WO2019213845A1 - 无线通信方法、通信设备、芯片和*** - Google Patents

无线通信方法、通信设备、芯片和*** Download PDF

Info

Publication number
WO2019213845A1
WO2019213845A1 PCT/CN2018/086059 CN2018086059W WO2019213845A1 WO 2019213845 A1 WO2019213845 A1 WO 2019213845A1 CN 2018086059 W CN2018086059 W CN 2018086059W WO 2019213845 A1 WO2019213845 A1 WO 2019213845A1
Authority
WO
WIPO (PCT)
Prior art keywords
signals
channel
uplink
uplink channels
signal
Prior art date
Application number
PCT/CN2018/086059
Other languages
English (en)
French (fr)
Inventor
林亚男
林晖闵
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2018422444A priority Critical patent/AU2018422444A1/en
Priority to SG11202009880QA priority patent/SG11202009880QA/en
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP18918115.9A priority patent/EP3768012B1/en
Priority to BR112020020498-6A priority patent/BR112020020498A2/pt
Priority to RU2020133862A priority patent/RU2764291C1/ru
Priority to CN202010495256.XA priority patent/CN111757523B/zh
Priority to MX2020011216A priority patent/MX2020011216A/es
Priority to CA3096345A priority patent/CA3096345C/en
Priority to JP2020553594A priority patent/JP7141467B2/ja
Priority to CN201880065438.4A priority patent/CN111615855A/zh
Priority to PCT/CN2018/086059 priority patent/WO2019213845A1/zh
Priority to EP22202685.8A priority patent/EP4142405A1/en
Priority to CN202211699681.6A priority patent/CN115968040A/zh
Priority to KR1020207028061A priority patent/KR20210004965A/ko
Priority to ES18918115T priority patent/ES2935351T3/es
Publication of WO2019213845A1 publication Critical patent/WO2019213845A1/zh
Priority to US17/013,746 priority patent/US11051302B2/en
Priority to US17/338,659 priority patent/US11765702B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1664Details of the supervisory signal the supervisory signal being transmitted together with payload signals; piggybacking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • Embodiments of the present invention relate to the field of communications, and more particularly, to wireless communication methods, communication devices, chips, and systems.
  • the fifth generation mobile communication technology (5-Generation, 5G) New Radio (NR) system does not support simultaneous transmission of two uplink channels in one carrier, when multiple channels transmit collisions in the same time unit.
  • the terminal needs to determine that an actually transmitted channel carries part or all of the information to be transmitted. Therefore, for a user equipment (User Equipment, UE), when there are overlapping channels in the time domain, how the terminal device determines an actually transmitted channel is an urgent problem to be solved.
  • UE User Equipment
  • a wireless communication method, communication device, chip, and system are provided.
  • the terminal device has multiple uplink channels/signals to be transmitted that are at least partially overlapped in the time domain, the information to be transmitted can be effectively transmitted.
  • a wireless communication method including:
  • the terminal device determines a plurality of uplink channels/signals transmitted within the target time unit, the plurality of uplink channels/signals at least partially overlapping in the time domain;
  • the terminal device When the plurality of uplink channels/signals satisfy the constraint, the terminal device multiplexes the information carried in the multiple uplink channels/signals into one channel/signal in the target time unit for transmission;
  • the constraint includes: the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the A-th symbol after the start time of the target channel/signal or after the last symbol, A is a non-negative integer.
  • the constraint condition enables the terminal device to determine whether to recover the information carried in the multiple uplink channels/signals.
  • the transmission is performed in a channel/signal within the target time unit, and the information to be transmitted can be efficiently transmitted.
  • the constraint further includes: starting time of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the last symbol of the target channel/signal, B The symbol is B, which is a non-negative integer.
  • each of the uplink channels/signals of the plurality of uplink channels/signals is a periodic uplink channel/signal.
  • the multiple uplink channels/signals include at least one physical uplink control channel PUCCH for carrying acknowledgement/non-acknowledgment ACK/NACK information corresponding to the quasi-persistent scheduling physical downlink shared channel SPS-PDSCH;
  • the target channel/signal is the last SPS-PDSCH in the SPS-PDSCH corresponding to the at least one PUCCH.
  • the multiple uplink channels/signals do not include a physical uplink control channel PUCCH for carrying acknowledgement/non-acknowledgment ACK/NACK information corresponding to the quasi-persistent scheduling physical downlink shared channel SPS-PDSCH;
  • the target channel/signal is the last one of the plurality of upstream channels/signals transmitted prior to the target time unit.
  • the method further includes: when the terminal device determines that the multiple uplink channels/signals do not satisfy the constraint, transmitting one PUCCH in the at least one PUCCH.
  • the method further includes: determining, by the terminal device, that the multiple uplink channels/signals do not satisfy the constraint, determining a plurality of uplink channels to be transmitted in the target time unit/ The signal is an error condition; or, when the terminal device determines that the plurality of uplink channels/signals do not satisfy the constraint, transmitting the earliest one of the plurality of uplink channels/signals.
  • the uplink channel/signal includes: a quasi-persistent scheduling physical uplink shared channel SPS-PUSCH; and a physics carrying an acknowledgment/non-acknowledgment ACK/NACK information corresponding to the quasi-persistent scheduling physical downlink shared channel SPS-PDSCH Uplink control channel PUCCH;
  • a physical uplink control channel PUCCH carrying periodic channel state information P-CSI; a physical uplink control channel PUCCH carrying quasi-persistent channel state information SPS-CSI; a physical uplink shared channel PUSCH carrying quasi-persistent channel state information SPS-CSI; The physical uplink control channel PUCCH carrying the scheduling request SR.
  • the A N2+1, where N2 is a preparation time of a physical uplink shared channel PUSCH.
  • the B N1+1+d1,2, where N1 is a processing time of the physical downlink shared channel PDSCH, and the value of d1, 2 is related to a PDSCH mapping manner.
  • a wireless communication method including:
  • the network device determines a plurality of uplink channels/signals transmitted within the target time unit, the plurality of uplink channels/signals at least partially overlapping in the time domain;
  • the network device When the plurality of uplink channels/signals satisfy a constraint, the network device receives a channel/signal in the target time unit, and information carried in the multiple uplink channels/signals is multiplexed in the one channel. / signal in the transmission;
  • the constraint includes: the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the start time of the target channel/signal or the Ath symbol after the last symbol , A is a non-negative integer.
  • the constraints further include:
  • the earliest uplink channel/signal of the plurality of uplink channels/signals has a start time no earlier than the Bth symbol after the last symbol of the target channel/signal, and the B is a non-negative integer.
  • each of the uplink channels/signals of the plurality of uplink channels/signals is a periodic uplink channel/signal.
  • the multiple uplink channels/signals include at least one physical uplink control channel PUCCH for carrying acknowledgement/non-acknowledgment ACK/NACK information corresponding to the quasi-persistent scheduling physical downlink shared channel SPS-PDSCH;
  • the target channel/signal is the last SPS-PDSCH in the SPS-PDSCH corresponding to the at least one PUCCH.
  • the multiple uplink channels/signals do not include a physical uplink control channel PUCCH for carrying acknowledgement/non-acknowledgment ACK/NACK information corresponding to the quasi-persistent scheduling physical downlink shared channel SPS-PDSCH;
  • the target channel/signal is the last one of the plurality of upstream channels/signals received prior to the target time unit.
  • the method further includes:
  • the network device determines that the multiple uplink channels/signals do not satisfy the constraint, receiving one PUCCH in the at least one PUCCH.
  • the method further includes:
  • Determining, by the network device, that the multiple uplink channels/signals do not satisfy the constraint condition determining that multiple uplink channels/signals to be transmitted in the target time unit are error conditions; or, the network device determines that When the plurality of uplink channels/signals do not satisfy the constraint condition, the earliest one of the plurality of uplink channels/signals is received.
  • the uplink channel/signal includes:
  • the A N2+1, where N2 is a preparation time of a physical uplink shared channel PUSCH.
  • the B N1+1+d1,2, where N1 is a processing time of the physical downlink shared channel PDSCH, and the value of d1, 2 is related to a PDSCH mapping manner.
  • a wireless communication method including:
  • the terminal device Receiving, by the terminal device, at least one downlink control information DCI; the terminal device determining a plurality of uplink channels/signals transmitted in the target time unit, the plurality of uplink channels/signals at least partially overlapping in the time domain, the at least one DCI For indicating at least one uplink signal/signal of the plurality of uplink channels/signals; when the plurality of uplink channels/signals satisfy a constraint, the terminal device transmits information carried in the multiple uplink channels/signals The multiplexing is performed in a channel/signal within the target time unit; wherein the constraint comprises: the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the bearer The Ath symbol after the last symbol in the physical downlink control channel PDCCH of the at least one DCI, where A is a non-negative integer.
  • the multiple uplink channels/signals include at least one physical uplink control channel PUCCH that carries acknowledgment/non-acknowledgment ACK/NACK information corresponding to the target physical downlink shared channel PDSCH;
  • the constraint further includes: the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the Bth symbol after the last symbol of the at least one target PDSCH, B is a non-negative integer.
  • the at least one DCI includes:
  • the signal includes a PUCCH carrying the ACK/NACK information corresponding to the DCI indicating the release of the DL SPS resource; and/or a DCI for scheduling the physical downlink shared channel PDSCH, and the multiple uplink channels/signals include carrying the PDSCH
  • the PUCCH of the corresponding ACK/NACK information includes a DCI for scheduling a physical uplink shared channel PUSCH, and the plurality of uplink channels/signals include the PUSCH.
  • the uplink channel/signal includes:
  • a physical uplink control channel PUCCH carrying periodic channel state information P-CSI; a physical uplink control channel PUCCH carrying quasi-persistent channel state information SPS-CSI; a physical uplink shared channel PUSCH carrying quasi-persistent channel state information SPS-CSI; The physical uplink control channel PUCCH carrying the scheduling request SR.
  • the A N2+1, where N2 is a preparation time for scheduling a physical uplink shared channel PUSCH.
  • the B N1+1+d 1,2 , where N1 is a PDSCH processing time, and the value of d 1,2 is related to a physical downlink shared channel PDSCH mapping manner.
  • a wireless communication method including:
  • the network device sends at least one downlink control information DCI to the terminal device; the network device determines a plurality of uplink channels/signals transmitted in the target time unit, the plurality of uplink channels/signals at least partially overlapping in the time domain, the at least partially One DCI is used to indicate at least one uplink signal/signal of the plurality of uplink channels/signals; when the plurality of uplink channels/signals satisfy a constraint, the network device receives a channel in the target time unit/ a signal, and information carried in the plurality of uplink channels/signals is multiplexed for transmission in the one channel/signal; wherein the constraint condition comprises: an earliest uplink channel of the plurality of uplink channels/signals/ The first symbol of the signal is not earlier than the Ath symbol following the last symbol in the physical downlink control channel PDCCH carrying the at least one DCI, the A being a non-negative integer.
  • the multiple uplink channels/signals include at least one physical uplink control channel PUCCH that carries acknowledgement/non-acknowledgment ACK/NACK information corresponding to the target physical downlink shared channel PDSCH; wherein the constraint condition is further
  • the method includes: the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the Bth symbol after the last symbol of the at least one target PDSCH, and the B is a non-negative integer.
  • the at least one DCI includes:
  • the signal includes a PUCCH carrying the ACK/NACK information corresponding to the DCI indicating the release of the DL SPS resource; and/or a DCI for scheduling the physical downlink shared channel PDSCH, and the multiple uplink channels/signals include carrying the PDSCH
  • the PUCCH of the corresponding ACK/NACK information includes a DCI for scheduling a physical uplink shared channel PUSCH, and the plurality of uplink channels/signals include the PUSCH.
  • the uplink channel/signal includes:
  • a physical uplink control channel PUCCH carrying periodic channel state information P-CSI; a physical uplink control channel PUCCH carrying quasi-persistent channel state information SPS-CSI; a physical uplink shared channel PUSCH carrying quasi-persistent channel state information SPS-CSI; The physical uplink control channel PUCCH carrying the scheduling request SR.
  • the A N2+1, where N2 is a preparation time for scheduling a physical uplink shared channel PUSCH.
  • the B N1+1+d 1,2 , where N1 is a PDSCH processing time, and the value of d 1,2 is related to a physical downlink shared channel PDSCH mapping manner.
  • a wireless communication method including:
  • the terminal device Determining, by the terminal device, at least one physical uplink control channel PUCCH and a plurality of physical uplink shared channel PUSCHs, the at least one PUCCH and the plurality of PUSCHs at least partially overlapping in a time domain; the terminal device determining in the multiple PUSCHs a PUSCH that satisfies the constraint; the terminal device determines a target PUSCH in the PUSCH that satisfies the constraint; the terminal device uses the target PUSCH to transmit uplink control information carried in the at least one PUCCH; wherein the constraint
  • the condition is the constraint condition of any one of the wireless communication methods described in the above first to fourth aspects.
  • the target PUSCH is the earliest PUSCH in the PUSCH that satisfies the constraint.
  • the target PUSCH is any PUSCH in the PUSCH that meets a constraint.
  • a wireless communication method including:
  • the network device determines at least one physical uplink control channel PUCCH and a plurality of physical uplink shared channel PUSCHs, the at least one PUCCH and the plurality of PUSCHs at least partially overlapping in a time domain; the network device determining in the multiple PUSCHs a PUSCH that satisfies a constraint; the network device determines a target PUSCH in the PUSCH that satisfies the constraint; the network device receives the target PUSCH, and the uplink control information carried in the at least one PUCCH is multiplexed in the The transmission is performed in the target PUSCH; wherein the constraint condition is the constraint condition of any one of the wireless communication methods described in the above first to fourth aspects.
  • the target PUSCH is the earliest PUSCH in the PUSCH that satisfies the constraint.
  • the target PUSCH is any PUSCH in the PUSCH that meets a constraint.
  • a wireless communication method including:
  • Determining, by the terminal device, at least one physical uplink control channel PUCCH and a plurality of physical uplink shared channel PUSCHs, the at least one PUCCH and the plurality of PUSCHs at least partially overlapping in the time domain, and the at least one PUCCH and the multiple PUSCHs A constraint condition is met; the terminal device determines a target PUSCH in the multiple PUSCHs; the terminal uses the target PUSCH to transmit uplink control information carried in the at least one PUCCH; wherein the constraint condition is the foregoing first The constraint to any one of the wireless communication methods described in the fourth aspect.
  • the target PUSCH is the earliest PUSCH in the PUSCH that satisfies the constraint.
  • the target PUSCH is any PUSCH in the PUSCH that meets a constraint.
  • a wireless communication method including:
  • the network device determines at least one physical uplink control channel PUCCH and a plurality of physical uplink shared channel PUSCHs, the at least one PUCCH and the plurality of PUSCHs at least partially overlapping in a time domain, and the at least one PUCCH and the multiple PUSCHs.
  • the network device determines the target PUSCH in the multiple PUSCHs; the network device receives the target PUSCH, and the uplink control information carried in the at least one PUCCH is multiplexed in the target PUSCH. Transmission; wherein the constraint condition is the constraint condition of any one of the wireless communication methods described in the above first to fourth aspects.
  • the target PUSCH is the earliest PUSCH in the PUSCH that satisfies the constraint.
  • the target PUSCH is any PUSCH in the PUSCH that meets a constraint.
  • a ninth aspect a communication device for performing the method of any one of the above first to eighth aspects or the method of any of the above possible implementations.
  • the communications device includes:
  • the communication device is a terminal device, and the terminal device is configured to perform the method in the above first aspect or the above third aspect or the fifth aspect or the seventh aspect.
  • the communication device is a network device, and the network device is configured to perform the foregoing second aspect or the foregoing fourth aspect or the sixth aspect or the method in the foregoing eighth aspect.
  • a communication device including:
  • a processor for calling and running a computer program from a memory the computer program for performing the method of any of the first to eighth aspects above or the method of any of the above possible implementations.
  • the communications device further includes:
  • a memory for storing the computer program.
  • the communication device is a terminal device, and the terminal device is configured to perform the method in the above first aspect or the above third aspect or the fifth aspect or the seventh aspect.
  • the communication device is a network device, and the network device is configured to perform the foregoing second aspect or the foregoing fourth aspect or the sixth aspect or the method in the foregoing eighth aspect.
  • a chip is provided for performing the method of any of the first to eighth aspects above or the method of any of the above possible implementations.
  • the chip includes:
  • a processor for calling and running a computer program from a memory the computer program for performing the method of any of the first to eighth aspects above or the method of any of the above possible implementations.
  • the chip further includes:
  • a memory for storing the computer program.
  • a twelfth aspect a computer readable storage medium for storing a computer program for performing the method of any one of the above first to eighth aspects or the above A method in a possible implementation.
  • a thirteenth aspect a computer program product, comprising computer program instructions for performing the method of any of the first to eighth aspects above, or any of the possible implementations described above method.
  • a computer program which, when run on a computer, causes the computer to perform the method of any of the first to eighth aspects above or the method of any of the possible implementations described above.
  • a communication system including a network device and a terminal device; the terminal device is configured to:
  • the transmission is performed in a channel/signal that at least partially overlaps in the time domain; the network device is configured to:
  • a communication system including a network device and a terminal device; the terminal device is configured to:
  • the constraint includes: the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the Ath bit after the last symbol in the physical downlink control channel PDCCH carrying the at least one DCI Symbol, the A is a non-negative integer.
  • a communication system including a network device and a terminal device; the terminal device is configured to:
  • the network device Determining at least one physical uplink control channel PUCCH and a plurality of physical uplink shared channel PUSCHs, the at least one PUCCH and the plurality of PUSCHs at least partially overlapping in a time domain; determining, in the plurality of PUSCHs, a PUSCH that satisfies a constraint condition; Determining a target PUSCH in the PUSCH that satisfies the constraint; transmitting uplink control information carried in the at least one PUCCH by using the target PUSCH; wherein the constraint condition is as described in the foregoing first to fourth aspects The constraint condition of any one of the wireless communication methods; the network device is configured to:
  • a communication system including a network device and a terminal device; the terminal device is configured to:
  • the network device Determining at least one physical uplink control channel PUCCH and a plurality of physical uplink shared channel PUSCHs, the at least one PUCCH and the plurality of PUSCHs at least partially overlapping in a time domain, and the at least one PUCCH and the plurality of PUSCHs satisfy a constraint Determining a target PUSCH in the plurality of PUSCHs; transmitting, by using the target PUSCH, uplink control information carried in the at least one PUCCH; wherein the constraint condition is as described in the foregoing first to fourth aspects The constraint condition of any one of the wireless communication methods; the network device is configured to:
  • FIG. 1 is an example of an application scenario of the present invention.
  • FIG. 2 is a schematic flowchart of a method for wireless communication according to an embodiment of the present invention.
  • 3 to 5 are schematic block diagrams of constraints of an embodiment of the present invention.
  • FIG. 6 is another schematic flowchart of a method for wireless communication according to an embodiment of the present invention.
  • FIG. 11 is another schematic flowchart of a method for wireless communication according to an embodiment of the present invention.
  • FIG. 12 is another schematic flowchart of a method for wireless communication according to an embodiment of the present invention.
  • FIG. 13 is another schematic block diagram of constraints of an embodiment of the present invention.
  • Figure 14 is a schematic block diagram of a communication device in accordance with an embodiment of the present invention.
  • Figure 15 is another schematic block diagram of a communication device in accordance with an embodiment of the present invention.
  • Figure 16 is a schematic block diagram of a chip in accordance with an embodiment of the present invention.
  • Figure 17 is a schematic block diagram of a system in accordance with an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • communication system 100 can include terminal device 110 and network device 120.
  • Network device 120 can communicate with terminal device 110 over an air interface.
  • Multi-service transmission is supported between the terminal device 110 and the network device 120.
  • the embodiment of the present invention is only exemplified by the communication system 100, but the embodiment of the present invention is not limited thereto. That is, the technical solution of the embodiment of the present invention can be applied to various communication systems, for example, a Global System of Mobile communication (GSM) system, a Code Division Multiple Access (CDMA) system, and a broadband. Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, LTE Time Division Duplex (TDD) , Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system, New Radio (NR) or future 5G systems.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • TDD Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • NR New Radio
  • the technical solution of the embodiment of the present application can be applied to a wide-area Long Term Evolution (LTE) coverage and an NR coverage mode.
  • LTE Long Term Evolution
  • NR must study spectrum applications above 6 GHz, while high-band coverage is limited and signal fading is fast.
  • a tight interworking working mode between LTE and NR is proposed.
  • the main application scenarios of 5G include: Enhanced Mobile Broadband (eMBB), Ultra-Reliable and Low Latency Communication (URLLC), Massive Machine Type of Communication (mMTC). ).
  • eMBB aims at users to obtain multimedia content, services and data, and its demand is growing rapidly. Since eMBB may be deployed in different scenarios. For example, indoors, urban areas, rural areas, etc., the difference in their abilities and needs is relatively large, so it cannot be generalized and can be analyzed in detail in conjunction with specific deployment scenarios.
  • Typical applications for URLLC include: industrial automation, power automation, telemedicine operations (surgery), and traffic safety.
  • Typical features of mMTC include: high connection density, small data volume, delay-insensitive service, low cost and long life of the module.
  • the network device 120 may be an access network device that communicates with the terminal device 110.
  • the access network device can provide communication coverage for a particular geographic area and can communicate with terminal devices 110 (e.g., UEs) located within the coverage area.
  • terminal devices 110 e.g., UEs
  • the access network device may be a Global System of Mobile communication (GSM) system or a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), or may be broadband.
  • GSM Global System of Mobile communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • a base station (NodeB, NB) in a code division multiple access (WCDMA) system may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (LTE) system.
  • GSM Global System of Mobile communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • a base station (NodeB, NB) in a code division multiple access (WCDMA) system may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the access network device may also be a Next Generation Radio Access Network (NG RAN), or a base station (gNB) in the NR system, or a cloud radio access network (Cloud Radio).
  • NG RAN Next Generation Radio Access Network
  • gNB base station
  • Cloud Radio cloud radio access network
  • the wireless controller in the Access Network, CRAN), or the access network device may be a relay station, an access point, an in-vehicle device, a wearable device, or a future evolved public land mobile network (PLMN). Network equipment, etc.
  • PLMN public land mobile network
  • the terminal device 110 can be any terminal device, and the terminal device 110 can communicate with one or more core networks (Core Network) via a Radio Access Network (RAN), and can also be referred to as an access terminal and a user.
  • RAN Radio Access Network
  • UE User Equipment
  • subscriber unit subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user equipment.
  • UE User Equipment
  • it can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), and a wireless communication function.
  • FIG. 2 shows a schematic flow chart of a wireless communication method 200 in accordance with an embodiment of the present application.
  • the terminal device shown in FIG. 2 may be a terminal device as shown in FIG. 1, and the network device shown in FIG. 2 may be an access network device as shown in FIG. 1.
  • the method 200 includes some or all of the following:
  • the method 200 includes:
  • the terminal device determines a plurality of uplink channels/signals transmitted in the target time unit, and the plurality of uplink channels/signals at least partially overlap in the time domain.
  • the network device determines the multiple uplink channels/signals.
  • the terminal device When the multiple uplink channels/signals satisfy the constraint, the terminal device multiplexes the information carried in the multiple uplink channels/signals into one channel/signal in the target time unit for transmission.
  • the constraint includes: the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the A-th symbol after the start time of the target channel/signal or after the last symbol, A is a non-negative integer.
  • the target time unit of the embodiment of the present invention may be understood as the resource granularity of the time domain resource, for example, including but not limited to: time slot, subframe, frame, and transmission time unit, and the like.
  • the A N2+1, where N2 is a preparation time of the PUSCH.
  • the value of d2,1 is related to a Demodulation Reference Signal (DMRS) structure in the PUSCH.
  • DMRS Demodulation Reference Signal
  • the constraint further includes: starting time of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the Bth symbol after the last symbol of the target channel/signal, the B is non- Negative integer.
  • B N2+d1,1+d1,2, and N1 are processing times of the PDSCH.
  • the B N1+1+d1,2, where N1 is a processing time of the physical downlink shared channel PDSCH.
  • the value of d1, 2 is related to the PDSCH mapping mode.
  • each of the uplink channels/signals of the plurality of uplink channels/signals is a periodic uplink channel/signal.
  • the uplink channel/signal includes:
  • SPS PUSCH per-continuously scheduled PUSCH
  • PUCCH physical uplink control channel
  • ACK/NACK acknowledgment/non-acknowledgment
  • SPS-PDSCH physical downlink shared channel
  • PUCCH Physical uplink control channel
  • P-CSI Persistent Channel State Information
  • PUCCH Physical Uplink Control Channel
  • SPS-CSI Semi-Persistent Channel State Information
  • PUSCH physical uplink shared channel
  • SPS-CSI quasi-persistent channel state information
  • PUC H Physical uplink control channel carrying a Scheduling Request (SR).
  • SR Scheduling Request
  • the constraint condition enables the terminal device to determine whether to recover the information carried in the multiple uplink channels/signals.
  • the transmission is performed in a channel/signal within the target time unit, and the information to be transmitted can be efficiently transmitted.
  • the specific content of the foregoing constraint condition may be determined according to a specific type of the multiple uplink channels/signals.
  • the multiple uplink channels/signals may include at least one acknowledgement/non-acknowledgement (ACK/NACK) corresponding to a semi-persistent physical downlink shared channel (SPS-PDSCH).
  • the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is taken as an example with the PUCCH for carrying the ACK/NACK information corresponding to the SPS-PDSCH as an example.
  • the multiple uplink channels include: one PUCCH for carrying ACK/NACK information corresponding to the SPS-PDSCH and one uplink channel for carrying SPS-PUSCH/SPS-CSI/P-CSI/SR/ signal.
  • the uplink channel/signal for carrying the SPS-PUSCH/SPS-CSI/P-CSI/SR may be an SPS PUSCH, a PUCCH carrying ACK/NACK information corresponding to the SPS-PDSCH, a PUCCH carrying a P-CSI, and a bearer. Any one of a PUCCH of the SPS-CSI, a PUSCH carrying the SPS-CSI, and a PUCCH carrying the SR.
  • the terminal device may determine whether the ACK/NACK information corresponding to the SPS-PDSCH is determined by determining whether a constraint condition is met between the PUCCH and the SPS-PDSCH that are used to carry the ACK/NACK information corresponding to the SPS-PDSCH.
  • the uplink channel/signal for carrying the SPS-PUSCH/SPS-CSI/P-CSI/SR and the ACK/NACK corresponding to the SPS-PDSCH are carried.
  • the PUCCH multiplexing of information is transmitted on one channel/signal.
  • the one channel/signal may be any one of the uplink channel/signal for carrying the SPS-PUSCH/SPS-CSI/P-CSI/SR and the PUCCH for carrying the ACK/NACK information corresponding to the SPS-PDSCH,
  • the uplink channel/signal for carrying the SPS-PUSCH/SPS-CSI/P-CSI/SR and the PUCCH for carrying the ACK/NACK information corresponding to the SPS-PDSCH may also be selected according to, for example, the criterion. One is reused.
  • the first symbol of the uplink channel/signal used for carrying the SPS-PUSCH/SPS-CSI/P-CSI/SR is not earlier than the Ath symbol after the start time of the SPS-PDSCH.
  • A is a non-negative integer.
  • the start time of the uplink channel/signal for carrying the SPS-PUSCH/SPS-CSI/P-CSI/SR is not earlier than the Bth symbol after the last symbol of the SPS-PDSCH, and the B is non-negative Integer. Therefore, it can be determined that the constraint condition is satisfied between the PUCCH for carrying the ACK/NACK information corresponding to the SPS-PDSCH and the SPS-PDSCH.
  • the block diagrams in which multiple uplink channels/signals shown in FIG. 3 partially overlap in the time domain are only examples.
  • the multiple uplink channels/signals may also include other types of uplink periodic signals.
  • the plurality of uplink channels/signals may also include a plurality of SPS-PDSCHs.
  • the plurality of uplink channels/signals may include: a PUCCH for carrying ACK/NACK1 information corresponding to SPS-PDSCH 1 and a PUCCH for carrying ACK/NACK 2 information corresponding to SPS-PDSCH 2.
  • the target channel/signal in the embodiment of the present invention may be the last SPS-PDSCH in the SPS-PDSCH corresponding to the at least one PUCCH. That is, SPS-PDSCH 1.
  • the plurality of uplink channels/signals do not include a PUCCH for carrying ACK/NACK information corresponding to the SPS-PDSCH; the target channel/signal is the plurality of uplink channels transmitted before the target time unit The last upstream channel/signal in the /signal.
  • the plurality of uplink channels/signals may include a first periodic uplink channel/signal (CH 11) and a second periodic uplink channel/signal (CH 12), wherein the first periodic uplink channel/ The signal and the second periodic channel/signal may be uplink channels/signals for carrying SPS-PUSCH/SPS-CSI/P-CSI/SR.
  • the plurality of uplink channels/signals transmitted by the uplink channel/signal of the second period earlier than the first period, and the uplink channel/signal transmitted before the target time unit (as shown in FIG.
  • the first symbol of the CH 12 is not earlier than the Ath symbol after the start time of the CH 21, and the A is a non-negative integer. Therefore, it can be determined that the constraint condition is satisfied between CH 12 and CH 21, and the information carried in CH 12 and CH 21 can be multiplexed in one uplink channel/signal for transmission.
  • the CH 21 shown in FIG. 5 is the CH 12 transmitted by the terminal device before the target time unit
  • the CH 22 shown in FIG. 5 is the CH 12 transmitted by the terminal device before the target time unit.
  • the embodiments of the present invention are intended to illustrate that CH 21 and CH 11 belong to the same periodic uplink channel signal, and the specific content between CH 21 and CH 11 is not limited.
  • the contents of CH 21 and CH 11 may be the same or different.
  • the contents of CH 22 and CH 12 may be the same or different.
  • the terminal device in the embodiment of the present invention may determine, by using a plurality of uplink channels/signals in the target time unit, whether the information carried in the multiple uplink channels/signals is multiplexed in the target time unit.
  • An uplink channel/signal is transmitted, but the specific operation of the uplink channel/signal in the target time unit and the plurality of uplink channels/signals do not satisfy the constraint are not limited in the embodiment of the present invention.
  • the multiple uplink channels/signals may include at least one acknowledgement/non-acknowledgement (ACK/NACK) corresponding to a semi-persistent physical downlink shared channel (SPS-PDSCH). Physical Uplink Control Channel (PUCCH) of information.
  • the terminal device determines, when the multiple uplink channels/signals do not satisfy the constraint, transmitting one PUCCH in the at least one PUCCH.
  • the terminal device determines that the plurality of uplink channels/signals do not satisfy the constraint, determining that the plurality of uplink channels/signals to be transmitted in the target time unit are error conditions.
  • the terminal device determines that the first uplink channel/signal of the plurality of uplink channels/signals is transmitted when the plurality of uplink channels/signals do not satisfy the constraint.
  • the wireless communication method according to the embodiment of the present application is described in detail from the perspective of the terminal device, with reference to FIG. 2 to FIG. 5 above, but the embodiment of the present invention is not limited thereto.
  • the method in the embodiment of the present invention may also be applied to a network device.
  • the network device determines the multiple uplink channels/signals, and when the multiple uplink channels/signals meet the constraint, the network device receives the An upstream channel/signal within the target time unit.
  • the network device determines a plurality of uplink channels/signals transmitted in the target time unit, and the multiple uplink channels/signals at least partially overlap in the time domain; when the multiple uplink channels/signals satisfy the constraint, the network device Receiving a channel/signal in the target time unit, and multiplexing information carried in the plurality of uplink channels/signals in the one channel/signal for transmission; wherein the constraint condition comprises: the multiple uplink channels/signals The first symbol of the oldest upstream channel/signal is no earlier than the Ath symbol after the start time of the target channel/signal or after the last symbol, which is a non-negative integer.
  • the A N2+1, where N2 is a preparation time of the PUSCH.
  • the value of d2,1 is related to a Demodulation Reference Signal (DMRS) structure in the PUSCH.
  • DMRS Demodulation Reference Signal
  • the constraint further includes: starting time of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the Bth symbol after the last symbol of the target channel/signal, the B is non- Negative integer.
  • the B N1+1+d1,2, where N1 is a processing time of the PDSCH.
  • B N2+d1,1+d1,2, and N1 are processing times of the PDSCH.
  • the value of d1, 2 is related to the PDSCH mapping mode.
  • each of the uplink channels/signals of the plurality of uplink channels/signals is a periodic uplink channel/signal.
  • the multiple uplink channels/signals include at least one PUCCH for carrying the ACK/NACK information corresponding to the SPS-PDSCH; the target channel/signal is the last SPS of the SPS-PDSCH corresponding to the at least one PUCCH. PDSCH.
  • the multiple uplink channels/signals do not include a PUCCH for carrying ACK/NACK information corresponding to the SPS-PDSCH; the target channel/signal is in the multiple uplink channels/signals received before the target time unit. The last upstream channel/signal.
  • the method further includes:
  • the network device determines, when the plurality of uplink channels/signals do not satisfy the constraint, receiving one PUCCH in the at least one PUCCH.
  • the method further includes:
  • the network device determines that the plurality of uplink channels/signals do not satisfy the constraint, determining that the plurality of uplink channels/signals to be transmitted in the target time unit are error conditions.
  • the method further includes: when the network device determines that the multiple uplink channels/signals do not satisfy the constraint, receiving the earliest one of the uplink channels/signals of the plurality of uplink channels/signals.
  • the uplink channel/signal includes:
  • SPS PUSCH per-continuously scheduled PUSCH
  • PUCCH physical uplink control channel
  • ACK/NACK acknowledgment/non-acknowledgment
  • SPS-PDSCH physical downlink shared channel
  • PUCCH Physical uplink control channel
  • P-CSI Persistent Channel State Information
  • PUCCH Physical Uplink Control Channel
  • SPS-CSI Semi-Persistent Channel State Information
  • PUSCH physical uplink shared channel
  • SPS-CSI quasi-persistent channel state information
  • PUC H Physical uplink control channel carrying a Scheduling Request (SR).
  • SR Scheduling Request
  • the step of wireless communication performed by the network device may refer to corresponding steps in the method 200 shown in FIG. 2, and the determining method for determining whether the multiple uplink channels/signals satisfy the constraint condition by the network device may refer to the corresponding terminal device side.
  • the determining method for determining whether the multiple uplink channels/signals satisfy the constraint condition by the network device may refer to the corresponding terminal device side.
  • FIG. 6 shows a schematic flow chart of a wireless communication method 300 in accordance with an embodiment of the present application.
  • the terminal device shown in FIG. 6 may be a terminal device as shown in FIG. 1, and the network device shown in FIG. 6 may be an access network device as shown in FIG. 1.
  • the method 300 includes some or all of the following:
  • the method 300 includes:
  • the terminal device receives at least one Downlink Control Information (DCI) sent by the network device.
  • DCI Downlink Control Information
  • the terminal device determines a plurality of uplink channels/signals transmitted in the target time unit, where the multiple uplink channels/signals are at least partially overlapped in the time domain, where the at least one DCI is used to indicate the multiple uplink channels/signals. At least one upstream signal/signal.
  • the network device determines the multiple uplink channels/signals.
  • the terminal device When the multiple uplink channels/signals satisfy the constraint, the terminal device multiplexes the information carried in the multiple uplink channels/signals into one channel/signal in the target time unit for transmission.
  • the constraint includes: the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the Ath symbol after the last symbol in the PDCCH carrying the at least one DCI, where A is Non-negative integer.
  • the A N2+1, where N2 is a preparation time for scheduling a physical uplink shared channel PUSCH.
  • the value of d2,1 is related to a Demodulation Reference Signal (DMRS) structure in the PUSCH.
  • DMRS Demodulation Reference Signal
  • the multiple uplink channels/signals include at least one PUCCH that carries ACK/NACK information corresponding to the target PDSCH; wherein the constraint further includes: the earliest uplink channel/signal of the multiple uplink channels/signals The first symbol is no earlier than the Bth symbol after the last symbol of the at least one target PDSCH, and the B is a non-negative integer.
  • the B N1+1+d 1,2 , where N1 is the PDSCH processing time.
  • B N2+d1,1+d1,2, and N1 are processing times of the PDSCH.
  • the value of d1,1 is related to the transmission mode of the corresponding ACK/NACK.
  • the value of d1, 2 is related to the PDSCH mapping mode.
  • the at least one DCI comprises:
  • a DCI for scheduling a PUSCH and the plurality of uplink channels/signals include the PUSCH; and/or a DCI for indicating a downlink quasi-continuous DL SPS resource release, and the plurality of uplink channels/signals include carrying the indication DL SPS a PUCCH of the ACK/NACK information corresponding to the DCI of the resource release; and/or a DCI for scheduling the physical downlink shared channel PDSCH, and the plurality of uplink channels/signals include a PUCCH carrying ACK/NACK information corresponding to the PDSCH.
  • the uplink channel/signal includes:
  • Dynamic scheduling physical uplink shared channel (PUSCH); quasi-persistent PUSCH (SPS PUSCH); acknowledgment/non-acknowledgement (ACK/NACK) information corresponding to the quasi-persistent scheduling physical downlink shared channel (SPS-PDSCH) Physical Uplink Control Channel (PUCCH); Physical Uplink Control Channel (PUCCH) carrying Persistent Channel State Information (P-CSI); Semi-Persistent Channel State Information (SPS-CSI) Physical Uplink Control Channel (PUCCH); Physical Uplink Shared Channel (PUSCH) carrying quasi-persistent channel state information (SPS-CSI); and Physical Uplink Control Channel (PUCC H) carrying Scheduling Request (SR) .
  • SPS-PDSCH Physical Uplink Control Channel
  • P-CSI Persistent Channel State Information
  • SPS-CSI Semi-Persistent Channel State Information
  • SPS-CSI Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCC H Physical Uplink Control Channel carrying Scheduling Request (SR) .
  • FIG. 7 is a schematic block diagram of the constraint condition in the scenario where the plurality of uplink channels/signals include at least one PUCCH carrying ACK/NACK information corresponding to the target PDSCH.
  • the terminal device receives DCI 1 and DCI 2 transmitted by the network device, where the DCI 1 is a DCI for scheduling a PUSCH, and the plurality of uplink channels/signals include the PUSCH.
  • the DCI 2 is a DCI for scheduling a PDSCH, and the plurality of uplink channels/signals include a PUCCH carrying ACK/NACK information corresponding to the PDSCH.
  • the constraint includes: the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the Ath symbol after the last symbol in the PDCCH carrying the at least one DCI, where A is Non-negative integer.
  • the terminal device is configured to determine that the earliest uplink channel/signal of the multiple uplink channels/signals is DCI 1 is a scheduled PUSCH, and the last symbol in the PDCCH for carrying the at least one DCI is used to carry the DCI 1
  • the PDCCH, the DCI 1 is the first symbol of the scheduled PUSCH not earlier than the Ath symbol after the last symbol in the PDCCH carrying the at least one DCI 1, and the A is a non-negative integer.
  • the constraint further includes: the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the Bth symbol after the last symbol of the at least one target PDSCH, and the B is non-negative Integer.
  • the terminal device is configured to determine that the earliest uplink channel/signal of the plurality of uplink channels/signals is DCI 1 as a scheduled PUSCH, and the last symbol of the at least one target PDSCH is a DCSCH 2 scheduled PDSCH, thereby The first symbol of DCI 1 that is the scheduled PUSCH is not earlier than the Bth symbol after the last symbol of the PDSCH scheduled by the DCI 2.
  • the terminal device can determine that the plurality of uplink channels/signals satisfy the constraint.
  • FIG. 7 is only an example of the PUCCH in which the multiple uplink channels/signals include one ACK/NACK information corresponding to the target PDSCH.
  • the at least one DCI includes DCI 1 and DCI 2, where the DCI 1 It is a DCI for scheduling a PUSCH, and the plurality of uplink channels/signals include the PUSCH.
  • the DCI 2 is a DCI for scheduling a PDSCH, and the plurality of uplink channels/signals include a PUCCH carrying ACK/NACK information corresponding to the PDSCH.
  • embodiments of the invention are not limited thereto.
  • the at least one DCI may include only DCI 2.
  • the at least one DCI may include only DCI 1.
  • the multiple uplink channels/signals may include acknowledgement/non-confirmation corresponding to the bearer persistent scheduling physical downlink shared channel (SPS-PDSCH).
  • SPS-PDSCH acknowledgement/non-confirmation corresponding to the bearer persistent scheduling physical downlink shared channel (SPS-PDSCH).
  • ACK/NACK Physical Uplink Control Channel (PUCCH) of the information.
  • the SPS-PDSCH can be used as the target PDSCH in the embodiment of the present invention.
  • the plurality of uplink channels/signals satisfy a constraint that the plurality of uplink channels/signals are required to simultaneously satisfy the following condition: the earliest uplink channel of the plurality of uplink channels/signals/ The first symbol of the signal is no earlier than the Ath symbol after the last symbol in the PDCCH carrying the at least one DCI, the A being a non-negative integer. And, the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is no earlier than the Bth symbol after the last symbol of the at least one target PDSCH, and the B is a non-negative integer.
  • embodiments of the invention are not limited thereto.
  • FIG. 10 is a schematic block diagram of the constraint condition in a scenario where the multiple uplink channels/signals include a DCI 1 scheduled PUSCH and other periodic uplink channels/signals according to an embodiment of the present invention.
  • the plurality of uplink channels/signals include a DCI 1 scheduled PUSCH and a periodic uplink channel/signal for carrying SPS-CSI/P-CSI/SR.
  • the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the Ath symbol after the last symbol in the PDCCH carrying the at least one DCI, and the A is non-negative Integer, the terminal device can determine that the plurality of uplink channels/signals satisfy the constraint.
  • the terminal device can determine that the PUSCH scheduled by the DCI 1 is earlier than the periodic uplink channel/signal for carrying the SPS-CSI/P-CSI/SR, and further, the PUSCH scheduled by the DCI 1 is not earlier than the SPS for carrying the SPS.
  • the terminal device needs to transmit one PUCCH and at least one other uplink channel (PUCCH or PUSCH) in a slot n, and the The PUCCH overlaps with at least one other upstream channel in time.
  • PUCCH uplink channel
  • the terminal device receives at least one DCI, where the DCI is used to indicate the uplink transmission in the slot n (the DCI of the PUSCH transmitted in the slot n is scheduled; or the DCI of the PDSCH transmission is scheduled, and the ACK/NACK information corresponding to the PDSCH is in the slot) Transmission in n; or DCI indicating the release of the DL SPS resource, and the ACK/NACK information corresponding to the DCI is transmitted in the slot n).
  • the DCI is used to indicate the uplink transmission in the slot n (the DCI of the PUSCH transmitted in the slot n is scheduled; or the DCI of the PDSCH transmission is scheduled, and the ACK/NACK information corresponding to the PDSCH is in the slot) Transmission in n; or DCI indicating the release of the DL SPS resource, and the ACK/NACK information corresponding to the DCI is transmitted in the slot n).
  • the one PUCCH and the at least one other uplink channel satisfy the following conditions, all
  • the first symbol of the oldest channel in the overlapping channel is not earlier than the Ath symbol after the last symbol in the PDCCH carrying the at least one DCI . and / or,
  • the first symbol of the oldest channel in the overlapping channel is not earlier than the Bth symbol after the last PDSCH in the at least one PDSCH.
  • the method for determining the constraint condition in the case where the terminal device receives the DCI according to the embodiment of the present application is described in detail above with reference to FIG. 6 to FIG. 10, but the embodiment of the present invention is not limited thereto. As shown in FIG. 6, the method of the embodiment of the present invention can also be applied to a network device.
  • the network device sends at least one DCI to the terminal device; the network device determines a plurality of uplink channels/signals transmitted in the target time unit, the plurality of uplink channels/signals at least partially overlapping in the time domain, and the at least one DCI is used And indicating at least one uplink signal/signal of the plurality of uplink channels/signals; when the plurality of uplink channels/signals satisfy a constraint, the network device receives a channel/signal in the target time unit, and the multiple uplinks The information carried in the channel/signal is multiplexed for transmission in the one channel/signal.
  • the constraint includes:
  • the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the Ath symbol after the last symbol in the PDCCH carrying the at least one DCI, and the A is a non-negative integer.
  • the A N2+1, where N2 is a preparation time for scheduling the PUSCH.
  • the value of d2,1 is related to a Demodulation Reference Signal (DMRS) structure in the PUSCH.
  • DMRS Demodulation Reference Signal
  • the multiple uplink channels/signals include at least one PUCCH that carries ACK/NACK information corresponding to the target PDSCH; wherein the constraint further includes:
  • the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is no earlier than the Bth symbol after the last symbol of the at least one target PDSCH, and the B is a non-negative integer.
  • the B N1+1+d 1,2 , where N1 is the PDSCH processing time.
  • B N2+d1,1+d1,2, and N1 are processing times of the PDSCH.
  • the value of d1, 2 is related to the PDSCH mapping mode.
  • the at least one DCI comprises:
  • a DCI for scheduling a PUSCH and the plurality of uplink channels/signals include the PUSCH; and/or a DCI for indicating a downlink quasi-continuous DL SPS resource release, and the plurality of uplink channels/signals include carrying the indication DL SPS a PUCCH of the ACK/NACK information corresponding to the DCI of the resource release; and/or a DCI for scheduling the PDSCH, and the plurality of uplink channels/signals include a PUCCH carrying ACK/NACK information corresponding to the PDSCH.
  • the uplink channel/signal includes:
  • Dynamic scheduling physical uplink shared channel (PUSCH); quasi-persistent PUSCH (SPS PUSCH); acknowledgment/non-acknowledgement (ACK/NACK) information corresponding to the quasi-persistent scheduling physical downlink shared channel (SPS-PDSCH) Physical Uplink Control Channel (PUCCH); Physical Uplink Control Channel (PUCCH) carrying Persistent Channel State Information (P-CSI); Semi-Persistent Channel State Information (SPS-CSI) Physical Uplink Control Channel (PUCCH); Physical Uplink Shared Channel (PUSCH) carrying quasi-persistent channel state information (SPS-CSI); and Physical Uplink Control Channel (PUCC H) carrying Scheduling Request (SR) .
  • SPS-PDSCH Physical Uplink Control Channel
  • P-CSI Persistent Channel State Information
  • SPS-CSI Semi-Persistent Channel State Information
  • SPS-CSI Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCC H Physical Uplink Control Channel carrying Scheduling Request (SR) .
  • the multiple uplink channels/signals may include more than two uplink channels/signals, so the terminal device or the network device needs to determine the actual transmission in the multiple uplink channels/signals.
  • Upstream channel/signal may include more than two uplink channels/signals, so the terminal device or the network device needs to determine the actual transmission in the multiple uplink channels/signals.
  • the multiple uplink channels/signals include at least one PUCCH and multiple PUSCHs, and the uplink control information carried in the at least one PUCCH is multiplexed in the target PUSCH in the multiple PUSCHs for transmission.
  • FIGS. 11 and FIG. 12 are schematic flowcharts of determining a target PUSCH according to an embodiment of the present invention.
  • the terminal device shown in FIGS. 11 and 12 may be a terminal device as shown in FIG. 1, and the network device shown in FIGS. 11 and 12 may be an access network device as shown in FIG. 1.
  • the method 400 includes some or all of the following contents:
  • the terminal device determines at least one PUCCH and multiple PUSCHs, and the at least one PUCCH and the multiple PUSCHs at least partially overlap in a time domain.
  • the terminal device determines, in the multiple PUSCHs, a PUSCH that meets a constraint condition.
  • the terminal device determines a target PUSCH in the PUSCH that meets the constraint condition.
  • the terminal device uses the target PUSCH to transmit uplink control information carried in the at least one PUCCH.
  • the method 400 includes some or all of the following contents:
  • S440 Determine at least one PUCCH and multiple PUSCHs, and the at least one PUCCH and the multiple PUSCHs at least partially overlap in a time domain.
  • the target PUSCH is the earliest PUSCH in the PUSCH that satisfies the constraint. Specifically, if one PUCCH overlaps with multiple PUSCHs in the time domain, the terminal device or the network device selects the first one of the multiple PUSCHs that meets the agreed condition to carry the content in the PUCCH.
  • the target PUSCH is any PUSCH in the PUSCH that meets the constraint.
  • the terminal device or the network device first determines at least one PUCCH and a plurality of PUSCHs that are at least partially overlapped in the time domain, and then, in the plurality of PUSCHs, determine a PUSCH that satisfies the constraint, and further, the constraint is satisfied.
  • the target PUSCH is determined in the conditional PUSCH. Further, after determining the target PUSCH, the terminal device uses the target PUSCH to transmit the uplink control information carried in the at least one PUCCH, and the network device receives the target PUSCH correspondingly; it should be understood that the constraint is in the above embodiment. Any constraint involved, in order to avoid repetition, will not be repeated here.
  • the method 400 includes some or all of the following contents:
  • the terminal device determines at least one PUCCH and multiple PUSCHs, where the at least one PUCCH and the multiple PUSCHs at least partially overlap in a time domain, and the at least one PUCCH and the multiple PUSCHs meet a constraint condition.
  • the terminal device determines a target PUSCH in the multiple PUSCHs.
  • the terminal device uses the target PUSCH to transmit uplink control information carried in the at least one PUCCH.
  • the method 400 includes some or all of the following contents:
  • the network device determines at least one PUCCH and multiple PUSCHs, where the at least one PUCCH and the multiple PUSCHs at least partially overlap in a time domain, and the at least one PUCCH and the multiple PUSCHs meet a constraint condition.
  • the network device determines a target PUSCH in the multiple PUSCHs.
  • the network device uses the target PUSCH to transmit uplink control information carried in the at least one PUCCH.
  • the target PUSCH is the earliest PUSCH in the PUSCH that satisfies the constraint. Specifically, if one PUCCH overlaps with multiple PUSCHs in the time domain, the terminal device or the network device selects the first one of the multiple PUSCHs that meets the agreed condition to carry the content in the PUCCH.
  • the target PUSCH is any PUSCH in the PUSCH that meets the constraint.
  • the terminal device or the network device first determines at least one PUCCH and a plurality of PUSCHs that overlap at least partially in the time domain, and the at least one PUCCH and the plurality of PUSCHs satisfy a constraint condition; and then, in the constraint condition
  • the target PUSCH is determined in the PUSCH.
  • the terminal device uses the target PUSCH to transmit uplink control information carried in the at least one PUCCH, and the network device receives the target PUSCH correspondingly; it should be understood that the constraint condition is any one involved in the foregoing embodiment. Constraints, to avoid repetition, are not described here.
  • FIG. 13 is a schematic block diagram of determining a target PUSCH in the scenario where the multiple uplink channels/signals include at least one PUCCH and multiple PUSCH scenarios according to an embodiment of the present invention.
  • the DCI received by the terminal device includes: DCI 2, DCI 3, and DCI 4, wherein the DCI 2 is a DCI for scheduling PUSCH 2, and the plurality of uplink channels/signals include the PUSCH 2.
  • the DCI 3 is a DCI for scheduling PUSCH 3, and the plurality of uplink channels/signals include the PUSCH 3.
  • the DCI 4 is a DCI for scheduling a PDSCH, and the plurality of uplink channels/signals include a PUCCH carrying ACK/NACK information corresponding to the PDSCH.
  • the plurality of uplink channels/signals include PUSCH1 (eg, periodic uplink channel/signal).
  • PUSCH 1 is determined as the target PUSCH. If A1 and/or B1 do not satisfy the constraint, and A2, B2, A3, and B3 both satisfy the constraint involved in the embodiment of the present invention, PUSCH 2 is determined as the target PUSCH. If A1 and/or B1 do not satisfy the constraint, and A2 and/or B2 do not satisfy the constraint, and both A3 and/or B3 satisfy the constraints involved in the embodiment of the present invention, PUSCH 3 is determined as the target PUSCH. .
  • FIG. 14 is a schematic block diagram of a communication device 600 in accordance with an embodiment of the present invention.
  • the communication device 600 may include:
  • the unit 610 and the communication unit 620 are determined.
  • the determining unit 610 is configured to perform internal operations in the communication device 600, and the communication unit 620 is configured to communicate with external devices and/or internal devices.
  • the communication device 600 can be the terminal device shown in FIG. 1 for performing the steps performed by the terminal device in the embodiment of the present invention.
  • the determining unit 610 is configured to determine a plurality of uplink channels/signals transmitted in the target time unit, where the multiple uplink channels/signals are at least partially overlapped in the time domain; the communication unit 620, the multiple When the uplink channel/signal satisfies the constraint condition, the communication unit 620 is configured to multiplex the information carried in the multiple uplink channels/signals in one channel/signal in the target time unit for transmission.
  • the constraint includes: the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the A-th symbol after the start time of the target channel/signal or after the last symbol, A is a non-negative integer.
  • the constraint further includes: starting time of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the Bth symbol after the last symbol of the target channel/signal, the B is non- Negative integer.
  • each of the uplink channels/signals of the plurality of uplink channels/signals is a periodic uplink channel/signal.
  • the multiple uplink channels/signals include at least one physical uplink control channel PUCCH for carrying acknowledgement/non-acknowledgment ACK/NACK information corresponding to the quasi-persistent scheduling physical downlink shared channel SPS-PDSCH; the target channel/signal is The last SPS-PDSCH of the SPS-PDSCH corresponding to the at least one PUCCH.
  • PUCCH physical uplink control channel
  • the multiple uplink channels/signals do not include a physical uplink control channel PUCCH for carrying acknowledgement/non-acknowledgement ACK/NACK information corresponding to the quasi-persistent scheduling physical downlink shared channel SPS-PDSCH;
  • the target channel/signal is The last uplink channel/signal of the plurality of uplink channels/signals previously transmitted by the target time unit.
  • the communications unit 620 is specifically configured to: transmit one PUCCH in the at least one PUCCH.
  • the determining unit 610 determines that the multiple uplink channels/signals do not satisfy the constraint
  • the determining unit 610 is further configured to: determine that the multiple uplink channels/signals to be transmitted in the target time unit are error conditions;
  • the communications unit 620 is specifically configured to: transmit the earliest one of the plurality of uplink channels/signals.
  • the uplink channel/signal includes:
  • SPS PUSCH per-continuously scheduled PUSCH
  • PUCCH physical uplink control channel
  • ACK/NACK acknowledgment/non-acknowledgment
  • SPS-PDSCH physical downlink shared channel
  • PUCCH Physical uplink control channel
  • P-CSI Persistent Channel State Information
  • PUCCH Physical Uplink Control Channel
  • SPS-CSI Semi-Persistent Channel State Information
  • PUSCH physical uplink shared channel
  • SPS-CSI quasi-persistent channel state information
  • PUC H Physical uplink control channel carrying a Scheduling Request (SR).
  • SR Scheduling Request
  • the A N2+1, where N2 is a preparation time of the physical uplink shared channel PUSCH.
  • the B N1 + 1 + d 1,2 , wherein, Nl is a physical downlink shared channel PDSCH processing time, d 1,2 value associated with the PDSCH mapping mode.
  • the communication unit 620 is configured to receive at least one downlink control information DCI, and the determining unit 610 is configured to determine multiple uplink channels/signals transmitted in the target time unit, the multiple uplink channels/signals. At least partially overlapping in the time domain, the at least one DCI is used to indicate at least one uplink signal/signal of the plurality of uplink channels/signals; when the plurality of uplink channels/signals satisfy a constraint, the communication unit 620 is further configured to: The information carried in the plurality of uplink channels/signals is multiplexed in one channel/signal within the target time unit for transmission. Wherein the constraint includes:
  • the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the Ath symbol after the last symbol in the physical downlink control channel PDCCH carrying the at least one DCI, the A is a non-negative integer .
  • the multiple uplink channels/signals include at least one physical uplink control channel PUCCH that carries acknowledgment/non-acknowledgment ACK/NACK information corresponding to the target physical downlink shared channel PDSCH; wherein the constraint further includes: the multiple uplinks The first symbol of the earliest uplink channel/signal in the channel/signal is no earlier than the Bth symbol after the last symbol of the at least one target PDSCH, and the B is a non-negative integer.
  • the at least one DCI comprises:
  • a DCI for scheduling a PUSCH and the plurality of uplink channels/signals include the PUSCH; and/or a DCI for indicating a downlink quasi-continuous DL SPS resource release, and the plurality of uplink channels/signals include carrying the indication DL SPS a PUCCH of the ACK/NACK information corresponding to the DCI of the resource release; and/or a DCI for scheduling the physical downlink shared channel PDSCH, and the plurality of uplink channels/signals include a PUCCH carrying ACK/NACK information corresponding to the PDSCH.
  • the uplink channel/signal includes:
  • Dynamic scheduling physical uplink shared channel (PUSCH); quasi-persistent PUSCH (SPS PUSCH); acknowledgment/non-acknowledgement (ACK/NACK) information corresponding to the quasi-persistent scheduling physical downlink shared channel (SPS-PDSCH) Physical Uplink Control Channel (PUCCH); Physical Uplink Control Channel (PUCCH) carrying Persistent Channel State Information (P-CSI); Semi-Persistent Channel State Information (SPS-CSI) Physical Uplink Control Channel (PUCCH); Physical Uplink Shared Channel (PUSCH) carrying quasi-persistent channel state information (SPS-CSI); and Physical Uplink Control Channel (PUCC H) carrying Scheduling Request (SR) .
  • SPS-PDSCH Physical Uplink Control Channel
  • P-CSI Persistent Channel State Information
  • SPS-CSI Semi-Persistent Channel State Information
  • SPS-CSI Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCC H Physical Uplink Control Channel carrying Scheduling Request (SR) .
  • the A N2+1, where N2 is a preparation time for scheduling a physical uplink shared channel PUSCH.
  • the B N1 + 1 + d 1,2 , where N1 is the PDSCH processing time, d 1,2 values associated with the physical downlink shared channel (PDSCH) are mapped.
  • N1 is the PDSCH processing time
  • d 1,2 values associated with the physical downlink shared channel (PDSCH) are mapped.
  • the determining unit 610 is configured to:
  • the constraint condition is any one of the foregoing wireless communication methods.
  • the target PUSCH is the earliest PUSCH in the PUSCH that satisfies the constraint.
  • the target PUSCH is any PUSCH in the PUSCH that meets the constraint.
  • the determining unit 610 is configured to: determine at least one physical uplink control channel PUCCH and multiple physical uplink shared channel PUSCHs, the at least one PUCCH and the multiple PUSCHs at least partially overlap in a time domain, and the at least a PUCCH and the plurality of PUSCHs satisfy a constraint condition; determining a target PUSCH in the multiple PUSCHs; the communication unit 620 is configured to: use the target PUSCH to transmit uplink control information carried in the at least one PUCCH; wherein the constraint condition is Any of the above wireless communication methods is a constraint.
  • the target PUSCH is the earliest PUSCH in the PUSCH that satisfies the constraint.
  • the target PUSCH is any PUSCH in the PUSCH that meets the constraint.
  • the communication device 600 shown in FIG. 14 may also be the network device shown in FIG. 1 for performing the steps performed by the network device in the embodiment of the present invention.
  • the determining unit 610 is configured to determine a plurality of uplink channels/signals transmitted in the target time unit, where the multiple uplink channels/signals are at least partially overlapped in the time domain; the communication unit 620, the multiple When the uplink channel/signal satisfies the constraint, the communication unit 620 is configured to receive a channel/signal in the target time unit, and the information carried in the multiple uplink channels/signals is multiplexed and transmitted in the one channel/signal.
  • the constraint includes: the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the A-th symbol after the start time of the target channel/signal or after the last symbol, A is a non-negative integer.
  • the constraint further includes: starting time of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the Bth symbol after the last symbol of the target channel/signal, the B is non- Negative integer.
  • each of the uplink channels/signals of the plurality of uplink channels/signals is a periodic uplink channel/signal.
  • the multiple uplink channels/signals include at least one physical uplink control channel PUCCH for carrying acknowledgement/non-acknowledgment ACK/NACK information corresponding to the quasi-persistent scheduling physical downlink shared channel SPS-PDSCH; the target channel/signal is The last SPS-PDSCH of the SPS-PDSCH corresponding to the at least one PUCCH.
  • PUCCH physical uplink control channel
  • the multiple uplink channels/signals do not include a physical uplink control channel PUCCH for carrying acknowledgement/non-acknowledgement ACK/NACK information corresponding to the quasi-persistent scheduling physical downlink shared channel SPS-PDSCH;
  • the target channel/signal is The last uplink channel/signal of the plurality of uplink channels/signals received by the target time unit.
  • the communications unit 620 is specifically configured to: receive one PUCCH in the at least one PUCCH.
  • the determining unit 610 determines that the multiple uplink channels/signals do not satisfy the constraint
  • the determining unit 610 is further configured to: determine that the multiple uplink channels/signals to be transmitted in the target time unit are error conditions;
  • the communications unit 620 is specifically configured to: receive the earliest one of the uplink channels/signals of the multiple uplink channels/signals.
  • the uplink channel/signal includes:
  • SPS PUSCH per-continuously scheduled PUSCH
  • PUCCH physical uplink control channel
  • ACK/NACK acknowledgment/non-acknowledgment
  • SPS-PDSCH physical downlink shared channel
  • PUCCH Physical uplink control channel
  • P-CSI Persistent Channel State Information
  • PUCCH Physical Uplink Control Channel
  • SPS-CSI Semi-Persistent Channel State Information
  • PUSCH physical uplink shared channel
  • SPS-CSI quasi-persistent channel state information
  • PUC H Physical uplink control channel carrying a Scheduling Request (SR).
  • SR Scheduling Request
  • the A N2+1, where N2 is a preparation time of the physical uplink shared channel PUSCH.
  • the B N1 + 1 + d 1,2 , wherein, Nl is a physical downlink shared channel PDSCH processing time, d 1,2 value associated with the PDSCH mapping mode.
  • the communication unit 620 is configured to send at least one downlink control information DCI to the terminal device;
  • a determining unit 610 configured to determine, by using a plurality of uplink channels/signals transmitted in the target time unit, the plurality of uplink channels/signals at least partially overlapping in the time domain, where the at least one DCI is used to indicate the multiple uplink channels/signals At least one uplink signal/signal; when the plurality of uplink channels/signals satisfy a constraint, the communication unit 620 is further configured to receive a channel/signal in the target time unit, and the multiple uplink channels/signals are carried Information multiplexing is transmitted in the one channel/signal.
  • the constraint includes:
  • the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the Ath symbol after the last symbol in the physical downlink control channel PDCCH carrying the at least one DCI, the A is a non-negative integer .
  • the multiple uplink channels/signals include at least one physical uplink control channel PUCCH carrying acknowledgement/non-acknowledgment ACK/NACK information corresponding to the target physical downlink shared channel PDSCH.
  • the constraint further includes: the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the Bth symbol after the last symbol of the at least one target PDSCH, and the B is non-negative Integer.
  • the at least one DCI comprises:
  • a DCI for scheduling a PUSCH and the plurality of uplink channels/signals include the PUSCH; and/or a DCI for indicating a downlink quasi-continuous DL SPS resource release, and the plurality of uplink channels/signals include carrying the indication DL SPS a PUCCH of the ACK/NACK information corresponding to the DCI of the resource release; and/or a DCI for scheduling the physical downlink shared channel PDSCH, and the plurality of uplink channels/signals include a PUCCH carrying ACK/NACK information corresponding to the PDSCH.
  • the uplink channel/signal includes:
  • Dynamic scheduling physical uplink shared channel (PUSCH); quasi-persistent PUSCH (SPS PUSCH); acknowledgment/non-acknowledgement (ACK/NACK) information corresponding to the quasi-persistent scheduling physical downlink shared channel (SPS-PDSCH) Physical Uplink Control Channel (PUCCH); Physical Uplink Control Channel (PUCCH) carrying Persistent Channel State Information (P-CSI); Semi-Persistent Channel State Information (SPS-CSI) Physical Uplink Control Channel (PUCCH); Physical Uplink Shared Channel (PUSCH) carrying quasi-persistent channel state information (SPS-CSI); and Physical Uplink Control Channel (PUCC H) carrying Scheduling Request (SR) .
  • SPS-PDSCH Physical Uplink Control Channel
  • P-CSI Persistent Channel State Information
  • SPS-CSI Semi-Persistent Channel State Information
  • SPS-CSI Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCC H Physical Uplink Control Channel carrying Scheduling Request (SR) .
  • the A N2+1, where N2 is a preparation time for scheduling a physical uplink shared channel PUSCH.
  • the B N1 + 1 + d 1,2 , where N1 is the PDSCH processing time, d 1,2 values associated with the physical downlink shared channel (PDSCH) are mapped.
  • N1 is the PDSCH processing time
  • d 1,2 values associated with the physical downlink shared channel (PDSCH) are mapped.
  • the determining unit 610 is configured to: determine at least one physical uplink control channel PUCCH and multiple physical uplink shared channel PUSCHs, where the at least one PUCCH and the multiple PUSCHs at least partially overlap in the time domain; Determining a PUSCH that satisfies the constraint condition in the PUSCH; determining a target PUSCH in the PUSCH that satisfies the constraint condition; the communication unit 620 is configured to: receive the target PUSCH, and use the uplink control information carried in the at least one PUCCH to be multiplexed in the target The transmission is performed in the PUSCH.
  • the constraint condition is any one of the foregoing wireless communication methods.
  • the target PUSCH is the earliest PUSCH in the PUSCH that satisfies the constraint.
  • the target PUSCH is any PUSCH in the PUSCH that meets the constraint.
  • the determining unit 610 is configured to: determine at least one physical uplink control channel PUCCH and multiple physical uplink shared channel PUSCHs, the at least one PUCCH and the multiple PUSCHs at least partially overlap in a time domain, and the at least a PUCCH and the plurality of PUSCHs satisfy a constraint condition; determining a target PUSCH in the multiple PUSCHs; the communication unit 620 is configured to: receive the target PUSCH, and multiplex uplink control information carried in the at least one PUCCH on the target PUSCH Transfer in.
  • the constraint condition is any one of the foregoing wireless communication methods.
  • the target PUSCH is the earliest PUSCH in the PUSCH that satisfies the constraint.
  • the target PUSCH is any PUSCH in the PUSCH that meets the constraint.
  • device embodiments and method embodiments may correspond to each other, and similar descriptions may refer to method embodiments.
  • the communication device 600 illustrated in FIG. 14 may correspond to performing the method 200 of the embodiments of the present application or the corresponding body in the method 300 or method 400, and the foregoing and other operations and/or functions of the various units in the communication device 600.
  • the corresponding processes in the respective methods in the embodiments of the present invention are not described herein.
  • the communication device of the embodiment of the present application has been described above from the perspective of a functional module in conjunction with FIG. It should be understood that the functional module may be implemented by hardware, by software instructions, or by a combination of hardware and software modules.
  • the steps of the method embodiment of the present invention may be implemented by the integrated logic circuit of the hardware in the processor and/or the instruction of the software.
  • the steps of the method disclosed in the embodiment of the present invention may be directly embodied as hardware.
  • the decoding processor is executed or completed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory, electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps in the foregoing method embodiments in combination with the hardware.
  • the determining unit 610 shown in FIG. 14 may be implemented by a processor, and the communication unit 620 shown in FIG. 14 may be implemented by a transceiver.
  • FIG. 15 is a schematic structural diagram of a communication device 700 according to an embodiment of the present application.
  • the communication device 700 shown in FIG. 7 includes a processor 710 that can call and run a computer program from memory to implement the methods in the embodiments of the present application.
  • the communication device 700 may further include a memory 720.
  • the memory 720 can be used to store indication information and can also be used to store code, instructions, etc., executed by the processor 710.
  • the processor 710 can call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710 or may be integrated in the processor 710.
  • the communication device 700 may further include a transceiver 730, and the processor 710 may control the transceiver 730 to communicate with other devices, in particular, may send information or data to other devices, or receive other Information or data sent by the device.
  • the processor 710 may control the transceiver 730 to communicate with other devices, in particular, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 730 can include a transmitter and a receiver.
  • the transceiver 730 may further include an antenna, and the number of the antennas may be one or more.
  • the communication device 700 can be the network device of the embodiment of the present application, and the communication device 700 can implement a corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the communication device 700 can be the terminal device of the embodiment of the present application, and the communication device 700 can implement a corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the communication device 700 of the embodiment of the present application may correspond to the communication device 600 in the embodiment of the present application, and may correspond to the corresponding method in the method 200 or the method 300 or the method 400 according to the embodiment of the present application. Concise, no longer repeat here.
  • the various components of the communication device 700 are connected by a bus system, wherein the bus system includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the bus system includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the embodiment of the present invention further provides a chip, which may be an integrated circuit chip, which has signal processing capability, and can implement or execute the disclosed methods, steps and logic block diagrams in the embodiments of the present invention.
  • a chip which may be an integrated circuit chip, which has signal processing capability, and can implement or execute the disclosed methods, steps and logic block diagrams in the embodiments of the present invention.
  • the chip can be applied to various communication devices such that the communication device on which the chip is mounted is capable of performing the various methods, steps, and logic blocks disclosed in the embodiments of the present invention.
  • FIG. 16 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 800 shown in FIG. 16 includes a processor 810 that can call and run a computer program from memory to implement the methods in the embodiments of the present application.
  • the chip 800 may further include a memory 820.
  • the processor 810 can call and run a computer program from the memory 820 to implement the method in the embodiment of the present application.
  • the memory 620 can be used to store indication information and can also be used to store code, instructions, etc., executed by the processor 610.
  • the memory 820 may be a separate device independent of the processor 810 or may be integrated in the processor 810.
  • the chip 800 can also include an input interface 830.
  • the processor 810 can control the input interface 830 to communicate with other devices or chips. Specifically, information or data sent by other devices or chips can be acquired.
  • the chip 800 can also include an output interface 840.
  • the processor 810 can control the output interface 840 to communicate with other devices or chips. Specifically, information or data can be output to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system level chip, a system chip, a chip system or a system on chip. It should also be understood that the various components of the chip 800 are connected by a bus system, wherein the bus system includes, in addition to the data bus, a power bus, a control bus, and a status signal bus.
  • the processor mentioned in the embodiment of the present invention may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or a field programmable gate array. , FPGA) or other programmable logic devices, transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory referred to in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • the memory in the embodiment of the present invention may also be a static random access memory (SRAM), a dynamic random access memory (DRAM), or a dynamic random access memory (DRAM).
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM Synchronous dynamic random access memory
  • DDR double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection Synchro link DRAM
  • DR RAM direct memory bus
  • FIG. 17 is a schematic block diagram of a communication system 900 in accordance with an embodiment of the present application.
  • the communication system 900 includes a terminal device 910 and a network device 920.
  • the terminal device 910 is configured to: determine a plurality of uplink channels/signals transmitted in a target time unit; and carry the multiple uplink channels/signals when the multiple uplink channels/signals satisfy a constraint condition.
  • Information multiplexing is transmitted in a channel/signal within the target time unit, the plurality of upstream channels/signals at least partially overlapping in the time domain; the network device 920 is configured to: determine the plurality of uplink channels/signals; When a plurality of uplink channels/signals satisfy a constraint, a channel/signal within the target time unit is received.
  • the constraint includes: the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than the A-th symbol after the start time of the target channel/signal or after the last symbol, A is a non-negative integer.
  • the terminal device 910 is configured to: receive at least one downlink control information DCI; determine a plurality of uplink channels/signals transmitted in the target time unit, where the multiple uplink channels/signals are at least partially in the time domain. Overlapping, the at least one DCI is used to indicate at least one uplink signal/signal of the plurality of uplink channels/signals; when the plurality of uplink channels/signals satisfy a constraint, recovering information carried in the multiple uplink channels/signals Transmitting in a channel/signal within the target time unit; the network device 920 is configured to: send the at least one DCI to the terminal device 910; determine the plurality of uplink channels/signals; the plurality of uplink channels/signals are satisfied Receiving, in the constraint condition, a channel/signal in the target time unit; wherein the constraint condition comprises: the first symbol of the earliest uplink channel/signal of the plurality of uplink channels/signals is not earlier than carrying the at least one The Ath symbol after
  • the terminal device 910 is configured to: determine at least one physical uplink control channel PUCCH and multiple physical uplink shared channel PUSCHs, where the at least one PUCCH and the multiple PUSCHs at least partially overlap in a time domain; Determining a PUSCH that satisfies the constraint condition in the plurality of PUSCHs; determining a target PUSCH in the PUSCH that satisfies the constraint condition; transmitting uplink control information carried in the at least one PUCCH by using the target PUSCH; wherein the constraint condition is any one of the foregoing a constraint condition; the network device 920 is configured to: determine the at least one PUCCH and the multiple PUSCHs, the at least one PUCCH and the multiple PUSCHs at least partially overlap in a time domain; determining, in the multiple PUSCH, that a constraint is met PUSCH; determining a target PUSCH in the PUSCH that satisfies the constraint; receiving the target PU
  • the terminal device 910 is configured to: determine at least one physical uplink control channel PUCCH and multiple physical uplink shared channel PUSCHs, the at least one PUCCH and the multiple PUSCHs at least partially overlap in a time domain, and the At least one PUCCH and the plurality of PUSCHs satisfy a constraint condition; determining a target PUSCH in the multiple PUSCHs; and transmitting uplink control information carried in the at least one PUCCH by using the target PUSCH; wherein the constraint condition is any one of the foregoing a constraint condition; the network device 920 is configured to: determine the at least one PUCCH and the multiple PUSCHs; determine a target PUSCH in the multiple PUSCHs; and receive the target PUSCH.
  • the terminal device 910 can be used to implement the corresponding functions implemented by the terminal device in the foregoing methods 200 to 400, and the terminal device 910 can be configured as the communication device 600 shown in FIG. 14 or as shown in FIG.
  • the communication device 700 is not described here for brevity.
  • the network device 920 can be used to implement the corresponding functions implemented by the network device in the foregoing methods xx to xx, and the communication device 600 of the network device 920 can be composed as shown in FIG. 14 or the communication device as shown in FIG. 700, for the sake of brevity, will not be repeated here.
  • system and the like in the text may also be referred to as “network management architecture” or “network system” and the like.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product stored in a storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method of the embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk.
  • the division of a unit or a module or a component in the device embodiment described above is only a logical function division, and the actual implementation may have another division manner.
  • multiple units or modules or components may be combined or integrated.
  • To another system, or some unit or module or component can be ignored, or not executed.
  • the units/modules/components described above as separate/display components may or may not be physically separate, ie may be located in one place, or may be distributed over multiple network elements. Some or all of the units/modules/components may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • mutual coupling or direct coupling or communication connection shown or discussed above may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or other form. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

提供了一种无线通信方法、通信设备、芯片和***。该方法包括:终端设备确定目标时间单元内传输的多个上行信道/信号,该多个上行信道/信号在时域上至少部分重叠;该多个上行信道/信号满足约束条件时,该终端设备将该多个上行信道/信号中承载的信息复用在该目标时间单元内的一个信道/信号中进行传输;其中,该约束条件包括:该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于目标信道/信号的起始时间之后或最后一个符号之后的第A个符号,该A为非负整数。本发明实施例中,通过约束条件能够使得终端设备确定出是否将该多个上行信道/信号中承载的信息复用在该目标时间单元内的一个信道/信号中进行传输,能够有效传输待传输信息。

Description

无线通信方法、通信设备、芯片和*** 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及无线通信方法、通信设备、芯片和***。
背景技术
目前,第五代移动通信技术(5-Generation,5G)新空口(New Radio,NR)***中不支持在一个载波内同时发送两个上行信道,当多个信道在同一个时间单元内传输碰撞时,终端需要确定一个实际传输的信道承载部分或全部待传输信息。因此,对于一个用户设备(User Equipment,UE),待传输的多个信道在时域上存在重叠时,终端设备如何确定出一个实际传输的信道是急需解决的问题。
发明内容
提供了一种无线通信方法、通信设备、芯片和***。使得终端设备存在时域上至少部分重叠的待传输的多个上行信道/信号时,能够有效传输待传输信息。
第一方面,提供了一种无线通信方法,包括:
终端设备确定目标时间单元内传输的多个上行信道/信号,所述多个上行信道/信号在时域上至少部分重叠;
所述多个上行信道/信号满足约束条件时,所述终端设备将所述多个上行信道/信号中承载的信息复用在所述目标时间单元内的一个信道/信号中进行传输;其中,所述约束条件包括:所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于目标信道/信号的起始时间之后或最后一个符号之后的第A个符号,所述A为非负整数。
本发明实施例中,目标时间单元内传输的多个上行信道/信号在时域上至少部分重叠时,通过约束条件能够使得终端设备确定出是否将该多个上行信道/信号中承载的信息复用在该目标时间单元内的一个信道/信号中进行传输,能够有效传输待传输信息。
在一些可能的实现方式中,所述约束条件还包括:所述多个上行信道/信号中最早的上行信道/信号的起始时间不早于所述目标信道/信号的最后一个符号之后第B个符号,所述B为非负整数。
在一些可能的实现方式中,所述多个上行信道/信号的每一个上行信道/信号为周期上行信道/信号。
在一些可能的实现方式中,所述多个上行信道/信号包括至少一个用于承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;所述目标信道/信号为所述至少一个PUCCH对应的SPS-PDSCH中的最后一个SPS-PDSCH。
在一些可能的实现方式中,所述多个上行信道/信号不包括用于承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;所述目标信道/信号为在所述目标时间单元之前发送的所述多个上行信道/信号中的最后一个上行信道/信号。
在一些可能的实现方式中,所述方法还包括:所述终端设备确定所述多个上行信道/信号不满足所述约束条件时,传输所述至少一个PUCCH中的一个PUCCH。
在一些可能的实现方式中,所述方法还包括:所述终端设备确定所述多个上行信道/信号不满足所述约束条件时,确定所述目标时间单元内待传输的多个上行信道/信号为错误情况;或,所述终端设备确定所述多个上行信道/信号不满足所述约束条件时,传输所述多个上行信道/信号中最早的一个上行信道/信号。
在一些可能的实现方式中,所述上行信道/信号包括:准持续调度物理上行共享信道SPS-PUSCH;承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
承载周期信道状态信息P-CSI的物理上行控制信道PUCCH;承载准持续性信道状态信息SPS-CSI的物理上行控制信道PUCCH;承载准持续性信道状态信息SPS-CSI的物理上行共享信道PUSCH;以及承载调度请求SR的物理上行控制信道PUCCH。
在一些可能的实现方式中,所述A=N2+1,其中,N2为物理上行共享信道PUSCH的准备时间。
在一些可能的实现方式中,所述B=N1+1+d1,2,其中,N1为物理下行共享信道PDSCH的处理时间,d1,2的取值与PDSCH映射方式相关。
第二方面,提供了一种无线通信方法,包括:
网络设备确定目标时间单元内传输的多个上行信道/信号,所述多个上行信道/信号在时域上至少部分重叠;
所述多个上行信道/信号满足约束条件时,所述网络设备接收所述目标时间单元内的一个信道/信 号,且所述多个上行信道/信号中承载的信息复用在所述一个信道/信号中进行传输;
其中,所述约束条件包括:所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于目标信道/信号的起始时间之后或最后一个符号之后的第A个符号,所述A为非负整数。
在一些可能的实现方式中,所述约束条件还包括:
所述多个上行信道/信号中最早的上行信道/信号的起始时间不早于所述目标信道/信号的最后一个符号之后第B个符号,所述B为非负整数。
在一些可能的实现方式中,所述多个上行信道/信号的每一个上行信道/信号为周期上行信道/信号。
在一些可能的实现方式中,所述多个上行信道/信号包括至少一个用于承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;所述目标信道/信号为所述至少一个PUCCH对应的SPS-PDSCH中的最后一个SPS-PDSCH。
在一些可能的实现方式中,所述多个上行信道/信号不包括用于承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;所述目标信道/信号为在所述目标时间单元之前接收的所述多个上行信道/信号中的最后一个上行信道/信号。
在一些可能的实现方式中,所述方法还包括:
所述网络设备确定所述多个上行信道/信号不满足所述约束条件时,接收所述至少一个PUCCH中的一个PUCCH。
在一些可能的实现方式中,所述方法还包括:
所述网络设备确定所述多个上行信道/信号不满足所述约束条件时,确定所述目标时间单元内待传输的多个上行信道/信号为错误情况;或,所述网络设备确定所述多个上行信道/信号不满足所述约束条件时,接收所述多个上行信道/信号中最早的一个上行信道/信号。
在一些可能的实现方式中,所述上行信道/信号包括:
准持续调度物理上行共享信道SPS-PUSCH;承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;承载周期信道状态信息P-CSI的物理上行控制信道PUCCH;承载准持续性信道状态信息SPS-CSI的物理上行控制信道PUCCH;承载准持续性信道状态信息SPS-CSI的物理上行共享信道PUSCH;以及承载调度请求SR的物理上行控制信道PUCCH。
在一些可能的实现方式中,所述A=N2+1,其中,N2为物理上行共享信道PUSCH的准备时间。
在一些可能的实现方式中,所述B=N1+1+d1,2,其中,N1为物理下行共享信道PDSCH的处理时间,d1,2的取值与PDSCH映射方式相关。
第三方面,提供了一种无线通信方法,包括:
终端设备接收到至少一个下行控制信息DCI;所述终端设备确定目标时间单元内传输的多个上行信道/信号,所述多个上行信道/信号在时域上至少部分重叠,所述至少一个DCI用于指示所述多个上行信道/信号中的至少一个上行信号/信号;所述多个上行信道/信号满足约束条件时,所述终端设备将所述多个上行信道/信号中承载的信息复用在所述目标时间单元内的一个信道/信号中进行传输;其中,所述约束条件包括:所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于承载所述至少一个DCI的物理下行控制信道PDCCH中最后一个符号之后的第A个符号,所述A为非负整数。
在一些可能的实现方式中,所述多个上行信道/信号包括至少一个承载目标物理下行共享信道PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
其中,所述约束条件还包括:所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于所述至少一个目标PDSCH的最后一个符号之后第B个符号,所述B为非负整数。
在一些可能的实现方式中,所述至少一个DCI包括:
用于调度物理上行共享信道PUSCH的DCI,且所述多个上行信道/信号包括所述PUSCH;和/或,用于指示下行准持续DL SPS资源释放的DCI,且所述多个上行信道/信号包括承载所述指示DL SPS资源释放的DCI对应的ACK/NACK信息的PUCCH;和/或,用于调度物理下行共享信道PDSCH的DCI,且所述多个上行信道/信号包括承载所述PDSCH对应的ACK/NACK信息的PUCCH。
在一些可能的实现方式中,所述上行信道/信号包括:
动态调度物理上行共享信道PUSCH;准持续调度物理上行共享信道SPS-PUSCH;承载确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
承载周期信道状态信息P-CSI的物理上行控制信道PUCCH;承载准持续性信道状态信息SPS-CSI的物理上行控制信道PUCCH;承载准持续性信道状态信息SPS-CSI的物理上行共享信道PUSCH;以及承载调度请求SR的物理上行控制信道PUCCH。
在一些可能的实现方式中,所述A=N2+1,其中,N2为调度物理上行共享信道PUSCH的准备时间。
在一些可能的实现方式中,所述B=N1+1+d 1,2,其中N1为PDSCH处理时间,d 1,2的取值与物理下行共享信道PDSCH映射方式相关。
第四方面,提供了一种无线通信方法,包括:
网络设备向终端设备发送至少一个下行控制信息DCI;所述网络设备确定目标时间单元内传输的多个上行信道/信号,所述多个上行信道/信号在时域上至少部分重叠,所述至少一个DCI用于指示所述多个上行信道/信号中的至少一个上行信号/信号;所述多个上行信道/信号满足约束条件时,所述网络设备接收所述目标时间单元内的一个信道/信号,且所述多个上行信道/信号中承载的信息复用在所述一个信道/信号中进行传输;其中,所述约束条件包括:所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于承载所述至少一个DCI的物理下行控制信道PDCCH中最后一个符号之后的第A个符号,所述A为非负整数。
在一些可能的实现方式中,所述多个上行信道/信号包括至少一个承载目标物理下行共享信道PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;其中,所述约束条件还包括:所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于所述至少一个目标PDSCH的最后一个符号之后第B个符号,所述B为非负整数。
在一些可能的实现方式中,所述至少一个DCI包括:
用于调度物理上行共享信道PUSCH的DCI,且所述多个上行信道/信号包括所述PUSCH;和/或,用于指示下行准持续DL SPS资源释放的DCI,且所述多个上行信道/信号包括承载所述指示DL SPS资源释放的DCI对应的ACK/NACK信息的PUCCH;和/或,用于调度物理下行共享信道PDSCH的DCI,且所述多个上行信道/信号包括承载所述PDSCH对应的ACK/NACK信息的PUCCH。
在一些可能的实现方式中,所述上行信道/信号包括:
动态调度物理上行共享信道PUSCH;准持续调度物理上行共享信道SPS-PUSCH;承载确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
承载周期信道状态信息P-CSI的物理上行控制信道PUCCH;承载准持续性信道状态信息SPS-CSI的物理上行控制信道PUCCH;承载准持续性信道状态信息SPS-CSI的物理上行共享信道PUSCH;以及承载调度请求SR的物理上行控制信道PUCCH。
在一些可能的实现方式中,所述A=N2+1,其中,N2为调度物理上行共享信道PUSCH的准备时间。
在一些可能的实现方式中,所述B=N1+1+d 1,2,其中N1为PDSCH处理时间,d 1,2的取值与物理下行共享信道PDSCH映射方式相关。
第五方面,提供了一种无线通信方法,包括:
终端设备确定至少一个物理上行控制信道PUCCH和多个物理上行共享信道PUSCH,所述至少一个PUCCH与所述多个PUSCH在时域上至少部分重叠;所述终端设备在所述多个PUSCH中确定满足约束条件的PUSCH;所述终端设备在所述满足约束条件的PUSCH中确定目标PUSCH;所述终端设备使用所述目标PUSCH传输所述至少一个PUCCH中承载的上行控制信息;其中,所述约束条件为上述第一方面至第四方面中所述的无线通信方法中的任一种所述约束条件。
在一些可能的实现方式中,所述目标PUSCH为所述满足约束条件的PUSCH中最早的PUSCH。
在一些可能的实现方式中,所述目标PUSCH为所述满足约束条件的PUSCH中的任一PUSCH。
第六方面,提供了一种无线通信方法,包括:
网络设备确定至少一个物理上行控制信道PUCCH和多个物理上行共享信道PUSCH,所述至少一个PUCCH与所述多个PUSCH在时域上至少部分重叠;所述网络设备在所述多个PUSCH中确定满足约束条件的PUSCH;所述网络设备在所述满足约束条件的PUSCH中确定目标PUSCH;所述网络设备接收所述目标PUSCH,且所述至少一个PUCCH中承载的上行控制信息复用在所述目标PUSCH中进行传输;其中,所述约束条件为上述第一方面至第四方面中所述的无线通信方法中的任一种所述约束条件。
在一些可能的实现方式中,所述目标PUSCH为所述满足约束条件的PUSCH中最早的PUSCH。
在一些可能的实现方式中,所述目标PUSCH为所述满足约束条件的PUSCH中的任一PUSCH。
第七方面,提供了一种无线通信方法,包括:
终端设备确定至少一个物理上行控制信道PUCCH和多个物理上行共享信道PUSCH,所述至少一个PUCCH与所述多个PUSCH在时域上至少部分重叠,且所述至少一个PUCCH与所述多个PUSCH满足约束条件;所述终端设备在所述多个PUSCH中确定目标PUSCH;所述终端使用所述目标PUSCH 传输所述至少一个PUCCH中承载的上行控制信息;其中,所述约束条件为上述第一方面至第四方面中所述的无线通信方法中的任一种所述约束条件。
在一些可能的实现方式中,所述目标PUSCH为所述满足约束条件的PUSCH中最早的PUSCH。
在一些可能的实现方式中,所述目标PUSCH为所述满足约束条件的PUSCH中的任一PUSCH。
第八方面,提供了一种无线通信方法,包括:
网络设备确定至少一个物理上行控制信道PUCCH和多个物理上行共享信道PUSCH,所述至少一个PUCCH与所述多个PUSCH在时域上至少部分重叠,且所述至少一个PUCCH与所述多个PUSCH满足约束条件;所述网络设备在所述多个PUSCH中确定目标PUSCH;所述网络设备接收所述目标PUSCH,且所述至少一个PUCCH中承载的上行控制信息复用在所述目标PUSCH中进行传输;其中,所述约束条件为上述第一方面至第四方面中所述的无线通信方法中的任一种所述约束条件。
在一些可能的实现方式中,所述目标PUSCH为所述满足约束条件的PUSCH中最早的PUSCH。
在一些可能的实现方式中,所述目标PUSCH为所述满足约束条件的PUSCH中的任一PUSCH。
第九方面,提供了一种通信设备,用于执行上述第一方面至第八方面中的任一方面的方法或者上述任一可能的实现方式中的方法。
在一些可能的实现方式中,所述通信设备包括:
用于执行上述第一方面至第八方面中的任一方面的方法或者上述任一可能的实现方式中的方法的功能模块。
在一些可能的实现方式中,所述通信设备为终端设备,所述终端设备用于执行上述第一方面或者上述第三方面或者上述第五方面或者上述第七方面中的方法。
在一些可能的实现方式中,所述通信设备为网络设备,所述网络设备用于执行前述第二方面或者前述第四方面或者上述第六方面或者上述第八方面中的方法。
第十方面,提供了一种通信设备,包括:
处理器,用于从存储器中调用并运行计算机程序,所述计算机程序用于执行上述第一方面至第八方面中的任一方面的方法或者上述任一可能的实现方式中的方法。
在一些可能的实现方式中,所述通信设备还包括:
存储器,所述存储器用于存储所述计算机程序。
在一些可能的实现方式中,所述通信设备为终端设备,所述终端设备用于执行上述第一方面或者上述第三方面或者上述第五方面或者上述第七方面中的方法。
在一些可能的实现方式中,所述通信设备为网络设备,所述网络设备用于执行前述第二方面或者前述第四方面或者上述第六方面或者上述第八方面中的方法。
第十一方面,提供了一种芯片,用于执行上述第一方面至第八方面中的任一方面的方法或者上述任一可能的实现方式中的方法。
在一些可能的实现方式中,所述芯片包括:
处理器,用于从存储器中调用并运行计算机程序,所述计算机程序用于执行上述第一方面至第八方面中的任一方面的方法或者上述任一可能的实现方式中的方法。
在一些可能的实现方式中,所述芯片还包括:
存储器,所述存储器用于存储所述计算机程序。
第十二方面,提供了一种计算机可读存储介质,所述存储介质用于存储计算机程序,所述计算机程序用于执行上述第一方面至第八方面中的任一方面的方法或者上述任一可能的实现方式中的方法。
第十三方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序用于执行上述第一方面至第八方面中的任一方面的方法或者上述任一可能的实现方式中的方法。
第十四方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第八方面中的任一方面的方法或者上述任一可能的实现方式中的方法。
第十五方面,提供了一种通信***,包括网络设备和终端设备;所述终端设备用于:
确定目标时间单元内传输的多个上行信道/信号;所述多个上行信道/信号满足约束条件时,将所述多个上行信道/信号中承载的信息复用在所述目标时间单元内的一个信道/信号中进行传输,所述多个上行信道/信号在时域上至少部分重叠;所述网络设备用于:
确定所述多个上行信道/信号;所述多个上行信道/信号满足约束条件时,接收所述目标时间单元内的一个信道/信号;其中,所述约束条件包括:所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于目标信道/信号的起始时间之后或最后一个符号之后的第A个符号,所述A为非负整数。
第十六方面,提供了一种通信***,包括网络设备和终端设备;所述终端设备用于:
接收到至少一个下行控制信息DCI;确定目标时间单元内传输的多个上行信道/信号,所述多个上行信道/信号在时域上至少部分重叠,所述至少一个DCI用于指示所述多个上行信道/信号中的至少一个上行信号/信号;所述多个上行信道/信号满足约束条件时,将所述多个上行信道/信号中承载的信息复用在所述目标时间单元内的一个信道/信号中进行传输;所述网络设备用于:
向终端设备发送所述至少一个DCI;确定所述多个上行信道/信号;所述多个上行信道/信号满足所述约束条件时,接收所述目标时间单元内的一个信道/信号;其中,所述约束条件包括:所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于承载所述至少一个DCI的物理下行控制信道PDCCH中最后一个符号之后的第A个符号,所述A为非负整数。
第十七方面,提供了一种通信***,包括网络设备和终端设备;所述终端设备用于:
确定至少一个物理上行控制信道PUCCH和多个物理上行共享信道PUSCH,所述至少一个PUCCH与所述多个PUSCH在时域上至少部分重叠;在所述多个PUSCH中确定满足约束条件的PUSCH;在所述满足约束条件的PUSCH中确定目标PUSCH;使用所述目标PUSCH传输所述至少一个PUCCH中承载的上行控制信息;其中,所述约束条件为上述第一方面至第四方面中所述的无线通信方法中的任一种所述约束条件;所述网络设备用于:
确定所述至少一个PUCCH和所述多个PUSCH,所述至少一个PUCCH与所述多个PUSCH在时域上至少部分重叠;在所述多个PUSCH中确定满足约束条件的PUSCH;在所述满足约束条件的PUSCH中确定目标PUSCH;接收所述目标PUSCH。
第十八方面,提供了一种通信***,包括网络设备和终端设备;所述终端设备用于:
确定至少一个物理上行控制信道PUCCH和多个物理上行共享信道PUSCH,所述至少一个PUCCH与所述多个PUSCH在时域上至少部分重叠,且所述至少一个PUCCH与所述多个PUSCH满足约束条件;在所述多个PUSCH中确定目标PUSCH;使用所述目标PUSCH传输所述至少一个PUCCH中承载的上行控制信息;其中,所述约束条件为上述第一方面至第四方面中所述的无线通信方法中的任一种所述约束条件;所述网络设备用于:
确定所述至少一个PUCCH和所述多个PUSCH;在所述多个PUSCH中确定目标PUSCH;接收所述目标PUSCH。
附图说明
图1是本发明应用场景的示例。
图2是本发明实施例的无线通信方法的示意性流程图。
图3-图5是本发明实施例的约束条件的示意性框图。
图6是本发明实施例的无线通信方法的另一示意性流程图。
图7-图10是本发明实施例的约束条件的另一示意性框图。
图11是本发明实施例的无线通信方法的另一示意性流程图。
图12是本发明实施例的无线通信方法的另一示意性流程图。
图13是本发明实施例的约束条件的另一示意性框图。
图14是本发明实施例的通信设备的示意性框图。
图15是本发明实施例的通信设备的另一示意性框图。
图16是本发明实施例的芯片的示意性框图。
图17是本发明实施例的***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信***100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本发明实施例仅以通信***100进行示例性说明,但本发明实施例不限定于此。也就是说,本发明实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、LTE时分双工(Time Division Duplex,TDD)、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***、新无线(New Radio,NR)或未来的5G***等。
以5G***为例,本申请实施例的技术方案可以应用于广域的长期演进(Long Term Evolution,LTE)覆盖和NR的孤岛覆盖模式。而且大量的LTE部署在6GHz以下,可用于5G的6GHz以下频谱很少。所以NR必须研究6GHz以上的频谱应用,而高频段覆盖有限、信号衰落快。同时为了保护移动运营商前期在LTE投资,提出了LTE和NR之间紧密连接(tight interworking)的工作模式。
5G的主要应用场景包括:增强移动超宽带(Enhance Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable and Low Latency Communication,URLLC)、大规模机器类通信(massive machine type of communication,mMTC)。其中,eMBB以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。由于eMBB可能部署在不同的场景中。例如,室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,可以结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
在图1所示的通信***100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
例如,该接入网设备可以是全球移动通讯(Global System of Mobile communication,GSM)***或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)***中的演进型基站(Evolutional Node B,eNB或eNodeB)。
可选地,该接入网设备还可以是下一代无线接入网(Next Generation Radio Access Network,NG RAN),或者是NR***中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该接入网设备可以为中继站、接入点、车载设备、可穿戴设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该终端设备110可以是任意终端设备,该终端设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network)进行通信,也可称为接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。例如,可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及5G网络中的终端设备等。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。
图2示出了根据本申请实施例的无线通信方法200的示意性流程图。图2中所示的终端设备可以是如图1所示的终端设备,图2中所示的网络设备可以是如图1所示的接入网设备。该方法200包括以下部分或全部内容:
如图2所示,该方法200包括:
S210,终端设备确定目标时间单元内传输的多个上行信道/信号,该多个上行信道/信号在时域上至少部分重叠。
S220,网络设备确定该多个上行信道/信号。
S230,该多个上行信道/信号满足约束条件时,该终端设备将该多个上行信道/信号中承载的信息复用在该目标时间单元内的一个信道/信号中进行传输。
其中,该约束条件包括:该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于目标信道/信号的起始时间之后或最后一个符号之后的第A个符号,该A为非负整数。
本发明实施例的目标时间单元可以理解为时域资源的资源粒度,例如,包括但不限于:时隙、子帧、帧以及传输时间单元等等。
可选地,该A=N2+1,其中,N2为PUSCH的准备时间(preparation time)。
可选地,A=N2+d2,1,N2为PUSCH的准备时间(preparation time)。
可选地,d2,1的取值与PUSCH中解调参考信号(Demodulation Reference Signal,DMRS)结构相关。例如,PUSCH中只有第一个时域符号包括DMRS时,d2,1=0;否则d2,1=1。
可选地,该约束条件还包括:该多个上行信道/信号中最早的上行信道/信号的起始时间不早于该目标信道/信号的最后一个符号之后第B个符号,该B为非负整数。
可选地,B=N2+d1,1+d1,2,N1为PDSCH的处理时间(processing time)。
可选地,该B=N1+1+d1,2,其中,N1为物理下行共享信道PDSCH的处理时间。
可选地,d1,1的取值与对应的ACK/NACK的传输方式有关。例如,使用PUCCH传输对应ACK/NACK时,d1,1=0;使用PUSCH传输对应ACK/NACK时,d1,1=1。
可选地,d1,2的取值与PDSCH映射方式有关。例如,如果PDSCH映射方式是根据3GPP技术规范(TS)38.211的第7.4.1.1节规定的映射类型A,而PDSCH的最后一个符号是在小于7的时隙的第i个符号上,则,d1,2=7-i。又例如,如果PDSCH映射方式是根据3GPP技术规范(TS)38.211的第7.4.1.1节规定的映射类型B,且分配的PDSCH符号数为4,则,d1,2=3。又例如,如果PDSCH映射方式是根据3GPP技术规范(TS)38.211的第7.4.1.1节规定的映射类型B,且分配的PDSCH符号的数量为2,则,d1,2=3+d,其中,d为调度PDCCH和分配的PDSCH的重叠符号的数量。又例如,如果PDSCH映射方式既不是上述映射类型A也不是上述映射类型B,则d1,2=0。
可选地,该多个上行信道/信号的每一个上行信道/信号为周期上行信道/信号。
可选地,该上行信道/信号包括:
准持续调度PUSCH(Semi-Persistent PUSCH,SPS PUSCH);承载准持续调度物理下行共享信道(SPS-PDSCH)对应的确认/非确认(ACK/NACK)信息的物理上行控制信道(PUCCH);承载周期信道状态信息(Persistent Channel State Information,P-CSI)的物理上行控制信道(PUCCH);承载准持续性信道状态信息(Semi-Persistent Channel State Information,SPS-CSI)的物理上行控制信道(PUCCH);承载准持续性信道状态信息(SPS-CSI)的物理上行共享信道(PUSCH);以及承载调度请求(Scheduling Request,SR)的物理上行控制信道(PUCC H)。
本发明实施例中,目标时间单元内传输的多个上行信道/信号在时域上至少部分重叠时,通过约束条件能够使得终端设备确定出是否将该多个上行信道/信号中承载的信息复用在该目标时间单元内的一个信道/信号中进行传输,能够有效传输待传输信息。
可选地,本发明实施例中,上述约束条件的具体内容可以根据该多个上行信道/信号的具体类型确定。
下面结合附图和具体场景对本发明实施例的约束条件进行说明:
在一个实施例中,该多个上行信道/信号可以包括至少一个用于承载准持续调度物理下行共享信道(Semi-Persistent Physical Downlink Shared Channel,SPS-PDSCH)对应的确认/非确认(ACK/NACK)信息的物理上行控制信道(Physical Uplink Control Channel,PUCCH);该目标信道/信号为该至少一个PUCCH对应的SPS-PDSCH中的最后一个SPS-PDSCH。下面以该多个上行信道/信号包括一个用于承载SPS-PDSCH对应的ACK/NACK信息的PUCCH为例结合图3对该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于目标信道/信号的起始时间之后的第A个符号进行示例性说明:
如图3所示,该多个上行信道包括:一个用于承载SPS-PDSCH对应的ACK/NACK信息的PUCCH和一个用于承载SPS-PUSCH/SPS-CSI/P-CSI/SR的上行信道/信号。其中,该用于承载SPS-PUSCH/SPS-CSI/P-CSI/SR的上行信道/信号可以是SPS PUSCH、承载SPS-PDSCH对应的ACK/NACK信息的PUCCH、承载P-CSI的PUCCH、承载SPS-CSI的PUCCH、承载SPS-CSI的PUSCH以及承载SR的PUCCH中的任一项。
如图3所示,由于该用于承载SPS-PUSCH/SPS-CSI/P-CSI/SR的上行信道/信号早于该用于承载SPS-PDSCH对应的ACK/NACK信息的PUCCH。由此,终端设备可以确定该用于承载SPS-PDSCH对应的ACK/NACK信息的PUCCH和该SPS-PDSCH之间是否满足约束条件,在确定出该用于承载SPS-PDSCH对应的ACK/NACK信息的PUCCH和该SPS-PDSCH之间满足约束条件时,将该用于承载SPS-PUSCH/SPS-CSI/P-CSI/SR的上行信道/信号和该用于承载SPS-PDSCH对应的ACK/NACK信息的PUCCH复用在一个信道/信号上进行传输。该一个信道/信号可以为该用于承载SPS-PUSCH/SPS-CSI/P-CSI/SR的上行信道/信号和该用于承载SPS-PDSCH对应的ACK/NACK信息的PUCCH中的任一个,也可以根据例如判断准则的方式,在该用于承载SPS-PUSCH/SPS-CSI/P-CSI/SR的上行信道/信号和该用于承载SPS-PDSCH对应的ACK/NACK信息的PUCCH中选择一个进行复用。
如图3所示,由于该用于承载SPS-PUSCH/SPS-CSI/P-CSI/SR的上行信道/信号的第一个符号不早于SPS-PDSCH的起始时间之后的第A个符号,该A为非负整数。并且,该用于承载SPS-PUSCH/SPS-CSI/P-CSI/SR的上行信道/信号的起始时间不早于该SPS-PDSCH的最后一个符号之后第B个符号,该B为非负整数。因此,可以判断该用于承载SPS-PDSCH对应的ACK/NACK信息的PUCCH和该SPS-PDSCH之间满足约束条件。
应理解,图3所示的多个上行信道/信号在时域上部分重叠的框图仅为示例,在其他可替代实施例中,该多个上行信道/信号还可以包括其他类型的上行周期信号,该多个上行信道/信号也可以包括多个SPS-PDSCH。
例如,如图4所示,该多个上行信道/信号可以包括:用于承载SPS-PDSCH 1对应的ACK/NACK1信息的PUCCH和用于承载SPS-PDSCH 2对应的ACK/NACK 2信息的PUCCH。此时,本发明实施例中的目标信道/信号可以为该至少一个PUCCH对应的SPS-PDSCH中的最后一个SPS-PDSCH。即,SPS-PDSCH 1。
在另一个实施例中,该多个上行信道/信号不包括用于承载SPS-PDSCH对应的ACK/NACK信息的PUCCH;该目标信道/信号为在该目标时间单元之前发送的该多个上行信道/信号中的最后一个上行信道/信号。
例如,如图5所示,该多个上行信道/信号可以包括第一周期上行信道/信号(CH 11)和第二周期上行信道/信号(CH 12),其中,该第一周期上行信道/信号和该第二周期信道/信号可以是用于承载SPS-PUSCH/SPS-CSI/P-CSI/SR的上行信道/信号。由于目标时间单元内,该第二周期上行信道/信号早于该第一周期上行信道/信号,且在该目标时间单元之前发送的该多个上行信道/信号(如图5所示的CH 21和CH 22)中的最后一个上行信道/信号为第一周期上行信道/信号(CH 21),因此,可以通过判断CH 12和CH 21之间是否满足约束条件确定是否将CH 12和CH 11中承载的信息复用在一个上行信道/信号中进行传输。
如图5所示,该CH 12的第一个符号不早于该CH 21的起始时间之后的第A个符号,该A为非负整数。因此,可以确定出CH 12和CH 21之间满足约束条件,则可以将CH 12和CH 21中承载的信息复用在一个上行信道/信号中进行传输。
应理解,图5所示的CH 21是该终端设备在该目标时间单元之前发送的CH 11,图5所示的CH 22是该终端设备在该目标时间单元之前发送的CH 12。本发明实施例旨在说明CH 21和CH 11属于同一周期上行信道.信号,对CH 21和CH 11之间的具体内容不作限定。例如,CH 21和CH 11的内容可以相同,也可以不同。相应的,CH 22和CH 12的内容可以相同,也可以不同。
还应理解,本发明实施例中的终端设备可以基于目标时间单元内的多个上行信道/信号是否满足约束条件确定该多个上行信道/信号中承载的信息通过复用该目标时间单元内的一个上行信道/信号进行传输,但本发明实施例对具体复用在该目标时间单元内的哪个上行信道/信号以及该多个上行信道/信号不满足约束条件时的具体操作不作限定。
下面对该多个上行信道/信号不满足约束条件时该终端设备的具体操作进行示例性说明:
作为一示例,如果该多个上行信道/信号可以包括至少一个用于承载准持续调度物理下行共享信道(Semi-Persistent Physical Downlink Shared Channel,SPS-PDSCH)对应的确认/非确认(ACK/NACK)信息的物理上行控制信道(Physical Uplink Control Channel,PUCCH)。则该终端设备确定该多个上行信道/信号不满足该约束条件时,传输该至少一个PUCCH中的一个PUCCH。作为又一示例,该终端设备确定该多个上行信道/信号不满足该约束条件时,确定该目标时间单元内待传输的多个上行信道/信号为错误情况。作为又一示例,该终端设备确定该多个上行信道/信号不满足该约束条件时,传输该多个上行信道/信号中最早的一个上行信道/信号。
上文中结合图2至图5,从终端设备的角度详细描述了根据本申请实施例的无线通信方法,但本发明实施例不限于此。如图2所示,本发明实施例的方法也可以应用于网络设备,相应的,网络设备确定该多个上行信道/信号,该多个上行信道/信号满足约束条件时,该网络设备接收该目标时间单元内的一个上行信道/信号。
具体地,该网络设备确定目标时间单元内传输的多个上行信道/信号,该多个上行信道/信号在时域上至少部分重叠;该多个上行信道/信号满足约束条件时,该网络设备接收该目标时间单元内的一个信道/信号,且该多个上行信道/信号中承载的信息复用在该一个信道/信号中进行传输;其中,该约束条件包括:该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于目标信道/信号的起始时间之后或最后一个符号之后的第A个符号,该A为非负整数。
可选地,该A=N2+1,其中,N2为PUSCH的准备时间。
可选地,A=N2+d2,1,N2为PUSCH的准备时间(preparation time)。
可选地,d2,1的取值与PUSCH中解调参考信号(Demodulation Reference Signal,DMRS)结构相关。例如,PUSCH中只有第一个时域符号包括DMRS时,d2,1=0;否则d2,1=1。
可选地,该约束条件还包括:该多个上行信道/信号中最早的上行信道/信号的起始时间不早于该目标信道/信号的最后一个符号之后第B个符号,该B为非负整数。
可选地,该B=N1+1+d1,2,其中,N1为PDSCH的处理时间(processing time)。
可选地,B=N2+d1,1+d1,2,N1为PDSCH的处理时间。
可选地,d1,1的取值与对应的ACK/NACK的传输方式有关。例如,使用PUCCH传输对应ACK/NACK时,d1,1=0;使用PUSCH传输对应ACK/NACK时,d1,1=1。
可选地,d1,2的取值与PDSCH映射方式有关。例如,如果PDSCH映射方式是根据3GPP技术规范(TS)38.211的第7.4.1.1节规定的映射类型A,而PDSCH的最后一个符号是在小于7的时隙的第i个符号上,则,d1,2=7-i。又例如,如果PDSCH映射方式是根据3GPP技术规范(TS)38.211的第7.4.1.1节规定的映射类型B,且分配的PDSCH符号数为4,则,d1,2=3。又例如,如果PDSCH映射方式是根据3GPP技术规范(TS)38.211的第7.4.1.1节规定的映射类型B,且分配的PDSCH符号的数量为2,则,d1,2=3+d,其中,d为调度PDCCH和分配的PDSCH的重叠符号的数量。又例如,如果PDSCH映射方式既不是上述映射类型A也不是上述映射类型B,则d1,2=0。
可选地,该多个上行信道/信号的每一个上行信道/信号为周期上行信道/信号。
可选地,该多个上行信道/信号包括至少一个用于承载SPS-PDSCH对应的ACK/NACK信息的PUCCH;该目标信道/信号为该至少一个PUCCH对应的SPS-PDSCH中的最后一个SPS-PDSCH。
可选地,该多个上行信道/信号不包括用于承载SPS-PDSCH对应的ACK/NACK信息的PUCCH;该目标信道/信号为在该目标时间单元之前接收的该多个上行信道/信号中的最后一个上行信道/信号。
可选地,该方法还包括:
该网络设备确定该多个上行信道/信号不满足该约束条件时,接收该至少一个PUCCH中的一个PUCCH。
可选地,该方法还包括:
该网络设备确定该多个上行信道/信号不满足该约束条件时,确定该目标时间单元内待传输的多个上行信道/信号为错误情况。
可选地,该方法还包括:该网络设备确定该多个上行信道/信号不满足该约束条件时,接收该多个上行信道/信号中最早的一个上行信道/信号。
可选地,该上行信道/信号包括:
准持续调度PUSCH(Semi-Persistent PUSCH,SPS PUSCH);承载准持续调度物理下行共享信道(SPS-PDSCH)对应的确认/非确认(ACK/NACK)信息的物理上行控制信道(PUCCH);承载周期信道状态信息(Persistent Channel State Information,P-CSI)的物理上行控制信道(PUCCH);承载准持续性信道状态信息(Semi-Persistent Channel State Information,SPS-CSI)的物理上行控制信道(PUCCH);承载准持续性信道状态信息(SPS-CSI)的物理上行共享信道(PUSCH);以及承载调度请求(Scheduling Request,SR)的物理上行控制信道(PUCC H)。
应理解,网络设备执行的无线通信的步骤可以参考图2所示的方法200中的相应步骤,网络设备确定该多个上行信道/信号是否满足约束条件的判断方法可以参考上述终端设备侧的相应实施例,为了简洁,在此不再赘述。
图6示出了根据本申请实施例的无线通信方法300的示意性流程图。图6中所示的终端设备可以是如图1所示的终端设备,图6中所示的网络设备可以是如图1所示的接入网设备。该方法300包括以下部分或全部内容:
如图6所示,该方法300包括:
S310,终端设备接收网络设备发送的至少一个下行控制信息(Downlink Control Information,DCI)。
S320,该终端设备确定目标时间单元内传输的多个上行信道/信号,该多个上行信道/信号在时域上至少部分重叠,该至少一个DCI用于指示该多个上行信道/信号中的至少一个上行信号/信号。
S330,网络设备确定该多个上行信道/信号。
S340,该多个上行信道/信号满足约束条件时,该终端设备将该多个上行信道/信号中承载的信息复用在该目标时间单元内的一个信道/信号中进行传输。
其中,该约束条件包括:该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于承载该至少一个DCI的PDCCH中最后一个符号之后的第A个符号,该A为非负整数。
可选地,该A=N2+1,其中,N2为调度物理上行共享信道PUSCH的准备时间。
可选地,A=N2+d2,1,N2为PUSCH的准备时间(preparation time)。
可选地,d2,1的取值与PUSCH中解调参考信号(Demodulation Reference Signal,DMRS)结构相关。例如,PUSCH中只有第一个时域符号包括DMRS时,d2,1=0;否则d2,1=1。
在一个实施例中,该多个上行信道/信号包括至少一个承载目标PDSCH对应的ACK/NACK信息的PUCCH;其中,该约束条件还包括:该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于该至少一个目标PDSCH的最后一个符号之后第B个符号,该B为非负整数。
可选地,该B=N1+1+d 1,2,其中N1为PDSCH处理时间。
可选地,B=N2+d1,1+d1,2,N1为PDSCH的处理时间(processing time)。
可选地,d1,1的取值与对应的ACK/NACK的传输方式有关。例如,使用PUCCH传输对应 ACK/NACK时,d1,1=0;使用PUSCH传输对应ACK/NACK时,d1,1=1。
可选地,d1,2的取值与PDSCH映射方式有关。例如,如果PDSCH映射方式是根据3GPP技术规范(TS)38.211的第7.4.1.1节规定的映射类型A,而PDSCH的最后一个符号是在小于7的时隙的第i个符号上,则,d1,2=7-i。又例如,如果PDSCH映射方式是根据3GPP技术规范(TS)38.211的第7.4.1.1节规定的映射类型B,且分配的PDSCH符号数为4,则,d1,2=3。又例如,如果PDSCH映射方式是根据3GPP技术规范(TS)38.211的第7.4.1.1节规定的映射类型B,且分配的PDSCH符号的数量为2,则,d1,2=3+d,其中,d为调度PDCCH和分配的PDSCH的重叠符号的数量。又例如,如果PDSCH映射方式既不是上述映射类型A也不是上述映射类型B,则d1,2=0。
可选地,该至少一个DCI包括:
用于调度PUSCH的DCI,且该多个上行信道/信号包括该PUSCH;和/或,用于指示下行准持续DL SPS资源释放的DCI,且该多个上行信道/信号包括承载该指示DL SPS资源释放的DCI对应的ACK/NACK信息的PUCCH;和/或,用于调度物理下行共享信道PDSCH的DCI,且该多个上行信道/信号包括承载该PDSCH对应的ACK/NACK信息的PUCCH。
可选地,该上行信道/信号包括:
动态调度物理上行共享信道(PUSCH);准持续调度PUSCH(Semi-Persistent PUSCH,SPS PUSCH);承载准持续调度物理下行共享信道(SPS-PDSCH)对应的确认/非确认(ACK/NACK)信息的物理上行控制信道(PUCCH);承载周期信道状态信息(Persistent Channel State Information,P-CSI)的物理上行控制信道(PUCCH);承载准持续性信道状态信息(Semi-Persistent Channel State Information,SPS-CSI)的物理上行控制信道(PUCCH);承载准持续性信道状态信息(SPS-CSI)的物理上行共享信道(PUSCH);以及承载调度请求(Scheduling Request,SR)的物理上行控制信道(PUCC H)。
下面结合附图对本发明实施例的约束条件进行示例性说明:
图7是该多个上行信道/信号包括至少一个承载目标PDSCH对应的ACK/NACK信息的PUCCH的场景下,该约束条件的示意性框图。
如图7所示,终端设备接收网络设备发送的DCI 1和DCI 2,其中,该DCI 1为用于调度PUSCH的DCI,且该多个上行信道/信号包括该PUSCH。该DCI 2为用于于调度PDSCH的DCI,且该多个上行信道/信号包括承载该PDSCH对应的ACK/NACK信息的PUCCH。
其中,该约束条件包括:该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于承载该至少一个DCI的PDCCH中最后一个符号之后的第A个符号,该A为非负整数。
具体的,该终端设备能够确定该多个上行信道/信号中最早的上行信道/信号为DCI 1为调度的PUSCH,用于承载该至少一个DCI的PDCCH中最后一个符号为用于承载该DCI 1的PDCCH,该DCI 1为调度的PUSCH的第一个符号不早于承载该至少一个DCI 1的PDCCH中最后一个符号之后的第A个符号,该A为非负整数。
此外,该约束条件还包括:该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于该至少一个目标PDSCH的最后一个符号之后第B个符号,该B为非负整数。具体的,该终端设备能够确定该多个上行信道/信号中最早的上行信道/信号为DCI 1为调度的PUSCH,该至少一个目标PDSCH的最后一个符号为DCI 2调度的PDSCH,由此,该DCI 1为调度的PUSCH的第一个符号不早于该DCI 2调度的PDSCH的最后一个符号之后第B个符号。
由此,该终端设备能够确定该多个上行信道/信号满足该约束条件。
应理解,图7仅为该多个上行信道/信号包括一个承载目标PDSCH对应的ACK/NACK信息的PUCCH的示例,本示例中,上述至少一个DCI包括DCI 1和DCI 2,其中,该DCI 1为用于调度PUSCH的DCI,且该多个上行信道/信号包括该PUSCH。该DCI 2为用于于调度PDSCH的DCI,且该多个上行信道/信号包括承载该PDSCH对应的ACK/NACK信息的PUCCH。但本发明实施例不限于此。
例如,如图8所示,该至少一个DCI可以只包括DCI 2。
又例如,如图9所示,该至少一个DCI可以只包括DCI 1,此外,该多个上行信道/信号可以包括承载准持续调度物理下行共享信道(SPS-PDSCH)对应的确认/非确认(ACK/NACK)信息的物理上行控制信道(PUCCH),这种情况下,该SPS-PDSCH可以作为本发明实施例中的目标PDSCH。
还应理解,图7至图9的示例中,该多个上行信道/信号满足约束条件,需要该多个上行信道/信号同时满足以下条件:该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于承载该至少一个DCI的PDCCH中最后一个符号之后的第A个符号,该A为非负整数。并且,该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于该至少一个目标PDSCH的最后一个符号之后第B个符号,该B为非负整数。但本发明实施例不限于此。
图10是本发明实施例的该多个上行信道/信号包括DCI 1调度的PUSCH和其他周期上行信道/信号的场景下,该约束条件的示意性框图。如图10所示,该多个上行信道/信号包括DCI 1调度的PUSCH和用于承载SPS-CSI/P-CSI/SR的周期上行信道/信号。这种情况下,该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于承载该至少一个DCI的PDCCH中最后一个符号之后的第A个符号,该A为非负整数,该终端设备就可以确定该多个上行信道/信号满足约束条件。
具体地,终端设备能够确定该DCI 1调度的PUSCH早于用于承载SPS-CSI/P-CSI/SR的周期上行信道/信号,进一步地,该DCI 1调度的PUSCH不早于用于承载SPS-CSI/P-CSI/SR的周期上行信道/信号的最后一个符号之后的第A个符号。
以该目标时间单元为时隙(slot)n为例,在本发明实施例中,终端设备需要在时隙(slot)n中传输一个PUCCH和至少一个其他上行信道(PUCCH或PUSCH),且该PUCCH和至少一个其他上行信道在时间上重叠。该终端设备至少收到了一个DCI,该DCI用于指示slot n中的上行传输(调度在slot n中传输的PUSCH的DCI;或调度PDSCH传输的DCI,且该PDSCH对应的ACK/NACK信息在slot n中传输;或指示DL SPS资源释放的DCI,且该DCI对应的ACK/NACK信息在slot n中传输)。如图7至图10所示,若该一个PUCCH和至少一个其他上行信道满足如下条件,则通过一个上行信道承载所有的UCI或数据信息。
若存在至少一个PDSCH其对应的ACK/NACK信息在slot n中传输,则重叠信道中最早的信道的第一个符号不早于承载该至少一条DCI的PDCCH中最后一个符号之后的第A个符号。和/或,
若存在至少一个PDSCH其对应的ACK/NACK信息在slot n中传输,则重叠信道中最早的信道的第一个符号不早于该至少一个PDSCH中最后一个PDSCH之后的第B个符号。
上文中结合图6至图10,从终端设备的角度详细描述了根据本申请实施例的终端设备接收到DCI的情况下,约束条件的判断方式,但本发明实施例不限于此。如图6所示,本发明实施例的方法也可以应用于网络设备。相应的,网络设备向终端设备发送至少一个DCI;该网络设备确定目标时间单元内传输的多个上行信道/信号,该多个上行信道/信号在时域上至少部分重叠,该至少一个DCI用于指示该多个上行信道/信号中的至少一个上行信号/信号;该多个上行信道/信号满足约束条件时,该网络设备接收该目标时间单元内的一个信道/信号,且该多个上行信道/信号中承载的信息复用在该一个信道/信号中进行传输。其中,该约束条件包括:
该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于承载该至少一个DCI的PDCCH中最后一个符号之后的第A个符号,该A为非负整数。
可选地,该A=N2+1,其中,N2为调度PUSCH的准备时间。
可选地,A=N2+d2,1,N2为PUSCH的准备时间(preparation time)。
可选地,d2,1的取值与PUSCH中解调参考信号(Demodulation Reference Signal,DMRS)结构相关。例如,PUSCH中只有第一个时域符号包括DMRS时,d2,1=0;否则d2,1=1。
可选地,该多个上行信道/信号包括至少一个承载目标PDSCH对应的ACK/NACK信息的PUCCH;其中,该约束条件还包括:
该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于该至少一个目标PDSCH的最后一个符号之后第B个符号,该B为非负整数。
可选地,该B=N1+1+d 1,2,其中N1为PDSCH处理时间。
可选地,B=N2+d1,1+d1,2,N1为PDSCH的处理时间。
可选地,d1,1的取值与对应的ACK/NACK的传输方式有关。例如,使用PUCCH传输对应ACK/NACK时,d1,1=0;使用PUSCH传输对应ACK/NACK时,d1,1=1。
可选地,d1,2的取值与PDSCH映射方式有关。例如,如果PDSCH映射方式是根据3GPP技术规范(TS)38.211的第7.4.1.1节规定的映射类型A,而PDSCH的最后一个符号是在小于7的时隙的第i个符号上,则,d1,2=7-i。又例如,如果PDSCH映射方式是根据3GPP技术规范(TS)38.211的第7.4.1.1节规定的映射类型B,且分配的PDSCH符号数为4,则,d1,2=3。又例如,如果PDSCH映射方式是根据3GPP技术规范(TS)38.211的第7.4.1.1节规定的映射类型B,且分配的PDSCH符号的数量为2,则,d1,2=3+d,其中,d为调度PDCCH和分配的PDSCH的重叠符号的数量。又例如,如果PDSCH映射方式既不是上述映射类型A也不是上述映射类型B,则d1,2=0。
可选地,该至少一个DCI包括:
用于调度PUSCH的DCI,且该多个上行信道/信号包括该PUSCH;和/或,用于指示下行准持续DL SPS资源释放的DCI,且该多个上行信道/信号包括承载该指示DL SPS资源释放的DCI对应的ACK/NACK信息的PUCCH;和/或,用于调度PDSCH的DCI,且该多个上行信道/信号包括承载该PDSCH对应的ACK/NACK信息的PUCCH。
可选地,该上行信道/信号包括:
动态调度物理上行共享信道(PUSCH);准持续调度PUSCH(Semi-Persistent PUSCH,SPS PUSCH);承载准持续调度物理下行共享信道(SPS-PDSCH)对应的确认/非确认(ACK/NACK)信息的物理上行控制信道(PUCCH);承载周期信道状态信息(Persistent Channel State Information,P-CSI)的物理上行控制信道(PUCCH);承载准持续性信道状态信息(Semi-Persistent Channel State Information,SPS-CSI)的物理上行控制信道(PUCCH);承载准持续性信道状态信息(SPS-CSI)的物理上行共享信道(PUSCH);以及承载调度请求(Scheduling Request,SR)的物理上行控制信道(PUCC H)。
本发明实施例中,该多个上行信道/信号可以包括多于两个的上行信道/信号,所以该终端设备或者该网络设备需要在该多个上行信道/信号中确定出用于实际传输的上行信道/信号。
下面以该多个上行信道/信号包括至少一个PUCCH和多个PUSCH为例,以将该至少一个PUCCH中承载的上行控制信息复用在该多个PUSCH中的目标PUSCH中进行传输为例进行示例性说明:
图11和图12均为本发明实施例的确定目标PUSCH的示意性流程图。图11和图12中所示的终端设备可以是如图1所示的终端设备,图11和图12中所示的网络设备可以是如图1所示的接入网设备。
如图11所示,以执行主体为终端设备为例,方法400包括以下部分或全部内容:
S410,终端设备确定至少一个PUCCH和多个PUSCH,该至少一个PUCCH与该多个PUSCH在时域上至少部分重叠。
S420,该终端设备在该多个PUSCH中确定满足约束条件的PUSCH。
S430,该终端设备在该满足约束条件的PUSCH中确定目标PUSCH。
S470,该终端设备使用该目标PUSCH传输该至少一个PUCCH中承载的上行控制信息。
相应的,以执行主体为网络设备为例,方法400包括以下部分或全部内容:
S440,确定至少一个PUCCH和多个PUSCH,该至少一个PUCCH与该多个PUSCH在时域上至少部分重叠。
S450,在该多个PUSCH中确定满足约束条件的PUSCH。
S460,在该满足约束条件的PUSCH中确定目标PUSCH。
S470,使用该目标PUSCH传输该至少一个PUCCH中承载的上行控制信息。
可选地,该目标PUSCH为该满足约束条件的PUSCH中最早的PUSCH。具体地,若一个PUCCH与多个PUSCH在时域上重叠,终端设备或网络设备选择该多个PUSCH中第一个满足约定条件的PUSCH承载该PUCCH中的内容。
可选地,该目标PUSCH为该满足约束条件的PUSCH中的任一PUSCH。
简而言之,终端设备或者网络设备先确定在时域上至少部分重叠的至少一个PUCCH和多个PUSCH,然后,在该多个PUSCH中确定满足约束条件的PUSCH,进一步地,在该满足约束条件的PUSCH中确定目标PUSCH。更进一步地,确定出目标PUSCH后,该终端设备使用该目标PUSCH传输该至少一个PUCCH中承载的上行控制信息,网络设备相应的接收该目标PUSCH;应理解,该约束条件为上文实施例中涉及的任一约束条件,为避免重复,此处不在赘述。
如图12所示,以执行主体为终端设备为例,方法400包括以下部分或全部内容:
S510,终端设备确定至少一个PUCCH和多个PUSCH,该至少一个PUCCH与该多个PUSCH在时域上至少部分重叠,且该至少一个PUCCH与该多个PUSCH满足约束条件。
S520,该终端设备在该多个PUSCH中确定目标PUSCH。
S550,该终端设备使用该目标PUSCH传输该至少一个PUCCH中承载的上行控制信息。
相应的,以执行主体为网络设备为例,方法400包括以下部分或全部内容:
S510,网络设备确定至少一个PUCCH和多个PUSCH,该至少一个PUCCH与该多个PUSCH在时域上至少部分重叠,且该至少一个PUCCH与该多个PUSCH满足约束条件。
S520,该网络设备在该多个PUSCH中确定目标PUSCH。
S550,该网络设备使用该目标PUSCH传输该至少一个PUCCH中承载的上行控制信息。
可选地,该目标PUSCH为该满足约束条件的PUSCH中最早的PUSCH。具体地,若一个PUCCH与多个PUSCH在时域上重叠,终端设备或者网络设备选择该多个PUSCH中第一个满足约定条件的PUSCH承载该PUCCH中的内容。
可选地,该目标PUSCH为该满足约束条件的PUSCH中的任一PUSCH。
简而言之,终端设备或者网络设备先确定在时域上至少部分重叠的至少一个PUCCH和多个PUSCH,且该至少一个PUCCH与该多个PUSCH满足约束条件;然后,在该满足约束条件的PUSCH 中确定目标PUSCH。确定出目标PUSCH后,该终端设备使用该目标PUSCH传输该至少一个PUCCH中承载的上行控制信息,网络设备相应的接收该目标PUSCH;应理解,该约束条件为上文实施例中涉及的任一约束条件,为避免重复,此处不在赘述。
图13是本发明实施例的该多个上行信道/信号包括至少一个PUCCH和多个PUSCH场景下,确定目标PUSCH的示意性框图。
如图13所示。终端设备接收到的DCI包括:DCI 2、DCI 3和DCI 4,其中,该DCI 2为用于调度PUSCH 2的DCI,且该多个上行信道/信号包括该PUSCH 2。该DCI 3为用于调度PUSCH 3的DCI,且该多个上行信道/信号包括该PUSCH 3。该DCI 4为用于于调度PDSCH的DCI,且该多个上行信道/信号包括承载该PDSCH对应的ACK/NACK信息的PUCCH。此外,该多个上行信道/信号包括PUSCH1(例如周期上行信道/信号)。
如图13所示,若A1、B1、A2、B2、A3以及B3均满足本发明实施例中涉及的约束条件,则将PUSCH 1确定为目标PUSCH。若A1和/或B1不满足该约束条件,且A2、B2、A3以及B3均满足本发明实施例中涉及的约束条件,则将PUSCH 2确定为目标PUSCH。若A1和/或B1不满足该约束条件,且A2和/或B2不满足该约束条件,且A3和/或B3均满足本发明实施例中涉及的约束条件,则将PUSCH 3确定为目标PUSCH。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文结合图1至图13,详细描述了本申请的方法实施例,下文结合图14至图17,详细描述本申请的装置实施例。
图14是本发明实施例的通信设备600的示意性框图。
具体地,如图14所示,该通信设备600可以包括:
确定单元610和通信单元620。其中,确定单元610用于执行通信设备600中的内部操作,通信单元620用于与外部设备和/或内部设备进行通信。
该通信设备600可以为图1所示的终端设备,用于执行本发明实施例中由终端设备执行的步骤。
在一个实施例中,该确定单元610,用于确定目标时间单元内传输的多个上行信道/信号,该多个上行信道/信号在时域上至少部分重叠;该通信单元620,该多个上行信道/信号满足约束条件时,该通信单元620用于将该多个上行信道/信号中承载的信息复用在该目标时间单元内的一个信道/信号中进行传输。其中,该约束条件包括:该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于目标信道/信号的起始时间之后或最后一个符号之后的第A个符号,该A为非负整数。
可选地,该约束条件还包括:该多个上行信道/信号中最早的上行信道/信号的起始时间不早于该目标信道/信号的最后一个符号之后第B个符号,该B为非负整数。
可选地,该多个上行信道/信号的每一个上行信道/信号为周期上行信道/信号。
可选地,该多个上行信道/信号包括至少一个用于承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;该目标信道/信号为该至少一个PUCCH对应的SPS-PDSCH中的最后一个SPS-PDSCH。
可选地,该多个上行信道/信号不包括用于承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;该目标信道/信号为在该目标时间单元之前发送的该多个上行信道/信号中的最后一个上行信道/信号。
可选地,该确定单元610确定该多个上行信道/信号不满足该约束条件时,该通信单元620具体用于:传输该至少一个PUCCH中的一个PUCCH。
可选地,该确定单元610确定该多个上行信道/信号不满足该约束条件时,该确定单元610还用于:确定该目标时间单元内待传输的多个上行信道/信号为错误情况;或,该确定单元610确定该多个上行信道/信号不满足该约束条件时,该通信单元620具体用于:传输该多个上行信道/信号中最早的一个上行信道/信号。
可选地,该上行信道/信号包括:
准持续调度PUSCH(Semi-Persistent PUSCH,SPS PUSCH);承载准持续调度物理下行共享信道(SPS-PDSCH)对应的确认/非确认(ACK/NACK)信息的物理上行控制信道(PUCCH);承载周期信道状态信息(Persistent Channel State Information,P-CSI)的物理上行控制信道(PUCCH);承载准持续性信道状态信息(Semi-Persistent Channel State Information,SPS-CSI)的物理上行控制信道(PUCCH);承载准持续性信道状态信息(SPS-CSI)的物理上行共享信道(PUSCH);以及承载调度请求(Scheduling Request,SR)的物理上行控制信道(PUCC H)。
可选地,该A=N2+1,其中,N2为物理上行共享信道PUSCH的准备时间。
可选地,该B=N1+1+d 1,2,其中,N1为物理下行共享信道PDSCH的处理时间,d 1,2的取值与PDSCH映射方式相关。
在另一个实施例中,该通信单元620用于接收到至少一个下行控制信息DCI;该确定单元610,用于确定目标时间单元内传输的多个上行信道/信号,该多个上行信道/信号在时域上至少部分重叠,该至少一个DCI用于指示该多个上行信道/信号中的至少一个上行信号/信号;该多个上行信道/信号满足约束条件时,该通信单元620还用于将该多个上行信道/信号中承载的信息复用在该目标时间单元内的一个信道/信号中进行传输。其中,该约束条件包括:
该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于承载该至少一个DCI的物理下行控制信道PDCCH中最后一个符号之后的第A个符号,该A为非负整数。
可选地,该多个上行信道/信号包括至少一个承载目标物理下行共享信道PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;其中,该约束条件还包括:该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于该至少一个目标PDSCH的最后一个符号之后第B个符号,该B为非负整数。
可选地,该至少一个DCI包括:
用于调度PUSCH的DCI,且该多个上行信道/信号包括该PUSCH;和/或,用于指示下行准持续DL SPS资源释放的DCI,且该多个上行信道/信号包括承载该指示DL SPS资源释放的DCI对应的ACK/NACK信息的PUCCH;和/或,用于调度物理下行共享信道PDSCH的DCI,且该多个上行信道/信号包括承载该PDSCH对应的ACK/NACK信息的PUCCH。
可选地,该上行信道/信号包括:
动态调度物理上行共享信道(PUSCH);准持续调度PUSCH(Semi-Persistent PUSCH,SPS PUSCH);承载准持续调度物理下行共享信道(SPS-PDSCH)对应的确认/非确认(ACK/NACK)信息的物理上行控制信道(PUCCH);承载周期信道状态信息(Persistent Channel State Information,P-CSI)的物理上行控制信道(PUCCH);承载准持续性信道状态信息(Semi-Persistent Channel State Information,SPS-CSI)的物理上行控制信道(PUCCH);承载准持续性信道状态信息(SPS-CSI)的物理上行共享信道(PUSCH);以及承载调度请求(Scheduling Request,SR)的物理上行控制信道(PUCC H)。
可选地,该A=N2+1,其中,N2为调度物理上行共享信道PUSCH的准备时间。
可选地,该B=N1+1+d 1,2,其中N1为PDSCH处理时间,d 1,2的取值与物理下行共享信道PDSCH映射方式相关。
在另一个实施例中,确定单元610用于:
确定至少一个物理上行控制信道PUCCH和多个物理上行共享信道PUSCH,该至少一个PUCCH与该多个PUSCH在时域上至少部分重叠;在该多个PUSCH中确定满足约束条件的PUSCH;在该满足约束条件的PUSCH中确定目标PUSCH;该通信单元620用于:使用该目标PUSCH传输该至少一个PUCCH中承载的上行控制信息。
其中,该约束条件为上述无线通信方法中的任一种约束条件。
可选地,该目标PUSCH为该满足约束条件的PUSCH中最早的PUSCH。
可选地,该目标PUSCH为该满足约束条件的PUSCH中的任一PUSCH。
在另一个实施例中,确定单元610用于:确定至少一个物理上行控制信道PUCCH和多个物理上行共享信道PUSCH,该至少一个PUCCH与该多个PUSCH在时域上至少部分重叠,且该至少一个PUCCH与该多个PUSCH满足约束条件;在该多个PUSCH中确定目标PUSCH;该通信单元620用于:使用该目标PUSCH传输该至少一个PUCCH中承载的上行控制信息;其中,该约束条件为上述无线通信方法中的任一种约束条件。
可选地,该目标PUSCH为该满足约束条件的PUSCH中最早的PUSCH。
可选地,该目标PUSCH为该满足约束条件的PUSCH中的任一PUSCH。
图14所示的通信设备600还可以是图1所示的网络设备,用于执行本发明实施例的由网络设备 执行的步骤。
在一个实施例中,该确定单元610,用于确定目标时间单元内传输的多个上行信道/信号,该多个上行信道/信号在时域上至少部分重叠;该通信单元620,该多个上行信道/信号满足约束条件时,该通信单元620用于接收该目标时间单元内的一个信道/信号,且该多个上行信道/信号中承载的信息复用在该一个信道/信号中进行传输。其中,该约束条件包括:该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于目标信道/信号的起始时间之后或最后一个符号之后的第A个符号,该A为非负整数。
可选地,该约束条件还包括:该多个上行信道/信号中最早的上行信道/信号的起始时间不早于该目标信道/信号的最后一个符号之后第B个符号,该B为非负整数。
可选地,该多个上行信道/信号的每一个上行信道/信号为周期上行信道/信号。
可选地,该多个上行信道/信号包括至少一个用于承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;该目标信道/信号为该至少一个PUCCH对应的SPS-PDSCH中的最后一个SPS-PDSCH。
可选地,该多个上行信道/信号不包括用于承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;该目标信道/信号为在该目标时间单元之前接收的该多个上行信道/信号中的最后一个上行信道/信号。
可选地,该确定单元610确定该多个上行信道/信号不满足该约束条件时,该通信单元620具体用于:接收该至少一个PUCCH中的一个PUCCH。
可选地,该确定单元610确定该多个上行信道/信号不满足该约束条件时,该确定单元610还用于:确定该目标时间单元内待传输的多个上行信道/信号为错误情况;或,该确定单元610确定该多个上行信道/信号不满足该约束条件时,该通信单元620具体用于:接收该多个上行信道/信号中最早的一个上行信道/信号。
可选地,该上行信道/信号包括:
准持续调度PUSCH(Semi-Persistent PUSCH,SPS PUSCH);承载准持续调度物理下行共享信道(SPS-PDSCH)对应的确认/非确认(ACK/NACK)信息的物理上行控制信道(PUCCH);承载周期信道状态信息(Persistent Channel State Information,P-CSI)的物理上行控制信道(PUCCH);承载准持续性信道状态信息(Semi-Persistent Channel State Information,SPS-CSI)的物理上行控制信道(PUCCH);承载准持续性信道状态信息(SPS-CSI)的物理上行共享信道(PUSCH);以及承载调度请求(Scheduling Request,SR)的物理上行控制信道(PUCC H)。
可选地,该A=N2+1,其中,N2为物理上行共享信道PUSCH的准备时间。
可选地,该B=N1+1+d 1,2,其中,N1为物理下行共享信道PDSCH的处理时间,d 1,2的取值与PDSCH映射方式相关。
在另一实施例中,通信单元620,用于向终端设备发送至少一个下行控制信息DCI;
确定单元610,用于确定目标时间单元内传输的多个上行信道/信号,该多个上行信道/信号在时域上至少部分重叠,该至少一个DCI用于指示该多个上行信道/信号中的至少一个上行信号/信号;该多个上行信道/信号满足约束条件时,该通信单元620还用于接收该目标时间单元内的一个信道/信号,且该多个上行信道/信号中承载的信息复用在该一个信道/信号中进行传输。其中,该约束条件包括:
该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于承载该至少一个DCI的物理下行控制信道PDCCH中最后一个符号之后的第A个符号,该A为非负整数。
可选地,该多个上行信道/信号包括至少一个承载目标物理下行共享信道PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH。其中,该约束条件还包括:该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于该至少一个目标PDSCH的最后一个符号之后第B个符号,该B为非负整数。
可选地,该至少一个DCI包括:
用于调度PUSCH的DCI,且该多个上行信道/信号包括该PUSCH;和/或,用于指示下行准持续DL SPS资源释放的DCI,且该多个上行信道/信号包括承载该指示DL SPS资源释放的DCI对应的ACK/NACK信息的PUCCH;和/或,用于调度物理下行共享信道PDSCH的DCI,且该多个上行信道/信号包括承载该PDSCH对应的ACK/NACK信息的PUCCH。
可选地,该上行信道/信号包括:
动态调度物理上行共享信道(PUSCH);准持续调度PUSCH(Semi-Persistent PUSCH,SPS PUSCH);承载准持续调度物理下行共享信道(SPS-PDSCH)对应的确认/非确认(ACK/NACK)信息的物理上行控制信道(PUCCH);承载周期信道状态信息(Persistent Channel State Information,P-CSI) 的物理上行控制信道(PUCCH);承载准持续性信道状态信息(Semi-Persistent Channel State Information,SPS-CSI)的物理上行控制信道(PUCCH);承载准持续性信道状态信息(SPS-CSI)的物理上行共享信道(PUSCH);以及承载调度请求(Scheduling Request,SR)的物理上行控制信道(PUCC H)。
可选地,该A=N2+1,其中,N2为调度物理上行共享信道PUSCH的准备时间。
可选地,该B=N1+1+d 1,2,其中N1为PDSCH处理时间,d 1,2的取值与物理下行共享信道PDSCH映射方式相关。
在另一个实施例中,确定单元610用于:确定至少一个物理上行控制信道PUCCH和多个物理上行共享信道PUSCH,该至少一个PUCCH与该多个PUSCH在时域上至少部分重叠;在该多个PUSCH中确定满足约束条件的PUSCH;在该满足约束条件的PUSCH中确定目标PUSCH;该通信单元620用于:接收该目标PUSCH,且该至少一个PUCCH中承载的上行控制信息复用在该目标PUSCH中进行传输。其中,该约束条件为上述无线通信方法中的任一种约束条件。
可选地,该目标PUSCH为该满足约束条件的PUSCH中最早的PUSCH。
可选地,该目标PUSCH为该满足约束条件的PUSCH中的任一PUSCH。
在另一个实施例中,确定单元610用于:确定至少一个物理上行控制信道PUCCH和多个物理上行共享信道PUSCH,该至少一个PUCCH与该多个PUSCH在时域上至少部分重叠,且该至少一个PUCCH与该多个PUSCH满足约束条件;在该多个PUSCH中确定目标PUSCH;该通信单元620用于:接收该目标PUSCH,且该至少一个PUCCH中承载的上行控制信息复用在该目标PUSCH中进行传输。其中,该约束条件为上述无线通信方法中的任一种约束条件。
可选地,该目标PUSCH为该满足约束条件的PUSCH中最早的PUSCH。
可选地,该目标PUSCH为该满足约束条件的PUSCH中的任一PUSCH。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图14所示的通信设备600可以对应于执行本申请实施例的方法200或者方法300或者方法400中的相应主体,并且通信设备600中的各个单元的前述和其它操作和/或功能分别为了实现本发明实施例中的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合图14从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。
具体地,本发明实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本发明实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。
可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,本发明实施例中,图14所示的确定单元610可以由处理器实现,图14所示的通信单元620可由收发器实现。
图15是本申请实施例的通信设备700示意性结构图。图7所示的通信设备700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,通信设备700还可以包括存储器720。该存储器720可以用于存储指示信息,还可以用于存储处理器710执行的代码、指令等。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,如图7所示,通信设备700还可以包括收发器730,处理器710可以控制该收发器730与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器730可以包括发射机和接收机。收发器730还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备700可为本申请实施例的网络设备,并且该通信设备700可以实现本申请实施例的各个方法中由网络设备实现的相应流程。
可选地,该通信设备700可为本申请实施例的终端设备,并且该通信设备700可以实现本申请实施例的各个方法中由终端设备实现的相应流程。
也就是说,本申请实施例的通信设备700可对应于本申请实施例中的通信设备600,并可以对应于执行根据本申请实施例的方法200或者方法300或者方法400中的相应主体,为了简洁,在此不再赘述。
应当理解,该通信设备700中的各个组件通过总线***相连,其中,总线***除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
此外,本发明实施例中还提供了一种芯片,该芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。
可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本发明实施例中的公开的各方法、步骤及逻辑框图。
图16是根据本申请实施例的芯片的示意性结构图。图16所示的芯片800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图16所示,芯片800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器620可以用于存储指示信息,还可以用于存储处理器610执行的代码、指令等。其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,该芯片800还可以包括输入接口830。其中,处理器810可以控制该输入接口830与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片800还可以包括输出接口840。其中,处理器810可以控制该输出接口840与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。还应理解,该芯片800中的各个组件通过总线***相连,其中,总线***除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
本发明实施例中提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等等。此外,通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
此外,本发明实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。
应理解,上述存储器为示例性但不是限制性说明,例如,本发明实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图17是根据本申请实施例的通信***900的示意性框图。如图9所示,该通信***900包括终端设备910和网络设备920。
在一个实施例中,该终端设备910用于:确定目标时间单元内传输的多个上行信道/信号;该多个上行信道/信号满足约束条件时,将该多个上行信道/信号中承载的信息复用在该目标时间单元内的一个信道/信号中进行传输,该多个上行信道/信号在时域上至少部分重叠;该网络设备920用于:确定该多个上行信道/信号;该多个上行信道/信号满足约束条件时,接收该目标时间单元内的一个信道/信号。其中,该约束条件包括:该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于目标信道/信号的起始时间之后或最后一个符号之后的第A个符号,该A为非负整数。
在另一个实施例中,该终端设备910用于:接收到至少一个下行控制信息DCI;确定目标时间单元内传输的多个上行信道/信号,该多个上行信道/信号在时域上至少部分重叠,该至少一个DCI用于指示该多个上行信道/信号中的至少一个上行信号/信号;该多个上行信道/信号满足约束条件时,将该多个上行信道/信号中承载的信息复用在该目标时间单元内的一个信道/信号中进行传输;该网络设备920用于:向终端设备910发送该至少一个DCI;确定该多个上行信道/信号;该多个上行信道/信号 满足该约束条件时,接收该目标时间单元内的一个信道/信号;其中,该约束条件包括:该多个上行信道/信号中最早的上行信道/信号的第一个符号不早于承载该至少一个DCI的物理下行控制信道PDCCH中最后一个符号之后的第A个符号,该A为非负整数。
在另一个实施例中,该终端设备910用于:确定至少一个物理上行控制信道PUCCH和多个物理上行共享信道PUSCH,该至少一个PUCCH与该多个PUSCH在时域上至少部分重叠;在该多个PUSCH中确定满足约束条件的PUSCH;在该满足约束条件的PUSCH中确定目标PUSCH;使用该目标PUSCH传输该至少一个PUCCH中承载的上行控制信息;其中,该约束条件为上述涉及的任一种约束条件;该网络设备920用于:确定该至少一个PUCCH和该多个PUSCH,该至少一个PUCCH与该多个PUSCH在时域上至少部分重叠;在该多个PUSCH中确定满足约束条件的PUSCH;在该满足约束条件的PUSCH中确定目标PUSCH;接收该目标PUSCH。
在另一个实施例中,该终端设备910用于:确定至少一个物理上行控制信道PUCCH和多个物理上行共享信道PUSCH,该至少一个PUCCH与该多个PUSCH在时域上至少部分重叠,且该至少一个PUCCH与该多个PUSCH满足约束条件;在该多个PUSCH中确定目标PUSCH;使用该目标PUSCH传输该至少一个PUCCH中承载的上行控制信息;其中,该约束条件为上述涉及的任一种约束条件;该网络设备920用于:确定该至少一个PUCCH和该多个PUSCH;在该多个PUSCH中确定目标PUSCH;接收该目标PUSCH。
其中,该终端设备910可以用于实现上述方法200至400中由终端设备实现的相应的功能,以及该终端设备910的可以组成如图14所示的通信设备600或者如图15所示的哦通信设备700,为了简洁,在此不再赘述。
该网络设备920可以用于实现上述方法xx至xx中由网络设备实现的相应的功能,以及该网络设备920的可以组成如图14所示的通信设备600或者如图15所示的哦通信设备700,为了简洁,在此不再赘述。
需要说明的是,本文中的术语“***”等也可以称为“网络管理架构”或者“网络***”等。
还应当理解,在本发明实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明实施例。
例如,在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的范围。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。
例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个***,或一些单元或模块或组件可以忽略,或不执行。
又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本发明实施例的目的。
最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本发明实施例的具体实施方式,但本发明实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明实施例的保护范围之内。因此,本发明实施例的保护范围应以权利要求的保护范围为准。

Claims (72)

  1. 一种无线通信方法,其特征在于,包括:
    终端设备确定目标时间单元内传输的多个上行信道/信号,所述多个上行信道/信号在时域上至少部分重叠;
    所述多个上行信道/信号满足约束条件时,所述终端设备将所述多个上行信道/信号中承载的信息复用在所述目标时间单元内的一个信道/信号中进行传输;
    其中,所述约束条件包括:
    所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于目标信道/信号的起始时间之后或最后一个符号之后的第A个符号,所述A为非负整数。
  2. 根据权利要求1所述的方法,其特征在于,
    所述约束条件还包括:
    所述多个上行信道/信号中最早的上行信道/信号的起始时间不早于所述目标信道/信号的最后一个符号之后第B个符号,所述B为非负整数。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述多个上行信道/信号的每一个上行信道/信号为周期上行信道/信号。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,
    所述多个上行信道/信号包括至少一个用于承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
    所述目标信道/信号为所述至少一个PUCCH对应的SPS-PDSCH中的最后一个SPS-PDSCH。
  5. 根据权利要求1至3中任一项所述的方法,其特征在于,
    所述多个上行信道/信号不包括用于承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
    所述目标信道/信号为在所述目标时间单元之前发送的所述多个上行信道/信号中的最后一个上行信道/信号。
  6. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定所述多个上行信道/信号不满足所述约束条件时,传输所述至少一个PUCCH中的一个PUCCH。
  7. 根据权利要求4或5所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定所述多个上行信道/信号不满足所述约束条件时,确定所述目标时间单元内待传输的多个上行信道/信号为错误情况;或,
    所述终端设备确定所述多个上行信道/信号不满足所述约束条件时,传输所述多个上行信道/信号中最早的一个上行信道/信号。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述上行信道/信号包括:
    准持续调度物理上行共享信道SPS-PUSCH;
    承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
    承载周期信道状态信息P-CSI的物理上行控制信道PUCCH;
    承载准持续性信道状态信息SPS-CSI的物理上行控制信道PUCCH;
    承载准持续性信道状态信息SPS-CSI的物理上行共享信道PUSCH;以及
    承载调度请求SR的物理上行控制信道PUCCH。
  9. 根据权利要求1至8中任一项所述方法,其特征在于,所述A=N2+1,其中,N2为物理上行共享信道PUSCH的准备时间。
  10. 根据权利要求2至9中任一项所述方法,其特征在于,所述B=N1+1+d 1,2,其中,N1为物理下行共享信道PDSCH的处理时间,d 1,2的取值与PDSCH映射方式相关。
  11. 一种无线通信方法,其特征在于,包括:
    网络设备确定目标时间单元内传输的多个上行信道/信号,所述多个上行信道/信号在时域上至少部分重叠;
    所述多个上行信道/信号满足约束条件时,所述网络设备接收所述目标时间单元内的一个信道/信号,且所述多个上行信道/信号中承载的信息复用在所述一个信道/信号中进行传输;
    其中,所述约束条件包括:
    所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于目标信道/信号的起始时间 之后或最后一个符号之后的第A个符号,所述A为非负整数。
  12. 根据权利要求11所述的方法,其特征在于,
    所述约束条件还包括:
    所述多个上行信道/信号中最早的上行信道/信号的起始时间不早于所述目标信道/信号的最后一个符号之后第B个符号,所述B为非负整数。
  13. 根据权利要求11或12所述的方法,其特征在于,
    所述多个上行信道/信号的每一个上行信道/信号为周期上行信道/信号。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,
    所述多个上行信道/信号包括至少一个用于承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
    所述目标信道/信号为所述至少一个PUCCH对应的SPS-PDSCH中的最后一个SPS-PDSCH。
  15. 根据权利要求11至13中任一项所述的方法,其特征在于,
    所述多个上行信道/信号不包括用于承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
    所述目标信道/信号为在所述目标时间单元之前接收的所述多个上行信道/信号中的最后一个上行信道/信号。
  16. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定所述多个上行信道/信号不满足所述约束条件时,接收所述至少一个PUCCH中的一个PUCCH。
  17. 根据权利要求14或15所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定所述多个上行信道/信号不满足所述约束条件时,确定所述目标时间单元内待传输的多个上行信道/信号为错误情况;或,
    所述网络设备确定所述多个上行信道/信号不满足所述约束条件时,接收所述多个上行信道/信号中最早的一个上行信道/信号。
  18. 根据权利要求11至17中任一项所述的方法,其特征在于,所述上行信道/信号包括:
    准持续调度物理上行共享信道SPS-PUSCH;
    承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
    承载周期信道状态信息P-CSI的物理上行控制信道PUCCH;
    承载准持续性信道状态信息SPS-CSI的物理上行控制信道PUCCH;
    承载准持续性信道状态信息SPS-CSI的物理上行共享信道PUSCH;以及
    承载调度请求SR的物理上行控制信道PUCCH。
  19. 根据权利要求11至18中任一项所述方法,其特征在于,所述A=N2+1,其中,N2为物理上行共享信道PUSCH的准备时间。
  20. 根据权利要求12至19中任一项所述方法,其特征在于,所述B=N1+1+d 1,2,其中,N1为物理下行共享信道PDSCH的处理时间,d 1,2的取值与PDSCH映射方式相关。
  21. 一种通信设备,其特征在于,包括:
    确定单元,用于确定目标时间单元内传输的多个上行信道/信号,所述多个上行信道/信号在时域上至少部分重叠;
    通信单元,所述多个上行信道/信号满足约束条件时,所述通信单元用于将所述多个上行信道/信号中承载的信息复用在所述目标时间单元内的一个信道/信号中进行传输;
    其中,所述约束条件包括:
    所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于目标信道/信号的起始时间之后或最后一个符号之后的第A个符号,所述A为非负整数。
  22. 根据权利要求21所述的通信设备,其特征在于,
    所述约束条件还包括:
    所述多个上行信道/信号中最早的上行信道/信号的起始时间不早于所述目标信道/信号的最后一个符号之后第B个符号,所述B为非负整数。
  23. 根据权利要求21或22所述的通信设备,其特征在于,
    所述多个上行信道/信号的每一个上行信道/信号为周期上行信道/信号。
  24. 根据权利要求21至23中任一项所述的通信设备,其特征在于,
    所述多个上行信道/信号包括至少一个用于承载准持续调度物理下行共享信道SPS-PDSCH对应 的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
    所述目标信道/信号为所述至少一个PUCCH对应的SPS-PDSCH中的最后一个SPS-PDSCH。
  25. 根据权利要求21至23中任一项所述的通信设备,其特征在于,
    所述多个上行信道/信号不包括用于承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
    所述目标信道/信号为在所述目标时间单元之前发送的所述多个上行信道/信号中的最后一个上行信道/信号。
  26. 根据权利要求24所述的通信设备,其特征在于,所述确定单元确定所述多个上行信道/信号不满足所述约束条件时,所述通信单元具体用于:传输所述至少一个PUCCH中的一个PUCCH。
  27. 根据权利要求24或25所述的通信设备,其特征在于,所述确定单元确定所述多个上行信道/信号不满足所述约束条件时,所述确定单元还用于:确定所述目标时间单元内待传输的多个上行信道/信号为错误情况;或,
    所述确定单元确定所述多个上行信道/信号不满足所述约束条件时,所述通信单元具体用于:传输所述多个上行信道/信号中最早的一个上行信道/信号。
  28. 根据权利要求21至27中任一项所述的通信设备,其特征在于,所述上行信道/信号包括:
    准持续调度物理上行共享信道SPS-PUSCH;
    承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
    承载周期信道状态信息P-CSI的物理上行控制信道PUCCH;
    承载准持续性信道状态信息SPS-CSI的物理上行控制信道PUCCH;
    承载准持续性信道状态信息SPS-CSI的物理上行共享信道PUSCH;以及
    承载调度请求SR的物理上行控制信道PUCCH。
  29. 根据权利要求21至28中任一项所述通信设备,其特征在于,所述A=N2+1,其中,N2为物理上行共享信道PUSCH的准备时间。
  30. 根据权利要求22至29中任一项所述通信设备,其特征在于,所述B=N1+1+d 1,2,其中,N1为物理下行共享信道PDSCH的处理时间,d 1,2的取值与PDSCH映射方式相关。
  31. 一种通信设备,其特征在于,包括:
    确定单元,用于确定目标时间单元内传输的多个上行信道/信号,所述多个上行信道/信号在时域上至少部分重叠;
    通信单元,所述多个上行信道/信号满足约束条件时,所述通信单元用于接收所述目标时间单元内的一个信道/信号,且所述多个上行信道/信号中承载的信息复用在所述一个信道/信号中进行传输;
    其中,所述约束条件包括:
    所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于目标信道/信号的起始时间之后或最后一个符号之后的第A个符号,所述A为非负整数。
  32. 根据权利要求31所述的通信设备,其特征在于,
    所述约束条件还包括:
    所述多个上行信道/信号中最早的上行信道/信号的起始时间不早于所述目标信道/信号的最后一个符号之后第B个符号,所述B为非负整数。
  33. 根据权利要求31或32所述的通信设备,其特征在于,
    所述多个上行信道/信号的每一个上行信道/信号为周期上行信道/信号。
  34. 根据权利要求31至33中任一项所述的通信设备,其特征在于,
    所述多个上行信道/信号包括至少一个用于承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
    所述目标信道/信号为所述至少一个PUCCH对应的SPS-PDSCH中的最后一个SPS-PDSCH。
  35. 根据权利要求31至33中任一项所述的通信设备,其特征在于,
    所述多个上行信道/信号不包括用于承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
    所述目标信道/信号为在所述目标时间单元之前接收的所述多个上行信道/信号中的最后一个上行信道/信号。
  36. 根据权利要求34所述的通信设备,其特征在于,所述确定单元确定所述多个上行信道/信号不满足所述约束条件时,所述通信单元具体用于:接收所述至少一个PUCCH中的一个PUCCH。
  37. 根据权利要求34或35所述的通信设备,其特征在于,所述确定单元确定所述多个上行信道 /信号不满足所述约束条件时,所述确定单元还用于:确定所述目标时间单元内待传输的多个上行信道/信号为错误情况;或,
    所述确定单元确定所述多个上行信道/信号不满足所述约束条件时,所述通信单元具体用于:接收所述多个上行信道/信号中最早的一个上行信道/信号。
  38. 根据权利要求31至37中任一项所述的通信设备,其特征在于,所述上行信道/信号包括:
    准持续调度物理上行共享信道SPS-PUSCH;
    承载准持续调度物理下行共享信道SPS-PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
    承载周期信道状态信息P-CSI的物理上行控制信道PUCCH;
    承载准持续性信道状态信息SPS-CSI的物理上行控制信道PUCCH;
    承载准持续性信道状态信息SPS-CSI的物理上行共享信道PUSCH;以及
    承载调度请求SR的物理上行控制信道PUCCH。
  39. 根据权利要求31至38中任一项所述通信设备,其特征在于,所述A=N2+1,其中,N2为物理上行共享信道PUSCH的准备时间。
  40. 根据权利要求32至39中任一项所述通信设备,其特征在于,所述B=N1+1+d 1,2,其中,N1为物理下行共享信道PDSCH的处理时间,d 1,2的取值与PDSCH映射方式相关。
  41. 一种通信设备,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,所述计算机程序包括:用于执行权利要求1至20中任一项所述的方法的指令。
  42. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,所述计算机程序包括:用于执行权利要求1至20中任一项所述的方法的指令。
  43. 一种存储介质,其特征在于,所述存储介质用于存储计算机程序,所述计算机程序包括:用于执行权利要求1至20中任一项所述的方法的指令。
  44. 一种通信***,其特征在于,包括:
    终端设备和网络设备;
    所述终端设备用于:
    确定目标时间单元内传输的多个上行信道/信号;
    所述多个上行信道/信号满足约束条件时,将所述多个上行信道/信号中承载的信息复用在所述目标时间单元内的一个信道/信号中进行传输,所述多个上行信道/信号在时域上至少部分重叠;
    所述网络设备用于:
    确定所述多个上行信道/信号;
    所述多个上行信道/信号满足约束条件时,接收所述目标时间单元内的一个信道/信号;
    其中,所述约束条件包括:
    所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于目标信道/信号的起始时间之后或最后一个符号之后的第A个符号,所述A为非负整数。
  45. 一种无线通信方法,其特征在于,包括:
    终端设备接收到至少一个下行控制信息DCI;
    所述终端设备确定目标时间单元内传输的多个上行信道/信号,所述多个上行信道/信号在时域上至少部分重叠,所述至少一个DCI用于指示所述多个上行信道/信号中的至少一个上行信号/信号;
    所述多个上行信道/信号满足约束条件时,所述终端设备将所述多个上行信道/信号中承载的信息复用在所述目标时间单元内的一个信道/信号中进行传输;
    其中,所述约束条件包括:
    所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于承载所述至少一个DCI的物理下行控制信道PDCCH中最后一个符号之后的第A个符号,所述A为非负整数。
  46. 根据权利要求45所述的方法,其特征在于,
    所述多个上行信道/信号包括至少一个承载目标物理下行共享信道PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
    其中,所述约束条件还包括:
    所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于所述至少一个目标PDSCH的最后一个符号之后第B个符号,所述B为非负整数。
  47. 根据权利要求45或46所述的方法,其特征在于,所述至少一个DCI包括:
    用于调度物理上行共享信道PUSCH的DCI,且所述多个上行信道/信号包括所述PUSCH;和/或,
    用于指示下行准持续DL SPS资源释放的DCI,且所述多个上行信道/信号包括承载所述指示DL SPS资源释放的DCI对应的ACK/NACK信息的PUCCH;和/或,
    用于调度物理下行共享信道PDSCH的DCI,且所述多个上行信道/信号包括承载所述PDSCH对应的ACK/NACK信息的PUCCH。
  48. 根据权利要求45至47中任一项所述的方法,其特征在于,所述上行信道/信号包括:
    动态调度物理上行共享信道PUSCH;
    准持续调度物理上行共享信道SPS-PUSCH;
    承载确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
    承载周期信道状态信息P-CSI的物理上行控制信道PUCCH;
    承载准持续性信道状态信息SPS-CSI的物理上行控制信道PUCCH;
    承载准持续性信道状态信息SPS-CSI的物理上行共享信道PUSCH;以及
    承载调度请求SR的物理上行控制信道PUCCH。
  49. 根据权利要求45至48中任一项所述方法,其特征在于,所述A=N2+1,其中,N2为调度物理上行共享信道PUSCH的准备时间。
  50. 根据权利要求46至49中任一项所述方法,其特征在于,所述B=N1+1+d 1,2,其中N1为PDSCH处理时间,d 1,2的取值与物理下行共享信道PDSCH映射方式相关。
  51. 一种无线通信方法,其特征在于,包括:
    网络设备向终端设备发送至少一个下行控制信息DCI;
    所述网络设备确定目标时间单元内传输的多个上行信道/信号,所述多个上行信道/信号在时域上至少部分重叠,所述至少一个DCI用于指示所述多个上行信道/信号中的至少一个上行信号/信号;
    所述多个上行信道/信号满足约束条件时,所述网络设备接收所述目标时间单元内的一个信道/信号,且所述多个上行信道/信号中承载的信息复用在所述一个信道/信号中进行传输;
    其中,所述约束条件包括:
    所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于承载所述至少一个DCI的物理下行控制信道PDCCH中最后一个符号之后的第A个符号,所述A为非负整数。
  52. 根据权利要求51所述的方法,其特征在于,
    所述多个上行信道/信号包括至少一个承载目标物理下行共享信道PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
    其中,所述约束条件还包括:
    所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于所述至少一个目标PDSCH的最后一个符号之后第B个符号,所述B为非负整数。
  53. 根据权利要求51或52所述的方法,其特征在于,所述至少一个DCI包括:
    用于调度物理上行共享信道PUSCH的DCI,且所述多个上行信道/信号包括所述PUSCH;和/或,
    用于指示下行准持续DL SPS资源释放的DCI,且所述多个上行信道/信号包括承载所述指示DL SPS资源释放的DCI对应的ACK/NACK信息的PUCCH;和/或,
    用于调度物理下行共享信道PDSCH的DCI,且所述多个上行信道/信号包括承载所述PDSCH对应的ACK/NACK信息的PUCCH。
  54. 根据权利要求51至53中任一项所述的方法,其特征在于,所述上行信道/信号包括:
    动态调度物理上行共享信道PUSCH;
    准持续调度物理上行共享信道SPS-PUSCH;
    承载确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
    承载周期信道状态信息P-CSI的物理上行控制信道PUCCH;
    承载准持续性信道状态信息SPS-CSI的物理上行控制信道PUCCH;
    承载准持续性信道状态信息SPS-CSI的物理上行共享信道PUSCH;以及
    承载调度请求SR的物理上行控制信道PUCCH。
  55. 根据权利要求51至54中任一项所述方法,其特征在于,所述A=N2+1,其中,N2为调度物理上行共享信道PUSCH的准备时间。
  56. 根据权利要求52至55中任一项所述方法,其特征在于,所述B=N1+1+d 1,2,其中N1为PDSCH处理时间,d 1,2的取值与物理下行共享信道PDSCH映射方式相关。
  57. 一种通信设备,其特征在于,包括:
    通信单元,所述通信单元用于接收到至少一个下行控制信息DCI;
    确定单元,用于确定目标时间单元内传输的多个上行信道/信号,所述多个上行信道/信号在时域上至少部分重叠,所述至少一个DCI用于指示所述多个上行信道/信号中的至少一个上行信号/信号;
    所述多个上行信道/信号满足约束条件时,所述通信单元还用于将所述多个上行信道/信号中承载的信息复用在所述目标时间单元内的一个信道/信号中进行传输;
    其中,所述约束条件包括:
    所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于承载所述至少一个DCI的物理下行控制信道PDCCH中最后一个符号之后的第A个符号,所述A为非负整数。
  58. 根据权利要求57所述的通信设备,其特征在于,
    所述多个上行信道/信号包括至少一个承载目标物理下行共享信道PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
    其中,所述约束条件还包括:
    所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于所述至少一个目标PDSCH的最后一个符号之后第B个符号,所述B为非负整数。
  59. 根据权利要求57或58所述的通信设备,其特征在于,所述至少一个DCI包括:
    用于调度物理上行共享信道PUSCH的DCI,且所述多个上行信道/信号包括所述PUSCH;和/或,
    用于指示下行准持续DL SPS资源释放的DCI,且所述多个上行信道/信号包括承载所述指示DL SPS资源释放的DCI对应的ACK/NACK信息的PUCCH;和/或,
    用于调度物理下行共享信道PDSCH的DCI,且所述多个上行信道/信号包括承载所述PDSCH对应的ACK/NACK信息的PUCCH。
  60. 根据权利要求57至59中任一项所述的通信设备,其特征在于,所述上行信道/信号包括:
    动态调度物理上行共享信道PUSCH;
    准持续调度物理上行共享信道SPS-PUSCH;
    承载确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
    承载周期信道状态信息P-CSI的物理上行控制信道PUCCH;
    承载准持续性信道状态信息SPS-CSI的物理上行控制信道PUCCH;
    承载准持续性信道状态信息SPS-CSI的物理上行共享信道PUSCH;以及
    承载调度请求SR的物理上行控制信道PUCCH。
  61. 根据权利要求57至60中任一项所述通信设备,其特征在于,所述A=N2+1,其中,N2为调度物理上行共享信道PUSCH的准备时间。
  62. 根据权利要求58至61中任一项所述通信设备,其特征在于,所述B=N1+1+d 1,2,其中N1为PDSCH处理时间,d 1,2的取值与物理下行共享信道PDSCH映射方式相关。
  63. 一种通信设备,其特征在于,包括:
    通信单元,用于向终端设备发送至少一个下行控制信息DCI;
    确定单元,用于确定目标时间单元内传输的多个上行信道/信号,所述多个上行信道/信号在时域上至少部分重叠,所述至少一个DCI用于指示所述多个上行信道/信号中的至少一个上行信号/信号;
    所述多个上行信道/信号满足约束条件时,所述通信单元还用于接收所述目标时间单元内的一个信道/信号,且所述多个上行信道/信号中承载的信息复用在所述一个信道/信号中进行传输;
    其中,所述约束条件包括:
    所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于承载所述至少一个DCI的物理下行控制信道PDCCH中最后一个符号之后的第A个符号,所述A为非负整数。
  64. 根据权利要求63所述的通信设备,其特征在于,
    所述多个上行信道/信号包括至少一个承载目标物理下行共享信道PDSCH对应的确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
    其中,所述约束条件还包括:
    所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于所述至少一个目标PDSCH的最后一个符号之后第B个符号,所述B为非负整数。
  65. 根据权利要求63或64所述的通信设备,其特征在于,所述至少一个DCI包括:
    用于调度物理上行共享信道PUSCH的DCI,且所述多个上行信道/信号包括所述PUSCH;和/或,
    用于指示下行准持续DL SPS资源释放的DCI,且所述多个上行信道/信号包括承载所述指示DL SPS资源释放的DCI对应的ACK/NACK信息的PUCCH;和/或,
    用于调度物理下行共享信道PDSCH的DCI,且所述多个上行信道/信号包括承载所述PDSCH对应的ACK/NACK信息的PUCCH。
  66. 根据权利要求63至65中任一项所述的通信设备,其特征在于,所述上行信道/信号包括:
    动态调度物理上行共享信道PUSCH;
    准持续调度物理上行共享信道SPS-PUSCH;
    承载确认/非确认ACK/NACK信息的物理上行控制信道PUCCH;
    承载周期信道状态信息P-CSI的物理上行控制信道PUCCH;
    承载准持续性信道状态信息SPS-CSI的物理上行控制信道PUCCH;
    承载准持续性信道状态信息SPS-CSI的物理上行共享信道PUSCH;以及
    承载调度请求SR的物理上行控制信道PUCCH。
  67. 根据权利要求63至66中任一项所述通信设备,其特征在于,所述A=N2+1,其中,N2为调度物理上行共享信道PUSCH的准备时间。
  68. 根据权利要求64至67中任一项所述通信设备,其特征在于,所述B=N1+1+d 1,2,其中N1为PDSCH处理时间,d 1,2的取值与物理下行共享信道PDSCH映射方式相关。
  69. 一种通信设备,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,所述计算机程序包括:用于执行权利要求45至56中任一项所述的方法的指令。
  70. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,所述计算机程序包括:用于执行权利要求45至56中任一项所述的方法的指令。
  71. 一种存储介质,其特征在于,所述存储介质用于存储计算机程序,所述计算机程序包括:用于执行权利要求1至20中任一项所述的方法的指令。
  72. 一种通信***,其特征在于,包括:
    终端设备和网络设备;
    所述终端设备用于:
    接收到至少一个下行控制信息DCI;
    确定目标时间单元内传输的多个上行信道/信号,所述多个上行信道/信号在时域上至少部分重叠,所述至少一个DCI用于指示所述多个上行信道/信号中的至少一个上行信号/信号;
    所述多个上行信道/信号满足约束条件时,将所述多个上行信道/信号中承载的信息复用在所述目标时间单元内的一个信道/信号中进行传输;
    所述网络设备用于:
    向终端设备发送所述至少一个DCI;
    确定所述多个上行信道/信号;
    所述多个上行信道/信号满足所述约束条件时,接收所述目标时间单元内的一个信道/信号;
    其中,所述约束条件包括:
    所述多个上行信道/信号中最早的上行信道/信号的第一个符号不早于承载所述至少一个DCI的物理下行控制信道PDCCH中最后一个符号之后的第A个符号,所述A为非负整数。
PCT/CN2018/086059 2018-05-08 2018-05-08 无线通信方法、通信设备、芯片和*** WO2019213845A1 (zh)

Priority Applications (17)

Application Number Priority Date Filing Date Title
CN202211699681.6A CN115968040A (zh) 2018-05-08 2018-05-08 无线通信方法、通信设备、芯片和***
CA3096345A CA3096345C (en) 2018-05-08 2018-05-08 Wireless communication method and device, chip, and system
EP18918115.9A EP3768012B1 (en) 2018-05-08 2018-05-08 Wireless communication method and device, chip, and system
BR112020020498-6A BR112020020498A2 (pt) 2018-05-08 2018-05-08 Método de comunicação sem fio e dispositivo de comunicações
RU2020133862A RU2764291C1 (ru) 2018-05-08 2018-05-08 Система, микросхема, устройство и способ беспроводной связи
CN202010495256.XA CN111757523B (zh) 2018-05-08 2018-05-08 无线通信方法及通信设备
MX2020011216A MX2020011216A (es) 2018-05-08 2018-05-08 Metodo y dispositivo de comunicacion inalambrica, chip y sistema.
AU2018422444A AU2018422444A1 (en) 2018-05-08 2018-05-08 Wireless communication method and device, chip, and system
JP2020553594A JP7141467B2 (ja) 2018-05-08 2018-05-08 無線通信方法、通信デバイス、チップ及びシステム
PCT/CN2018/086059 WO2019213845A1 (zh) 2018-05-08 2018-05-08 无线通信方法、通信设备、芯片和***
CN201880065438.4A CN111615855A (zh) 2018-05-08 2018-05-08 无线通信方法、通信设备、芯片和***
EP22202685.8A EP4142405A1 (en) 2018-05-08 2018-05-08 Wireless communication method and device, chip, and system
SG11202009880QA SG11202009880QA (en) 2018-05-08 2018-05-08 Wireless communication method and device, chip, and system
KR1020207028061A KR20210004965A (ko) 2018-05-08 2018-05-08 무선 통신 방법, 통신 디바이스, 칩 및 시스템
ES18918115T ES2935351T3 (es) 2018-05-08 2018-05-08 Método y dispositivo de comunicación inalámbrica, chip y sistema
US17/013,746 US11051302B2 (en) 2018-05-08 2020-09-07 Wireless communication method and device, chip, and system
US17/338,659 US11765702B2 (en) 2018-05-08 2021-06-03 Wireless communication method and device, chip, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086059 WO2019213845A1 (zh) 2018-05-08 2018-05-08 无线通信方法、通信设备、芯片和***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/013,746 Continuation US11051302B2 (en) 2018-05-08 2020-09-07 Wireless communication method and device, chip, and system

Publications (1)

Publication Number Publication Date
WO2019213845A1 true WO2019213845A1 (zh) 2019-11-14

Family

ID=68467269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086059 WO2019213845A1 (zh) 2018-05-08 2018-05-08 无线通信方法、通信设备、芯片和***

Country Status (13)

Country Link
US (2) US11051302B2 (zh)
EP (2) EP4142405A1 (zh)
JP (1) JP7141467B2 (zh)
KR (1) KR20210004965A (zh)
CN (3) CN111757523B (zh)
AU (1) AU2018422444A1 (zh)
BR (1) BR112020020498A2 (zh)
CA (1) CA3096345C (zh)
ES (1) ES2935351T3 (zh)
MX (1) MX2020011216A (zh)
RU (1) RU2764291C1 (zh)
SG (1) SG11202009880QA (zh)
WO (1) WO2019213845A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11051302B2 (en) 2018-05-08 2021-06-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device, chip, and system
US20220046672A1 (en) * 2018-12-14 2022-02-10 Nec Corporation Method, device and computer readable medium for multi-trp transmission
WO2022156431A1 (zh) * 2021-01-19 2022-07-28 华为技术有限公司 一种上行控制信息的传输方法及装置
EP4150997A4 (en) * 2020-05-15 2024-05-08 Qualcomm Incorporated DOWNLINK AND UPLINK CONTROL INFORMATION FOR PLANNING MULTIPLE COMPONENT CARRIER

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110808819B (zh) * 2018-08-06 2021-03-30 华为技术有限公司 信息传输的方法和装置
CN117044137A (zh) * 2021-01-05 2023-11-10 欧芬诺有限责任公司 控制信道重复中的处理时间
CN114826509B (zh) * 2021-01-18 2024-05-10 大唐移动通信设备有限公司 上行传输方法、装置及处理器可读存储介质
CN115701189A (zh) * 2021-07-30 2023-02-07 维沃移动通信有限公司 上行传输方法、装置及终端
CN118104165A (zh) * 2021-12-31 2024-05-28 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN116782406A (zh) * 2022-03-08 2023-09-19 维沃移动通信有限公司 上行对象发送方法、装置、通信设备、***及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220070A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 一种上行信号的发送方法及用户设备
CN106900071A (zh) * 2010-05-04 2017-06-27 三星电子株式会社 上行链路控制信息发送及接收方法、终端和基站
CN107889230A (zh) * 2016-09-29 2018-04-06 中兴通讯股份有限公司 信号发送、接收发送及装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130007614A (ko) * 2010-03-22 2013-01-18 삼성전자주식회사 물리적 데이터 채널에서 사용자 기기로부터의 제어 및 데이터 정보의 다중화
US9281930B2 (en) * 2011-05-02 2016-03-08 Lg Electronics Inc. Method for transmitting/receiving data in wireless access system and base station for same
WO2016047994A1 (ko) 2014-09-24 2016-03-31 엘지전자(주) 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2016082113A1 (zh) 2014-11-26 2016-06-02 宇龙计算机通信科技(深圳)有限公司 数据传输方法、传输***、控制方法、控制***和设备
EP3554136B1 (en) * 2015-02-11 2023-11-15 Sony Group Corporation Communications device, infrastructure equipment, mobile communications network and methods
RU2630408C1 (ru) * 2016-07-01 2017-09-07 Фудзицу Лимитед Способ и устройство для определения ресурсов канала управления восходящей линии связи
CN107734688B (zh) 2016-08-12 2023-05-02 中兴通讯股份有限公司 一种信息发送方法及发送设备
CN107889223B (zh) 2016-09-29 2020-04-10 电信科学技术研究院 一种数据传输方法及装置
US10873966B2 (en) * 2018-01-02 2020-12-22 Samsung Electronics Co., Ltd. Signaling of control information in a communication system
US10925095B2 (en) * 2018-01-12 2021-02-16 Innovative Technology Lab Co., Ltd. Apparatus and method for performing random access in wireless communication system
US10820341B2 (en) * 2018-02-12 2020-10-27 Mediatek Inc. Determination of requirement of UE processing time in NR
SG11202009880QA (en) 2018-05-08 2020-11-27 Guangdong Oppo Mobile Telecommunications Corp Ltd Wireless communication method and device, chip, and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106900071A (zh) * 2010-05-04 2017-06-27 三星电子株式会社 上行链路控制信息发送及接收方法、终端和基站
CN103220070A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 一种上行信号的发送方法及用户设备
CN107889230A (zh) * 2016-09-29 2018-04-06 中兴通讯股份有限公司 信号发送、接收发送及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On UCI Multiplexing on PUSCH", 3GPP DRAFT; RL-1805185, 7 April 2018 (2018-04-07), XP051414398 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11051302B2 (en) 2018-05-08 2021-06-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device, chip, and system
US11765702B2 (en) 2018-05-08 2023-09-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device, chip, and system
US20220046672A1 (en) * 2018-12-14 2022-02-10 Nec Corporation Method, device and computer readable medium for multi-trp transmission
EP4150997A4 (en) * 2020-05-15 2024-05-08 Qualcomm Incorporated DOWNLINK AND UPLINK CONTROL INFORMATION FOR PLANNING MULTIPLE COMPONENT CARRIER
WO2022156431A1 (zh) * 2021-01-19 2022-07-28 华为技术有限公司 一种上行控制信息的传输方法及装置

Also Published As

Publication number Publication date
US11051302B2 (en) 2021-06-29
SG11202009880QA (en) 2020-11-27
CA3096345A1 (en) 2019-11-14
CN115968040A (zh) 2023-04-14
CA3096345C (en) 2023-12-19
CN111757523A (zh) 2020-10-09
EP4142405A1 (en) 2023-03-01
RU2764291C1 (ru) 2022-01-17
JP2021527968A (ja) 2021-10-14
AU2018422444A1 (en) 2020-10-22
BR112020020498A2 (pt) 2021-01-12
US11765702B2 (en) 2023-09-19
US20200404658A1 (en) 2020-12-24
US20210298016A1 (en) 2021-09-23
EP3768012B1 (en) 2022-11-30
KR20210004965A (ko) 2021-01-13
JP7141467B2 (ja) 2022-09-22
CN111615855A (zh) 2020-09-01
MX2020011216A (es) 2020-11-09
EP3768012A1 (en) 2021-01-20
ES2935351T3 (es) 2023-03-06
CN111757523B (zh) 2021-11-05
EP3768012A4 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
WO2019213845A1 (zh) 无线通信方法、通信设备、芯片和***
WO2019140666A1 (zh) 探测参考信号传输方法、网络设备和终端设备
TWI829760B (zh) 用於側行鏈路的通信方法和設備
WO2018082043A1 (zh) 通信方法、终端和网络设备
EP3697006A1 (en) Method and apparatus for sending and receiving uplink control information
WO2020029199A1 (zh) 传输信息的方法、终端设备和网络设备
CN112567845A (zh) 无线通信方法和设备
US20220322368A1 (en) Method and terminal for data transmission using unlicensed carrier
WO2019109280A1 (zh) 数据传输的方法和终端设备
US20200120687A1 (en) Method and Device for Transmitting Data
TW202041072A (zh) 通訊方法和終端設備
JP2022508479A (ja) フィードバックリソースの多重化方法、端末装置及びネットワーク装置
US20200367295A1 (en) Data transmission method and communications device
WO2020211095A1 (zh) 一种信号加扰方法及装置、通信设备
WO2019157719A1 (zh) 无线通信方法和设备
WO2022032515A1 (zh) 无线通信方法、终端设备和网络设备
WO2021088260A1 (zh) 传输反馈信息的方法、终端设备和网络设备
WO2020056556A1 (zh) 用于非授权频谱的通信方法、终端设备和网络设备
WO2019028962A1 (zh) 无线通信方法、终端设备、网络设备和网络节点
WO2022206267A1 (zh) 一种harq反馈方法、装置及计算机可读存储介质
RU2782248C1 (ru) Способ передачи информации обратной связи, терминальное устройство и сетевое устройство
WO2019136699A1 (zh) 信息传输的方法和设备
WO2020056719A1 (zh) 一种信息传输时间的确定方法、终端设备及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918115

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018918115

Country of ref document: EP

Effective date: 20200916

ENP Entry into the national phase

Ref document number: 2020553594

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3096345

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018422444

Country of ref document: AU

Date of ref document: 20180508

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020020498

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020133862

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 112020020498

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201006