WO2019215825A1 - Heat exchanger, method for manufacturing communication section, indoor unit, outdoor unit, and air conditioner - Google Patents

Heat exchanger, method for manufacturing communication section, indoor unit, outdoor unit, and air conditioner Download PDF

Info

Publication number
WO2019215825A1
WO2019215825A1 PCT/JP2018/017872 JP2018017872W WO2019215825A1 WO 2019215825 A1 WO2019215825 A1 WO 2019215825A1 JP 2018017872 W JP2018017872 W JP 2018017872W WO 2019215825 A1 WO2019215825 A1 WO 2019215825A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
communication
heat exchanger
gas
longitudinal direction
Prior art date
Application number
PCT/JP2018/017872
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木 重幸
禎夫 関谷
遠藤 剛
高藤 亮一
法福 守
大木 長斗司
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to JP2020517666A priority Critical patent/JP6913826B2/en
Priority to PCT/JP2018/017872 priority patent/WO2019215825A1/en
Publication of WO2019215825A1 publication Critical patent/WO2019215825A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements

Definitions

  • the present invention relates to a heat exchanger, a method for manufacturing a communication part, an indoor unit, an outdoor unit, and an air conditioner.
  • Patent Document 1 In the outdoor heat exchanger, one end of each flat tube is connected to the first header collecting pipe.
  • the lower space of the first header collecting pipe includes an upper horizontal partition plate and a lower horizontal partition plate.
  • the vertical partition plate divides the chamber into three communication chambers and a single mixing chamber, which are arranged in a vertical direction, and a plurality of flat tubes are connected to each communication chamber.
  • the mixing chamber is connected to the first communication chamber via the communication through hole of the lower horizontal partition plate, and the vertical partition plate (through the communication through hole). It communicates with the second communication chamber and communicates with the third communication chamber via the communication through hole of the upper lateral partition plate ”(see summary).
  • Patent Document 1 intends equalizing the dryness of the refrigerant
  • Patent Document 1 does not disclose any technique for improving the heat exchange efficiency of the heat exchanger by changing the supply amount of the refrigerant with a flat tube. Then, this invention makes it a subject to change the supply amount of a refrigerant
  • a heat exchanger includes a pair of headers, a plurality of headers arranged in the longitudinal direction of the header, and heat transfer tubes each having both ends connected to the headers, A plurality of fins connected to each heat transfer tube and arranged in the longitudinal direction of the heat transfer tube, and an inflow side header serving as a refrigerant inflow side from the outside of the pair of headers is an inlet of the refrigerant
  • a plurality of gas-liquid mixing sections into which a gas-liquid two-phase refrigerant flows and a plurality of the inflow-side headers are partitioned in the longitudinal direction, and the gas-liquid mixing section is also partitioned into one or continuous
  • the header inner space connected to the plurality of heat transfer tubes arranged in parallel to each other, the plurality of communication tubes communicating the different header inner space and the gas-liquid mixing unit, and the gas-liquid mixing unit. Is provided in each communication pipe Via a communicating pipe having an opening for guiding the refriger
  • the heat exchange efficiency of the heat exchanger can be improved by changing the amount of refrigerant supplied by the heat transfer tube.
  • FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A. It is the front view which arranged and illustrated two communicating pipes of the heat exchanger which concerns on Example 1 of this invention. It is the front view which arranged and illustrated two communicating pipes in other examples of the heat exchanger concerning Example 1 of the present invention. It is the front view which arranged and illustrated two communicating pipes in other examples of the heat exchanger concerning Example 1 of the present invention. 1 is a system diagram of an air conditioner according to Embodiment 1 of the present invention. It is the perspective view which permeate
  • FIG. 7A It is a cross-sectional view of the indoor unit of the air conditioner according to the first embodiment of the present invention. It is the front view which arranged and illustrated two communicating pipes of the heat exchanger which concerns on Example 2 of this invention. It is the front view which arranged and illustrated two communicating pipes in other examples of the heat exchanger concerning Example 2 of the present invention. It is the front view which arranged and illustrated two communicating pipes in other examples of the heat exchanger concerning Example 2 of the present invention. It is a longitudinal cross-sectional view of the gas-liquid mixing part part in the inflow side header of the heat exchanger which concerns on Example 3 of this invention. It is BB sectional drawing of FIG. 7A. FIG. 7B is another example of the BB cross-sectional view of FIG. 7A. It is a longitudinal cross-sectional view of the gas-liquid mixing part in the inflow side header of the heat exchanger which concerns on Example 3 of this invention, and the part of the upper part.
  • FIG. 1A is a plan view of a heat exchanger 1 according to Embodiment 1 of the present invention. Since the heat exchanger 1 has a certain length in the left-right direction in FIG. 1A, a part of the left-right longitudinal direction is notched.
  • the heat exchanger 1 includes a pair of inflow side headers 3a and outflow side headers (headers) 3b.
  • the inflow side header 3a serves as an inlet for the refrigerant from the outside
  • the outflow side header 3b serves as an outlet for the refrigerant to the outside.
  • the inflow side header 3a and the outflow side header 3b may be simply referred to as headers.
  • the inflow side header 3a and the outflow side header 3b are both long cylindrical members.
  • the inflow side header 3a is shown by the longitudinal cross section, and the outflow side header 3b has shown only the outer surface.
  • Inflow side header 3a and outflow side header 3b are generally arranged at a position where the lower end side (the gas-liquid mixing portion 41 side described later) is lower than the upper end side in FIG. is not.
  • the heat transfer tube 19 is a flat heat transfer tube that is made of a metal member such as aluminum and is flat in the longitudinal direction and is arranged in the longitudinal direction of the headers 3a and 3b.
  • the step pitch is Pd in the example of FIG. 1A.
  • the longitudinal direction of the heat transfer tube 19 is substantially perpendicular to the longitudinal direction of the headers 3a and 3b.
  • Each heat transfer tube 19 is connected to each header 3a, 3b at both ends, and the refrigerant flows in from the inflow side header 3a and flows in the direction of arrow a in FIG. 1A. And the refrigerant
  • a route through which the refrigerant flows out from the outflow side header 3b is not shown, the route can be connected to the outflow side header 3b in various forms.
  • the fin 2 is made of a thin plate-like metal member such as aluminum, and expands the heat transfer area of each heat transfer tube 19.
  • the fins 2 are connected to the heat transfer tubes 19, and a plurality of the fins 2 are arranged at regular intervals in the longitudinal direction of the heat transfer tubes 19, for example.
  • the fin pitch in that case is Pf as shown in FIG. 1A.
  • the fin 2 is joined to the heat transfer tube 19 by brazing so as to be able to transfer heat.
  • a plurality of holes for inserting the heat transfer tubes 19 are formed in advance at a step pitch Pd.
  • the heat transfer tube 19 is formed, for example, by a plurality of multi-hole flow paths (not shown) in a flat cross section by extrusion.
  • the fin 2 is provided with a plurality of cuts at equal intervals on the side end in the longitudinal direction, and each heat transfer tube 19 is inserted into the cut, or a plurality of through holes arranged in the longitudinal direction are formed in each fin 2,
  • the heat transfer tube 19 can be inserted into the through-hole to be formed integrally with the heat transfer tube 19 ⁇ .
  • each heat transfer tube 19 is inserted into the hole of the header 3 and, further, the fin 2 is attached to the heat transfer tube 19 in a temporarily assembled state in the furnace.
  • the heat exchanger 1 may be manufactured by batch brazing, or the heat exchanger 1 may be manufactured by brazing partially with a torch.
  • the joining of the heat transfer tube 19 and the fin 2 is a method in which the heat transfer tube 19 is brought into close contact with the heat transfer tube 19 by pressurizing the inside of the multi-hole flow path with a liquid pressure or a gas pressure instead of the above-described brazing. May be taken.
  • corrugated (corrugated) fins may be inserted between the heat transfer tubes 19.
  • the lower end side of the inflow side header 3a in FIG. 1A is partitioned by a partition plate 31a.
  • the space above the partition plate 31a of the inflow side header 3a is partitioned into, for example, equal intervals by a plurality of partition plates 31b in the example of FIG. 1A. That is, the inside of the inflow side header 3a is divided into, for example, five sections by the partition plates 31a and 31b.
  • the space below the inflow side header 3a partitioned by the partition plate 31a is partitioned by the partition plate 31b above the partition plate 31a, which is the gas-liquid mixing unit 41, and above the inflow side header 3a.
  • the two spaces constitute header inner spaces 32 to 35.
  • the gas-liquid mixing part 41 can be implemented variously in which position of the longitudinal direction of the inflow side header 3a the gas-liquid mixing part 41 is brought.
  • the gas-liquid mixing part 41 may be arranged at an intermediate position in the longitudinal direction of the inflow-side header 3a, and the header inner spaces 32 to 35 may be distributed above and below.
  • Each of the header inner spaces 32 to 35 is connected to one or a plurality of continuously arranged heat transfer tubes 19 (four continuously arranged in the example of FIG. 1A).
  • the number of the heat transfer tubes 19 connected to each of the header inner spaces 32 to 35 may be different.
  • An inlet pipe 36 serving as a refrigerant inlet is connected to the lower side of the gas-liquid mixing unit 41.
  • a gas-liquid two-phase refrigerant L flows from the inlet pipe 36 from the outside.
  • Reference numeral 42 indicates a gas-liquid interface of the refrigerant L.
  • the gas-liquid mixing unit 41 and the header inner spaces 32 to 35 are connected by communication pipes 5a to 5d, respectively.
  • the communication pipes 5a to 5d are simply illustrated and described as the communication pipe 5. That is, the communication pipes 5a to 5d pass through the partition plate 31a. Further, three of the communication pipes 5a to 5d also penetrate one or a plurality of partition plates 31b.
  • the communication pipes 5a to 5d are joined to and supported by the through holes of the partition plates 31a and 31b.
  • the joints between the communication pipes 5a to 5d and the partition plates 31a and 31b are sealed so that the refrigerant L does not leak between the adjacent header inner spaces 32 to 35 or between the header inner space 35 and the gas-liquid mixing portion 41. .
  • FIG. 1A only schematically shows that the plurality of communication pipes 5 communicate with different header inner spaces 32 to 35, and does not show the arrangement of the communication pipes 5 accurately. Absent.
  • FIG. 1B is a cross-sectional view taken along line AA of FIG. 1A.
  • FIG. 2A is a front view illustrating two communication pipes 5a and 5c arranged side by side. In FIG. 2A, the communication pipes 5b and 5d are not shown. Moreover, although the communication pipes 5a and 5c in FIG. 2A are actually different in length, in FIG. 2A, the same length is shown for convenience (the same applies hereinafter).
  • the communication pipes 5a to 5d located in the gas-liquid mixing part 41 are respectively provided with openings 5a1 to 5d1 on the side parts.
  • Each of the openings 5a1 to 5d1 serves as an inlet to each of the communication pipes 5a to 5d that guides the refrigerant L in the gas-liquid mixing unit 41 to each of the header inner spaces 32 to 35 via the communication pipes 5a to 5d. .
  • the gas refrigerant in the gas-liquid mixing unit 41 is sucked into the openings 5a1 to 5d1, and the liquid refrigerant in the gas-liquid mixing unit 41 is also sucked into the openings 5a1 to 5d1.
  • the areas of the openings 5a1 to 5d1 include different ones among the communication pipes 5a to 5d. That is, the openings 5a1 to 5d1 in FIG. 2A are through holes provided in the same number in each of the communication pipes 5a to 5d. The same number of through-holes are formed in the communication pipes 5a to 5d in the longitudinal direction. In each of the communication pipes 5a to 5d, the first through hole from the top has the same center in each of the communication pipes 5a to 5d, and the second through hole from the top has the center in each of the communication pipes 5a to 5d. They are the same height, and so on.
  • the through holes in the same order counted from the top or the bottom are located at the same height in each of the communication pipes 5a to 5d.
  • the difference between the openings 5a1 to 5d1 is that the sizes of the through holes are different depending on the communication pipes 5a to 5d.
  • the amount of the refrigerant L that flows in per unit time can be changed in each of the communication pipes 5a to 5d.
  • the size of the through hole, which is the opening 5a1 of the communication pipe 5a is maximized (diameter size G5a), and the amount of the refrigerant L flowing in per unit time is set to the communication pipes 5a to 5d. It is the largest among them. Further, the size of the through-hole which is the opening 5c1 of the communication pipe 5c is minimized (diameter size G5c), and the amount of the refrigerant L flowing in per unit time is minimized among the communication pipes 5a to 5d.
  • the size of the through holes which are the openings 5b1 and 5d1 of the communication pipes 5b and 5d, is set to an intermediate size thereof (diameter sizes G5b and G5d), and the amount of the refrigerant L flowing in per unit time is communicated.
  • An intermediate value is set in the tubes 5a to 5d.
  • the example of FIG. 2A shows an example in which each through hole is a round hole
  • the shape of the through hole can be various shapes such as a square shape and a triangular shape.
  • the openings 5a1 to 5d1 are all directed toward the central axis of the gas-liquid mixing unit 41 that is cylindrical in the example of FIG. 1B. As a result, the opening 5d1 of the communication pipe 5d faces away from the refrigerant inflow direction from the inlet pipe 36.
  • FIG. 2B is a front view illustrating two communication pipes 5a and 5c in another example. Also in FIG. 2B, illustration of the communication pipes 5b and 5d is omitted.
  • the example of FIG. 2B is different from the example of FIG. 2A in that the openings 5a1 to 5d1 of the communication pipes 5a to 5d are long holes in the longitudinal direction of the communication pipes 5a to 5d.
  • FIG. 2C is a front view illustrating two communication pipes 5a and 5c which are modifications of FIG. 2B side by side. Also in FIG. 2C, the communication pipes 5b and 5d are not shown. FIG. 2C differs from FIG. 2B in that a stopper 53 is fitted into the lower end portion of each communication pipe 5a-5d, which is a tubular member, and the lower end parts of the respective communication pipes 5a-5d are closed. . That is, in the example of FIG. 2B, the lower ends of the communication pipes 5a to 5d are open, but in the example of FIG. 2C, the refrigerant is distributed by flowing the refrigerant L only from the openings 5a1 to 5d1. . In the example of FIG.
  • each opening is merely an example (the same applies to each of the following embodiments). Which opening is widened and which opening is narrowed vary depending on the model of the air conditioner 100 and other conditions.
  • FIG. 3 is a system diagram showing the overall configuration of the air conditioner 100 to which the heat exchanger 1 is applied.
  • the air conditioner 100 includes a compressor 8, a four-way valve 9, an indoor heat exchanger (first heat exchanger) 101, an expansion valve 103, an outdoor heat exchanger (second heat exchanger) 106, and the like. Are connected by a pipe 121.
  • the indoor heat exchanger 101 and the indoor fan 102 are provided in the indoor unit 108.
  • the compressor 8, the four-way valve 9, the expansion valve 103, the outdoor heat exchanger 106, and the outdoor fan 107 are provided in the outdoor unit 105.
  • the expansion valve 103 may be provided in the indoor unit 108 or in both the indoor unit 108 and the outdoor unit 105.
  • the compressor 8 is a device that compresses a low-temperature and low-pressure gas refrigerant by driving a compressor motor (not shown) and discharges it as a high-temperature and high-pressure gas refrigerant.
  • the four-way valve 9 is a valve that switches the flow path of the refrigerant according to the operation mode of the air conditioner 100.
  • the expansion valve 103 is a valve that decompresses the refrigerant condensed in the “condenser” (one of the outdoor heat exchanger 106 and the indoor heat exchanger 101 according to the type of air conditioning operation). The refrigerant decompressed in the expansion valve 103 is guided to an “evaporator” (the other of the outdoor heat exchanger 106 and the indoor heat exchanger 101 according to the type of air conditioning operation).
  • the heat exchanger 1 is applied to the indoor heat exchanger 101.
  • the indoor heat exchanger 101 is a heat exchanger that performs heat exchange between the refrigerant flowing through the heat transfer tube 19 and the indoor air (air in the air-conditioning target space) sent from the indoor fan 102.
  • the indoor fan 102 is a fan that sends indoor air into the indoor heat exchanger 101, and is installed in the vicinity of the indoor heat exchanger 101.
  • the heat exchanger 1 is applied to the outdoor heat exchanger 106.
  • the outdoor heat exchanger 106 is a heat exchanger that exchanges heat between the refrigerant flowing through the heat transfer tube 19 and outdoor air sent from the indoor fan 102.
  • the outdoor fan 107 is a fan that sends outdoor air to the outdoor heat exchanger 106, and is installed in the vicinity of the outdoor heat exchanger 106.
  • the heat exchanger 1 may be used for only one of the indoor heat exchanger 101 and the outdoor heat exchanger 106, and the other may be a heat exchanger having another configuration.
  • the refrigeration cycle of the heat pump type air conditioner 100 will be described taking heating operation as an example.
  • the flow of the refrigerant during the heating operation is indicated by a solid arrow 60.
  • the compressor 8 is a device that compresses a gas refrigerant, and the refrigerant that has reached a high temperature and a high pressure in the compressor 8 is led to the indoor heat exchanger 101 (condenser) in the indoor unit 108 via the four-way valve 9. It is burned.
  • coolant which flows through the inside of the heat exchanger tube 19 (FIG. 1A) of the indoor heat exchanger 101 radiates heat to the indoor air supplied from the indoor fan 102, so that the room is warmed.
  • the heat-deprived gas refrigerant is gradually liquefied, and from the outlet of the indoor heat exchanger 101, the supercooled liquid refrigerant having a temperature lower by about several degrees C. than the saturation temperature flows out.
  • the liquid refrigerant flowing out of the indoor unit 108 becomes a gas-liquid two-phase refrigerant in a low temperature / low pressure state by an expansion action when passing through the expansion valve 103.
  • This low-temperature, low-pressure gas-liquid two-phase refrigerant is guided to the outdoor heat exchanger 106 (evaporator) in the outdoor unit 105.
  • the refrigerant is gasified and returned to the compressor 8 in a state where the degree of superheat is increased by about several degrees Celsius.
  • the heating operation of the air conditioner 100 is realized by the series of refrigeration cycles described above.
  • the flow of the refrigerant during the cooling operation is indicated by a broken line arrow 61.
  • the four-way valve 9 is switched to form a refrigeration cycle in which the refrigerant circulates in the direction of the broken line arrow 61.
  • the indoor heat exchanger 101 acts as an evaporator
  • the outdoor heat exchanger 106 acts as a condenser.
  • the cooling operation of the air conditioner 100 is realized.
  • FIG. 4 is a perspective view illustrating the interior of the outdoor unit 105. 4 and 5, the heat transfer tube 19 and the like are not specifically illustrated (see FIG. 1A and the like for the heat transfer tube 19 and the like).
  • the outdoor air is taken into the outdoor unit 105 by driving the outdoor fan 107, and this outdoor air passes through the outdoor heat exchanger 106 (heat exchanger 1), so that heat exchange between the refrigerant L and the outdoor air is achieved.
  • the amount of outside air that passes through per unit time is not uniform in each heat transfer tube 19 in which the horizontal direction is the length direction and many pipes are arranged in the vertical direction.
  • the flow rate V2 of the outside air flowing in at an intermediate height of the outdoor unit 105 is the fastest, and then the flow rate V1 of the outdoor air flowing into the upper part of the outdoor unit 105 is fast and flows into the lower part of the outdoor unit 105.
  • the flow rate V3 of the outside air is the slowest. That is, “V2> V1> V3”.
  • the sizes of the openings 5b1 and 5d1 of the communication pipes 5a to 5d corresponding to the header inner spaces 32 to 35 to which the heat transfer pipes 19 are connected are set to the flow velocity V1 to Change according to V3.
  • the opening of the communication pipe 5 connected to the header inner space corresponding to the heat transfer pipe 19 through which the outside air passes at the flow velocity V2 has a relatively large area.
  • the opening of the communication pipe 5 connected to the header inner space corresponding to the heat transfer pipe 19 through which the outside air passes at the flow velocity V3 has a relatively narrow area.
  • the openings 5a1 to 5d1 of the communication pipes 5a to 5d have a large area, the pressure loss of the part decreases, so that a large amount of gas refrigerant flows through the communication pipes.
  • the outdoor heat exchanger 106 heat exchanger 1
  • the liquid refrigerant that plays a role acts on the flow of the gas refrigerant, and flows in a large amount of the communication pipe through which the gas refrigerant flows. Therefore, it is possible to adjust the distribution amount of the liquid refrigerant by changing the opening areas of the openings 5a1 to 5d1 with each other, and also to adjust the distribution amount of the liquid refrigerant flowing into the header inner spaces 32 to 35.
  • FIG. 5 is a cross-sectional view of the indoor unit 108.
  • the indoor heat exchanger 101 includes three indoor heat exchangers 101a to 101c (all of which are heat exchangers 1).
  • the indoor fan 102 is cylindrical and has a longitudinal direction perpendicular to the paper surface of FIG.
  • the indoor heat exchangers 101a to 101c are also arranged so that the longitudinal direction thereof is along the longitudinal direction of the indoor fan 102, and the indoor fans 102 are covered by the three indoor heat exchangers 101a to 101c.
  • the indoor air is taken from outside the indoor heat exchangers 101a to 101c and passed through the indoor heat exchangers 101a to 101c, and the air is passed through the outlet 110 as indicated by an arrow c. To blow out.
  • the flow rates of the indoor air flowing through the heat transfer tubes 19 are different as in the example of FIG.
  • the indoor heat exchangers 101b and 101c since the heat transfer tube 19 on the side close to the inlet pipe 36 is close to the indoor fan 102, the flow rate of indoor air is relatively high, and the heat transfer pipe 19 on the side far from the inlet pipe 36 is indoors. Since it is far from the fan 102, it can be considered that the flow rate of the indoor air is relatively slow.
  • the indoor heat exchangers 101b and 101c may become an obstacle in the vicinity of the indoor heat exchangers 101b and 101c, and the flow rate of indoor air may be relatively slow.
  • the indoor heat exchangers 101b and 101c do not get in the way and the flow rate of the indoor air can be relatively high.
  • a relatively large amount of refrigerant L is supplied to the heat transfer tubes 19 that are considered to have a large amount of air per unit time to pass (a heat load is partially large).
  • a relatively small amount of refrigerant L can be supplied to the heat transfer tube 19, which is considered to have a small amount of air per unit time to pass (the heat load is partially small).
  • the gas-liquid mixing part 41 is arranged at one end (lower end) of the inflow side header 3a, and the header internal spaces 32 to 35 are arranged on the other end side (upper side).
  • the gas-liquid interface 42 is at a substantially constant water level as a whole when viewed at a certain moment. Therefore, the refrigerant L supplied from the gas-liquid mixing unit 4 to the header inner spaces 32 to 35 can make the gas refrigerant and the liquid refrigerant substantially uniform.
  • the gas-liquid interface 42 reaches the openings 5a1 to 5d1 that are the third through holes from the top to the openings 5a1 to 5d1 that are the second through holes from the top.
  • the flow rate of the refrigerant L flowing into the communication pipes 5a to 5d changes suddenly.
  • the gas-liquid interface 42 when the gas-liquid interface 42 is at an intermediate position between the openings 5a1 to 5d1 that are the third through holes from the top and the openings 5a1 to 5d1 that are the second through-holes from the top, the gas-liquid interface 42 is The flow rate of the refrigerant L does not change when it is in the openings 5a1 to 5d1, which are the third through holes. At this time, the flow rate of the refrigerant L flowing into the communication pipes 5a to 5d when the gas-liquid interface 42 is in the openings 5a1 to 5d1, which are the third through holes from the top, is obtained. These relationships occur in all through holes that are adjacent to each other in the vertical direction. That is, in the example of FIG.
  • the amount of refrigerant L sucked into the communication pipes 5a to 5d from the openings 5a1 to 5d1 generated by the upper and lower sides of the gas-liquid interface 42 (the same applies to the distribution amounts of gas refrigerant and liquid refrigerant). Can be changed to
  • the openings 5a1 to 5d1 are long holes whose longitudinal direction is the longitudinal direction of the communication pipes 5a to 5d. Therefore, the amount of refrigerant L sucked into the communication pipes 5a to 5d from the openings 5a1 to 5d1 varies even if the gas-liquid interface 42 is slightly up and down. That is, in the example of FIG. 2B, the amount of refrigerant L sucked into the communication pipes 5a to 5d from the openings 5a1 to 5d1 generated by the upper and lower sides of the gas-liquid interface 42 (the distribution amount of gas refrigerant and liquid refrigerant is the same) is stepless. Can be changed. In the example of FIG.
  • the inlet of the refrigerant L to the communication pipes 5a to 5d can be limited to the openings 5a1 to 5d1. Further, as shown in FIG. 1B, since the opening 5d1 faces away from the flow path into which the refrigerant L flows in the inlet pipe 36, the excessive flow of the refrigerant L only into the opening 5d1 can be suppressed. it can.
  • FIG. 6A is a front view illustrating two communication pipes 5a and 5c in the second embodiment side by side.
  • members and the like common to the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted.
  • the second embodiment is technically different from the first embodiment in the configuration of the openings 5a1 to 5d1. That is, in the example of FIG. 2A, the areas of the openings 5a1 to 5d1 are changed by changing the areas (diameter sizes) of the through holes which are the openings 5a1 to 5d1. On the other hand, in the example of FIG. 6A, the areas (diameter size) of the through holes which are the openings 5a1 to 5d1 are the same, and the areas of the openings 5a1 to 5d1 are changed by changing the number of through holes. ing.
  • the through hole on the most gas phase refrigerant side (uppermost part) in the gas-liquid mixing part 41 is at the same height in the longitudinal direction of the inflow side header 3a. That is, the communication pipe with relatively few through holes has a region where no through hole is provided on the lower side of the communication pipe, like the communication pipe 5c in FIG. 6A. That is, the number of through holes is different on the liquid refrigerant side (lower side) in the gas-liquid mixing unit 41.
  • the length from the uppermost through hole to the lowermost through hole is long with the length of A2 in the communication pipe 5a, whereas the length of A1 in the communication pipe 5c. It is shorter.
  • FIG. 6B is a front view illustrating two communication pipes 5a and 5c side by side in another example.
  • the second embodiment is technically different from the first embodiment with respect to FIG. 6B in the configuration of the openings 5a1 to 5d1. That is, in the example of FIG. 2B, the area of the openings 5a1 to 5d1 is changed by changing the width of the long holes which are the openings 5a1 to 5d1.
  • the areas of the openings 5a1 to 5d1 are changed by changing the length of the long holes which are the openings 5a1 to 5d1.
  • the length of the long hole is B2 and long in the communication pipe 5a, whereas it is B1 and short in the communication pipe 5c.
  • one end of the longest gas-phase refrigerant side (uppermost) long hole in the gas-liquid mixing unit 41 is at the same position in the longitudinal direction of the inflow side header 3a. That is, the communication pipe having a relatively short long hole has a region where no long hole is provided on the lower side of the communication pipe, like the communication pipe 5c in FIG. 6B. That is, the position of the other end of the long hole is different on the liquid-phase refrigerant side (lower side) in the gas-liquid mixing unit 41.
  • FIG. 6C is an example in which the plug 53 is provided in the example of FIG. 6B as in the example of FIG. 2C. In the example of FIG. 6A, the stopper 53 may be provided.
  • the communication pipes 5a to 5d in FIG. 6B it is sufficient to form long holes of the same width regardless of the length, and it is not necessary to change the width of the long holes between the communication pipes 5a to 5d.
  • the manufacture of the tubes 5a to 5d is easy.
  • the width of the long hole is changed as shown in FIG. 2B, whereas the length of the long hole is changed in FIG. 6B, so that there is a large difference in the area of the openings 5a1 to 5d1 between the communication pipes 5a to 5d. Becomes easy. Therefore, it is effective when there is a large difference in the inflow amount of the refrigerant L between the communication pipes 5a to 5d.
  • the heights of the uppermost through holes or long holes of the openings 5a1 to 5d1, which are a plurality of through holes or long holes, are aligned. That is, the number of through holes is reduced or the length of the long holes is reduced on the lower end side of the communication pipes 5a to 5d. Therefore, even if the gas-liquid interface 42 rises, the openings 5a1 to 5d1 for sucking the gas refrigerant do not narrow.
  • the gas refrigerant can be sufficiently sucked regardless of the fluctuation of the gas-liquid interface 42, and therefore, the suction of the liquid refrigerant sucked into the openings 5a1 to 5d1 by the momentum of the gas refrigerant does not deteriorate.
  • FIG. 7A is a vertical cross-sectional view of the gas-liquid mixing portion 41 portion of the inflow side header 3a.
  • FIG. 7B is a cross-sectional view taken along the line BB in FIG. 7A of the communication part 50 provided in the gas-liquid mixing part 41.
  • the same reference numerals as those in the first embodiment are used for members and the like common to the first embodiment, and detailed description thereof is omitted.
  • the third embodiment is different from the first embodiment in that a single communication portion 50 is provided instead of the portion where the openings 5a1 to 5d1 of the communication pipes 5a to 5d in the inflow side header 3a are provided. It is.
  • the communication part 50 is a cylindrical member and is provided in the gas-liquid mixing part 41 of the inflow side header 3a.
  • the communication part 50 is connected to the communication pipes 5a to 5d in the gas-liquid mixing part 41, and openings 5a1 to 5d1 are formed in the single communication part 50 in place of the communication pipes 5a to 5d.
  • the communication part (communication part main body) 50 is a space provided vertically in the longitudinal direction of the inflow header 3a, and a cylindrical mixing chamber into which the gas-liquid two-phase refrigerant L flows. 51 is provided.
  • a plurality of refrigerant communication paths 52a to 52d in this example are provided so as to surround the mixing chamber 51.
  • the refrigerant communication paths 52a to 52d are, for example, cylindrical spaces penetrating vertically in the longitudinal direction of the inflow side header 3a, and upper ends thereof are connected to the communication pipes 5a to 5d, respectively.
  • the diameter size of each of the refrigerant communication paths 52 a to 52 d is smaller than the diameter size of the mixing chamber 51.
  • the communication part (communication part main body) 50 connects the refrigerant communication paths 52a to 52d and the mixing chamber 51, and the connection paths 53a to 53d allow the refrigerant to flow from the mixing chamber 51 to the refrigerant communication paths 52a to 52d. Is provided.
  • the connection paths 53 a to 53 d also penetrate from the top to the bottom of the communication portion (communication portion main body) 50. Each of the connection paths 53a to 53d is narrower than the diameter size of the refrigerant communication paths 52a to 52d to which the connection paths 53a to 53d are connected.
  • the partition plate 31a closes the gap between the mixing chamber 51, the connection paths 53a to 53d, the communication part 50, and the gas-liquid mixing part 41, and from other than the refrigerant communication paths 52a to 52d. Prevents the refrigerant L from flowing on the side opposite to the gas-liquid mixing part 41 of the inflow side header 3a.
  • the upper end of the gap between the mixing chamber 51, the connection paths 53a to 53d, the communication portion 50 and the gas-liquid mixing portion 41 is closed using a predetermined member or material. May be.
  • the refrigerant communication passages 52a to 52d have the same diameter size, but the width sizes of the connection passages 53a to 53d are not uniform. That is, the connection paths 53a to 53d become the openings 5a1 to 5d1, and the diameters of the connection paths 53a to 53d are the areas of the openings 5a1 to 5d1. That is, the width W53a of the connection path 53a is the maximum, and the width W53c of the connection path 53c is the minimum.
  • the width of the connection paths 53b and 53d is an intermediate size between them.
  • the communication pipes 5a to 5d are joined to the refrigerant communication paths 52a to 52d by a predetermined means so that the refrigerant L does not leak.
  • the communication pipes 5a to 5d have the same diameter size but different lengths.
  • the communication part 50 may be supported by the communication pipes 5a to 5d, may be supported by the partition plate 31a, or may be supported by the inner peripheral surface of the gas-liquid mixing part 41.
  • a refrigerant inflow part 55 is provided between the communication part 50 and the end part (lower end part) of the inflow side header 3a.
  • the inlet pipe 36 is connected to the bottom plate 3a1 of the inflow side header 3a.
  • FIG. 8 is a longitudinal sectional view of the lower part of the inflow side header 3a showing an example in which the position of the inlet pipe 36 is changed in the example of FIG. 7A.
  • the inlet pipe 36 may be connected to a desired position on the side of the refrigerant inflow portion 55.
  • FIG. 7C is a cross-sectional view taken along the line BB in FIG. 7A showing another example of the communication portion 50.
  • the example of FIG. 7C is different from the example of FIG. 7B in that the width sizes of the connection paths 53a to 53d are all constant, and the diameter sizes of the refrigerant communication paths 52a to 52d are not uniform. That is, the diameter D52a of the refrigerant communication passage 52a is the largest, the diameter size D52c of the refrigerant communication passage 52c is the smallest, and the diameter sizes of the refrigerant communication passages 52b and 52d are intermediate sizes thereof.
  • the mixing chamber 51, the refrigerant communication paths 52a to 52d, and the connection paths 53a to 53d are all linear in the longitudinal direction of the inflow side header 3a.
  • the diameter size and shape are uniform at all positions in the longitudinal direction. Therefore, the communication part 50 can be easily manufactured by extrusion molding.
  • the gas-liquid two-phase refrigerant L flowing in from the inlet pipe 36 flows into the refrigerant inflow portion 55 from the inlet pipe 36, and further mainly flows into the mixing chamber 51. Then, the refrigerant flows into the refrigerant communication passages 52a to 52d from the mixing chamber 51 through the connection passages 53a to 53d. Then, the refrigerant flows from the refrigerant communication paths 52a to 52 to the communication pipes 5a to 5d.
  • the diameters of the refrigerant communication passages 52a to 52d are the same, but the widths of the connection passages 53a to 53d are different from each other, so that the refrigerant communication passages 52a to 52d, and thus the communication pipes.
  • the amount of the refrigerant L flowing into the units 5a to 5d per unit time can be made different from each other.
  • the diameters of the connection paths 53a to 53d are the same, but the diameters of the refrigerant communication paths 52a to 52d are different from each other, so that the refrigerant communication paths 52a to 52d and thus the communication pipes
  • the amount of the refrigerant L flowing into the units 5a to 5d per unit time can be made different from each other.
  • the width sizes of the connection paths 53a to 53d are smaller than the diameter sizes of the refrigerant communication paths 52a to 52d. Therefore, there is a possibility that the communication portion 50 can be made more compact in the example of FIG. 7B than in the example of FIG. 7C in which there is a possibility of providing a refrigerant communication passage having a considerably large diameter size.
  • connection passages 53a to 53d and the refrigerant communication passages 52a to 52d are formed from end to end in the longitudinal direction of the communication portion 50. Therefore, as in the example of FIGS. 2B and 6B, the gas-liquid interface 42
  • the amount of gas refrigerant and liquid refrigerant flowing into the respective communication pipes 5a to 5d can be adjusted steplessly according to the change in height.
  • a step of positioning each one end side of the plurality of communication pipes 5a to 5d and installing them in the gas-liquid mixing part 41 is necessary.
  • the refrigerant inflow portion 55 is provided, the inlet pipe 36 can be attached at various positions on one end portion side of the inflow side header 3a. Therefore, the freedom degree of handling of refrigerant piping can be raised.
  • the mixing chamber 51, the refrigerant communication paths 52a to 52d, and the connection paths 53a to 53d are all linear in the longitudinal direction of the inflow header 3a, and the diameter size and shape are uniform at all positions in the longitudinal direction. It is. Therefore, the communication part 50 can be easily manufactured by extrusion molding. That is, if the communicating part 50 is extrusion-molded with an extrusion molding machine, the communicating part 50 can be easily mass-produced by repeating the operation of cutting the extruded communicating part 50 in a radial direction with a predetermined length. it can.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • one communication pipe 5a to 5d is connected to each header inner space 32 to 35, but a plurality of communication pipes 5 are connected to a single header inner space. Also good. And you may make it change the area of the opening part for every space in a header by changing the number of the communication pipes 5 connected to the space in a header.
  • the air conditioner 100 may be implemented as a cooling or heating dedicated air conditioner that does not include the four-way valve 9. Furthermore, you may apply the heat exchanger 1 to another refrigeration cycle apparatus, for example, a natural refrigerant heat pump water heater. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is also possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

An inflow-side header (3a) on the inflow side of a refrigerant from the outside comprises: a gas-liquid mixing section (41) which is provided with an inlet pipe (36) for allowing the refrigerant (L) to flow in from the outside and into which the gas-liquid two-phase refrigerant flows; a plurality of header inner spaces (32) to (35) which is provided by partitioning the inflow-side header (3a) in the longitudinal direction thereof, partitioned from the gas-liquid mixing section (41), and connected to one or a plurality of heat transfer tubes (19) arranged continuously and in parallel; a plurality of communication pipes (5) that communicate respective different header inner spaces (32) to (35) with the gas-liquid mixing section (41); and openings each provided at the respective communication pipe (5) located in the gas-liquid mixing section (41) and introducing the refrigerant in the gas-liquid mixing section to the respective header inner space (32) to (35) via the respective communication pipe (5), wherein the openings include ones having mutually different opening diameters among the plurality of communication pipes (5).

Description

熱交換器、連通部の製造方法、室内機、室外機及び空気調和機Heat exchanger, method for manufacturing communication section, indoor unit, outdoor unit, and air conditioner
 本発明は、熱交換器、連通部の製造方法、室内機、室外機及び空気調和機に関する。 The present invention relates to a heat exchanger, a method for manufacturing a communication part, an indoor unit, an outdoor unit, and an air conditioner.
 本技術分野の背景技術として、特開平2013-130386号公報(特許文献1)がある。この公報には、「室外熱交換器では、各扁平管の一端が第1ヘッダ集合管に接続される。第1ヘッダ集合管の下側空間は、上側横仕切板と下側横仕切板と縦仕切板とによって、三つの連通室と一つの混合室とに仕切られる。複数の連通室は、上下に並んでいる。各連通室には、複数本の扁平管が接続されている。混合室は、中央の連通室に隣接している。混合室は、下側横仕切板の連通用貫通孔を介して第1連通室に連通し、縦仕切板(の連通用貫通孔を介して第2連通室に連通し、上側横仕切板の連通用貫通孔を介して第3連通室に連通する。」と記載されている(要約参照)。 As a background art in this technical field, there is JP-A-2013-130386 (Patent Document 1). In this publication, “In the outdoor heat exchanger, one end of each flat tube is connected to the first header collecting pipe. The lower space of the first header collecting pipe includes an upper horizontal partition plate and a lower horizontal partition plate. The vertical partition plate divides the chamber into three communication chambers and a single mixing chamber, which are arranged in a vertical direction, and a plurality of flat tubes are connected to each communication chamber. The mixing chamber is connected to the first communication chamber via the communication through hole of the lower horizontal partition plate, and the vertical partition plate (through the communication through hole). It communicates with the second communication chamber and communicates with the third communication chamber via the communication through hole of the upper lateral partition plate ”(see summary).
特開2013-130386号公報JP 2013-130386 A
 前記特許文献1の技術は、各扁平管に流入する冷媒の乾き度を均一化することを意図している。しかしながら、各扁平管及び各フィンの通風量にはばらつきが存在する場合がある。その場合には、扁平管によって冷媒の供給量を可変する必要がある。しかしながら、特許文献1には、扁平管によって冷媒の供給量を変えて熱交換器の熱交換効率を向上させる技術については何ら開示されていない。
 そこで、本発明は、伝熱管によって冷媒の供給量を変えて熱交換器の熱交換効率を向上させることを課題とする。
The technique of the said patent document 1 intends equalizing the dryness of the refrigerant | coolant which flows in into each flat tube. However, there may be variations in the air flow rate of each flat tube and each fin. In that case, it is necessary to vary the amount of refrigerant supplied by the flat tube. However, Patent Document 1 does not disclose any technique for improving the heat exchange efficiency of the heat exchanger by changing the supply amount of the refrigerant with a flat tube.
Then, this invention makes it a subject to change the supply amount of a refrigerant | coolant with a heat exchanger tube, and to improve the heat exchange efficiency of a heat exchanger.
 上記課題を解決するため、本発明の一形態である熱交換器は、一対のヘッダと、前記ヘッダの長手方向に複数本並び、両端側が前記各ヘッダにそれぞれ接続されている伝熱管と、前記各伝熱管に接続されて、複数枚が当該伝熱管の長手方向に並ぶフィンとを備え、前記一対のヘッダのうちで外部からの冷媒の流入側となる流入側ヘッダは、前記冷媒の流入口が設けられ、気液二相の冷媒が流入する気液混合部と、前記流入側ヘッダをその長手方向に仕切って複数設けられ、前記気液混合部とも仕切られていて、1本又は連続的に並列した複数本の前記伝熱管と接続しているヘッダ内空間と、異なる前記ヘッダ内空間と前記気液混合部とをそれぞれ連通する複数本の連通管と、前記気液混合部内に位置している前記各連通管に設けられて、前記連通管を介して当該気液混合部内の冷媒を前記各ヘッダ内空間に導く開口部とを有し、前記開口部の面積は、複数本の前記連通管の中で互いに異なるものを含む。 In order to solve the above problems, a heat exchanger according to one aspect of the present invention includes a pair of headers, a plurality of headers arranged in the longitudinal direction of the header, and heat transfer tubes each having both ends connected to the headers, A plurality of fins connected to each heat transfer tube and arranged in the longitudinal direction of the heat transfer tube, and an inflow side header serving as a refrigerant inflow side from the outside of the pair of headers is an inlet of the refrigerant A plurality of gas-liquid mixing sections into which a gas-liquid two-phase refrigerant flows and a plurality of the inflow-side headers are partitioned in the longitudinal direction, and the gas-liquid mixing section is also partitioned into one or continuous The header inner space connected to the plurality of heat transfer tubes arranged in parallel to each other, the plurality of communication tubes communicating the different header inner space and the gas-liquid mixing unit, and the gas-liquid mixing unit. Is provided in each communication pipe Via a communicating pipe having an opening for guiding the refrigerant of the gas-liquid mixing unit in said each header space, the area of the opening comprise different from each other in the communicating tube a plurality of.
 本発明によれば、伝熱管によって冷媒の供給量を変えて熱交換器の熱交換効率を向上させることができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, the heat exchange efficiency of the heat exchanger can be improved by changing the amount of refrigerant supplied by the heat transfer tube.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の実施例1に係る熱交換器の平面図である。It is a top view of the heat exchanger which concerns on Example 1 of this invention. 図1AのA-A切断断面図である。FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A. 本発明の実施例1に係る熱交換器の2本の連通管を並べて図示した正面図である。It is the front view which arranged and illustrated two communicating pipes of the heat exchanger which concerns on Example 1 of this invention. 本発明の実施例1に係る熱交換器の他の例における2本の連通管を並べて図示した正面図である。It is the front view which arranged and illustrated two communicating pipes in other examples of the heat exchanger concerning Example 1 of the present invention. 本発明の実施例1に係る熱交換器の他の例における2本の連通管を並べて図示した正面図である。It is the front view which arranged and illustrated two communicating pipes in other examples of the heat exchanger concerning Example 1 of the present invention. 本発明の実施例1に係る空気調和機の系統図である。1 is a system diagram of an air conditioner according to Embodiment 1 of the present invention. 本発明の実施例1に係る空気調和機の室外機の内部を透過して図示した斜視図である。It is the perspective view which permeate | transmitted and illustrated the inside of the outdoor unit of the air conditioner which concerns on Example 1 of this invention. 本発明の実施例1に係る空気調和機の室内機の横断面図である。It is a cross-sectional view of the indoor unit of the air conditioner according to the first embodiment of the present invention. 本発明の実施例2に係る熱交換器の2本の連通管を並べて図示した正面図である。It is the front view which arranged and illustrated two communicating pipes of the heat exchanger which concerns on Example 2 of this invention. 本発明の実施例2に係る熱交換器の他の例における2本の連通管を並べて図示した正面図である。It is the front view which arranged and illustrated two communicating pipes in other examples of the heat exchanger concerning Example 2 of the present invention. 本発明の実施例2に係る熱交換器の他の例における2本の連通管を並べて図示した正面図である。It is the front view which arranged and illustrated two communicating pipes in other examples of the heat exchanger concerning Example 2 of the present invention. 本発明の実施例3に係る熱交換器の流入側ヘッダにおける気液混合部部分の縦断面図である。It is a longitudinal cross-sectional view of the gas-liquid mixing part part in the inflow side header of the heat exchanger which concerns on Example 3 of this invention. 図7AのB-B断面図である。It is BB sectional drawing of FIG. 7A. 図7AのB-B断面図の他の例である。FIG. 7B is another example of the BB cross-sectional view of FIG. 7A. 本発明の実施例3に係る熱交換器の流入側ヘッダにおける気液混合部及びその上部の部分の縦断面図である。It is a longitudinal cross-sectional view of the gas-liquid mixing part in the inflow side header of the heat exchanger which concerns on Example 3 of this invention, and the part of the upper part.
 図1Aは、本発明の実施例1に係る熱交換器1の平面図である。熱交換器1は、図1Aにおいて左右方向にある程度の長さを有するものであるため、左右の長手方向の一部を切欠いて図示している。 FIG. 1A is a plan view of a heat exchanger 1 according to Embodiment 1 of the present invention. Since the heat exchanger 1 has a certain length in the left-right direction in FIG. 1A, a part of the left-right longitudinal direction is notched.
 熱交換器1は、一対の流入側ヘッダ3a、流出側ヘッダ(ヘッダ)3bを備えている。流入側ヘッダ3aは、外部からの冷媒の入口となり、流出側ヘッダ3bは冷媒の外部への出口となる。以下では、流入側ヘッダ3a及び流出側ヘッダ3bを単にヘッダと呼ぶ場合もある。流入側ヘッダ3a、流出側ヘッダ3bは、いずれも長尺の円筒形部材である。図1Aにおいては、流入側ヘッダ3aを縦断面で示し、流出側ヘッダ3bはその外面だけを示している。流入側ヘッダ3a、流出側ヘッダ3bは、図1Aにおいて、一般的に下端側(後記する気液混合部41側)が上端側よりも低い位置に配置されるが、必ずしもこれに限定されるものではない。 The heat exchanger 1 includes a pair of inflow side headers 3a and outflow side headers (headers) 3b. The inflow side header 3a serves as an inlet for the refrigerant from the outside, and the outflow side header 3b serves as an outlet for the refrigerant to the outside. Hereinafter, the inflow side header 3a and the outflow side header 3b may be simply referred to as headers. The inflow side header 3a and the outflow side header 3b are both long cylindrical members. In FIG. 1A, the inflow side header 3a is shown by the longitudinal cross section, and the outflow side header 3b has shown only the outer surface. Inflow side header 3a and outflow side header 3b are generally arranged at a position where the lower end side (the gas-liquid mixing portion 41 side described later) is lower than the upper end side in FIG. is not.
 伝熱管19は、例えばアルミニウム等の金属部材で構成され、ヘッダ3a,3bの長手方向に複数本並んでいる当該長手方向に扁平な扁平伝熱管である。その段ピッチは、図1Aの例でPdである。伝熱管19の長手方向は、ヘッダ3a,3bの長手方向と略直角である。各伝熱管19は、両端側が各ヘッダ3a,3bにそれぞれ接続されていて、流入側ヘッダ3aから冷媒が流入して、図1Aで矢印a方向に流れる。そして、各伝熱管19を通過した冷媒は流出側ヘッダ3bに流入する。流出側ヘッダ3bから外部に冷媒が流出する経路は図示を省略するが、当該経路は流出側ヘッダ3bに様々な形態で接続することができる。 The heat transfer tube 19 is a flat heat transfer tube that is made of a metal member such as aluminum and is flat in the longitudinal direction and is arranged in the longitudinal direction of the headers 3a and 3b. The step pitch is Pd in the example of FIG. 1A. The longitudinal direction of the heat transfer tube 19 is substantially perpendicular to the longitudinal direction of the headers 3a and 3b. Each heat transfer tube 19 is connected to each header 3a, 3b at both ends, and the refrigerant flows in from the inflow side header 3a and flows in the direction of arrow a in FIG. 1A. And the refrigerant | coolant which passed each heat exchanger tube 19 flows in into the outflow side header 3b. Although a route through which the refrigerant flows out from the outflow side header 3b is not shown, the route can be connected to the outflow side header 3b in various forms.
 フィン2は、薄板状の例えばアルミニウム等の金属部材で構成され、各伝熱管19の伝熱面積を拡大する。フィン2は、各伝熱管19に接続されて、複数枚が伝熱管19の長手方向に例えば等間隔で並ぶ。その場合のフィンピッチは、図1Aに図示するようにPfである。フィン2は、伝熱管19と伝熱可能にろう付けにより接合されている。 The fin 2 is made of a thin plate-like metal member such as aluminum, and expands the heat transfer area of each heat transfer tube 19. The fins 2 are connected to the heat transfer tubes 19, and a plurality of the fins 2 are arranged at regular intervals in the longitudinal direction of the heat transfer tubes 19, for example. The fin pitch in that case is Pf as shown in FIG. 1A. The fin 2 is joined to the heat transfer tube 19 by brazing so as to be able to transfer heat.
 ヘッダ3a,3b、伝熱管19、フィン2の構成や製造方法の例を更に具体的に説明する。ヘッダ3a,3bの側面には、伝熱管19を挿入するための複数の穴が予め段ピッチPdで複数個空けられている。伝熱管19は、例えば、扁平断面内に複数の多穴流路(図示せず)を押出加工で形成したものである。フィン2は、長手方向の側端部に等間隔で複数の切り込みを入れ、その切り込みに各伝熱管19を差し込むか、各フィン2に、その長手方向に並ぶ複数個の貫通孔を空けて、当該貫通孔に伝熱管19を差し込むかして、伝熱管19   と一体に形成することができる。 Examples of configurations and manufacturing methods of the headers 3a and 3b, the heat transfer tubes 19, and the fins 2 will be described more specifically. On the side surfaces of the headers 3a and 3b, a plurality of holes for inserting the heat transfer tubes 19 are formed in advance at a step pitch Pd. The heat transfer tube 19 is formed, for example, by a plurality of multi-hole flow paths (not shown) in a flat cross section by extrusion. The fin 2 is provided with a plurality of cuts at equal intervals on the side end in the longitudinal direction, and each heat transfer tube 19 is inserted into the cut, or a plurality of through holes arranged in the longitudinal direction are formed in each fin 2, The heat transfer tube 19 can be inserted into the through-hole to be formed integrally with the heat transfer tube 19 管.
 これらの部材を組み合わせた熱交換器1の製造時には、先ず、各伝熱管19の端部をヘッダ3の穴に差し込み、さらに、伝熱管19にフィン2を取り付けた仮組状態で、炉中で一括ろう付けして熱交換器1を製造してもよいし、部分的にトーチでろう付けして熱交換器1を製造してもよい。
 ここで、伝熱管19とフィン2との接合は、前述のろう付けに代え、多穴流路内を液圧やガス圧で加圧することで伝熱管19に塑性変形を発生させて密着する方式を採ってもよい。また、図1Aのような板状のフィン2に代え、コルゲート状(波型)のフィンを、伝熱管19間に差し込む構成としてもよい。
At the time of manufacturing the heat exchanger 1 in which these members are combined, first, the end of each heat transfer tube 19 is inserted into the hole of the header 3 and, further, the fin 2 is attached to the heat transfer tube 19 in a temporarily assembled state in the furnace. The heat exchanger 1 may be manufactured by batch brazing, or the heat exchanger 1 may be manufactured by brazing partially with a torch.
Here, the joining of the heat transfer tube 19 and the fin 2 is a method in which the heat transfer tube 19 is brought into close contact with the heat transfer tube 19 by pressurizing the inside of the multi-hole flow path with a liquid pressure or a gas pressure instead of the above-described brazing. May be taken. Further, instead of the plate-like fins 2 as shown in FIG. 1A, corrugated (corrugated) fins may be inserted between the heat transfer tubes 19.
 流入側ヘッダ3aの図1Aで下端側は仕切板31aで仕切られている。そして、流入側ヘッダ3aの仕切板31aより上側の空間は、複数枚、図1Aの例で3枚の仕切板31bによって例えば等間隔に仕切られている。つまり、流入側ヘッダ3a内は、仕切板31a,31bによって、例えば5区画に仕切られている。そのうち、仕切板31aで仕切られた流入側ヘッダ3aの下側の空間は、気液混合部41となる、仕切板31aよりも流入側ヘッダ3aの上側で、仕切板31bで仕切られている4つの空間はヘッダ内空間32~35を構成する。なお、気液混合部41を流入側ヘッダ3aの長手方向のどの位置にもってくるかは、様々に実施することができる。例えば、気液混合部41を流入側ヘッダ3aの長手方向の中間位置に配置し、各ヘッダ内空間32~35をその上下に分配してもよい。 The lower end side of the inflow side header 3a in FIG. 1A is partitioned by a partition plate 31a. And the space above the partition plate 31a of the inflow side header 3a is partitioned into, for example, equal intervals by a plurality of partition plates 31b in the example of FIG. 1A. That is, the inside of the inflow side header 3a is divided into, for example, five sections by the partition plates 31a and 31b. Among them, the space below the inflow side header 3a partitioned by the partition plate 31a is partitioned by the partition plate 31b above the partition plate 31a, which is the gas-liquid mixing unit 41, and above the inflow side header 3a. The two spaces constitute header inner spaces 32 to 35. In addition, it can be implemented variously in which position of the longitudinal direction of the inflow side header 3a the gas-liquid mixing part 41 is brought. For example, the gas-liquid mixing part 41 may be arranged at an intermediate position in the longitudinal direction of the inflow-side header 3a, and the header inner spaces 32 to 35 may be distributed above and below.
 各ヘッダ内空間32~35には、それぞれ1本又は連続して並ぶ複数本(図1Aの例では連続して並ぶ4本)の伝熱管19が接続している。なお、ヘッダ内空間32~35ごとに接続している伝熱管19の本数が異なっていてもよい。
 気液混合部41の下部側方には、冷媒の流入口となる入口管36が接続されている。この入口管36から気液二相の冷媒Lが外部から流入する。符号42は、冷媒Lの気液界面を示している。
Each of the header inner spaces 32 to 35 is connected to one or a plurality of continuously arranged heat transfer tubes 19 (four continuously arranged in the example of FIG. 1A). The number of the heat transfer tubes 19 connected to each of the header inner spaces 32 to 35 may be different.
An inlet pipe 36 serving as a refrigerant inlet is connected to the lower side of the gas-liquid mixing unit 41. A gas-liquid two-phase refrigerant L flows from the inlet pipe 36 from the outside. Reference numeral 42 indicates a gas-liquid interface of the refrigerant L.
 気液混合部41と各ヘッダ内空間32~35とは、それぞれ連通管5a~5dで接続されている。なお、連通管5a~5dを単に連通管5と図示、記載する場合もある。すなわち、連通管5a~5dは、仕切板31aを貫通している。さらに、連通管5a~5dのうちの3本は、1又は複数枚の仕切板31bも貫通している。連通管5a~5dは、仕切板31a,31bの貫通孔に接合されて支持されている。連通管5a~5dと仕切板31a,31bとの接合部は密閉され、隣り合うヘッダ内空間32~35同士やヘッダ内空間35と気液混合部41との間で冷媒Lのリークは生じない。連通管5a~5dの下端は流入側ヘッダ3aの底板3a1との間に所定の間隔を空けて同じ高さに揃っている。なお、図1Aは、複数の連通管5がそれぞれ異なるヘッダ内空間32~35と連通していることを模式的に示しているだけであり、各連通管5の配置を正確に示したものではない。 The gas-liquid mixing unit 41 and the header inner spaces 32 to 35 are connected by communication pipes 5a to 5d, respectively. In some cases, the communication pipes 5a to 5d are simply illustrated and described as the communication pipe 5. That is, the communication pipes 5a to 5d pass through the partition plate 31a. Further, three of the communication pipes 5a to 5d also penetrate one or a plurality of partition plates 31b. The communication pipes 5a to 5d are joined to and supported by the through holes of the partition plates 31a and 31b. The joints between the communication pipes 5a to 5d and the partition plates 31a and 31b are sealed so that the refrigerant L does not leak between the adjacent header inner spaces 32 to 35 or between the header inner space 35 and the gas-liquid mixing portion 41. . The lower ends of the communication pipes 5a to 5d are flush with the bottom plate 3a1 of the inflow side header 3a at the same height with a predetermined gap. FIG. 1A only schematically shows that the plurality of communication pipes 5 communicate with different header inner spaces 32 to 35, and does not show the arrangement of the communication pipes 5 accurately. Absent.
 ところで、複数本の伝熱管19を並べ、その長手方向に多数枚のフィン2を接合した熱交換器1では、流入する空気と冷媒Lとが熱交換する面積は一般的にはある程度の拡がりを有している。そのため、同じ熱交換器1でも各伝熱管19やその各伝熱管19の周囲のフィン2を通過する単位時間当たりの空気量には部位によってばらつきがある場合が存在する。 By the way, in the heat exchanger 1 in which a plurality of heat transfer tubes 19 are arranged and a large number of fins 2 are joined in the longitudinal direction, the area of heat exchange between the inflowing air and the refrigerant L is generally expanded to some extent. Have. For this reason, even in the same heat exchanger 1, there are cases where the amount of air per unit time passing through each heat transfer tube 19 and the fins 2 around each heat transfer tube 19 varies depending on the part.
 そこで、通過する単位時間当たりの空気量が多い(熱負荷が部分的に大きい)と考えられる伝熱管19には相対的に多くの冷媒Lを供給するようにしたい。また、逆に通過する単位時間当たりの空気量が少ない(熱負荷が部分的に小さい)と考えられる伝熱管19には相対的に少ない冷媒Lを供給するようにしたい。これにより、熱交換器1の熱交換効率を高めることができる。
 以下では、伝熱管19によって、単位時間当たりに供給する冷媒量を可変して、熱交換器1の熱交換効率を高める手段について説明する。
Therefore, it is desired to supply a relatively large amount of refrigerant L to the heat transfer tube 19 which is considered to have a large amount of air per unit time to pass (a heat load is partially large). On the contrary, it is desired to supply a relatively small amount of refrigerant L to the heat transfer tube 19 which is considered to have a small amount of air per unit time to pass (a heat load is partially small). Thereby, the heat exchange efficiency of the heat exchanger 1 can be improved.
Below, the means to raise the heat exchange efficiency of the heat exchanger 1 by changing the refrigerant | coolant amount supplied per unit time with the heat exchanger tube 19 is demonstrated.
 図1Bは、図1AのA-A切断断面図である。図2Aは、2本の連通管5a,5cを並べて図示した正面図である。図2Aにおいて、連通管5b,5dは図示を省略している。また、図2Aの連通管5aと5cは、現実には長さが異なるが、図2Aでは便宜上同じ長さで図示している(以下同様)。気液混合部41内に位置している各連通管5a~5dには、それぞれ側部に開口部5a1~5d1が設けられている。各開口部5a1~5d1は、各連通管5a~5dを介して気液混合部41内の冷媒Lを各ヘッダ内空間32~35に導く各連通管5a~5dへの入口となるものである。すなわち、気液混合部41内のガス冷媒が各開口部5a1~5d1に吸い込まれ、その勢いで気液混合部41内の液冷媒も各開口部5a1~5d1に吸い込まれる。 FIG. 1B is a cross-sectional view taken along line AA of FIG. 1A. FIG. 2A is a front view illustrating two communication pipes 5a and 5c arranged side by side. In FIG. 2A, the communication pipes 5b and 5d are not shown. Moreover, although the communication pipes 5a and 5c in FIG. 2A are actually different in length, in FIG. 2A, the same length is shown for convenience (the same applies hereinafter). The communication pipes 5a to 5d located in the gas-liquid mixing part 41 are respectively provided with openings 5a1 to 5d1 on the side parts. Each of the openings 5a1 to 5d1 serves as an inlet to each of the communication pipes 5a to 5d that guides the refrigerant L in the gas-liquid mixing unit 41 to each of the header inner spaces 32 to 35 via the communication pipes 5a to 5d. . In other words, the gas refrigerant in the gas-liquid mixing unit 41 is sucked into the openings 5a1 to 5d1, and the liquid refrigerant in the gas-liquid mixing unit 41 is also sucked into the openings 5a1 to 5d1.
 開口部5a1~5d1の面積は、各連通管5a~5dの中で互いに異なるものを含んでいる。すなわち、図2Aの開口部5a1~5d1は、各連通管5a~5dに同じ数だけ設けられた貫通孔である。この貫通孔は各連通管5a~5dに同じ数だけ、長手方向に並べて形成されている。そして、各連通管5a~5dにおいて、上から1番目の貫通孔は各連通管5a~5dにおいて中心が同じ高さであり、上から2番目の貫通孔は各連通管5a~5dにおいて中心が同じ高さであり、…というように構成されている。すなわち、上から又は下から数えて同じ順番にある貫通孔は各連通管5a~5dにおいて同じ高さに位置している。そして、各開口部5a1~5d1の相違は連通管5a~5dによって貫通孔の大きさが異なることである。これにより、各連通管5a~5dにおいて、単位時間当たりに流入する冷媒Lの量を変えることができる。 The areas of the openings 5a1 to 5d1 include different ones among the communication pipes 5a to 5d. That is, the openings 5a1 to 5d1 in FIG. 2A are through holes provided in the same number in each of the communication pipes 5a to 5d. The same number of through-holes are formed in the communication pipes 5a to 5d in the longitudinal direction. In each of the communication pipes 5a to 5d, the first through hole from the top has the same center in each of the communication pipes 5a to 5d, and the second through hole from the top has the center in each of the communication pipes 5a to 5d. They are the same height, and so on. That is, the through holes in the same order counted from the top or the bottom are located at the same height in each of the communication pipes 5a to 5d. The difference between the openings 5a1 to 5d1 is that the sizes of the through holes are different depending on the communication pipes 5a to 5d. Thus, the amount of the refrigerant L that flows in per unit time can be changed in each of the communication pipes 5a to 5d.
 図1B、図2Aの例では、連通管5aの開口部5a1である貫通孔の大きさを最も大きくして(径サイズG5a)、単位時間当たりに流入する冷媒Lの量を連通管5a~5dの中で最大としている。さらに、連通管5cの開口部5c1である貫通孔の大きさを最も小さくして(径サイズG5c)、単位時間当たりに流入する冷媒Lの量を連通管5a~5dの中で最小としている。その上、連通管5b,5dの開口部5b1,5d1である貫通孔の大きさをこれらの中間的な大きさとして(径サイズG5b,G5d)、単位時間当たりに流入する冷媒Lの量を連通管5a~5dの中で中間的な値としている。なお、図2Aの例では、各貫通孔を丸孔とした例を示しているが、貫通孔の形状は四角形状や三角形状など、様々な形状とすることができる。
 また、開口部5a1~5d1は、図1Bの例では、全て円筒状である気液混合部41の中心軸線側に向けている。これにより、連通管5dの開口部5d1は、入口管36からの冷媒の流入方向に背を向けている。
In the example of FIGS. 1B and 2A, the size of the through hole, which is the opening 5a1 of the communication pipe 5a, is maximized (diameter size G5a), and the amount of the refrigerant L flowing in per unit time is set to the communication pipes 5a to 5d. It is the largest among them. Further, the size of the through-hole which is the opening 5c1 of the communication pipe 5c is minimized (diameter size G5c), and the amount of the refrigerant L flowing in per unit time is minimized among the communication pipes 5a to 5d. In addition, the size of the through holes, which are the openings 5b1 and 5d1 of the communication pipes 5b and 5d, is set to an intermediate size thereof (diameter sizes G5b and G5d), and the amount of the refrigerant L flowing in per unit time is communicated. An intermediate value is set in the tubes 5a to 5d. In addition, although the example of FIG. 2A shows an example in which each through hole is a round hole, the shape of the through hole can be various shapes such as a square shape and a triangular shape.
Further, the openings 5a1 to 5d1 are all directed toward the central axis of the gas-liquid mixing unit 41 that is cylindrical in the example of FIG. 1B. As a result, the opening 5d1 of the communication pipe 5d faces away from the refrigerant inflow direction from the inlet pipe 36.
 図2Bは、別の例における2本の連通管5a,5cを並べて図示した正面図である。図2Bにおいても、連通管5b,5dは図示を省略している。図2Bの例は、各連通管5a~5dの各開口部5a1~5d1が各連通管5a~5dの長手方向に長い長孔となっている点が、図2Aの例と異なっている。そして、この長孔である各開口部5a1~5d1において幅が異なるもの同士を含んでいる。これにより、各開口部5a1~5d1において面積の異なるもの同士が存在するようにしている。本例においても、長孔である各開口部5a1~5d1の幅サイズG5a~G5dは、“G5a>G5b=G5d>G5c”となっている。 FIG. 2B is a front view illustrating two communication pipes 5a and 5c in another example. Also in FIG. 2B, illustration of the communication pipes 5b and 5d is omitted. The example of FIG. 2B is different from the example of FIG. 2A in that the openings 5a1 to 5d1 of the communication pipes 5a to 5d are long holes in the longitudinal direction of the communication pipes 5a to 5d. The openings 5a1 to 5d1 which are long holes include those having different widths. As a result, the openings 5a1 to 5d1 have different areas. Also in this example, the width sizes G5a to G5d of the openings 5a1 to 5d1 which are long holes are “G5a> G5b = G5d> G5c”.
 図2Cは、図2Bの変形例である2本の連通管5a,5cを並べて図示した正面図である。図2Cにおいても、連通管5b,5dは図示は省略している。図2Cが図2Bと異なるのは、管状の部材である各連通管5a~5dの下端部に栓53を嵌め込んで、当該各連通管5a~5dの下端部を閉塞していることである。すなわち、図2Bの例では、各連通管5a~5dの下端部が開口しているが、図2Cの例では、開口部5a1~5d1のみから冷媒Lを流動させることで冷媒分配を行っている。図2Aの例でも各連通管5a~5dの下端部が開口しているが、図2Cの例と同様、栓53によって各連通管5a~5dの下端部を閉塞してもよい。
 なお、各開口部のサイズはあくまでも一例である(以下の各実施例においても同様)。どの開口部を広くし、どの開口部を狭くするかは、空気調和機100の機種、その他の条件により変動する。
FIG. 2C is a front view illustrating two communication pipes 5a and 5c which are modifications of FIG. 2B side by side. Also in FIG. 2C, the communication pipes 5b and 5d are not shown. FIG. 2C differs from FIG. 2B in that a stopper 53 is fitted into the lower end portion of each communication pipe 5a-5d, which is a tubular member, and the lower end parts of the respective communication pipes 5a-5d are closed. . That is, in the example of FIG. 2B, the lower ends of the communication pipes 5a to 5d are open, but in the example of FIG. 2C, the refrigerant is distributed by flowing the refrigerant L only from the openings 5a1 to 5d1. . In the example of FIG. 2A, the lower ends of the communication pipes 5a to 5d are opened, but the lower ends of the communication pipes 5a to 5d may be closed by the plug 53 as in the example of FIG. 2C.
The size of each opening is merely an example (the same applies to each of the following embodiments). Which opening is widened and which opening is narrowed vary depending on the model of the air conditioner 100 and other conditions.
 図3は、前記熱交換器1を適用した空気調和機100の全体構成を示す系統図である。空気調和機100は、圧縮機8、四方弁9、室内熱交換器(第1熱交換器)101、膨張弁103、室外熱交換器(第2熱交換器)106等で構成され、各部材は配管121で接続されている。室内熱交換器101及び室内ファン102は室内機108に設けられている。圧縮機8、四方弁9、膨張弁103、室外熱交換器106、室外ファン107は室外機105に設けられている。なお、膨張弁103は、室内機108に設けてもよいし、室内機108及び室外機105の両方に設けてもよい。 FIG. 3 is a system diagram showing the overall configuration of the air conditioner 100 to which the heat exchanger 1 is applied. The air conditioner 100 includes a compressor 8, a four-way valve 9, an indoor heat exchanger (first heat exchanger) 101, an expansion valve 103, an outdoor heat exchanger (second heat exchanger) 106, and the like. Are connected by a pipe 121. The indoor heat exchanger 101 and the indoor fan 102 are provided in the indoor unit 108. The compressor 8, the four-way valve 9, the expansion valve 103, the outdoor heat exchanger 106, and the outdoor fan 107 are provided in the outdoor unit 105. Note that the expansion valve 103 may be provided in the indoor unit 108 or in both the indoor unit 108 and the outdoor unit 105.
 圧縮機8は、圧縮機モータ(図示せず)の駆動によって、低温低圧のガス冷媒を圧縮し、高温高圧のガス冷媒として吐出する装置である。
 四方弁9は、空気調和機100の運転モードに応じて、冷媒の流路を切り替える弁である。
 膨張弁103は、「凝縮器」(空調運転の種類に応じて室外熱交換器106及び室内熱交換器101の一方)で凝縮した冷媒を減圧する弁である。なお、膨張弁103において減圧された冷媒は、「蒸発器」(空調運転の種類に応じて室外熱交換器106及び室内熱交換器101の他方)に導かれる。
The compressor 8 is a device that compresses a low-temperature and low-pressure gas refrigerant by driving a compressor motor (not shown) and discharges it as a high-temperature and high-pressure gas refrigerant.
The four-way valve 9 is a valve that switches the flow path of the refrigerant according to the operation mode of the air conditioner 100.
The expansion valve 103 is a valve that decompresses the refrigerant condensed in the “condenser” (one of the outdoor heat exchanger 106 and the indoor heat exchanger 101 according to the type of air conditioning operation). The refrigerant decompressed in the expansion valve 103 is guided to an “evaporator” (the other of the outdoor heat exchanger 106 and the indoor heat exchanger 101 according to the type of air conditioning operation).
 室内熱交換器101には、前記熱交換器1を適用している。室内熱交換器101は、その伝熱管19を通流する冷媒と、室内ファン102から送り込まれる室内空気(空調対象空間の空気)との間で熱交換を行う熱交換器である。
 室内ファン102は、室内熱交換器101に室内空気を送り込むファンであり、室内熱交換器101の近傍に設置されている。
The heat exchanger 1 is applied to the indoor heat exchanger 101. The indoor heat exchanger 101 is a heat exchanger that performs heat exchange between the refrigerant flowing through the heat transfer tube 19 and the indoor air (air in the air-conditioning target space) sent from the indoor fan 102.
The indoor fan 102 is a fan that sends indoor air into the indoor heat exchanger 101, and is installed in the vicinity of the indoor heat exchanger 101.
 室外熱交換器106には、前記熱交換器1を適用している。室外熱交換器106は、その伝熱管19を通流する冷媒と、室内ファン102から送り込まれる屋外空気との間で熱交換を行う熱交換器である。
 室外ファン107は、室外熱交換器106に屋外空気を送り込むファンであり、室外熱交換器106の近傍に設置されている。
 なお、室内熱交換器101及び室外熱交換器106の一方にのみ前記熱交換器1を用い、他方は他の構成の熱交換器を用いてもよい。
The heat exchanger 1 is applied to the outdoor heat exchanger 106. The outdoor heat exchanger 106 is a heat exchanger that exchanges heat between the refrigerant flowing through the heat transfer tube 19 and outdoor air sent from the indoor fan 102.
The outdoor fan 107 is a fan that sends outdoor air to the outdoor heat exchanger 106, and is installed in the vicinity of the outdoor heat exchanger 106.
The heat exchanger 1 may be used for only one of the indoor heat exchanger 101 and the outdoor heat exchanger 106, and the other may be a heat exchanger having another configuration.
 図3を用いて、暖房運転時を例に、ヒートポンプ式の空気調和機100の冷凍サイクルを説明する。空気調和機100において、暖房運転時の冷媒の流れは実線矢印60で示している。圧縮機8は、ガス冷媒を圧縮する装置であり、圧縮機8で高温・高圧状態になった冷媒は、四方弁9を介して室内機108内の室内熱交換器101(凝縮器)に導かれる。そして、室内熱交換器101の伝熱管19(図1A)内を流れる高温の冷媒が、室内ファン102から供給される室内空気に放熱することで、室内が暖められる。このとき、伝熱管内では、熱を奪われたガス冷媒が次第に液化し、室内熱交換器101の出口からは、飽和温度よりも数℃程度低温の過冷却状態の液冷媒が流出する。 Referring to FIG. 3, the refrigeration cycle of the heat pump type air conditioner 100 will be described taking heating operation as an example. In the air conditioner 100, the flow of the refrigerant during the heating operation is indicated by a solid arrow 60. The compressor 8 is a device that compresses a gas refrigerant, and the refrigerant that has reached a high temperature and a high pressure in the compressor 8 is led to the indoor heat exchanger 101 (condenser) in the indoor unit 108 via the four-way valve 9. It is burned. And the high temperature refrigerant | coolant which flows through the inside of the heat exchanger tube 19 (FIG. 1A) of the indoor heat exchanger 101 radiates heat to the indoor air supplied from the indoor fan 102, so that the room is warmed. At this time, in the heat transfer tube, the heat-deprived gas refrigerant is gradually liquefied, and from the outlet of the indoor heat exchanger 101, the supercooled liquid refrigerant having a temperature lower by about several degrees C. than the saturation temperature flows out.
 その後、室内機108から流出した液冷媒は、膨張弁103を通過時の膨張作用により低温・低圧状態の気液二相冷媒となる。この低温・低圧の気液二相冷媒は、室外機105内の室外熱交換器106(蒸発器)に導かれる。そして、室外熱交換器106の伝熱管内を流れる低温の冷媒が、室外ファン107から供給される外気から吸熱することで、冷媒の乾き度(=ガス冷媒の質量速度/(液冷媒の質量速度+ガス冷媒の質量速度))が高まる。室外熱交換器106の出口では、冷媒はガス化して数℃程度、過熱度が上昇した状態で圧縮機8に戻る。以上で説明した、一連の冷凍サイクルによって、空気調和機100の暖房運転が実現される。 Thereafter, the liquid refrigerant flowing out of the indoor unit 108 becomes a gas-liquid two-phase refrigerant in a low temperature / low pressure state by an expansion action when passing through the expansion valve 103. This low-temperature, low-pressure gas-liquid two-phase refrigerant is guided to the outdoor heat exchanger 106 (evaporator) in the outdoor unit 105. The low-temperature refrigerant flowing through the heat transfer tube of the outdoor heat exchanger 106 absorbs heat from the outside air supplied from the outdoor fan 107, so that the dryness of the refrigerant (= mass velocity of the gas refrigerant / (mass velocity of the liquid refrigerant). + Mass velocity of gas refrigerant)). At the outlet of the outdoor heat exchanger 106, the refrigerant is gasified and returned to the compressor 8 in a state where the degree of superheat is increased by about several degrees Celsius. The heating operation of the air conditioner 100 is realized by the series of refrigeration cycles described above.
 一方、冷房運転時の冷媒の流れは破線矢印61で示している。冷房運転時には、四方弁9を切り替えて、破線矢印61方向に冷媒が循環する冷凍サイクルを形成する。この場合、室内熱交換器101が蒸発器として作用し、室外熱交換器106が凝縮器として作用する。この一連の冷凍サイクルによって、空気調和機100の冷房運転が実現される。
 次に、本実施例1にかかる空気調和機100の作用効果について説明する。
On the other hand, the flow of the refrigerant during the cooling operation is indicated by a broken line arrow 61. During the cooling operation, the four-way valve 9 is switched to form a refrigeration cycle in which the refrigerant circulates in the direction of the broken line arrow 61. In this case, the indoor heat exchanger 101 acts as an evaporator, and the outdoor heat exchanger 106 acts as a condenser. With this series of refrigeration cycles, the cooling operation of the air conditioner 100 is realized.
Next, functions and effects of the air conditioner 100 according to the first embodiment will be described.
 図4は、室外機105の内部を透過して図示した斜視図である。なお、図4、図5において伝熱管19等は具体的に図示しない(伝熱管19等については図1A等を参照)。室外ファン107の駆動により外気が室外機105内に取り込まれ、この外気が室外熱交換器106(熱交換器1)を通過して、冷媒Lと外気との熱交換が図られる。 FIG. 4 is a perspective view illustrating the interior of the outdoor unit 105. 4 and 5, the heat transfer tube 19 and the like are not specifically illustrated (see FIG. 1A and the like for the heat transfer tube 19 and the like). The outdoor air is taken into the outdoor unit 105 by driving the outdoor fan 107, and this outdoor air passes through the outdoor heat exchanger 106 (heat exchanger 1), so that heat exchange between the refrigerant L and the outdoor air is achieved.
 しかし、水平方向を長さ方向として上下方向に多数本が並列している各伝熱管19において、単位時間当たりに通過する外気の量、すなわち外気の流速は一律ではない。図4の例では、室外機105の中間高さで流入する外気の流速V2が最も速く、次に、室外機105の上部に流入する外気の流速V1が速く、室外機105の下部に流入する外気の流速V3が最も遅い。すなわち、“V2>V1>V3”である。 However, the amount of outside air that passes through per unit time, that is, the flow rate of outside air, is not uniform in each heat transfer tube 19 in which the horizontal direction is the length direction and many pipes are arranged in the vertical direction. In the example of FIG. 4, the flow rate V2 of the outside air flowing in at an intermediate height of the outdoor unit 105 is the fastest, and then the flow rate V1 of the outdoor air flowing into the upper part of the outdoor unit 105 is fast and flows into the lower part of the outdoor unit 105. The flow rate V3 of the outside air is the slowest. That is, “V2> V1> V3”.
 そこで、図1A~図2Cに示すように、各伝熱管19が接続しているヘッダ内空間32~35に対応した各連通管5a~5dの開口部5b1,5d1のサイズを前記の流速V1~V3に応じて変えるようにする。すなわち、流速V2で外気が通過する伝熱管19に対応したヘッダ内空間に接続された連通管5の開口部は面積を相対的に広くする。一方、流速V3で外気が通過する伝熱管19に対応したヘッダ内空間に接続された連通管5の開口部は面積を相対的に狭くする。 Therefore, as shown in FIGS. 1A to 2C, the sizes of the openings 5b1 and 5d1 of the communication pipes 5a to 5d corresponding to the header inner spaces 32 to 35 to which the heat transfer pipes 19 are connected are set to the flow velocity V1 to Change according to V3. In other words, the opening of the communication pipe 5 connected to the header inner space corresponding to the heat transfer pipe 19 through which the outside air passes at the flow velocity V2 has a relatively large area. On the other hand, the opening of the communication pipe 5 connected to the header inner space corresponding to the heat transfer pipe 19 through which the outside air passes at the flow velocity V3 has a relatively narrow area.
 これによって、通過する単位時間当たりの空気量が多い(熱負荷が大きい)と考えられる伝熱管19には相対的に多くの冷媒Lを供給するようにできる。また、逆に通過する単位時間当たりの空気量が少ない(熱負荷が小さい)と考えられる伝熱管19には相対的に少ない冷媒Lを供給するようにできる。これにより、室外熱交換器106(熱交換器1)の熱交換効率を高めることができる。 Thereby, it is possible to supply a relatively large amount of refrigerant L to the heat transfer tube 19 which is considered to have a large amount of air per unit time (a large heat load). Conversely, a relatively small amount of refrigerant L can be supplied to the heat transfer tube 19, which is considered to have a small amount of air per unit time passing (small thermal load). Thereby, the heat exchange efficiency of the outdoor heat exchanger 106 (heat exchanger 1) can be improved.
 より具体的には、連通管5a~5dの開口部5a1~5d1は、面積が広いと、その部分の圧力損失が低下することでガス冷媒が当該連通管に多く流れる。そして、室外熱交換器106(熱交換器1)が蒸発器の場合に役割を発揮する液冷媒がガス冷媒の流れに作用され、ガス冷媒が多く流れる連通管に多く流れる。よって、開口部5a1~5d1の開口面積を互いに変えることで液冷媒の分配量を調節し、ひいてはヘッダ内空間32~35に流入する液冷媒の分配量も調節することが可能となる。 More specifically, if the openings 5a1 to 5d1 of the communication pipes 5a to 5d have a large area, the pressure loss of the part decreases, so that a large amount of gas refrigerant flows through the communication pipes. When the outdoor heat exchanger 106 (heat exchanger 1) is an evaporator, the liquid refrigerant that plays a role acts on the flow of the gas refrigerant, and flows in a large amount of the communication pipe through which the gas refrigerant flows. Therefore, it is possible to adjust the distribution amount of the liquid refrigerant by changing the opening areas of the openings 5a1 to 5d1 with each other, and also to adjust the distribution amount of the liquid refrigerant flowing into the header inner spaces 32 to 35.
 図5は、室内機108の横断面図である。室内熱交換器101としては、この例で3台の室内熱交換器101a~101c(いずれも熱交換器1)を備えている。室内ファン102は円筒状で長手方向が図5の紙面に垂直な方向である。室内熱交換器101a~101cも長手方向が室内ファン102の長手方向に沿うように、そして、3台の室内熱交換器101a~101cで室内ファン102を覆うように配置されている。室内ファン102の駆動により、各室内熱交換器101a~101cの外側から室内の空気を取り込んで各室内熱交換器101a~101cを通過させ、矢印cに示すように吹出口110から当該空気を室内に吹き出す。 FIG. 5 is a cross-sectional view of the indoor unit 108. In this example, the indoor heat exchanger 101 includes three indoor heat exchangers 101a to 101c (all of which are heat exchangers 1). The indoor fan 102 is cylindrical and has a longitudinal direction perpendicular to the paper surface of FIG. The indoor heat exchangers 101a to 101c are also arranged so that the longitudinal direction thereof is along the longitudinal direction of the indoor fan 102, and the indoor fans 102 are covered by the three indoor heat exchangers 101a to 101c. By driving the indoor fan 102, the indoor air is taken from outside the indoor heat exchangers 101a to 101c and passed through the indoor heat exchangers 101a to 101c, and the air is passed through the outlet 110 as indicated by an arrow c. To blow out.
 室内熱交換器101a~101cにおいても前記の図4の例と同様に各伝熱管19で流通する室内空気の流速が異なることは生じ得る。例えば、室内熱交換器101b,101cでは、入口管36に近い側の伝熱管19は室内ファン102に近いので室内空気の流速が相対的に速く、入口管36に遠い側の伝熱管19は室内ファン102に遠いので室内空気の流速が相対的に遅いことが考えうる。また、室内熱交換器101aでは、室内熱交換器101b,101cの近傍では当該室内熱交換器101b,101cが邪魔になって室内空気の流速が相対的に遅くなることが考えられる。一方、当該室内熱交換器101b,101cから遠い位置では当該室内熱交換器101b,101cが邪魔にならず室内空気の流速が相対的に速くなることが考えられる。 Also in the indoor heat exchangers 101a to 101c, it is possible that the flow rates of the indoor air flowing through the heat transfer tubes 19 are different as in the example of FIG. For example, in the indoor heat exchangers 101b and 101c, since the heat transfer tube 19 on the side close to the inlet pipe 36 is close to the indoor fan 102, the flow rate of indoor air is relatively high, and the heat transfer pipe 19 on the side far from the inlet pipe 36 is indoors. Since it is far from the fan 102, it can be considered that the flow rate of the indoor air is relatively slow. Further, in the indoor heat exchanger 101a, the indoor heat exchangers 101b and 101c may become an obstacle in the vicinity of the indoor heat exchangers 101b and 101c, and the flow rate of indoor air may be relatively slow. On the other hand, at a position far from the indoor heat exchangers 101b and 101c, the indoor heat exchangers 101b and 101c do not get in the way and the flow rate of the indoor air can be relatively high.
 よって、各室内熱交換器101a~101cにおいても、通過する単位時間当たりの空気量が多い(熱負荷が部分的に大きい)と考えられる伝熱管19には相対的に多くの冷媒Lを供給するようにできるようにする。また、逆に通過する単位時間当たりの空気量が少ない(熱負荷が部分的に小さい)と考えられる伝熱管19には相対的に少ない冷媒Lを供給するようにできる。これにより、室内熱交換器101a~101c(いずれも熱交換器1)の熱交換効率を高めることができる。 Therefore, also in each of the indoor heat exchangers 101a to 101c, a relatively large amount of refrigerant L is supplied to the heat transfer tubes 19 that are considered to have a large amount of air per unit time to pass (a heat load is partially large). To be able to. Conversely, a relatively small amount of refrigerant L can be supplied to the heat transfer tube 19, which is considered to have a small amount of air per unit time to pass (the heat load is partially small). As a result, the heat exchange efficiency of the indoor heat exchangers 101a to 101c (all of which are the heat exchanger 1) can be increased.
 また、気液混合部41を流入側ヘッダ3aの一端部(下端部)に配置し、他端側(上部側)にヘッダ内空間32~35を並べている。気液混合部41内ではある瞬間を見れば気液界面42が全体に略一定の水位である。そのため、各ヘッダ内空間32~35に気液混合部4から供給する冷媒Lは、ガス冷媒と液冷媒とを略均一にすることができる。 Further, the gas-liquid mixing part 41 is arranged at one end (lower end) of the inflow side header 3a, and the header internal spaces 32 to 35 are arranged on the other end side (upper side). In the gas-liquid mixing unit 41, the gas-liquid interface 42 is at a substantially constant water level as a whole when viewed at a certain moment. Therefore, the refrigerant L supplied from the gas-liquid mixing unit 4 to the header inner spaces 32 to 35 can make the gas refrigerant and the liquid refrigerant substantially uniform.
 また、連通管5a~5dとして、図2Aの例を用いるときは次のような作用を奏する。すなわち、例えば、図2Aで気液界面42が上から3番目の貫通孔である開口部5a1~5d1に達していた状態から上から2番目の貫通孔である開口部5a1~5d1に達する状態となったときには、連通管5a~5dに流れ込む冷媒Lの流量が急変する。すなわち、気液界面42が上から3番目の貫通孔である開口部5a1~5d1と上から2番目の貫通孔である開口部5a1~5d1との中間位置にあるときは気液界面42が上から3番目の貫通孔である開口部5a1~5d1にあるときとでは冷媒Lの流量は変わらない。このときは、気液界面42が上から3番目の貫通孔である開口部5a1~5d1にあるときに連通管5a~5dに流れ込む冷媒Lの流量となる。これらの関係は上下に隣接し合う全ての貫通孔において生じる。すなわち、図2Aの例では、気液界面42の上下によって生じる開口部5a1~5d1からの冷媒Lの連通管5a~5dへの吸い込み量(ガス冷媒、液冷媒の分配量も同様)を段階的に変えることができる。 Further, when the example of FIG. 2A is used as the communication pipes 5a to 5d, the following effects are exhibited. That is, for example, in FIG. 2A, the gas-liquid interface 42 reaches the openings 5a1 to 5d1 that are the third through holes from the top to the openings 5a1 to 5d1 that are the second through holes from the top. When this happens, the flow rate of the refrigerant L flowing into the communication pipes 5a to 5d changes suddenly. That is, when the gas-liquid interface 42 is at an intermediate position between the openings 5a1 to 5d1 that are the third through holes from the top and the openings 5a1 to 5d1 that are the second through-holes from the top, the gas-liquid interface 42 is The flow rate of the refrigerant L does not change when it is in the openings 5a1 to 5d1, which are the third through holes. At this time, the flow rate of the refrigerant L flowing into the communication pipes 5a to 5d when the gas-liquid interface 42 is in the openings 5a1 to 5d1, which are the third through holes from the top, is obtained. These relationships occur in all through holes that are adjacent to each other in the vertical direction. That is, in the example of FIG. 2A, the amount of refrigerant L sucked into the communication pipes 5a to 5d from the openings 5a1 to 5d1 generated by the upper and lower sides of the gas-liquid interface 42 (the same applies to the distribution amounts of gas refrigerant and liquid refrigerant). Can be changed to
 これに対して、図2Bの例では、開口部5a1~5d1が連通管5a~5dの長手方向を長手方向とする長孔となっている。そのため、気液界面42の僅かな上下によっても、開口部5a1~5d1からの冷媒Lの連通管5a~5dへの吸い込み量が変動する。すなわち、図2Bの例では、気液界面42の上下によって生じる開口部5a1~5d1からの冷媒Lの連通管5a~5dへの吸い込み量(ガス冷媒、液冷媒の分配量も同様)を無段階的に変えることができる。
 また、図2Cの例では、連通管5a~5dへの冷媒Lの入口を開口部5a1~5d1に限定することができる。
 さらに、図1Bに示すように、開口部5d1は入口管36の冷媒Lが流入する流路に背を向けているので、開口部5d1にのみ過度に冷媒Lが流入することを抑制することができる。
In contrast, in the example of FIG. 2B, the openings 5a1 to 5d1 are long holes whose longitudinal direction is the longitudinal direction of the communication pipes 5a to 5d. Therefore, the amount of refrigerant L sucked into the communication pipes 5a to 5d from the openings 5a1 to 5d1 varies even if the gas-liquid interface 42 is slightly up and down. That is, in the example of FIG. 2B, the amount of refrigerant L sucked into the communication pipes 5a to 5d from the openings 5a1 to 5d1 generated by the upper and lower sides of the gas-liquid interface 42 (the distribution amount of gas refrigerant and liquid refrigerant is the same) is stepless. Can be changed.
In the example of FIG. 2C, the inlet of the refrigerant L to the communication pipes 5a to 5d can be limited to the openings 5a1 to 5d1.
Further, as shown in FIG. 1B, since the opening 5d1 faces away from the flow path into which the refrigerant L flows in the inlet pipe 36, the excessive flow of the refrigerant L only into the opening 5d1 can be suppressed. it can.
 図6Aは、本実施例2における2本の連通管5a,5cを並べて図示した正面図である。本実施例2において、実施例1と共通する部材等については実施例1と同一の符号を用い、詳細な説明は省略する。
 図6Aに示すように、本実施例2が実施例1と技術的に異なるのは、開口部5a1~5d1の構成にある。すなわち、図2Aの例では開口部5a1~5d1である貫通孔の各面積(径サイズ)を変えることにより、開口部5a1~5d1の面積を変えるようにしている。
 これに対して、図6Aの例では開口部5a1~5d1である貫通孔の各面積(径サイズ)は同じで、貫通孔の数を変えることにより、開口部5a1~5d1の面積を変えるようにしている。
FIG. 6A is a front view illustrating two communication pipes 5a and 5c in the second embodiment side by side. In the second embodiment, members and the like common to the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted.
As shown in FIG. 6A, the second embodiment is technically different from the first embodiment in the configuration of the openings 5a1 to 5d1. That is, in the example of FIG. 2A, the areas of the openings 5a1 to 5d1 are changed by changing the areas (diameter sizes) of the through holes which are the openings 5a1 to 5d1.
On the other hand, in the example of FIG. 6A, the areas (diameter size) of the through holes which are the openings 5a1 to 5d1 are the same, and the areas of the openings 5a1 to 5d1 are changed by changing the number of through holes. ing.
 また、この場合に気液混合部41(図1A)内の最も気相冷媒側(最上部)の貫通孔は、流入側ヘッダ3aの長手方向の同じ高さにある。すなわち、貫通孔が相対的に少ない連通管は、図6Aの連通管5cのように、当該連通管の下側に貫通孔が設けられていない領域を有する。すなわち、気液混合部41内の液相冷媒側(下側)で貫通孔の数が異なる。図6Aの例では、一番上の貫通孔から一番下の貫通孔までの長さが、連通管5aではA2の長さがあって長いのに対して、連通管5cではA1の長さで短くなっている。 In this case, the through hole on the most gas phase refrigerant side (uppermost part) in the gas-liquid mixing part 41 (FIG. 1A) is at the same height in the longitudinal direction of the inflow side header 3a. That is, the communication pipe with relatively few through holes has a region where no through hole is provided on the lower side of the communication pipe, like the communication pipe 5c in FIG. 6A. That is, the number of through holes is different on the liquid refrigerant side (lower side) in the gas-liquid mixing unit 41. In the example of FIG. 6A, the length from the uppermost through hole to the lowermost through hole is long with the length of A2 in the communication pipe 5a, whereas the length of A1 in the communication pipe 5c. It is shorter.
 図6Bは、別の例において2本の連通管5a,5cを並べて図示した正面図である。また、図6Bに示すように、図6Bに関して、本実施例2が実施例1と技術的に異なるのは、同じく開口部5a1~5d1の構成にある。すなわち、図2Bの例では開口部5a1~5d1である長孔の幅を変えることにより、開口部5a1~5d1の面積を変えるようにしている。
 これに対して、図6Bの例では開口部5a1~5d1である長孔の長さを変えることによって開口部5a1~5d1の面積を変えるようにしている。図6Bの例では、長孔の長さが、連通管5aではB2であって長いのに対して、連通管5cではB1であって短い。
FIG. 6B is a front view illustrating two communication pipes 5a and 5c side by side in another example. Further, as shown in FIG. 6B, the second embodiment is technically different from the first embodiment with respect to FIG. 6B in the configuration of the openings 5a1 to 5d1. That is, in the example of FIG. 2B, the area of the openings 5a1 to 5d1 is changed by changing the width of the long holes which are the openings 5a1 to 5d1.
On the other hand, in the example of FIG. 6B, the areas of the openings 5a1 to 5d1 are changed by changing the length of the long holes which are the openings 5a1 to 5d1. In the example of FIG. 6B, the length of the long hole is B2 and long in the communication pipe 5a, whereas it is B1 and short in the communication pipe 5c.
 また、この場合に気液混合部41内の最も気相冷媒側(最上部)の長孔の一端部は、流入側ヘッダ3aの長手方向の同じ位置にある。すなわち、長孔が相対的に短い連通管は、図6Bの連通管5cのように、当該連通管の下側に長孔が設けられていない領域を有する。すなわち、気液混合部41内の液相冷媒側(下側)で長孔の他端部の位置が異なる。
 さらに、図6Cの例は、図6Bの例において、図2Cの例のように栓53を設けた例である。図6Aの例でも栓53を設けるようにしてもよい。
In this case, one end of the longest gas-phase refrigerant side (uppermost) long hole in the gas-liquid mixing unit 41 is at the same position in the longitudinal direction of the inflow side header 3a. That is, the communication pipe having a relatively short long hole has a region where no long hole is provided on the lower side of the communication pipe, like the communication pipe 5c in FIG. 6B. That is, the position of the other end of the long hole is different on the liquid-phase refrigerant side (lower side) in the gas-liquid mixing unit 41.
Furthermore, the example of FIG. 6C is an example in which the plug 53 is provided in the example of FIG. 6B as in the example of FIG. 2C. In the example of FIG. 6A, the stopper 53 may be provided.
 次に、本実施例2の作用効果について説明する。
 本実施例2において実施例1と共通する構成から生じる作用効果は本実施例2においても奏することができる。
 また、図6Aの連通管5a~5dに関しては、全て同じ形状、サイズの貫通孔を形成すればよく、貫通孔のサイズを連通管5a~5d間で変える必要がないので、連通管5a~5dの製造が容易である。
Next, the function and effect of the second embodiment will be described.
The operational effects resulting from the configuration common to the first embodiment in the second embodiment can also be achieved in the second embodiment.
In addition, regarding the communication pipes 5a to 5d in FIG. 6A, it is only necessary to form through holes having the same shape and size, and there is no need to change the size of the through holes between the communication pipes 5a to 5d. Is easy to manufacture.
 さらに、図6Bの連通管5a~5dに関しても、長さは違っても全て同じ幅の長孔を形成すればよく、長孔の幅を連通管5a~5d間で変える必要がないので、連通管5a~5dの製造が容易である。
 また、図2Bのように長孔の幅を変えるのに対して、図6Bでは長孔の長さを変えるので、連通管5a~5d間で開口部5a1~5d1の面積に大きな差をつけることが容易となる。よって、連通管5a~5d間で冷媒Lの流入量に大きな差がある場合に有効である。
Further, regarding the communication pipes 5a to 5d in FIG. 6B, it is sufficient to form long holes of the same width regardless of the length, and it is not necessary to change the width of the long holes between the communication pipes 5a to 5d. The manufacture of the tubes 5a to 5d is easy.
Further, the width of the long hole is changed as shown in FIG. 2B, whereas the length of the long hole is changed in FIG. 6B, so that there is a large difference in the area of the openings 5a1 to 5d1 between the communication pipes 5a to 5d. Becomes easy. Therefore, it is effective when there is a large difference in the inflow amount of the refrigerant L between the communication pipes 5a to 5d.
 その上、図6A、図6Bにおいて、複数の貫通孔又は長孔である開口部5a1~5d1の一番上の貫通孔又は長孔の上端の高さが揃っている。つまり、貫通孔の数を減らしたり、長孔の長さを短くしたりしているのは、連通管5a~5dの下端側においてである。そのため、気液界面42が上昇しても、ガス冷媒を吸い込む開口部5a1~5d1が狭くなることがない。よって、気液界面42の変動に関わらず充分にガス冷媒を吸い込むことが可能で、よってガス冷媒の勢いで開口部5a1~5d1に吸い込まれる液冷媒の吸込みが悪くなることがない。 In addition, in FIGS. 6A and 6B, the heights of the uppermost through holes or long holes of the openings 5a1 to 5d1, which are a plurality of through holes or long holes, are aligned. That is, the number of through holes is reduced or the length of the long holes is reduced on the lower end side of the communication pipes 5a to 5d. Therefore, even if the gas-liquid interface 42 rises, the openings 5a1 to 5d1 for sucking the gas refrigerant do not narrow. Therefore, the gas refrigerant can be sufficiently sucked regardless of the fluctuation of the gas-liquid interface 42, and therefore, the suction of the liquid refrigerant sucked into the openings 5a1 to 5d1 by the momentum of the gas refrigerant does not deteriorate.
 図7Aは、流入側ヘッダ3aの気液混合部41部分の縦断面図である。図7Bは、気液混合部41内に設けられる連通部50の図7AにおけるB-B断面図である。本実施例3において、実施例1と共通する部材等については実施例1と同一の符号を用い、詳細な説明は省略する。
 実施例3が実施例1と異なるのは、流入側ヘッダ3a内の連通管5a~5dの開口部5a1~5d1が設けられている部分に代えて単一の連通部50が設けられていることである。連通部50は円柱状の部材であり、流入側ヘッダ3aの気液混合部41内に設けられている。
FIG. 7A is a vertical cross-sectional view of the gas-liquid mixing portion 41 portion of the inflow side header 3a. FIG. 7B is a cross-sectional view taken along the line BB in FIG. 7A of the communication part 50 provided in the gas-liquid mixing part 41. In the third embodiment, the same reference numerals as those in the first embodiment are used for members and the like common to the first embodiment, and detailed description thereof is omitted.
The third embodiment is different from the first embodiment in that a single communication portion 50 is provided instead of the portion where the openings 5a1 to 5d1 of the communication pipes 5a to 5d in the inflow side header 3a are provided. It is. The communication part 50 is a cylindrical member and is provided in the gas-liquid mixing part 41 of the inflow side header 3a.
 連通部50は、気液混合部41内で各連通管5a~5dと接続されて各連通管5a~5dに代えて単一の連通部50内に開口部5a1~5d1が形成されている。
 連通部(連通部本体)50は、その中央部に設けられていて、流入側ヘッダ3aの長手方向に上下に貫通した空間であり、気液二相の冷媒Lが流入する円筒状の混合室51を備えている。
The communication part 50 is connected to the communication pipes 5a to 5d in the gas-liquid mixing part 41, and openings 5a1 to 5d1 are formed in the single communication part 50 in place of the communication pipes 5a to 5d.
The communication part (communication part main body) 50 is a space provided vertically in the longitudinal direction of the inflow header 3a, and a cylindrical mixing chamber into which the gas-liquid two-phase refrigerant L flows. 51 is provided.
 混合室51の周囲には、混合室51を取り囲むように複数、本例で4つの冷媒連通路52a~52dが設けられている。冷媒連通路52a~52dは、流入側ヘッダ3aの長手方向に上下に貫通した例えば円筒状の空間で、それぞれその上端部が各連通管5a~5dと接続されている。各冷媒連通路52a~52dの径サイズは、混合室51の径サイズよりも小さい。 Around the mixing chamber 51, a plurality of refrigerant communication paths 52a to 52d in this example are provided so as to surround the mixing chamber 51. The refrigerant communication paths 52a to 52d are, for example, cylindrical spaces penetrating vertically in the longitudinal direction of the inflow side header 3a, and upper ends thereof are connected to the communication pipes 5a to 5d, respectively. The diameter size of each of the refrigerant communication paths 52 a to 52 d is smaller than the diameter size of the mixing chamber 51.
 また、連通部(連通部本体)50には、各冷媒連通路52a~52dと混合室51とを接続し、混合室51から各冷媒連通路52a~52dに冷媒を流入させる接続路53a~53dが設けられている。接続路53a~53dも連通部(連通部本体)50の上から下まで貫通している。各接続路53a~53dは、それぞれが接続している冷媒連通路52a~52dの径サイズよりも幅が狭い。 Further, the communication part (communication part main body) 50 connects the refrigerant communication paths 52a to 52d and the mixing chamber 51, and the connection paths 53a to 53d allow the refrigerant to flow from the mixing chamber 51 to the refrigerant communication paths 52a to 52d. Is provided. The connection paths 53 a to 53 d also penetrate from the top to the bottom of the communication portion (communication portion main body) 50. Each of the connection paths 53a to 53d is narrower than the diameter size of the refrigerant communication paths 52a to 52d to which the connection paths 53a to 53d are connected.
 また、本実施例3では、仕切板31aは、混合室51、接続路53a~53d、連通部50と気液混合部41との間の隙間を閉塞して、冷媒連通路52a~52d以外からは流入側ヘッダ3aの気液混合部41とは反対側には冷媒Lが流れないようにする。あるいは、仕切板31aを設けずに、混合室51、接続路53a~53d、連通部50と気液混合部41との間の隙間の上端部を所定の部材や材料を用いて閉塞するようにしてもよい。 In the third embodiment, the partition plate 31a closes the gap between the mixing chamber 51, the connection paths 53a to 53d, the communication part 50, and the gas-liquid mixing part 41, and from other than the refrigerant communication paths 52a to 52d. Prevents the refrigerant L from flowing on the side opposite to the gas-liquid mixing part 41 of the inflow side header 3a. Alternatively, without providing the partition plate 31a, the upper end of the gap between the mixing chamber 51, the connection paths 53a to 53d, the communication portion 50 and the gas-liquid mixing portion 41 is closed using a predetermined member or material. May be.
 図7Bの例では、各冷媒連通路52a~52dは同一径サイズだが、接続路53a~53dの幅サイズが一律ではない。すなわち、接続路53a~53dが開口部5a1~5d1となり、その各径サイズが開口部5a1~5d1の面積となる。すなわち、接続路53aの幅W53aが最大であり、接続路53cの幅W53cが最小である。そして、接続路53b,53dの幅がこれらの中間的なサイズとなる。 In the example of FIG. 7B, the refrigerant communication passages 52a to 52d have the same diameter size, but the width sizes of the connection passages 53a to 53d are not uniform. That is, the connection paths 53a to 53d become the openings 5a1 to 5d1, and the diameters of the connection paths 53a to 53d are the areas of the openings 5a1 to 5d1. That is, the width W53a of the connection path 53a is the maximum, and the width W53c of the connection path 53c is the minimum. The width of the connection paths 53b and 53d is an intermediate size between them.
 そして、各冷媒連通路52a~52dには連通管5a~5dが冷媒Lのリークを生じることがないように所定の手段で接合されている。連通管5a~5dは、径サイズは全て同じであるが長さがそれぞれ異なっている。連通部50は、連通管5a~5dに支持されていてもよいし、仕切板31aに支持されていてもよいし、気液混合部41の内周面に支持されていてもよい。 The communication pipes 5a to 5d are joined to the refrigerant communication paths 52a to 52d by a predetermined means so that the refrigerant L does not leak. The communication pipes 5a to 5d have the same diameter size but different lengths. The communication part 50 may be supported by the communication pipes 5a to 5d, may be supported by the partition plate 31a, or may be supported by the inner peripheral surface of the gas-liquid mixing part 41.
 また、気液混合部41内で連通部50と流入側ヘッダ3aの端部(下端部)との間には流入口となる入口管36が接続される空間である冷媒流入部55が設けられている。図7Aの例では、流入側ヘッダ3aの底板3a1に入口管36が接続されている。
 図8は、図7Aの例において入口管36の位置を変更した例を示す流入側ヘッダ3aの下部の縦断面図である。入口管36は冷媒流入部55の側部における所望の位置に接続してもよい。
Further, in the gas-liquid mixing part 41, a refrigerant inflow part 55 is provided between the communication part 50 and the end part (lower end part) of the inflow side header 3a. ing. In the example of FIG. 7A, the inlet pipe 36 is connected to the bottom plate 3a1 of the inflow side header 3a.
FIG. 8 is a longitudinal sectional view of the lower part of the inflow side header 3a showing an example in which the position of the inlet pipe 36 is changed in the example of FIG. 7A. The inlet pipe 36 may be connected to a desired position on the side of the refrigerant inflow portion 55.
 図7Cは、連通部50の他の例を示す図7AのB-B断面図である。図7Cの例が図7Bの例と異なるのは、接続路53a~53dの幅サイズは全て一定であり、冷媒連通路52a~52dの径サイズが一律でないことである。すなわち、冷媒連通路52aの径サイズD52aが最大で、冷媒連通路52cの径サイズD52cが最小で、冷媒連通路52b,52dの径サイズがこれらの中間的なサイズである。 FIG. 7C is a cross-sectional view taken along the line BB in FIG. 7A showing another example of the communication portion 50. The example of FIG. 7C is different from the example of FIG. 7B in that the width sizes of the connection paths 53a to 53d are all constant, and the diameter sizes of the refrigerant communication paths 52a to 52d are not uniform. That is, the diameter D52a of the refrigerant communication passage 52a is the largest, the diameter size D52c of the refrigerant communication passage 52c is the smallest, and the diameter sizes of the refrigerant communication passages 52b and 52d are intermediate sizes thereof.
 また、図7B、図7Cの何れの連通部50においても、混合室51、各冷媒連通路52a~52d及び各接続路53a~53dが何れも流入側ヘッダ3aの長手方向に直線状であり、径サイズ及び形状が当該長手方向の全ての位置で一律である。よって、当該連通部50を容易に押出成型により製造することができる。なお、図7B、図7Cの連通部50の製造には、押出成型の他に鍛造や削り出し等の手段を用いてもよい。 7B and 7C, the mixing chamber 51, the refrigerant communication paths 52a to 52d, and the connection paths 53a to 53d are all linear in the longitudinal direction of the inflow side header 3a. The diameter size and shape are uniform at all positions in the longitudinal direction. Therefore, the communication part 50 can be easily manufactured by extrusion molding. In addition, you may use means, such as a forge and a shaving, other than extrusion molding for manufacture of the communication part 50 of FIG. 7B and FIG. 7C.
 次に、本実施例3の作用効果について説明する。
 本実施例3において実施例1と共通する構成から生じる作用効果は本実施例3においても奏することができる。
 入口管36から流入した気液二相の冷媒Lは、入口管36から冷媒流入部55に流入し、さらには主として混合室51に流入する。そして、混合室51から各接続路53a~53dを介して各冷媒連通路52a~52dに流入する。そして、各冷媒連通路52a~52から各連通管5a~5dに流入する。
Next, the function and effect of the third embodiment will be described.
The operational effects resulting from the configuration common to the first embodiment in the third embodiment can also be achieved in the third embodiment.
The gas-liquid two-phase refrigerant L flowing in from the inlet pipe 36 flows into the refrigerant inflow portion 55 from the inlet pipe 36, and further mainly flows into the mixing chamber 51. Then, the refrigerant flows into the refrigerant communication passages 52a to 52d from the mixing chamber 51 through the connection passages 53a to 53d. Then, the refrigerant flows from the refrigerant communication paths 52a to 52 to the communication pipes 5a to 5d.
 この場合、図7Bの例では、各冷媒連通路52a~52dの径サイズは同じであるが、各接続路53a~53dの幅が互いに異なるため、各冷媒連通路52a~52d、ひいては各連通管5a~5dに単位時間当たりに流入する冷媒Lの量を互いに異ならせることができる。
 また、図7Cの例では、各接続路53a~53dの径サイズは同じであるが、各冷媒連通路52a~52dの径サイズは互いに異なるため、各冷媒連通路52a~52d、ひいては各連通管5a~5dに単位時間当たりに流入する冷媒Lの量を互いに異ならせることができる。
 この場合に、接続路53a~53dの幅サイズの方が冷媒連通路52a~52dの径サイズよりも小さい。そのため、径サイズが相当大きな冷媒連通路を設ける可能性がある図7Cの例よりも図7Bの例の方が、連通部50をコンパクト化できる可能性がある。
In this case, in the example of FIG. 7B, the diameters of the refrigerant communication passages 52a to 52d are the same, but the widths of the connection passages 53a to 53d are different from each other, so that the refrigerant communication passages 52a to 52d, and thus the communication pipes. The amount of the refrigerant L flowing into the units 5a to 5d per unit time can be made different from each other.
In the example of FIG. 7C, the diameters of the connection paths 53a to 53d are the same, but the diameters of the refrigerant communication paths 52a to 52d are different from each other, so that the refrigerant communication paths 52a to 52d and thus the communication pipes The amount of the refrigerant L flowing into the units 5a to 5d per unit time can be made different from each other.
In this case, the width sizes of the connection paths 53a to 53d are smaller than the diameter sizes of the refrigerant communication paths 52a to 52d. Therefore, there is a possibility that the communication portion 50 can be made more compact in the example of FIG. 7B than in the example of FIG. 7C in which there is a possibility of providing a refrigerant communication passage having a considerably large diameter size.
 これらの場合に、各接続路53a~53d並びに各冷媒連通路52a~52dは連通部50の長手方向の端から端まで形成されているので、図2B、図6Bの例と同様、気液界面42高さの変動に応じてガス冷媒、液冷媒の各連通管5a~5dへの流入量を無段階で調節することができる。
 また、実施例1,2の例では、複数本の連通管5a~5dの各一端部側を何れも位置決めして気液混合部41内に設置する工程が必要である。しかし、本実施例3では、単一の連通部50を気液混合部41内に設置するだけでよく、製造工程を簡素化することができる。
 さらに、冷媒流入部55を設けたので、入口管36は流入側ヘッダ3aの一端部側の様々な位置に取り付け可能である。そのため、冷媒配管の取り回しの自由度を高めることができる。
In these cases, the connection passages 53a to 53d and the refrigerant communication passages 52a to 52d are formed from end to end in the longitudinal direction of the communication portion 50. Therefore, as in the example of FIGS. 2B and 6B, the gas-liquid interface 42 The amount of gas refrigerant and liquid refrigerant flowing into the respective communication pipes 5a to 5d can be adjusted steplessly according to the change in height.
Further, in the examples of the first and second embodiments, a step of positioning each one end side of the plurality of communication pipes 5a to 5d and installing them in the gas-liquid mixing part 41 is necessary. However, in the third embodiment, it is only necessary to install the single communication part 50 in the gas-liquid mixing part 41, and the manufacturing process can be simplified.
Furthermore, since the refrigerant inflow portion 55 is provided, the inlet pipe 36 can be attached at various positions on one end portion side of the inflow side header 3a. Therefore, the freedom degree of handling of refrigerant piping can be raised.
 また、混合室51、各冷媒連通路52a~52d並びに各接続路53a~53dが何れも流入側ヘッダ3aの長手方向に直線状であり、径サイズ及び形状が当該長手方向の全ての位置で一律である。よって、当該連通部50を容易に押出成型により製造することができる。すなわち、押出成型機で連通部50を押出成型すれば、あとは押し出された連通部50を所定長さで径方向に切断する作業を繰り返すことで、連通部50を容易に大量生産することができる。 Further, the mixing chamber 51, the refrigerant communication paths 52a to 52d, and the connection paths 53a to 53d are all linear in the longitudinal direction of the inflow header 3a, and the diameter size and shape are uniform at all positions in the longitudinal direction. It is. Therefore, the communication part 50 can be easily manufactured by extrusion molding. That is, if the communicating part 50 is extrusion-molded with an extrusion molding machine, the communicating part 50 can be easily mass-produced by repeating the operation of cutting the extruded communicating part 50 in a radial direction with a predetermined length. it can.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 例えば、前記各実施例では、各ヘッダ内空間32~35ごとに各1本の連通管5a~5dを接続しているが、単一のヘッダ内空間に複数本の連通管5を接続してもよい。そして、ヘッダ内空間に接続する連通管5の数を変えることで、ヘッダ内空間ごとの開口部の面積を変えるようにしてもよい。
In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
For example, in each of the above embodiments, one communication pipe 5a to 5d is connected to each header inner space 32 to 35, but a plurality of communication pipes 5 are connected to a single header inner space. Also good. And you may make it change the area of the opening part for every space in a header by changing the number of the communication pipes 5 connected to the space in a header.
 また、空気調和機100は、四方弁9を備えない冷房又は暖房専用の空気調和機として実施してもよい。さらに、熱交換器1を他の冷凍サイクル装置、例えば、自然冷媒ヒートポンプ給湯機に適用してもよい。
 また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
The air conditioner 100 may be implemented as a cooling or heating dedicated air conditioner that does not include the four-way valve 9. Furthermore, you may apply the heat exchanger 1 to another refrigeration cycle apparatus, for example, a natural refrigerant heat pump water heater.
Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is also possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 1   熱交換器
 2   フィン
 3a  ヘッダ(流入側ヘッダ)
 3b  ヘッダ(流出側ヘッダ)
 5,5a~5d 連通管
 5a1~5d1 開口部
 8   圧縮機
 19  伝熱管
 32~35 ヘッダ内空間
 36  入口管(流入口)
 41  気液混合部
 50  連通部(連通部本体)
 51  混合室
 52a~52d 冷媒連通路
 53a~53d 接続路
 55  冷媒流入部
 60  冷媒の流れ方向(暖房)
 61  冷媒の流れ方向(冷房)
 100 空気調和機
 101 室内熱交換器(第1熱交換器)(熱交換器)
 102 室内ファン
 103 膨張弁
 105 室外機
 106 室外熱交換器(第2熱交換器)(熱交換器)
 107 室外ファン
 108 室内機
1 Heat exchanger 2 Fin 3a Header (inflow side header)
3b Header (outflow header)
5, 5a to 5d Communication pipe 5a1 to 5d1 Opening 8 Compressor 19 Heat transfer pipe 32 to 35 Space in header 36 Inlet pipe (inlet)
41 Gas-liquid mixing part 50 Communication part (Communication part body)
51 Mixing chamber 52a to 52d Refrigerant communication path 53a to 53d Connection path 55 Refrigerant inflow part 60 Refrigerant flow direction (heating)
61 Flow direction of refrigerant (cooling)
100 air conditioner 101 indoor heat exchanger (first heat exchanger) (heat exchanger)
102 indoor fan 103 expansion valve 105 outdoor unit 106 outdoor heat exchanger (second heat exchanger) (heat exchanger)
107 Outdoor fan 108 Indoor unit

Claims (15)

  1.  一対のヘッダと、
     前記ヘッダの長手方向に複数本並び、両端側が前記各ヘッダにそれぞれ接続されている伝熱管と、
     前記各伝熱管に接続されて、複数枚が当該伝熱管の長手方向に並ぶフィンとを備え、
     前記一対のヘッダのうちで外部からの冷媒の流入側となる流入側ヘッダは、
     前記冷媒の流入口が設けられ、気液二相の冷媒が流入する気液混合部と、
     前記流入側ヘッダをその長手方向に仕切って複数設けられ、前記気液混合部とも仕切られていて、1本又は連続的に並列した複数本の前記伝熱管と接続しているヘッダ内空間と、
     異なる前記ヘッダ内空間と前記気液混合部とをそれぞれ連通する複数本の連通管と、
     前記気液混合部内に位置している前記各連通管に設けられて、前記連通管を介して当該気液混合部内の冷媒を前記各ヘッダ内空間に導く開口部とを有し、
     前記開口部の面積は、複数本の前記連通管の中で互いに異なるものを含む熱交換器。
    A pair of headers;
    A plurality of heat exchanger tubes arranged in the longitudinal direction of the header, both end sides being connected to the headers, and
    Connected to each of the heat transfer tubes, and a plurality of fins arranged in the longitudinal direction of the heat transfer tubes,
    Among the pair of headers, the inflow side header which becomes the inflow side of the refrigerant from the outside,
    A gas-liquid mixing section provided with an inlet for the refrigerant and into which a gas-liquid two-phase refrigerant flows;
    A plurality of the inflow headers are provided in the longitudinal direction, and the gas-liquid mixing unit is also partitioned; the header internal space connected to one or a plurality of the heat transfer tubes arranged in parallel;
    A plurality of communication pipes each communicating the different space in the header and the gas-liquid mixing unit;
    An opening that is provided in each communication pipe located in the gas-liquid mixing section and guides the refrigerant in the gas-liquid mixing section to the space in each header through the communication pipe;
    The area of the opening is a heat exchanger including different ones among the plurality of communication pipes.
  2.  前記気液混合部は、前記流入側ヘッダの一端側に設けられ、前記各ヘッダ内空間は当該流入側ヘッダの他端側に並んでいる請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the gas-liquid mixing section is provided on one end side of the inflow side header, and each header inner space is arranged on the other end side of the inflow side header.
  3.  前記開口部は、前記連通管の長手方向に複数個並んで設けられた1又は複数個の貫通孔であり、当該貫通孔同士の大きさが異なることで前記開口部は面積が互いに異なるものが存在する請求項1に記載の熱交換器。 The openings are one or a plurality of through holes provided side by side in the longitudinal direction of the communication pipe, and the openings have different areas because the sizes of the through holes are different. 2. A heat exchanger according to claim 1 present.
  4.  前記開口部は、前記連通管の長手方向を長手方向とする長孔であり、当該長孔同士の幅が異なることで前記開口部は面積が互いに異なるものが存在する請求項1に記載の熱交換器。 2. The heat according to claim 1, wherein the opening is a long hole whose longitudinal direction is the longitudinal direction of the communication pipe, and the openings have different areas due to different widths of the long holes. Exchanger.
  5.  前記開口部は、前記連通管の長手方向に1又は複数個並んで設けられた貫通孔であり、当該貫通孔同士の数が異なることで前記開口部の面積が互いに異なる請求項1に記載の熱交換器。 2. The opening according to claim 1, wherein the opening is a through hole provided in a line in the longitudinal direction of the communication pipe, and the areas of the openings are different from each other due to a difference in the number of the through holes. Heat exchanger.
  6.  前記開口部は、前記連通管の長手方向を長手方向とする長孔であり、当該長孔同士の長さが異なることで前記開口部の面積が互いに異なる請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the opening is a long hole whose longitudinal direction is the longitudinal direction of the communication pipe, and the areas of the opening are different from each other due to the different lengths of the long holes.
  7.  前記貫通孔同士の数が異なる前記連通管同士は、前記気液混合部内の最も気相冷媒側の前記貫通孔は、前記流入側ヘッダの長手方向の同じ高さにあり、前記気液混合部内の液相冷媒側で前記貫通孔の数が異なる請求項5に記載の熱交換器。 The communication pipes having different numbers of through holes are located at the same height in the longitudinal direction of the inflow side header, and the through holes on the most gas phase refrigerant side in the gas-liquid mixing unit are in the gas-liquid mixing unit. The heat exchanger according to claim 5, wherein the number of the through holes is different on the liquid phase refrigerant side.
  8.  前記長孔同士の長さが異なる前記連通管同士は、前記気液混合部内の最も気相冷媒側で前記長孔の一端部が前記流入側ヘッダの長手方向の同じ高さにあり、前記気液混合部内の液相冷媒側で前記長孔の他端部の高さが異なる請求項6に記載の熱交換器。 The communication pipes having different lengths between the long holes are located on the most gas phase refrigerant side in the gas-liquid mixing part, and one end of the long hole is at the same height in the longitudinal direction of the inflow side header. The heat exchanger according to claim 6, wherein the height of the other end of the elongated hole is different on the liquid refrigerant side in the liquid mixing unit.
  9.  前記気液混合部内で前記各連通管と接続され、前記各連通管に設けられたものと代えて前記開口部が形成されている連通部を備え、
     前記連通部は、
     前記連通部の中央部に設けられ、前記流入側ヘッダの長手方向に貫通した空間で、前記気液二相の冷媒が流入する混合室と、
     前記連通部の前記混合室の周囲に複数形成され、前記流入側ヘッダの長手方向に貫通した空間である冷媒連通路と、
     前記連通部に設けられ、前記混合室と前記冷媒連通路とを接続し、前記混合室から前記冷媒連通路に冷媒を流入させる接続路とを備え、
     前記接続路又は前記冷媒連通路の径サイズが異なることにより、前記接続路又は前記冷媒連通路の径サイズである前記開口部の面積は複数本の前記連通管の中で互いに異なるものを含む請求項1に記載の熱交換器。
    It is connected to each communication pipe in the gas-liquid mixing part, and includes a communication part in which the opening is formed instead of the one provided in each communication pipe,
    The communication part is
    A mixing chamber that is provided in a central portion of the communication portion and penetrates in a longitudinal direction of the inflow-side header, and into which the gas-liquid two-phase refrigerant flows;
    A plurality of refrigerant communication passages that are formed around the mixing chamber of the communication portion, and are spaces that penetrate in the longitudinal direction of the inflow side header;
    Provided in the communication part, connecting the mixing chamber and the refrigerant communication path, and comprising a connection path for allowing the refrigerant to flow into the refrigerant communication path from the mixing chamber,
    The diameter of the connection path or the refrigerant communication path is different, so that the area of the opening that is the diameter size of the connection path or the refrigerant communication path includes different ones among the plurality of communication pipes. Item 2. The heat exchanger according to Item 1.
  10.  前記気液混合部内で前記連通部と前記流入側ヘッダの端部との間には前記流入口が接続される空間である冷媒流入部が設けられている請求項9に記載の熱交換器。 The heat exchanger according to claim 9, wherein a refrigerant inflow portion that is a space to which the inflow port is connected is provided between the communication portion and an end portion of the inflow side header in the gas-liquid mixing portion.
  11.  前記接続路は、前記連通部を前記流入側ヘッダの長手方向に貫通していて、
     前記連通部は、前記混合室、前記各冷媒連通路及び前記各接続路が何れも前記流入側ヘッダの長手方向に直線状であり、径サイズ及び形状が当該長手方向の全ての位置で一律である請求項9に記載の熱交換器。
    The connection path passes through the communication portion in the longitudinal direction of the inflow side header,
    In the communication portion, the mixing chamber, the refrigerant communication paths, and the connection paths are all linear in the longitudinal direction of the inflow header, and the diameter size and shape are uniform at all positions in the longitudinal direction. The heat exchanger according to claim 9.
  12.  気液混合部内で各連通管と接続され、開口部が形成されている連通部本体と、
     前記連通部本体の中央部に設けられ、流入側ヘッダの長手方向に貫通した空間で、気液二相の冷媒が流入する混合室と、
     前記連通部本体の前記混合室の周囲に複数形成され、前記流入側ヘッダの長手方向に貫通した空間である冷媒連通路と、
     前記連通部本体に設けられ、前記混合室と前記冷媒連通路とを接続し、前記混合室から前記冷媒連通路に冷媒を流入させる接続路とを備え、
     前記接続路又は前記冷媒連通路の径サイズが異なることにより、前記接続路又は前記冷媒連通路の径サイズである前記開口部の面積は複数本の前記連通管の中で互いに異なるものを含み、
     前記混合室、前記各冷媒連通路及び前記各接続路が何れも前記流入側ヘッダの長手方向に直線状であり、径サイズ及び形状が当該長手方向の全ての位置で一律である連通部を、
     押出成型により製造する連通部の製造方法。
    A communication part main body connected to each communication pipe in the gas-liquid mixing part and having an opening formed therein;
    A mixing chamber that is provided in a central portion of the communication portion main body and penetrates in the longitudinal direction of the inflow-side header, and into which a gas-liquid two-phase refrigerant flows,
    A plurality of refrigerant communication passages that are formed around the mixing chamber of the communication portion main body and that penetrate the longitudinal direction of the inflow-side header;
    Provided in the communication portion main body, and connecting the mixing chamber and the refrigerant communication passage, and including a connection path for allowing the refrigerant to flow into the refrigerant communication passage from the mixing chamber,
    The diameter of the connection path or the refrigerant communication path is different, so that the area of the opening that is the diameter size of the connection path or the refrigerant communication path includes different ones among the plurality of communication pipes,
    The mixing chamber, each refrigerant communication path, and each connection path are all linear in the longitudinal direction of the inflow side header, and a communication portion whose diameter size and shape are uniform at all positions in the longitudinal direction.
    A method for producing a communicating part produced by extrusion molding.
  13.  請求項1乃至請求項11の何れかの一項に記載の熱交換器と、
     前記熱交換器に外気を通風する室外ファンと、
     前記冷媒を圧縮する圧縮機とを備える室外機。
    The heat exchanger according to any one of claims 1 to 11,
    An outdoor fan for venting outside air to the heat exchanger;
    An outdoor unit comprising a compressor that compresses the refrigerant.
  14.  請求項1乃至請求項11の何れかの一項に記載の熱交換器と、
     前記熱交換器に外気を通風する室内ファンとを備える室内機。
    The heat exchanger according to any one of claims 1 to 11,
    An indoor unit comprising an indoor fan for ventilating outside air to the heat exchanger.
  15.  室内機と、
     前記室内機と冷媒を流通する配管で接続された室外機と、
     膨張弁とを備え、
     前記室内機は、
     第1熱交換器と、
     前記第1熱交換器に空気を通風する室内ファンとを備え、
     前記室外機は、
     冷媒を圧縮する圧縮機と、
     第2熱交換器と、
     前記第2熱交換器に空気を通風する室外ファンとを備え、
     前記第1熱交換器及び前記第2熱交換器のうちの少なくとも一方は請求項1乃至請求項11の何れかの一項に記載の熱交換器であることを特徴とする空気調和機。
    Indoor unit,
    An outdoor unit connected to the indoor unit by piping for circulating the refrigerant;
    An expansion valve,
    The indoor unit is
    A first heat exchanger;
    An indoor fan for ventilating the first heat exchanger;
    The outdoor unit is
    A compressor for compressing the refrigerant;
    A second heat exchanger;
    An outdoor fan that ventilates the second heat exchanger;
    An air conditioner, wherein at least one of the first heat exchanger and the second heat exchanger is the heat exchanger according to any one of claims 1 to 11.
PCT/JP2018/017872 2018-05-09 2018-05-09 Heat exchanger, method for manufacturing communication section, indoor unit, outdoor unit, and air conditioner WO2019215825A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020517666A JP6913826B2 (en) 2018-05-09 2018-05-09 Heat exchanger, communication part manufacturing method, indoor unit, outdoor unit and air conditioner
PCT/JP2018/017872 WO2019215825A1 (en) 2018-05-09 2018-05-09 Heat exchanger, method for manufacturing communication section, indoor unit, outdoor unit, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017872 WO2019215825A1 (en) 2018-05-09 2018-05-09 Heat exchanger, method for manufacturing communication section, indoor unit, outdoor unit, and air conditioner

Publications (1)

Publication Number Publication Date
WO2019215825A1 true WO2019215825A1 (en) 2019-11-14

Family

ID=68466746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017872 WO2019215825A1 (en) 2018-05-09 2018-05-09 Heat exchanger, method for manufacturing communication section, indoor unit, outdoor unit, and air conditioner

Country Status (2)

Country Link
JP (1) JP6913826B2 (en)
WO (1) WO2019215825A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021186766A1 (en) * 2020-03-19 2021-09-23
JP7142806B1 (en) * 2021-10-15 2022-09-27 三菱電機株式会社 Distributors, heat exchangers and heat pump devices

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04302964A (en) * 1991-03-29 1992-10-26 Daikin Ind Ltd Refrigerant distributor
JPH04316785A (en) * 1990-01-29 1992-11-09 Mitsubishi Electric Corp Distributor
JPH09166368A (en) * 1995-12-14 1997-06-24 Sanden Corp Heat exchanger
JPH09264693A (en) * 1996-03-29 1997-10-07 Sanden Corp Heatexchanger provided with distribution device
WO2015027783A1 (en) * 2013-08-30 2015-03-05 杭州三花研究院有限公司 Micro-channel heat exchanger and method for manufacturing same
JP2015203506A (en) * 2014-04-11 2015-11-16 パナソニックIpマネジメント株式会社 heat exchanger
WO2016060064A1 (en) * 2014-10-16 2016-04-21 ダイキン工業株式会社 Refrigerant flow divider
WO2016135935A1 (en) * 2015-02-27 2016-09-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Heat exchange apparatus and air conditioner using same
US20160298887A1 (en) * 2013-08-12 2016-10-13 Carrier Corporation Heat exchanger and flow distributor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316785A (en) * 1990-01-29 1992-11-09 Mitsubishi Electric Corp Distributor
JPH04302964A (en) * 1991-03-29 1992-10-26 Daikin Ind Ltd Refrigerant distributor
JPH09166368A (en) * 1995-12-14 1997-06-24 Sanden Corp Heat exchanger
JPH09264693A (en) * 1996-03-29 1997-10-07 Sanden Corp Heatexchanger provided with distribution device
US20160298887A1 (en) * 2013-08-12 2016-10-13 Carrier Corporation Heat exchanger and flow distributor
WO2015027783A1 (en) * 2013-08-30 2015-03-05 杭州三花研究院有限公司 Micro-channel heat exchanger and method for manufacturing same
JP2015203506A (en) * 2014-04-11 2015-11-16 パナソニックIpマネジメント株式会社 heat exchanger
WO2016060064A1 (en) * 2014-10-16 2016-04-21 ダイキン工業株式会社 Refrigerant flow divider
WO2016135935A1 (en) * 2015-02-27 2016-09-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Heat exchange apparatus and air conditioner using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021186766A1 (en) * 2020-03-19 2021-09-23
JP7471392B2 (en) 2020-03-19 2024-04-19 三菱電機株式会社 Heat exchanger header, heat exchanger, method for manufacturing a heat exchanger header, and method for manufacturing a heat exchanger
JP7142806B1 (en) * 2021-10-15 2022-09-27 三菱電機株式会社 Distributors, heat exchangers and heat pump devices

Also Published As

Publication number Publication date
JP6913826B2 (en) 2021-08-04
JPWO2019215825A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
JP4528835B2 (en) Heat exchanger for multistage expansion of fluid in header
US7448436B2 (en) Heat exchanger
JP4845943B2 (en) Finned tube heat exchanger and refrigeration cycle air conditioner
JP6202451B2 (en) Heat exchanger and air conditioner
US6973805B2 (en) Layered heat exchanger, layered evaporator for motor vehicle air conditioners and refrigeration system
WO2012098912A1 (en) Heat exchanger and air conditioner
KR20160131577A (en) Heat exchanger for air conditioner
US20150362222A1 (en) Refrigerant distribution device and a heat pump apparatus using the same refrigerant distribution device
JP6419882B2 (en) Air conditioner
WO2018173356A1 (en) Heat exchanger and air conditioner using same
JP2008528936A (en) Flat tube heat exchanger with multiple channels
US20160223231A1 (en) Heat exchanger and air conditioner
JP2015203506A (en) heat exchanger
WO2019215825A1 (en) Heat exchanger, method for manufacturing communication section, indoor unit, outdoor unit, and air conditioner
JP4760542B2 (en) Heat exchanger
JPH0886591A (en) Heat exchanger and refrigerant evaporator
JP3068761B2 (en) Heat exchanger
JP2015055411A (en) Heat exchanger and air conditioner
JP2019095073A (en) Heat exchanger and heat pump device using the same
JP6788763B2 (en) Heat exchangers, indoor units, outdoor units, and air conditioners
JP6766980B1 (en) Air conditioner equipped with heat exchanger and heat exchanger
KR20040008343A (en) Fin & flat tube type Heat exchanger and Evaporator using the same
JP6817996B2 (en) Header for heat exchanger, heat exchanger, outdoor unit and air conditioner
WO2019176089A1 (en) Heat exchanger and refrigeration cycle device
KR101822898B1 (en) Hybrid module and air conditioner using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020517666

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18917660

Country of ref document: EP

Kind code of ref document: A1