WO2019211908A1 - 導波管スロットアレーアンテナ - Google Patents

導波管スロットアレーアンテナ Download PDF

Info

Publication number
WO2019211908A1
WO2019211908A1 PCT/JP2018/017537 JP2018017537W WO2019211908A1 WO 2019211908 A1 WO2019211908 A1 WO 2019211908A1 JP 2018017537 W JP2018017537 W JP 2018017537W WO 2019211908 A1 WO2019211908 A1 WO 2019211908A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
groove
conductor
axis direction
tube axis
Prior art date
Application number
PCT/JP2018/017537
Other languages
English (en)
French (fr)
Inventor
成洋 中本
深沢 徹
修次 縫村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112018007422.6T priority Critical patent/DE112018007422B4/de
Priority to PCT/JP2018/017537 priority patent/WO2019211908A1/ja
Priority to JP2020516999A priority patent/JP6752394B2/ja
Publication of WO2019211908A1 publication Critical patent/WO2019211908A1/ja
Priority to US17/032,720 priority patent/US11276940B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • H01Q21/005Slotted waveguides arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • H01Q21/0062Slotted waveguides the slots being disposed around the feeding waveguide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • H01Q5/55Feeding or matching arrangements for broad-band or multi-band operation for horn or waveguide antennas

Definitions

  • the present invention relates to an orthogonally polarized wave guide slot array antenna that radiates horizontally polarized waves and radiates vertically polarized waves.
  • Patent Document 1 a slot array that radiates polarized waves perpendicular to the tube axis direction of the waveguide (hereinafter referred to as vertical polarization) and a polarized wave parallel to the tube axis direction of the waveguide (hereinafter referred to as horizontal).
  • vertical polarization a slot array that radiates polarized waves perpendicular to the tube axis direction of the waveguide
  • horizontal a polarized wave parallel to the tube axis direction of the waveguide
  • the radiation pattern of an array antenna depends on the excitation amplitude distribution of each element antenna.
  • design parameters are adjusted so that the amount of radiated power from the arranged slots has a predetermined excitation amplitude distribution so as to realize a target radiation pattern.
  • the slot that radiates vertically polarized waves is adjusted to the slot shape (distance from the center of the tube axis) for each slot, and radiates horizontally polarized waves.
  • the amount of radiated power is adjusted mainly by adjusting the shape of the iris.
  • the amount of radiated power can be adjusted only with the slot shape (length and distance from the center of the tube axis), especially for slots that radiate vertically polarized waves.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a waveguide slot array antenna that does not require remanufacturing of the waveguide at the time of retrial.
  • the waveguide slot array antenna includes a first groove for constituting the first waveguide and a second groove for constituting one of the second waveguides. And a third groove having the same width as the second groove and constituting the other of the second waveguide, and the third groove and the second groove are opposed to each other.
  • a second waveguide member provided with a plurality of slots orthogonal to the tube axis direction on the bottom surface of the third groove, the first waveguide member, and the second waveguide
  • a dielectric substrate that is provided between the tube member and covers the first groove and the second groove, and portions of both surfaces of the dielectric substrate that are in contact with the first waveguide member and the second waveguide member
  • a plurality of lines provided at positions corresponding to the plurality of slots on the dielectric substrate and obliquely with respect to the tube axis direction.
  • a plurality of conductor removal portions that are provided at the position of the first groove of the conductor and the tube wall conductor and are parallel to the tube axis direction and rectangular respectively, and the both-side tube wall conductors are connected via the dielectric substrate.
  • a plurality of vias are provided.
  • the waveguide slot array antenna includes a plurality of dielectric slots disposed between the first waveguide member and the second waveguide member and arranged obliquely with respect to the tube axis direction.
  • a linear conductor, a tube wall conductor as a waveguide wall surface, a conductor removal portion that functions as a slot parallel to the tube axis direction, and vias that connect the tube wall conductors on both sides of the dielectric substrate. is there.
  • the amount of radiated power can be adjusted only by correcting the conductor pattern on the dielectric substrate, so that it is not necessary to remanufacture the waveguide during the retrial of the antenna development process.
  • FIG. 1 is a perspective view of a waveguide slot array antenna according to Embodiment 1 of the present invention.
  • 1 is an exploded perspective view of a waveguide slot array antenna according to Embodiment 1 of the present invention.
  • 3A is a plan view of the dielectric substrate of the waveguide slot array antenna according to Embodiment 1 of the present invention, and
  • FIG. 3B is a cross-sectional view taken along line AA of FIG. 3A. It is sectional drawing which shows the waveguide cross-sectional shape of the waveguide slot array antenna by Embodiment 1 of this invention.
  • FIG. 8A to 8C are configuration diagrams showing modifications of the linear conductor portion of the dielectric substrate, respectively. It is a perspective view of the modification of the waveguide slot array antenna by Embodiment 1 of this invention. It is a disassembled perspective view of the modification of the waveguide slot array antenna by Embodiment 1 of this invention. It is a perspective view of the waveguide slot array antenna by Embodiment 2 of this invention. It is a disassembled perspective view of the waveguide slot array antenna by Embodiment 2 of this invention.
  • FIG. 12 is a cross-sectional view taken along the plane AA in FIG. 11 and parallel to the waveguide axis.
  • FIG. 12 is a cross-sectional view taken along a plane passing through line BB in FIG.
  • FIG. 20 is a cross-sectional view taken along a plane passing through line AA in FIG. 19 and parallel to the waveguide axis.
  • FIG. 20 is a cross-sectional view taken along a plane passing through line BB in FIG. 19 and parallel to the waveguide axis.
  • FIG. 1 is a perspective view of a waveguide slot array antenna according to the present embodiment.
  • FIG. 2 is an exploded perspective view of the waveguide slot array antenna.
  • the waveguide slot array antenna shown in FIGS. 1 and 2 includes a first waveguide member 1, a second waveguide member 4, and a dielectric substrate 7.
  • the first waveguide member 1 has an E-shaped cross section with respect to the tube axis direction having the first groove 2 and the second groove 3, and is a long member whose one end is sealed with a short-circuit wall.
  • the surface is made of a conductor.
  • the first groove 2 and the second groove 3 constitute a first waveguide lower part and a second waveguide lower part, respectively.
  • the second waveguide member 4 is a long member having a U-shaped cross section with respect to the tube axis direction having the third groove 5, one end of which is sealed with a short-circuit wall, and the surface is a conductor. Is formed.
  • the width of the third groove 5 is the same as the width of the second groove 3, and the third groove 5 and the second groove 3 are arranged to face each other.
  • a plurality of slots 6 for horizontally polarized radiation are provided from the bottom surface of the third groove 5 to a part of the side surface of the second waveguide member 4.
  • the slots 6 are provided such that the longitudinal direction thereof is perpendicular to the tube axis direction of the second waveguide member 4, and a plurality of slots 6 are arranged at predetermined intervals.
  • FIG. 3A is a plan view of the dielectric substrate 7, and FIG. 3B is a cross-sectional view taken along the line AA of FIG. 3A.
  • the dielectric substrate 7 is a flat plate formed of a resin material, and a linear conductor 8 is provided on a surface on which the second waveguide member 4 is disposed, and a conductor removing portion 9 and a tube wall are provided on both front and back surfaces.
  • Conductors 10a and 10b are formed, and a via 11 is further formed therein.
  • the linear conductor 8 is formed such that the longitudinal direction thereof is inclined by an angle set with respect to the tube axis direction of the second waveguide member 4, and a plurality of the linear conductors 8 are arranged corresponding to the arrangement interval of the slots 6. ing.
  • the adjacent linear conductors 8 are formed so that the inclination angles are opposite to each other.
  • the conductor removing portion 9 is formed by removing a part of the conductor pattern of the tube wall conductors 10a and 10b into a rectangular shape having a long side and a short side, and each longitudinal direction is the first waveguide member. 1 is formed to be parallel to the tube axis direction.
  • the adjacent conductor removal parts 9 are alternately arranged so as to be opposite to each other with respect to the tube axis center line of the first groove 2.
  • the via 11 is formed in the inside of the dielectric substrate 7, and surrounds the conductor removing portion 9, the first waveguide member 1 and the second conductor so as to conduct the tube wall conductor 10a and the tube wall conductor 10b.
  • a plurality are formed at predetermined intervals at positions where the wave tube member 4 is connected. Further, the vias 11 are provided at a sufficiently narrow interval so as not to leak an electromagnetic field from between adjacent vias.
  • the tube wall conductors 10a and 10b are formed at a portion covering the first groove 2 and a portion where the first waveguide member 1 and the second waveguide member 4 are in contact with each other.
  • FIG. 4 shows a waveguide cross-sectional shape of the waveguide slot array antenna according to the first exemplary embodiment.
  • the open end of the first groove 2 and the tube wall conductor 10 b are electrically connected at the contact surface, thereby forming the first waveguide 12.
  • the tube wall conductor 10b and the bottom surface of the first groove 2 constitute a wide wall surface of the first waveguide 12, respectively, and the side surfaces of the first groove 2 each have a narrow width of the first waveguide 12. It constitutes the wall surface.
  • the first waveguide 12 has a component in which the electric field vector is directed in the z-axis direction as a fundamental mode.
  • the open end of the second groove 3 and the second waveguide member 4 are electrically connected at the contact surface by the tube wall conductors 10a and 10b and the vias 11, whereby the second waveguide is formed.
  • a tube 13 is formed.
  • the via 11 disposed at a position corresponding to the contact surface between the open end of the second groove 3, the open end of the third groove 5, and the tube wall conductors 10 a and 10 b is connected to the second waveguide 13.
  • a plurality of high-frequency signals propagating inside are arranged densely so as not to leak outside.
  • the side surfaces of the second groove 3 and the third groove 5, the tube wall conductors 10 a and 10 b, and the via 11 constitute a wide wall surface of the second waveguide 13.
  • the bottom surface and the bottom surface of the third groove 5 constitute a narrow wall surface of the second waveguide 13, respectively.
  • the second waveguide 13 has a component in which the electric field vector is directed in the x-axis direction as a fundamental mode.
  • the first mode 12 and the second mode 13 are guided from the respective feed terminals (not shown) provided on the side opposite to the portion sealed by the short-circuit wall, so that the fundamental mode passes through the inside of the waveguide.
  • a high-frequency signal is input so as to propagate.
  • one ends of the first waveguide 12 and the second waveguide 13 are short-circuited walls, so-called standing waves are excited inside both the waveguides.
  • FIG. 5 shows the current distribution on the wide wall surface of the first waveguide 12, that is, the tube wall conductor 10b, in the vicinity of the short-circuit wall of the first waveguide 12 when a high-frequency signal is input from the power supply terminal. Show. However, FIG.
  • FIG. 5 shows the current distribution when the conductor removal portion 9 is not provided.
  • the current intensity flowing in the x-axis direction becomes strong, and a portion where the current intensity becomes strong in ⁇ g / 2 period appears ( ⁇ g is the center of the input high-frequency signal) In-tube wavelength at frequency).
  • ⁇ g is the center of the input high-frequency signal
  • In-tube wavelength at frequency the direction of the current is reversed every ⁇ g / 2.
  • the conductor removal unit 9 is disposed at a position where a large current flows in the x-axis direction so as to block the flow. That is, the first waveguide 12 has a longitudinal direction parallel to the tube axis of the first waveguide 12 at a position ⁇ g / 4 from the short-circuit wall of the first waveguide 12. It is arranged at a position offset by a predetermined distance from the 12 tube axis center lines. The conductor removal unit 9 arranged at such a position blocks the current in the conductor removal unit 9, and as a result, an electric field parallel to the x-axis is excited on the conductor removal unit 9.
  • a polarized wave perpendicular to the tube axis of the first waveguide 12, that is, a vertically polarized radio wave is radiated to the external space, and the conductor removing unit 9 operates as a vertically polarized radiation slot.
  • adjacent conductor removal portions 9 are radiated from the respective conductor removal portions 9 by being alternately arranged so as to be opposite to each other with respect to the tube axis center line of the first waveguide 12.
  • the phase of the radio wave can be the same phase.
  • the amount of radiated power from each conductor removing portion 9 is determined by the amount of offset from the tube axis center line of the first waveguide 12 and the size (width and length) of each conductor removing portion 9.
  • the position and size of each conductor removal unit 9 are determined so that the excitation amplitude distribution becomes.
  • the plurality of vias 11 provided around the conductor removing portion 9 prevent the electric field excited by each conductor removing portion 9 from leaking into the dielectric substrate 7.
  • FIG. 6 shows the current on the narrow wall surface of the second waveguide 13 in the vicinity of the short-circuit wall of the second waveguide 13, that is, the bottom surface of the third groove 5 when a high-frequency signal is input from the power supply terminal. Distribution is shown. However, FIG. 6 shows the current distribution when the slot 6 and the linear conductor 8 are not provided. As shown in FIG. 6, at the position of ⁇ g / 4 from the short-circuit wall, the current intensity flowing in the x-axis direction becomes strong, and a portion where the current intensity becomes strong in the ⁇ g / 2 period appears. However, the direction of the current is reversed every ⁇ g / 2.
  • the slot 6 is disposed at a position where a large current flows in the x-axis direction, that is, at a position ⁇ g / 4 from the short-circuit wall of the second waveguide 13 so that the radio wave is efficiently radiated to the outside. Since the second waveguide 13 is arranged so that its longitudinal direction is perpendicular to the tube axis direction of the second waveguide 13, the current in the slot 6 portion cannot be cut off efficiently as it is.
  • FIG. 7 shows a narrow wall surface of the second waveguide 13 in the vicinity of the short-circuit wall of the second waveguide 13 when a high-frequency signal is input from the power supply terminal when the linear conductor 8 is provided. That is, the current distribution on the bottom surface of the third groove 5 is shown. However, FIG. 7 shows the current distribution when the slot 6 is not provided. Since the linear conductor 8 is formed so as to be inclined by a set angle with respect to the tube axis direction of the second waveguide 13, the internal electromagnetic field distribution is disturbed by the current excited on the linear conductor 8.
  • the phase of the radio wave radiated from the slot 6 can be made the same phase. Further, the amount of radiated power from the slot 6 is determined by the width and length of the slot 6, the width and length of the linear conductor 8, the inclination angle, and the like. The shape of the conductor 8 is determined.
  • the conductor removal unit 9 provided on the dielectric substrate 7 operates as a vertically polarized radiation slot, and the amount of vertically polarized radiation can be adjusted according to the position and shape thereof.
  • the amount of radiated power of horizontal polarization can be adjusted by the shape of the conductor 8. That is, since the amount of radiated power can be adjusted only by modifying the conductor pattern shape on the dielectric substrate 7, the waveguide slot array antenna according to the first embodiment is guided in the re-trial of the antenna development process. There is no need to remanufacture the tube, resulting in a reduction in development costs.
  • each linear conductor 8 is formed as a single linear conductor pattern, and these are arranged immediately below the slot 6.
  • the shape of the linear conductor 8 and the number of conductor patterns may be arbitrary as long as a current that flows obliquely with respect to the tube axis direction can be generated on the narrow wall surface of the second waveguide 13.
  • the plurality of conductor patterns may not be completely parallel.
  • 8B the end portion of the linear conductor pattern is bent, or as shown in FIG.
  • the other end is connected to the tube wall conductor 10a on both sides of one linear conductor pattern.
  • a configuration in which two linear elongated conductors are arranged may be used.
  • the elongated conductors are provided so as to be collinear in a direction orthogonal to the tube axis direction.
  • the degree of freedom in adjusting the amount of radiated power can be increased as compared with the case where there is only one linear conductor pattern.
  • the length of the linear conductor pattern in the tube axis direction can be shortened, and the influence of mutual coupling between the adjacent linear conductors 8 can be reduced.
  • the parasitic reactance component generated by the linear conductor 8 can be canceled by the elongated conductors arranged on both sides, so that the antenna design can be facilitated.
  • the linear conductor 8 is disposed only on the surface where the tube wall conductor 10a of the dielectric substrate 7 is located, but the other surface (the tube wall conductor 10b is located). It is good also as a structure arrange
  • FIG. 1 to 3 the same number of slots 6 and conductor removal portions 9 are arranged, but the number of slots 6 and conductor removal portions 9 may be different.
  • the first waveguide 12 is a so-called rectangular waveguide whose cross-sectional shape is composed of a long side and a short side. As shown as a modified example in FIG.
  • a first ridge conductor 14 that is a set protrusion length barrier is provided on the tube axis center line of the first groove 2, and the first waveguide 12 is a so-called ridge guide. It is good also as a structure which is a wave tube.
  • 9 is a perspective view of a modified example, and FIG. 10 is an exploded perspective view of the modified example.
  • the waveguide slot array antenna of the first embodiment in order to configure one of the first groove and the second waveguide for configuring the first waveguide.
  • a dielectric substrate that is provided between the wave tube member and the second waveguide member and covers the first groove and the second groove; and the first waveguide member and the first substrate on both sides of the dielectric substrate.
  • a tube wall conductor provided in a portion in contact with the second waveguide member and a portion covering the first groove, and provided in a position corresponding to a plurality of slots on the dielectric substrate;
  • the A plurality of linear conductors provided obliquely and a first groove of the tube wall conductor, each being parallel to the tube axis direction and having a plurality of rectangular conductor removal portions, and a dielectric substrate Since there are multiple vias that connect the tube wall conductors on both sides, the radiated power can be adjusted only by modifying the conductor pattern on the dielectric substrate. This eliminates the need for pipe remanufacturing and consequently reduces development costs.
  • each of the plurality of linear conductors is composed of a plurality of parallel linear conductor patterns, thereby increasing the degree of freedom in adjusting the amount of radiated power. be able to.
  • one end is connected to the tube wall conductor on both sides of the plurality of linear conductors in the direction orthogonal to the tube axis direction, and the other end is connected. Since the elongated conductor extending in the direction of the linear conductor is provided on the dielectric substrate, the parasitic reactance component generated by the linear conductor can be canceled by the elongated conductor, so that the antenna design can be facilitated. .
  • the antenna design can be further facilitated. .
  • the waveguide slot array antenna of the first embodiment since the ridge conductor parallel to the tube axis direction is provided at the center of the first groove in the direction orthogonal to the tube axis direction, the first groove
  • the waveguide can be configured as a ridge waveguide.
  • one end of the first waveguide member and the second waveguide member in the tube axis direction has one end as a short-circuit wall and the other end as a feeding terminal.
  • the plurality of linear conductors are different from each other in the inclination direction of the adjacent linear conductors with respect to the tube axis direction, and the plurality of conductor removal portions are located in the first groove tube. Since it is arranged opposite to each other with respect to the axial center line, the phase of the radio waves radiated from the plurality of slots can be the same phase, and the radio waves radiated from the plurality of conductor removal portions The phase can be the same phase.
  • the distance between the centers of the adjacent conductor removal portions is the design center frequency of the first waveguide constituted by the first groove and the tube wall conductor. And the distance between the centers of adjacent slots at the design center frequency of the second waveguide composed of the second groove, the third groove, the tube wall conductor, and the via.
  • the distance in the tube axis direction between the short-circuit wall and the center of the conductor removal part adjacent to the short-circuit wall, and the distance in the tube axis direction between the short-circuit wall and the center of the slot adjacent to the short-circuit wall, which is a half of the in-tube wavelength Is one-fourth of the guide wavelength at the design center frequency of the first waveguide and the second waveguide. Can radiate.
  • the waveguide slot array antenna of the first embodiment since a plurality of waveguide slot array antennas are arranged in a direction orthogonal to the tube axis direction, the direction orthogonal to the tube axis direction is used. Can be obtained.
  • FIG. The second embodiment is an example in which a waveguide T branch structure is provided at the center of the waveguide, and the branched waveguide is used as a power supply terminal.
  • FIG. 11 is a perspective view of a waveguide slot array antenna according to the second embodiment.
  • FIG. 12 is an exploded perspective view of the waveguide slot array antenna.
  • FIG. 13 is a sectional view taken along the plane AA in FIG. 11 and parallel to the waveguide axis
  • FIG. 14 is a plane taken along the line BB in FIG. 11 and parallel to the waveguide axis.
  • a cross-sectional view is shown.
  • FIG. 15 is an explanatory view of the first feeding waveguide 21 and the second feeding waveguide 22 as seen from the z-axis direction.
  • the waveguide slot array antenna includes a first waveguide member 1a, a second waveguide member 4, a dielectric substrate 7, a linear conductor 8, and a conductor.
  • a removal unit 9 tube wall conductors 10 a and 10 b, a via 11, a first power supply waveguide 21, and a second power supply waveguide 22 are provided.
  • the first groove 2 and the second groove 3 are formed as in the first embodiment, and both ends in the tube axis direction are sealed with a short-circuit wall.
  • first feeding waveguide 21 and the second feeding waveguide 22 are rectangular waveguides having a long side and a short side in cross section, and the tube axis direction is z. They are connected to be parallel to the axis.
  • the first power supply waveguide 21 is provided such that its wide wall surface is parallel to the x-axis, while the second power supply waveguide 22 has its wide wall surface y. It is provided so as to be parallel to the axis.
  • the linear conductor 8 is formed such that its longitudinal direction is inclined at a predetermined inclination angle with respect to the tube axis direction of the second waveguide member 4, and corresponds to the arrangement interval of the slots 6. A plurality of them are arranged. However, the inclination angles of the two linear conductor patterns adjacent to the second feeding waveguide 22 are formed in the same direction, and the inclination angles of the other two adjacent linear conductor patterns are mutually different. It is formed so as to be in the reverse direction. Since the configuration other than this is the same as that of the waveguide slot array antenna according to the first embodiment, the same reference numerals are given to the corresponding portions, and the description thereof is omitted.
  • the first slot 2 and the tube wall conductor 10b form the first waveguide 12 in the waveguide slot array antenna of the second embodiment.
  • the first waveguide 12 has a component in which the electric field vector is directed in the z-axis direction as a fundamental mode.
  • the second groove 3 and the second waveguide member 4 are electrically connected to each other at the contact surface by the tube wall conductors 10a and 10b and the via 11 as in the configuration of the first embodiment. Thereby, the second waveguide 13 is formed.
  • the second waveguide 13 has a component in which the electric field vector is directed in the x-axis direction as a fundamental mode.
  • the first waveguide 12 has an open end opposite to the connection portion to the first waveguide 12 in the first feeding waveguide 21, and the second waveguide 13.
  • the first feed waveguide 21 or the second feed guide is the open end of the second feed waveguide 22 opposite to the connection to the second waveguide 13 as the feed terminal.
  • the first waveguide 12 has one short-circuit wall side and the other short-circuit wall side as viewed from the first power supply waveguide 21.
  • the fundamental modes of the wave tube 12 are input in opposite phases. Furthermore, since both ends of the first waveguide 12 are short-circuited walls, so-called standing waves are excited inside the first waveguide 12.
  • the conductor removing unit 9 radiates a polarized wave perpendicular to the tube axis of the first waveguide 12, that is, a vertically polarized radio wave, to the external space.
  • the conductor removal unit 9 operates as a vertically polarized radiation slot.
  • the fundamental mode of the first waveguide 12 is input in opposite phases on both sides of the first waveguide 12 as viewed from the first feeding waveguide 21, Since the two conductor removal sections 9 adjacent to the first power supply waveguide 21 have the same phase of the radio waves radiated from these conductor removal sections 9, the tube axis center line of the first waveguide 12 is used. Are arranged so as to be opposite to each other. Further, similarly to the first embodiment, adjacent conductor removing portions 9 are arranged alternately with respect to the tube axis center line of the first waveguide 12 so as to be opposite to each other. The phase of the radio wave radiated from the removing unit 9 is the same phase.
  • the second feeding waveguide 22 has a component in which the electric field vector is directed in the x-axis direction as a fundamental mode, and a connection portion between the second feeding waveguide 22 and the second waveguide 13 is a so-called waveguide.
  • the fundamental mode of the second waveguide 13 has the same phase on both sides of the second waveguide 13 when viewed from the second feeding waveguide 22. Will be input.
  • both ends of the second waveguide 13 are short-circuited walls, so-called standing waves are excited inside thereof.
  • the electromagnetic field distribution inside the waveguide is disturbed by the linear conductor 8 provided on the dielectric substrate 7, so that the second waveguide 13 has a narrow wall surface.
  • the adjacent linear conductor patterns are formed so that the inclination angles of the adjacent linear conductor patterns are opposite to each other, thereby radiating from the slot 6 as in the case of the first embodiment.
  • the phase of the radio wave is the same phase.
  • the first waveguide member 1a to which the first feeding waveguide 21 and the second feeding waveguide 22 are connected, and the slot 6 are used.
  • a second waveguide member 4 provided with a dielectric substrate 7 on which a conductor pattern is formed, and a conductor removal portion 9 provided on the dielectric substrate 7 operates as a vertically polarized radiation slot.
  • the vertically polarized radiation power can be adjusted by the position and shape
  • the horizontal polarization radiation power can be adjusted by the shape of the linear conductor 8. That is, in the second embodiment, the radiated power amount of each slot that radiates vertical polarization or horizontal polarization can be adjusted only by the conductor pattern shape of the dielectric substrate 7. Development costs can be reduced.
  • the first feeding waveguide 21 and the second feeding waveguide 22 are connected to a surface opposite to the surface from which radio waves are radiated. Therefore, the subarrays can be densely arranged two-dimensionally. That is, in a waveguide slot array antenna, a power supply terminal is generally connected to a distribution / synthesis circuit or a transceiver.
  • a power supply terminal is generally connected to a distribution / synthesis circuit or a transceiver.
  • the configuration of the distribution / synthesis circuit or the transmitter / receiver does not affect the arrangement in the y-axis direction. Therefore, the subarrays can be densely arranged not only in the x-axis direction but also in the y-axis direction.
  • the first feeding waveguide 21 is connected to the central portion of the first waveguide 12. Of the plurality of conductor removal portions 9 arranged, The first feeding waveguide 21 may be connected to the first waveguide 12 at a position corresponding to an intermediate portion between any two adjacent conductor removal portions 9. Similarly, in FIGS. 11 to 14, the second feeding waveguide 22 is connected to the center of the second waveguide 13, but any adjacent one of the plurality of slots 6 arranged. The second feeding waveguide 22 may be connected to the second waveguide 13 at a position corresponding to the middle portion between the two slots 6.
  • the position of the power feeding terminal can be given flexibility, and as a result, many options can be given to the arrangement of the transmitter / receiver connected to the back surface or the configuration of the distribution / synthesis circuit, and the waveguide slot array.
  • the degree of freedom in antenna design can be improved.
  • the first feeding waveguide 21 and the second feeding waveguide 22 are rectangular waveguides, but as shown in FIG. 16, the first feeding waveguide.
  • the second ridge conductor 23 serving as a barrier having a predetermined protrusion length is provided on the tube axis center line on the wide wall surface of the 21 and the second feeding waveguide 22 so as to be a so-called double ridge waveguide. It is good also as a simple structure.
  • variety of the wide wall surface of the 1st feed waveguide 21 and the 2nd feed waveguide 22 can be reduced in size, As a result, the 1st feed waveguide 21 and the 2nd feed waveguide 21 It is possible to reduce the interaction between the feeding waveguide 22 and the conductor removing portion 9 or the slot 6 adjacent to the feeding waveguide 22. These interactions cause deterioration of radiation characteristics.
  • the bottom surface of the groove of the third groove 5 facing the connecting portion between the second waveguide 13 and the second feed waveguide 22 is used.
  • the third groove facing the connection portion between the second waveguide 13 and the second feeding waveguide 22 is not provided with an additional structure on the dielectric substrate 7.
  • An inductive barrier 24 may be provided on the bottom surface of the groove 5 so as to block a part of the conduit of the second waveguide 13 perpendicular to the tube axis direction of the waveguide.
  • the connection portion between the second waveguide 13 and the second feeding waveguide 22 on the dielectric substrate 7 is electrically connected to the tube wall conductor 10a.
  • a linear short-circuit conductor 25 orthogonal to the tube axis direction of the waveguide may be formed.
  • one of the first groove and the second waveguide for configuring the first waveguide is configured.
  • a first waveguide member having a second groove and having a short-circuit wall at both ends in the tube axis direction, and having the same width as the second groove and constituting the other of the second waveguide The third groove, the third groove and the second groove are arranged to face each other, and a plurality of slots perpendicular to the tube axis direction are provided on the bottom surface of the third groove,
  • a dielectric substrate covering the groove, and a tube wall conductor provided on both sides of the dielectric substrate, the portion contacting the first waveguide member and the second waveguide member, and the portion covering the first groove Dielectric base Provided at positions corresponding to the plurality of upper slots, provided at positions of the plurality
  • a plurality of conductor removal portions that are parallel and rectangular to each other, a plurality of vias that connect the pipe wall conductors on both sides via a dielectric substrate, and two adjacent conductor removal portions on the bottom surface of the first groove
  • the positions of the adjacent conductor removal portions are opposite to each other with respect to the center line in the tube axis direction of the first groove.
  • the distance between the centers of the adjacent conductor removal portions is a half of the guide wavelength at the design center frequency of the first waveguide constituted by the first groove and the tube wall conductor,
  • the center-to-center distance between adjacent slots is a half of the in-tube wavelength at the design center frequency of the second waveguide composed of the second groove, the third groove, the tube wall conductor, and the via.
  • the distance in the tube axis direction between the wall and the center of the conductor removal portion adjacent to the short-circuit wall and the distance in the tube axis direction between the short-circuit wall and the center of the slot adjacent to the short-circuit wall are the first waveguide and the second Because it is set to one quarter of the guide wavelength at the design center frequency of Radio waves and horizontally polarized waves can be efficiently radiated to the outside.
  • the second waveguide is orthogonal to the tube axis direction at a position corresponding to the second feed waveguide on the bottom surface of the third groove. Since the inductive barrier for blocking a part of the pipeline is provided, the reflection characteristic at the connection portion with the second waveguide viewed from the second feeding waveguide can be improved.
  • both ends are connected to the tube wall conductor at a position corresponding to the second feeding waveguide of the dielectric substrate, and orthogonal to the tube axis direction. Since the shorting conductor to be provided is provided, the reflection characteristic at the connection portion with the second waveguide viewed from the second power supply waveguide can be improved.
  • the first feed waveguide is provided on the wide tube wall surface of at least one of the first feed waveguide and the second feed waveguide. Since the second ridge conductor parallel to the tube axis direction of the tube and the second feeding waveguide is provided, it is possible to reduce the deterioration of the radiation characteristics.
  • the waveguide slot array antenna of the second embodiment since the waveguide slot array antenna is arranged as a subarray, a plurality of arrays are arranged in at least one of the tube axis direction and the direction orthogonal to the tube axis direction. An antenna arranged two-dimensionally densely can be obtained.
  • FIG. 19 is a perspective view of a waveguide slot array antenna according to the third embodiment.
  • FIG. 20 is an exploded perspective view of the waveguide slot array antenna.
  • FIG. 21 is a sectional view taken along the plane AA of FIG. 19 and parallel to the waveguide axis
  • FIG. 22 is a plane taken along the line BB of FIG. 19 and parallel to the waveguide axis. A cross-sectional view is shown.
  • the waveguide slot array antenna of Embodiment 3 includes a first waveguide member 1b, a second waveguide member 4, a dielectric substrate 7, a linear conductor 8, and a conductor.
  • the removing unit 9, the tube wall conductors 10 a and 10 b, the via 11, the first feeding line 31, the second feeding line 32, the first feeding probe 33, and the second feeding probe 34 are provided.
  • the first groove 2 and the second groove 3 are formed as in the first embodiment, and both ends in the tube axis direction are sealed with a short-circuit wall.
  • circular openings are respectively formed in the tube axis direction center portions of the bottom surfaces of the first groove 2 and the second groove 3, and the first feed line 31 and the second feed line 32 are connected to the respective circular openings. ing.
  • the first feed line 31 and the second feed line 32 are coaxial lines.
  • the first feed probe 33 is connected to the inner conductor of the first feed line 31, and the second feed line 32.
  • a second power supply probe 34 is connected to the inner conductor.
  • a probe conductor 35 is formed at a position on the dielectric substrate 7 corresponding to the connection position of the second feeder line 32.
  • One end of the probe conductor 35 is connected to the tube wall conductor 10 a, and the other end is connected to the second power supply probe 34.
  • the tip of the second power supply probe 34 is drawn out to the tube wall conductor 10a side of the dielectric substrate 7 through the opening for insertion of the power supply probe formed in the dielectric substrate 7, and is probed by a method such as soldering. 35 is electrically connected.
  • an L-shaped probe including the second power supply probe 34 and the probe conductor 35 is configured.
  • the outer conductors of the first feed line 31 and the second feed line 32 are connected to the wall surface of the waveguide.
  • the plurality of linear conductors 8 are formed such that their longitudinal directions are inclined at a predetermined inclination angle with respect to the tube axis direction of the second waveguide member 4. A plurality of them are arranged corresponding to the arrangement interval. However, the two linear conductors 8 adjacent to each other with the connection position of the second feed line 32 as the center are formed so that the inclination angles thereof are in the same direction, and the other two linear conductors 8 are inclined. The angles are formed so as to be opposite to each other.
  • the conductor removing portion 9 is formed by removing a part of the conductor pattern of the tube wall conductors 10a and 10b into a rectangular shape having a long side and a short side as in the first embodiment, and the longitudinal direction thereof is the first. It is formed so as to be parallel to the tube axis direction of the waveguide member 1b. Further, the adjacent conductor removal portions 9 are alternately arranged so as to be opposite to each other with respect to the tube axis center line of the first groove 2, but correspond to the connection position of the first feed line 31. The two conductor removal portions 9 adjacent to each other at the center are formed so as to be located on the same side with respect to the tube axis center line of the first groove 2. Since other configurations are the same as those in the first embodiment, the same reference numerals are given to corresponding portions, and descriptions thereof are omitted.
  • the first groove 2 and the tube wall conductor 10b form the first waveguide 12, and the first waveguide is formed.
  • the tube 12 has a component whose electric field vector is directed in the z-axis direction as a fundamental mode.
  • the second groove 3 and the second waveguide member 4 are electrically connected by the tube wall conductor 10a, the tube wall conductor 10b, and the via 11, whereby the second waveguide 13 is connected. Forming.
  • the second waveguide 13 has a component in which the electric field vector is directed in the x-axis direction as a fundamental mode.
  • a high-frequency signal input to the first power feed line 31 causes a current to flow on the first power feed probe 33 connected to the inner conductor of the first power feed line 31.
  • the fundamental mode of the first waveguide 12 is excited in the same phase on both sides of the first waveguide 12 as viewed from the first feed line 31.
  • both ends of the first waveguide 12 are short-circuited walls, so-called standing waves are excited inside the first waveguide 12.
  • the conductor removing unit 9 radiates polarized waves orthogonal to the tube axis direction of the first waveguide 12, that is, vertically polarized radio waves, to the external space.
  • the conductor removal unit 9 operates as a vertically polarized radiation slot.
  • a high-frequency signal input to the second feed line 32 causes a current to flow on the second feed probe 34 and the probe conductor 35 connected to the inner conductor of the second feed line 32.
  • the fundamental mode of the second waveguide 13 is excited in the same phase on both sides of the second waveguide 13 as viewed from the second feeder line 32 by the current flowing on the probe conductor 35. It will be.
  • both ends of the second waveguide 13 are short-circuited walls, so-called standing waves are excited inside thereof. Similar to the operation in the first embodiment, the electromagnetic field distribution inside the waveguide is disturbed by the linear conductor 8 provided on the dielectric substrate 7, so that the second waveguide 13 has a narrow wall surface.
  • the first waveguide member 1b to which the first feed line 31 and the second feed line 32 are connected, and the slot 6 is provided.
  • the second waveguide member 4 is sandwiched by a dielectric substrate 7 on which a conductor pattern is formed, and a conductor removal portion 9 provided on the dielectric substrate 7 operates as a vertically polarized radiation slot.
  • the amount of radiated power of vertical polarization can be adjusted, and the amount of radiated power of horizontal polarization can be adjusted by the shape of the linear conductor 8. That is, in the third embodiment, the radiation power amount of each slot that radiates vertically polarized waves or horizontally polarized waves can be adjusted only by the conductor pattern shape of the dielectric substrate 7.
  • the first feed line 31 and the second feed line 32 are connected to the surface opposite to the surface from which the radio wave is radiated.
  • the first feeder line 31 is connected to the central portion of the first waveguide 12. However, among the plurality of conductor removing portions 9 arranged, The first feed line 31 may be connected to the first waveguide 12 at a position corresponding to an intermediate portion between any two adjacent conductor removal portions 9.
  • the second feeder line 32 is connected to the central portion of the second waveguide 13, but of any two adjacent slots 6 among the plurality of slots 6 arranged.
  • the second feeder line 32 may be connected to the second waveguide 13 at a position corresponding to the intermediate portion.
  • an L-shaped probe is configured by the second power supply probe 34 and the probe conductor 35.
  • the probe conductor 35 is not provided on the dielectric substrate 7, and the second power supply probe 34 is directly connected to the L-shape.
  • the tip may be refracted into a shape and connected to the waveguide wall surface.
  • the first groove for constituting the first waveguide and one of the second waveguides are constituted.
  • a first waveguide member having a second groove and having a short-circuit wall at both ends in the tube axis direction, and having the same width as the second groove and constituting the other of the second waveguide The third groove, the third groove and the second groove are arranged to face each other, and a plurality of slots perpendicular to the tube axis direction are provided on the bottom surface of the third groove,
  • a dielectric substrate covering the groove, and a tube wall conductor provided on both sides of the dielectric substrate, the portion contacting the first waveguide member and the second waveguide member, and the portion covering the first groove Dielectric base Provided at positions corresponding to the plurality of upper slots, provided at positions of
  • a plurality of conductor removal portions that are parallel and rectangular to each other, a plurality of vias that connect the pipe wall conductors on both sides via a dielectric substrate, and two adjacent conductor removal portions on the bottom surface of the first groove
  • a first power supply line serving as a power supply terminal provided between the two and a second power supply line serving as a power supply terminal provided between the two adjacent slots on the bottom surface of the second groove
  • one end connected to the first feed probe which is connected to the first feed line, located in the first waveguide, and the second feed line, and the other end is connected to the tube wall conductor
  • a second feeding probe located in the second waveguide, and a plurality of linear conductors
  • the inclination directions of two linear conductors adjacent to the installation position of the second power supply probe are the same direction
  • the other adjacent linear conductors are opposite to each other, and are adjacent to the first power supply probe.
  • the two conductor removal portions are located on the same side of the tube axis center line of the first waveguide, and the other two adjacent conductor removal portions are tube axis center lines of the first waveguide. Since it is arranged so that the positions are opposite to each other, the amount of radiated power can be adjusted only by modifying the conductor pattern on the dielectric substrate. It is not necessary to remanufacture the waveguide, and as a result, development costs can be reduced.
  • the distance between the centers of the adjacent conductor removal portions is the design center of the first waveguide constituted by the first groove and the tube wall conductor.
  • the distance between the centers of adjacent slots in the frequency is one half of the guide wavelength
  • the distance between the centers of the adjacent slots is the design center frequency of the second waveguide composed of the second groove, the third groove, the tube wall conductor, and the via.
  • the distance is set to one-fourth of the guide wavelength at the design center frequency of the first waveguide and the second waveguide. Can be emitted.
  • the embodiments can be freely combined, arbitrary constituent elements of each embodiment can be modified, or arbitrary constituent elements can be omitted in each embodiment.
  • the waveguide slot array antenna relates to an orthogonally polarized wave configuration that radiates horizontally polarized waves and radiates vertically polarized waves. Suitable for use.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

第一の導波管部材1と第二の導波管部材4との間に誘電体基板7を設ける。第二の導波管部材4は水平偏波を放射するための複数のスロット6を備える。誘電体基板7には、管軸方向に対して斜めに配置した複数の線状導体8と、導波管壁面としての管壁導体10a,10bと、管軸方向に対して平行な垂直偏波放射スロットとして機能する導体除去部9を設ける。管壁導体10a,10bをビア11によって接続する。

Description

導波管スロットアレーアンテナ
 この発明は、水平偏波を放射すると共に垂直偏波を放射する直交偏波共用の導波管スロットアレーアンテナに関するものである。
 近年、無線通信の通信可能領域の拡大及びレーダの探知距離の拡大の要求に加えて、周波数有効利用に対する要求が高まっており、その要求に応えるため、無線通信またはレーダに適用されるアンテナ装置として、低損失で高効率な直交偏波共用のアレーアンテナが求められている。
 このような低損失で高効率化なアンテナ方式として、導波管スロットアレーアンテナがある。以下の特許文献1では、導波管の管軸方向に垂直な偏波(以下、垂直偏波と呼ぶ)を放射するスロットアレーと導波管の管軸方向に平行な偏波(以下、水平偏波と呼ぶ)を放射するスロットアレーを隣接して配列することで、直交偏波共用の導波管スロットアレーアンテナを構成する構造が開示されている。
特開2008-167246号公報
 アレーアンテナの放射パターンは各素子アンテナの励振振幅分布に依存することが知られている。導波管スロットアレーアンテナでは、目的となる放射パターンを実現するよう、配列される各スロットからの放射電力量が所定の励振振幅分布となるように設計パラメータを調整する。上記従来の直交偏波導波管スロットアレーアンテナでは、垂直偏波を放射するスロットについては、スロット形状(長さ管軸中心からの距離)などをスロット毎に調整し、水平偏波を放射するスロットについては、主にアイリスの形状などを調整することで、放射電力量を調整することとなる。
 通常、導波管スロットアレーアンテナの開発では、電磁界解析等を用いた設計、試作、放射パターン等の性能評価、この性能評価結果をもとにした構造修正(各スロットの形状修正による放射電力量の調整)による再試作と再評価といったアンテナ開発プロセスを経て、最終的に目的とする性能を実現する製品を作り上げる。特に、性能評価結果をもとにした構造修正による再試作と再評価のプロセスについては、目的とする性能を実現するまで数回繰り返し行われることが多い。
 しかしながら、上記従来の導波管スロットアレーアンテナでは、特に、垂直偏波を放射するスロットに関してはスロット形状(長さと管軸中心からの距離)でしか放射電力量が調整できないため、再試作のたびに、スロット形状に修正を行った導波管を切削加工等で製造する必要があり、開発コストが高くなるといった課題があった。
 この発明は上記のような課題を解決するためになされたもので、再試作の際に導波管の再製造の必要のない導波管スロットアレーアンテナを提供することを目的とする。
 この発明に係る導波管スロットアレーアンテナは、第一の導波管を構成するための第一の溝と、第二の導波管の一方を構成するための第二の溝を有する第一の導波管部材と、第二の溝と同一幅で、第二の導波管の他方を構成するための第三の溝を有し、第三の溝と第二の溝とが対向して配置されると共に、第三の溝の底面に管軸方向に対して直交する複数のスロットが設けられた第二の導波管部材と、第一の導波管部材と第二の導波管部材との間に設けられ、第一の溝と第二の溝を覆う誘電体基板と、誘電体基板の両面の、第一の導波管部材と第二の導波管部材に接する部分と第一の溝を覆う部分とに設けられた管壁導体と、誘電体基板上の複数のスロットに対応した位置に設けられ、管軸方向に対してそれぞれ斜めに設けられた複数の線状導体と、管壁導体の第一の溝の位置に設けられ、管軸方向に対してそれぞれ平行でかつ矩形の複数の導体除去部と、誘電体基板を介して両面の管壁導体を接続する複数のビアとを備えたものである。
 この発明の導波管スロットアレーアンテナは、第一の導波管部材と第二の導波管部材との間に設けた誘電体基板に、管軸方向に対して斜めに配置された複数の線状導体と、導波管壁面としての管壁導体と、管軸方向に対して平行なスロットとして機能する導体除去部と、誘電体基板両面の管壁導体を接続するビアを設けたものである。これにより、誘電体基板上の導体パターンの修正のみで放射電力量の調整ができるため、アンテナ開発プロセスにおける再試作の際に、導波管の再製造が不要となる。
この発明の実施の形態1による導波管スロットアレーアンテナの斜視図である。 この発明の実施の形態1による導波管スロットアレーアンテナの分解斜視図である。 図3Aは、この発明の実施の形態1による導波管スロットアレーアンテナの誘電体基板の平面図、図3Bは図3AのA-A線断面図である。 この発明の実施の形態1による導波管スロットアレーアンテナの導波管断面形状を示す断面図である。 この発明の実施の形態1による導波管スロットアレーアンテナの給電端子から高周波信号を入力した場合の管壁導体上の電流分布を示す説明図である。 この発明の実施の形態1による導波管スロットアレーアンテナの給電端子から高周波信号を入力した場合の第三の溝の底面における電流分布を示す説明図である。 この発明の実施の形態1による導波管スロットアレーアンテナの線状導体を設けた場合における給電端子から高周波信号を入力した場合の第三の溝の底面における電流分布を示す説明図である。 図8A~図8Cは、それぞれ誘電体基板の線状導体部分の変形例を示す構成図である。 この発明の実施の形態1による導波管スロットアレーアンテナの変形例の斜視図である。 この発明の実施の形態1による導波管スロットアレーアンテナの変形例の分解斜視図である。 この発明の実施の形態2による導波管スロットアレーアンテナの斜視図である。 この発明の実施の形態2による導波管スロットアレーアンテナの分解斜視図である。 図11のA-A線を通り導波管軸に平行な面での断面図である。 図11のB-B線を通り導波管軸に平行な面での断面図である。 この発明の実施の形態2による導波管スロットアレーアンテナの第一の給電導波管と第二の給電導波管とをz軸方向から見た説明図である。 この発明の実施の形態2による導波管スロットアレーアンテナの第一の給電導波管と第二の給電導波管の変形例をz軸方向から見た説明図である。 この発明の実施の形態2による導波管スロットアレーアンテナの変形例の断面図である。 この発明の実施の形態2による導波管スロットアレーアンテナの変形例の分解斜視図である。 この発明の実施の形態3による導波管スロットアレーアンテナの斜視図である。 この発明の実施の形態3による導波管スロットアレーアンテナの分解斜視図である。 図19のA-A線を通り導波管軸に平行な面での断面図である。 図19のB-B線を通り導波管軸に平行な面での断面図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、本実施の形態による導波管スロットアレーアンテナの斜視図である。また、図2に導波管スロットアレーアンテナの分解斜視図を示す。
 これら図1及び図2に示す導波管スロットアレーアンテナは、第一の導波管部材1、第二の導波管部材4、誘電体基板7を備える。第一の導波管部材1は、第一の溝2と第二の溝3を持つ管軸方向に対してE字状断面を有し、その一端が短絡壁で封止された長尺部材で、表面が導体で形成されている。第一の溝2と第二の溝3はそれぞれ第一の導波管下部と第二の導波管下部を構成している。第二の導波管部材4は、第三の溝5を持つ管軸方向に対してコ字状断面を有し、その一端が短絡壁で封止された長尺部材で、表面が導体で形成されている。また、第三の溝5の幅は第二の溝3の幅と同一に形成され、これら第三の溝5と第二の溝3が対向するよう配置されている。また、第二の導波管部材4における第三の溝5の底面から側面の一部まで、水平偏波放射のためのスロット6が複数設けられている。このスロット6は、その長手方向が第二の導波管部材4の管軸方向に対して垂直となるように設けられており、所定の間隔で複数配置されている。
 図3Aは、誘電体基板7の平面図であり、図3Bは図3AのA-A線断面図である。誘電体基板7は、樹脂材料で成形された平板であり、第二の導波管部材4が配置される面には線状導体8が設けられ、表裏両面に、導体除去部9及び管壁導体10a,10bが形成され、さらにその内部にはビア11が形成されている。
 線状導体8は、その長手方向が第二の導波管部材4の管軸方向に対して設定された角度だけ傾斜するよう形成され、かつ、スロット6の配置間隔に対応して複数配置されている。また、隣り合う線状導体8の傾斜角度は互いに逆方向になるように形成されている。
 導体除去部9は、管壁導体10a,10bの導体パターンの一部を長辺と短辺からなる矩形状に複数除去して形成されており、それぞれの長手方向が第一の導波管部材1の管軸方向に対して平行になるように形成されている。また、隣り合う導体除去部9は、第一の溝2の管軸中心線に対して、互いに反対の位置となるよう、互い違いに配置される。
 ビア11は、誘電体基板7の内部に形成され、管壁導体10aと管壁導体10bを導通するように、導体除去部9の周囲と、第一の導波管部材1と第二の導波管部材4とを接続する位置に所定の間隔で複数形成される。また、ビア11は隣接するビア間からの電磁界の漏れが無いように十分狭い間隔で設けられている。
 管壁導体10a,10bは、第一の溝2を覆う部分と、第一の導波管部材1と第二の導波管部材4とが接する部分に形成される。
 次に、実施の形態1の導波管スロットアレーアンテナの動作について説明する。
 図4は、実施の形態1における導波管スロットアレーアンテナの導波管断面形状を示している。
 図4において、第一の溝2の開放端と管壁導体10bは、接触面において電気的に接続されており、これにより第一の導波管12を形成している。管壁導体10bと第一の溝2の底面はそれぞれ第一の導波管12の幅の広い壁面を構成し、第一の溝2の側面はそれぞれ第一の導波管12の幅の狭い壁面を構成している。このとき、第一の導波管12は電界ベクトルがz軸方向を向く成分を基本モードとして有している。
 一方、第二の溝3の開放端と第二の導波管部材4は、管壁導体10a,10b及びビア11により、接触面において電気的に接続されており、これにより第二の導波管13を形成している。このとき、第二の溝3の開放端と第三の溝5の開放端と管壁導体10a,10bとの接触面に対応する位置に配置されたビア11は第二の導波管13の内部を伝搬する高周波信号が外部に漏れ出さないように密に複数配置される。第二の溝3と第三の溝5のそれぞれの側面及び管壁導体10a,10bとビア11は第二の導波管13の幅の広い壁面を構成しており、第二の溝3の底面及び第三の溝5の底面は、それぞれ第二の導波管13の幅の狭い壁面を構成している。このとき、第二の導波管13は電界ベクトルがx軸方向を向く成分を基本モードとして有している。
 第一の導波管12及び第二の導波管13を、短絡壁で封止されている箇所とは反対側に設けられた図示しない各給電端子から、それぞれ基本モードが導波管内部を伝搬するように高周波信号を入力する場合を考える。このとき、第一の導波管12及び第二の導波管13の一端は短絡壁となっているため、両導波管内部には、いわゆる定在波が励起されることとなる。
 まず、第一の導波管12における動作を説明する。図5は、給電端子から高周波信号を入力した場合の、第一の導波管12の短絡壁付近における第一の導波管12の幅の広い壁面、すなわち管壁導体10b上における電流分布を示している。ただし、図5では導体除去部9を設けない場合の電流分布である。図5に示すように、短絡壁からλg/4の位置において、x軸方向に流れる電流強度は強くなり、λg/2周期で電流強度が強くなる部分が現れる(λgは入力した高周波信号の中心周波数での管内波長を示す)。ただし、電流の向きはλg/2毎に逆方向となる。
 導体除去部9は、x軸方向に大きな電流が流れる位置に、その流れを遮るように配置される。すなわち、第一の導波管12の短絡壁からλg/4の位置に、第一の導波管12の管軸に対してその長手方向が平行になるように、かつ第一の導波管12の管軸中心線から所定の距離だけオフセットさせた位置に配置される。このような位置に配置された導体除去部9により、導体除去部9部分の電流が遮られ、結果として、導体除去部9上にx軸に平行な電界が励起される。最終的に、外部の空間には第一の導波管12の管軸に対して垂直な偏波、すなわち垂直偏波の電波が放射され、導体除去部9が垂直偏波放射スロットとして動作する。
 このとき、隣り合う導体除去部9を第一の導波管12の管軸中心線に対して、互いに反対の位置となるよう、互い違いに配置することで、各導体除去部9から放射される電波の位相を同位相とすることができる。
 また、各導体除去部9からの放射電力量は、第一の導波管12の管軸中心線からのオフセット量と各導体除去部9の大きさ(幅と長さ)で決まるため、所定の励振振幅分布となるように、各導体除去部9の位置と大きさが決定される。
 導体除去部9の周囲に設けられた複数のビア11は、各導体除去部9に励起された電界が誘電体基板7の内部へ漏れ出すことを防止している。
 次に、第二の導波管13における動作を説明する。図6は、給電端子から高周波信号を入力した場合の、第二の導波管13の短絡壁付近における第二の導波管13の幅の狭い壁面、すなわち第三の溝5の底面における電流分布を示している。ただし、図6では、スロット6及び線状導体8を設けない場合の電流分布である。図6に示すように、短絡壁からλg/4の位置において、x軸方向に流れる電流強度は強くなり、λg/2周期で電流強度が強くなる部分が現れる。ただし、電流の向きはλg/2毎に逆方向となる。
 スロット6は、効率よく電波が外部に放射されるよう、x軸方向に大きな電流が流れる位置、すなわち、第二の導波管13の短絡壁からλg/4の位置に配置されるが、第二の導波管13の管軸方向に対して、その長手方向が垂直となるように配置されるため、このままではスロット6部分の電流を効率よく遮断することができない。
 そこで、スロット6の直下に位置する誘電体基板7上に線状導体8を形成することで、第二の導波管13の内部の電磁界分布に擾乱を与える。図7は、線状導体8を設けた場合における、給電端子から高周波信号を入力した場合の、第二の導波管13の短絡壁付近における第二の導波管13の幅の狭い壁面、すなわち第三の溝5の底面における電流分布を示している。ただし、図7では、スロット6を設けない場合の電流分布である。線状導体8は、第二の導波管13の管軸方向に対して設定角度だけ傾斜して形成されているため、線状導体8上に励起される電流によって内部の電磁界分布が乱され、結果として、第二の導波管13の幅の狭い壁面上には、図7に示すように、第二の導波管13の管軸方向に対して斜め方向に流れる電流が生じる。スロット6により、この斜め方向に流れる電流は遮られ、結果として、スロット6上にy軸に平行な電界が励起され、最終的に外部の空間には第二の導波管13の管軸に対して平行な偏波、すなわち水平偏波の電波が放射される。
 このとき、隣り合う線状導体8の傾斜角度を互いに逆方向になるように形成することで、スロット6上から放射される電波の位相を同位相とすることができる。
 また、スロット6からの放射電力量は、スロット6の幅と長さ、線状導体8の幅と長さ、傾斜角度などで決まるため、所定の励振振幅分布となるように、スロット6及び線状導体8の形状が決定される。
 このように、実施の形態1の導波管スロットアレーアンテナでは、第一の導波管部材1と、スロット6を設けた第二の導波管部材4とで、導体パターンを形成した誘電体基板7を挟んで構成され、誘電体基板7に設けた導体除去部9が垂直偏波放射スロットとして動作し、その位置と形状により垂直偏波の放射電力量を調整することができ、さらに線状導体8の形状により水平偏波の放射電力量を調整することができる。
 すなわち、誘電体基板7上の導体パターン形状の修正のみで、放射電力量の調整ができるため、実施の形態1の導波管スロットアレーアンテナでは、アンテナ開発プロセスにおける再試作の際に、導波管の再製造が不要となり、結果として開発コストを低減することができる。
 なお、図3Aに示す例では、それぞれの線状導体8を直線状の1本の導体パターンとし、これらをスロット6の直下に配置した。しかし、第二の導波管13の幅の狭い壁面上に管軸方向に対して斜め方向に流れる電流を発生することができれば、線状導体8の形状と導体パターンの本数は任意でよい。例えば、図8Aに示すように、複数の平行な直線状の導体パターンで構成してもよい。なお、ここで、線状導体8としての機能を有するものであれば、複数の導体パターンが完全に平行で無くても良い。また、図8Bに示すように直線状導体パターンの端部を屈曲させる構成、あるいは、図8Cに示すように、1本の直線状導体パターンの両側に、他端を管壁導体10aに接続するように2本の直線状の伸長導体を配置する構成であってもよい。図8Cに示す構成の場合、伸長導体は管軸方向に直交する方向に同一直線上となるよう設けられている。
 図8Aの構成の場合、直線状導体パターンが1本だけの場合に比べて、放射電力量の調整の自由度を高めることができる。また、図8Bに示す構成の場合、直線状導体パターンの管軸方向の長さを短縮することができ、隣り合う線状導体8間の相互結合の影響を低減することができる。さらに、図8Cに示す構成の場合、線状導体8によって生じる寄生リアクタンス成分を両側に配置した伸長導体によってキャンセルさせることができることから、アンテナ設計を容易にすることができるといった効果がある。
 また、図3Bに示すように、上記例では、線状導体8を誘電体基板7の管壁導体10aが位置する面のみに配置しているが、他方の面(管壁導体10bが位置する面)にも同様に配置し、両者をビア11によって接続するような構成としてもよい。
 また、図1~図3に示す例では、スロット6と導体除去部9を同数配置しているが、スロット6と導体除去部9との設置個数が異なってもよい。
 また、図1~図4に示した導波管スロットアレーアンテナでは、第一の導波管12は、その断面形状が長辺と短辺からなる、いわゆる矩形導波管であるが、図9及び図10に変形例として示すように、第一の溝2の管軸中心線上に設定突出長の障壁である第一のリッジ導体14を設け、第一の導波管12が、いわゆるリッジ導波管であるような構成としてもよい。なお、図9は変形例の斜視図、図10は変形例の分解斜視図である。
 以上説明したように、実施の形態1の導波管スロットアレーアンテナによれば、第一の導波管を構成するための第一の溝と、第二の導波管の一方を構成するための第二の溝を有する第一の導波管部材と、第二の溝と同一幅で、第二の導波管の他方を構成するための第三の溝を有し、第三の溝と第二の溝とが対向して配置されると共に、第三の溝の底面に管軸方向に対して直交する複数のスロットが設けられた第二の導波管部材と、第一の導波管部材と第二の導波管部材との間に設けられ、第一の溝と第二の溝を覆う誘電体基板と、誘電体基板の両面の、第一の導波管部材と第二の導波管部材に接する部分と第一の溝を覆う部分とに設けられた管壁導体と、誘電体基板上の複数のスロットに対応した位置に設けられ、管軸方向に対してそれぞれ斜めに設けられた複数の線状導体と、管壁導体の第一の溝の位置に設けられ、管軸方向に対してそれぞれ平行でかつ矩形の複数の導体除去部と、誘電体基板を介して両面の管壁導体を接続する複数のビアとを備えたので、誘電体基板上の導体パターンの修正のみで放射電力量の調整ができるため、アンテナ開発プロセスにおける再試作の際に、導波管の再製造が不要となり、結果として開発コストを抑えることができる。
 また、実施の形態1の導波管スロットアレーアンテナによれば、複数の線状導体は、それぞれ複数の平行な直線状導体パターンからなるようにしたので、放射電力量の調整の自由度を高めることができる。
 また、実施の形態1の導波管スロットアレーアンテナによれば、複数の線状導体におけるそれぞれの線状導体の管軸方向に直交する方向の両側に、一端を管壁導体に接続し他端を線状導体方向に延伸した伸長導体を誘電体基板上に備えるようにしたので、線状導体によって生じる寄生リアクタンス成分を伸長導体によってキャンセルさせることができるため、アンテナ設計を容易にすることができる。
 また、実施の形態1の導波管スロットアレーアンテナによれば、線状導体両側の伸長導体は、それぞれ同一線上に設けられているようにしたので、さらに、アンテナ設計を容易にすることができる。
 また、実施の形態1の導波管スロットアレーアンテナによれば、第一の溝の管軸方向に直交する方向の中央部に、管軸方向と平行なリッジ導体を備えたので、第一の導波管をリッジ導波管として構成することができる。
 また、実施の形態1の導波管スロットアレーアンテナによれば、第一の導波管部材及び第二の導波管部材の管軸方向両端のうち、一端を短絡壁として他端を給電端子とし、複数の線状導体は、隣り合う線状導体の傾斜方向が管軸方向に対して互いに異なり、かつ、複数の導体除去部は、隣り合う導体除去部の位置が第一の溝の管軸方向中心線に対して互いに反対側になる配置としたので、複数のスロット上から放射される電波の位相を同位相とすることができ、かつ、複数の導体除去部から放射される電波の位相を同位相とすることができる。
 また、実施の形態1の導波管スロットアレーアンテナによれば、隣り合う導体除去部の中心間距離は、第一の溝と管壁導体で構成される第一の導波管の設計中心周波数における管内波長の2分の1であり、隣り合うスロットの中心間距離は、第二の溝及び第三の溝と管壁導体とビアで構成される第二の導波管の設計中心周波数における管内波長の2分の1であり、短絡壁と短絡壁に隣接する導体除去部の中心との管軸方向の距離と、短絡壁と短絡壁に隣接するスロットの中心との管軸方向の距離は、第一の導波管及び第二の導波管の設計中心周波数における管内波長の4分の1であるようにしたので、垂直偏波の電波と水平偏波の電波を効率よく外部に放射することができる。
 また、実施の形態1の導波管スロットアレーアンテナによれば、導波管スロットアレーアンテナをサブアレーとして、管軸方向と直交する方向に複数配列するようにしたので、管軸方向と直交する方向に密に配列したアンテナを得ることができる。
実施の形態2.
 実施の形態2は、導波管中央部に導波管T分岐構造を設け、分岐する導波管を給電端子とする例である。図11は、実施の形態2による導波管スロットアレーアンテナの斜視図である。また、図12に導波管スロットアレーアンテナの分解斜視図を示す。さらに、図13は図11のA-A線を通り導波管軸に平行な面での断面図を、図14は図11のB-B線を通り導波管軸に平行な面での断面図を示している。また、図15は、第一の給電導波管21と第二の給電導波管22とをz軸方向から見た説明図である。
 これらの図に示すように、実施の形態2の導波管スロットアレーアンテナは、第一の導波管部材1a、第二の導波管部材4、誘電体基板7、線状導体8、導体除去部9、管壁導体10a,10b、ビア11、第一の給電導波管21、第二の給電導波管22を備えている。第一の導波管部材1aは、実施の形態1と同様に第一の溝2と第二の溝3とが形成され、かつ、その管軸方向両端が短絡壁で封止されている。また、第一の溝2と第二の溝3の底面の管軸方向中央部にそれぞれ矩形開口が形成され、それぞれの矩形開口に第一の給電導波管21と第二の給電導波管22が接続されている。第一の給電導波管21及び第二の給電導波管22は、図15に示すように、断面形状が長辺と短辺からなる矩形の導波管であり、その管軸方向がz軸と平行となるように接続されている。また、第一の給電導波管21は、その幅の広い壁面がx軸に平行となるように設けられており、一方、第二の給電導波管22は、その幅の広い壁面がy軸に平行となるように設けられている。
 線状導体8は、実施の形態1と同様に、その長手方向が第二の導波管部材4の管軸方向に対して所定の傾斜角度だけ傾いて形成され、スロット6の配置間隔に対応して複数配置されている。ただし、第二の給電導波管22に隣接する二つの線状導体パターンの傾斜角度は互いに同一方向になるように形成されており、その他の隣り合う二つの線状導体パターンの傾斜角度は互いに逆方向になるように形成されている。
 これ以外の構成は実施の形態1の導波管スロットアレーアンテナと同様であるため、対応する部分に同一符号を付してその説明を省略する。
 次に、実施の形態2の導波管スロットアレーアンテナの動作について説明する。
 実施の形態2の導波管スロットアレーアンテナは、実施の形態1の導波管スロットアレーアンテナと同様に、第一の溝2と管壁導体10bは第一の導波管12を形成しており、第一の導波管12は電界ベクトルがz軸方向を向く成分を基本モードとして有している。また、第二の溝3と第二の導波管部材4は、実施の形態1の構成と同様に、管壁導体10a,10b及びビア11により、接触面において電気的に接続されており、これにより第二の導波管13を形成している。第二の導波管13は電界ベクトルがx軸方向を向く成分を基本モードとして有している。
 ここで、第一の導波管12は、第一の給電導波管21における第一の導波管12への接続部とは反対側の開放端を、また、第二の導波管13は、第二の給電導波管22における第二の導波管13への接続部とは反対側の開放端を、それぞれ給電端子として、第一の給電導波管21あるいは第二の給電導波管22の基本モードが効率よく伝搬するように、高周波信号をそれぞれ入力する場合を考える。
 まず、第一の導波管12における動作を説明する。第一の給電導波管21は電界ベクトルがy軸方向を向く成分を基本モードとして有し、第一の給電導波管21と第一の導波管12の接続部は、いわゆる導波管のE面T分岐構造をなしており、結果として、第一の給電導波管21から見て第一の導波管12の一方の短絡壁側と他方の短絡壁側には第一の導波管12の基本モードがそれぞれ逆位相で入力されることとなる。さらに、第一の導波管12の両端は短絡壁となっているため、その内部には、いわゆる定在波が励起される。
 実施の形態1における動作と同様に、導体除去部9からは、外部の空間に、第一の導波管12の管軸に対して垂直な偏波、すなわち垂直偏波の電波が放射され、導体除去部9は垂直偏波放射スロットとして動作する。このとき、上述したように、第一の給電導波管21から見て第一の導波管12の両側には第一の導波管12の基本モードがそれぞれ逆位相で入力されるので、第一の給電導波管21に隣接する二つの導体除去部9は、これら導体除去部9から放射される電波の位相を同位相とするため、第一の導波管12の管軸中心線に対して、互いに反対の位置にくるように配置されている。さらに、実施の形態1と同様に、隣り合う導体除去部9を第一の導波管12の管軸中心線に対して、互いに反対の位置となるよう、互い違いに配置することで、各導体除去部9から放射される電波の位相を同位相としている。
 次に、上記第二の導波管13における動作を説明する。第二の給電導波管22は電界ベクトルがx軸方向を向く成分を基本モードとして有し、第二の給電導波管22と第二の導波管13の接続部は、いわゆる導波管のH面T分岐構造をなしており、結果として、第二の給電導波管22から見て第二の導波管13の両側には第二の導波管13の基本モードがそれぞれ同位相で入力されることとなる。さらに、第二の導波管13の両端は短絡壁となっているため、その内部には、いわゆる定在波が励起される。
 実施の形態1の場合と同様に、誘電体基板7上に設けられた線状導体8により導波管内部の電磁界分布が乱さることで、第二の導波管13の幅の狭い壁面上に管軸方向に対して斜め方向に流れる電流が生じ、スロット6がこれを遮ることで、最終的に、外部の空間に、第二の導波管13の管軸に対して平行な偏波、すなわち水平偏波の電波が放射される。
 このとき、上述したように、第二の給電導波管22から見て第二の導波管13の両側には第二の導波管13の基本モードがそれぞれ同位相で入力されるので、第二の給電導波管22に隣接する二つのスロット6から放射される電波の位相を同位相とするため、これらスロットに対応する二つの線状導体8の線状導体パターンの傾斜角度は互いに同一方向となるように形成されている。一方、その他の線状導体パターンにおいては、隣り合う線状導体パターンの傾斜角度を互いに逆方向になるように形成することで、実施の形態1の場合と同様に、スロット6上から放射される電波の位相を同位相としている。
 このように、実施の形態2の導波管スロットアレーアンテナでは、第一の給電導波管21及び第二の給電導波管22が接続された第一の導波管部材1aと、スロット6を設けた第二の導波管部材4とで、導体パターンを形成した誘電体基板7を挟んで構成され、誘電体基板7に設けた導体除去部9が垂直偏波放射スロットとして動作し、その位置と形状により垂直偏波の放射電力量を調整することができ、さらに、線状導体8の形状により水平偏波の放射電力量を調整することができる。すなわち、実施の形態2では、誘電体基板7の導体パターン形状のみで、垂直偏波あるいは水平偏波を放射する各スロットの放射電力量を調整することができるため、実施の形態1と同様に、開発コストを低減することができる。
 さらに、実施の形態2の導波管スロットアレーアンテナでは、第一の給電導波管21及び第二の給電導波管22は、電波が放射される面とは反対側の面に接続されているため、サブアレーを2次元的に密に配列することが可能となる。すなわち、導波管スロットアレーアンテナでは、その給電端子には、分配合成回路または送受信機といったものが接続されるが一般的である。ここで、図11に示すような導波管スロットアレーアンテナをサブアレーとしてy軸方向に複数設置することを考えた場合、給電端子となる第一の給電導波管21及び第二の給電導波管22は、電波が放射される面とは反対側に位置することから、分配合成回路または送受信機の構成がy軸方向への配列には影響しないことになる。従って、サブアレーをx軸方向だけでなく、y軸方向にも密に配列することが可能となる。
 なお、図11~図14に示す例では、第一の導波管12の中央部に第一の給電導波管21を接続しているが、配列された複数の導体除去部9のうち、任意の隣り合う二つの導体除去部9の中間部に対応する位置において、第一の給電導波管21を第一の導波管12に接続してもよい。同様に、図11~図14では、第二の導波管13の中央部に第二の給電導波管22を接続しているが、配列された複数のスロット6のうち、任意の隣り合う二つのスロット6の中間部に対応する位置において、第二の給電導波管22を第二の導波管13に接続してもよい。これにより、給電端子の位置に自由度をもつことができ、結果として、背面に接続される送受信機の配置または分配合成回路の構成に多くの選択肢を持たせることができ、導波管スロットアレーアンテナの設計自由度を向上させることができる。
 また、図15に示したように、第一の給電導波管21及び第二の給電導波管22は矩形導波管であるが、図16に示すように、第一の給電導波管21及び第二の給電導波管22の幅の広い壁面において、管軸中心線上に所定の突出長を有した障壁となる第二のリッジ導体23を設け、いわゆるダブルリッジ導波管であるような構成としてもよい。これにより、第一の給電導波管21及び第二の給電導波管22の幅の広い壁面の幅を小型化することができ、結果として、第一の給電導波管21及び第二の給電導波管22と、それらに隣接する導体除去部9あるいはスロット6との間の相互作用を低減することが可能となる。なお、これらの相互作用は、放射特性の劣化の原因となる。
 さらに、図11~図16で示した導波管スロットアレーアンテナでは、第二の導波管13と第二の給電導波管22との接続部に対向する第三の溝5の溝の底面及び誘電体基板7上には付加構造を備えていないが、図17に示すように、第二の導波管13と第二の給電導波管22との接続部に対向する第三の溝5の溝の底面に、導波管の管軸方向に対して直交して第二の導波管13の管路の一部を遮るための誘導性障壁24を設けても良い。
 また、図18に示すように、誘電体基板7上の第二の導波管13と第二の給電導波管22との接続部に、管壁導体10aと電気的に接続されるよう、導波管の管軸方向に対して直交する線状の短絡導体25を形成してもよい。これにより、第二の給電導波管22から見た第二の導波管13との接続部における反射特性を良好とすることができる。
 以上説明したように、実施の形態2の導波管スロットアレーアンテナによれば、第一の導波管を構成するための第一の溝と、第二の導波管の一方を構成するための第二の溝を有し、かつ、管軸方向両端に短絡壁を有する第一の導波管部材と、第二の溝と同一幅で、第二の導波管の他方を構成するための第三の溝を有し、第三の溝と第二の溝とが対向して配置されると共に、第三の溝の底面に管軸方向に対して直交する複数のスロットが設けられ、かつ、管軸方向両端に短絡壁を有する第二の導波管部材と、第一の導波管部材と第二の導波管部材との間に設けられ、第一の溝と第二の溝を覆う誘電体基板と、誘電体基板の両面の、第一の導波管部材と第二の導波管部材に接する部分と第一の溝を覆う部分とに設けられた管壁導体と、誘電体基板上の複数のスロットに対応した位置に設けられ、管軸方向に対してそれぞれ斜めに設けられた複数の線状導体と、管壁導体の第一の溝の位置に設けられ、管軸方向に対してそれぞれ平行でかつ矩形の複数の導体除去部と、誘電体基板を介して両面の管壁導体を接続する複数のビアと、第一の溝の底面に、隣り合う二つの導体除去部の間に位置するよう設けられた給電端子となる断面矩形の第一の給電導波管と、第二の溝の底面に、隣り合う二つのスロットの間に位置するよう設けられた給電端子となる断面矩形の第二の給電導波管とを備え、複数の線状導体のうち、第二の給電導波管の設置位置に隣接する二つの線状導体の傾斜方向が同一方向で、その他の隣り合う線状導体は互いに反対方向であるようにしたので、誘電体基板上の導体パターンの修正のみで放射電力量の調整ができるため、アンテナ開発プロセスにおける再試作の際に、導波管の再製造が不要となり、結果として開発コストを抑えることができる。
 また、実施の形態2の導波管スロットアレーアンテナによれば、複数の導体除去部は、隣り合う導体除去部の位置が第一の溝の管軸方向中心線に対して互いに反対側になる配置であり、かつ、隣り合う導体除去部の中心間距離は、第一の溝と管壁導体で構成される第一の導波管の設計中心周波数における管内波長の2分の1であり、隣り合うスロットの中心間距離は、第二の溝及び第三の溝と管壁導体とビアで構成される第二の導波管の設計中心周波数における管内波長の2分の1であり、短絡壁と短絡壁に隣接する導体除去部の中心との管軸方向の距離と、短絡壁と短絡壁に隣接するスロットの中心との管軸方向の距離は、第一の導波管及び第二の導波管の設計中心周波数における管内波長の4分の1であるようにしたので、垂直偏波の電波と水平偏波の電波を効率よく外部に放射することができる。
 また、実施の形態2の導波管スロットアレーアンテナによれば、第三の溝の底面の第二の給電導波管に対応する位置に、管軸方向に直交し第二の導波管の管路の一部を遮るための誘導性障壁を設けたので、第二の給電導波管から見た第二の導波管との接続部における反射特性を良好とすることができる。
 また、実施の形態2の導波管スロットアレーアンテナによれば、誘電体基板の第二の給電導波管に対応する位置に、両端を管壁導体に接続し、かつ、管軸方向に直交する短絡導体を設けたので、第二の給電導波管から見た第二の導波管との接続部における反射特性を良好とすることができる。
 また、実施の形態2の導波管スロットアレーアンテナによれば、第一の給電導波管及び第二の給電導波管のうち少なくとも一方の幅の広い管壁面に、第一の給電導波管及び第二の給電導波管の管軸方向と平行な第二のリッジ導体を設けたので、放射特性の劣化を低減することができる。
 また、実施の形態2の導波管スロットアレーアンテナによれば、導波管スロットアレーアンテナをサブアレーとして、管軸方向及び管軸方向と直交する方向のうち少なくとも一方の方向に複数配列したので、2次元的に密に配列したアンテナを得ることができる。
実施の形態3.
 実施の形態3は、導波管中央部に給電プローブ構造を設け、その根元の給電端子を入力端子とする例である。図19は、実施の形態3による導波管スロットアレーアンテナの斜視図である。また、図20に導波管スロットアレーアンテナの分解斜視図を示す。さらに、図21は図19のA-A線を通り導波管軸に平行な面での断面図を、図22は図19のB-B線を通り導波管軸に平行な面での断面図を示している。
 これらの図に示すように、実施の形態3の導波管スロットアレーアンテナは、第一の導波管部材1b、第二の導波管部材4、誘電体基板7、線状導体8、導体除去部9、管壁導体10a,10b、ビア11、第一の給電線路31、第二の給電線路32、第一の給電プローブ33、第二の給電プローブ34を備えている。第一の導波管部材1bは、実施の形態1と同様に第一の溝2と第二の溝3とが形成され、かつ、その管軸方向両端が短絡壁で封止されている。また、第一の溝2と第二の溝3の底面の管軸方向中央部にそれぞれ円形開口が形成され、それぞれの円形開口に第一の給電線路31と第二の給電線路32が接続されている。第一の給電線路31及び第二の給電線路32は、同軸線路からなるものであり、第一の給電線路31の内導体には第一の給電プローブ33が接続され、第二の給電線路32の内導体には第二の給電プローブ34が接続されている。
 第二の給電線路32の接続位置に対応した誘電体基板7上の位置には、プローブ導体35が形成されている。プローブ導体35の一端は管壁導体10aに接続され、他端は、第二の給電プローブ34と接続されている。第二の給電プローブ34の先端は誘電体基板7に形成された給電プローブ挿入のための開口部を介して誘電体基板7の管壁導体10a側に引き出され、半田付け等の方法によってプローブ導体35と電気的に接続されている。これにより、第二の給電プローブ34及びプローブ導体35からなるL字状プローブを構成している。なお、第一の給電線路31及び第二の給電線路32の外側導体は、導波管の壁面に接続されている。
 複数の線状導体8は、実施の形態1と同様に、その長手方向が第二の導波管部材4の管軸方向に対して所定の傾斜角度だけ傾斜して形成され、複数のスロット6の配置間隔に対応して複数配置されている。ただし、第二の給電線路32の接続位置を中心として隣接する二つの線状導体8の傾斜角度は互いに同一方向になるように形成されており、その他の隣り合う二つの線状導体8の傾斜角度は互いに逆方向になるように形成されている。
 導体除去部9は、実施の形態1と同様に、管壁導体10a,10bの導体パターンの一部を長辺と短辺からなる矩形状に除去して形成され、その長手方向が第一の導波管部材1bの管軸方向に対して平行になるように形成されている。また、隣り合う導体除去部9は、第一の溝2の管軸中心線に対して、互いに反対の位置となるよう、互い違いに配置されるが、第一の給電線路31の接続位置に対応した位置を中心として隣接する二つの導体除去部9については、共に第一の溝2の管軸中心線に対して同一の側に位置するように形成されている。その他の構成については実施の形態1と同様であるため、対応する部分に同一符号を付してその説明を省略する。
 次に、本発明の実施の形態3における導波管スロットアレーアンテナの動作について説明する。
 実施の形態3の導波管スロットアレーアンテナは、実施の形態1と同様に、第一の溝2と管壁導体10bは第一の導波管12を形成しており、第一の導波管12は電界ベクトルがz軸方向を向く成分を基本モードとして有している。また、第二の溝3と第二の導波管部材4は、管壁導体10a、管壁導体10b及びビア11とで電気的に接続されており、これにより第二の導波管13を形成している。第二の導波管13は電界ベクトルがx軸方向を向く成分を基本モードとして有している。
 ここで、第一の導波管12は第一の給電線路31を、また、第二の導波管13は第二の給電線路32をそれぞれ給電端子として、高周波信号を入力する場合を考える。
 まず、上記第一の導波管12における動作を説明する。第一の給電線路31に入力された高周波信号によって、第一の給電線路31の内導体に接続された第一の給電プローブ33上には電流が流れる。この電流によって、第一の給電線路31から見て第一の導波管12の両側には第一の導波管12の基本モードがそれぞれ同位相で励起されることとなる。さらに、第一の導波管12の両端は短絡壁となっているため、その内部には、いわゆる定在波が励起される。
 実施の形態1における動作と同様に、導体除去部9からは、外部の空間に、第一の導波管12の管軸方向に対して直交する偏波、すなわち垂直偏波の電波が放射され、導体除去部9は垂直偏波放射スロットとして動作する。
 このとき、上述したように、第一の給電線路31から見て第一の導波管12の両側には第一の導波管12の基本モードが同位相で入力されるので、第一の給電プローブ33に隣接する二つの導体除去部9から放射される電波の位相を同位相とするため、これらの導体除去部9は、第一の導波管12の管軸中心線に対して、同一の側に位置するように配置されている。その他の隣り合う導体除去部9については、実施の形態1の場合と同様に、第一の導波管12の管軸中心線に対して、互いに反対の位置にくるように、互い違いに配置することで、各導体除去部9から放射される電波の位相を同位相としている。
 次に、上記第二の導波管13における動作を説明する。第二の給電線路32に入力された高周波信号によって、第二の給電線路32の内導体に接続された第二の給電プローブ34及びプローブ導体35上には電流が流れる。このうち、プローブ導体35上を流れる電流によって、第二の給電線路32から見て第二の導波管13の両側には第二の導波管13の基本モードがそれぞれ同位相で励起されることとなる。さらに、第二の導波管13の両端は短絡壁となっているため、その内部には、いわゆる定在波が励起される。
 実施の形態1における動作と同様に、誘電体基板7上に設けられた線状導体8により導波管内部の電磁界分布が乱さることで、第二の導波管13の幅の狭い壁面上に管軸方向に対して斜め方向に流れる電流が生じ、スロット6がこれを遮ることで、最終的に、外部の空間に、第二の導波管13の管軸に対して平行な偏波、すなわち水平偏波の電波が放射される。
 このとき、上述したように、第二の給電線路32から見て第二の導波管13の両側には第二の導波管13の基本モードがそれぞれ同位相で励起されるので、第二の給電プローブ34に隣接する二つのスロット6から放射される電波の位相を同位相とするため、その二つのスロット6に対応する二つの線状導体8の傾斜角度は互いに同一方向となるように形成されている。一方、その他の線状導体8においては、隣り合う線状導体8の傾斜角度を互いに逆方向になるように形成することで、実施の形態1と同様に、スロット6上から放射される電波の位相を同位相としている。
 このように、実施の形態3の導波管スロットアレーアンテナでは、第一の給電線路31及び第二の給電線路32が接続された第一の導波管部材1bと、スロット6を設けた第二の導波管部材4とで、導体パターンを形成した誘電体基板7を挟んで構成され、誘電体基板7に設けた導体除去部9が垂直偏波放射スロットとして動作し、その位置と形状により垂直偏波の放射電力量を調整することができ、さらに、線状導体8の形状により水平偏波の放射電力量を調整することができる。
 すなわち、実施の形態3では、誘電体基板7の導体パターン形状のみで、垂直偏波あるいは水平偏波を放射する各スロットの放射電力量を調整することができるため、実施の形態1と同様に、開発コストを低減することができる。
 さらに、実施の形態3の導波管スロットアレーアンテナでは、第一の給電線路31及び第二の給電線路32は、電波が放射される面とは反対側の面に接続されているため、サブアレーを2次元的に密に配列することが可能となると共に、同軸コネクタをインタフェースとする送受信機等の他のコンポーネントとの接続が容易となる。
 なお、図19~図22に示す例では、第一の導波管12の中央部に第一の給電線路31が接続されるよう構成したが、配列された複数の導体除去部9のうち、任意の隣り合う二つの導体除去部9の中間部に対応する位置で、第一の給電線路31を第一の導波管12に接続してもよい。同様に、上記例では、第二の導波管13の中央部に第二の給電線路32が接続されているが、配列された複数のスロット6のうち、任意の隣り合う二つのスロット6の中間部に対応する位置で、第二の給電線路32を第二の導波管13に接続してもよい。これにより、給電端子の位置に自由度を持たせることができることから、背面に接続される送受信機等の配置位置に選択肢を持たせることができ、その結果、アレーアンテナの設計自由度を向上させることができる。
 また、上記例では、第二の給電プローブ34とプローブ導体35によりL字状のプローブを構成したが、誘電体基板7上にプローブ導体35を設けず、直接第二の給電プローブ34をL字状に屈折させ、その先端を導波管壁面に接続するように構成してもよい。
 以上説明したように、実施の形態3の導波管スロットアレーアンテナによれば、第一の導波管を構成するための第一の溝と、第二の導波管の一方を構成するための第二の溝を有し、かつ、管軸方向両端に短絡壁を有する第一の導波管部材と、第二の溝と同一幅で、第二の導波管の他方を構成するための第三の溝を有し、第三の溝と第二の溝とが対向して配置されると共に、第三の溝の底面に管軸方向に対して直交する複数のスロットが設けられ、かつ、管軸方向両端に短絡壁を有する第二の導波管部材と、第一の導波管部材と第二の導波管部材との間に設けられ、第一の溝と第二の溝を覆う誘電体基板と、誘電体基板の両面の、第一の導波管部材と第二の導波管部材に接する部分と第一の溝を覆う部分とに設けられた管壁導体と、誘電体基板上の複数のスロットに対応した位置に設けられ、管軸方向に対してそれぞれ斜めに設けられた複数の線状導体と、管壁導体の第一の溝の位置に設けられ、管軸方向に対してそれぞれ平行でかつ矩形の複数の導体除去部と、誘電体基板を介して両面の管壁導体を接続する複数のビアと、第一の溝の底面に、隣り合う二つの導体除去部の間に位置するよう設けられた給電端子となる第一の給電線路と、第二の溝の底面に、隣り合う二つのスロットの間に位置するよう設けられた給電端子となる第二の給電線路と、第一の給電線路に接続され、第一の導波管内に位置する第一の給電プローブと、第二の給電線路に一端が接続されると共に、他端が管壁導体に接続され、かつ第二の導波管内に位置する第二の給電プローブとを備え、複数の線状導体のうち、第二の給電プローブの設置位置に隣接する二つの線状導体の傾斜方向が同一方向で、その他の隣り合う線状導体は互いに反対方向であり、かつ、第一の給電プローブに隣接する二つの導体除去部が、第一の導波管の管軸中心線に対して互いに同一側の位置で、その他の隣り合う二つの導体除去部が、第一の導波管の管軸中心線に対して互いに反対側の位置となるように配置されるようにしたので、誘電体基板上の導体パターンの修正のみで放射電力量の調整ができるため、アンテナ開発プロセスにおける再試作の際に、導波管の再製造が不要となり、結果として開発コストを抑えることができる。
 また、実施の形態3の導波管スロットアレーアンテナによれば、隣り合う導体除去部の中心間距離は、第一の溝と前記管壁導体で構成される第一の導波管の設計中心周波数における管内波長の2分の1であり、隣り合うスロットの中心間距離は、第二の溝及び第三の溝と管壁導体とビアで構成される第二の導波管の設計中心周波数における管内波長の2分の1であり、短絡壁と短絡壁に隣接する導体除去部の中心との管軸方向の距離と、短絡壁と短絡壁に隣接するスロットの中心との管軸方向の距離は、第一の導波管及び第二の導波管の設計中心周波数における管内波長の4分の1であるようにしたので、垂直偏波の電波と水平偏波の電波を効率よく外部に放射することができる。
 本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意な構成要素の変形、もしくは各実施の形態において任意な構成要素の省略が可能である。
 以上のように、この発明に係る導波管スロットアレーアンテナは、水平偏波を放射すると共に垂直偏波を放射する直交偏波共用の構成に関するものであり、無線通信におけるアンテナまたはレーダのアンテナに用いるのに適している。
 1,1a,1b 第一の導波管部材、2 第一の溝、3 第二の溝、4 第二の導波管部材、5 第三の溝、6 スロット、7 誘電体基板、8 線状導体、9 導体除去部、10a,10b 管壁導体、11 ビア、12 第一の導波管、13 第二の導波管、14 第一のリッジ導体、21 第一の給電導波管、22 第二の給電導波管、23 第二のリッジ導体、24 誘導性障壁、25 短絡導体、31 第一の給電線路、32 第二の給電線路、33 第一の給電プローブ、34 第二の給電プローブ、35 プローブ導体。

Claims (16)

  1.  第一の導波管を構成するための第一の溝と、第二の導波管の一方を構成するための第二の溝を有する第一の導波管部材と、
     前記第二の溝と同一幅で、前記第二の導波管の他方を構成するための第三の溝を有し、当該第三の溝と前記第二の溝とが対向して配置されると共に、前記第三の溝の底面に管軸方向に対して直交する複数のスロットが設けられた第二の導波管部材と、
     前記第一の導波管部材と前記第二の導波管部材との間に設けられ、前記第一の溝と前記第二の溝を覆う誘電体基板と、
     前記誘電体基板の両面の、前記第一の導波管部材と前記第二の導波管部材に接する部分と前記第一の溝を覆う部分とに設けられた管壁導体と、
     前記誘電体基板上の前記複数のスロットに対応した位置に設けられ、管軸方向に対してそれぞれ斜めに設けられた複数の線状導体と、
     前記管壁導体の前記第一の溝の位置に設けられ、管軸方向に対してそれぞれ平行でかつ矩形の複数の導体除去部と、
     前記誘電体基板を介して前記両面の管壁導体を接続する複数のビアとを備えたことを特徴とする導波管スロットアレーアンテナ。
  2.  前記複数の線状導体は、それぞれ複数の平行な直線状導体パターンからなることを特徴とする請求項1記載の導波管スロットアレーアンテナ。
  3.  前記複数の線状導体におけるそれぞれの線状導体の管軸方向に直交する方向の両側に、一端を前記管壁導体に接続し他端を前記線状導体方向に延伸した伸長導体を前記誘電体基板上に備えたことを特徴とする請求項1記載の導波管スロットアレーアンテナ。
  4.  前記線状導体両側の伸長導体は、それぞれ同一線上に設けられていることを特徴とする請求項3記載の導波管スロットアレーアンテナ。
  5.  前記第一の溝の管軸方向に直交する方向の中央部に、管軸方向と平行な第一のリッジ導体を備えたことを特徴とする請求項1から請求項4のうちのいずれか1項記載の導波管スロットアレーアンテナ。
  6.  前記第一の導波管部材及び前記第二の導波管部材の管軸方向両端のうち、一端を短絡壁として他端を給電端子とし、
     前記複数の線状導体は、隣り合う線状導体の傾斜方向が管軸方向に対して互いに異なり、かつ、前記複数の導体除去部は、隣り合う導体除去部の位置が前記第一の溝の管軸方向中心線に対して互いに反対側になる配置であることを特徴とする請求項1から請求項4のうちのいずれか1項記載の導波管スロットアレーアンテナ。
  7.  隣り合う前記導体除去部の中心間距離は、前記第一の溝と前記管壁導体で構成される第一の導波管の設計中心周波数における管内波長の2分の1であり、
     隣り合う前記スロットの中心間距離は、前記第二の溝及び前記第三の溝と前記管壁導体と前記ビアで構成される第二の導波管の設計中心周波数における管内波長の2分の1であり、
     前記短絡壁と当該短絡壁に隣接する導体除去部の中心との管軸方向の距離と、前記短絡壁と当該短絡壁に隣接するスロットの中心との管軸方向の距離は、前記第一の導波管及び前記第二の導波管の設計中心周波数における管内波長の4分の1であることを特徴とする請求項6記載の導波管スロットアレーアンテナ。
  8.  請求項1から請求項4のうちのいずれか1項記載の導波管スロットアレーアンテナをサブアレーとして、管軸方向と直交する方向に複数配列したことを特徴とする導波管スロットアレーアンテナ。
  9.  第一の導波管を構成するための第一の溝と、第二の導波管の一方を構成するための第二の溝を有し、かつ、管軸方向両端に短絡壁を有する第一の導波管部材と、
     前記第二の溝と同一幅で、前記第二の導波管の他方を構成するための第三の溝を有し、当該第三の溝と前記第二の溝とが対向して配置されると共に、前記第三の溝の底面に管軸方向に対して直交する複数のスロットが設けられ、かつ、管軸方向両端に短絡壁を有する第二の導波管部材と、
     前記第一の導波管部材と前記第二の導波管部材との間に設けられ、前記第一の溝と前記第二の溝を覆う誘電体基板と、
     前記誘電体基板の両面の、前記第一の導波管部材と前記第二の導波管部材に接する部分と前記第一の溝を覆う部分とに設けられた管壁導体と、
     前記誘電体基板上の前記複数のスロットに対応した位置に設けられ、管軸方向に対してそれぞれ斜めに設けられた複数の線状導体と、
     前記管壁導体の前記第一の溝の位置に設けられ、管軸方向に対してそれぞれ平行でかつ矩形の複数の導体除去部と、
     前記誘電体基板を介して前記両面の管壁導体を接続する複数のビアと、
     前記第一の溝の底面に、隣り合う二つの導体除去部の間に位置するよう設けられた給電端子となる断面矩形の第一の給電導波管と、
     前記第二の溝の底面に、隣り合う二つのスロットの間に位置するよう設けられた給電端子となる断面矩形の第二の給電導波管とを備え、
     前記複数の線状導体のうち、前記第二の給電導波管の設置位置に隣接する二つの線状導体の傾斜方向が同一方向で、その他の隣り合う線状導体は互いに反対方向であることを特徴とする導波管スロットアレーアンテナ。
  10.  前記複数の導体除去部は、隣り合う導体除去部の位置が前記第一の溝の管軸方向中心線に対して互いに反対側になる配置であり、かつ、隣り合う前記導体除去部の中心間距離は、前記第一の溝と前記管壁導体で構成される第一の導波管の設計中心周波数における管内波長の2分の1であり、
     隣り合う前記スロットの中心間距離は、前記第二の溝及び第三の溝と前記管壁導体と前記ビアで構成される第二の導波管の設計中心周波数における管内波長の2分の1であり、
     前記短絡壁と当該短絡壁に隣接する導体除去部の中心との管軸方向の距離と、前記短絡壁と当該短絡壁に隣接するスロットの中心との管軸方向の距離は、前記第一の導波管及び前記第二の導波管の設計中心周波数における管内波長の4分の1であることを特徴とする請求項9記載の導波管スロットアレーアンテナ。
  11.  前記第三の溝の底面の前記第二の給電導波管に対応する位置に、管軸方向に直交し前記第二の導波管の管路の一部を遮るための誘導性障壁を設けたことを特徴とする請求項9または請求項10記載の導波管スロットアレーアンテナ。
  12.  前記誘電体基板の前記第二の給電導波管に対応する位置に、両端を前記管壁導体に接続し、かつ、管軸方向に直交する短絡導体を設けたことを特徴とする請求項9または請求項10記載の導波管スロットアレーアンテナ。
  13.  前記第一の給電導波管及び前記第二の給電導波管のうち少なくとも一方の幅の広い管壁面に、前記第一の給電導波管及び前記第二の給電導波管の管軸方向と平行な第二のリッジ導体を設けたことを特徴とする請求項9または請求項10記載の導波管スロットアレーアンテナ。
  14.  請求項9または請求項10に記載の導波管スロットアレーアンテナをサブアレーとして、管軸方向及び管軸方向と直交する方向のうち少なくとも一方の方向に複数配列したことを特徴とする導波管スロットアレーアンテナ。
  15.  第一の導波管を構成するための第一の溝と、第二の導波管の一方を構成するための第二の溝を有し、かつ、管軸方向両端に短絡壁を有する第一の導波管部材と、
     前記第二の溝と同一幅で、前記第二の導波管の他方を構成するための第三の溝を有し、当該第三の溝と前記第二の溝とが対向して配置されると共に、前記第三の溝の底面に管軸方向に対して直交する複数のスロットが設けられ、かつ、管軸方向両端に短絡壁を有する第二の導波管部材と、
     前記第一の導波管部材と前記第二の導波管部材との間に設けられ、前記第一の溝と前記第二の溝を覆う誘電体基板と、
     前記誘電体基板の両面の、前記第一の導波管部材と前記第二の導波管部材に接する部分と前記第一の溝を覆う部分とに設けられた管壁導体と、
     前記誘電体基板上の前記複数のスロットに対応した位置に設けられ、管軸方向に対してそれぞれ斜めに設けられた複数の線状導体と、
     前記管壁導体の前記第一の溝の位置に設けられ、管軸方向に対してそれぞれ平行でかつ矩形の複数の導体除去部と、
     前記誘電体基板を介して前記両面の管壁導体を接続する複数のビアと、
     前記第一の溝の底面に、隣り合う二つの導体除去部の間に位置するよう設けられた給電端子となる第一の給電線路と、
     前記第二の溝の底面に、隣り合う二つのスロットの間に位置するよう設けられた給電端子となる第二の給電線路と、
     前記第一の給電線路に接続され、前記第一の導波管内に位置する第一の給電プローブと、
     前記第二の給電線路に一端が接続されると共に、他端が前記管壁導体に接続され、かつ前記第二の導波管内に位置する第二の給電プローブとを備え、
     前記複数の線状導体のうち、前記第二の給電プローブの設置位置に隣接する二つの線状導体の傾斜方向が同一方向で、その他の隣り合う線状導体は互いに反対方向であり、かつ、前記第一の給電プローブに隣接する二つの導体除去部が、前記第一の導波管の管軸中心線に対して互いに同一側の位置で、その他の隣り合う二つの導体除去部が、前記第一の導波管の管軸中心線に対して互いに反対側の位置となるように配置されることを特徴とする導波管スロットアレーアンテナ。
  16.  隣り合う前記導体除去部の中心間距離は、前記第一の溝と前記管壁導体で構成される第一の導波管の設計中心周波数における管内波長の2分の1であり、
     隣り合う前記スロットの中心間距離は、前記第二の溝及び第三の溝と前記管壁導体と前記ビアで構成される第二の導波管の設計中心周波数における管内波長の2分の1であり、
     前記短絡壁と当該短絡壁に隣接する導体除去部の中心との管軸方向の距離と、前記短絡壁と当該短絡壁に隣接するスロットの中心との管軸方向の距離は、前記第一の導波管及び前記第二の導波管の設計中心周波数における管内波長の4分の1であることを特徴とする請求項15記載の導波管スロットアレーアンテナ。
PCT/JP2018/017537 2018-05-02 2018-05-02 導波管スロットアレーアンテナ WO2019211908A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112018007422.6T DE112018007422B4 (de) 2018-05-02 2018-05-02 Wellenleiter-schlitzgruppenantenne
PCT/JP2018/017537 WO2019211908A1 (ja) 2018-05-02 2018-05-02 導波管スロットアレーアンテナ
JP2020516999A JP6752394B2 (ja) 2018-05-02 2018-05-02 導波管スロットアレーアンテナ
US17/032,720 US11276940B2 (en) 2018-05-02 2020-09-25 Waveguide slot array antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017537 WO2019211908A1 (ja) 2018-05-02 2018-05-02 導波管スロットアレーアンテナ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/032,720 Continuation US11276940B2 (en) 2018-05-02 2020-09-25 Waveguide slot array antenna

Publications (1)

Publication Number Publication Date
WO2019211908A1 true WO2019211908A1 (ja) 2019-11-07

Family

ID=68386436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017537 WO2019211908A1 (ja) 2018-05-02 2018-05-02 導波管スロットアレーアンテナ

Country Status (4)

Country Link
US (1) US11276940B2 (ja)
JP (1) JP6752394B2 (ja)
DE (1) DE112018007422B4 (ja)
WO (1) WO2019211908A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11349220B2 (en) * 2020-02-12 2022-05-31 Veoneer Us, Inc. Oscillating waveguides and related sensor assemblies
CN115824108A (zh) * 2023-02-22 2023-03-21 零声科技(苏州)有限公司 波导杆和超声监测设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11424548B2 (en) * 2018-05-01 2022-08-23 Metawave Corporation Method and apparatus for a meta-structure antenna array
US11128051B2 (en) * 2018-11-28 2021-09-21 Metawave Corporation Multi-frequency electromagnetic feed line
KR102599495B1 (ko) 2019-02-20 2023-11-08 가부시키가이샤 무라타 세이사쿠쇼 안테나 모듈, 및 그것을 탑재한 통신 장치, 그리고 안테나 모듈의 제조 방법
US11914067B2 (en) * 2021-04-29 2024-02-27 Veoneer Us, Llc Platformed post arrays for waveguides and related sensor assemblies

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09505962A (ja) * 1993-11-30 1997-06-10 サーブ エリクソン スペース アクチェボラグ 導波管アンテナ
JP2008167246A (ja) * 2006-12-28 2008-07-17 Mitsubishi Electric Corp 導波管アレーアンテナ
US20100066623A1 (en) * 2006-12-01 2010-03-18 Astrium Gmbh Waveguide radiator, especially for synthetic aperture radar systems
JP2015027086A (ja) * 2013-07-25 2015-02-05 アストリウム・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 導波路放射器、アレイアンテナ放射器及び合成開口レーダーシステム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3004259A (en) * 1958-07-21 1961-10-10 Hughes Aircraft Co Electrically variable waveguide slot with longitudinal polarization
FR2654555B1 (fr) 1989-11-14 1992-06-19 Thomson Csf Guide a fentes rayonnantes non inclinees a excitation par motif rayonnant.
FR2685820B1 (fr) * 1991-12-31 1994-03-18 Thomson Csf Guide a fentes rayonnantes non inclinees excitees par des volets metalliques.
US6995724B2 (en) * 2001-11-20 2006-02-07 Anritsu Corporation Waveguide slot type radiator having construction to facilitate manufacture
US8149177B1 (en) * 2008-05-09 2012-04-03 The United States Of America As Represented By The Secretary Of The Air Force Slotted waveguide antenna stiffened structure
CN201413867Y (zh) * 2009-04-15 2010-02-24 东南大学 能产生四个不同极化方式的天线
JP5558943B2 (ja) * 2010-07-06 2014-07-23 古野電気株式会社 スロットアレイアンテナ及びレーダ装置
JP2012204975A (ja) 2011-03-24 2012-10-22 Sumitomo Electric Ind Ltd 導波管スロットアンテナ
US9337546B2 (en) * 2012-03-29 2016-05-10 Mitsubishi Electric Corporation Waveguide slot array antenna device
WO2018216071A1 (ja) * 2017-05-22 2018-11-29 三菱電機株式会社 アンテナ装置及びアレーアンテナ装置
US20210005983A1 (en) * 2018-05-14 2021-01-07 Mitsubishi Electric Corporation Array antenna device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09505962A (ja) * 1993-11-30 1997-06-10 サーブ エリクソン スペース アクチェボラグ 導波管アンテナ
US20100066623A1 (en) * 2006-12-01 2010-03-18 Astrium Gmbh Waveguide radiator, especially for synthetic aperture radar systems
JP2008167246A (ja) * 2006-12-28 2008-07-17 Mitsubishi Electric Corp 導波管アレーアンテナ
JP2015027086A (ja) * 2013-07-25 2015-02-05 アストリウム・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 導波路放射器、アレイアンテナ放射器及び合成開口レーダーシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11349220B2 (en) * 2020-02-12 2022-05-31 Veoneer Us, Inc. Oscillating waveguides and related sensor assemblies
CN115824108A (zh) * 2023-02-22 2023-03-21 零声科技(苏州)有限公司 波导杆和超声监测设备

Also Published As

Publication number Publication date
US11276940B2 (en) 2022-03-15
DE112018007422T5 (de) 2020-12-17
JP6752394B2 (ja) 2020-09-09
US20210013621A1 (en) 2021-01-14
DE112018007422B4 (de) 2022-02-17
JPWO2019211908A1 (ja) 2020-10-01

Similar Documents

Publication Publication Date Title
WO2019211908A1 (ja) 導波管スロットアレーアンテナ
US7528791B2 (en) Antenna structure having a feed element formed on an opposite surface of a substrate from a ground portion and a radiating element
JP4343982B2 (ja) 導波管ノッチアンテナ
KR100836213B1 (ko) 안테나, 무선장치, 안테나 설계 방법 및 안테나의 동작주파수 측정 방법
JP4888143B2 (ja) T分岐導波管およびアレーアンテナ
JP3923360B2 (ja) スロットアレーアンテナ及びスロットアレーアンテナ装置
US6825816B2 (en) Two-element and multi-element planar array antennas
JP2013187752A (ja) 導波管スロットアレーアンテナ装置
JP2001320228A (ja) 誘電体漏れ波アンテナ
KR102643317B1 (ko) 안테나, 안테나 모듈, 및 무선 네트워크 디바이스
JP2020065251A (ja) 導波路と同軸ケーブルとの接続構造
KR102443048B1 (ko) 위상 시프터를 포함하는 안테나 장치
RU2480870C1 (ru) Многодиапазонная антенна круговой поляризации с метаматериалом
WO2017017844A1 (ja) 給電回路
JP3725415B2 (ja) ダイバーシチアンテナ装置
US6008771A (en) Antenna with nonradiative dielectric waveguide
KR101098684B1 (ko) 접지부에 슬롯이 형성된 페이즈 쉬프터 및 이를 포함하는 안테나
JP4416673B2 (ja) 誘電体共振器アンテナおよび配線基板ならびに電子装置
KR102099162B1 (ko) 안테나 장치
JP4585711B2 (ja) アンテナ、アンテナの配列方法、アンテナ装置、アレイアンテナ装置および無線装置
JP3405233B2 (ja) 導波管分岐回路及びアンテナ装置
RU2395142C1 (ru) Антенна
JP2010263285A (ja) 導波管電力分配器、および導波管スロットアレーアンテナ
JP2020115619A (ja) 導波管−伝送線路変換器、導波管スロットアンテナ、および導波管スロットアレーアンテナ
WO2024140152A1 (zh) 基站天线及基站***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516999

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18917412

Country of ref document: EP

Kind code of ref document: A1