embodiment, the first surface 131 is configured by a flat surface orthogonal to the direction A1, as shown in FIG. In the heat transfer plate 13, the second surface 132 (FIG. 3) that forms the front and back surfaces of the first surface 131 is also configured by a flat surface orthogonal to the direction A <b> 1.
Examples of the material constituting the heat transfer plate 13 described above include high thermal conductivity copper, silver, aluminum, molybdenum, tungsten, graphite, or a composite material thereof.
 なお、第2の面132の幅方向の中心位置を通り、長手方向に延びる軸は、本発明に係る第2の中心軸Ax2(図3)に相当する。そして、幅方向に直交するとともに当該第2の中心軸Ax2を通る面は、本発明に係る第2の分割面F2(図3)に相当する。
 ここで、第2の分割面F2によって伝熱板13を仮想的に第1,第2の分割体B1,B2(図3)に分割する。この場合には、伝熱板13が長手方向に延在した湾曲形状を有するため、第2の分割面F2に対して外周側の第1の分割体B1は、第2の分割面F2に対して内周側の第2の分割体B2よりも体積が大きい。すなわち、第1の分割体B1は、第2の分割体B2よりも熱容量が大きい。
 また、第2の面132のうち第1の分割体B1によって構成される領域は、本発明に係る第1の分割領域Ar1(図3)に相当する。また、第2の面132のうち第2の分割体B2によって構成される領域は、本発明に係る第2の分割領域Ar2(図3)に相当する。すなわち、第2の面132は、第1,第2の分割領域Ar1,Ar2の2つの領域に分割される。
The axis extending in the longitudinal direction through the center position in the width direction of the second surface 132 corresponds to the second center axis Ax2 (FIG. 3) according to the present invention. A plane orthogonal to the width direction and passing through the second central axis Ax2 corresponds to the second divided plane F2 (FIG. 3) according to the present invention.
Here, the heat transfer plate 13 is virtually divided into first and second divided bodies B1 and B2 (FIG. 3) by the second dividing surface F2. In this case, since the heat transfer plate 13 has a curved shape extending in the longitudinal direction, the first divided body B1 on the outer peripheral side with respect to the second divided surface F2 is formed with respect to the second divided surface F2. The volume is larger than the second divided body B2 on the inner peripheral side. That is, the first divided body B1 has a larger heat capacity than the second divided body B2.
Moreover, the area | region comprised by 1st division body B1 among the 2nd surfaces 132 is corresponded to 1st division area Ar1 (FIG. 3) which concerns on this invention. Moreover, the area | region comprised by 2nd division body B2 among the 2nd surfaces 132 is corresponded to 2nd division area Ar2 (FIG. 3) which concerns on this invention. That is, the second surface 132 is divided into two regions, the first and second divided regions Ar1 and Ar2.
 ヒータ14は、通電によって発熱するシートヒータである。このヒータ14は、図3に示すように、基板15と、電気抵抗パターン16とを備える。
 基板15は、ポリイミド等の電気絶縁性を有する材料によって構成され、長手方向に延在する平板である。ここで、基板15の長手方向の長さ寸法は、第2の面132の長手方向の長さ寸法よりも小さく設定されている。また、基板15の幅寸法は、第2の面132の幅寸法よりも小さく設定されている。そして、基板15は、方向A1に沿って見た場合に、幅方向の中心位置を通り、長手方向に延びる中心軸が第2の中心軸Ax2に合致する状態で第2の面132に固定される。
The heater 14 is a seat heater that generates heat when energized. As shown in FIG. 3, the heater 14 includes a substrate 15 and an electric resistance pattern 16.
The substrate 15 is a flat plate made of an electrically insulating material such as polyimide and extending in the longitudinal direction. Here, the longitudinal dimension of the substrate 15 is set to be smaller than the longitudinal dimension of the second surface 132. The width dimension of the substrate 15 is set to be smaller than the width dimension of the second surface 132. Then, the substrate 15 is fixed to the second surface 132 with the central axis extending in the longitudinal direction passing through the center position in the width direction and the second central axis Ax2 when viewed along the direction A1. The
 電気抵抗パターン16は、プラチナ薄膜を加工したものであり、図3に示すように、一対のリード線接続部161と、抵抗パターン162とを備える。この電気抵抗パターン16は、基板15における第2の面132から離間した側の板面150(図3)に対して蒸着やスパッタ等で成膜したプラチナ薄膜をフォトリソグラフィーでパターンニングすることによって形成される。
 なお、電気抵抗パターン16の材料としては、プラチナ薄膜に限らず、ニッケルやチタン等の導電性薄膜材料を採用しても構わない。また、電気抵抗パターン16としては、板面150に薄膜をパターンニングした構成に限らず、当該板面150に、酸化ルテニウム等の厚膜ペースト材を印刷技術によって形成した構成を採用しても構わない。
The electrical resistance pattern 16 is obtained by processing a platinum thin film, and includes a pair of lead wire connecting portions 161 and a resistance pattern 162 as shown in FIG. The electrical resistance pattern 16 is formed by patterning a platinum thin film formed by vapor deposition or sputtering on the plate surface 150 (FIG. 3) on the side of the substrate 15 that is away from the second surface 132 by photolithography. Is done.
The material of the electrical resistance pattern 16 is not limited to a platinum thin film, and a conductive thin film material such as nickel or titanium may be employed. Further, the electrical resistance pattern 16 is not limited to a configuration in which a thin film is patterned on the plate surface 150, and a configuration in which a thick film paste material such as ruthenium oxide is formed on the plate surface 150 by a printing technique may be adopted. Absent.
 一対のリード線接続部161は、図3に示すように、板面150において、幅方向に並列した状態で基端側に設けられている。そして、一対のリード線接続部161には、電気ケーブルCを構成する一対のリード線C1(図3)がそれぞれ電気的に接続される。
 抵抗パターン162は、板面150において、基端側から先端側に向けて波状に蛇行しながら延在するとともに、先端側で折り返して、基端側に向けて波状に蛇行しながら延在するU字形状を有する。また、抵抗パターン162の両端は、一対のリード線接続部161にそれぞれ接続する。そして、抵抗パターン162には、制御装置3による制御の下、一対のリード線C1及び一対のリード線接続部161を経由することによって、電圧が印加される。これによって、抵抗パターン162は、発熱する。
As shown in FIG. 3, the pair of lead wire connecting portions 161 is provided on the base end side in a state of being parallel to the width direction on the plate surface 150. And a pair of lead wire C1 (FIG. 3) which comprises the electric cable C is electrically connected to a pair of lead wire connection part 161, respectively.
The resistance pattern 162 extends on the plate surface 150 while meandering from the proximal end side to the distal end side in a wavy manner, and is folded at the distal end side to extend while meandering in a wavy shape toward the proximal end side. It has a letter shape. Further, both ends of the resistance pattern 162 are connected to a pair of lead wire connecting portions 161, respectively. A voltage is applied to the resistance pattern 162 through the pair of lead wires C1 and the pair of lead wire connecting portions 161 under the control of the control device 3. As a result, the resistance pattern 162 generates heat.
 ここで、抵抗パターン162の全長、線幅、及び厚さは、以下に示すように設定されている。
 抵抗パターン162において、線幅及び厚さは、一方のリード線接続部161に接続する一端から他方のリード線接続部161に接続する他端まで全て一様である。
 一方、抵抗パターン162において、方向A1に沿って見た場合に、第1の分割領域Ar1内に位置する第1の部位1621(図3)の全長は、第2の分割領域Ar2内に位置する第2の部位1622(図3)の全長よりも大きく設定されている。そして、第1,第2の部位1621,1622における全長を互いに異なるものとすることによって、第1の部位1621の抵抗値と第2の部位1622の抵抗値との比は、第1の分割体B1の熱容量と第2の分割体B2の熱容量との比と略同一に設定されている。例えば、第1の分割体B1の熱容量と第2の分割体B2の熱容量との比が「3:2」である場合には、第1の部位1621の抵抗値と第2の部位1622の抵抗値との比も「3:2」に設定されている。すなわち、抵抗パターン162において、第1の部位1621の抵抗値は、第2の部位1622の抵抗値よりも高い。
Here, the total length, line width, and thickness of the resistance pattern 162 are set as shown below.
In the resistance pattern 162, the line width and thickness are all uniform from one end connected to one lead wire connecting portion 161 to the other end connected to the other lead wire connecting portion 161.
On the other hand, in the resistance pattern 162, when viewed along the direction A1, the entire length of the first portion 1621 (FIG. 3) located in the first divided region Ar1 is located in the second divided region Ar2. It is set larger than the entire length of the second portion 1622 (FIG. 3). Then, by making the overall lengths of the first and second parts 1621 and 1622 different from each other, the ratio of the resistance value of the first part 1621 and the resistance value of the second part 1622 is the first divided body. The ratio of the heat capacity of B1 and the heat capacity of the second divided body B2 is set to be approximately the same. For example, when the ratio of the heat capacity of the first divided body B1 and the heat capacity of the second divided body B2 is “3: 2”, the resistance value of the first portion 1621 and the resistance of the second portion 1622 The ratio to the value is also set to “3: 2”. That is, in the resistance pattern 162, the resistance value of the first part 1621 is higher than the resistance value of the second part 1622.
 〔第2の把持部材の構成〕
 第2の把持部材9は、長手方向に延在する長尺形状を有する。そして、第2の把持部材9は、基端側が支点P0(図2)を中心としてシャフト6に対して回動可能に軸支され、回動することによって第1の把持部材8に対して開閉する。
 なお、本実施の形態1では、第1の把持部材8(ジョー10)がシャフト6に固定され、第2の把持部材9がシャフト6に軸支された構成としているが、これに限らない。例えば、第1,第2の把持部材8,9の双方がシャフト6に軸支され、それぞれ回動することによって第1,第2の把持部材8,9が開閉する構成を採用しても構わない。また、例えば、第1の把持部材8がシャフト6に軸支され、第2の把持部材9がシャフト6に固定され、第1の把持部材8が回動することによって第2の把持部材9に対して開閉する構成を採用しても構わない。
[Configuration of Second Holding Member]
The second grip member 9 has a long shape extending in the longitudinal direction. The second gripping member 9 is pivotally supported at the base end side so as to be rotatable with respect to the shaft 6 about the fulcrum P0 (FIG. 2), and opens and closes with respect to the first gripping member 8. To do.
In the first embodiment, the first gripping member 8 (jaw 10) is fixed to the shaft 6 and the second gripping member 9 is pivotally supported by the shaft 6. However, the present invention is not limited to this. For example, a configuration may be adopted in which both the first and second gripping members 8 and 9 are pivotally supported by the shaft 6 and the first and second gripping members 8 and 9 are opened and closed by rotating. Absent. In addition, for example, the first gripping member 8 is pivotally supported by the shaft 6, the second gripping member 9 is fixed to the shaft 6, and the first gripping member 8 is rotated to rotate the second gripping member 9. Alternatively, a configuration that opens and closes may be adopted.
 〔制御装置及びフットスイッチの構成〕
 フットスイッチ4は、術者が足によって操作する部分である。そして、フットスイッチ4への当該操作に応じて、制御装置3から処置具2(ヒータ14)への通電のオン及びオフが切り替えられる。
 なお、当該オン及びオフを切り替える手段としては、フットスイッチ4に限らず、その他、手によって操作するスイッチ等を採用しても構わない。
 制御装置3は、CPU(Central Processing Unit)等を含んで構成され、所定の制御プログラムにしたがって、処置具2の動作を統括的に制御する。
[Configuration of control device and foot switch]
The foot switch 4 is a part operated by a surgeon with a foot. And according to the said operation to the foot switch 4, ON / OFF of the electricity supply from the control apparatus 3 to the treatment tool 2 (heater 14) is switched.
Note that the means for switching on and off is not limited to the foot switch 4, and a switch operated by hand or the like may be employed.
The control device 3 includes a CPU (Central Processing Unit) and the like, and comprehensively controls the operation of the treatment instrument 2 according to a predetermined control program.
 〔処置システムの動作〕
 次に、上述した処置システム1の動作について説明する。
 術者は、処置具2を手で持ち、当該処置具2の先端部分(把持部7及びシャフト6の一部)を、例えば、トロッカ等を用いて腹壁を通してから腹腔内に挿入する。そして、術者は、操作ノブ51を操作することによって、把持部7によって対象部位を把持する。
 次に、術者は、フットスイッチ4を操作することによって、制御装置3から処置具2への通電をオンに切り替える。当該オンに切り替えられると、制御装置3は、一対のリード線C1及び一対のリード線接続部161を経由することによって、抵抗パターン162に電圧を印加する。これによって、伝熱板13は、加熱される。また、当該伝熱板13に接触している対象部位は、目標温度に加熱されることによって処置される。
[Action system action]
Next, operation | movement of the treatment system 1 mentioned above is demonstrated.
The surgeon holds the treatment tool 2 by hand, and inserts the distal end portion of the treatment tool 2 (a part of the gripping portion 7 and the shaft 6) through the abdominal wall using, for example, a trocar or the like and into the abdominal cavity. Then, the operator operates the operation knob 51 to grip the target portion with the grip portion 7.
Next, the surgeon operates the foot switch 4 to switch on the energization from the control device 3 to the treatment instrument 2. When switched on, the control device 3 applies a voltage to the resistance pattern 162 via the pair of lead wires C1 and the pair of lead wire connection portions 161. Thereby, the heat transfer plate 13 is heated. In addition, the target portion that is in contact with the heat transfer plate 13 is treated by being heated to the target temperature.
 以上説明した本実施の形態1によれば、以下の効果を奏する。
 本実施の形態1に係る処置具2では、伝熱板13における第1の分割体B1は、当該伝熱板13における第2の分割体B2よりも熱容量が大きい。また、抵抗パターン162は、第1,第2の分割体B1,B2の熱容量の比に応じて、第1の分割体B1を構成する第1の分割領域Ar1内に位置する第1の部位1621の抵抗値と第2の分割体B2を構成する第2の分割領域Ar2内に位置する第2の部位1622の抵抗値との比が設定され、第1の部位1621の抵抗値は第2の部位1622の抵抗値よりも高い。すなわち、熱容量の大きい第1の分割体B1における抵抗パターン162の発熱量を、熱容量の小さい第2の分割体B2における抵抗パターン162の発熱量よりも大きくしている。
 したがって、伝熱板13の熱分布を均等にすることができる。すなわち、第1の面131のどの場所に対象部位が接触した場合であっても、当該対象部位の処置性能を所望の処置性能に維持することができる。
According to the first embodiment described above, the following effects are obtained.
In the treatment instrument 2 according to Embodiment 1, the first divided body B1 in the heat transfer plate 13 has a larger heat capacity than the second divided body B2 in the heat transfer plate 13. Further, the resistance pattern 162 has a first portion 1621 located in the first divided region Ar1 constituting the first divided body B1 according to the ratio of the heat capacities of the first and second divided bodies B1 and B2. And the resistance value of the second part 1622 located in the second divided region Ar2 constituting the second divided body B2 is set, and the resistance value of the first part 1621 is the second value It is higher than the resistance value of the region 1622. That is, the heat generation amount of the resistance pattern 162 in the first divided body B1 having a large heat capacity is made larger than the heat generation amount of the resistance pattern 162 in the second divided body B2 having a small heat capacity.
Therefore, the heat distribution of the heat transfer plate 13 can be made uniform. That is, the treatment performance of the target portion can be maintained at the desired treatment performance regardless of where the target portion is in contact with the first surface 131.
(実施の形態2)
 次に、本実施の形態2について説明する。
 以下の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図4は、本実施の形態2に係る処置部12Aを示す図である。具体的に、図4は、処置部12Aを第2の面132側から見た図である。
 本実施の形態2に係る処置部12A(ヒータ14A)では、図4に示すように、上述した実施の形態1で説明した処置部12(ヒータ14)に対して、抵抗パターン162の形状を変更した電気抵抗パターン16Aを採用している。
(Embodiment 2)
Next, the second embodiment will be described.
In the following description, the same reference numerals are given to the same components as those in the first embodiment described above, and detailed description thereof will be omitted or simplified.
FIG. 4 is a diagram illustrating the treatment unit 12A according to the second embodiment. Specifically, FIG. 4 is a view of the treatment portion 12A as viewed from the second surface 132 side.
In the treatment section 12A (heater 14A) according to the second embodiment, as shown in FIG. 4, the shape of the resistance pattern 162 is changed with respect to the treatment section 12 (heater 14) described in the first embodiment. The electrical resistance pattern 16A is used.
 電気抵抗パターン16Aを構成する抵抗パターン162Aの全長、線幅、及び厚さは、以下に示すように設定されている。
 抵抗パターン162Aにおいて、線幅及び厚さは、上述した実施の形態1で説明した抵抗パターン162と同様に、一方のリード線接続部161に接続する一端から他方のリード線接続部161に接続する他端まで全て一様である。
 一方、抵抗パターン162Aにおいて、方向A1に沿って見た場合に、第1の分割領域Ar1内に位置する第1の部位1621の波状の周期に相当するピッチP1(図4)は、第2の分割領域Ar2内に位置する第2の部位1622の波状の周期に相当するピッチP2(図4)よりも小さく設定されている。すなわち、第1の部位1621の全長は、第2の部位1622の全長よりも大きく設定されている。そして、第1,第2の部位1621,1622におけるピッチ(全長)を互いに異なるものとすることによって、第1の部位1621の抵抗値と第2の部位1622の抵抗値との比は、上述した実施の形態1と同様に、第1の分割体B1の熱容量と第2の分割体B2の熱容量との比と略同一に設定されている。
The total length, line width, and thickness of the resistance pattern 162A constituting the electrical resistance pattern 16A are set as follows.
In the resistor pattern 162A, the line width and thickness are connected from one end connected to one lead wire connecting portion 161 to the other lead wire connecting portion 161 in the same manner as the resistor pattern 162 described in the first embodiment. All are uniform up to the other end.
On the other hand, when viewed along the direction A1 in the resistance pattern 162A, the pitch P1 (FIG. 4) corresponding to the wavy period of the first portion 1621 located in the first divided region Ar1 is the second The pitch P2 is set smaller than the pitch P2 (FIG. 4) corresponding to the wavy period of the second portion 1622 located in the divided area Ar2. That is, the total length of the first part 1621 is set larger than the total length of the second part 1622. And the ratio of the resistance value of the 1st site | part 1621 and the resistance value of the 2nd site | part 1622 is mentioned above by making the pitch (full length) in the 1st, 2nd site | parts 1621 and 1622 mutually different. As in the first embodiment, the ratio of the heat capacity of the first divided body B1 and the heat capacity of the second divided body B2 is set to be approximately the same.
 以上説明した本実施の形態2のように、第1,第2の部位1621,1622におけるピッチを互いに異なるものとした場合であっても、上述した実施の形態1と同様の効果を奏する。 Even when the pitches in the first and second portions 1621 and 1622 are different from each other as in the second embodiment described above, the same effects as those in the first embodiment described above can be obtained.
(実施の形態3)
 次に、本実施の形態3について説明する。
 以下の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図5は、本実施の形態3に係る処置部12Bを示す図である。具体的に、図5は、処置部12Bを第2の面132側から見た図である。
 本実施の形態3に係る処置部12B(ヒータ14B)では、図5に示すように、上述した実施の形態1で説明した処置部12(ヒータ14)に対して、抵抗パターン162の形状を変更した電気抵抗パターン16Bを採用している。
(Embodiment 3)
Next, the third embodiment will be described.
In the following description, the same reference numerals are given to the same components as those in the first embodiment described above, and detailed description thereof will be omitted or simplified.
FIG. 5 is a diagram illustrating the treatment unit 12B according to the third embodiment. Specifically, FIG. 5 is a view of the treatment portion 12B as viewed from the second surface 132 side.
In the treatment section 12B (heater 14B) according to the third embodiment, as shown in FIG. 5, the shape of the resistance pattern 162 is changed with respect to the treatment section 12 (heater 14) described in the first embodiment. The electrical resistance pattern 16B is adopted.
 電気抵抗パターン16Bを構成する抵抗パターン162Bの全長、線幅、及び厚さは、以下に示すように設定されている。
 抵抗パターン162Bにおいて、厚さは、上述した実施の形態1で説明した抵抗パターン162と同様に、一方のリード線接続部161に接続する一端から他方のリード線接続部161に接続する他端まで全て一様である。
 一方、抵抗パターン162Bにおいて、方向A1に沿って見た場合に、第1の分割領域Ar1内に位置する第1の部位1621の全長は、上述した実施の形態1で説明した抵抗パターン162と同様に、第2の分割領域Ar2内に位置する第2の部位1622の全長よりも大きく設定されている。また、第1の部位1621の線幅W1(図5)は、第2の部位1622の線幅W2(図5)よりも小さく設定されている。そして、第1,第2の部位1621,1622における全長及び線幅を互いに異なるものとすることによって、第1の部位1621の抵抗値と第2の部位1622の抵抗値との比は、上述した実施の形態1と同様に、第1の分割体B1の熱容量と第2の分割体B2の熱容量との比と略同一に設定されている。
The total length, line width, and thickness of the resistance pattern 162B constituting the electrical resistance pattern 16B are set as shown below.
In the resistance pattern 162B, the thickness is from one end connected to one lead wire connecting portion 161 to the other end connected to the other lead wire connecting portion 161 in the same manner as the resistance pattern 162 described in the first embodiment. All are uniform.
On the other hand, in the resistance pattern 162B, when viewed along the direction A1, the entire length of the first portion 1621 located in the first divided region Ar1 is the same as that of the resistance pattern 162 described in the first embodiment. In addition, it is set to be larger than the entire length of the second portion 1622 located in the second divided region Ar2. Further, the line width W1 (FIG. 5) of the first part 1621 is set smaller than the line width W2 (FIG. 5) of the second part 1622. The ratio between the resistance value of the first part 1621 and the resistance value of the second part 1622 is as described above by making the total length and the line width in the first and second parts 1621 and 1622 different from each other. As in the first embodiment, the ratio of the heat capacity of the first divided body B1 and the heat capacity of the second divided body B2 is set to be approximately the same.
 以上説明した本実施の形態3のように、第1,第2の部位1621,1622における全長及び線幅を互いに異なるものとした場合であっても、上述した実施の形態1と同様の効果を奏する。
 なお、第1,第2の部位1621,1622における全長を互いに同一に設定し、第1,第2の部位1621,1622における線幅を互いに異なるものとすることによって、第1の部位1621の抵抗値と第2の部位1622の抵抗値との比を、第1の分割体B1の熱容量と第2の分割体B2の熱容量との比と略同一に設定しても構わない。
Even when the total length and the line width in the first and second portions 1621 and 1622 are different from each other as in the third embodiment described above, the same effects as those in the first embodiment described above can be obtained. Play.
The first and second portions 1621 and 1622 have the same overall length, and the first and second portions 1621 and 1622 have different line widths, thereby reducing the resistance of the first portion 1621. The ratio between the value and the resistance value of the second portion 1622 may be set to be substantially the same as the ratio between the heat capacity of the first divided body B1 and the heat capacity of the second divided body B2.
(実施の形態4)
 次に、本実施の形態4について説明する。
 以下の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図6は、本実施の形態4に係る処置部12Cを示す図である。具体的に、図6は、処置部12Cの第2の面132側の一部を拡大した斜視図である。
 本実施の形態4に係る処置部12C(ヒータ14C)では、図6に示すように、上述した実施の形態1で説明した処置部12(ヒータ14)に対して、抵抗パターン162の形状を変更した電気抵抗パターン16Cを採用している。
(Embodiment 4)
Next, the fourth embodiment will be described.
In the following description, the same reference numerals are given to the same components as those in the first embodiment described above, and detailed description thereof will be omitted or simplified.
FIG. 6 is a diagram illustrating a treatment unit 12C according to the fourth embodiment. Specifically, FIG. 6 is an enlarged perspective view of a part of the treatment section 12C on the second surface 132 side.
In the treatment section 12C (heater 14C) according to the fourth embodiment, as shown in FIG. 6, the shape of the resistance pattern 162 is changed with respect to the treatment section 12 (heater 14) described in the first embodiment. The electrical resistance pattern 16C is adopted.
 電気抵抗パターン16Cを構成する抵抗パターン162Cの全長、線幅、及び厚さは、以下に示すように設定されている。
 抵抗パターン162Cにおいて、線幅は、上述した実施の形態1で説明した抵抗パターン162と同様に、一方のリード線接続部161に接続する一端から他方のリード線接続部161に接続する他端まで全て一様である。
 一方、抵抗パターン162Cにおいて、方向A1に沿って見た場合に、第1の分割領域Ar1内に位置する第1の部位1621の全長は、上述した実施の形態1で説明した抵抗パターン162と同様に、第2の分割領域Ar2内に位置する第2の部位1622の全長よりも大きく設定されている。また、第1の部位1621の厚さT1(図6)は、第2の部位1622の厚さT2(図6)よりも小さく設定されている。そして、第1,第2の部位1621,1622における全長及び厚さを互いに異なるものとすることによって、第1の部位1621の抵抗値と第2の部位1622の抵抗値との比は、上述した実施の形態1と同様に、第1の分割体B1の熱容量と第2の分割体B2の熱容量との比と略同一に設定されている。
The total length, line width, and thickness of the resistance pattern 162C constituting the electrical resistance pattern 16C are set as follows.
In the resistance pattern 162C, the line width is from one end connected to one lead wire connecting portion 161 to the other end connected to the other lead wire connecting portion 161, similarly to the resistance pattern 162 described in the first embodiment. All are uniform.
On the other hand, in the resistance pattern 162C, when viewed along the direction A1, the total length of the first portion 1621 located in the first divided region Ar1 is the same as that of the resistance pattern 162 described in the first embodiment. In addition, it is set to be larger than the entire length of the second portion 1622 located in the second divided region Ar2. Further, the thickness T1 (FIG. 6) of the first portion 1621 is set smaller than the thickness T2 (FIG. 6) of the second portion 1622. The ratio between the resistance value of the first part 1621 and the resistance value of the second part 1622 is as described above by making the total length and thickness in the first and second parts 1621 and 1622 different from each other. As in the first embodiment, the ratio of the heat capacity of the first divided body B1 and the heat capacity of the second divided body B2 is set to be approximately the same.
 以上説明した本実施の形態4のように、第1,第2の部位1621,1622における全長及び厚さを互いに異なるものとした場合であっても、上述した実施の形態1と同様の効果を奏する。
 なお、第1,第2の部位1621,1622における全長を互いに同一に設定し、第1,第2の部位1621,1622における厚さを互いに異なるものとすることによって、第1の部位1621の抵抗値と第2の部位1622の抵抗値との比を、第1の分割体B1の熱容量と第2の分割体B2の熱容量との比と略同一に設定しても構わない。
Even when the total length and thickness of the first and second portions 1621 and 1622 are different from each other as in the fourth embodiment described above, the same effects as those of the first embodiment described above can be obtained. Play.
The first and second portions 1621 and 1622 have the same overall length, and the first and second portions 1621 and 1622 have different thicknesses, thereby reducing the resistance of the first portion 1621. The ratio between the value and the resistance value of the second portion 1622 may be set to be substantially the same as the ratio between the heat capacity of the first divided body B1 and the heat capacity of the second divided body B2.
(実施の形態5)
 次に、本実施の形態5について説明する。
 以下の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図7は、本実施の形態5に係る処置部12Dを示す図である。具体的に、図7は、処置部12Dを第2の面132側から見た斜視図である。
 本実施の形態5に係る処置部12Dでは、図7に示すように、上述した実施の形態1で説明した処置部12に対して、伝熱板13及びヒータ14(基板15及び電気抵抗パターン16)の形状をそれぞれ変更した伝熱板13D及びヒータ14D(基板15D及び電気抵抗パターン16D)を採用している。
(Embodiment 5)
Next, the fifth embodiment will be described.
In the following description, the same reference numerals are given to the same components as those in the first embodiment described above, and detailed description thereof will be omitted or simplified.
FIG. 7 is a diagram illustrating a treatment unit 12D according to the fifth embodiment. Specifically, FIG. 7 is a perspective view of the treatment portion 12D as viewed from the second surface 132 side.
In the treatment section 12D according to the fifth embodiment, as shown in FIG. 7, the heat transfer plate 13 and the heater 14 (the substrate 15 and the electric resistance pattern 16 are compared to the treatment section 12 described in the first embodiment. The heat transfer plate 13D and the heater 14D (the substrate 15D and the electric resistance pattern 16D) having different shapes are employed.
 ここで、本実施の形態5に係る把持部7は、先端から基端に向けて直線状に延在する。すなわち、本実施の形態5において、以下で記載する「長手方向」は、上述した実施の形態1とは異なり、直線に沿った方向である。
 伝熱板13Dは、図7に示すように、長手方向に延在する台形状の平板である。具体的に、伝熱板13Dは、先端に向かうにしたがって幅寸法が小さくなる台形形状を有する。
 なお、第2の面132の長手方向の中心位置を通り、幅方向に延びる軸は、本発明に係る第1の中心軸Ax1(図7)に相当する。そして、長手方向に直交するとともに当該第1の中心軸Ax1を通る面は、本発明に係る第1の分割面F1(図7)に相当する。
 ここで、第1の分割面F1によって伝熱板13Dを仮想的に第1,第2の分割体B1,B2(図7)に分割する。この場合には、伝熱板13Dが長手方向に延在した台形形状を有するため、第1の分割面F1に対して基端側の第1の分割体B1は、第1の分割面F1に対して先端側の第2の分割体B2よりも体積が大きい。すなわち、第1の分割体B1は、第2の分割体B2よりも熱容量が大きい。
 また、第2の面132のうち第1の分割体B1によって構成される領域は、本発明に係る第1の分割領域Ar1(図7)に相当する。また、第2の面132のうち第2の分割体B2によって構成される領域は、本発明に係る第2の分割領域Ar2(図7)に相当する。すなわち、第2の面132は、第1,第2の分割領域Ar1,Ar2の2つの領域に分割される。
Here, the grip portion 7 according to the fifth embodiment extends linearly from the distal end toward the proximal end. That is, in the fifth embodiment, the “longitudinal direction” described below is a direction along a straight line unlike the first embodiment described above.
As shown in FIG. 7, the heat transfer plate 13 </ b> D is a trapezoidal flat plate extending in the longitudinal direction. Specifically, the heat transfer plate 13D has a trapezoidal shape with a width dimension that decreases toward the tip.
Note that the axis passing through the center position in the longitudinal direction of the second surface 132 and extending in the width direction corresponds to the first center axis Ax1 (FIG. 7) according to the present invention. A plane orthogonal to the longitudinal direction and passing through the first central axis Ax1 corresponds to the first divided plane F1 (FIG. 7) according to the present invention.
Here, the heat transfer plate 13D is virtually divided into first and second divided bodies B1 and B2 (FIG. 7) by the first dividing surface F1. In this case, since the heat transfer plate 13D has a trapezoidal shape extending in the longitudinal direction, the first divided body B1 on the proximal end side with respect to the first divided surface F1 is formed on the first divided surface F1. On the other hand, the volume is larger than that of the second divided body B2 on the tip side. That is, the first divided body B1 has a larger heat capacity than the second divided body B2.
Moreover, the area | region comprised by 1st division body B1 among the 2nd surfaces 132 is corresponded to 1st division area Ar1 (FIG. 7) which concerns on this invention. Moreover, the area | region comprised by 2nd division body B2 among the 2nd surfaces 132 is corresponded to 2nd division area Ar2 (FIG. 7) which concerns on this invention. That is, the second surface 132 is divided into two regions, the first and second divided regions Ar1 and Ar2.
 基板15Dは、図7に示すように、長手方向に延在する台形状の平板である。ここで、基板15Dの長手方向の長さ寸法は、第2の面132の長手方向の長さ寸法よりも小さく設定されている。また、基板15Dの幅寸法は、第2の面132の幅寸法よりも小さく設定されている。そして、基板15Dは、方向A1に沿って見た場合に、幅方向の中心位置を通り長手方向に延びる中心軸が第2の面132における幅方向の中心位置を通り長手方向に延びる中心軸に合致する状態で当該第2の面132に固定される。 The substrate 15D is a trapezoidal flat plate extending in the longitudinal direction as shown in FIG. Here, the length dimension of the substrate 15 </ b> D in the longitudinal direction is set to be smaller than the length dimension of the second surface 132 in the longitudinal direction. Further, the width dimension of the substrate 15 </ b> D is set smaller than the width dimension of the second surface 132. When viewed along the direction A1, the substrate 15D has a central axis extending in the longitudinal direction passing through the center position in the width direction and having a central axis extending in the longitudinal direction passing through the center position in the width direction on the second surface 132. It is fixed to the second surface 132 in a matching state.
 電気抵抗パターン16Dを構成する一対のリード線接続部161は、図7に示すように、板面150において、幅方向に並列した状態で基端側の角隅部分に設けられている。
 電気抵抗パターン16Dを構成する抵抗パターン162Dは、一対のリード線接続部161から互いに略平行な状態を維持しつつ、波状に蛇行しながらそれぞれ延在し、先端側で互いに接続する形状を有する。
 ここで、抵抗パターン162Dの全長、線幅、及び厚さは、以下に示すように設定されている。
 抵抗パターン162Dにおいて、線幅及び厚さは、一方のリード線接続部161に接続する一端から他方のリード線接続部161に接続する他端まで全て一様である。
 一方、抵抗パターン162Dにおいて、方向A1に沿って見た場合に、第1の分割領域Ar1内に位置する第1の部位1621(図7)の全長は、第2の分割領域Ar2内に位置する第2の部位1622(図7)の全長よりも大きく設定されている。そして、第1,第2の部位1621,1622における全長を互いに異なるものとすることによって、第1の部位1621の抵抗値と第2の部位1622の抵抗値との比は、上述した実施の形態1と同様に、第1の分割体B1の熱容量と第2の分割体B2の熱容量との比と略同一に設定されている。
As shown in FIG. 7, the pair of lead wire connecting portions 161 constituting the electric resistance pattern 16 </ b> D is provided at the corner portion on the base end side in a state of being parallel to the width direction on the plate surface 150.
The resistance pattern 162D constituting the electrical resistance pattern 16D has a shape that extends from the pair of lead wire connection portions 161 while meandering in a wavy manner and is connected to each other on the tip side.
Here, the total length, line width, and thickness of the resistance pattern 162D are set as follows.
In the resistance pattern 162D, the line width and thickness are all uniform from one end connected to one lead wire connecting portion 161 to the other end connected to the other lead wire connecting portion 161.
On the other hand, in the resistance pattern 162D, when viewed along the direction A1, the entire length of the first portion 1621 (FIG. 7) located in the first divided region Ar1 is located in the second divided region Ar2. It is set to be larger than the entire length of the second portion 1622 (FIG. 7). The ratio between the resistance value of the first part 1621 and the resistance value of the second part 1622 can be determined by making the overall lengths of the first and second parts 1621 and 1622 different from each other. Similarly to 1, the ratio of the heat capacity of the first divided body B1 and the heat capacity of the second divided body B2 is set to be substantially the same.
 以上説明した本実施の形態5に係る処置部12Dを採用した場合であっても、上述した実施の形態1と同様の効果を奏する。
 なお、本実施の形態5において、上述した実施の形態2~4と同様に、第1,第2の部位1621,1622における全長、線幅、または厚さを互いに異なるものとすることによって、第1の部位1621の抵抗値と第2の部位1622の抵抗値との比を、第1の分割体B1の熱容量と第2の分割体B2の熱容量との比と略同一に設定しても構わない。
Even when the treatment section 12D according to the fifth embodiment described above is employed, the same effects as those of the first embodiment described above can be obtained.
In the fifth embodiment, similarly to the second to fourth embodiments described above, the first and second portions 1621 and 1622 have different overall lengths, line widths, or thicknesses, so that the first The ratio of the resistance value of the first part 1621 and the resistance value of the second part 1622 may be set to be substantially the same as the ratio of the heat capacity of the first divided body B1 and the heat capacity of the second divided body B2. Absent.
(実施の形態6)
 次に、本実施の形態6について説明する。
 以下の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図8は、本実施の形態6に係る処置部12Eを示す図である。具体的に、図8は、処置部12Eを第2の面132側から、かつ、基端側から見た斜視図である。
 本実施の形態6に係る処置部12Eでは、図8に示すように、上述した実施の形態1で説明した処置部12に対して、伝熱板13及びヒータ14(基板15及び電気抵抗パターン16)の形状をそれぞれ変更した伝熱板13E及びヒータ14E(基板15E及び電気抵抗パターン16E)を採用している。
(Embodiment 6)
Next, the sixth embodiment will be described.
In the following description, the same reference numerals are given to the same components as those in the first embodiment described above, and detailed description thereof will be omitted or simplified.
FIG. 8 is a diagram showing the treatment unit 12E according to the sixth embodiment. Specifically, FIG. 8 is a perspective view of the treatment portion 12E viewed from the second surface 132 side and from the proximal end side.
In the treatment section 12E according to the sixth embodiment, as shown in FIG. 8, compared to the treatment section 12 described in the first embodiment, the heat transfer plate 13 and the heater 14 (the substrate 15 and the electric resistance pattern 16). The heat transfer plate 13E and the heater 14E (the substrate 15E and the electric resistance pattern 16E) having different shapes are employed.
 ここで、本実施の形態6に係る把持部7は、先端から基端に向けて直線状に延在する。すなわち、本実施の形態6において、以下で記載する「長手方向」は、上述した実施の形態1とは異なり、直線に沿った方向である。
 伝熱板13Eは、図7に示すように、長手方向に延在する。また、第1の面131は、上述した実施の形態1とは異なり、凸形状を有する。そして、伝熱板13Eは、三角柱形状を有する。
Here, the gripping portion 7 according to the sixth embodiment extends linearly from the distal end toward the proximal end. That is, in the sixth embodiment, the “longitudinal direction” described below is a direction along a straight line unlike the first embodiment described above.
As shown in FIG. 7, the heat transfer plate 13 </ b> E extends in the longitudinal direction. Further, unlike the first embodiment described above, the first surface 131 has a convex shape. The heat transfer plate 13E has a triangular prism shape.
 なお、第2の面132の幅方向の中心位置を通り、長手方向に延びる軸は、本発明に係る第2の中心軸Ax2(図8)に相当する。そして、幅方向に直交するとともに当該第2の中心軸Ax2を通る面は、本発明に係る第2の分割面F2(図7)に相当する。
 ここで、第1の面131における凸状の頂点の位置は、第2の分割面F2よりも図8中、右側に位置する。このため、第2の分割面F2によって伝熱板13Eを仮想的に第1,第2の分割体B1,B2(図8)に分割すると、第1の面131における凸状の頂点を含む第1の分割体B1は、第2の分割体B2よりも体積が大きい。すなわち、第1の分割体B1は、第2の分割体B2よりも熱容量が大きい。
 また、第2の面132のうち第1の分割体B1によって構成される領域は、本発明に係る第1の分割領域Ar1(図8)に相当する。また、第2の面132のうち第2の分割体B2によって構成される領域は、本発明に係る第2の分割領域Ar2(図8)に相当する。すなわち、第2の面132は、第1,第2の分割領域Ar1,Ar2の2つの領域に分割される。
In addition, the axis | shaft which passes along the center position of the width direction of the 2nd surface 132, and extends to a longitudinal direction is corresponded to 2nd center axis Ax2 (FIG. 8) which concerns on this invention. A plane orthogonal to the width direction and passing through the second central axis Ax2 corresponds to the second divided plane F2 (FIG. 7) according to the present invention.
Here, the position of the convex vertex on the first surface 131 is located on the right side in FIG. 8 with respect to the second divided surface F2. For this reason, when the heat transfer plate 13E is virtually divided into the first and second divided bodies B1 and B2 (FIG. 8) by the second divided surface F2, the first surface 131 including the convex vertex is included. One divided body B1 has a larger volume than the second divided body B2. That is, the first divided body B1 has a larger heat capacity than the second divided body B2.
Moreover, the area | region comprised by 1st division body B1 among the 2nd surfaces 132 is corresponded to 1st division area Ar1 (FIG. 8) which concerns on this invention. Moreover, the area | region comprised by 2nd division body B2 among the 2nd surfaces 132 is corresponded to 2nd division area Ar2 (FIG. 8) which concerns on this invention. That is, the second surface 132 is divided into two regions, the first and second divided regions Ar1 and Ar2.
 基板15Eは、図8に示すように、長手方向に延在する矩形状の平板である。ここで、基板15Eの長手方向の長さ寸法は、第2の面132の長手方向の長さ寸法よりも小さく設定されている。また、基板15Eの幅寸法は、第2の面132の幅寸法よりも小さく設定されている。そして、基板15Eは、方向A1に沿って見た場合に、幅方向の中心位置を通り長手方向に延びる中心軸が第2の中心軸Ax2に合致する状態で第2の面132に固定される。 The substrate 15E is a rectangular flat plate extending in the longitudinal direction, as shown in FIG. Here, the longitudinal dimension of the substrate 15E is set smaller than the longitudinal dimension of the second surface 132. The width dimension of the substrate 15E is set smaller than the width dimension of the second surface 132. When viewed along the direction A1, the substrate 15E is fixed to the second surface 132 in a state where the central axis extending in the longitudinal direction through the central position in the width direction matches the second central axis Ax2. .
 電気抵抗パターン16Eを構成する一対のリード線接続部161は、図8に示すように、板面150において、幅方向に並列した状態で基端側に設けられている。
 電気抵抗パターン16Eを構成する抵抗パターン162Eは、上述した実施の形態1で説明した抵抗パターン162と同様に、板面150において、蛇行しながら延在するU字形状を有する。そして、抵抗パターン162Eの両端は、一対のリード線接続部161にそれぞれ接続する。
 ここで、抵抗パターン162Eの全長、線幅、及び厚さは、以下に示すように設定されている。
 抵抗パターン162Eにおいて、線幅及び厚さは、上述した実施の形態1で説明した抵抗パターン162と同様に、一方のリード線接続部161に接続する一端から他方のリード線接続部161に接続する他端まで全て一様である。
 一方、抵抗パターン162Eにおいて、方向A1に沿って見た場合に、第1の分割領域Ar1内に位置する第1の部位1621の波状の周期に相当するピッチP1(図8)は、第2の分割領域Ar2内に位置する第2の部位1622の波状の周期に相当するピッチP2(図8)よりも小さく設定されている。すなわち、第1の部位1621の全長は、第2の部位1622の全長よりも大きく設定されている。そして、第1,第2の部位1621,1622におけるピッチ(全長)を互いに異なるものとすることによって、第1の部位1621の抵抗値と第2の部位1622の抵抗値との比は、上述した実施の形態1と同様に、第1の分割体B1の熱容量と第2の分割体B2の熱容量との比と略同一に設定されている。
As shown in FIG. 8, the pair of lead wire connecting portions 161 constituting the electric resistance pattern 16 </ b> E is provided on the base end side in a state of being parallel to the width direction on the plate surface 150.
The resistance pattern 162E that constitutes the electrical resistance pattern 16E has a U-shape extending in a meandering manner on the plate surface 150, similarly to the resistance pattern 162 described in the first embodiment. Then, both ends of the resistance pattern 162E are connected to the pair of lead wire connecting portions 161, respectively.
Here, the total length, line width, and thickness of the resistance pattern 162E are set as follows.
In the resistance pattern 162E, the line width and thickness are connected from one end connected to one lead wire connecting portion 161 to the other lead wire connecting portion 161 in the same manner as the resistance pattern 162 described in the first embodiment. All are uniform up to the other end.
On the other hand, when viewed along the direction A1 in the resistance pattern 162E, the pitch P1 (FIG. 8) corresponding to the wavy period of the first portion 1621 located in the first divided region Ar1 is the second The pitch P2 is set to be smaller than the pitch P2 (FIG. 8) corresponding to the wavy period of the second portion 1622 located in the divided area Ar2. That is, the total length of the first part 1621 is set larger than the total length of the second part 1622. And the ratio of the resistance value of the 1st site | part 1621 and the resistance value of the 2nd site | part 1622 is mentioned above by making the pitch (full length) in the 1st, 2nd site | parts 1621 and 1622 mutually different. As in the first embodiment, the ratio of the heat capacity of the first divided body B1 and the heat capacity of the second divided body B2 is set to be approximately the same.
 以上説明した本実施の形態6に係る処置部12Eを採用した場合であっても、上述した実施の形態1と同様の効果を奏する。
 なお、本実施の形態6において、上述した実施の形態3,4と同様に、第1,第2の部位1621,1622における線幅または厚さを互いに異なるものとすることによって、第1の部位1621の抵抗値と第2の部位1622の抵抗値との比を、第1の分割体B1の熱容量と第2の分割体B2の熱容量との比と略同一に設定しても構わない。
Even when the treatment unit 12E according to the sixth embodiment described above is employed, the same effects as those of the first embodiment described above can be obtained.
In the sixth embodiment, similarly to the third and fourth embodiments described above, the first portion is changed by making the line widths or thicknesses of the first and second portions 1621 and 1622 different from each other. The ratio of the resistance value of 1621 and the resistance value of the second portion 1622 may be set to be substantially the same as the ratio of the heat capacity of the first divided body B1 and the heat capacity of the second divided body B2.
(その他の実施形態)
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態1~6によってのみ限定されるべきものではない。
 上述した実施の形態1~6において、以下の構成を採用しても構わない。
 すなわち、伝熱板13(13D,13E)を省略する。また、基板15(15D,15E)を構成する材料として、電気絶縁性を有するとともに耐熱性を有する窒化アルミニウムやアルミナ等の高熱伝導性のセラミック材料を採用する。そして、当該基板15(15D,15E)を対象部位に直接、接触させ、当該基板15(15D,15E)から当該対象部位に熱エネルギを付与する。すなわち、当該基板15(15D,15E)を本発明に係る伝熱板として機能させる。
(Other embodiments)
The embodiments for carrying out the present invention have been described so far, but the present invention should not be limited only by the above-described first to sixth embodiments.
In the first to sixth embodiments described above, the following configuration may be adopted.
That is, the heat transfer plate 13 (13D, 13E) is omitted. Further, as a material constituting the substrate 15 (15D, 15E), a highly thermally conductive ceramic material such as aluminum nitride or alumina having electrical insulation properties and heat resistance is adopted. Then, the substrate 15 (15D, 15E) is brought into direct contact with the target site, and thermal energy is applied from the substrate 15 (15D, 15E) to the target site. That is, the said board | substrate 15 (15D, 15E) is functioned as a heat exchanger plate which concerns on this invention.
 上述した実施の形態1~6では、第1,第2の分割面F1,F2の一方によって伝熱板13(13D,13E)を仮想的に分割し、第1,第2の分割体B1,B2の熱容量の大小関係に基づいて第1,第2の分割領域Ar1,Ar2における抵抗値を設定したが、第1,第2の分割面F1,F2の双方によって伝熱板13(13D,13E)を4つの分割体に仮想的に分割した場合も当業者であれば容易に想到することができる。この場合であっても、第1,第2の分割面F1,F2の一方によって仮想的に分割して抵抗値を比較した場合に分割体の熱容量に差があれば、本願の権利範囲とすることができる。例えば、湾曲形状を有し、かつ先端に向かうにしたがって幅寸法が小さくなる場合、第1,第2の分割面F1,F2によって仮想的に分割したときの4つの分割体は、それぞれ熱容量が異なる。この場合であっても、第1,第2の分割面F1,F2の一方によって仮想的に分割して抵抗値を比較した場合に分割体の熱容量が大きい分割体と、熱容量が小さい分割体とに区分することができ、上述した実施の形態1等と同様に抵抗値を設定することで、本願の目的を達成することができる。 In the first to sixth embodiments described above, the heat transfer plate 13 (13D, 13E) is virtually divided by one of the first and second divided surfaces F1, F2, and the first and second divided bodies B1, Although the resistance values in the first and second divided regions Ar1 and Ar2 are set based on the magnitude relationship of the heat capacity of B2, the heat transfer plate 13 (13D and 13E is formed by both the first and second divided surfaces F1 and F2. ) Can be easily conceived by those skilled in the art. Even in this case, if there is a difference in the heat capacity of the divided bodies when virtually divided by one of the first and second divided surfaces F1 and F2 and compared in resistance value, the scope of rights of the present application is assumed. be able to. For example, when it has a curved shape and the width dimension decreases toward the tip, the four divided bodies when virtually divided by the first and second divided surfaces F1 and F2 have different heat capacities. . Even in this case, when the resistance value is compared by virtually dividing by one of the first and second divided surfaces F1 and F2, a divided body having a large heat capacity and a divided body having a small heat capacity The purpose of the present application can be achieved by setting the resistance value in the same manner as in the first embodiment described above.
 上述した実施の形態1~6では、第1の把持部材8にのみ処置部12(12A~12E)を設けていたが、これに限らない。第1,第2の把持部材8,9の双方に処置部12(12A~12E)を設けても構わない。
 上述した実施の形態1~5では、第1の面131は、平面によって構成されていたが、これに限らず、凸形状、あるいは、凹形状等のその他の形状によって構成しても構わない。第2の把持部材9側も同様である。
 上述した実施の形態1~6では、対象部位に対して熱エネルギを付与する構成を採用していたが、これに限らず、熱エネルギに加えて高周波エネルギや超音波エネルギを付与する構成を採用しても構わない。なお、「対象部位に対して高周波エネルギを付与する」とは、対象部位に対して高周波電流を流すことを意味する。また、「対象部位に対して超音波エネルギを付与する」とは、対象部位に対して超音波振動を付与することを意味する。
In Embodiments 1 to 6 described above, the treatment section 12 (12A to 12E) is provided only on the first gripping member 8, but this is not restrictive. Treatment sections 12 (12A to 12E) may be provided on both the first and second gripping members 8 and 9.
In the first to fifth embodiments described above, the first surface 131 is a flat surface. However, the first surface 131 is not limited to this, and may be a convex shape or another shape such as a concave shape. The same applies to the second gripping member 9 side.
In Embodiments 1 to 6 described above, the configuration for applying thermal energy to the target portion is employed. However, the configuration is not limited to this, and a configuration for applying high-frequency energy or ultrasonic energy in addition to thermal energy is employed. It doesn't matter. Note that “applying high-frequency energy to the target part” means flowing a high-frequency current to the target part. Further, “applying ultrasonic energy to the target part” means applying ultrasonic vibration to the target part.
 1 処置システム
 2 処置具
 3 制御装置
 4 フットスイッチ
 5 ハンドル
 6 シャフト
 7 把持部
 8 第1の把持部材
 9 第2の把持部材
 10 ジョー
 11 支持部材
 12,12A~12E 処置部
 13,13D,13E 伝熱板
 14,14A~14E ヒータ
 15,15D,15E 基板
 16,16A~16E 電気抵抗パターン
 51 操作ノブ
 101 面
 111 面
 131 第1の面
 132 第2の面
 150 板面
 161 リード線接続部
 162,162A~162E 抵抗パターン
 1621 第1の部位
 1622 第2の部位
 A1 方向
 Ar1 第1の分割領域
 Ar2 第2の分割領域
 Ax1 第1の中心軸
 Ax2 第2の中心軸
 B1 第1の分割体
 B2 第2の分割体
 C 電気ケーブル
 C1 リード線
 F1 第1の分割面
 F2 第2の分割面
 P0 支点
 P1,P2 ピッチ
 R1 矢印
 T1,T2 厚さ
 W1,W2 線幅
DESCRIPTION OF SYMBOLS 1 Treatment system 2 Treatment tool 3 Control apparatus 4 Foot switch 5 Handle 6 Shaft 7 Gripping part 8 1st holding member 9 2nd holding member 10 Jaw 11 Support member 12,12A- 12E Treatment part 13,13D, 13E Heat transfer Plate 14, 14A to 14E Heater 15, 15D, 15E Substrate 16, 16A to 16E Electrical resistance pattern 51 Operation knob 101 Surface 111 Surface 131 First surface 132 Second surface 150 Plate surface 161 Lead wire connecting portion 162, 162A 162E resistance pattern 1621 first part 1622 second part A1 direction Ar1 first divided area Ar2 second divided area Ax1 first central axis Ax2 second central axis B1 first divided body B2 second divided Body C Electric cable C1 Lead wire F1 First divided surface F2 Second divided surface P0 Support point P1, P2 Pitch R1 Arrow T1, T2 Thickness W1, W2 Line width

Claims (6)

  1.  生体組織に接触した状態で当該生体組織に対して熱を伝達する第1の面と、当該第1の面と表裏をなす第2の面とを有する伝熱板と、
     前記第2の面に配設され、通電によって発熱する抵抗パターンとを備え、
     第1の分割面または第2の分割面によって前記伝熱板を複数の分割体に分割した場合に、当該複数の分割体は、第1の分割体と、当該第1の分割体よりも熱容量の低い第2の分割体とを含み、
     前記第1の分割面は、
     前記第2の面の長手方向の中心位置を通り当該第2の面の幅方向に延びる軸を第1の中心軸とした場合に、前記長手方向に直交するとともに当該第1の中心軸を通る面であり、
     前記第2の分割面は、
     前記第2の面の前記幅方向の中心位置を通り前記長手方向に延びる軸を第2の中心軸とした場合に、前記幅方向に直交するとともに当該第2の中心軸を通る面であり、
     前記抵抗パターンは、
     前記第1の分割体と前記第2の分割体との熱容量の比に応じて、前記第2の面のうち前記第1の分割体によって構成される第1の分割領域における抵抗値と前記第2の分割体によって構成される第2の分割領域における抵抗値との比が設定され、前記第1の分割領域における抵抗値は前記第2の分割領域における抵抗値よりも高い処置具。
    A heat transfer plate having a first surface that transfers heat to the living tissue in contact with the living tissue, and a second surface that forms a front and back surface with the first surface;
    A resistance pattern disposed on the second surface and generating heat when energized,
    When the heat transfer plate is divided into a plurality of divided bodies by the first divided surface or the second divided surface, the plurality of divided bodies have a heat capacity higher than that of the first divided body and the first divided body. A second divided body having a low
    The first dividing surface is
    When an axis extending in the longitudinal direction of the second surface and extending in the width direction of the second surface is a first central axis, the first surface is orthogonal to the longitudinal direction and passes through the first central axis. Surface,
    The second dividing surface is
    When an axis extending in the longitudinal direction through the center position of the second surface in the width direction is a second center axis, the surface is orthogonal to the width direction and passes through the second center axis;
    The resistance pattern is
    According to the ratio of the heat capacities of the first divided body and the second divided body, the resistance value in the first divided region constituted by the first divided body of the second surface and the first A treatment tool in which a ratio with a resistance value in a second divided region constituted by two divided bodies is set, and the resistance value in the first divided region is higher than the resistance value in the second divided region.
  2.  前記第1の分割体及び前記第2の分割体は、
     前記第2の分割面のみによって前記伝熱板を分割した場合における分割体であり、
     前記抵抗パターンは、
     全長、幅、厚さの少なくとも一つが前記第1の分割領域と前記第2の分割領域とで互いに異なる請求項1に記載の処置具。
    The first divided body and the second divided body are:
    It is a divided body when the heat transfer plate is divided only by the second divided surface,
    The resistance pattern is
    The treatment tool according to claim 1, wherein at least one of a total length, a width, and a thickness is different between the first divided region and the second divided region.
  3.  前記第2の分割面は、
     曲面であり、
     前記第1の分割領域は、
     前記第2の分割面に対して外周側の領域であり、
     前記第2の分割領域は、
     前記第2の分割面に対して内周側の領域である請求項2に記載の処置具。
    The second dividing surface is
    Curved surface,
    The first divided area is:
    An outer peripheral region with respect to the second divided surface;
    The second divided area is:
    The treatment tool according to claim 2, wherein the treatment tool is a region on an inner peripheral side with respect to the second divided surface.
  4.  前記第1の分割体及び前記第2の分割体は、
     前記第1の分割面のみによって前記伝熱板を分割した場合における分割体であり、
     前記抵抗パターンは、
     全長、幅、厚さの少なくとも一つが前記第1の分割領域と前記第2の分割領域とで互いに異なる請求項1に記載の処置具。
    The first divided body and the second divided body are:
    It is a divided body when the heat transfer plate is divided only by the first divided surface,
    The resistance pattern is
    The treatment tool according to claim 1, wherein at least one of a total length, a width, and a thickness is different between the first divided region and the second divided region.
  5.  前記伝熱板は、
     先端側に向かうにしたがって細くなる先細り形状であり、
     前記第1の分割領域は、
     前記第1の分割面に対して基端側の領域であり、
     前記第2の分割領域は、
     前記第1の分割面に対して先端側の領域である請求項4に記載の処置具。
    The heat transfer plate is
    It is a tapered shape that becomes thinner toward the tip side,
    The first divided area is:
    A region on the base end side with respect to the first divided surface;
    The second divided area is:
    The treatment tool according to claim 4, wherein the treatment tool is a region on a distal end side with respect to the first division surface.
  6.  前記抵抗パターンと、当該抵抗パターンが形成される基板とを有し、前記第2の面に配設されるヒータをさらに備える請求項1に記載の処置具。 The treatment instrument according to claim 1, further comprising a heater that includes the resistance pattern and a substrate on which the resistance pattern is formed, and is disposed on the second surface.
PCT/JP2018/017981 2018-05-09 2018-05-09 Treatment tool WO2019215852A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017981 WO2019215852A1 (en) 2018-05-09 2018-05-09 Treatment tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017981 WO2019215852A1 (en) 2018-05-09 2018-05-09 Treatment tool

Publications (1)

Publication Number Publication Date
WO2019215852A1 true WO2019215852A1 (en) 2019-11-14

Family

ID=68467333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017981 WO2019215852A1 (en) 2018-05-09 2018-05-09 Treatment tool

Country Status (1)

Country Link
WO (1) WO2019215852A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125338A (en) * 2010-12-14 2012-07-05 Olympus Corp Therapeutic treatment apparatus, and control method of the same
JP2013034614A (en) * 2011-08-05 2013-02-21 Olympus Medical Systems Corp Therapeutical treatment apparatus
WO2015093409A1 (en) * 2013-12-20 2015-06-25 オリンパス株式会社 Thermocoagulation incision device
JP2015208415A (en) * 2014-04-24 2015-11-24 オリンパス株式会社 Therapeutic treatment device
WO2017183199A1 (en) * 2016-04-22 2017-10-26 オリンパス株式会社 Thermal energy treatment device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125338A (en) * 2010-12-14 2012-07-05 Olympus Corp Therapeutic treatment apparatus, and control method of the same
JP2013034614A (en) * 2011-08-05 2013-02-21 Olympus Medical Systems Corp Therapeutical treatment apparatus
WO2015093409A1 (en) * 2013-12-20 2015-06-25 オリンパス株式会社 Thermocoagulation incision device
JP2015208415A (en) * 2014-04-24 2015-11-24 オリンパス株式会社 Therapeutic treatment device
WO2017183199A1 (en) * 2016-04-22 2017-10-26 オリンパス株式会社 Thermal energy treatment device

Similar Documents

Publication Publication Date Title
CN109788978B (en) Treatment tool
US7397016B2 (en) Heat generating element, medical therapeutic instrument implementing the same, and treatment apparatus
JP6487723B2 (en) Medical treatment device
WO2019215852A1 (en) Treatment tool
JP2015208415A (en) Therapeutic treatment device
WO2018055778A1 (en) Treatment instrument and treatment system
JPWO2016063376A1 (en) Medical treatment device
JP7044895B2 (en) Medical heaters, treatment tools, and methods for manufacturing treatment tools
WO2020044563A1 (en) Medical heater, treatment instrument, and production method for treatment instrument
WO2019207807A1 (en) Treatment tool and method of manufacturing treatment tool
WO2019202717A1 (en) Treatment instrument
WO2019186656A1 (en) Treatment instrument
WO2020183681A1 (en) Medical heater, and treatment instrument
CN109475380B (en) Treatment tool
US20180055555A1 (en) Therapeutic energy applying structure and medical treatment device
US20190110831A1 (en) Treatment tool
WO2020183673A1 (en) Treatment instrument, and method for manufacturing treatment instrument
WO2020012623A1 (en) Treatment tool
WO2018179303A1 (en) Heating structure and treatment tool
WO2019215908A1 (en) Method for manufacturing medical heater, medical heater, treatment tool, and treatment system
WO2018220736A1 (en) Treatment tool
JP7201790B2 (en) Treatment tool
WO2018146730A1 (en) Energy applying structure and treatment tool
WO2017163410A1 (en) Energy treatment tool
WO2020183680A1 (en) Treatment instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP