JPWO2019215825A1 - Heat exchanger, manufacturing method of communication part, indoor unit, outdoor unit and air conditioner - Google Patents

Heat exchanger, manufacturing method of communication part, indoor unit, outdoor unit and air conditioner Download PDF

Info

Publication number
JPWO2019215825A1
JPWO2019215825A1 JP2020517666A JP2020517666A JPWO2019215825A1 JP WO2019215825 A1 JPWO2019215825 A1 JP WO2019215825A1 JP 2020517666 A JP2020517666 A JP 2020517666A JP 2020517666 A JP2020517666 A JP 2020517666A JP WO2019215825 A1 JPWO2019215825 A1 JP WO2019215825A1
Authority
JP
Japan
Prior art keywords
refrigerant
communication
heat exchanger
gas
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020517666A
Other languages
Japanese (ja)
Other versions
JP6913826B2 (en
Inventor
佐々木 重幸
重幸 佐々木
禎夫 関谷
禎夫 関谷
遠藤 剛
剛 遠藤
高藤 亮一
亮一 高藤
法福 守
守 法福
大木 長斗司
長斗司 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Publication of JPWO2019215825A1 publication Critical patent/JPWO2019215825A1/en
Application granted granted Critical
Publication of JP6913826B2 publication Critical patent/JP6913826B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

外部からの冷媒の流入側となる流入側ヘッダ(3a)は、冷媒(L)が外部から流入する入口管(36)が設けられ、気液二相の冷媒が流入する気液混合部(41)と、流入側ヘッダ(3a)をその長手方向に仕切って複数設けられ、気液混合部(41)とも仕切られていて、1本又は連続的に並列した複数本の伝熱管(19)と接続しているヘッダ内空間(32)〜(35)と、異なるヘッダ内空間(32)〜(35)と気液混合部(41)とをそれぞれ連通する複数本の連通管(5)と、気液混合部(41)内に位置している各連通管(5)に設けられて、連通管(5)を介して当該気液混合部内の冷媒を各ヘッダ内空間(32)〜(35)に導く開口部とを有し、この開口部の面積は、複数本の連通管(5)の中で互いに異なるものを含む。The inflow side header (3a), which is the inflow side of the refrigerant from the outside, is provided with an inlet pipe (36) into which the refrigerant (L) flows in from the outside, and a gas-liquid mixing portion (41) into which the gas-liquid two-phase refrigerant flows. ), A plurality of inflow side headers (3a) are provided in the longitudinal direction thereof, and a plurality of gas-liquid mixing portions (41) are also partitioned, and one or a plurality of continuously parallel heat transfer tubes (19) are provided. A plurality of communication pipes (5) that communicate the connected internal header spaces (32) to (35), the different internal header spaces (32) to (35), and the gas-liquid mixing unit (41), respectively. The refrigerant in the gas-liquid mixing section is provided in each communication pipe (5) located in the gas-liquid mixing section (41), and the refrigerant in the gas-liquid mixing section is passed through the communication pipes (5) to the spaces (32) to (35) in each header. ), And the area of this opening includes a plurality of communication pipes (5) that differ from each other.

Description

本発明は、熱交換器、連通部の製造方法、室内機、室外機及び空気調和機に関する。 The present invention relates to a heat exchanger, a method for manufacturing a communication section, an indoor unit, an outdoor unit, and an air conditioner.

本技術分野の背景技術として、特開平2013−130386号公報(特許文献1)がある。この公報には、「室外熱交換器では、各扁平管の一端が第1ヘッダ集合管に接続される。第1ヘッダ集合管の下側空間は、上側横仕切板と下側横仕切板と縦仕切板とによって、三つの連通室と一つの混合室とに仕切られる。複数の連通室は、上下に並んでいる。各連通室には、複数本の扁平管が接続されている。混合室は、中央の連通室に隣接している。混合室は、下側横仕切板の連通用貫通孔を介して第1連通室に連通し、縦仕切板(の連通用貫通孔を介して第2連通室に連通し、上側横仕切板の連通用貫通孔を介して第3連通室に連通する。」と記載されている(要約参照)。 As a background technique in this technical field, there is Japanese Patent Application Laid-Open No. 2013-130386 (Patent Document 1). According to this publication, "In an outdoor heat exchanger, one end of each flat pipe is connected to a first header collecting pipe. The lower space of the first header collecting pipe includes an upper horizontal partition plate and a lower horizontal partition plate. It is divided into three communication rooms and one mixing room by a vertical partition plate. The plurality of communication rooms are arranged one above the other. Each communication room is connected to a plurality of flat pipes. Mixing. The chamber is adjacent to the central communication chamber. The mixing chamber communicates with the first communication chamber through the communication through hole of the lower horizontal partition plate, and communicates with the vertical partition plate (through the communication through hole of the vertical partition plate). It communicates with the second communication room and communicates with the third communication room through the communication through hole of the upper horizontal partition plate "(see summary).

特開2013−130386号公報Japanese Unexamined Patent Publication No. 2013-13586

前記特許文献1の技術は、各扁平管に流入する冷媒の乾き度を均一化することを意図している。しかしながら、各扁平管及び各フィンの通風量にはばらつきが存在する場合がある。その場合には、扁平管によって冷媒の供給量を可変する必要がある。しかしながら、特許文献1には、扁平管によって冷媒の供給量を変えて熱交換器の熱交換効率を向上させる技術については何ら開示されていない。
そこで、本発明は、伝熱管によって冷媒の供給量を変えて熱交換器の熱交換効率を向上させることを課題とする。
The technique of Patent Document 1 is intended to make the dryness of the refrigerant flowing into each flat tube uniform. However, there may be variations in the amount of ventilation of each flat tube and each fin. In that case, it is necessary to change the amount of refrigerant supplied by the flat pipe. However, Patent Document 1 does not disclose any technique for improving the heat exchange efficiency of the heat exchanger by changing the supply amount of the refrigerant by the flat tube.
Therefore, it is an object of the present invention to improve the heat exchange efficiency of the heat exchanger by changing the supply amount of the refrigerant by the heat transfer tube.

上記課題を解決するため、本発明の一形態である熱交換器は、一対のヘッダと、前記ヘッダの長手方向に複数本並び、両端側が前記各ヘッダにそれぞれ接続されている伝熱管と、前記各伝熱管に接続されて、複数枚が当該伝熱管の長手方向に並ぶフィンとを備え、前記一対のヘッダのうちで外部からの冷媒の流入側となる流入側ヘッダは、前記冷媒の流入口が設けられ、気液二相の冷媒が流入する気液混合部と、前記流入側ヘッダをその長手方向に仕切って複数設けられ、前記気液混合部とも仕切られていて、1本又は連続的に並列した複数本の前記伝熱管と接続しているヘッダ内空間と、異なる前記ヘッダ内空間と前記気液混合部とをそれぞれ連通する複数本の連通管と、前記気液混合部内に位置している前記各連通管に設けられて、前記連通管を介して当該気液混合部内の冷媒を前記各ヘッダ内空間に導く開口部とを有し、前記開口部の面積は、複数本の前記連通管の中で互いに異なるものを含む。 In order to solve the above problems, a heat exchanger according to an embodiment of the present invention includes a pair of headers, a plurality of heat exchangers arranged in the longitudinal direction of the headers, and heat transfer tubes whose both ends are connected to the respective headers. The inflow side header, which is connected to each heat transfer tube and has a plurality of fins arranged in the longitudinal direction of the heat transfer tube, and which is the inflow side of the refrigerant from the outside among the pair of headers, is the inflow port of the refrigerant. Is provided, and a gas-liquid mixing section into which the gas-liquid two-phase refrigerant flows in and a plurality of gas-liquid mixing sections are provided by partitioning the inflow side header in the longitudinal direction thereof, and the gas-liquid mixing section is also partitioned to one or a continuous one. The space inside the header connected to the plurality of heat transfer tubes arranged in parallel, the plurality of communication pipes communicating the different spaces inside the header and the gas-liquid mixing section, respectively, and located in the gas-liquid mixing section. Each of the communication pipes is provided with an opening for guiding the refrigerant in the gas-liquid mixing portion to the space in each header through the communication pipe, and the area of the opening is a plurality of the above. Includes communication pipes that are different from each other.

本発明によれば、伝熱管によって冷媒の供給量を変えて熱交換器の熱交換効率を向上させることができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, the heat exchange efficiency of the heat exchanger can be improved by changing the supply amount of the refrigerant by the heat transfer tube.
Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.

本発明の実施例1に係る熱交換器の平面図である。It is a top view of the heat exchanger which concerns on Example 1 of this invention. 図1AのA−A切断断面図である。It is a cross-sectional view taken along the line AA of FIG. 1A. 本発明の実施例1に係る熱交換器の2本の連通管を並べて図示した正面図である。It is a front view which showed the two communication pipes of the heat exchanger which concerns on Example 1 of this invention side by side. 本発明の実施例1に係る熱交換器の他の例における2本の連通管を並べて図示した正面図である。It is a front view which showed the two communication pipes side by side in another example of the heat exchanger which concerns on Example 1 of this invention. 本発明の実施例1に係る熱交換器の他の例における2本の連通管を並べて図示した正面図である。It is a front view which showed the two communication pipes side by side in another example of the heat exchanger which concerns on Example 1 of this invention. 本発明の実施例1に係る空気調和機の系統図である。It is a system diagram of the air conditioner which concerns on Example 1 of this invention. 本発明の実施例1に係る空気調和機の室外機の内部を透過して図示した斜視図である。It is a perspective view which showed through the inside of the outdoor unit of the air conditioner which concerns on Example 1 of this invention. 本発明の実施例1に係る空気調和機の室内機の横断面図である。It is sectional drawing of the indoor unit of the air conditioner which concerns on Example 1 of this invention. 本発明の実施例2に係る熱交換器の2本の連通管を並べて図示した正面図である。It is a front view which showed the two communication pipes of the heat exchanger which concerns on Example 2 of this invention side by side. 本発明の実施例2に係る熱交換器の他の例における2本の連通管を並べて図示した正面図である。It is a front view which showed the two communication pipes side by side in another example of the heat exchanger which concerns on Example 2 of this invention. 本発明の実施例2に係る熱交換器の他の例における2本の連通管を並べて図示した正面図である。It is a front view which showed the two communication pipes side by side in another example of the heat exchanger which concerns on Example 2 of this invention. 本発明の実施例3に係る熱交換器の流入側ヘッダにおける気液混合部部分の縦断面図である。It is a vertical cross-sectional view of the gas-liquid mixing part part in the inflow side header of the heat exchanger which concerns on Example 3 of this invention. 図7AのB−B断面図である。FIG. 7A is a sectional view taken along line BB of FIG. 7A. 図7AのB−B断面図の他の例である。It is another example of the BB sectional view of FIG. 7A. 本発明の実施例3に係る熱交換器の流入側ヘッダにおける気液混合部及びその上部の部分の縦断面図である。It is a vertical cross-sectional view of the gas-liquid mixing part and the part above it in the inflow side header of the heat exchanger according to the third embodiment of the present invention.

図1Aは、本発明の実施例1に係る熱交換器1の平面図である。熱交換器1は、図1Aにおいて左右方向にある程度の長さを有するものであるため、左右の長手方向の一部を切欠いて図示している。 FIG. 1A is a plan view of the heat exchanger 1 according to the first embodiment of the present invention. Since the heat exchanger 1 has a certain length in the left-right direction in FIG. 1A, a part of the heat exchanger 1 in the left-right longitudinal direction is cut out and shown.

熱交換器1は、一対の流入側ヘッダ3a、流出側ヘッダ(ヘッダ)3bを備えている。流入側ヘッダ3aは、外部からの冷媒の入口となり、流出側ヘッダ3bは冷媒の外部への出口となる。以下では、流入側ヘッダ3a及び流出側ヘッダ3bを単にヘッダと呼ぶ場合もある。流入側ヘッダ3a、流出側ヘッダ3bは、いずれも長尺の円筒形部材である。図1Aにおいては、流入側ヘッダ3aを縦断面で示し、流出側ヘッダ3bはその外面だけを示している。流入側ヘッダ3a、流出側ヘッダ3bは、図1Aにおいて、一般的に下端側(後記する気液混合部41側)が上端側よりも低い位置に配置されるが、必ずしもこれに限定されるものではない。 The heat exchanger 1 includes a pair of inflow side headers 3a and outflow side headers (headers) 3b. The inflow side header 3a serves as an inlet for the refrigerant from the outside, and the outflow side header 3b serves as an outlet for the refrigerant to the outside. In the following, the inflow side header 3a and the outflow side header 3b may be simply referred to as headers. The inflow side header 3a and the outflow side header 3b are both long cylindrical members. In FIG. 1A, the inflow side header 3a is shown in a vertical cross section, and the outflow side header 3b shows only the outer surface thereof. The inflow side header 3a and the outflow side header 3b are generally arranged at positions where the lower end side (the gas-liquid mixing portion 41 side described later) is lower than the upper end side in FIG. 1A, but are not necessarily limited to this. is not it.

伝熱管19は、例えばアルミニウム等の金属部材で構成され、ヘッダ3a,3bの長手方向に複数本並んでいる当該長手方向に扁平な扁平伝熱管である。その段ピッチは、図1Aの例でPdである。伝熱管19の長手方向は、ヘッダ3a,3bの長手方向と略直角である。各伝熱管19は、両端側が各ヘッダ3a,3bにそれぞれ接続されていて、流入側ヘッダ3aから冷媒が流入して、図1Aで矢印a方向に流れる。そして、各伝熱管19を通過した冷媒は流出側ヘッダ3bに流入する。流出側ヘッダ3bから外部に冷媒が流出する経路は図示を省略するが、当該経路は流出側ヘッダ3bに様々な形態で接続することができる。 The heat transfer tube 19 is a flat heat transfer tube that is made of a metal member such as aluminum and is flat in the longitudinal direction in which a plurality of headers 3a and 3b are arranged in the longitudinal direction. The step pitch is Pd in the example of FIG. 1A. The longitudinal direction of the heat transfer tube 19 is substantially perpendicular to the longitudinal direction of the headers 3a and 3b. Both ends of each heat transfer tube 19 are connected to the headers 3a and 3b, respectively, and the refrigerant flows in from the inflow side header 3a and flows in the direction of arrow a in FIG. 1A. Then, the refrigerant that has passed through each heat transfer tube 19 flows into the outflow side header 3b. The path through which the refrigerant flows out from the outflow side header 3b is not shown, but the path can be connected to the outflow side header 3b in various forms.

フィン2は、薄板状の例えばアルミニウム等の金属部材で構成され、各伝熱管19の伝熱面積を拡大する。フィン2は、各伝熱管19に接続されて、複数枚が伝熱管19の長手方向に例えば等間隔で並ぶ。その場合のフィンピッチは、図1Aに図示するようにPfである。フィン2は、伝熱管19と伝熱可能にろう付けにより接合されている。 The fin 2 is made of a thin plate-shaped metal member such as aluminum, and expands the heat transfer area of each heat transfer tube 19. A plurality of fins 2 are connected to each heat transfer tube 19, and a plurality of fins 2 are arranged in the longitudinal direction of the heat transfer tube 19, for example, at equal intervals. The fin pitch in that case is Pf as shown in FIG. 1A. The fin 2 is joined to the heat transfer tube 19 by brazing so that heat can be transferred.

ヘッダ3a,3b、伝熱管19、フィン2の構成や製造方法の例を更に具体的に説明する。ヘッダ3a,3bの側面には、伝熱管19を挿入するための複数の穴が予め段ピッチPdで複数個空けられている。伝熱管19は、例えば、扁平断面内に複数の多穴流路(図示せず)を押出加工で形成したものである。フィン2は、長手方向の側端部に等間隔で複数の切り込みを入れ、その切り込みに各伝熱管19を差し込むか、各フィン2に、その長手方向に並ぶ複数個の貫通孔を空けて、当該貫通孔に伝熱管19を差し込むかして、伝熱管19 と一体に形成することができる。 Examples of the configurations and manufacturing methods of the headers 3a and 3b, the heat transfer tube 19, and the fins 2 will be described in more detail. On the side surfaces of the headers 3a and 3b, a plurality of holes for inserting the heat transfer tubes 19 are pre-drilled with a step pitch Pd. The heat transfer tube 19 is formed by, for example, extruding a plurality of multi-hole flow paths (not shown) in a flat cross section. The fins 2 are made with a plurality of notches at equal intervals in the side ends in the longitudinal direction, and each heat transfer tube 19 is inserted into the notches, or a plurality of through holes arranged in the longitudinal direction are made in each fin 2. The heat transfer tube 19 can be integrally formed with the heat transfer tube 19 by inserting the heat transfer tube 19 into the through hole.

これらの部材を組み合わせた熱交換器1の製造時には、先ず、各伝熱管19の端部をヘッダ3の穴に差し込み、さらに、伝熱管19にフィン2を取り付けた仮組状態で、炉中で一括ろう付けして熱交換器1を製造してもよいし、部分的にトーチでろう付けして熱交換器1を製造してもよい。
ここで、伝熱管19とフィン2との接合は、前述のろう付けに代え、多穴流路内を液圧やガス圧で加圧することで伝熱管19に塑性変形を発生させて密着する方式を採ってもよい。また、図1Aのような板状のフィン2に代え、コルゲート状(波型)のフィンを、伝熱管19間に差し込む構成としてもよい。
When manufacturing the heat exchanger 1 that combines these members, first, the end of each heat transfer tube 19 is inserted into the hole of the header 3, and then the fin 2 is attached to the heat transfer tube 19 in a temporarily assembled state in the furnace. The heat exchanger 1 may be manufactured by batch brazing, or may be partially brazed with a torch to manufacture the heat exchanger 1.
Here, the connection between the heat transfer tube 19 and the fin 2 is a method in which the heat transfer tube 19 is brought into close contact with the heat transfer tube 19 by causing plastic deformation by pressurizing the inside of the multi-hole flow path with hydraulic pressure or gas pressure instead of the brazing described above. May be taken. Further, instead of the plate-shaped fin 2 as shown in FIG. 1A, a corrugated (corrugated) fin may be inserted between the heat transfer tubes 19.

流入側ヘッダ3aの図1Aで下端側は仕切板31aで仕切られている。そして、流入側ヘッダ3aの仕切板31aより上側の空間は、複数枚、図1Aの例で3枚の仕切板31bによって例えば等間隔に仕切られている。つまり、流入側ヘッダ3a内は、仕切板31a,31bによって、例えば5区画に仕切られている。そのうち、仕切板31aで仕切られた流入側ヘッダ3aの下側の空間は、気液混合部41となる、仕切板31aよりも流入側ヘッダ3aの上側で、仕切板31bで仕切られている4つの空間はヘッダ内空間32〜35を構成する。なお、気液混合部41を流入側ヘッダ3aの長手方向のどの位置にもってくるかは、様々に実施することができる。例えば、気液混合部41を流入側ヘッダ3aの長手方向の中間位置に配置し、各ヘッダ内空間32〜35をその上下に分配してもよい。 In FIG. 1A of the inflow side header 3a, the lower end side is partitioned by a partition plate 31a. The space above the partition plate 31a of the inflow side header 3a is partitioned by, for example, a plurality of partitions, for example, three partition plates 31b in the example of FIG. 1A. That is, the inside of the inflow side header 3a is divided into, for example, 5 sections by the partition plates 31a and 31b. Of these, the space below the inflow side header 3a partitioned by the partition plate 31a is above the inflow side header 3a, which is the gas-liquid mixing portion 41, and is partitioned by the partition plate 31b4. One space constitutes the header space 32 to 35. It should be noted that the position of the gas-liquid mixing unit 41 in the longitudinal direction of the inflow side header 3a can be variously determined. For example, the gas-liquid mixing section 41 may be arranged at an intermediate position in the longitudinal direction of the inflow side header 3a, and the spaces 32 to 35 in each header may be distributed above and below it.

各ヘッダ内空間32〜35には、それぞれ1本又は連続して並ぶ複数本(図1Aの例では連続して並ぶ4本)の伝熱管19が接続している。なお、ヘッダ内空間32〜35ごとに接続している伝熱管19の本数が異なっていてもよい。
気液混合部41の下部側方には、冷媒の流入口となる入口管36が接続されている。この入口管36から気液二相の冷媒Lが外部から流入する。符号42は、冷媒Lの気液界面を示している。
One or a plurality of continuously arranged heat transfer tubes 19 (four continuously arranged in the example of FIG. 1A) are connected to the spaces 32 to 35 in each header. The number of heat transfer tubes 19 connected to each of the header spaces 32 to 35 may be different.
An inlet pipe 36, which is an inlet for the refrigerant, is connected to the lower side of the gas-liquid mixing portion 41. The gas-liquid two-phase refrigerant L flows in from the outside through the inlet pipe 36. Reference numeral 42 indicates a gas-liquid interface of the refrigerant L.

気液混合部41と各ヘッダ内空間32〜35とは、それぞれ連通管5a〜5dで接続されている。なお、連通管5a〜5dを単に連通管5と図示、記載する場合もある。すなわち、連通管5a〜5dは、仕切板31aを貫通している。さらに、連通管5a〜5dのうちの3本は、1又は複数枚の仕切板31bも貫通している。連通管5a〜5dは、仕切板31a,31bの貫通孔に接合されて支持されている。連通管5a〜5dと仕切板31a,31bとの接合部は密閉され、隣り合うヘッダ内空間32〜35同士やヘッダ内空間35と気液混合部41との間で冷媒Lのリークは生じない。連通管5a〜5dの下端は流入側ヘッダ3aの底板3a1との間に所定の間隔を空けて同じ高さに揃っている。なお、図1Aは、複数の連通管5がそれぞれ異なるヘッダ内空間32〜35と連通していることを模式的に示しているだけであり、各連通管5の配置を正確に示したものではない。 The gas-liquid mixing section 41 and the spaces 32 to 35 in each header are connected by communication pipes 5a to 5d, respectively. In some cases, the communication pipes 5a to 5d are simply illustrated and described as the communication pipe 5. That is, the communication pipes 5a to 5d penetrate the partition plate 31a. Further, three of the communication pipes 5a to 5d also penetrate one or a plurality of partition plates 31b. The communication pipes 5a to 5d are joined to and supported by the through holes of the partition plates 31a and 31b. The joints between the communication pipes 5a to 5d and the partition plates 31a and 31b are sealed, and the refrigerant L does not leak between the adjacent header inner spaces 32 to 35 or between the header inner spaces 35 and the gas-liquid mixing portion 41. .. The lower ends of the communication pipes 5a to 5d are aligned at the same height with a predetermined distance from the bottom plate 3a1 of the inflow side header 3a. Note that FIG. 1A merely schematically shows that the plurality of communication pipes 5 communicate with different header spaces 32 to 35, and does not accurately show the arrangement of each communication pipe 5. Absent.

ところで、複数本の伝熱管19を並べ、その長手方向に多数枚のフィン2を接合した熱交換器1では、流入する空気と冷媒Lとが熱交換する面積は一般的にはある程度の拡がりを有している。そのため、同じ熱交換器1でも各伝熱管19やその各伝熱管19の周囲のフィン2を通過する単位時間当たりの空気量には部位によってばらつきがある場合が存在する。 By the way, in the heat exchanger 1 in which a plurality of heat transfer tubes 19 are arranged and a large number of fins 2 are joined in the longitudinal direction thereof, the area where the inflowing air and the refrigerant L exchange heat generally expands to some extent. Have. Therefore, even in the same heat exchanger 1, the amount of air per unit time passing through each heat transfer tube 19 and the fins 2 around each heat transfer tube 19 may vary depending on the site.

そこで、通過する単位時間当たりの空気量が多い(熱負荷が部分的に大きい)と考えられる伝熱管19には相対的に多くの冷媒Lを供給するようにしたい。また、逆に通過する単位時間当たりの空気量が少ない(熱負荷が部分的に小さい)と考えられる伝熱管19には相対的に少ない冷媒Lを供給するようにしたい。これにより、熱交換器1の熱交換効率を高めることができる。
以下では、伝熱管19によって、単位時間当たりに供給する冷媒量を可変して、熱交換器1の熱交換効率を高める手段について説明する。
Therefore, it is desired to supply a relatively large amount of the refrigerant L to the heat transfer tube 19 which is considered to have a large amount of air per unit time to pass through (the heat load is partially large). On the contrary, it is desired to supply a relatively small amount of the refrigerant L to the heat transfer tube 19 which is considered to have a small amount of air per unit time passing through (the heat load is partially small). Thereby, the heat exchange efficiency of the heat exchanger 1 can be improved.
Hereinafter, a means for increasing the heat exchange efficiency of the heat exchanger 1 by varying the amount of refrigerant supplied per unit time by the heat transfer tube 19 will be described.

図1Bは、図1AのA−A切断断面図である。図2Aは、2本の連通管5a,5cを並べて図示した正面図である。図2Aにおいて、連通管5b,5dは図示を省略している。また、図2Aの連通管5aと5cは、現実には長さが異なるが、図2Aでは便宜上同じ長さで図示している(以下同様)。気液混合部41内に位置している各連通管5a〜5dには、それぞれ側部に開口部5a1〜5d1が設けられている。各開口部5a1〜5d1は、各連通管5a〜5dを介して気液混合部41内の冷媒Lを各ヘッダ内空間32〜35に導く各連通管5a〜5dへの入口となるものである。すなわち、気液混合部41内のガス冷媒が各開口部5a1〜5d1に吸い込まれ、その勢いで気液混合部41内の液冷媒も各開口部5a1〜5d1に吸い込まれる。 FIG. 1B is a cross-sectional view taken along the line AA of FIG. 1A. FIG. 2A is a front view showing two communication pipes 5a and 5c side by side. In FIG. 2A, the communication pipes 5b and 5d are not shown. Further, the communication pipes 5a and 5c in FIG. 2A are actually different in length, but are shown in FIG. 2A with the same length for convenience (the same applies hereinafter). The communication pipes 5a to 5d located in the gas-liquid mixing unit 41 are provided with openings 5a1 to 5d1 on their sides, respectively. The openings 5a1 to 5d1 serve as inlets to the communication pipes 5a to 5d that guide the refrigerant L in the gas-liquid mixing section 41 to the header spaces 32 to 35 via the communication pipes 5a to 5d. .. That is, the gas refrigerant in the gas-liquid mixing section 41 is sucked into each opening 5a1 to 5d1, and the liquid refrigerant in the gas-liquid mixing section 41 is also sucked into each opening 5a1 to 5d1 at that momentum.

開口部5a1〜5d1の面積は、各連通管5a〜5dの中で互いに異なるものを含んでいる。すなわち、図2Aの開口部5a1〜5d1は、各連通管5a〜5dに同じ数だけ設けられた貫通孔である。この貫通孔は各連通管5a〜5dに同じ数だけ、長手方向に並べて形成されている。そして、各連通管5a〜5dにおいて、上から1番目の貫通孔は各連通管5a〜5dにおいて中心が同じ高さであり、上から2番目の貫通孔は各連通管5a〜5dにおいて中心が同じ高さであり、…というように構成されている。すなわち、上から又は下から数えて同じ順番にある貫通孔は各連通管5a〜5dにおいて同じ高さに位置している。そして、各開口部5a1〜5d1の相違は連通管5a〜5dによって貫通孔の大きさが異なることである。これにより、各連通管5a〜5dにおいて、単位時間当たりに流入する冷媒Lの量を変えることができる。 The areas of the openings 5a1 to 5d1 include different ones in the communication pipes 5a to 5d. That is, the openings 5a1 to 5d1 in FIG. 2A are through holes provided in the same number of communication pipes 5a to 5d. The same number of through holes are formed in the communication pipes 5a to 5d side by side in the longitudinal direction. Then, in each of the communication pipes 5a to 5d, the first through hole from the top has the same height at the center in each of the communication pipes 5a to 5d, and the second through hole from the top has the center in each of the communication pipes 5a to 5d. It is the same height and is configured as ... That is, the through holes in the same order counting from the top or the bottom are located at the same height in each of the communication pipes 5a to 5d. The difference between the openings 5a1 to 5d1 is that the size of the through hole differs depending on the communication pipes 5a to 5d. Thereby, in each of the communication pipes 5a to 5d, the amount of the refrigerant L flowing in per unit time can be changed.

図1B、図2Aの例では、連通管5aの開口部5a1である貫通孔の大きさを最も大きくして(径サイズG5a)、単位時間当たりに流入する冷媒Lの量を連通管5a〜5dの中で最大としている。さらに、連通管5cの開口部5c1である貫通孔の大きさを最も小さくして(径サイズG5c)、単位時間当たりに流入する冷媒Lの量を連通管5a〜5dの中で最小としている。その上、連通管5b,5dの開口部5b1,5d1である貫通孔の大きさをこれらの中間的な大きさとして(径サイズG5b,G5d)、単位時間当たりに流入する冷媒Lの量を連通管5a〜5dの中で中間的な値としている。なお、図2Aの例では、各貫通孔を丸孔とした例を示しているが、貫通孔の形状は四角形状や三角形状など、様々な形状とすることができる。
また、開口部5a1〜5d1は、図1Bの例では、全て円筒状である気液混合部41の中心軸線側に向けている。これにより、連通管5dの開口部5d1は、入口管36からの冷媒の流入方向に背を向けている。
In the examples of FIGS. 1B and 2A, the size of the through hole which is the opening 5a1 of the communication pipe 5a is maximized (diameter size G5a), and the amount of the refrigerant L flowing in per unit time is determined by the communication pipes 5a to 5d. It is the largest among them. Further, the size of the through hole which is the opening 5c1 of the communication pipe 5c is minimized (diameter size G5c), and the amount of the refrigerant L flowing in per unit time is minimized among the communication pipes 5a to 5d. Further, the size of the through hole which is the opening 5b1, 5d1 of the communication pipes 5b and 5d is set as an intermediate size (diameter sizes G5b and G5d), and the amount of the refrigerant L flowing in per unit time is communicated. The value is set to an intermediate value in the tubes 5a to 5d. In the example of FIG. 2A, an example in which each through hole is a round hole is shown, but the shape of the through hole can be various shapes such as a quadrangular shape and a triangular shape.
Further, the openings 5a1 to 5d1 are directed toward the central axis side of the gas-liquid mixing portion 41, which is all cylindrical in the example of FIG. 1B. As a result, the opening 5d1 of the communication pipe 5d turns its back in the inflow direction of the refrigerant from the inlet pipe 36.

図2Bは、別の例における2本の連通管5a,5cを並べて図示した正面図である。図2Bにおいても、連通管5b,5dは図示を省略している。図2Bの例は、各連通管5a〜5dの各開口部5a1〜5d1が各連通管5a〜5dの長手方向に長い長孔となっている点が、図2Aの例と異なっている。そして、この長孔である各開口部5a1〜5d1において幅が異なるもの同士を含んでいる。これにより、各開口部5a1〜5d1において面積の異なるもの同士が存在するようにしている。本例においても、長孔である各開口部5a1〜5d1の幅サイズG5a〜G5dは、“G5a>G5b=G5d>G5c”となっている。 FIG. 2B is a front view showing two communication pipes 5a and 5c side by side in another example. Also in FIG. 2B, the communication pipes 5b and 5d are not shown. The example of FIG. 2B is different from the example of FIG. 2A in that the openings 5a1 to 5d1 of the communication pipes 5a to 5d are elongated holes long in the longitudinal direction of the communication pipes 5a to 5d. Then, the openings 5a1 to 5d1 which are the elongated holes include those having different widths. As a result, there are objects having different areas in the openings 5a1 to 5d1. Also in this example, the width sizes G5a to G5d of the openings 5a1 to 5d1 which are elongated holes are "G5a> G5b = G5d> G5c".

図2Cは、図2Bの変形例である2本の連通管5a,5cを並べて図示した正面図である。図2Cにおいても、連通管5b,5dは図示は省略している。図2Cが図2Bと異なるのは、管状の部材である各連通管5a〜5dの下端部に栓53を嵌め込んで、当該各連通管5a〜5dの下端部を閉塞していることである。すなわち、図2Bの例では、各連通管5a〜5dの下端部が開口しているが、図2Cの例では、開口部5a1〜5d1のみから冷媒Lを流動させることで冷媒分配を行っている。図2Aの例でも各連通管5a〜5dの下端部が開口しているが、図2Cの例と同様、栓53によって各連通管5a〜5dの下端部を閉塞してもよい。
なお、各開口部のサイズはあくまでも一例である(以下の各実施例においても同様)。どの開口部を広くし、どの開口部を狭くするかは、空気調和機100の機種、その他の条件により変動する。
FIG. 2C is a front view showing two communication pipes 5a and 5c, which are modified examples of FIG. 2B, side by side. Also in FIG. 2C, the communication pipes 5b and 5d are not shown. FIG. 2C differs from FIG. 2B in that the plug 53 is fitted into the lower end of each communication pipe 5a to 5d, which is a tubular member, to close the lower end of each communication pipe 5a to 5d. .. That is, in the example of FIG. 2B, the lower ends of the communication pipes 5a to 5d are open, but in the example of FIG. 2C, the refrigerant L is distributed by flowing the refrigerant L only from the openings 5a to 5d1. .. In the example of FIG. 2A, the lower ends of the communication pipes 5a to 5d are open, but as in the example of FIG. 2C, the lower ends of the communication pipes 5a to 5d may be closed by the plug 53.
The size of each opening is just an example (the same applies to each of the following examples). Which opening is widened and which opening is narrowed depends on the model of the air conditioner 100 and other conditions.

図3は、前記熱交換器1を適用した空気調和機100の全体構成を示す系統図である。空気調和機100は、圧縮機8、四方弁9、室内熱交換器(第1熱交換器)101、膨張弁103、室外熱交換器(第2熱交換器)106等で構成され、各部材は配管121で接続されている。室内熱交換器101及び室内ファン102は室内機108に設けられている。圧縮機8、四方弁9、膨張弁103、室外熱交換器106、室外ファン107は室外機105に設けられている。なお、膨張弁103は、室内機108に設けてもよいし、室内機108及び室外機105の両方に設けてもよい。 FIG. 3 is a system diagram showing the overall configuration of the air conditioner 100 to which the heat exchanger 1 is applied. The air conditioner 100 includes a compressor 8, a four-way valve 9, an indoor heat exchanger (first heat exchanger) 101, an expansion valve 103, an outdoor heat exchanger (second heat exchanger) 106, and the like. Are connected by a pipe 121. The indoor heat exchanger 101 and the indoor fan 102 are provided in the indoor unit 108. The compressor 8, the four-way valve 9, the expansion valve 103, the outdoor heat exchanger 106, and the outdoor fan 107 are provided in the outdoor unit 105. The expansion valve 103 may be provided in the indoor unit 108, or may be provided in both the indoor unit 108 and the outdoor unit 105.

圧縮機8は、圧縮機モータ(図示せず)の駆動によって、低温低圧のガス冷媒を圧縮し、高温高圧のガス冷媒として吐出する装置である。
四方弁9は、空気調和機100の運転モードに応じて、冷媒の流路を切り替える弁である。
膨張弁103は、「凝縮器」(空調運転の種類に応じて室外熱交換器106及び室内熱交換器101の一方)で凝縮した冷媒を減圧する弁である。なお、膨張弁103において減圧された冷媒は、「蒸発器」(空調運転の種類に応じて室外熱交換器106及び室内熱交換器101の他方)に導かれる。
The compressor 8 is a device that compresses a low-temperature low-pressure gas refrigerant by driving a compressor motor (not shown) and discharges it as a high-temperature high-pressure gas refrigerant.
The four-way valve 9 is a valve that switches the flow path of the refrigerant according to the operation mode of the air conditioner 100.
The expansion valve 103 is a valve that reduces the pressure of the refrigerant condensed by the "condenser" (one of the outdoor heat exchanger 106 and the indoor heat exchanger 101 depending on the type of air conditioning operation). The refrigerant decompressed by the expansion valve 103 is guided to an "evaporator" (the other of the outdoor heat exchanger 106 and the indoor heat exchanger 101 depending on the type of air conditioning operation).

室内熱交換器101には、前記熱交換器1を適用している。室内熱交換器101は、その伝熱管19を通流する冷媒と、室内ファン102から送り込まれる室内空気(空調対象空間の空気)との間で熱交換を行う熱交換器である。
室内ファン102は、室内熱交換器101に室内空気を送り込むファンであり、室内熱交換器101の近傍に設置されている。
The heat exchanger 1 is applied to the indoor heat exchanger 101. The indoor heat exchanger 101 is a heat exchanger that exchanges heat between the refrigerant flowing through the heat transfer tube 19 and the indoor air (air in the air conditioning target space) sent from the indoor fan 102.
The indoor fan 102 is a fan that sends indoor air to the indoor heat exchanger 101, and is installed in the vicinity of the indoor heat exchanger 101.

室外熱交換器106には、前記熱交換器1を適用している。室外熱交換器106は、その伝熱管19を通流する冷媒と、室内ファン102から送り込まれる屋外空気との間で熱交換を行う熱交換器である。
室外ファン107は、室外熱交換器106に屋外空気を送り込むファンであり、室外熱交換器106の近傍に設置されている。
なお、室内熱交換器101及び室外熱交換器106の一方にのみ前記熱交換器1を用い、他方は他の構成の熱交換器を用いてもよい。
The heat exchanger 1 is applied to the outdoor heat exchanger 106. The outdoor heat exchanger 106 is a heat exchanger that exchanges heat between the refrigerant flowing through the heat transfer tube 19 and the outdoor air sent from the indoor fan 102.
The outdoor fan 107 is a fan that sends outdoor air to the outdoor heat exchanger 106, and is installed in the vicinity of the outdoor heat exchanger 106.
The heat exchanger 1 may be used only for one of the indoor heat exchanger 101 and the outdoor heat exchanger 106, and a heat exchanger having another configuration may be used for the other.

図3を用いて、暖房運転時を例に、ヒートポンプ式の空気調和機100の冷凍サイクルを説明する。空気調和機100において、暖房運転時の冷媒の流れは実線矢印60で示している。圧縮機8は、ガス冷媒を圧縮する装置であり、圧縮機8で高温・高圧状態になった冷媒は、四方弁9を介して室内機108内の室内熱交換器101(凝縮器)に導かれる。そして、室内熱交換器101の伝熱管19(図1A)内を流れる高温の冷媒が、室内ファン102から供給される室内空気に放熱することで、室内が暖められる。このとき、伝熱管内では、熱を奪われたガス冷媒が次第に液化し、室内熱交換器101の出口からは、飽和温度よりも数℃程度低温の過冷却状態の液冷媒が流出する。 The refrigeration cycle of the heat pump type air conditioner 100 will be described with reference to FIG. 3 by taking the heating operation as an example. In the air conditioner 100, the flow of the refrigerant during the heating operation is indicated by the solid arrow 60. The compressor 8 is a device that compresses the gas refrigerant, and the refrigerant that has become high temperature and high pressure in the compressor 8 is guided to the indoor heat exchanger 101 (condenser) in the indoor unit 108 via the four-way valve 9. Be taken. Then, the high-temperature refrigerant flowing in the heat transfer tube 19 (FIG. 1A) of the indoor heat exchanger 101 dissipates heat to the indoor air supplied from the indoor fan 102, thereby warming the room. At this time, the gas refrigerant that has been deprived of heat gradually liquefies in the heat transfer tube, and the liquid refrigerant in the overcooled state, which is about several ° C. lower than the saturation temperature, flows out from the outlet of the indoor heat exchanger 101.

その後、室内機108から流出した液冷媒は、膨張弁103を通過時の膨張作用により低温・低圧状態の気液二相冷媒となる。この低温・低圧の気液二相冷媒は、室外機105内の室外熱交換器106(蒸発器)に導かれる。そして、室外熱交換器106の伝熱管内を流れる低温の冷媒が、室外ファン107から供給される外気から吸熱することで、冷媒の乾き度(=ガス冷媒の質量速度/(液冷媒の質量速度+ガス冷媒の質量速度))が高まる。室外熱交換器106の出口では、冷媒はガス化して数℃程度、過熱度が上昇した状態で圧縮機8に戻る。以上で説明した、一連の冷凍サイクルによって、空気調和機100の暖房運転が実現される。 After that, the liquid refrigerant flowing out of the indoor unit 108 becomes a gas-liquid two-phase refrigerant in a low temperature / low pressure state due to the expansion action when passing through the expansion valve 103. This low-temperature / low-pressure gas-liquid two-phase refrigerant is guided to the outdoor heat exchanger 106 (evaporator) in the outdoor unit 105. Then, the low-temperature refrigerant flowing in the heat transfer tube of the outdoor heat exchanger 106 absorbs heat from the outside air supplied from the outdoor fan 107, so that the dryness of the refrigerant (= mass speed of gas refrigerant / (mass speed of liquid refrigerant)). + Mass rate of gas refrigerant)) increases. At the outlet of the outdoor heat exchanger 106, the refrigerant is gasified and returns to the compressor 8 in a state where the degree of superheat has increased by about several ° C. The heating operation of the air conditioner 100 is realized by the series of refrigeration cycles described above.

一方、冷房運転時の冷媒の流れは破線矢印61で示している。冷房運転時には、四方弁9を切り替えて、破線矢印61方向に冷媒が循環する冷凍サイクルを形成する。この場合、室内熱交換器101が蒸発器として作用し、室外熱交換器106が凝縮器として作用する。この一連の冷凍サイクルによって、空気調和機100の冷房運転が実現される。
次に、本実施例1にかかる空気調和機100の作用効果について説明する。
On the other hand, the flow of the refrigerant during the cooling operation is indicated by the broken line arrow 61. During the cooling operation, the four-way valve 9 is switched to form a refrigeration cycle in which the refrigerant circulates in the direction of the broken line arrow 61. In this case, the indoor heat exchanger 101 acts as an evaporator, and the outdoor heat exchanger 106 acts as a condenser. The cooling operation of the air conditioner 100 is realized by this series of refrigeration cycles.
Next, the operation and effect of the air conditioner 100 according to the first embodiment will be described.

図4は、室外機105の内部を透過して図示した斜視図である。なお、図4、図5において伝熱管19等は具体的に図示しない(伝熱管19等については図1A等を参照)。室外ファン107の駆動により外気が室外機105内に取り込まれ、この外気が室外熱交換器106(熱交換器1)を通過して、冷媒Lと外気との熱交換が図られる。 FIG. 4 is a perspective view showing through the inside of the outdoor unit 105. Note that the heat transfer tubes 19 and the like are not specifically shown in FIGS. 4 and 5 (see FIG. 1A and the like for the heat transfer tubes 19 and the like). The outside air is taken into the outdoor unit 105 by driving the outdoor fan 107, and the outside air passes through the outdoor heat exchanger 106 (heat exchanger 1) to exchange heat between the refrigerant L and the outside air.

しかし、水平方向を長さ方向として上下方向に多数本が並列している各伝熱管19において、単位時間当たりに通過する外気の量、すなわち外気の流速は一律ではない。図4の例では、室外機105の中間高さで流入する外気の流速V2が最も速く、次に、室外機105の上部に流入する外気の流速V1が速く、室外機105の下部に流入する外気の流速V3が最も遅い。すなわち、“V2>V1>V3”である。 However, in each heat transfer tube 19 in which a large number of heat transfer tubes 19 are arranged in parallel in the vertical direction with the horizontal direction as the length direction, the amount of outside air passing per unit time, that is, the flow velocity of the outside air is not uniform. In the example of FIG. 4, the flow velocity V2 of the outside air flowing in at the intermediate height of the outdoor unit 105 is the fastest, and then the flow velocity V1 of the outside air flowing into the upper part of the outdoor unit 105 is the fastest and flows into the lower part of the outdoor unit 105. The flow velocity V3 of the outside air is the slowest. That is, "V2> V1> V3".

そこで、図1A〜図2Cに示すように、各伝熱管19が接続しているヘッダ内空間32〜35に対応した各連通管5a〜5dの開口部5b1,5d1のサイズを前記の流速V1〜V3に応じて変えるようにする。すなわち、流速V2で外気が通過する伝熱管19に対応したヘッダ内空間に接続された連通管5の開口部は面積を相対的に広くする。一方、流速V3で外気が通過する伝熱管19に対応したヘッダ内空間に接続された連通管5の開口部は面積を相対的に狭くする。 Therefore, as shown in FIGS. 1A to 2C, the size of the openings 5b1, 5d1 of the communication tubes 5a to 5d corresponding to the header inner spaces 32 to 35 to which the heat transfer tubes 19 are connected is set to the above-mentioned flow velocity V1 to. Change according to V3. That is, the opening of the communication pipe 5 connected to the space inside the header corresponding to the heat transfer tube 19 through which the outside air passes at the flow velocity V2 has a relatively large area. On the other hand, the opening of the communication pipe 5 connected to the space inside the header corresponding to the heat transfer tube 19 through which the outside air passes at the flow velocity V3 has a relatively narrow area.

これによって、通過する単位時間当たりの空気量が多い(熱負荷が大きい)と考えられる伝熱管19には相対的に多くの冷媒Lを供給するようにできる。また、逆に通過する単位時間当たりの空気量が少ない(熱負荷が小さい)と考えられる伝熱管19には相対的に少ない冷媒Lを供給するようにできる。これにより、室外熱交換器106(熱交換器1)の熱交換効率を高めることができる。 As a result, a relatively large amount of the refrigerant L can be supplied to the heat transfer tube 19 which is considered to have a large amount of air per unit time to pass through (the heat load is large). On the contrary, it is possible to supply a relatively small amount of the refrigerant L to the heat transfer tube 19 which is considered to have a small amount of air per unit time passing through (the heat load is small). Thereby, the heat exchange efficiency of the outdoor heat exchanger 106 (heat exchanger 1) can be improved.

より具体的には、連通管5a〜5dの開口部5a1〜5d1は、面積が広いと、その部分の圧力損失が低下することでガス冷媒が当該連通管に多く流れる。そして、室外熱交換器106(熱交換器1)が蒸発器の場合に役割を発揮する液冷媒がガス冷媒の流れに作用され、ガス冷媒が多く流れる連通管に多く流れる。よって、開口部5a1〜5d1の開口面積を互いに変えることで液冷媒の分配量を調節し、ひいてはヘッダ内空間32〜35に流入する液冷媒の分配量も調節することが可能となる。 More specifically, if the openings 5a1 to 5d1 of the communication pipes 5a to 5d have a large area, the pressure loss at that portion decreases, so that a large amount of gas refrigerant flows through the communication pipes. Then, the liquid refrigerant that plays a role when the outdoor heat exchanger 106 (heat exchanger 1) is an evaporator is acted on by the flow of the gas refrigerant, and a large amount of the liquid refrigerant flows through the communication pipe through which a large amount of the gas refrigerant flows. Therefore, the distribution amount of the liquid refrigerant can be adjusted by changing the opening areas of the openings 5a1 to 5d1 to each other, and the distribution amount of the liquid refrigerant flowing into the header inner spaces 32 to 35 can also be adjusted.

図5は、室内機108の横断面図である。室内熱交換器101としては、この例で3台の室内熱交換器101a〜101c(いずれも熱交換器1)を備えている。室内ファン102は円筒状で長手方向が図5の紙面に垂直な方向である。室内熱交換器101a〜101cも長手方向が室内ファン102の長手方向に沿うように、そして、3台の室内熱交換器101a〜101cで室内ファン102を覆うように配置されている。室内ファン102の駆動により、各室内熱交換器101a〜101cの外側から室内の空気を取り込んで各室内熱交換器101a〜101cを通過させ、矢印cに示すように吹出口110から当該空気を室内に吹き出す。 FIG. 5 is a cross-sectional view of the indoor unit 108. As the indoor heat exchanger 101, in this example, three indoor heat exchangers 101a to 101c (all of which are heat exchangers 1) are provided. The indoor fan 102 is cylindrical and has a longitudinal direction perpendicular to the paper surface of FIG. The indoor heat exchangers 101a to 101c are also arranged so that the longitudinal direction is along the longitudinal direction of the indoor fan 102, and the three indoor heat exchangers 101a to 101c cover the indoor fan 102. By driving the indoor fan 102, indoor air is taken in from the outside of each indoor heat exchanger 101a-101c and passed through each indoor heat exchanger 101a-101c, and the air is taken into the room from the outlet 110 as shown by an arrow c. Blow out to.

室内熱交換器101a〜101cにおいても前記の図4の例と同様に各伝熱管19で流通する室内空気の流速が異なることは生じ得る。例えば、室内熱交換器101b,101cでは、入口管36に近い側の伝熱管19は室内ファン102に近いので室内空気の流速が相対的に速く、入口管36に遠い側の伝熱管19は室内ファン102に遠いので室内空気の流速が相対的に遅いことが考えうる。また、室内熱交換器101aでは、室内熱交換器101b,101cの近傍では当該室内熱交換器101b,101cが邪魔になって室内空気の流速が相対的に遅くなることが考えられる。一方、当該室内熱交換器101b,101cから遠い位置では当該室内熱交換器101b,101cが邪魔にならず室内空気の流速が相対的に速くなることが考えられる。 Also in the indoor heat exchangers 101a to 101c, the flow velocity of the indoor air flowing through each heat transfer tube 19 may be different as in the example of FIG. 4 above. For example, in the indoor heat exchangers 101b and 101c, the heat transfer tube 19 on the side closer to the inlet tube 36 is closer to the indoor fan 102, so that the flow velocity of the indoor air is relatively high, and the heat transfer tube 19 on the side farther from the inlet tube 36 is indoors. Since it is far from the fan 102, it is possible that the flow velocity of the indoor air is relatively slow. Further, in the indoor heat exchanger 101a, it is considered that the indoor heat exchangers 101b and 101c interfere with each other in the vicinity of the indoor heat exchangers 101b and 101c and the flow velocity of the indoor air becomes relatively slow. On the other hand, at a position far from the indoor heat exchangers 101b and 101c, it is conceivable that the indoor heat exchangers 101b and 101c do not get in the way and the flow velocity of the indoor air becomes relatively high.

よって、各室内熱交換器101a〜101cにおいても、通過する単位時間当たりの空気量が多い(熱負荷が部分的に大きい)と考えられる伝熱管19には相対的に多くの冷媒Lを供給するようにできるようにする。また、逆に通過する単位時間当たりの空気量が少ない(熱負荷が部分的に小さい)と考えられる伝熱管19には相対的に少ない冷媒Lを供給するようにできる。これにより、室内熱交換器101a〜101c(いずれも熱交換器1)の熱交換効率を高めることができる。 Therefore, even in each indoor heat exchanger 101a to 101c, a relatively large amount of refrigerant L is supplied to the heat transfer tube 19 which is considered to have a large amount of air per unit time to pass through (the heat load is partially large). To be able to. On the contrary, a relatively small amount of the refrigerant L can be supplied to the heat transfer tube 19 which is considered to have a small amount of air per unit time passing through (the heat load is partially small). As a result, the heat exchange efficiency of the indoor heat exchangers 101a to 101c (both are heat exchangers 1) can be improved.

また、気液混合部41を流入側ヘッダ3aの一端部(下端部)に配置し、他端側(上部側)にヘッダ内空間32〜35を並べている。気液混合部41内ではある瞬間を見れば気液界面42が全体に略一定の水位である。そのため、各ヘッダ内空間32〜35に気液混合部4から供給する冷媒Lは、ガス冷媒と液冷媒とを略均一にすることができる。 Further, the gas-liquid mixing portion 41 is arranged at one end (lower end) of the inflow side header 3a, and the header inner spaces 32 to 35 are arranged on the other end side (upper side). Looking at a certain moment in the gas-liquid mixing unit 41, the gas-liquid interface 42 has a substantially constant water level as a whole. Therefore, the refrigerant L supplied from the gas-liquid mixing unit 4 to the spaces 32 to 35 in each header can make the gas refrigerant and the liquid refrigerant substantially uniform.

また、連通管5a〜5dとして、図2Aの例を用いるときは次のような作用を奏する。すなわち、例えば、図2Aで気液界面42が上から3番目の貫通孔である開口部5a1〜5d1に達していた状態から上から2番目の貫通孔である開口部5a1〜5d1に達する状態となったときには、連通管5a〜5dに流れ込む冷媒Lの流量が急変する。すなわち、気液界面42が上から3番目の貫通孔である開口部5a1〜5d1と上から2番目の貫通孔である開口部5a1〜5d1との中間位置にあるときは気液界面42が上から3番目の貫通孔である開口部5a1〜5d1にあるときとでは冷媒Lの流量は変わらない。このときは、気液界面42が上から3番目の貫通孔である開口部5a1〜5d1にあるときに連通管5a〜5dに流れ込む冷媒Lの流量となる。これらの関係は上下に隣接し合う全ての貫通孔において生じる。すなわち、図2Aの例では、気液界面42の上下によって生じる開口部5a1〜5d1からの冷媒Lの連通管5a〜5dへの吸い込み量(ガス冷媒、液冷媒の分配量も同様)を段階的に変えることができる。 Further, when the example of FIG. 2A is used as the communication pipes 5a to 5d, the following actions are obtained. That is, for example, in FIG. 2A, the gas-liquid interface 42 reaches the opening 5a1 to 5d1 which is the third through hole from the top, and then reaches the opening 5a1 to 5d1 which is the second through hole from the top. When this happens, the flow rate of the refrigerant L flowing into the communication pipes 5a to 5d suddenly changes. That is, when the gas-liquid interface 42 is at an intermediate position between the openings 5a1 to 5d1 which are the third through holes from the top and the openings 5a1 to 5d1 which are the second through holes from the top, the gas-liquid interface 42 is on the top. The flow rate of the refrigerant L does not change from that in the openings 5a1 to 5d1 which are the third through holes. At this time, the flow rate of the refrigerant L flowing into the communication pipes 5a to 5d when the gas-liquid interface 42 is in the openings 5a1 to 5d1 which are the third through holes from the top. These relationships occur in all through holes that are adjacent vertically. That is, in the example of FIG. 2A, the amount of the refrigerant L sucked into the communication pipes 5a to 5d from the openings 5a1 to 5d1 generated by the upper and lower sides of the gas-liquid interface 42 (the same applies to the distribution amount of the gas refrigerant and the liquid refrigerant) is stepwise. Can be changed to.

これに対して、図2Bの例では、開口部5a1〜5d1が連通管5a〜5dの長手方向を長手方向とする長孔となっている。そのため、気液界面42の僅かな上下によっても、開口部5a1〜5d1からの冷媒Lの連通管5a〜5dへの吸い込み量が変動する。すなわち、図2Bの例では、気液界面42の上下によって生じる開口部5a1〜5d1からの冷媒Lの連通管5a〜5dへの吸い込み量(ガス冷媒、液冷媒の分配量も同様)を無段階的に変えることができる。
また、図2Cの例では、連通管5a〜5dへの冷媒Lの入口を開口部5a1〜5d1に限定することができる。
さらに、図1Bに示すように、開口部5d1は入口管36の冷媒Lが流入する流路に背を向けているので、開口部5d1にのみ過度に冷媒Lが流入することを抑制することができる。
On the other hand, in the example of FIG. 2B, the openings 5a1 to 5d1 are elongated holes whose longitudinal direction is the longitudinal direction of the communication pipes 5a to 5d. Therefore, the amount of the refrigerant L sucked into the communication pipes 5a to 5d from the openings 5a1 to 5d1 varies even if the gas-liquid interface 42 is slightly moved up and down. That is, in the example of FIG. 2B, the amount of suction of the refrigerant L from the openings 5a1 to 5d1 generated by the upper and lower sides of the gas-liquid interface 42 into the communication pipes 5a to 5d (the same applies to the distribution amount of the gas refrigerant and the liquid refrigerant) is stepless. Can be changed.
Further, in the example of FIG. 2C, the inlet of the refrigerant L to the communication pipes 5a to 5d can be limited to the openings 5a1 to 5d1.
Further, as shown in FIG. 1B, since the opening 5d1 faces the flow path through which the refrigerant L of the inlet pipe 36 flows, it is possible to suppress the excessive inflow of the refrigerant L only into the opening 5d1. it can.

図6Aは、本実施例2における2本の連通管5a,5cを並べて図示した正面図である。本実施例2において、実施例1と共通する部材等については実施例1と同一の符号を用い、詳細な説明は省略する。
図6Aに示すように、本実施例2が実施例1と技術的に異なるのは、開口部5a1〜5d1の構成にある。すなわち、図2Aの例では開口部5a1〜5d1である貫通孔の各面積(径サイズ)を変えることにより、開口部5a1〜5d1の面積を変えるようにしている。
これに対して、図6Aの例では開口部5a1〜5d1である貫通孔の各面積(径サイズ)は同じで、貫通孔の数を変えることにより、開口部5a1〜5d1の面積を変えるようにしている。
FIG. 6A is a front view showing the two communication pipes 5a and 5c in the second embodiment side by side. In the second embodiment, the same reference numerals as those in the first embodiment are used for the members and the like common to the first embodiment, and detailed description thereof will be omitted.
As shown in FIG. 6A, the technical difference between the second embodiment and the first embodiment is the configuration of the openings 5a1 to 5d1. That is, in the example of FIG. 2A, the area of the openings 5a1 to 5d1 is changed by changing the area (diameter size) of the through holes which are the openings 5a1 to 5d1.
On the other hand, in the example of FIG. 6A, each area (diameter size) of the through holes 5a1 to 5d1 is the same, and the area of the openings 5a1 to 5d1 is changed by changing the number of through holes. ing.

また、この場合に気液混合部41(図1A)内の最も気相冷媒側(最上部)の貫通孔は、流入側ヘッダ3aの長手方向の同じ高さにある。すなわち、貫通孔が相対的に少ない連通管は、図6Aの連通管5cのように、当該連通管の下側に貫通孔が設けられていない領域を有する。すなわち、気液混合部41内の液相冷媒側(下側)で貫通孔の数が異なる。図6Aの例では、一番上の貫通孔から一番下の貫通孔までの長さが、連通管5aではA2の長さがあって長いのに対して、連通管5cではA1の長さで短くなっている。 Further, in this case, the through holes on the most gas-phase refrigerant side (top) in the gas-liquid mixing portion 41 (FIG. 1A) are at the same height in the longitudinal direction of the inflow side header 3a. That is, the communication pipe having relatively few through holes has a region in which no through hole is provided under the communication pipe, as in the communication pipe 5c of FIG. 6A. That is, the number of through holes differs on the liquid phase refrigerant side (lower side) in the gas-liquid mixing section 41. In the example of FIG. 6A, the length from the top through hole to the bottom through hole is long with the length of A2 in the communication pipe 5a, whereas it is the length of A1 in the communication pipe 5c. It is shortened with.

図6Bは、別の例において2本の連通管5a,5cを並べて図示した正面図である。また、図6Bに示すように、図6Bに関して、本実施例2が実施例1と技術的に異なるのは、同じく開口部5a1〜5d1の構成にある。すなわち、図2Bの例では開口部5a1〜5d1である長孔の幅を変えることにより、開口部5a1〜5d1の面積を変えるようにしている。
これに対して、図6Bの例では開口部5a1〜5d1である長孔の長さを変えることによって開口部5a1〜5d1の面積を変えるようにしている。図6Bの例では、長孔の長さが、連通管5aではB2であって長いのに対して、連通管5cではB1であって短い。
FIG. 6B is a front view showing two communication pipes 5a and 5c side by side in another example. Further, as shown in FIG. 6B, regarding FIG. 6B, the technical difference between the second embodiment and the first embodiment is the configuration of the openings 5a1 to 5d1. That is, in the example of FIG. 2B, the area of the openings 5a1 to 5d1 is changed by changing the width of the elongated holes which are the openings 5a1 to 5d1.
On the other hand, in the example of FIG. 6B, the area of the openings 5a1 to 5d1 is changed by changing the length of the elongated holes which are the openings 5a1 to 5d1. In the example of FIG. 6B, the length of the elongated hole is B2 and long in the communication pipe 5a, whereas it is B1 and short in the communication pipe 5c.

また、この場合に気液混合部41内の最も気相冷媒側(最上部)の長孔の一端部は、流入側ヘッダ3aの長手方向の同じ位置にある。すなわち、長孔が相対的に短い連通管は、図6Bの連通管5cのように、当該連通管の下側に長孔が設けられていない領域を有する。すなわち、気液混合部41内の液相冷媒側(下側)で長孔の他端部の位置が異なる。
さらに、図6Cの例は、図6Bの例において、図2Cの例のように栓53を設けた例である。図6Aの例でも栓53を設けるようにしてもよい。
Further, in this case, one end of the elongated hole on the most gas-phase refrigerant side (top) in the gas-liquid mixing portion 41 is at the same position in the longitudinal direction of the inflow side header 3a. That is, the communication pipe having a relatively short long hole has a region in which the long hole is not provided under the communication pipe, as in the communication pipe 5c of FIG. 6B. That is, the position of the other end of the elongated hole is different on the liquid phase refrigerant side (lower side) in the gas-liquid mixing portion 41.
Further, the example of FIG. 6C is an example in which the stopper 53 is provided as in the example of FIG. 2C in the example of FIG. 6B. In the example of FIG. 6A, the stopper 53 may be provided.

次に、本実施例2の作用効果について説明する。
本実施例2において実施例1と共通する構成から生じる作用効果は本実施例2においても奏することができる。
また、図6Aの連通管5a〜5dに関しては、全て同じ形状、サイズの貫通孔を形成すればよく、貫通孔のサイズを連通管5a〜5d間で変える必要がないので、連通管5a〜5dの製造が容易である。
Next, the action and effect of the second embodiment will be described.
The effects resulting from the configuration common to Example 1 in Example 2 can also be achieved in Example 2.
Further, with respect to the communication pipes 5a to 5d of FIG. 6A, it is sufficient to form through holes of the same shape and size, and it is not necessary to change the size of the through holes between the communication pipes 5a to 5d. Is easy to manufacture.

さらに、図6Bの連通管5a〜5dに関しても、長さは違っても全て同じ幅の長孔を形成すればよく、長孔の幅を連通管5a〜5d間で変える必要がないので、連通管5a〜5dの製造が容易である。
また、図2Bのように長孔の幅を変えるのに対して、図6Bでは長孔の長さを変えるので、連通管5a〜5d間で開口部5a1〜5d1の面積に大きな差をつけることが容易となる。よって、連通管5a〜5d間で冷媒Lの流入量に大きな差がある場合に有効である。
Further, with respect to the communication pipes 5a to 5d of FIG. 6B, long holes having the same width may be formed even if the lengths are different, and the width of the long holes does not need to be changed between the communication pipes 5a to 5d. The tubes 5a to 5d can be easily manufactured.
Further, while the width of the elongated hole is changed as shown in FIG. 2B, the length of the elongated hole is changed in FIG. 6B, so that a large difference is made in the area of the openings 5a1 to 5d1 between the communication pipes 5a to 5d. Becomes easier. Therefore, it is effective when there is a large difference in the inflow amount of the refrigerant L between the communication pipes 5a to 5d.

その上、図6A、図6Bにおいて、複数の貫通孔又は長孔である開口部5a1〜5d1の一番上の貫通孔又は長孔の上端の高さが揃っている。つまり、貫通孔の数を減らしたり、長孔の長さを短くしたりしているのは、連通管5a〜5dの下端側においてである。そのため、気液界面42が上昇しても、ガス冷媒を吸い込む開口部5a1〜5d1が狭くなることがない。よって、気液界面42の変動に関わらず充分にガス冷媒を吸い込むことが可能で、よってガス冷媒の勢いで開口部5a1〜5d1に吸い込まれる液冷媒の吸込みが悪くなることがない。 Moreover, in FIGS. 6A and 6B, the heights of the uppermost through-holes or long holes of the openings 5a1 to 5d1 which are a plurality of through-holes or long holes are aligned. That is, it is on the lower end side of the communication pipes 5a to 5d that the number of through holes is reduced and the length of the elongated holes is shortened. Therefore, even if the gas-liquid interface 42 rises, the openings 5a1 to 5d1 for sucking the gas refrigerant do not become narrow. Therefore, it is possible to sufficiently suck the gas refrigerant regardless of the fluctuation of the gas-liquid interface 42, and therefore, the suction of the liquid refrigerant sucked into the openings 5a1 to 5d1 by the force of the gas refrigerant does not deteriorate.

図7Aは、流入側ヘッダ3aの気液混合部41部分の縦断面図である。図7Bは、気液混合部41内に設けられる連通部50の図7AにおけるB−B断面図である。本実施例3において、実施例1と共通する部材等については実施例1と同一の符号を用い、詳細な説明は省略する。
実施例3が実施例1と異なるのは、流入側ヘッダ3a内の連通管5a〜5dの開口部5a1〜5d1が設けられている部分に代えて単一の連通部50が設けられていることである。連通部50は円柱状の部材であり、流入側ヘッダ3aの気液混合部41内に設けられている。
FIG. 7A is a vertical cross-sectional view of the gas-liquid mixing portion 41 portion of the inflow side header 3a. FIG. 7B is a cross-sectional view taken along the line BB in FIG. 7A of the communication portion 50 provided in the gas-liquid mixing portion 41. In the third embodiment, the same reference numerals as those in the first embodiment are used for the members and the like common to the first embodiment, and detailed description thereof will be omitted.
Example 3 is different from Example 1 in that a single communication portion 50 is provided in place of the portion of the communication pipes 5a to 5d in the inflow side header 3a where the openings 5a1 to 5d1 are provided. Is. The communication portion 50 is a columnar member, and is provided in the gas-liquid mixing portion 41 of the inflow side header 3a.

連通部50は、気液混合部41内で各連通管5a〜5dと接続されて各連通管5a〜5dに代えて単一の連通部50内に開口部5a1〜5d1が形成されている。
連通部(連通部本体)50は、その中央部に設けられていて、流入側ヘッダ3aの長手方向に上下に貫通した空間であり、気液二相の冷媒Lが流入する円筒状の混合室51を備えている。
The communication portion 50 is connected to the communication pipes 5a to 5d in the gas-liquid mixing unit 41, and openings 5a to 5d1 are formed in a single communication portion 50 instead of the communication pipes 5a to 5d.
The communication portion (communication portion main body) 50 is a space provided in the central portion thereof and penetrates vertically in the longitudinal direction of the inflow side header 3a, and is a cylindrical mixing chamber into which the gas-liquid two-phase refrigerant L flows. It is equipped with 51.

混合室51の周囲には、混合室51を取り囲むように複数、本例で4つの冷媒連通路52a〜52dが設けられている。冷媒連通路52a〜52dは、流入側ヘッダ3aの長手方向に上下に貫通した例えば円筒状の空間で、それぞれその上端部が各連通管5a〜5dと接続されている。各冷媒連通路52a〜52dの径サイズは、混合室51の径サイズよりも小さい。 A plurality of refrigerant communication passages 52a to 52d in this example are provided around the mixing chamber 51 so as to surround the mixing chamber 51. The refrigerant communication passages 52a to 52d are, for example, cylindrical spaces that penetrate vertically in the longitudinal direction of the inflow side header 3a, and their upper ends are connected to the communication pipes 5a to 5d, respectively. The diameter size of each of the refrigerant passages 52a to 52d is smaller than the diameter size of the mixing chamber 51.

また、連通部(連通部本体)50には、各冷媒連通路52a〜52dと混合室51とを接続し、混合室51から各冷媒連通路52a〜52dに冷媒を流入させる接続路53a〜53dが設けられている。接続路53a〜53dも連通部(連通部本体)50の上から下まで貫通している。各接続路53a〜53dは、それぞれが接続している冷媒連通路52a〜52dの径サイズよりも幅が狭い。 Further, the communication passages 53a to 53d are connected to the communication portion (communication portion main body) 50 by connecting the refrigerant communication passages 52a to 52d and the mixing chamber 51, and allowing the refrigerant to flow from the mixing chamber 51 into the refrigerant communication passages 52a to 52d. Is provided. The connection paths 53a to 53d also penetrate from the top to the bottom of the communication portion (communication portion main body) 50. The width of each connection path 53a to 53d is narrower than the diameter size of the refrigerant communication passages 52a to 52d to which they are connected.

また、本実施例3では、仕切板31aは、混合室51、接続路53a〜53d、連通部50と気液混合部41との間の隙間を閉塞して、冷媒連通路52a〜52d以外からは流入側ヘッダ3aの気液混合部41とは反対側には冷媒Lが流れないようにする。あるいは、仕切板31aを設けずに、混合室51、接続路53a〜53d、連通部50と気液混合部41との間の隙間の上端部を所定の部材や材料を用いて閉塞するようにしてもよい。 Further, in the third embodiment, the partition plate 31a closes the gap between the mixing chamber 51, the connecting paths 53a to 53d, the communication portion 50 and the gas-liquid mixing portion 41, and is used from other than the refrigerant communication passages 52a to 52d. Prevents the refrigerant L from flowing to the side of the inflow side header 3a opposite to the gas-liquid mixing portion 41. Alternatively, without providing the partition plate 31a, the upper end of the gap between the mixing chamber 51, the connecting paths 53a to 53d, and the communication portion 50 and the gas-liquid mixing portion 41 is closed by using a predetermined member or material. You may.

図7Bの例では、各冷媒連通路52a〜52dは同一径サイズだが、接続路53a〜53dの幅サイズが一律ではない。すなわち、接続路53a〜53dが開口部5a1〜5d1となり、その各径サイズが開口部5a1〜5d1の面積となる。すなわち、接続路53aの幅W53aが最大であり、接続路53cの幅W53cが最小である。そして、接続路53b,53dの幅がこれらの中間的なサイズとなる。 In the example of FIG. 7B, the refrigerant passages 52a to 52d have the same diameter size, but the width sizes of the connection paths 53a to 53d are not uniform. That is, the connection paths 53a to 53d are the openings 5a1 to 5d1, and the respective diameter sizes are the areas of the openings 5a1 to 5d1. That is, the width W53a of the connecting path 53a is the maximum, and the width W53c of the connecting path 53c is the minimum. Then, the width of the connecting paths 53b and 53d is an intermediate size between them.

そして、各冷媒連通路52a〜52dには連通管5a〜5dが冷媒Lのリークを生じることがないように所定の手段で接合されている。連通管5a〜5dは、径サイズは全て同じであるが長さがそれぞれ異なっている。連通部50は、連通管5a〜5dに支持されていてもよいし、仕切板31aに支持されていてもよいし、気液混合部41の内周面に支持されていてもよい。 Then, the communication pipes 5a to 5d are joined to the refrigerant communication passages 52a to 52d by a predetermined means so as not to cause a leakage of the refrigerant L. The communication pipes 5a to 5d have the same diameter size but different lengths. The communication portion 50 may be supported by the communication pipes 5a to 5d, may be supported by the partition plate 31a, or may be supported by the inner peripheral surface of the gas-liquid mixing portion 41.

また、気液混合部41内で連通部50と流入側ヘッダ3aの端部(下端部)との間には流入口となる入口管36が接続される空間である冷媒流入部55が設けられている。図7Aの例では、流入側ヘッダ3aの底板3a1に入口管36が接続されている。
図8は、図7Aの例において入口管36の位置を変更した例を示す流入側ヘッダ3aの下部の縦断面図である。入口管36は冷媒流入部55の側部における所望の位置に接続してもよい。
Further, in the gas-liquid mixing portion 41, a refrigerant inflow portion 55, which is a space to which an inlet pipe 36 serving as an inflow port is connected, is provided between the communication portion 50 and the end portion (lower end portion) of the inflow side header 3a. ing. In the example of FIG. 7A, the inlet pipe 36 is connected to the bottom plate 3a1 of the inflow side header 3a.
FIG. 8 is a vertical cross-sectional view of the lower part of the inflow side header 3a showing an example in which the position of the inlet pipe 36 is changed in the example of FIG. 7A. The inlet pipe 36 may be connected to a desired position on the side of the refrigerant inflow portion 55.

図7Cは、連通部50の他の例を示す図7AのB−B断面図である。図7Cの例が図7Bの例と異なるのは、接続路53a〜53dの幅サイズは全て一定であり、冷媒連通路52a〜52dの径サイズが一律でないことである。すなわち、冷媒連通路52aの径サイズD52aが最大で、冷媒連通路52cの径サイズD52cが最小で、冷媒連通路52b,52dの径サイズがこれらの中間的なサイズである。 FIG. 7C is a cross-sectional view taken along the line BB of FIG. 7A showing another example of the communication portion 50. The example of FIG. 7C differs from the example of FIG. 7B in that the width sizes of the connecting paths 53a to 53d are all constant, and the diameter sizes of the refrigerant communication passages 52a to 52d are not uniform. That is, the diameter size D52a of the refrigerant communication passage 52a is the maximum, the diameter size D52c of the refrigerant communication passage 52c is the minimum, and the diameter size of the refrigerant communication passages 52b and 52d is an intermediate size between them.

また、図7B、図7Cの何れの連通部50においても、混合室51、各冷媒連通路52a〜52d及び各接続路53a〜53dが何れも流入側ヘッダ3aの長手方向に直線状であり、径サイズ及び形状が当該長手方向の全ての位置で一律である。よって、当該連通部50を容易に押出成型により製造することができる。なお、図7B、図7Cの連通部50の製造には、押出成型の他に鍛造や削り出し等の手段を用いてもよい。 Further, in any of the communication portions 50 of FIGS. 7B and 7C, the mixing chamber 51, the refrigerant communication passages 52a to 52d, and the connection paths 53a to 53d are all linear in the longitudinal direction of the inflow side header 3a. The diameter size and shape are uniform at all positions in the longitudinal direction. Therefore, the communication portion 50 can be easily manufactured by extrusion molding. In addition to extrusion molding, means such as forging or shaving may be used for manufacturing the communication portion 50 shown in FIGS. 7B and 7C.

次に、本実施例3の作用効果について説明する。
本実施例3において実施例1と共通する構成から生じる作用効果は本実施例3においても奏することができる。
入口管36から流入した気液二相の冷媒Lは、入口管36から冷媒流入部55に流入し、さらには主として混合室51に流入する。そして、混合室51から各接続路53a〜53dを介して各冷媒連通路52a〜52dに流入する。そして、各冷媒連通路52a〜52から各連通管5a〜5dに流入する。
Next, the action and effect of Example 3 will be described.
The effects resulting from the configuration common to Example 1 in Example 3 can also be achieved in Example 3.
The gas-liquid two-phase refrigerant L flowing from the inlet pipe 36 flows into the refrigerant inflow portion 55 from the inlet pipe 36, and further mainly flows into the mixing chamber 51. Then, it flows from the mixing chamber 51 into the refrigerant communication passages 52a to 52d via the connection paths 53a to 53d. Then, it flows into the communication pipes 5a to 5d from the refrigerant communication passages 52a to 52.

この場合、図7Bの例では、各冷媒連通路52a〜52dの径サイズは同じであるが、各接続路53a〜53dの幅が互いに異なるため、各冷媒連通路52a〜52d、ひいては各連通管5a〜5dに単位時間当たりに流入する冷媒Lの量を互いに異ならせることができる。
また、図7Cの例では、各接続路53a〜53dの径サイズは同じであるが、各冷媒連通路52a〜52dの径サイズは互いに異なるため、各冷媒連通路52a〜52d、ひいては各連通管5a〜5dに単位時間当たりに流入する冷媒Lの量を互いに異ならせることができる。
この場合に、接続路53a〜53dの幅サイズの方が冷媒連通路52a〜52dの径サイズよりも小さい。そのため、径サイズが相当大きな冷媒連通路を設ける可能性がある図7Cの例よりも図7Bの例の方が、連通部50をコンパクト化できる可能性がある。
In this case, in the example of FIG. 7B, the diameter sizes of the refrigerant communication passages 52a to 52d are the same, but the widths of the connection paths 53a to 53d are different from each other. The amount of the refrigerant L flowing into 5a to 5d per unit time can be made different from each other.
Further, in the example of FIG. 7C, the diameter sizes of the connecting passages 53a to 53d are the same, but the diameter sizes of the refrigerant communication passages 52a to 52d are different from each other. The amount of the refrigerant L flowing into 5a to 5d per unit time can be made different from each other.
In this case, the width size of the connecting paths 53a to 53d is smaller than the diameter size of the refrigerant communication passages 52a to 52d. Therefore, there is a possibility that the communication portion 50 can be made more compact in the example of FIG. 7B than in the example of FIG. 7C, which may provide a refrigerant communication passage having a considerably large diameter size.

これらの場合に、各接続路53a〜53d並びに各冷媒連通路52a〜52dは連通部50の長手方向の端から端まで形成されているので、図2B、図6Bの例と同様、気液界面42高さの変動に応じてガス冷媒、液冷媒の各連通管5a〜5dへの流入量を無段階で調節することができる。
また、実施例1,2の例では、複数本の連通管5a〜5dの各一端部側を何れも位置決めして気液混合部41内に設置する工程が必要である。しかし、本実施例3では、単一の連通部50を気液混合部41内に設置するだけでよく、製造工程を簡素化することができる。
さらに、冷媒流入部55を設けたので、入口管36は流入側ヘッダ3aの一端部側の様々な位置に取り付け可能である。そのため、冷媒配管の取り回しの自由度を高めることができる。
In these cases, the connection paths 53a to 53d and the refrigerant communication passages 52a to 52d are formed from end to end in the longitudinal direction of the communication portion 50, so that the gas-liquid interface is the same as in the examples of FIGS. 2B and 6B. 42 The inflow amount of the gas refrigerant and the liquid refrigerant into the communication pipes 5a to 5d can be adjusted steplessly according to the fluctuation of the height.
Further, in the examples of Examples 1 and 2, a step of positioning each one end side of each of the plurality of communication pipes 5a to 5d and installing them in the gas-liquid mixing unit 41 is required. However, in the third embodiment, it is only necessary to install the single communication portion 50 in the gas-liquid mixing portion 41, and the manufacturing process can be simplified.
Further, since the refrigerant inflow portion 55 is provided, the inlet pipe 36 can be attached to various positions on the one end side of the inflow side header 3a. Therefore, the degree of freedom in handling the refrigerant piping can be increased.

また、混合室51、各冷媒連通路52a〜52d並びに各接続路53a〜53dが何れも流入側ヘッダ3aの長手方向に直線状であり、径サイズ及び形状が当該長手方向の全ての位置で一律である。よって、当該連通部50を容易に押出成型により製造することができる。すなわち、押出成型機で連通部50を押出成型すれば、あとは押し出された連通部50を所定長さで径方向に切断する作業を繰り返すことで、連通部50を容易に大量生産することができる。 Further, the mixing chamber 51, the refrigerant communication passages 52a to 52d, and the connection paths 53a to 53d are all linear in the longitudinal direction of the inflow side header 3a, and the diameter size and shape are uniform at all positions in the longitudinal direction. Is. Therefore, the communication portion 50 can be easily manufactured by extrusion molding. That is, if the communication portion 50 is extruded by an extrusion molding machine, the communication portion 50 can be easily mass-produced by repeating the work of cutting the extruded communication portion 50 in the radial direction with a predetermined length. it can.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
例えば、前記各実施例では、各ヘッダ内空間32〜35ごとに各1本の連通管5a〜5dを接続しているが、単一のヘッダ内空間に複数本の連通管5を接続してもよい。そして、ヘッダ内空間に接続する連通管5の数を変えることで、ヘッダ内空間ごとの開口部の面積を変えるようにしてもよい。
The present invention is not limited to the above-described examples, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
For example, in each of the above embodiments, one communication pipe 5a to 5d is connected to each of the header spaces 32 to 35, but a plurality of communication pipes 5 are connected to a single header space. May be good. Then, the area of the opening for each space in the header may be changed by changing the number of communication pipes 5 connected to the space in the header.

また、空気調和機100は、四方弁9を備えない冷房又は暖房専用の空気調和機として実施してもよい。さらに、熱交換器1を他の冷凍サイクル装置、例えば、自然冷媒ヒートポンプ給湯機に適用してもよい。
また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
Further, the air conditioner 100 may be implemented as an air conditioner dedicated to cooling or heating without the four-way valve 9. Further, the heat exchanger 1 may be applied to another refrigeration cycle device, for example, a natural refrigerant heat pump water heater.
Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add / delete / replace a part of the configuration of each embodiment with another configuration.

1 熱交換器
2 フィン
3a ヘッダ(流入側ヘッダ)
3b ヘッダ(流出側ヘッダ)
5,5a〜5d 連通管
5a1〜5d1 開口部
8 圧縮機
19 伝熱管
32〜35 ヘッダ内空間
36 入口管(流入口)
41 気液混合部
50 連通部(連通部本体)
51 混合室
52a〜52d 冷媒連通路
53a〜53d 接続路
55 冷媒流入部
60 冷媒の流れ方向(暖房)
61 冷媒の流れ方向(冷房)
100 空気調和機
101 室内熱交換器(第1熱交換器)(熱交換器)
102 室内ファン
103 膨張弁
105 室外機
106 室外熱交換器(第2熱交換器)(熱交換器)
107 室外ファン
108 室内機
1 Heat exchanger 2 Fins 3a Header (Inflow side header)
3b header (outflow side header)
5,5a to 5d communication pipe 5a1 to 5d1 Opening 8 Compressor 19 Heat transfer pipe 32 to 35 Header inner space 36 Inlet pipe (inflow)
41 Gas-liquid mixing section 50 Communication section (main body of communication section)
51 Mixing chamber 52a to 52d Refrigerant communication passage 53a to 53d Connection path 55 Refrigerant inflow part 60 Refrigerant flow direction (heating)
61 Refrigerant flow direction (cooling)
100 Air conditioner 101 Indoor heat exchanger (1st heat exchanger) (heat exchanger)
102 Indoor fan 103 Expansion valve 105 Outdoor unit 106 Outdoor heat exchanger (second heat exchanger) (heat exchanger)
107 Outdoor fan 108 Indoor unit

Claims (15)

一対のヘッダと、
前記ヘッダの長手方向に複数本並び、両端側が前記各ヘッダにそれぞれ接続されている伝熱管と、
前記各伝熱管に接続されて、複数枚が当該伝熱管の長手方向に並ぶフィンとを備え、
前記一対のヘッダのうちで外部からの冷媒の流入側となる流入側ヘッダは、
前記冷媒の流入口が設けられ、気液二相の冷媒が流入する気液混合部と、
前記流入側ヘッダをその長手方向に仕切って複数設けられ、前記気液混合部とも仕切られていて、1本又は連続的に並列した複数本の前記伝熱管と接続しているヘッダ内空間と、
異なる前記ヘッダ内空間と前記気液混合部とをそれぞれ連通する複数本の連通管と、
前記気液混合部内に位置している前記各連通管に設けられて、前記連通管を介して当該気液混合部内の冷媒を前記各ヘッダ内空間に導く開口部とを有し、
前記開口部の面積は、複数本の前記連通管の中で互いに異なるものを含む熱交換器。
A pair of headers and
A plurality of heat transfer tubes arranged in the longitudinal direction of the header and both ends connected to the headers, respectively.
A plurality of fins connected to each of the heat transfer tubes and arranged in the longitudinal direction of the heat transfer tube are provided.
Of the pair of headers, the inflow side header that is the inflow side of the refrigerant from the outside is
A gas-liquid mixing section in which the inflow port of the refrigerant is provided and a gas-liquid two-phase refrigerant flows in,
A plurality of headers on the inflow side are provided in the longitudinal direction thereof, and the space inside the header is also partitioned from the gas-liquid mixing portion and is connected to one or a plurality of continuously parallel heat transfer tubes.
A plurality of communication pipes that communicate the different spaces in the header and the gas-liquid mixing portion, respectively.
Each of the communication pipes located in the gas-liquid mixing section has an opening that guides the refrigerant in the gas-liquid mixing section to the space in each header via the communication pipe.
A heat exchanger in which the area of the opening includes different ones among the plurality of communication pipes.
前記気液混合部は、前記流入側ヘッダの一端側に設けられ、前記各ヘッダ内空間は当該流入側ヘッダの他端側に並んでいる請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the gas-liquid mixing section is provided on one end side of the inflow side header, and the spaces in the headers are arranged on the other end side of the inflow side header. 前記開口部は、前記連通管の長手方向に複数個並んで設けられた1又は複数個の貫通孔であり、当該貫通孔同士の大きさが異なることで前記開口部は面積が互いに異なるものが存在する請求項1に記載の熱交換器。 The opening is one or a plurality of through holes provided side by side in the longitudinal direction of the communication pipe, and the openings have different areas due to different sizes of the through holes. The heat exchanger according to claim 1, which exists. 前記開口部は、前記連通管の長手方向を長手方向とする長孔であり、当該長孔同士の幅が異なることで前記開口部は面積が互いに異なるものが存在する請求項1に記載の熱交換器。 The heat according to claim 1, wherein the opening is an elongated hole whose longitudinal direction is the longitudinal direction of the communication pipe, and the openings have different areas due to different widths of the elongated holes. Exchanger. 前記開口部は、前記連通管の長手方向に1又は複数個並んで設けられた貫通孔であり、当該貫通孔同士の数が異なることで前記開口部の面積が互いに異なる請求項1に記載の熱交換器。 The first aspect of claim 1, wherein the opening is one or a plurality of through holes provided side by side in the longitudinal direction of the communication pipe, and the areas of the openings are different from each other due to the difference in the number of the through holes. Heat exchanger. 前記開口部は、前記連通管の長手方向を長手方向とする長孔であり、当該長孔同士の長さが異なることで前記開口部の面積が互いに異なる請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the opening is an elongated hole whose longitudinal direction is the longitudinal direction of the communication pipe, and the areas of the openings are different from each other due to the different lengths of the elongated holes. 前記貫通孔同士の数が異なる前記連通管同士は、前記気液混合部内の最も気相冷媒側の前記貫通孔は、前記流入側ヘッダの長手方向の同じ高さにあり、前記気液混合部内の液相冷媒側で前記貫通孔の数が異なる請求項5に記載の熱交換器。 In the communication pipes having different numbers of through holes, the through holes on the most gas-liquid refrigerant side in the gas-liquid mixing section are at the same height in the longitudinal direction of the inflow side header, and the inside of the gas-liquid mixing section. The heat exchanger according to claim 5, wherein the number of through holes differs on the liquid-phase refrigerant side of the above. 前記長孔同士の長さが異なる前記連通管同士は、前記気液混合部内の最も気相冷媒側で前記長孔の一端部が前記流入側ヘッダの長手方向の同じ高さにあり、前記気液混合部内の液相冷媒側で前記長孔の他端部の高さが異なる請求項6に記載の熱交換器。 In the communication pipes having different lengths of the elongated holes, one end of the elongated holes is at the same height in the longitudinal direction of the inflow side header on the most vapor phase refrigerant side in the gas-liquid mixing portion, and the gas is said to be. The heat exchanger according to claim 6, wherein the height of the other end of the elongated hole is different on the liquid phase refrigerant side in the liquid mixing portion. 前記気液混合部内で前記各連通管と接続され、前記各連通管に設けられたものと代えて前記開口部が形成されている連通部を備え、
前記連通部は、
前記連通部の中央部に設けられ、前記流入側ヘッダの長手方向に貫通した空間で、前記気液二相の冷媒が流入する混合室と、
前記連通部の前記混合室の周囲に複数形成され、前記流入側ヘッダの長手方向に貫通した空間である冷媒連通路と、
前記連通部に設けられ、前記混合室と前記冷媒連通路とを接続し、前記混合室から前記冷媒連通路に冷媒を流入させる接続路とを備え、
前記接続路又は前記冷媒連通路の径サイズが異なることにより、前記接続路又は前記冷媒連通路の径サイズである前記開口部の面積は複数本の前記連通管の中で互いに異なるものを含む請求項1に記載の熱交換器。
A communication portion that is connected to each communication pipe in the gas-liquid mixing portion and has an opening formed in place of the one provided in each communication pipe is provided.
The communication part is
A mixing chamber in which the gas-liquid two-phase refrigerant flows in a space provided in the central portion of the communication portion and penetrating in the longitudinal direction of the inflow side header.
A plurality of refrigerant communication passages formed around the mixing chamber of the communication portion and penetrating in the longitudinal direction of the inflow side header, and
Provided in the communication portion, the mixing chamber and the refrigerant communication passage are connected, and a connection path for flowing a refrigerant from the mixing chamber into the refrigerant communication passage is provided.
Claims that the area of the opening, which is the diameter size of the connection passage or the refrigerant communication passage, is different from each other among the plurality of communication pipes due to the difference in the diameter size of the connection passage or the refrigerant communication passage. Item 1. The heat exchanger according to item 1.
前記気液混合部内で前記連通部と前記流入側ヘッダの端部との間には前記流入口が接続される空間である冷媒流入部が設けられている請求項9に記載の熱交換器。 The heat exchanger according to claim 9, wherein a refrigerant inflow portion, which is a space to which the inflow port is connected, is provided between the communication portion and the end portion of the inflow side header in the gas-liquid mixing portion. 前記接続路は、前記連通部を前記流入側ヘッダの長手方向に貫通していて、
前記連通部は、前記混合室、前記各冷媒連通路及び前記各接続路が何れも前記流入側ヘッダの長手方向に直線状であり、径サイズ及び形状が当該長手方向の全ての位置で一律である請求項9に記載の熱交換器。
The connection path penetrates the communication portion in the longitudinal direction of the inflow side header.
In the communication portion, the mixing chamber, the refrigerant communication passages, and the connection paths are all linear in the longitudinal direction of the inflow side header, and the diameter size and shape are uniform at all positions in the longitudinal direction. The heat exchanger according to claim 9.
気液混合部内で各連通管と接続され、開口部が形成されている連通部本体と、
前記連通部本体の中央部に設けられ、流入側ヘッダの長手方向に貫通した空間で、気液二相の冷媒が流入する混合室と、
前記連通部本体の前記混合室の周囲に複数形成され、前記流入側ヘッダの長手方向に貫通した空間である冷媒連通路と、
前記連通部本体に設けられ、前記混合室と前記冷媒連通路とを接続し、前記混合室から前記冷媒連通路に冷媒を流入させる接続路とを備え、
前記接続路又は前記冷媒連通路の径サイズが異なることにより、前記接続路又は前記冷媒連通路の径サイズである前記開口部の面積は複数本の前記連通管の中で互いに異なるものを含み、
前記混合室、前記各冷媒連通路及び前記各接続路が何れも前記流入側ヘッダの長手方向に直線状であり、径サイズ及び形状が当該長手方向の全ての位置で一律である連通部を、
押出成型により製造する連通部の製造方法。
The main body of the communication part, which is connected to each communication pipe in the gas-liquid mixing part and has an opening,
A mixing chamber in which a gas-liquid two-phase refrigerant flows in a space provided in the center of the main body of the communication portion and penetrating in the longitudinal direction of the inflow side header.
A plurality of refrigerant communication passages formed around the mixing chamber of the communication portion main body and penetrating in the longitudinal direction of the inflow side header, and
It is provided in the main body of the communication portion, and includes a connection path for connecting the mixing chamber and the refrigerant communication passage and allowing the refrigerant to flow from the mixing chamber into the refrigerant communication passage.
Due to the difference in diameter size of the connection path or the refrigerant communication passage, the area of the opening which is the diameter size of the connection path or the refrigerant communication passage includes a plurality of the communication pipes different from each other.
A communication portion in which the mixing chamber, the refrigerant communication passages, and the connection paths are all linear in the longitudinal direction of the inflow side header, and the diameter size and shape are uniform at all positions in the longitudinal direction.
A method of manufacturing a communication part manufactured by extrusion molding.
請求項1乃至請求項11の何れかの一項に記載の熱交換器と、
前記熱交換器に外気を通風する室外ファンと、
前記冷媒を圧縮する圧縮機とを備える室外機。
The heat exchanger according to any one of claims 1 to 11.
An outdoor fan that ventilates the outside air through the heat exchanger,
An outdoor unit including a compressor that compresses the refrigerant.
請求項1乃至請求項11の何れかの一項に記載の熱交換器と、
前記熱交換器に外気を通風する室内ファンとを備える室内機。
The heat exchanger according to any one of claims 1 to 11.
An indoor unit provided with an indoor fan that allows outside air to pass through the heat exchanger.
室内機と、
前記室内機と冷媒を流通する配管で接続された室外機と、
膨張弁とを備え、
前記室内機は、
第1熱交換器と、
前記第1熱交換器に空気を通風する室内ファンとを備え、
前記室外機は、
冷媒を圧縮する圧縮機と、
第2熱交換器と、
前記第2熱交換器に空気を通風する室外ファンとを備え、
前記第1熱交換器及び前記第2熱交換器のうちの少なくとも一方は請求項1乃至請求項11の何れかの一項に記載の熱交換器であることを特徴とする空気調和機。
Indoor unit and
An outdoor unit connected to the indoor unit by a pipe that circulates refrigerant,
Equipped with an expansion valve
The indoor unit is
With the first heat exchanger,
The first heat exchanger is provided with an indoor fan that allows air to pass through.
The outdoor unit is
A compressor that compresses the refrigerant and
With the second heat exchanger,
The second heat exchanger is provided with an outdoor fan that allows air to pass through.
An air conditioner according to any one of claims 1 to 11, wherein at least one of the first heat exchanger and the second heat exchanger is the heat exchanger.
JP2020517666A 2018-05-09 2018-05-09 Heat exchanger, communication part manufacturing method, indoor unit, outdoor unit and air conditioner Active JP6913826B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017872 WO2019215825A1 (en) 2018-05-09 2018-05-09 Heat exchanger, method for manufacturing communication section, indoor unit, outdoor unit, and air conditioner

Publications (2)

Publication Number Publication Date
JPWO2019215825A1 true JPWO2019215825A1 (en) 2021-04-22
JP6913826B2 JP6913826B2 (en) 2021-08-04

Family

ID=68466746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020517666A Active JP6913826B2 (en) 2018-05-09 2018-05-09 Heat exchanger, communication part manufacturing method, indoor unit, outdoor unit and air conditioner

Country Status (2)

Country Link
JP (1) JP6913826B2 (en)
WO (1) WO2019215825A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020006927T5 (en) * 2020-03-19 2023-01-12 Mitsubishi Electric Corporation Heat exchanger manifold, heat exchanger, method of making a heat exchanger manifold, and method of making a heat exchanger
JP7142806B1 (en) * 2021-10-15 2022-09-27 三菱電機株式会社 Distributors, heat exchangers and heat pump devices

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04302964A (en) * 1991-03-29 1992-10-26 Daikin Ind Ltd Refrigerant distributor
JPH04316785A (en) * 1990-01-29 1992-11-09 Mitsubishi Electric Corp Distributor
JPH09166368A (en) * 1995-12-14 1997-06-24 Sanden Corp Heat exchanger
JPH09264693A (en) * 1996-03-29 1997-10-07 Sanden Corp Heatexchanger provided with distribution device
WO2015027783A1 (en) * 2013-08-30 2015-03-05 杭州三花研究院有限公司 Micro-channel heat exchanger and method for manufacturing same
JP2015203506A (en) * 2014-04-11 2015-11-16 パナソニックIpマネジメント株式会社 heat exchanger
WO2016060064A1 (en) * 2014-10-16 2016-04-21 ダイキン工業株式会社 Refrigerant flow divider
WO2016135935A1 (en) * 2015-02-27 2016-09-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Heat exchange apparatus and air conditioner using same
US20160298887A1 (en) * 2013-08-12 2016-10-13 Carrier Corporation Heat exchanger and flow distributor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316785A (en) * 1990-01-29 1992-11-09 Mitsubishi Electric Corp Distributor
JPH04302964A (en) * 1991-03-29 1992-10-26 Daikin Ind Ltd Refrigerant distributor
JPH09166368A (en) * 1995-12-14 1997-06-24 Sanden Corp Heat exchanger
JPH09264693A (en) * 1996-03-29 1997-10-07 Sanden Corp Heatexchanger provided with distribution device
US20160298887A1 (en) * 2013-08-12 2016-10-13 Carrier Corporation Heat exchanger and flow distributor
WO2015027783A1 (en) * 2013-08-30 2015-03-05 杭州三花研究院有限公司 Micro-channel heat exchanger and method for manufacturing same
JP2015203506A (en) * 2014-04-11 2015-11-16 パナソニックIpマネジメント株式会社 heat exchanger
WO2016060064A1 (en) * 2014-10-16 2016-04-21 ダイキン工業株式会社 Refrigerant flow divider
WO2016135935A1 (en) * 2015-02-27 2016-09-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Heat exchange apparatus and air conditioner using same

Also Published As

Publication number Publication date
JP6913826B2 (en) 2021-08-04
WO2019215825A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
JP4528835B2 (en) Heat exchanger for multistage expansion of fluid in header
JP6202451B2 (en) Heat exchanger and air conditioner
US20150362222A1 (en) Refrigerant distribution device and a heat pump apparatus using the same refrigerant distribution device
WO2018173356A1 (en) Heat exchanger and air conditioner using same
JP6419882B2 (en) Air conditioner
KR20160131577A (en) Heat exchanger for air conditioner
US10041710B2 (en) Heat exchanger and air conditioner
JP6913826B2 (en) Heat exchanger, communication part manufacturing method, indoor unit, outdoor unit and air conditioner
JP2019052784A (en) Heat exchanger and air conditioner
JPH0886591A (en) Heat exchanger and refrigerant evaporator
JP4760542B2 (en) Heat exchanger
EP2982924A1 (en) Heat exchanger
WO2017135442A1 (en) Heat exchanger
US11874034B2 (en) Heat exchanger
JP2015055411A (en) Heat exchanger and air conditioner
JP2019095073A (en) Heat exchanger and heat pump device using the same
JP6929451B2 (en) Air conditioner and heat exchanger
JP7036166B2 (en) Heat exchanger
JP6788763B2 (en) Heat exchangers, indoor units, outdoor units, and air conditioners
CN111902683A (en) Heat exchanger and refrigeration cycle device
JP6766980B1 (en) Air conditioner equipped with heat exchanger and heat exchanger
JP2020165578A (en) Heat exchanger flow divider
JP7146139B1 (en) heat exchangers and air conditioners
JP6817996B2 (en) Header for heat exchanger, heat exchanger, outdoor unit and air conditioner
JP2019163893A (en) Heat exchanger and refrigeration cycle device

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20201015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R150 Certificate of patent or registration of utility model

Ref document number: 6913826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150