WO2019213880A1 - Oled触控面板、制备方法及触控装置 - Google Patents

Oled触控面板、制备方法及触控装置 Download PDF

Info

Publication number
WO2019213880A1
WO2019213880A1 PCT/CN2018/086221 CN2018086221W WO2019213880A1 WO 2019213880 A1 WO2019213880 A1 WO 2019213880A1 CN 2018086221 W CN2018086221 W CN 2018086221W WO 2019213880 A1 WO2019213880 A1 WO 2019213880A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
touch panel
display area
oled touch
Prior art date
Application number
PCT/CN2018/086221
Other languages
English (en)
French (fr)
Inventor
林源城
苏伟盛
施文杰
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to PCT/CN2018/086221 priority Critical patent/WO2019213880A1/zh
Priority to CN201880093841.8A priority patent/CN112449727A/zh
Publication of WO2019213880A1 publication Critical patent/WO2019213880A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Definitions

  • the present invention relates to the field of touch technologies, and in particular, to an OLED touch panel, an OLED touch panel manufacturing method, and a touch device.
  • touch screens are widely used in mobile phones, digital cameras, media players, navigation systems, gaming devices and displays.
  • the organic light emitting diode display technology has the advantages of self-luminous, wide viewing angle, high contrast, low power consumption, and extremely high reaction speed.
  • the touch layer integration is performed by using an optical adhesive on the display film, but the external display device is thick.
  • the OLED touch panel has a display area and a non-display area
  • the OLED touch panel includes a light emitting layer, a cathode layer and a first electrode
  • the light emitting layer is disposed on the display a cathode layer disposed in the display area and the non-display area
  • the cathode layer is configured to provide a cathode voltage for the light emitting layer
  • the first electrode is disposed in the display area and the non-display a region, in the display region, the first electrode does not overlap with a cathode of the cathode layer
  • a first insulating layer is disposed between the cathode layer and the first electrode in the non-display region
  • the first insulating layer is used for electrically isolating the cathode layer and the first electrode, wherein the first electrode serves as a driving electrode or a sensing electrode of the OLED touch panel.
  • the OLED touch panel of the present invention has a display area and a non-display area, including a light-emitting layer, a cathode layer and a first electrode, the light-emitting layer is disposed in the display area, and the cathode layer is disposed in the display area and the a non-display area, the cathode layer is configured to provide a cathode voltage for the light-emitting layer, the first electrode is disposed in the display area and the non-display area, and in the display area, the first electrode is disposed at a cathode layer, and the first electrode does not overlap with the cathode.
  • a first insulating layer is disposed between the cathode layer and the first electrode, and the first insulating layer is used for an electrical isolation The cathode layer and the first electrode, wherein the first electrode serves as a driving electrode or a sensing electrode of the OLED touch panel.
  • the first electrode is disposed on the cathode layer, and in the non-display area, the cathode layer and the first electrode are stacked, thereby reducing the thickness of the overall OLED touch panel and helping to save non-display The space of the area, thereby achieving a narrow bezel design of the thinner thickness OLED touch panel, while the first insulating layer electrically isolates the cathode layer and the first electrode to prevent interference between the lines.
  • the present invention also provides a touch device including the touch panel as described above.
  • the OLED touch panel has a display area and a non-display area.
  • the OLED touch panel preparation method includes:
  • the cathode layer is disposed in the display area and the non-display area, and the cathode layer is configured to provide a cathode voltage for the light emitting layer;
  • first electrode Forming a first electrode on a surface of the first insulating layer away from the cathode layer, the first electrode is disposed in the display area and the non-display area, and in the display area, the first electrode and the The cathode of the cathode layer is not overlapped, and the first insulating layer is used for electrically isolating the cathode layer and the first electrode, wherein the first electrode serves as a driving electrode or a sensing electrode of the OLED touch panel .
  • FIG. 1 is a schematic structural diagram of an OLED touch panel according to Embodiment 1 of the present invention.
  • 1(a) to 1(d) are schematic views showing the structure and shape of a cathode layer in the present invention.
  • FIG. 1(e) is a top plan view of an OLED touch panel according to Embodiment 1 of the present invention.
  • Figure 1 (f) is an enlarged view of a region B in Figure 1 (e).
  • Figure 1 (g) is a schematic view of a laminated structure of Figure 1 (f).
  • Fig. 1(h) is a schematic view showing another laminated structure of Fig. 1(f).
  • FIG. 2 is a schematic structural diagram of an OLED touch panel according to Embodiment 2 of the present invention.
  • FIGS. 2(a) to 2(c) are schematic views showing the arrangement of the first electrode and the second electrode in the present invention.
  • FIG. 3 is a schematic structural diagram of an OLED touch panel according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural diagram of an encapsulation layer of an OLED touch panel according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic structural diagram of an OLED touch panel according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic structural diagram of an encapsulation layer of an OLED touch panel according to Embodiment 4 of the present invention.
  • FIG. 7 is a schematic structural diagram of another encapsulation layer of an OLED touch panel according to Embodiment 4 of the present invention.
  • FIG. 8 is a schematic structural diagram of an OLED touch panel according to Embodiment 5 of the present invention.
  • Fig. 9 is a structural schematic view showing the connection of an anode layer and a drain in the fifth embodiment of the present invention.
  • FIG. 10 is a diagram of a method for fabricating an OLED touch panel according to a first embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram corresponding to step S100 of the method for fabricating an OLED touch panel according to Embodiment 1 of the present invention.
  • FIG. 12 is a schematic structural diagram corresponding to step S200 of the method for fabricating an OLED touch panel according to Embodiment 1 of the present invention.
  • FIG. 13 is a schematic structural diagram corresponding to step S300 of the method for fabricating an OLED touch panel according to Embodiment 1 of the present invention.
  • FIG. 14 is a schematic structural diagram corresponding to step S400 of the method for fabricating an OLED touch panel according to Embodiment 1 of the present invention.
  • FIG. 15 is a schematic structural diagram corresponding to step S500 of the method for fabricating an OLED touch panel according to Embodiment 1 of the present invention.
  • FIG. 16 is a schematic structural diagram corresponding to step S600 of the method for fabricating an OLED touch panel according to Embodiment 1 of the present invention.
  • FIG. 17 is a schematic structural diagram corresponding to step S700 of the method for fabricating an OLED touch panel according to Embodiment 1 of the present invention.
  • FIG. 18 is a diagram of a method for fabricating an OLED touch panel according to a second embodiment of the present invention.
  • FIG. 19 is a diagram of a method for fabricating an OLED touch panel according to a third embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram corresponding to step S900 of the method for fabricating an OLED touch panel according to Embodiment 3 of the present invention.
  • 21 is a method of fabricating an OLED touch panel according to Embodiment 4 of the present invention.
  • FIG. 22 is a schematic structural diagram corresponding to step S910 of the method for fabricating an OLED touch panel according to Embodiment 4 of the present invention.
  • FIG. 23 is a schematic structural diagram of a touch device according to a preferred embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an OLED touch panel according to Embodiment 1 of the present invention.
  • the OLED touch panel 10 has a display area A1 and a non-display area A2.
  • the OLED touch panel 10 includes a light emitting layer 100, a cathode layer 200, and a first electrode 310.
  • the cathode layer 200 is disposed in the display area A1 and the non-display area A2, and the cathode layer 200 is configured to provide a cathode voltage for the light emitting layer 100, the first electrode 310 Provided in the display area A1 and the non-display area A2, the first electrode 310 and the cathode 210 of the cathode layer 200 do not overlap in the display area A1, in the non-display area A2, A first insulating layer 400 is disposed between the cathode layer 200 and the first electrode 310, and the first insulating layer 400 is configured to electrically isolate the cathode layer 200 and the first electrode 310, wherein the first An electrode 310 serves as a driving electrode or a sensing electrode of the OLED touch panel 10 .
  • the first electrode 310 corresponds to a gap after the patterning process of the cathode 210, the cathode 210 covers the pixel point setting, and the first electrode 310 avoids the pixel point. Settings.
  • FIG. 1(a), FIG. 1(b), FIG. 1(c) and FIG. 1(d) are schematic diagrams showing the structure and shape of the cathode layer in the present invention.
  • the shape of the cathode layer 200 may be a patterned block shape, a diamond shape, a straight strip shape or a curved strip shape, or may be other shapes.
  • the cathode layer 200 may be made of a low-resistance material such as copper (Cu), molybdenum (MO), or aluminum (AL). And in an embodiment, the cathode layer 200 may be made of a mixture of copper (Cu) and molybdenum (MO).
  • the cathode layer 200 is made of a low-resistance material, which helps to reduce heat generation and prevent signal interference, and can improve touch precision.
  • the first electrode 310 can be made of magnesium (Mg), silver (Ag), copper (Cu), molybdenum (MO) or aluminum (AL).
  • the first electrode 310 may be made of a mixture of magnesium (Mg) and silver (Ag) or a mixture of copper (Cu) and molybdenum (MO).
  • the display area A1 is generally used to display information such as images or characters.
  • the display area A1 includes a pixel area and a non-pixel area, and the pixel area is an area covered with pixel points, and a general pixel includes an area of a red pixel (R), a green pixel (G) or a blue pixel (B), and a non-pixel area It is an area that avoids pixels.
  • the cathode layer 200 includes a plurality of cathodes distributed in a matrix, and the cathode 210 covers pixel points of the display area A1.
  • the pixel is the light emitting region of the light emitting layer 100.
  • the first electrode 310 avoids a pixel point setting of the display area A1.
  • the first electrode 310 has a strip structure.
  • the first insulating layer 400 may be silicon nitride or aluminum oxide or the like.
  • FIG. 1(e) is a top view of an OLED touch panel according to Embodiment 1 of the present invention.
  • Figure 1 (f) is an enlarged view of a region B in Figure 1 (e).
  • Figure 1 (g) is a schematic view of a laminated structure of Figure 1 (f).
  • the non-display area A2 all the first electrodes 310 are stacked, and a first insulating layer 400 is disposed between the first electrode 310 and the cathode layer 200.
  • a second insulating layer 410 is disposed between the two adjacent first electrodes 310, and the first insulating layer 400 is configured to form electrical isolation between the first electrode 310 and the cathode layer 200.
  • the two insulating layers 410 are used to electrically isolate two adjacent first electrodes 310. Since all of the first electrodes 310 are stacked, it contributes to the narrow bezel design of the OLED touch panel 10.
  • FIG. 1(h) is another schematic diagram of the laminated structure of FIG. 1(f).
  • a first insulating layer 400 is disposed between the first electrode 310 and the cathode layer 200, and two adjacent first electrodes 310 are spaced apart from each other.
  • Cathode 210 Since the first electrode 310 and the cathode layer 200 are stacked, it helps to realize a narrow bezel design of the OLED touch panel.
  • the insulating layer 400 can be disposed only in the non-display area A2, and the insulating layer 400 is not disposed in the display area A1. That is to say, the insulating layer 400 has a hollow frame shape at this time.
  • the insulating layer 400 of such a structure is advantageous in reducing the thickness of the display area A1.
  • the OLED touch panel of the present invention has a display area and a non-display area, including a light-emitting layer, a cathode layer and a first electrode, the light-emitting layer is disposed in the display area, and the cathode layer is disposed in the display area and the a non-display area, the cathode layer is for providing a cathode voltage for the light-emitting layer, the first electrode is disposed in the display area and the non-display area, in the non-display area, the cathode layer and A first insulating layer is disposed between the first electrodes, the first insulating layer is configured to electrically isolate the cathode layer and the first electrode, wherein the first electrode serves as the OLED touch panel Drive electrode or sensing electrode. Since the cathode layer and the first electrode are stacked in a non-display area, which helps save space in the non-display area, the technical solution of the invention contributes to the narrow bezel design of the OLED touch
  • FIG. 2 is a schematic structural diagram of an OLED touch panel according to Embodiment 2 of the present invention.
  • the OLED touch panel 10 further includes a second electrode 320 disposed in the display area A1.
  • the OLED touch panel 10 further includes a second electrode 320 disposed in the display area A1.
  • the second electrode 320 is disposed on a side of the first electrode 310 away from the cathode layer 200, and a projection of the second electrode 320 on the cathode layer 200 and the first electrode 310 are in the The projections on the cathode layer 200 are arranged to intersect each other.
  • the second electrode 320 is a sensing electrode; when the first electrode 310 is the OLED When the sensing electrode of the touch panel 10 is used, the second electrode 320 is a driving electrode.
  • the second electrode 320 avoids the pixel point setting of the display area A1.
  • FIG. 2(a), FIG. 2(b) and FIG. 2(c), FIG. 2(a) to FIG. 2(c) are the arrangement of the first electrode and the second electrode in the present invention. Schematic.
  • the second electrode 320 and the projection of the first electrode 310 on the cathode layer 200 intersect to form a touch electrode.
  • the cross structure is formed to facilitate connection and form a touch layer.
  • FIG. 3 is a schematic structural diagram of an OLED touch panel according to Embodiment 3 of the present invention.
  • the OLED touch panel 10 further includes an encapsulation layer 500 disposed on the first electrode 310 and the OLED touch panel 10 in the third embodiment.
  • the second electrodes 320 are electrically isolated from the first electrode 310 and the second electrode 320.
  • the encapsulation layer 500 includes a first inorganic layer 510, an organic layer 520, and a second inorganic layer 530, which are sequentially stacked, the first inorganic layer 510 covering the first electrode. 310.
  • the second electrode 320 is disposed on a side of the second inorganic layer 530 away from the organic layer 520. Please refer to FIG. 4.
  • FIG. 5 is a schematic structural diagram of an OLED touch panel according to Embodiment 4 of the present invention.
  • the fourth embodiment has the same structure as the second embodiment, except that in the fourth embodiment, the OLED touch panel further includes an encapsulation layer 500, and the second electrode 320 is disposed in the encapsulation layer 500.
  • the first encapsulation layer 510 is formed first, then the second electrode 320 is formed, and then the second encapsulation layer 520 is formed.
  • the first encapsulation layer 510 is located at the first electrode 310 and the second between the electrodes 320, the first electrode 310 and the second electrode 320 are electrically isolated, and the second encapsulation layer 520 covers the second electrode 320 to protect the second electrode 320 while reducing the thickness of the entire panel.
  • the encapsulation layer 500 includes a first inorganic layer 510, an organic layer 520, and a second inorganic layer 530, and the second electrode 320 is disposed on the first inorganic layer. Between 510 and the organic layer 520, please refer to FIG. 6.
  • the first inorganic layer 510 is formed first, then the second electrode 320 is formed on the surface of the first inorganic layer 510, and then the second electrode 320 is covered to form the organic layer 520. Then, the organic layer 520 is covered to form the second inorganic layer 530. In this way, the first inorganic layer 510 can electrically isolate the first electrode 310 and the second electrode 320, and the organic layer 520 and the second inorganic layer 530 can protect the second electrode 320.
  • the encapsulation layer 500 includes a first inorganic layer 510, an organic layer 520, and a second inorganic layer 530, and the second electrode 320 is disposed on the organic layer 520 and the Please refer to FIG. 7 between the second inorganic layers 530.
  • the first inorganic layer 510 is formed first, then the first inorganic layer 510 is covered to form the organic layer 520, and then the second electrode 320 is formed on the surface of the organic layer 520 away from the first inorganic layer 510, and then the second electrode 320 is formed.
  • the second inorganic layer 530 such that the first inorganic layer 510 and the organic layer 520 can electrically isolate the first electrode 310 and the second electrode 320, and the second inorganic layer 530 can protect the second electrode 320.
  • FIG. 8 is a schematic structural diagram of an OLED touch panel according to Embodiment 5 of the present invention.
  • the OLED touch panel 10 further includes a flexible substrate 600, a thin film transistor layer 700, and an anode layer 800.
  • the thin film transistor layer is substantially the same as the first embodiment. 700, the anode layer 800, the light emitting layer 100, the cathode layer 200, and the first electrode 310 are disposed on one side of the flexible substrate 600, the thin film transistor layer 700, the anode layer 800, The light emitting layer 100 is sequentially stacked on the display area A1, and the thin film transistor layer 700 is disposed adjacent to the flexible substrate 600 compared to the anode layer 800.
  • the thin film transistor layer 700 includes a plurality of layers distributed in a matrix. a thin transistor comprising a drain 711 (see FIG. 9), the anode layer 800 comprising a plurality of anodes 810 distributed in a matrix, the anode 810 and the drain 711 being electrically connected for receiving an anode The voltage, the anode voltage, and the cathode voltage cooperate to cause the light emitting layer 100 to emit light.
  • the anode receives the anode voltage, generates a cavity
  • the cathode receives the cathode voltage, generates electrons
  • holes and electrons are transported into the light-emitting layer 100, and are combined in the light-emitting layer 100 to cause the light-emitting layer 100 to emit light.
  • FIG. 9 is a schematic structural diagram of an anode layer and a drain connection according to Embodiment 5 of the present invention.
  • a thin film transistor layer 700 is formed on the surface of the flexible substrate 600.
  • the thin film transistor layer 700 includes a plurality of thin film transistors distributed in a matrix.
  • the thin film transistor layer 700 further includes a channel layer 1000, a first isolation layer 1100, a gate 712, and a first Two isolation layers 1200 and a source 713.
  • the channel layer 1000 is disposed on the flexible substrate 600, the first isolation layer 1100 covers the channel layer 1000, the gate 712 is disposed on the first isolation layer 1100, and the gate The pole 712 is disposed corresponding to the channel layer 1000, and the second isolation layer 1200 covers the gate 712.
  • the source 713 and the drain 711 are both disposed on the second isolation layer 1200, and the source 713 and the drain 711 are spaced apart from each other, and the source 713 is opened in the
  • the via holes on the first isolation layer 1100 and the second isolation layer 1200 are electrically connected to one end of the channel layer 1000, and the drain 711 is opened through the first insulation 1100 and the second isolation layer A via hole on 1200 is electrically connected to the other end of the channel layer 1000.
  • An anode layer 800 is formed on a surface of the drain 711, the anode layer 800 including a plurality of anodes 810 distributed in a matrix, the anode 810 and the drain 711 being electrically connected for receiving an anode voltage, the anode voltage and The cathode voltage is matched to cause the light emitting layer 100 to emit light.
  • the OLED touch panel of the present invention has a display area and a non-display area, including a light-emitting layer, a cathode layer and a first electrode, the light-emitting layer is disposed in the display area, and the cathode layer is disposed in the display area and the a non-display area, the cathode layer is configured to provide a cathode voltage for the light-emitting layer, the first electrode is disposed in the display area and the non-display area, and in the display area, the first electrode is disposed at a cathode layer, and the first electrode does not overlap with the cathode.
  • a first insulating layer is disposed between the cathode layer and the first electrode, and the first insulating layer is used for an electrical isolation The cathode layer and the first electrode, wherein the first electrode serves as a driving electrode or a sensing electrode of the OLED touch panel.
  • the first electrode is disposed on the cathode layer, and in the non-display area, the cathode layer and the first electrode are stacked, thereby reducing the thickness of the overall OLED touch panel and helping to save non-display The space of the area, thereby achieving a narrow bezel design of the thinner OLED touch panel, while the first insulating layer electrically isolates the cathode layer and the first electrode to prevent interference between the lines.
  • FIG. 10 is a diagram of a method for fabricating an OLED touch panel according to Embodiment 1 of the present invention.
  • the OLED touch panel has a display area and a non-display area.
  • the OLED touch panel preparation method includes, but is not limited to, steps S100, S200, S300, S400, S500, S600, and S700, with respect to steps S100, S200, S300, and S400.
  • S500, S600, and S700 are as follows.
  • a flexible substrate 600 is provided, see FIG.
  • the flexible substrate 600 is made of a polyimide film (PI) or a polyester film and a copper foil.
  • PI polyimide film
  • Polyimide has been widely used due to its high temperature soldering, high strength, high modulus, and flame retardant properties.
  • Polyimide as a polymer material has outstanding thermal stability, good radiation and chemical stability and excellent mechanical properties.
  • the method for detecting whether the flexible substrate 600 meets the quality standard may be infrared detection, and the flexible substrate 600 is detected by using an infrared detector, and the detected data is received. If the detected data has a local position, If the data is obviously small, it can be considered that there is a crack or a void in the area. It is considered that the flexible substrate does not meet the quality standard. Therefore, it is necessary to consider replacing the flexible substrate to ensure the quality of the prepared touch panel.
  • the flexible substrate 600 is provided for sampling inspection.
  • the flexible substrate 600 is sampled.
  • the sampling method of the flexible substrate 600 may be: extracting a preset number of the flexible substrates 600 in a preset period, measuring a preset number of the flexible substrates 600, and determining a size of the preset number of flexible substrates 600. Whether it is within the allowed value range. If the size of the flexible substrate 600 is within the allowable value range, the next step is performed. If the size of the flexible substrate 600 exceeds the allowable value range, the preparation parameters and the like of the preparation tool to the flexible substrate 600 are adjusted to obtain the qualified flexible substrate 600.
  • S200 forming a thin film transistor layer 700 covering the flexible substrate 600, wherein the thin film transistor layer 700 includes a drain 711, please refer to FIG.
  • a thin film transistor layer 700 is formed on a surface of the flexible substrate 600.
  • the thin film transistor layer 700 includes a plurality of thin transistors distributed in a matrix.
  • the thin film transistor layer 700 further includes a channel layer 1000, a first isolation layer 1100, and a gate. 712, second isolation layer 1200 and source 713.
  • the channel layer 1000 is disposed on the flexible substrate 600, the first isolation layer 1100 covers the channel layer 1000, the gate 712 is disposed on the first isolation layer 1100, and the gate
  • the pole 712 is disposed corresponding to the channel layer 1000, and the second isolation layer 1200 covers the gate 712.
  • the source 713 and the drain 711 are both disposed on the second isolation layer 1200, and the source 713 and the drain 711 are spaced apart from each other, and the source 713 is opened in the
  • the via holes on the first isolation layer 1100 and the second isolation layer 1200 are electrically connected to one end of the channel layer 1000, and the drain 711 is opened through the first insulation 1100 and the second isolation layer A via hole on 1200 is electrically connected to the other end of the channel layer 1000.
  • the anode layer 800 is disposed on a surface of the drain 711, and the anode layer 800 includes a plurality of anodes 810 distributed in a matrix, and the anode 810 and the drain 711 are electrically connected.
  • the manner in which the anode layer 800 and the drain 711 are electrically connected may be a direct surface bonding method or a bridge connection manner.
  • the material of the anode layer 800 may be, but is limited to, a transparent conductive material such as indium tin oxide.
  • an entire layer of transparent conductive material covering the thin film transistor layer 700 is formed first, and then the entire transparent conductive material is patterned to form an anode layer 800 electrically connected to the drain 711.
  • a first isolation layer 1100 is defined between the drain 711 and the anode layer 800.
  • a via hole is formed in the first isolation layer 1100, and the anode layer 800 is electrically connected to the drain layer 711 through the through hole. connection.
  • the light emitting layer 100 is an organic light emitting layer.
  • S500 forming a cathode layer 200 covering the light emitting layer 100.
  • the cathode layer 200 is disposed in the display area A1 and the non-display area A2, and the cathode layer 200 is used to provide a cathode voltage for the light emitting layer 100. See Figure 15.
  • the cathode layer 200 includes a plurality of cathodes 210 distributed in a matrix, the cathodes 210 covering pixel points of the display area A1.
  • S700 forming a first electrode 310 on a surface of the first insulating layer 400 away from the cathode layer 200, the first electrode 310 being disposed in the display area A1 and the non-display area A2, in the display area A1, the first electrode 310 does not overlap with the cathode 210 of the cathode layer 200, and the first insulating layer 400 is used for electrically isolating the cathode layer 200 and the first electrode 310, wherein the first electrode An electrode 310 serves as a driving electrode or a sensing electrode of the OLED touch panel 10, as shown in FIG.
  • the first electrode 310 corresponds to a gap after the cathode 210 is patterned, the cathode 210 covers the pixel point, and the first electrode 310 avoids The pixel points are set.
  • FIG. 18 is a method for fabricating an OLED touch panel according to Embodiment 2 of the present invention.
  • the OLED touch panel manufacturing method further includes steps S800 and S810 in addition to the steps S100, S200, S300, S400, S500, S600, and S700.
  • the detailed descriptions of the steps S800 and S810 are as follows. .
  • S800 forming, in the non-display area A2, a second insulating layer 410 disposed between two adjacent first electrodes 310, wherein the second insulating layer 410 is used for electrically isolating two adjacent ones.
  • the first electrode 310 The first electrode 310.
  • the second electrode 320 avoids the pixel point setting of the display area A1.
  • FIG. 19 is a method for fabricating an OLED touch panel according to Embodiment 3 of the present invention.
  • the method for fabricating the OLED touch panel includes the steps S100, S200, S300, S400, S500, S600, S700, and S800.
  • the method for preparing the OLED touch panel further includes the step S900, and the detailed description about the step S900 is as follows.
  • S900 forming an encapsulation layer 500 disposed between the first electrode 310 and the second electrode 320.
  • the encapsulation layer 500 is used to electrically isolate the first electrode 310 and the second electrode 320.
  • Figure 20 forming an encapsulation layer 500 disposed between the first electrode 310 and the second electrode 320.
  • the encapsulation layer 500 includes a first inorganic layer 510, an organic layer 520, and a second inorganic layer 530, which are sequentially stacked, the first inorganic layer 510 covering the first electrode. 310.
  • the second electrode 320 is disposed on a side of the second inorganic layer 530 away from the organic layer 520.
  • FIG. 21 is a method for fabricating an OLED touch panel according to Embodiment 4 of the present invention.
  • the OLED touch panel manufacturing method further includes the step S910, and the detailed description about the step S910 is as follows, in addition to the steps S100, S200, S300, S400, S500, S600, S700, and S800.
  • S910 forming an encapsulation layer 500, wherein the second electrode 320 is disposed in the encapsulation layer 500, please refer to FIG. 22.
  • the encapsulation layer 500 includes a first inorganic layer 510, an organic layer 520, and a second inorganic layer 530, and the second electrode 320 is disposed on the first inorganic layer. Between 510 and the organic layer 520; or the second electrode 320 is disposed between the organic layer 520 and the second inorganic layer 530.
  • FIG. 23 is a schematic structural diagram of a touch device according to a preferred embodiment of the present invention.
  • the touch device 1 includes an OLED touch panel 10 .
  • OLED touch panel 10 please refer to the previous description of the OLED touch panel 10 , and details are not described herein again.
  • the touch device 1 can be, but is not limited to, a flexible e-book, a flexible smart phone (such as an Android mobile phone, an iOS mobile phone, a Windows Phone mobile phone, etc.), a flexible tablet computer, a flexible handheld computer, a flexible notebook computer, and a mobile Internet device (MID). , Mobile Internet Devices) or wearable devices.
  • MID mobile Internet device

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

提供一种OLED触控面板。OLED触控面板(10)具有显示区(A1)和非显示区(A2),该OLED触控面板包括发光层(100)、阴极层(200)及第一电极(310),发光层设置在显示区,阴极层设置在显示区及非显示区,阴极层用于为发光层提供阴极电压,第一电极设置在显示区及非显示区,在显示区,第一电极与阴极层的阴极不重叠,在非显示区,阴极层和第一电极之间设置有第一绝缘层(400),第一绝缘层用于电性隔离阴极层和第一电极,其中,第一电极作为OLED触控面板的驱动电极或者感应电极。该技术方案有助于OLED触控面板的窄边框设计。

Description

OLED触控面板、制备方法及触控装置 技术领域
本发明涉及触控技术领域,尤其涉及一种OLED触控面板、OLED触控面板制备方法及触控装置。
背景技术
随着电子技术的发展,触控屏广泛应用于手机,数码相机,媒体播放器,导航***,游戏设备和显示器等领域。有机发光二极管显示技术具有自发光、广视角、高对比度、较低耗电、极高反应速度等优点。目前在柔性有机发光二极管显示器上,触控层整合是利用光学胶黏贴触控薄膜在显示器之上,但这种外挂式的显示器件厚度较厚。
发明内容
本发明提供一种OLED触控面板,所述OLED触控面板具有显示区和非显示区,所述OLED触控面板包括发光层、阴极层及第一电极,所述发光层设置在所述显示区,所述阴极层设置在所述显示区及所述非显示区,所述阴极层用于为所述发光层提供阴极电压,所述第一电极设置在所述显示区及所述非显示区,在所述显示区,所述第一电极与所述阴极层的阴极不重叠,在所述非显示区,所述阴极层和所述第一电极之间设置有第一绝缘层,所述第一绝缘层用于电性隔离所述阴极层和所述第一电极,其中,所述第一电极作为所述OLED触控面板的驱动电极或者感应电极。
本发明的OLED触控面板,具有显示区和非显示区,包括发光层、阴极层及第一电极,所述发光层设置在所述显示区,所述阴极层设置在所述显示区及所述非显示区,所述阴极层用于为所述发光层提供阴极电压,所述第一电极设置在所述显示区及所述非显示区,在所述显示区域内,第一电极设置在阴极层,并且第一电极与阴极不重叠,在所述非显示区,所述阴极层和所述第一电极之间设置有第一绝缘层,所述第一绝缘层用于电性隔离所述阴极层和所述第一电极,其中,所述第一电极作为所述OLED触控面板的驱动电极或者感应电极。在显示区域内,第一电极设置在阴极层,在非显示区,所述阴极层和所述第一电极层叠设置,从而在减少整体OLED触控面板的厚度的同时还有助于节省非显示区的空间,从而实现较薄厚度的OLED触控面板的的窄边框设计,同时,第一绝缘层电性隔离所述阴极层和所述第一电极,防止线路间的干扰。
本发明还提供一种触控装置,所述触控装置包括如上所述的触控面板。
本发明还提供一种OLED触控面板制备方法,所述OLED触控面板具有显示区和非显示区,所述OLED触控面板制备方法包括:
提供柔性基板;
形成覆盖所述柔性基板的薄膜晶体管层,其中所述薄膜晶体管层包括漏极;
形成覆盖所述薄膜晶体管层的阳极层,所述阳极层和所述漏极电连接;
形成覆盖所述阳极层的发光层,所述发光层设置在所述显示区;
形成覆盖所述发光层的阴极层,所述阴极层设置在所述显示区及所述非显示区,所述阴极层用于为所述发光层提供阴极电压;
在所述非显示区形成覆盖所述阴极层的第一绝缘层;
在所述第一绝缘层远离所述阴极层的表面形成第一电极,所述第一电极设置 在所述显示区及所述非显示区,在所述显示区,所述第一电极与所述阴极层的阴极不重叠,所述第一绝缘层用于电性隔离所述阴极层和所述第一电极,其中,所述第一电极作为所述OLED触控面板的驱动电极或者感应电极。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一提供的OLED触控面板的结构示意图。
图1(a)~图1(d)为本发明中阴极层的结构形状示意图。
图1(e)是本发明实施例一提供的OLED触控面板的俯视图。
图1(f)是图1(e)中区域B的放大视图。
图1(g)是图1(f)的一种层叠结构示意图。
图1(h)是图1(f)的另一种层叠结构示意图。
图2是本发明实施例二提供的OLED触控面板的结构示意图。
图2(a)~图2(c)是本发明中第一电极和第二电极的排布结构示意图。
图3是本发明实施例三提供的OLED触控面板的结构示意图。
图4是本发明实施例三提供的OLED触控面板的封装层的结构示意图。
图5是本发明实施例四提供的OLED触控面板的结构示意图。
图6是本发明实施例四提供的OLED触控面板的一种封装层的结构示意图。
图7是本发明实施例四提供的OLED触控面板的另一种封装层的结构示意图。
图8是本发明实施例五提供的OLED触控面板的结构示意图。
图9是本发明实施例五中阳极层和漏极连接的结构示意图。
图10是本发明实施例一提供的OLED触控面板制备方法。
图11是本发明实施例一提供的OLED触控面板制备方法的步骤S100对应的结构示意图。
图12是本发明实施例一提供的OLED触控面板制备方法的步骤S200对应的结构示意图。
图13是本发明实施例一提供的OLED触控面板制备方法的步骤S300对应的结构示意图。
图14是本发明实施例一提供的OLED触控面板制备方法的步骤S400对应的结构示意图。
图15是本发明实施例一提供的OLED触控面板制备方法的步骤S500对应的结构示意图。
图16是本发明实施例一提供的OLED触控面板制备方法的步骤S600对应的结构示意图。
图17是本发明实施例一提供的OLED触控面板制备方法的步骤S700对应的结构示意图。
图18是本发明实施例二提供的OLED触控面板制备方法。
图19是本发明实施例三提供的OLED触控面板制备方法。
图20是本发明实施例三提供的OLED触控面板制备方法的步骤S900对应的结构示意图。
图21是本发明实施例四提供的OLED触控面板制备方法。
图22是本发明实施例四提供的OLED触控面板制备方法的步骤S910对应的结构示意图。
图23为本发明一较佳实施例提供的触控装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1,图1是本发明实施例一提供的OLED触控面板的结构示意图。在本实施方式中,所述OLED触控面板10具有显示区A1和非显示区A2,所述OLED触控面板10包括发光层100、阴极层200及第一电极310,所述发光层100设置在所述显示区A1,所述阴极层200设置在所述显示区A1及所述非显示区A2,所述阴极层200用于为所述发光层100提供阴极电压,所述第一电极310设置在所述显示区A1及所述非显示区A2,在所述显示区A1,所述第一电极310与所述阴极层200的阴极210不重叠,在所述非显示区A2,所述阴极层200和所述第一电极310之间设置有第一绝缘层400,所述第一绝缘层400用于电性隔离所述阴极层200和所述第一电极310,其中,所述第一电极310作为所述OLED触控面板10的驱动电极或者感应电极。
在所述显示区A1,所述第一电极310对应于所述阴极210图案化处理之后的间隙内,所述阴极210覆盖所述像素点设置,所述第一电极310避开所述像素点设置。
请一并参阅图1(a)、图1(b)、图1(c)和图1(d),图1(a)~图1(d)为本发明中阴极层的结构形状示意图。可选的,所述阴极层200的形状可以为图案化的块状,菱形状,直线条形状或者是曲线条形状,也可以是其他形状。
可选的,所述阴极层200的制成材料可以为低电阻材料,如铜(Cu)、钼(MO)或者铝(AL)。且在一种实施方式中,所述阴极层200的制成材料可以是铜(Cu)和钼(MO)组成的混合物。所述阴极层200的制成材料为低电阻材料,有助于减少发热,防止信号产生干扰的问题,可以提高触控精度。
可选的,所述第一电极310的制成材料可以为镁(Mg)、银(Ag)、铜(Cu)、钼(MO)或者铝(AL)。且在一种实施方式中,所述第一电极310的制成材料可以是镁(Mg)和银(Ag)组成的混合物或者是铜(Cu)和钼(MO)组成的混合物。
其中,显示区A1一般用于显示图像或文字等信息。显示区A1包括像素区和非像素区,像素区是覆盖有像素点的区域,一般的像素点包括红色像素(R)、绿色像素(G)或蓝色像素(B)的区域,非像素区是避开像素点的区域。
可选的,在一种实施方式中,所述阴极层200包括多个呈矩阵分布的阴极,所述阴极210覆盖所述显示区A1的像素点。
其中,像素点是发光层100的发光区域。
可选的,在另一种实施方式中,所述第一电极310避开所述显示区A1的像素点设置。
优选的,所述第一电极310为条状结构。
可选的,第一绝缘层400可以为氮化硅或者是三氧化二铝等等。
请一并参阅图1(e)、图1(f)和图1(g),图1(e)是本发明实施例一 提供的OLED触控面板的俯视图。图1(f)是图1(e)中区域B的放大视图。图1(g)是图1(f)的一种层叠结构示意图。
具体的,在一种实施方式中,在非显示区A2,所有的第一电极310均层叠设置,且在所述第一电极310与所述阴极层200之间设置第一绝缘层400,相邻两个所述第一电极310之间设置第二绝缘层410,所述第一绝缘层400用于对所述第一电极310与所述阴极层200之间形成电性隔离,所述第二绝缘层410用于电性隔离相邻两个所述第一电极310。由于所有的第一电极310均层叠设置,因此,有助于OLED触控面板10的窄边框设计。
请一并参阅图1(e)、图1(f)和图1(h),图1(h)是图1(f)的另一种层叠结构示意图。在另一种实施方式中,在非显示区A2,在所述第一电极310与所述阴极层200之间设置第一绝缘层400,相邻两个所述第一电极310之间间隔有阴极210。由于所述第一电极310与所述阴极层200层叠设置,因此有助于实现OLED触控面板的窄边框设计。
进一步地,可以理解地,绝缘层400可仅设于非显示区A2,在显示区A1未布设绝缘层400。也就是说,此时绝缘层400呈中空的框形。这种结构的绝缘层400有利于减小显示区A1的厚度。
本发明的OLED触控面板,具有显示区和非显示区,包括发光层、阴极层及第一电极,所述发光层设置在所述显示区,所述阴极层设置在所述显示区及所述非显示区,所述阴极层用于为所述发光层提供阴极电压,所述第一电极设置在所述显示区及所述非显示区,在所述非显示区,所述阴极层和所述第一电极之间设置有第一绝缘层,所述第一绝缘层用于电性隔离所述阴极层和所述第一电极,其中,所述第一电极作为所述OLED触控面板的驱动电极或者感应电极。由于在非显示区,所述阴极层和所述第一电极层叠设置,有助于节省非显示区的空间,因此,有发明的技术方案有助于OLED触控面板的窄边框设计。
请参阅图2,图2是本发明实施例二提供的OLED触控面板的结构示意图。实施例二与实施例一的结构基本相同,不同之处在于,在实施例二中,所述OLED触控面板10还包括第二电极320,所述第二电极320设置在所述显示区A1,所述第二电极320设置在所述第一电极310远离所述阴极层200的一侧,所述第二电极320在所述阴极层200上的投影与所述第一电极310在所述阴极层200上的投影交叉设置,当所述第一电极310为所述OLED触控面板10的驱动电极时,所述第二电极320为感应电极;当所述第一电极310为所述OLED触控面板10的感应电极时,所述第二电极320为驱动电极。
其中,所述第二电极320避开所述显示区A1的像素点设置。
请一并参阅图2、图2(a)、图2(b)和图2(c),图2(a)~图2(c)是本发明中第一电极和第二电极的排布结构示意图。
其中,第二电极320与第一电极310在所述阴极层200上的投影交叉,构成触控电极,形成这种交叉结构是为了方便连线,形成触控层。
请参阅图3,图3是本发明实施例三提供的OLED触控面板的结构示意图。实施例三与实施例二的结构基本相同,不同之处在于,在实施例三中,所述OLED触控面板10还包括封装层500,所述封装层500设置在所述第一电极310和所述第二电极320之间,用于电性隔离所述第一电极310和所述第二电极320。
可选的,在一种实施方式中,所述封装层500包括依次层叠设置的第一无机层510、有机层520及第二无机层530,所述第一无机层510覆盖所述第一电极310,所述第二电极320设置在所述第二无机层530远离所述有机层520的一侧, 请参阅图4。
请参阅图5,图5是本发明实施例四提供的OLED触控面板的结构示意图。实施例四与实施例二的结构基本相同,不同之处在于,在实施例四中,所述OLED触控面板还包括封装层500,所述第二电极320设置在所述封装层500内。
具体的,在形成封装层500时,先形成第一封装层510,然后再形成第二电极320,接着再形成第二封装层520,这样,第一封装层510位于第一电极310和第二电极320之间,对第一电极310和第二电极320形成电性隔离,第二封装层520覆盖第二电极320,对第二电极320形成保护,同时降低整个面板的厚度。
可选的,在一种实施方式中,所述封装层500包括层叠设置的第一无机层510、有机层520及第二无机层530,所述第二电极320设置在所述第一无机层510及所述有机层520之间,请参阅图6。
具体的,先形成第一无机层510,然后在第一无机层510的表面形成第二电极320,然后覆盖第二电极320形成有机层520,接着,覆盖有机层520形成第二无机层530,这样,第一无机层510就可以对第一电极310和第二电极320形成电性隔离,有机层520和第二无机层530就可以对第二电极320形成保护。
或者,在另一种实施方式中,所述封装层500包括层叠设置的第一无机层510、有机层520及第二无机层530,所述第二电极320设置在所述有机层520及所述第二无机层530之间,请参阅图7。
具体的,先形成第一无机层510,然后覆盖第一无机层510形成有机层520,然后在有机层520远离第一无机层510的表面形成第二电极320,接着,覆盖第二电极320形成第二无机层530,这样,第一无机层510和有机层520就可以对第一电极310和第二电极320形成电性隔离,第二无机层530就可以对第二电极320形成保护。
请参阅图8,图8是本发明实施例五提供的OLED触控面板的结构示意图。实施例五与实施例一的结构基本相同,不同之处在于,在实施例五中,所述OLED触控面板10还包括柔性基板600、薄膜晶体管层700及阳极层800,所述薄膜晶体管层700、所述阳极层800、所述发光层100、所述阴极层200及所述第一电极310设置在所述柔性基板600的一侧,所述薄膜晶体管层700、所述阳极层800、所述发光层100依次层叠设置在所述显示区A1,且所述薄膜晶体管层700相较于所述阳极层800邻近所述柔性基板600设置,所述薄膜晶体管层700包括呈矩阵分布的多个薄晶体管,所述薄膜晶体管包括漏极711(参见图9),所述阳极层800包括呈矩阵分布的多个阳极810,所述阳极810和所述漏极711电连接,用于接收阳极电压,所述阳极电压和所述阴极电压配合以使得所述发光层100发光。
具体的,阳极接收阳极电压,产生空穴,阴极接收阴极电压,产生电子,空穴和电子被传输到所述发光层100中,且在发光层100中复合以使得所述发光层100发光。
具体的,请参阅图9,图9是本发明实施例五中阳极层和漏极连接的结构示意图。在柔性基板600的表面形成薄膜晶体管层700,薄膜晶体管层700包括呈矩阵分布的多个薄膜晶体管,所述薄膜晶体管层700还包括沟道层1000、第一隔离层1100、栅极712、第二隔离层1200及源极713。所述沟道层1000设置在所述柔性基板600上,所述第一隔离层1100覆盖所述沟道层1000,所述栅极712设置在所述第一隔离层1100上,且所述栅极712对应所述沟道层1000设置,所述第二隔离层1200覆盖所述栅极712。所述源极713和所述漏极711均设置在 所述第二隔离层1200上,且所述源极713和所述漏极711之间间隔设置,所述源极713通过开设在所述第一隔离层1100和所述第二隔离层1200上的通孔与所述沟道层1000的一端电连接,所述漏极711通过开设在所述第一绝缘1100和所述第二隔离层1200上的通孔与所述沟道层1000的另一端电连接。在漏极711的表面形成阳极层800,所述阳极层800包括呈矩阵分布的多个阳极810,所述阳极810和所述漏极711电连接,用于接收阳极电压,所述阳极电压和所述阴极电压配合以使得所述发光层100发光。
本发明的OLED触控面板,具有显示区和非显示区,包括发光层、阴极层及第一电极,所述发光层设置在所述显示区,所述阴极层设置在所述显示区及所述非显示区,所述阴极层用于为所述发光层提供阴极电压,所述第一电极设置在所述显示区及所述非显示区,在所述显示区域内,第一电极设置在阴极层,并且第一电极与阴极不重叠,在所述非显示区,所述阴极层和所述第一电极之间设置有第一绝缘层,所述第一绝缘层用于电性隔离所述阴极层和所述第一电极,其中,所述第一电极作为所述OLED触控面板的驱动电极或者感应电极。在显示区域内,第一电极设置在阴极层,在非显示区,所述阴极层和所述第一电极层叠设置,从而在减少整体OLED触控面板的厚度的同时还有助于节省非显示区的空间,从而实现较薄厚度的OLED触控面板的窄边框设计,同时,第一绝缘层电性隔离所述阴极层和所述第一电极,防止线路间的干扰。
请参阅图10,图10是本发明实施例一提供的OLED触控面板制备方法。所述OLED触控面板具有显示区和非显示区,所述OLED触控面板制备方法包括但不限于步骤S100、S200、S300、S400、S500、S600和S700,关于步骤S100、S200、S300、S400、S500、S600和S700的详细描述如下。
S100:提供柔性基板600,请参阅图11。
所述柔性基板600由聚酰亚胺薄膜(PI)或聚酯薄膜与铜箔复合而成。由于聚酰亚胺耐高温锡焊、高强度、高模量、阻燃等优良性能,因而获得了广泛应用。聚酰亚胺作为高分子材料具有突出的热稳定性,良好的耐辐射和化学稳定性和优良的力学性能。
在提供柔性基板600的同时,需要对所述柔性基板600的质量进行检测,确保所述柔性基板600是符合质量要求的,如果所述柔性基板600不符合质量标准,就要考虑更换柔性基板,以确保制备出来的触控面板达到正常指标。
具体的,检测所述柔性基板600是否达到质量标准的方法可以为红外探测,采用红外探测仪对所述柔性基板600进行探测,并接受探测的数据,若探测到的数据中,有局部位置的数据明显偏小,则可以认为该区域有裂缝或者是空洞,认为该柔性基板是不符合质量标准的,因此,需要考虑更换柔性基板,从而保证制备成的触控面板的质量。
对提供的所述柔性基板600抽样检测。
本实施方式中,在提供多个所述柔性基板600后,对所述柔性基板600进行抽样。所述柔性基板600的抽样方法可以是,在预设周期内抽取预设数量的所述柔性基板600,测量预设数量的所述柔性基板600的尺寸,判断预设数量的柔性基板600的尺寸是否在允许值范围内。若所述柔性基板600的尺寸在允许值范围内,则进行下一步骤。若所述柔性基板600的尺寸超出允许值范围,则调整制备工具对所述柔性基板600的制备参数等,以期得到合格的所述柔性基板600。
S200:形成覆盖所述柔性基板600的薄膜晶体管层700,其中所述薄膜晶体管层700包括漏极711,请参阅图12。
具体的,在柔性基板600的表面形成薄膜晶体管层700,薄膜晶体管层700包括呈矩阵分布的多个薄晶体管,所述薄膜晶体管层700还包括沟道层1000、第一隔离层1100、栅极712、第二隔离层1200及源极713。所述沟道层1000设置在所述柔性基板600上,所述第一隔离层1100覆盖所述沟道层1000,所述栅极712设置在所述第一隔离层1100上,且所述栅极712对应所述沟道层1000设置,所述第二隔离层1200覆盖所述栅极712。所述源极713和所述漏极711均设置在所述第二隔离层1200上,且所述源极713和所述漏极711之间间隔设置,所述源极713通过开设在所述第一隔离层1100和所述第二隔离层1200上的通孔与所述沟道层1000的一端电连接,所述漏极711通过开设在所述第一绝缘1100和所述第二隔离层1200上的通孔与所述沟道层1000的另一端电连接。
S300:形成覆盖所述薄膜晶体管层700的阳极层800,所述阳极层800和所述漏极711电连接,请参阅图13。
所述阳极层800设置在所述漏极711的表面,且所述阳极层800包括多个呈矩阵分布的阳极810,所述阳极810和所述漏极711电连接。其中,所述阳极层800和所述漏极711电连接的方式可以为直接表面贴合的方式,也可以为电桥连接的方式。所述阳极层800的材料可以为但仅限于为氧化铟锡等透明导电材料。在一实施方式中,先形成覆盖所述薄膜晶体管层700的一整层透明导电材料,接着,对整层透明导电材料进行图案化,以形成与所述漏极711电连接的阳极层800。所述漏极711与所述阳极层800之间存在第一隔离层1100,所述第一隔离层1100上开设通孔,所述阳极层800通过所述通孔与所述漏极层711电连接。
S400:形成覆盖所述阳极层800的发光层100,所述发光层100设置在所述显示区A1,请参阅图14。
其中,所述发光层100为有机发光层。
S500:形成覆盖所述发光层100的阴极层200,所述阴极层200设置在所述显示区A1及所述非显示区A2,所述阴极层200用于为所述发光层100提供阴极电压,请参阅图15。
可选的,所述阴极层200包括多个呈矩阵分布的阴极210,所述阴极210覆盖所述显示区A1的像素点。
S600:在所述非显示区A2形成覆盖所述阴极层200的第一绝缘层400,请参阅图16。
S700:在所述第一绝缘层400远离所述阴极层200的表面形成第一电极310,所述第一电极310设置在所述显示区A1及所述非显示区A2,在所述显示区A1,所述第一电极310与所述阴极层200的阴极210不重叠,所述第一绝缘层400用于电性隔离所述阴极层200和所述第一电极310,其中,所述第一电极310作为所述OLED触控面板10的驱动电极或者感应电极,请参阅图17。
可选的,在所述显示区A1,所述第一电极310对应于所述阴极210图案化处理之后的间隙内,所述阴极210覆盖所述像素点设置,所述第一电极310避开所述像素点设置。
请参阅图18,图18是本发明实施例二提供的OLED触控面板制备方法。所述OLED触控面板制备方法除了包括步骤S100、S200、S300、S400、S500、S600和S700以外,所述OLED触控面板制备方法还包括步骤S800和S810,关于步骤S800和S810的详细描述如下。
S800:在所述非显示区A2,形成设置在相邻两个所述第一电极310之间的第二绝缘层410,所述第二绝缘层410用于电性隔离相邻两个所述第一电极310。
S810:在所述第一电极310远离所述阴极层200的一侧形成第二电极320,所述第二电极320设置在所述显示区A1,所述第二电极320与所述第一电极310交叉绝缘设置,当所述第一电极310为所述OLED触控面板10的驱动电极时,所述第二电极320为感应电极;当所述第一电极310为所述OLED触控面板10的感应电极时,所述第二电极320为驱动电极。
其中,所述第二电极320避开所述显示区A1的像素点设置。
请参阅图19,图19是本发明实施例三提供的OLED触控面板制备方法。所述OLED触控面板制备方法除了包括步骤S100、S200、S300、S400、S500、S600、S700和S800以外,所述OLED触控面板制备方法还包括步骤S900,关于步骤S900的详细描述如下。
S900:形成设置在所述第一电极310和所述第二电极320之间封装层500,所述封装层500用于电性隔离所述第一电极310和所述第二电极320,请参阅图20。
可选的,在一种实施方式中,所述封装层500包括依次层叠设置的第一无机层510、有机层520及第二无机层530,所述第一无机层510覆盖所述第一电极310,所述第二电极320设置在所述第二无机层530远离所述有机层520的一侧。
请参阅图21,图21是本发明实施例四提供的OLED触控面板制备方法。所述OLED触控面板制备方法除了包括步骤S100、S200、S300、S400、S500、S600、S700和S800以外,所述OLED触控面板制备方法还包括步骤S910,关于步骤S910的详细描述如下。
S910:形成封装层500,所述第二电极320设置在所述封装层500内,请参阅图22。
可选的,在一种实施方式中,所述封装层500包括层叠设置的第一无机层510、有机层520及第二无机层530,所述第二电极320设置在所述第一无机层510及所述有机层520之间;或者,所述第二电极320设置在所述有机层520及所述第二无机层530之间。
本发明还提供了一种触控装置1,请参阅图23,图23为本发明一较佳实施例提供的触控装置的结构示意图。所述触控装置1包括OLED触控面板10,所述OLED触控面板10请参阅前面对OLED触控面板10的描述,在此不再赘述。所述触控装置1可以为但不仅限于为柔性电子书、柔性智能手机(如Android手机、iOS手机、Windows Phone手机等)、柔性平板电脑、柔性掌上电脑、柔性笔记本电脑、移动互联网设备(MID,Mobile Internet Devices)或穿戴式设备等。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (23)

  1. 一种OLED触控面板,其特征在于,所述OLED触控面板具有显示区和非显示区,所述OLED触控面板包括发光层、阴极层及第一电极,所述阴极层设置在所述显示区及所述非显示区,所述阴极层用于为所述发光层提供阴极电压,所述第一电极设置在所述显示区及所述非显示区,
    在所述显示区,所述第一电极与所述阴极层的阴极不重叠,在所述非显示区,所述阴极层和所述第一电极之间设置有第一绝缘层,所述第一绝缘层用于电性隔离所述阴极层和所述第一电极,其中,所述第一电极作为所述OLED触控面板的驱动电极或者感应电极。
  2. 如权利要求1所述的OLED触控面板,其特征在于,在所述非显示区,相邻两个所述第一电极之间设置第二绝缘层,所述第二绝缘层用于电性隔离相邻两个所述第一电极。
  3. 如权利要求1所述的OLED触控面板,其特征在于,在所述显示区,相邻两个所述第一电极之间间隔有阴极。
  4. 如权利要求1所述的OLED触控面板,其特征在于,所述OLED触控面板还包括第二电极,所述第二电极设置在所述显示区,所述第二电极设置在所述第一电极远离所述阴极层的一侧,所述第二电极在所述阴极层上的投影与所述第一电极在所述阴极层上的投影交叉,当所述第一电极为所述OLED触控面板的驱动电极时,所述第二电极为感应电极;当所述第一电极为所述OLED触控面板的感应电极时,所述第二电极为驱动电极。
  5. 如权利要求4所述的OLED触控面板,其特征在于,所述第二电极避开所述显示区的像素点设置。
  6. 如权利要求4所述的OLED触控面板,其特征在于,所述OLED触控面板还包括封装层,所述封装层设置在所述第一电极和所述第二电极之间,用于电性隔离所述第一电极和所述第二电极。
  7. 如权利要求6所述的OLED触控面板,其特征在于,所述封装层包括依次层叠设置的第一无机层、有机层及第二无机层,所述第一无机层覆盖所述第一电极,所述第二电极设置在所述第二无机层远离所述有机层的一侧。
  8. 如权利要求4所述的OLED触控面板,其特征在于,所述OLED触控面板还包括封装层,所述第二电极设置在所述封装层内。
  9. 如权利要求8所述的OLED触控面板,其特征在于,所述封装层包括层叠设置的第一无机层、有机层及第二无机层,所述第二电极设置在所述第一无机层及所述有机层之间;或者,所述第二电极设置在所述有机层及所述第二无机层之间。
  10. 如权利要求1所述的OLED触控面板,其特征在于,在所述显示区,所述第一电极位于所述阴极图案化处理之后的间隙内,所述阴极覆盖所述像素点设置,所述第一电极避开所述像素点设置。
  11. 如权利要求10所述的OLED触控面板,其特征在于,所述阴极层包括多个呈矩阵分布的阴极。
  12. 如权利要求1所述的OLED触控面板,其特征在于,所述OLED触控面板还包括柔性基板、薄膜晶体管层及阳极层,所述薄膜晶体管层、所述阳极层、所述发光层、所述阴极层及所述第一电极设置在所述柔性基板的一侧,所述薄膜晶体管层、所述阳极层、所述发光层依次层叠设置在所述显示区,且所述薄膜晶 体管层相较于所述阳极层邻近所述柔性基板设置,所述薄膜晶体管层包括呈矩阵分布的多个薄晶体管,所述薄膜晶体管包括漏极,所述阳极层包括呈矩阵分布的多个阳极,所述阳极和所述漏极电连接,用于接收阳极电压,所述阳极电压和所述阴极电压配合以使得所述发光层发光。
  13. 一种触控装置,其特征在于,所述触控装置包括如权利要求1~12任一项所述的OLED触控面板。
  14. 一种OLED触控面板制备方法,其特征在于,所述OLED触控面板具有显示区和非显示区,所述OLED触控面板制备方法包括:
    提供柔性基板;
    形成覆盖所述柔性基板的薄膜晶体管层,其中所述薄膜晶体管层包括漏极;
    形成覆盖所述薄膜晶体管层的阳极层,所述阳极层和所述漏极电连接;
    形成覆盖所述阳极层的发光层,所述发光层设置在所述显示区;
    形成覆盖所述发光层的阴极层,所述阴极层设置在所述显示区及所述非显示区,所述阴极层用于为所述发光层提供阴极电压;
    在所述非显示区形成覆盖所述阴极层的第一绝缘层;
    在所述第一绝缘层远离所述阴极层的表面形成第一电极,所述第一电极设置在所述显示区及所述非显示区,在所述显示区,所述第一电极与所述阴极层的阴极不重叠,所述第一绝缘层用于电性隔离所述阴极层和所述第一电极,其中,所述第一电极作为所述OLED触控面板的驱动电极或者感应电极。
  15. 如权利要求14所述的OLED触控面板制备方法,其特征在于,所述OLED触控面板制备方法还包括:
    在所述非显示区,形成设置在相邻两个所述第一电极之间的第二绝缘层,所述第二绝缘层用于电性隔离相邻两个所述第一电极。
  16. 如权利要求14所述的OLED触控面板制备方法,其特征在于,所述OLED触控面板制备方法还包括:
    在所述第一电极远离所述阴极层的一侧形成第二电极,所述第二电极设置在所述显示区,所述第二电极在所述阴极层上的投影与所述第一电极在所述阴极层上的投影交叉绝缘设置,当所述第一电极为所述OLED触控面板的驱动电极时,所述第二电极为感应电极;当所述第一电极为所述OLED触控面板的感应电极时,所述第二电极为驱动电极。
  17. 如权利要求16所述的OLED触控面板制备方法,其特征在于,所述第二电极避开所述显示区的像素点设置。
  18. 如权利要求16所述的OLED触控面板制备方法,其特征在于,所述OLED触控面板制备方法还包括:
    形成设置在所述第一电极和所述第二电极之间封装层,所述封装层用于电性隔离所述第一电极和所述第二电极。
  19. 如权利要求18所述的OLED触控面板制备方法,其特征在于,所述封装层包括依次层叠设置的第一无机层、有机层及第二无机层,所述第一无机层覆盖所述第一电极,所述第二电极设置在所述第二无机层远离所述有机层的一侧。
  20. 如权利要求16所述的OLED触控面板制备方法,其特征在于,所述OLED触控面板制备方法还包括:
    形成封装层,所述第二电极设置在所述封装层内。
  21. 如权利要求20所述的OLED触控面板制备方法,其特征在于,所述封装层包括层叠设置的第一无机层、有机层及第二无机层,所述第二电极设置在所述 第一无机层及所述有机层之间;或者,所述第二电极设置在所述有机层及所述第二无机层之间。
  22. 如权利要求15所述的OLED触控面板制备方法,其特征在于,所述阴极层包括多个呈矩阵分布的阴极,所述阴极覆盖所述显示区的像素点。
  23. 如权利要求15所述的OLED触控面板制备方法,其特征在于,在所述显示区,所述第一电极位于所述阴极图案化处理之后的间隙内,所述阴极覆盖所述像素点设置,所述第一电极避开所述像素点设置。
PCT/CN2018/086221 2018-05-09 2018-05-09 Oled触控面板、制备方法及触控装置 WO2019213880A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/086221 WO2019213880A1 (zh) 2018-05-09 2018-05-09 Oled触控面板、制备方法及触控装置
CN201880093841.8A CN112449727A (zh) 2018-05-09 2018-05-09 Oled触控面板、制备方法及触控装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086221 WO2019213880A1 (zh) 2018-05-09 2018-05-09 Oled触控面板、制备方法及触控装置

Publications (1)

Publication Number Publication Date
WO2019213880A1 true WO2019213880A1 (zh) 2019-11-14

Family

ID=68466678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086221 WO2019213880A1 (zh) 2018-05-09 2018-05-09 Oled触控面板、制备方法及触控装置

Country Status (2)

Country Link
CN (1) CN112449727A (zh)
WO (1) WO2019213880A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111930264A (zh) * 2020-09-15 2020-11-13 武汉华星光电半导体显示技术有限公司 一种触控显示面板和触控显示装置
CN114115571A (zh) * 2020-08-26 2022-03-01 深圳市柔宇科技股份有限公司 触控显示面板及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115000123A (zh) * 2021-10-12 2022-09-02 荣耀终端有限公司 一种显示面板及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140039470A (ko) * 2012-09-24 2014-04-02 엘지디스플레이 주식회사 터치 타입 유기발광다이오드 표시장치
CN104571696A (zh) * 2014-12-23 2015-04-29 上海天马有机发光显示技术有限公司 触控显示面板和触控显示装置
CN106775062A (zh) * 2016-11-25 2017-05-31 京东方科技集团股份有限公司 一种有机发光二极管触控显示面板和触控显示装置
CN107180852A (zh) * 2017-05-18 2017-09-19 上海天马有机发光显示技术有限公司 一种触控显示面板及显示装置
CN107799547A (zh) * 2016-08-31 2018-03-13 群创光电股份有限公司 有机发光二极管触控显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102178796B1 (ko) * 2014-01-22 2020-11-16 삼성디스플레이 주식회사 표시 장치
KR101979444B1 (ko) * 2016-07-29 2019-05-17 삼성디스플레이 주식회사 표시장치
KR102668610B1 (ko) * 2016-10-21 2024-05-24 삼성디스플레이 주식회사 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140039470A (ko) * 2012-09-24 2014-04-02 엘지디스플레이 주식회사 터치 타입 유기발광다이오드 표시장치
CN104571696A (zh) * 2014-12-23 2015-04-29 上海天马有机发光显示技术有限公司 触控显示面板和触控显示装置
CN107799547A (zh) * 2016-08-31 2018-03-13 群创光电股份有限公司 有机发光二极管触控显示装置
CN106775062A (zh) * 2016-11-25 2017-05-31 京东方科技集团股份有限公司 一种有机发光二极管触控显示面板和触控显示装置
CN107180852A (zh) * 2017-05-18 2017-09-19 上海天马有机发光显示技术有限公司 一种触控显示面板及显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114115571A (zh) * 2020-08-26 2022-03-01 深圳市柔宇科技股份有限公司 触控显示面板及电子设备
CN111930264A (zh) * 2020-09-15 2020-11-13 武汉华星光电半导体显示技术有限公司 一种触控显示面板和触控显示装置
CN111930264B (zh) * 2020-09-15 2023-12-01 武汉华星光电半导体显示技术有限公司 一种触控显示面板和触控显示装置

Also Published As

Publication number Publication date
CN112449727A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
JP6974575B2 (ja) 表示装置
US10714707B2 (en) Organic light-emitting display apparatus and fabrication method thereof
TWI808631B (zh) 發光裝置
JP2021009849A (ja) 表示装置
JP2024045217A (ja) 電子機器
JP6186697B2 (ja) 有機el装置の製造方法、有機el装置、電子機器
KR102045733B1 (ko) 유기전계발광표시장치 및 그 제조 방법
US9799713B2 (en) Organic light-emitting diode display with barrier layer
JP2003202587A (ja) 表示装置及びその製造方法
KR102566090B1 (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
JP3193995U (ja) 表示装置
WO2020154875A1 (zh) 像素单元及其制造方法和双面oled显示装置
US8674954B2 (en) Organic light emitting diode display and method of manufacturing the same
WO2019213880A1 (zh) Oled触控面板、制备方法及触控装置
WO2019242600A1 (zh) 有机电致发光显示面板、其制作方法及显示装置
WO2019029208A1 (zh) 有机发光二极管显示面板及其制作方法
WO2018210073A1 (zh) Oled触控显示基板及其制备方法、以及触控显示装置
JP2016109771A (ja) 表示装置および表示装置の製造方法
WO2018223699A1 (zh) 显示面板及其制备方法、显示装置以及显示方法
WO2019153226A1 (en) Organic light emitting diode display panel, organic light emitting diode counter substrate, and fabricating method thereof
WO2019100190A1 (zh) 触控面板、触控面板制备方法及触控装置
US9806142B2 (en) Display device
US11950450B2 (en) Display substrate and method of manufacturing the same and electronic device
TWI297210B (en) System for displaying images including electroluminescent device and method for fabricating the same
TW200906209A (en) System for displaying image and fabrication method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918165

Country of ref document: EP

Kind code of ref document: A1