WO2019211534A1 - Ods alloy powder, method for producing same by means of plasma treatment, and use thereof - Google Patents

Ods alloy powder, method for producing same by means of plasma treatment, and use thereof Download PDF

Info

Publication number
WO2019211534A1
WO2019211534A1 PCT/FR2019/000067 FR2019000067W WO2019211534A1 WO 2019211534 A1 WO2019211534 A1 WO 2019211534A1 FR 2019000067 W FR2019000067 W FR 2019000067W WO 2019211534 A1 WO2019211534 A1 WO 2019211534A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
alloy
powder according
reinforced
weight
Prior art date
Application number
PCT/FR2019/000067
Other languages
French (fr)
Other versions
WO2019211534A9 (en
Inventor
Elodie VASQUEZ
Pierre-François GIROUX
Fernando LOMELLO
Hicham Maskrot
Yann LECONTE
Frédéric Schuster
Khalil ABDELKEBIR
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to BR112020022410-3A priority Critical patent/BR112020022410A2/en
Priority to US17/052,076 priority patent/US20210230722A1/en
Priority to CN201980044821.6A priority patent/CN112469520A/en
Priority to JP2020561784A priority patent/JP2021521344A/en
Priority to KR1020207031635A priority patent/KR102432787B1/en
Priority to EP19728473.0A priority patent/EP3787822B1/en
Publication of WO2019211534A1 publication Critical patent/WO2019211534A1/en
Publication of WO2019211534A9 publication Critical patent/WO2019211534A9/en
Priority to JP2022143945A priority patent/JP2022192063A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/14Formation of a green body by jetting of binder onto a bed of metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/059Making alloys comprising less than 5% by weight of dispersed reinforcing phases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1078Alloys containing non-metals by internal oxidation of material in solid state
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/052Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0261Matrix based on Fe for ODS steels
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/13Use of plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/15Intermetallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention belongs to the field of alloys reinforced by dispersion of oxides (said alloy "ODS” according to the acronym for "Oxide Dispersion
  • the invention more particularly relates to a powder of an ODS alloy, as well as its manufacturing process.
  • Atomization is the most common method for making a metal powder. It consists in spraying in fine droplets a net of molten metal exposed to a jet of gas or a jet of water at high pressure in order to obtain the powder.
  • the atomization is not suitable for the manufacture of an ODS alloy powder: it is often impossible to dispose of the essential raw material for atomization which is a base metal in massive form (such as example in the form of ingot) which would further contain reinforcements of oxides which are dispersed there more or less homogeneously.
  • the oxide reinforcements do not melt at the same temperature as the base metal. They agglomerate then because of problems of wettability reinforcements in the molten base metal and differences in density between reinforcements and metal. In practice, the methods of foundry are therefore not used to form alloys
  • the oxides are not formed (at best a part of the oxides may be in the form of amorphous oxides, ie not crystallized: a debate nevertheless exists within the scientific community to know if these non-crystallized oxides do not correspond in part to the corresponding constituent atoms which would be in solid solution in the metal matrix) and the corresponding reinforcements did not germinate within the ground powders particles.
  • Only an additional consolidation step (for example by hot spinning or hot isostatic compression) increases the oxide reinforcements within the metal matrix to permanently obtain an ODS alloy. It is only after the formation of oxide particles that constitute as many reinforcements dispersed in the metal matrix that a real reinforced alloy is formed, and therefore that the name "alloy ODS" is fully justified.
  • the ODS alloy powder thus obtained, in particular its composition, its size, its morphology and the distribution of oxide reinforcements within the metal matrix.
  • One of the aims of the invention is therefore to avoid or mitigate one or more of the disadvantages described above, by proposing a new process for manufacturing an ODS alloy powder, more particularly having composition and / or microstructure that are optimized.
  • the present invention thus relates to a process for manufacturing a powder of a reinforced alloy whose grains forming the particles of the powder comprise a metal matrix in the volume of which are dispersed crystallized oxide particles (ODS alloy), the method comprising the following successive steps:
  • a metal master powder comprising a master alloy intended to form the metal matrix
  • a complementary powder comprising at least one intermediate compound intended to be incorporated in the metal matrix, optionally in the form of a solid solution, atoms for forming the dispersed oxide particles;
  • the combination of a mechanosynthesis grinding step and a plasma treatment step produces an ODS alloy powder comprising crystallized oxide particles as reinforcements of the metal matrix.
  • thermal plasma also called "hot plasma”
  • hot plasma is a very energetic plasma in which electrons and ions influence the behavior of the plasma.
  • a thermal plasma is in opposition to a cold plasma which is less energetic and in which only the electrons influence the behavior of the plasma.
  • the oxide particles generally melt at a temperature greater than that of the master alloy intended to form the metal matrix. They therefore tend to agglomerate because of their low wettability in the molten metal and their density different from that of the metal. Under such conditions, it is therefore impossible to obtain a reinforced alloy with oxide reinforcements dispersed in the metal matrix in a relatively homogeneous manner, in particular reinforcements of a nanometric size.
  • the atoms intended to form the oxide particles are distributed in the metal matrix, possibly and most probably in the form of a solid solution, even if there is a debate on this subject within the scientific community. It is only during the subsequent consolidation stage that the oxide particles will germinate and then crystallize. However, this consolidation step as it is performed in the state of the art is not conducive to controlling the characteristics of the reinforcements obtained; in particular their size, their morphology, their degree of crystallization and / or their distribution in the metal matrix.
  • the plasma torches are designed to process and obtain a powder whose particles are of micrometric size.
  • a nanopowder namely a powder whose particles are of nanometric size
  • the plasma torch must incorporate a quench ring.
  • Plasma torch processing methods are very energetic and without additional quench ring equipment, those skilled in the art expect that a plasma torch treatment will not form a nanopowder, as well as nanoprecipitates within a particle of powder because ⁇ the precipitates would agglomerate there.
  • crystallization comprising growth of oxide crystals to form the oxide particles.
  • the master alloy generally crystallizes in bulk in all or part to form the metal matrix.
  • the crystallized oxide reinforcements thus formed are dispersed homogeneously in the crystallized metal matrix in whole or in part.
  • the manufacturing method of the invention therefore makes it possible to manufacture an ODS alloy with very good control of the size and the dispersion of the oxide precipitates reinforcing the metal matrix of the ODS alloy.
  • the powder mixture is ground according to a mechanosynthesis process.
  • the mixture of powders includes the parent metal powder and the complementary powder.
  • the parent metal powder and the complementary powder mix intimately, so that all the atoms of the intermediate compound that are intended to form the particles dispersed oxide materials are incorporated, possibly and most probably in the form of a solid solution, into the master alloy which then forms the metal matrix.
  • the particles of the mother powder have a median diameter (d 5 o) of between 1 ⁇ m and 200 ⁇ m, and even between 20 ⁇ m and 80 ⁇ m, typically between 60 ⁇ m and 65 ⁇ m.
  • the median diameter (dso) of a powder is the size for which 50% of the population of particles in this powder is less than
  • It can be determined by a technique such as the laser diffraction method via a particle size analyzer as described for example in the ISO 13320 standard (2009-12-01 edition).
  • the metal master powder comprises the master alloy which may be selected from iron base alloy, nickel base alloy or aluminum base alloy.
  • the iron base alloy may comprise by weight:
  • the iron base alloy may be a steel, for example austenitic, martensitic or ferritic steel, where appropriate respecting the previous compositions by weight.
  • the nickel base alloy may comprise by weight:
  • 1 'Inconel® 600 comprising 14 to 17% chromium.
  • titanium 0% to 5%
  • tungsten 0% to 2% of molybdenum
  • tantalum such as for example Inconel® 625 or 718 respectively comprising 20% to 23% % or 17% to 21% of chromium.
  • the nickel base alloy can be an Inconel®.
  • the powder mixture may comprise 0.1% to 2.5% by weight of the complementary powder, or even 0.1% to 0.5% by weight. .
  • the aluminum base alloy may comprise, by weight, from 0% to 1% iron (or even from 0% to 0.5% iron), from 0% to 1% silicon and from 0% to 1% magnesium.
  • compositions by weight are, for example, the following compositions by weight:
  • the 1100 aluminum alloy comprising 0.95% iron, 0.05% magnesium, 0.2% copper and 0.1% zinc;
  • aluminum alloy 6262 comprising up to 0.7% iron
  • an aluminum alloy of the 1000 series such as, for example, the aluminum alloy 1050 containing less than 0.4% iron, less than 0.25% silicon and no magnesium
  • an aluminum alloy of the 6000 series such as, for example, the aluminum alloy 6063 containing less than 0.35% iron, less than 0.6% silicon and less than 0.9% magnesium.
  • Iron is most often an impurity and silicon improves the flowability of the alloy.
  • the powder mixture may comprise 0.2% to 5% by weight of the complementary powder.
  • the proportion of the precursor powder which precipitates in the form of oxide particles during step iii) of plasma treatment can be high thanks to the good yield of the manufacturing method of the invention.
  • This proportion can typically be 80% (or even 90%) to 100%.
  • the proportion of the atoms intended to form the dispersed oxide particles present in the metal matrix of the ODS alloy in a form other than a crystalline oxide particle is reduced or even close to 0 %.
  • the proportion of complementary powder in the mixture of powders to be ground can be reduced. This promotes, during the plasma treatment state iii), the formation of oxide particles of reduced size (for example in the form of nanorenforts) and their homogeneous distribution in the metal matrix of the ODS alloy. This also decreases the cost of the manufacturing process. This proportion may thus be from 0.1% to 0.3%, or even 0.1% to 0.2% of additional powder in the mixture of powders to be ground.
  • the complementary powder its particles generally have a median diameter (d 50 ) of between 1 ⁇ m and 80 ⁇ m. This median diameter can then be smaller than that of the mother powder, which favors the incorporation of the atoms intended to form the dispersed oxide particles within the master alloy of the parent metal powder.
  • the intermediate compound intended to incorporate the atoms intended to form the dispersed oxide particles may be chosen from YFe 3 Y 2 O 3 , Fe 2 C 3 , Fe 2 Ti, FeCrWTi, TiH 2 , TiO 2 and Al 2 O 3. , Hf0 2 , Si0 2 , Zr0 2 , Th0 2 , MgO or mixtures thereof.
  • a compound which is not an oxide is a precursor compound intended to form, after the chemical reaction, during the manufacturing process of the invention, the metal oxide corresponding which is present in the reinforced alloy at the end of this process, more particularly in the form of crystallized oxide particle.
  • the atoms intended to form the dispersed oxide particles may therefore therefore comprise at least one metal atom selected from among yttrium, titanium, iron, chromium, tungsten, silicon, zirconium, thorium, magnesium, aluminum or hafnium.
  • the intermediate compound is a metal oxide and therefore comprises at least one oxygen atom to enter the composition of the oxide particle.
  • oxygen is provided by another intermediate compound of metal oxide type, optionally supplemented with oxygen present in the master alloy.
  • the mixture of powders to be ground is subjected to step ii) of grinding according to a method of mechanosynthesis.
  • This step can be carried out in a mill selected for example from a ball mill or an attritor.
  • the gaseous grinding medium is generally an atmosphere of controlled composition. It can include hydrogen, argon, helium, nitrogen, air or mixtures thereof.
  • the precursor powder obtained at the end of the grinding step ii) is then subjected to step iii) of thermal plasma treatment.
  • the parameters of the plasma torch operated during the plasma treatment of step iii) are those conventionally used in the field of the manufacture of powders, for example in the following studies:
  • the plasma torch used may be an inductively coupled radiofrequency plasma torch, a blown arc torch or a transferred arc torch.
  • the radiofrequency plasma operates without an electrode.
  • the energy transfer is carried out by inductive coupling: a magnetic field is applied on the plasma gas which circulates inside the induction coil in order to form the plasma.
  • the power of the plasma torch can be between 10 kW and 80 kW (more particularly between 10 kW and 40 kW), or even between 20 kW and 80 kW (more particularly between 20 kW and 40 kW).
  • the thermal plasma used in step iii) of the manufacturing method of the invention may be a plasma as described for example in the document "P. Fauchais,” Thermal plasmas: fundamental aspects “, Engineering techniques, booklet D2810 VI, 2005) "[reference 6].
  • the thermal plasma may be at a plasma temperature of between 200 ° C. and 12000 ° C., for example between 700 ° C. and 4000 ° C. in order to melt aluminum or magnesium, or tungsten which melts at 3500 ° C. This temperature is generally sufficient to melt the species, more particularly those comprising a metal atom, which make up the precursor powder.
  • the thermal plasma may be such that its electron density is between 10 14 and 10 26 3 nf nf 3 or 10 nf 18 3 and 10 26m 3 in particular for arc plasmas.
  • the ionization energies can be between 0.5 eV and 50 eV.
  • the plasma gas contained in the plasma torch is generally totally ionized.
  • the plasma gas may be selected from argon, helium, nitrogen or mixtures thereof. It generally constitutes the central gas of the plasma torch, in which it can be introduced at a flow rate of between 10 liters / minute and 40 liters / minute.
  • the pressure in the reaction chamber of the plasma torch may be low (for example less than 200 Pa) to promote the formation of the plasma by facilitating the ionization of the plasma gas.
  • the pressure in the reaction chamber of the plasma torch is generally between 25 kPa and 100 kPa. The lower this pressure, the more the injection rate and therefore the flow rate of the precursor powder in the plasma torch is accelerated.
  • the reaction chamber corresponds to the confinement tube.
  • the precipitation reaction ie, germination and then growth
  • the oxide particles is thermally activated and occurs almost instantaneously.
  • the injection rate of the precursor powder in the plasma torch can nevertheless be adapted, more particularly according to the composition and / or the amount of powder to be treated.
  • the precursor powder may be injected into the plasma torch at a flow rate of between 10 grams / minute and 45 grams / minute, preferably between 10 grams / minute and 30 grams / minute, more preferably between 10 grams / minute and 19 grams / minute. .
  • This rate of introduction of the precursor powder can be regulated independently of the flow rate of the central gas, although it can be increased at least partially by increasing the flow rates of plasma gas and / or sheath gas.
  • the injection of the precursor powder into the plasma torch can be performed by vibration, with an endless screw or a rotating disc.
  • An injection in the upstream part (with reference to the flow of the plasmagenic gas) of the reaction chamber is generally coupled to a fast powder flow rate, whereas a downstream injection of the reaction chamber is coupled to a higher powder flow rate. slow, in particular to optimize the travel time of the precursor powder in the reaction chamber. Indeed, the upstream portion of the thermal plasma in the plasma torch is at a higher temperature which may not be optimal.
  • a high flow rate of powder prevents the powder from dispersing by recirculation within the plasma. For example, a good compromise may be to adjust the height of the output of the injection probe described below so that it opens into the first third upstream of the reaction chamber.
  • a plasma torch power of between 10 kW and 40 kW (or even between 10 kW and 30 kW) coupled with a precursor powder flow rate of between 10 g / minute and 30 g / minute (or even between 10 g / minute and 19 g / min). g / minutes) can improve:
  • the proportion of oxide particles having precipitated typically, this improved proportion is such that 80% to 100% by weight of the metal atom contained in the whole of the reinforced alloy is in the form of crystallized oxide particles, preferably 90% to 100%, even more preferably 100%; and or
  • the mean circularity coefficient of the particles of the reinforced alloy powder typically for 80% to 100% by weight of the crystallized oxide particles (preferably 90% to 100%, even more preferentially for 100%), this coefficient of Mean circularity improved is between 0.95 and 1, or even between 0, 98 and 1.
  • the precursor powder and / or the plasmagenic gas may be introduced into the plasma torch via an injection probe.
  • the precursor powder may be injected into the plasma torch simultaneously with the plasma gas, for example via the injection probe.
  • the injection probe can be scanned on its outer surface by a cladding gas which can help stabilize the plasma and increase the efficiency of the manufacturing process of the invention.
  • the cladding gas can be introduced into the plasma torch at a flow rate of between 10 liters / minute and 100 liters / minute.
  • It may be chosen from argon, helium, nitrogen, hydrogen or their mixtures.
  • the cladding gas may be a mixture of at least one main cladding gas and at least one complementary cladding gas.
  • the main cladding gas (usually argon) can be introduced into the plasma torch at a high flow rate, for example a flow rate of between 40 liters / minute and 100 liters / minute.
  • the complementary cladding gas has a good thermal conductivity, which improves the heat transfer between the plasma gas and the precursor powder.
  • the additional cladding gas may be injected into the plasma torch at a rate lower than the rate of introduction of the main cladding gas, for example at a flow rate of between 1 liter / minute and 40 liters / minute.
  • the particles of this powder generally have a size that is close to or identical to that of the precursor powder obtained at the end of the grinding step ii).
  • the particles of the ODS alloy powder comprise the dispersed oxide particles and wholly or partly crystallized in the volume of the metal matrix of the ODS alloy.
  • the oxide particles can be homogeneously distributed throughout the entire volume of the metal matrix, not just in a specific area. In particular, they do not localize in a privileged way to the grain boundaries of a powder particle of the ODS alloy, which would be detrimental to the mechanical properties of a material obtained from an ODS alloy powder ( cracks, weaker toughness, ).
  • the isotropic microstructure of the reinforced alloy guarantees in particular homogeneous mechanical properties in all of the powder, and therefore in a material possibly manufactured with this powder, and whatever the mechanical stressing direction of this material.
  • the oxide particles may comprise at least one oxide selected from Y 2 O 3, TXO 2, Al 2 O 3, Hf0 2, Si0 2, ZrO 2, TI1O2, MgO Al 2 O 3, Y 2 T1 2 O 7, Y 2 TÎ0 5 -
  • the complementary powder when the complementary powder contains only a single intermediate compound, typically a metal oxide, it enters directly into the composition of the oxide particle dispersed in the ODS alloy, or even partially found in the matrix if a part of the complementary powder did not precipitate.
  • the complementary powder comprises several intermediate compounds, one or more types of chemical combinations between these compounds can occur, which can lead to the formation of mixed oxides.
  • the complementary powder comprises yttrium oxide Y 2 O 3 and titanium hydride TiH 2
  • at least one oxide selected from Y 2 Ti 2 O 7 , Y 2 TiO 5 , YTlO 3 , YTi 2 0 6 can compose all or part of the oxide particle of the ODS alloy.
  • the oxide comprises yttrium and / or titanium
  • it is an oxide of pyrochlore structure such as, for example, Y 2 Ti 2 O 7 .
  • the oxide particles formed in the ODS alloy may have a median diameter (dso) of between 1 nm and 500 nm. Preferably, it is between 1 nm and 200 nm, or even between 1 nm and 150 nm: it is therefore nanoparticles. Unexpectedly, such a result can be obtained by the manufacturing method of the invention without using a quench ring incorporated in the plasma torch.
  • all or part of the particles of the reinforced alloy powder is spherical, or at least spheroidal.
  • the mean circularity coefficient of the particles of the reinforced alloy powder (typically 80% to 100% by weight of the crystallized oxide particles, preferably 90% to 100%, even more preferably 100%) can thus be included between 0.95 and 1, or even between 0.98 and 1.
  • the circularity coefficient of a particle is a shape descriptor that can be calculated from the following formula from the radius of the circle totally inscribed in the particle (Rinscr ) and the radius of the circle which totally circumscribes the particle (R C irc), these rays being represented in Figure 6 extracted from reference [7]:
  • the mean circularity coefficient of a powder can be obtained from photographs of the particle followed by its automated numerical analysis. Preferably, several photographs of the same particle are taken from different angles. The circularity averaged for these different angles is then calculated. Once this operation is carried out on several grains, the average of all these grains of the circularity averaged for each grain results in the mean circularity coefficient of the powder.
  • the mean circularity coefficient of a powder can be obtained automatically using an apparatus such as the "CAMSIZER Dynamic Image Analyzer” marketed by the company HORIBA Scientic.
  • the reinforced alloy may further comprise, by weight, at least one of the following elements:
  • the reinforced alloy powder can itself be crystallized in whole or in part (preferably completely crystallized).
  • the microstructure of the particles of the reinforced alloy powder may be preferably monocrystalline (all the particles have the same crystalline structure), or also polycrystalline (the particles may have different crystalline structures).
  • the high proportion of reinforced alloy powder that is crystallized can be used for its use in cold spray-type manufacturing processes (so-called "cold spray”).
  • cold spray Other characteristics of microstructure and / or composition of the reinforced alloy obtained by the manufacturing method of the invention will be specified below.
  • the invention also relates to a reinforced alloy powder obtained or obtainable by the manufacturing method as defined in the present description, in particular in one or more of the variants described for this process, such as for example the microstructure and or the composition of the reinforced alloy powder.
  • the invention more particularly relates to a reinforced alloy powder, the grains forming the particles of the powder comprise a metal matrix in the volume of which are dispersed crystallized oxide particles.
  • an ODS alloy has never been obtained directly in the form of powder, which has the particular advantage of providing good control of the precipitates, to be used in a cold forming process (for example of the "cold spray" type) and / or to obtain via an additive manufacturing process an ODS alloy (for example an ODS steel) having an improved density.
  • This direct obtaining in powder form (thus in the form of a divided, powdery material), and not in the form of an already densified material, has the particular advantage of allowing direct use, possibly continuous, for example in batch mode, reinforced alloy powder according to the invention in a densification process allowing as specified below to obtain a solid material, and more particularly a part.
  • the proportion by weight of the oxide particles which are crystallized is preferably such that the crystallized oxide particles comprise, by weight, 80% to 100%, (preferably 90% to 100%, even more preferably 100%) of the atom metallic content throughout the reinforced alloy.
  • This metal atom corresponds to that initially present in the intermediate compound, for example yttrium, titanium, iron, chromium, tungsten, silicon, zirconium, thorium, magnesium, aluminum or hafnium .
  • the metal matrix may comprise in dissolved form (typically at the atomic scale, for example in solid solution) and / or in the form of amorphous oxide particles; relative to the total weight of said metal atom contained in the whole of the reinforced alloy:
  • the weight of the metal atom in the various zones of the reinforced alloy can be measured for example by X-ray microanalysis by Transmission Electron Microscopy (TEM) (for example for a control zone which is extrapolated to the whole of reinforced alloy), typically for measurement in the metal matrix.
  • TEM Transmission Electron Microscopy
  • the weight of the metal atom contained in the amorphous oxide particles and / or the crystallized oxide particles may also be determined by chemical analysis, or determined by considering that this weight is the complement to the weight of the metal atom which is contained in the single metal matrix (ie the sum of these two weights equals the total metal atom weight initially present in the complementary powder).
  • the particles of the reinforced alloy may have an average circularity coefficient which is between 0.95 and 1.
  • the metal matrix of the reinforced alloy can be crystallized.
  • the oxide particles are distributed homogeneously in the volume of the metal matrix, in particular the oxide particles are not preferentially present at the grain boundaries of the powder particles of the reinforced alloy.
  • the metal matrix may be composed of an iron base alloy, a nickel base alloy or an aluminum base alloy.
  • the iron base alloy may comprise by weight:
  • the iron base alloy may be a steel, for example austenitic, martensitic or ferritic steel, where appropriate respecting the previous compositions by weight.
  • the nickel base alloy may comprise by weight:
  • chromium such as for example Inconel® 600 comprising 14% to 17% chromium.
  • chromium 10% to 40% chromium, 0.2% to 5% aluminum, 0.3% to 5% titanium, 0% to 5% tungsten, 0% to 2% molybdenum and 0% to 2% tantalum, such as for example Inconel® 625 or 718 containing respectively 20% to 23% or 17% to 21% of chromium.
  • the nickel base alloy can be an Inconel®.
  • the reinforced alloy may comprise 0.1% to 2.5% by weight of the oxide particles, or even 0.1% by weight at 0.5%.
  • the aluminum base alloy may comprise, by weight, from 0% to 1% iron (or even from 0% to 0.5% iron), from 0% to
  • compositions by weight are, for example, the following compositions by weight:
  • the 1100 aluminum alloy comprising 0.95% iron, 0.05% magnesium, 0.2% copper and 0.1% zinc;
  • aluminum alloy 6262 comprising up to 0.7% iron
  • an aluminum alloy of the 1000 series such as, for example, the aluminum alloy 1050 containing less than 0.4% iron, less than 0.25% silicon and no magnesium;
  • an aluminum alloy of the 6000 series such as, for example, the aluminum alloy 6063 containing less than 0.35% iron, less than 0.6% silicon and less than 0.9% magnesium.
  • Iron is most often an impurity and silicon improves the flowability of the alloy.
  • the reinforced alloy may comprise 0.2% to 5% by weight of the oxide particles.
  • the proportion of oxide particles in the reinforced alloy is such that it may comprise 0.1% to 0.5% by weight of the oxide particles.
  • the reinforced alloy may comprise from 0.1% to 2.5% by weight of an atom of the compound intermediate
  • the intermediate compound (typically the metal atom) for forming the oxide particles, preferably from 0.1% to 1%, or even less than 0.1%.
  • the intermediate compound is then generally located in the metal matrix. This percentage reflects the degree of precipitation of the intermediate compound (s) in the form of an oxide particle. It may in particular be measured by X microanalysis (for example transmission electron microscope EDX analysis) focused on a volume of the metal matrix not comprising oxide particles.
  • the intermediate compound for forming the oxide particles may be YFe 3, Y 2 O 3 , Fe 2 O 3 , Fe 2 Ti, FeCrWTi, TiH 2 , TiO 2 , Al 2 O 3 , Hf0 2 , Si0 2 , Zr0 2 , Th0 2 , MgO or mixtures thereof.
  • the oxide particles may comprise at least one oxide selected from Y 2 0 3, Ti0 2, A1 2 0 3, Hf0 2, Si0 2, Zr0 2, Th0 2, A1 2 0 3 MgO, Y 2 Ti 2 O 7 , Y 2 TiO 5 .
  • the oxide particles may have a median diameter (dso) of between 1 nm and 500 nm, or even between 1 nm and 200 nm.
  • the reinforced alloy may further comprise by weight at least one of the following:
  • the invention also relates to the use of a reinforced alloy powder as defined above (namely, the reinforced alloy powder obtained or obtainable by the manufacturing method of the invention or the powder of reinforced alloy whose grains forming the particles of the powder comprise a metal matrix in the volume of which are dispersed crystallized oxide particles) according to one or more of the variants described in the present description, use in which the alloy powder of the invention is subjected to a densification process of the reinforced alloy powder, in order to manufacture a solid material (more particularly a part) or to a coating process in order to coat a support with the reinforced alloy powder (more particularly a thin thickness, typically between 20 pm and 50 mm).
  • a reinforced alloy powder as defined above (namely, the reinforced alloy powder obtained or obtainable by the manufacturing method of the invention or the powder of reinforced alloy whose grains forming the particles of the powder comprise a metal matrix in the volume of which are dispersed crystallized oxide particles) according to one or more of the variants described in the present description, use in which the alloy powder of the invention is subjected
  • the characteristics of the reinforced alloy powder according to the invention are particularly suitable for its densification in order to obtain a solid material, more particularly in the form of a part or its deposit on a support in the form of a coating (which, depending on the case, in particular for a relatively large thickness, may also be considered as a layer of a densified material).
  • the densification process may be chosen from a wide range of densification processes for a powder (in particular an ODS alloy powder) which are well known to those skilled in the art, for example an additive manufacturing process or a powder injection molding method, for manufacturing the solid material, more particularly the part or the coating.
  • the additive manufacturing process is chosen from a Selective Laser Melting (SLM) or Laser Powder Bed Fusion (L-PBF) method, selective beam melting Electron Beam Melting (EBM), Electron Powder Bed Fusion (E-PBF), Selective Laser Sintering (SLS), Laser Projection "Direct Metal Deposition” (DMD) or “laser cladding”) or binder projection (in English “binder jetting”).
  • SLM Selective Laser Melting
  • L-PBF Laser Powder Bed Fusion
  • EBM Electron Beam Melting
  • E-PBF Electron Powder Bed Fusion
  • SLS Selective Laser Sintering
  • DMD Laser Projection "Direct Metal Deposition”
  • laser cladding laser cladding
  • powder injection molding in English “powder injection molding” is an injection molding of parts from a mixture of metal or ceramic powder and polymeric binder, followed by debinding (removal of the binder) of the piece in a furnace under a controlled atmosphere (typically an atmosphere similar or identical to the gaseous grinding medium described above with the exception of hydrogen), then by consolidating it by sintering.
  • the sintering temperature is for example between 350 ° C and 1220 ° C.
  • CCM Camic Injection Molding
  • MIM Metal Injection Molding
  • the coating method can be selected from a coating method well known to those skilled in the art, for example a cold spraying process or a thermal spraying process.
  • the principle of cold spraying consists in accelerating a gas (such as, for example, nitrogen, helium or argon), generally heated to a temperature of 100 ° C to 700 ° C, at supersonic speeds in a nozzle type "De Laval" then the powder material to be sprayed (here, the ODS reinforced alloy powder according to the invention) is introduced into the high pressure part (between 10 bar and 40 bar) of the nozzle and is projected "Unmelted" to the surface of the part to be coated at a speed of between 600 m / s and 1200 m / s. In contact with the workpiece, the particles undergo a plastic deformation and form on impact a dense and adherent coating.
  • a gas such as, for example, nitrogen, helium or argon
  • the advantage of this embodiment lies in the absence of melting of the particles, therefore in a very low risk of oxidation and possible integration in a hostile environment.
  • the thermal spraying method may be selected from a flame thermal spraying method, an electric arc spraying method between two yarns or a blown plasma spraying method.
  • a verb such as “to understand”, “to incorporate”, “to include”, “to contain” and its conjugated forms are open terms and therefore do not exclude the presence of element (s) and / or additional step (s) in addition to the element (s) and / or initial step (s) stated after these terms.
  • these open terms also include a particular embodiment in which only the element (s) and / or initial stage (s), to the exclusion of all others, are targeted; in which case the open term also refers to the closed term “consisting of", “constituting", “composing of” and its conjugated forms.
  • the use of the indefinite article “a” or “an” for an element or a step does not exclude, unless otherwise stated, the presence of a plurality of elements or steps.
  • the terminal values are included in the ranges of parameters indicated;
  • any percentage by weight of a component of the reinforced alloy, the master alloy, the powder mixture refers to the total weight of this alloy or mixture.
  • the term "base alloy” is intended to denote metal used in particular in the composition of the master alloy or any other alloy, any alloy based on the metal in which the metal content is at least 50%. by weight of the metal of the alloy, particularly more than 90% or more than 95%.
  • the base metal is, for example, iron, nickel or aluminum.
  • the base alloy is preferably suitable for use in the nuclear field and / or under irradiation.
  • variants described in the present description refers in particular to the variants which concern the chemical composition and / or the proportion of the constituents of this material and of any additional chemical species that it may possibly contain and in particular to the variants which concern the chemical composition, the structure, the geometry, the arrangement in space and / or the chemical composition of this element or of a constituent sub-element of the element.
  • variants are for example those indicated in the claims.
  • FIGS. 1A (general view) and 1B (view of a section) represent electron scanning microscopy (SEM) photographs of a precursor powder obtained after step ii) of grinding the manufacturing process of the invention. .
  • Figures 2A (general view), 2B and 3A (view of a section) and 3B (zoomed view of a section focusing on the oxide precipitates) represent SEM images of a powder of a reinforced alloy obtained after step iii) of plasma treatment of the manufacturing method of the invention.
  • FIG. 3C is a table showing atomic molar percentages obtained by energy dispersive X-ray spectrometry (EDX) for the oxide precipitates identified by the indexes. numerals 1 to 7 in Figure 3B.
  • EDX energy dispersive X-ray spectrometry
  • FIGS. 4A and 4B show a MET plate in a light field of a section of an ODS alloy obtained by the manufacturing method of the invention.
  • Figures 5A to 5D show a series of snapshots for analyzing an oxide precipitate contained in the matrix of an ODS alloy powder obtained by the manufacturing method of the invention.
  • Figure 5A obtained by MET light field is centered on the analyzed oxide precipitate.
  • FIGS. 5B and 5C are TEM diffraction patterns obtained at an inclination of the sample holder at an angle of -2 ° according to X, respectively in raw form and in annotated form after analysis to identify the diffraction spots corresponding to the matrix and the oxide precipitate.
  • Figure 5D is the corresponding annotated plate obtained by inclining the sample holder by an angle of -20 ° according to X.
  • Figure 6 is a diagram illustrating the parameters Ri nscr and R circ needed to calculate the circularity of a grain of powder from a snapshot taken for a given angle.
  • a parent metal powder composed of an iron master alloy (composition by weight: 14% Cr, 1% W, 0.3% Si, 0.3 % Mn and 0.2% Ni, 1000 ppm C, and the rest of Fe) is mixed with a complementary powder, comprising by weight relative to the total mixture of powders, 0.3% of a powder of titanium hydride (TiH 2 ) and 0.3% of an yttrium oxide powder (Y 2 O 3 ) as as intermediate compounds for forming oxide particles.
  • the powder mixture is milled for 176 hours to mechanically form a precursor powder comprising a metal matrix composed of the master alloy in which the titanium, yttrium and oxygen atoms are incorporated.
  • the precursor powder is then introduced into an inductively coupled radiofrequency plasma torch capable of delivering up to 80 kW of power (PL50 model marketed by Tekna).
  • an inductively coupled radiofrequency plasma torch capable of delivering up to 80 kW of power (PL50 model marketed by Tekna).
  • the plasma torch comprises a ceramic containment tube bathed in cooling water flowing at high speed along its outer wall.
  • the cooling of the tube is essential to protect it from the large thermal flux generated by the plasma.
  • the induction coil embedded in the body of the plasma torch and connected to the high frequency generator. This coil generates the alternating magnetic field that creates the plasma medium.
  • a plasma gas also called central gas
  • central gas is injected continuously.
  • a cladding gas is vortexed along the inner wall of the containment tube through a quartz intermediate tube placed inside the containment tube.
  • the precursor powder is injected directly into the center of the plasma discharge via a water-cooled injection probe positioned in the first upstream third of the reaction chamber of the plasma torch. It is then heated in flight and melted. Since induction plasmas operate without an electrode in contact with the plasma gas, a treatment without contamination can be realized.
  • the precursor powder obtained above is subjected to a thermal plasma according to the operating conditions indicated in Table 1.
  • the gas flow rates are as follows:
  • main cladding gas (argon) 80 to 100 L / min;
  • ODS powder according to the invention (more particularly crystallized oxide particles having in addition a mean circularity coefficient which is between 0.95 and 1) relative to the total weight of the treated powder mixture is indicated in the last column of Table 1. It is estimated in the first approximation by SEM analysis of the powders obtained at the end of the manufacturing process of the invention.
  • Table 1 shows that the proportion of oxide that has precipitated is greater for moderate powers of plasma torch (typically between 10 kW and 40 kW, or even between 10 kW and 30 kW) and a moderate rate of injection of the powder. precursor in the plasma torch (typically ⁇ 30 g / min).
  • - gas flows of 30 liters / minute of argon for the central gas, 100 liters / minute of argon for the main cladding gas and 10 liters / minute of helium for the complementary cladding gas (tests 4 and 12) ); or gas flows of 30 liters / minute of argon for the central gas, 60 liters / minute of argon for the main cladding gas and 40 liters / minute of helium for the complementary cladding gas (test 17); or gas flow rates of 30 liters / minute of argon for the central gas, 80 liters / minute of argon for the main cladding gas and 20 liters / minute of hydrogen for the complementary cladding gas (test 18).
  • the comparison of the tests 4 and 12 also shows the perfect reproducibility of the manufacturing method of the invention, and therefore the control of the characteristics of the ODS alloy powder which it advantageously allows to obtain.
  • an iron-base ODS alloy powder whose particles are spherical (more particularly with a mean circularity coefficient which is between 0.95 and 1) and comprise a determined proportion of nanoreenforcements (average size typically between 50 nm at 500 nm, preferably between 50 nm and 200 nm) of oxide homogeneously dispersed in the metal matrix of the ODS alloy
  • the person skilled in the art can for example use the following operating conditions for the plasma torch , the priority parameters on which to act separately or in combination are the plasma torch power and the precursor powder flow rate:
  • ⁇ a pressure in the reaction chamber of the plasma torch between 5 psi or 34 474 Pa and 14.5 psi (the atmospheric pressure)
  • ⁇ power of the plasma torch between 20 kW and 40 kW (even between 20 kW and 30 kW),
  • ⁇ a pressure in the reaction chamber of the plasma torch between 4 and 8 psi psi (between 27.6 kPa and 55.1 kPa)
  • ⁇ main cladding gas flow rate between 80 L / min (or 60 L / min) and 100 L / min
  • the precursor powder and the reinforced alloy powder obtained respectively at the end of the mechanosynthesis step and then the oxide precipitation step in the plasma torch according to test No. 4 are characterized by SEM (FIGS. IB, 2A, 2B, 3A and 3B), MET (FIGS. 4A and 4B) and EDX (table of FIG. 3C).
  • the particles of the precursor powder are of variable shape (FIG. 1A) and have a non-crystallized chaotic microstructure containing no oxide particle having sprouted to form a reinforcement of the master alloy (FIG. 1B).
  • the combination of steps ii) grinding and iii) plasma treatment according to the manufacturing process of the invention makes it possible to obtain an ODS-type reinforced alloy whose powder particles are essentially spherical and / or spheroidal (FIGS. 2D, 2B and 3A) and consist of grains composed of a crystallized metal matrix in which are incorporated by homogeneous manner of the crystallized particles of oxide appearing in the form of black dots on the gray background of varying hue constituting the metal matrix of the grains (FIGS. 2B, 3A and 3B).
  • the crystallized particles of oxide are nanorenforts, their median diameter d50 being between 150 nm and 200 nm. Many precipitates smaller than 5 nm are also present.
  • EDX analyzes were also performed by electron microscopy MEB and MET. They are grouped together in the table of FIG. 3C which shows that the nanorenches present in the zones 1 to 5 within the particles of the ODS alloy powder are rich in titanium, yttrium and oxygen.
  • the corresponding EDX analyzes carried out in zones 6 and 7 of the metal matrix show the absence of oxygen, titanium, aluminum and yttrium in the matrix (molar% ⁇ 0.1% at margin of uncertainty close to zero when no value is indicated as for aluminum and yttrium).
  • Figures 5B, 5C and 5D are obtained by TEM diffraction of the area shown in Figure 5A which is centered on an oxide precipitate of the ODS alloy of the invention. They exhibit superstructure diffraction peaks (i.e. one spot in two is brighter) which are characteristic of a pyrochlore type oxide Y 2 Ti 7 conventionally obtained in an iron-base ODS alloy.

Abstract

The invention relates to a method for producing a strengthened alloy powder (ODS alloy) of which the grains that form the particles of the powder comprise a metal matrix, having crystallised oxide particles dispersed in the volume thereof, the method comprising the following consecutive steps: i) providing a mixture of powders to be milled, comprising a master alloy intended to form the metal matrix, and a complementary powder comprising at least one intermediate compound intended to incorporate atoms intended to form the dispersed oxide particles; ii) milling the mixture of powders using a mechanical synthesis method in order to manufacture a precursor powder; and iii) exposing the precursor powder to a thermal plasma generated by a plasma torch comprising a plasma gas, in order to obtain the reinforced alloy powder. The method of the invention is, in particular, suited to the production of an ODS alloy having optimised composition and/or microstructure. The invention likewise relates to the ODS alloy powder obtained using the above production method and to the use thereof.

Description

POUDRE D'ALLIAGE ODS, SON PROCÉDÉ DE FABRICATION  ODS ALLOY POWDER, ITS MANUFACTURING METHOD
PAR TRAITEMENT PLASMA, ET SON UTILISATION.  BY PLASMA TREATMENT, AND ITS USE.
DESCRIPTION  DESCRIPTION
DOMAINE TECHNIQUE TECHNICAL AREA
La présente invention appartient au domaine des alliages renforcés par dispersion d'oxydes (dit alliage « ODS » selon l'acronyme anglais pour « Oxyde DispersionThe present invention belongs to the field of alloys reinforced by dispersion of oxides (said alloy "ODS" according to the acronym for "Oxide Dispersion
Strengthened ») , les oxydes constituant des renforts de la matrice métallique dans laquelle ils sont dispersés. Strengthened "), the oxides constituting reinforcements of the metal matrix in which they are dispersed.
L' invention concerne plus particulièrement une poudre d'un alliage ODS, ainsi que son procédé de fabrication.  The invention more particularly relates to a powder of an ODS alloy, as well as its manufacturing process.
ARRIERE-PLAN TECHNIQUE TECHNICAL BACKGROUND
L'atomisation est le procédé le plus courant pour fabriquer une poudre métallique. Il consiste à pulvériser en fines gouttelettes un filet de métal en fusion exposé à un jet de gaz ou à un jet d'eau à haute pression afin d'obtenir la poudre. Atomization is the most common method for making a metal powder. It consists in spraying in fine droplets a net of molten metal exposed to a jet of gas or a jet of water at high pressure in order to obtain the powder.
Toutefois, l'atomisation n'est pas adaptée à la fabrication d'une poudre d'alliage ODS : il est souvent impossible de disposer de la matière première indispensable à l' atomisation qui est un métal de base sous forme massive (telle que par exemple sous forme de lingot) qui contiendrait en outre des renforts d' oxydes qui y sont dispersés de manière plus ou moins homogène.  However, the atomization is not suitable for the manufacture of an ODS alloy powder: it is often impossible to dispose of the essential raw material for atomization which is a base metal in massive form (such as example in the form of ingot) which would further contain reinforcements of oxides which are dispersed there more or less homogeneously.
En effet, les renforts d'oxydes ne fondent pas à la même température que le métal de base. Ils s'agglomèrent alors à cause de problèmes de mouillabilité des renforts dans le métal de base en fusion et de différences de densité entre renforts et métal. En pratique, les procédés de fonderie ne sont donc pas utilisés pour former des alliagesIndeed, the oxide reinforcements do not melt at the same temperature as the base metal. They agglomerate then because of problems of wettability reinforcements in the molten base metal and differences in density between reinforcements and metal. In practice, the methods of foundry are therefore not used to form alloys
ODS. ODS.
Pour former des alliages ODS, le procédé de fabrication par mécanosynthèse est à ce jour privilégié. Ce procédé de métallurgie des poudres est décrit par exemple dans le document de « C. Suryanarayana "Mechanical alloying and milling", Progress in Materials Science, 2001, 46, 1-To form ODS alloys, the method of manufacturing by mechanosynthesis is currently preferred. This process of powder metallurgy is described for example in the document "C. Suryanarayana" Mechanical alloying and milling, "Progress in Materials Science, 2001, 46, 1-
184 » [référence 1] . Il repose sur le co-broyage à haute énergie d'une première poudre du métal de base (éventuellement pré-alliée) préalablement obtenue par atomisation et destinée à former la matrice métallique avec au moins une deuxième poudre métallique destinée à former un renfort d'oxydes dans la matrice métallique. Au cours du broyage, tout ou partie des atomes constitutifs de la deuxième poudre métallique s'incorporent dans la matrice métallique, éventuellement et le plus probablement sous forme de solution solide. Toutefois, à ce stade du procédé de mécanosynthèse, les oxydes ne sont pas formés (à tout le mieux une partie des oxydes peut être sous la forme d'oxydes amorphes, à savoir non cristallisés : un débat existe néanmoins au sein de la communauté scientifique pour savoir si ces oxydes non cristallisés ne correspondent pas en partie aux atomes constitutifs correspondants qui seraient en solution solide dans la matrice métallique) et les renforts correspondants n'ont pas germé au sein des particules de poudres broyées. Seule une étape supplémentaire de consolidation (par exemple par filage à chaud ou compression isostatique à chaud) fait croître les renforts d'oxydes au sein de la matrice métallique afin d'obtenir définitivement un alliage ODS. Ce n'est qu' après la formation de particules d'oxyde qui constituent autant de renforts dispersés dans la matrice métallique qu'un vrai alliage renforcé est formé, et donc que l'appellation « alliage ODS » est pleinement justifiée. 184 "[reference 1]. It is based on the high-energy co-grinding of a first powder of the base metal (possibly pre-alloyed) previously obtained by atomization and intended to form the metal matrix with at least a second metal powder intended to form a reinforcement of oxides in the metal matrix. During grinding, all or part of the constituent atoms of the second metal powder are incorporated in the metal matrix, optionally and most probably in the form of solid solution. However, at this stage of the mechanosynthesis process, the oxides are not formed (at best a part of the oxides may be in the form of amorphous oxides, ie not crystallized: a debate nevertheless exists within the scientific community to know if these non-crystallized oxides do not correspond in part to the corresponding constituent atoms which would be in solid solution in the metal matrix) and the corresponding reinforcements did not germinate within the ground powders particles. Only an additional consolidation step (for example by hot spinning or hot isostatic compression) increases the oxide reinforcements within the metal matrix to permanently obtain an ODS alloy. It is only after the formation of oxide particles that constitute as many reinforcements dispersed in the metal matrix that a real reinforced alloy is formed, and therefore that the name "alloy ODS" is fully justified.
Or, il est difficile de maîtriser la formation de la poudre d'alliage ODS ainsi obtenue, notamment sa composition, sa taille, sa morphologie et la répartition des renforts d'oxydes au sein de la matrice métallique. However, it is difficult to control the formation of the ODS alloy powder thus obtained, in particular its composition, its size, its morphology and the distribution of oxide reinforcements within the metal matrix.
EXPOSE DE L' INVENTION SUMMARY OF THE INVENTION
Un des buts de l'invention est donc d'éviter ou d'atténuer un ou plusieurs des inconvénients décrits ci- dessus, en proposant un nouveau procédé de fabrication d'une poudre d'alliage ODS, présentant plus particulièrement des caractéristiques de composition et/ou microstructure qui sont optimisées. One of the aims of the invention is therefore to avoid or mitigate one or more of the disadvantages described above, by proposing a new process for manufacturing an ODS alloy powder, more particularly having composition and / or microstructure that are optimized.
La présente invention concerne ainsi un procédé de fabrication d'une poudre d'un alliage renforcé dont les grains formant les particules de la poudre comprennent une matrice métallique dans le volume de laquelle sont dispersées des particules d'oxyde cristallisées (alliage ODS) , le procédé comprenant les étapes successives suivantes : The present invention thus relates to a process for manufacturing a powder of a reinforced alloy whose grains forming the particles of the powder comprise a metal matrix in the volume of which are dispersed crystallized oxide particles (ODS alloy), the method comprising the following successive steps:
i) disposer d'un mélange de poudres à broyer comprenant :  i) having a mixture of powders to grind comprising:
- une poudre mère métallique comprenant un alliage maître destiné à former la matrice métallique ;  a metal master powder comprising a master alloy intended to form the metal matrix;
- une poudre complémentaire comprenant au moins un composé intermédiaire destiné à incorporer dans la matrice métallique, éventuellement sous forme d'une solution solide, des atomes destinés à former les particules d' oxyde dispersées ; a complementary powder comprising at least one intermediate compound intended to be incorporated in the metal matrix, optionally in the form of a solid solution, atoms for forming the dispersed oxide particles;
ii) broyer le mélange de poudres dans un milieu gazeux de broyage selon un procédé de mécanosynthèse pour fabriquer une poudre précurseur comprenant une matrice métallique incorporant lesdits atomes, éventuellement sous forme d’une solution solide ;  ii) grinding the powder mixture in a gaseous grinding medium by a mechanosynthesis process for producing a precursor powder comprising a metal matrix incorporating said atoms, optionally in the form of a solid solution;
iii) soumettre la poudre précurseur à un plasma thermique généré par une torche plasma comprenant un gaz plasmagène, afin d'obtenir la poudre d'alliage renforcé.  iii) subjecting the precursor powder to a thermal plasma generated by a plasma torch comprising a plasmagenic gas, in order to obtain the reinforced alloy powder.
Selon le procédé de fabrication de l'invention, la combinaison d'une étape de broyage par mécanosynthèse et d'une étape de traitement plasma produit une poudre d'alliage ODS comprenant des particules d'oxyde cristallisées en tant que renforts de la matrice métallique. According to the manufacturing method of the invention, the combination of a mechanosynthesis grinding step and a plasma treatment step produces an ODS alloy powder comprising crystallized oxide particles as reinforcements of the metal matrix. .
Un tel résultat est inattendu pour l'homme du métier pour les raisons suivantes : Such a result is unexpected for those skilled in the art for the following reasons:
le traitement d' une poudre par plasma thermique provoque typiquement la fusion de cette poudre. Un plasma thermique (dit également « plasma chaud ») est un plasma très énergétique dans lequel les électrons et les ions influencent le comportement du plasma. Un plasma thermique est en opposition à un plasma froid qui est moins énergétique et dans lequel seuls les électrons influencent le comportement du plasma.  the treatment of a powder by thermal plasma typically causes the melting of this powder. A thermal plasma (also called "hot plasma") is a very energetic plasma in which electrons and ions influence the behavior of the plasma. A thermal plasma is in opposition to a cold plasma which is less energetic and in which only the electrons influence the behavior of the plasma.
Or, comme indiqué précédemment, un procédé de fusion n'est absolument pas recommandé pour former un alliage ODS, raison pour laquelle la mécanosynthèse a été développée, comme l'indique l'article passant en revue l'état de l'art « DJ Lloyd ; « Particle reinforced aluminium and magnésium matrix composites » ; International materials reviews, 1994 , vol. 39, n° 1, pages 1 à 23. » [référence 2]. C'est aussi pour cette raison que l'on évite généralement d'utiliser une compaction isostatique à chaud à trop haute température. However, as indicated previously, a fusion process is absolutely not recommended to form an ODS alloy, for which reason the mechanosynthesis has been developed, as indicated in the article reviewing the state of the art "DJ Lloyd; "Particle reinforced aluminum and magnesium matrix composites"; International materials reviews, 1994, vol. 39, No. 1, pages 1 to 23. "[reference 2]. It is also for this reason that it is generally avoided to use hot isostatic compaction at too high a temperature.
En effet, les particules d'oxyde fondent généralement à une température supérieure à celle de l'alliage maître destiné à former la matrice métallique. Elles ont donc tendance à s'agglomérer à cause de leur faible mouillabilité dans le métal en fusion et de leur densité différente de celle du métal. Dans de telles conditions, il est dès lors impossible d'obtenir un alliage renforcé avec des renforts d'oxydes dispersés dans la matrice métallique de manière relativement homogène, en particulier des renforts d'une taille nanométrique.  Indeed, the oxide particles generally melt at a temperature greater than that of the master alloy intended to form the metal matrix. They therefore tend to agglomerate because of their low wettability in the molten metal and their density different from that of the metal. Under such conditions, it is therefore impossible to obtain a reinforced alloy with oxide reinforcements dispersed in the metal matrix in a relatively homogeneous manner, in particular reinforcements of a nanometric size.
après la mécanosynthèse, les atomes destinés à former les particules d'oxyde sont répartis dans la matrice métallique, éventuellement et le plus probablement sous forme d'une solution solide, même si un débat existe à ce sujet au sein de la communauté scientifique. Ce n'est que lors de l'étape ultérieure de consolidation que les particules d'oxyde vont germer puis cristalliser. Or, cette étape de consolidation telle qu'elle est effectuée dans l'état de la technique n'est pas favorable au contrôle des caractéristiques des renforts obtenus ; notamment leur taille, leur morphologie, leur degré de cristallisation et/ou leur répartition dans la matrice métallique.  after the mechanosynthesis, the atoms intended to form the oxide particles are distributed in the metal matrix, possibly and most probably in the form of a solid solution, even if there is a debate on this subject within the scientific community. It is only during the subsequent consolidation stage that the oxide particles will germinate and then crystallize. However, this consolidation step as it is performed in the state of the art is not conducive to controlling the characteristics of the reinforcements obtained; in particular their size, their morphology, their degree of crystallization and / or their distribution in the metal matrix.
- les torches plasma sont prévues pour traiter et obtenir une poudre dont les particules sont de taille micrométrique. Pour obtenir une nanopoudre, à savoir une poudre dont les particules sont de taille nanométrique, la torche plasma doit intégrer un anneau de trempe. Les procédés de traitement par torche plasma sont très énergétiques et sans équipement supplémentaire type anneau de trempe, l'homme du métier s'attend à ce qu'un traitement par torche plasma ne forme pas une nanopoudre, ainsi que des nanoprécipités au sein d'une particule de poudre car · les précipités s’y aggloméreraient. the plasma torches are designed to process and obtain a powder whose particles are of micrometric size. To obtain a nanopowder, namely a powder whose particles are of nanometric size, the plasma torch must incorporate a quench ring. Plasma torch processing methods are very energetic and without additional quench ring equipment, those skilled in the art expect that a plasma torch treatment will not form a nanopowder, as well as nanoprecipitates within a particle of powder because · the precipitates would agglomerate there.
Or, à l'encontre du préjugé selon lequel l'utilisation d'une étape de traitement plasma au cours duquel les poudres sont en fusion ne permettrait pas d' obtenir une poudre d'alliage ODS aux caractéristiques optimisées, les inventeurs ont montré que les particules d' oxyde ne coalescent pas au cours de l'étape de traitement plasma. However, contrary to the prejudice that the use of a plasma treatment step during which the powders are in melt would not make it possible to obtain an ODS alloy powder with optimized characteristics, the inventors have shown that the Oxide particles do not coalesce during the plasma treatment step.
Au contraire, elles restent individualisées au cours de leur précipitation selon deux étapes :  On the contrary, they remain individualized during their precipitation in two stages:
i) la germination au cours de laquelle les atomes métalliques migrent dans la matrice métallique et se rencontrent pour former des molécules d'oxyde au sein même des particules de poudres, puis  i) the germination during which the metal atoms migrate into the metal matrix and meet to form oxide molecules within the same powder particles, then
ii) la cristallisation comprenant la croissance de cristaux d'oxyde pour former les particules d'oxyde.  ii) crystallization comprising growth of oxide crystals to form the oxide particles.
Parallèlement, toujours au cours de l'étape de traitement plasma, l'alliage maître cristallise généralement en masse en tout ou partie pour former la matrice métallique. Les renforts cristallisés d'oxyde ainsi formés sont dispersés de manière homogène dans la matrice métallique cristallisée en tout ou partie.  Meanwhile, still during the plasma treatment step, the master alloy generally crystallizes in bulk in all or part to form the metal matrix. The crystallized oxide reinforcements thus formed are dispersed homogeneously in the crystallized metal matrix in whole or in part.
Avantageusement, le procédé de fabrication de l'invention permet dès lors de fabriquer un alliage ODS avec un très bon contrôle de la taille et de la dispersion des précipités d'oxyde renforçant la matrice métallique de l'alliage ODS. Advantageously, the manufacturing method of the invention therefore makes it possible to manufacture an ODS alloy with very good control of the size and the dispersion of the oxide precipitates reinforcing the metal matrix of the ODS alloy.
Au cours de la première étape du procédé de fabrication de l'invention, le mélange de poudres est broyé selon un procédé de mécanosynthèse . Le mélange de poudres comprend la poudre mère métallique et la poudre complémentaire . During the first step of the manufacturing process of the invention, the powder mixture is ground according to a mechanosynthesis process. The mixture of powders includes the parent metal powder and the complementary powder.
Généralement, lorsque les conditions de broyage ont été ajustées au cours de l'étape ii) de mécanosynthèse, la poudre mère métallique et la poudre complémentaire se mélangent intimement, de telle sorte que tous les atomes du composé intermédiaire qui sont destinés à former les particules d'oxyde dispersées s'incorporent, éventuellement et le plus probablement sous forme d'une solution solide, dans l'alliage maître qui forme alors la matrice métallique.  Generally, when the grinding conditions have been adjusted during step ii) of mechanosynthesis, the parent metal powder and the complementary powder mix intimately, so that all the atoms of the intermediate compound that are intended to form the particles dispersed oxide materials are incorporated, possibly and most probably in the form of a solid solution, into the master alloy which then forms the metal matrix.
Concernant les caractéristiques de ces poudres, il n'y a pas de limitation réelle à la taille des particules des poudres composant le mélange de poudres utilisées dans le procédé de fabrication de l'invention. Regarding the characteristics of these powders, there is no real limitation to the particle size of the powders composing the mixture of powders used in the manufacturing process of the invention.
Le plus souvent, les particules de la poudre mère ont un diamètre médian (d5o) compris entre 1 pm et 200 pm, voire compris entre 20 pm et 80 pm, typiquement entre 60 pm et 65 pm. Most often, the particles of the mother powder have a median diameter (d 5 o) of between 1 μm and 200 μm, and even between 20 μm and 80 μm, typically between 60 μm and 65 μm.
Le diamètre médian (dso) d'une poudre est la taille pour laquelle 50 % de la population des particules composant cette poudre a une taille inférieure à dso- The median diameter (dso) of a powder is the size for which 50% of the population of particles in this powder is less than
Il peut être déterminé par une technique telle que la méthode de diffraction laser via un granulomètre telle que décrite par exemple dans la norme ISO 13320 (édition 2009- 12-01) . It can be determined by a technique such as the laser diffraction method via a particle size analyzer as described for example in the ISO 13320 standard (2009-12-01 edition).
La poudre mère métallique comprend l'alliage maître qui peut être choisi parmi un alliage de base fer, un alliage de base nickel ou un alliage de base aluminium. The metal master powder comprises the master alloy which may be selected from iron base alloy, nickel base alloy or aluminum base alloy.
L'alliage de base fer peut comprendre en poids : The iron base alloy may comprise by weight:
10 % à 30 % de chrome. 10 % à 30 % d'aluminium. 10% to 30% chromium. 10% to 30% aluminum.
8 % à 25 % de chrome et 3 % à 8 % d'aluminium.  8% to 25% chromium and 3% to 8% aluminum.
L'alliage de base fer peut être un acier, par exemple un acier austénitique, martensitique ou ferritique, le cas échéant respectant les compositions en poids précédentes.  The iron base alloy may be a steel, for example austenitic, martensitic or ferritic steel, where appropriate respecting the previous compositions by weight.
L'alliage de base nickel peut comprendre en poids : The nickel base alloy may comprise by weight:
10 % à 40 % de chrome, tel que par exemple 10% to 40% chromium, such as for example
1 ' Inconel® 600 comprenant 14 ¾ à 17 % de chrome. 1 'Inconel® 600 comprising 14 to 17% chromium.
10 % à 40 % de chrome, 0,2 % à 5 % d'aluminium, 10% to 40% chromium, 0.2% to 5% aluminum,
0,3 % à 5 % de titane, 0 % à 5 % de tungstène, 0 % à 2 % de molybdène et 0 % à 2 % de tantale, tels que par exemple les Inconel® 625 ou 718 comprenant respectivement 20 % à 23 % ou 17 % à 21 % de chrome. 0.3% to 5% of titanium, 0% to 5% of tungsten, 0% to 2% of molybdenum and 0% to 2% of tantalum, such as for example Inconel® 625 or 718 respectively comprising 20% to 23% % or 17% to 21% of chromium.
10 % à 30 % d'aluminium.  10% to 30% aluminum.
De manière générale, l'alliage de base nickel peut être un Inconel®.  In general, the nickel base alloy can be an Inconel®.
Lorsque l'alliage maître est un alliage de base fer ou un alliage de base nickel, le mélange de poudres peut comprendre en poids 0,1 % à 2,5 % de la poudre complémentaire, voire 0,1 % à 0,5 %.  When the master alloy is an iron base alloy or a nickel base alloy, the powder mixture may comprise 0.1% to 2.5% by weight of the complementary powder, or even 0.1% to 0.5% by weight. .
L'alliage de base aluminium peut comprendre en poids de 0 % à 1 % de fer (voire de 0 % à 0 , 5 % de fer) , de 0 % à 1 % de silicium et de 0 % à 1 % de magnésium. The aluminum base alloy may comprise, by weight, from 0% to 1% iron (or even from 0% to 0.5% iron), from 0% to 1% silicon and from 0% to 1% magnesium.
Il s'agit par exemple des compositions en poids suivantes :  These are, for example, the following compositions by weight:
- l'alliage d'aluminium 1100 comprenant 0,95 % de fer, 0,05 % de magnésium, 0,2 % de cuivre, et 0,1 % de zinc ;  the 1100 aluminum alloy comprising 0.95% iron, 0.05% magnesium, 0.2% copper and 0.1% zinc;
- l'alliage d'aluminium 6262 comprenant jusqu'à 0,7 % de fer ;  aluminum alloy 6262 comprising up to 0.7% iron;
- un alliage d'aluminium de la série 1000, comme par exemple l'alliage d'aluminium 1050 contenant moins de 0,4 % de fer, moins de 0,25 % de silicium et pas de magnésium ; - un alliage d'aluminium de la série 6000, comme par exemple l'alliage d'aluminium 6063 contenant moins de 0,35 % de fer, moins de 0,6 % de silicium et moins de 0,9 % de magnésium. an aluminum alloy of the 1000 series, such as, for example, the aluminum alloy 1050 containing less than 0.4% iron, less than 0.25% silicon and no magnesium; an aluminum alloy of the 6000 series, such as, for example, the aluminum alloy 6063 containing less than 0.35% iron, less than 0.6% silicon and less than 0.9% magnesium.
Le fer est le plus souvent une impureté et le silicium améliore la coulabilité de l'alliage.  Iron is most often an impurity and silicon improves the flowability of the alloy.
Lorsque l'alliage maître est un alliage de base aluminium, le mélange de poudres peut comprendre en poids 0,2 % à 5 % de la poudre complémentaire.  When the master alloy is an aluminum base alloy, the powder mixture may comprise 0.2% to 5% by weight of the complementary powder.
De manière générale, la proportion de la poudre précurseur qui précipite sous forme de particules d'oxyde au cours de l'étape iii) de traitement plasma peut être élevée grâce au bon rendement du procédé de fabrication de l'invention. Cette proportion peut être typiquement de 80 % (voire 90 %) à 100 %. Lorsqu'elle est de 100 %, tous les atomes destinés à former les particules d'oxyde dispersées ont précipité sous forme de renforts dans la matrice métallique de l'alliage ODS. Ainsi, selon la proportion complémentaire, la proportion des atomes destinés à former les particules d' oxyde dispersées présentes dans la matrice métallique de l'alliage ODS sous une forme autre qu'une particule d'oxyde cristallisée est réduite voire proche ou égale à 0 % . In general, the proportion of the precursor powder which precipitates in the form of oxide particles during step iii) of plasma treatment can be high thanks to the good yield of the manufacturing method of the invention. This proportion can typically be 80% (or even 90%) to 100%. When it is 100%, all the atoms intended to form the dispersed oxide particles precipitated as reinforcements in the metal matrix of the ODS alloy. Thus, according to the complementary proportion, the proportion of the atoms intended to form the dispersed oxide particles present in the metal matrix of the ODS alloy in a form other than a crystalline oxide particle is reduced or even close to 0 %.
Grâce à cette propriété du procédé de fabrication de l'invention, la proportion de poudre complémentaire dans le mélange de poudres à broyer peut donc être réduite. Ceci favorise, au cours de l'état de traitement plasma iii), la formation de particules d'oxyde de taille réduite (par exemple sous forme de nanorenforts) et leur répartition homogène dans la matrice métallique de l'alliage ODS. Ceci diminue également le coût du procédé de fabrication. Cette proportion peut ainsi être de 0,1 % à 0,3 %, voire 0,1 % à 0,2 % de poudre complémentaire dans le mélange de poudres à broyer. Concernant la poudre complémentaire, ses particules ont généralement un diamètre médian (d50) compris entre 1 pm et 80 pm. Ce diamètre médian peut alors être inférieur à celui de la poudre mère, ce qui favorise l'incorporation des atomes destinés à former les particules d'oxyde dispersées au sein de l'alliage maître de la poudre mère métallique. Owing to this property of the manufacturing method of the invention, the proportion of complementary powder in the mixture of powders to be ground can be reduced. This promotes, during the plasma treatment state iii), the formation of oxide particles of reduced size (for example in the form of nanorenforts) and their homogeneous distribution in the metal matrix of the ODS alloy. This also decreases the cost of the manufacturing process. This proportion may thus be from 0.1% to 0.3%, or even 0.1% to 0.2% of additional powder in the mixture of powders to be ground. As for the complementary powder, its particles generally have a median diameter (d 50 ) of between 1 μm and 80 μm. This median diameter can then be smaller than that of the mother powder, which favors the incorporation of the atoms intended to form the dispersed oxide particles within the master alloy of the parent metal powder.
Le composé intermédiaire destiné à incorporer les atomes destinés à former les particules d'oxyde dispersées peut être choisi parmi YFe3 Y2O3, Fe2C>3, Fe2Ti, FeCrWTi, TiH2, Ti02, A1203, Hf02, Si02, Zr02, Th02, MgO ou leurs mélanges. The intermediate compound intended to incorporate the atoms intended to form the dispersed oxide particles may be chosen from YFe 3 Y 2 O 3 , Fe 2 C 3 , Fe 2 Ti, FeCrWTi, TiH 2 , TiO 2 and Al 2 O 3. , Hf0 2 , Si0 2 , Zr0 2 , Th0 2 , MgO or mixtures thereof.
Un composé qui n'est pas un oxyde (par exemple YFe3, Fe2Ti, FeCrWTi, TiH2) est un composé précurseur destiné à former après réaction chimique, au cours du procédé de fabrication de l'invention, l'oxyde métallique correspondant qui est présent dans l'alliage renforcé à l'issue de ce procédé, plus particulièrement sous forme de particule d'oxyde cristallisée. A compound which is not an oxide (for example YFe 3 , Fe 2 Ti, FeCrWTi, TiH 2 ) is a precursor compound intended to form, after the chemical reaction, during the manufacturing process of the invention, the metal oxide corresponding which is present in the reinforced alloy at the end of this process, more particularly in the form of crystallized oxide particle.
Les atomes destinés à former les particules d'oxyde dispersées peuvent donc comprendre donc au moins un atome métallique choisi parmi l'yttrium, le titane, le fer, le chrome, le tungstène, le silicium, le zirconium, le thorium, le magnésium, l'aluminium ou l' hafnium. Le plus souvent, le composé intermédiaire est un oxyde métallique et comprend donc au moins un atome d' oxygène destiné à entrer dans la composition de la particule d'oxyde. Lorsque le composé intermédiaire ne comprend pas d'atome d'oxygène, par exemple dans le cas d'un composé intermétallique (tel que par exemple Fe2Ti ou FeCrWTi) ou d'un hydrure (tel que par exemple TiH2) , l'oxygène est apporté par un autre composé intermédiaire de type oxyde métallique, complété éventuellement par de l'oxygène présent dans l'alliage maître. The atoms intended to form the dispersed oxide particles may therefore therefore comprise at least one metal atom selected from among yttrium, titanium, iron, chromium, tungsten, silicon, zirconium, thorium, magnesium, aluminum or hafnium. Most often, the intermediate compound is a metal oxide and therefore comprises at least one oxygen atom to enter the composition of the oxide particle. When the intermediate compound does not comprise an oxygen atom, for example in the case of an intermetallic compound (such as, for example, Fe 2 Ti or FeCrWTi) or a hydride (such as, for example, TiH 2 ), oxygen is provided by another intermediate compound of metal oxide type, optionally supplemented with oxygen present in the master alloy.
Le mélange de poudres à broyer est soumis à l'étape ii) de broyage selon un procédé de mécanosynthèse . The mixture of powders to be ground is subjected to step ii) of grinding according to a method of mechanosynthesis.
Cette étape peut être réalisée dans un broyeur choisi par exemple parmi un broyeur à boulets ou un attriteur.  This step can be carried out in a mill selected for example from a ball mill or an attritor.
Le milieu gazeux de broyage est généralement une atmosphère de composition contrôlée. Il peut comprendre l'hydrogène, l'argon, l'hélium, l'azote, l'air ou leurs mélanges.  The gaseous grinding medium is generally an atmosphere of controlled composition. It can include hydrogen, argon, helium, nitrogen, air or mixtures thereof.
La poudre précurseur obtenue à l'issue de l'étape ii) de broyage est ensuite soumise à l'étape iii) de traitement plasma thermique. The precursor powder obtained at the end of the grinding step ii) is then subjected to step iii) of thermal plasma treatment.
Les paramètres de la torche plasma opérée pendant le traitement plasma de l'étape iii) sont ceux classiquement employés dans le domaine de la fabrication des poudres, par exemple dans les études suivantes :  The parameters of the plasma torch operated during the plasma treatment of step iii) are those conventionally used in the field of the manufacture of powders, for example in the following studies:
- Fan, X. ; Gitzhofer, F.; Boulos, M. , "Statistical - Fan, X.; Gitzhofer, F .; Boulos, M., "Statistical
Design of Experiments for the Spheroidization of Powdered Alumina by Induction Plasma Processing" , J Therm Spray Tech 1998, 7 (2), 247-253 [référence 3], Design of Experiments for the Spheroidization of Powdered Alumina by Induction Plasma Processing ", J Therm Spray Tech 1998, 7 (2), 247-253 [reference 3],
Jiang, X.-L.; Boulos, M. , "Induction Plasma Spheroidization of Tungsten and Molybdenum Powders", Jiang, X.-L .; Boulos, M., "Induction Plasma Spheroidization of Tungsten and Molybdenum Powders",
Transactions of Nonferrous Metals Society of China 2006, 16Transactions of Nonferrous Metals Society of China 2006, 16
(1), 13-17 [référence 4], (1), 13-17 [reference 4],
- Ye, R.; Ishigaki, T.; Jurewicz, J.; Proulx, P.; Boulos, M. I., "In-Flight Spheroidization of Alumina Powders in Ar-H2 and Ar-N2 Induction Plasmas", Plasma Chem Plasma Process 2004, 24 (4), 555-571 [référence 5]. - Ye, R .; Ishigaki, T .; Jurewicz, J .; Proulx, P .; Boulos, MI, In-Flight Spheroidization of Alumina Powders in Ar-H2 and Ar-N2 Induction Plasma ", Plasma Chem Plasma Process 2004, 24 (4), 555-571 [reference 5].
Ces études montrent qu'il n'existe pas de paramètres opératoires stricts et que l'homme du métier peut les adapter aisément, par exemple par itération, en fonction de la quantité de poudre à traiter et/ou du type de poudres qu'il souhaite obtenir. Des paramètres opératoires indicatifs et adaptés au procédé de fabrication de l'invention sont néanmoins précisés ci-après. These studies show that there are no strict operating parameters and that the person skilled in the art can adapt them easily, for example by iteration, depending on the quantity of powder to be treated and / or the type of powders he wish to obtain. Operative parameters indicative and adapted to the manufacturing method of the invention are nevertheless specified below.
La torche plasma utilisée peut être une torche plasma radiofréquence à couplage inductif, une torche à arc soufflé ou une torche à arc transféré. The plasma torch used may be an inductively coupled radiofrequency plasma torch, a blown arc torch or a transferred arc torch.
Le plasma radiofréquence fonctionne sans électrode. Le transfert d'énergie est effectué par couplage inductif : un champ magnétique est appliqué sur le gaz plasmagène qui circule à l'intérieur de la bobine d'induction afin de former le plasma.  The radiofrequency plasma operates without an electrode. The energy transfer is carried out by inductive coupling: a magnetic field is applied on the plasma gas which circulates inside the induction coil in order to form the plasma.
La puissance de la torche plasma peut être comprise entre 10 kW et 80 kW (plus particulièrement entre 10 kW et 40 kW) , voire entre 20 kW et 80 kW (plus particulièrement entre 20 kW et 40 kW) . The power of the plasma torch can be between 10 kW and 80 kW (more particularly between 10 kW and 40 kW), or even between 20 kW and 80 kW (more particularly between 20 kW and 40 kW).
Le plasma thermique utilisé dans l'étape iii) du procédé de fabrication de l'invention peut être un plasma tel que décrit par exemple dans le document « P. Fauchais, " Plasmas thermiques : aspects fondamentaux" , Techniques de l'ingénieur, fascicule D2810 VI, 2005) » [référence 6]. The thermal plasma used in step iii) of the manufacturing method of the invention may be a plasma as described for example in the document "P. Fauchais," Thermal plasmas: fundamental aspects ", Engineering techniques, booklet D2810 VI, 2005) "[reference 6].
Le plasma thermique peut être à une température de plasma comprise entre 200 °C et 12000 °C, par exemple comprise entre 700 °C et 4000 °C afin de faire fondre l'aluminium ou le magnésium, ou le tungstène qui fond à 3500 °C. Cette température est généralement suffisante pour faire fondre les espèces, plus particulièrement celles comprenant un atome métallique, qui composent la poudre précurseur . The thermal plasma may be at a plasma temperature of between 200 ° C. and 12000 ° C., for example between 700 ° C. and 4000 ° C. in order to melt aluminum or magnesium, or tungsten which melts at 3500 ° C. This temperature is generally sufficient to melt the species, more particularly those comprising a metal atom, which make up the precursor powder.
Le plasma thermique peut être tel que sa densité d'électrons est comprise entre 1014 nf3 et 1026 nf3, voire entre 1018 nf3 et 1026 m3 notamment pour les plasmas à arc. The thermal plasma may be such that its electron density is between 10 14 and 10 26 3 nf nf 3 or 10 nf 18 3 and 10 26m 3 in particular for arc plasmas.
Les énergies d'ionisation peuvent être comprises entre 0,5 eV et 50 eV.  The ionization energies can be between 0.5 eV and 50 eV.
À de telles températures et/ou énergies du plasma thermique, le gaz plasmagène contenu dans la torche plasma est en général totalement ionisé. Pour cela, le gaz plasmagène peut être choisi parmi l'argon, l'hélium, l'azote ou leurs mélanges. Il constitue généralement le gaz central de la torche plasma, dans laquelle il peut être introduit selon un débit compris entre 10 litres/minutes et 40 litres/minutes . At such temperatures and / or energies of the thermal plasma, the plasma gas contained in the plasma torch is generally totally ionized. For this, the plasma gas may be selected from argon, helium, nitrogen or mixtures thereof. It generally constitutes the central gas of the plasma torch, in which it can be introduced at a flow rate of between 10 liters / minute and 40 liters / minute.
Au début de l'étape iii) , la pression dans l'enceinte réactionnelle de la torche plasma peut être basse (par exemple inférieure à 200 Pa) pour favoriser la formation du plasma en facilitant l'ionisation du gaz plasmagène. At the beginning of step iii), the pressure in the reaction chamber of the plasma torch may be low (for example less than 200 Pa) to promote the formation of the plasma by facilitating the ionization of the plasma gas.
Toutefois, au cours de l'étape iii), la pression dans l'enceinte réactionnelle de la torche plasma est généralement comprise entre 25 kPa et 100 kPa . Plus cette pression est basse, plus le débit d'injection et donc le débit de traversée de la poudre précurseur dans la torche plasma est accéléré. However, during step iii), the pressure in the reaction chamber of the plasma torch is generally between 25 kPa and 100 kPa. The lower this pressure, the more the injection rate and therefore the flow rate of the precursor powder in the plasma torch is accelerated.
Pour une torche plasma radiofréquence à couplage inductif, l'enceinte réactionnelle correspond au tube de confinement. Lorsque la poudre précurseur entre en contact avec le plasma, la réaction de précipitation (à savoir germination puis croissance) des particules d'oxyde est activée thermiquement et se produit quasiment instantanément. For a radiofrequency plasma torch with inductive coupling, the reaction chamber corresponds to the confinement tube. When the precursor powder comes into contact with the plasma, the precipitation reaction (ie, germination and then growth) of the oxide particles is thermally activated and occurs almost instantaneously.
Le débit d'injection de la poudre précurseur dans la torche plasma peut néanmoins être adapté, plus particulièrement en fonction de la composition et/ou de la quantité de poudre à traiter.  The injection rate of the precursor powder in the plasma torch can nevertheless be adapted, more particularly according to the composition and / or the amount of powder to be treated.
La poudre précurseur peut être injectée dans la torche plasma selon un débit compris entre 10 grammes/minute et 45 grammes /minute, préférentiellement entre 10 grammes/minute et 30 grammes/minute, encore plus préférentiellement entre 10 grammes /minute et 19 grammes /minute . Ce débit d' introduction de la poudre précurseur peut être réglé indépendamment du débit du gaz central, même s'il peut être augmenté au moins partiellement en augmentant les débits de gaz plasmagène et/ou gaz de gainage. The precursor powder may be injected into the plasma torch at a flow rate of between 10 grams / minute and 45 grams / minute, preferably between 10 grams / minute and 30 grams / minute, more preferably between 10 grams / minute and 19 grams / minute. . This rate of introduction of the precursor powder can be regulated independently of the flow rate of the central gas, although it can be increased at least partially by increasing the flow rates of plasma gas and / or sheath gas.
L'injection de la poudre précurseur dans la torche plasma peut être réalisée par vibration, avec une vis sans fin ou un disque tournant. The injection of the precursor powder into the plasma torch can be performed by vibration, with an endless screw or a rotating disc.
Une injection en partie amont (en référence au flux du gaz plasmagène) de l'enceinte réactionnelle est généralement couplée à un débit de poudre rapide, alors qu'une injection en partie avale de l'enceinte réactionnelle est couplée à un débit de poudre plus lent, afin notamment d'optimiser le temps de trajet de la poudre précurseur dans l'enceinte réactionnelle. En effet, la partie amont du plasma thermique dans la torche plasma est à une température plus élevée qui peut ne pas être optimale. De plus, un fort débit de poudre évite à la poudre de se disperser par recirculation au sein du plasma. Par exemple, un bon compromis peut être de régler la hauteur de la sortie de la sonde d'injection décrite ci- après de telle sorte qu'elle débouche dans le premier tiers amont de l'enceinte réactionnelle. An injection in the upstream part (with reference to the flow of the plasmagenic gas) of the reaction chamber is generally coupled to a fast powder flow rate, whereas a downstream injection of the reaction chamber is coupled to a higher powder flow rate. slow, in particular to optimize the travel time of the precursor powder in the reaction chamber. Indeed, the upstream portion of the thermal plasma in the plasma torch is at a higher temperature which may not be optimal. In addition, a high flow rate of powder prevents the powder from dispersing by recirculation within the plasma. For example, a good compromise may be to adjust the height of the output of the injection probe described below so that it opens into the first third upstream of the reaction chamber.
Afin de maximiser la proportion de composé intermédiaire qui précipite sous forme de particule d'oxyde, il peut également être judicieux de coupler une puissance modérée de torche plasma avec un débit d'injection de poudre précurseur modéré. In order to maximize the proportion of intermediate compound that precipitates as an oxide particle, it may also be advisable to couple a moderate plasma torch power with a moderate precursor powder injection rate.
Typiquement, une puissance de torche plasma comprise entre 10 kW et 40 kW (voire entre 10 kW et 30 kW) couplée à un débit de poudre précurseur compris entre 10 g/minutes et 30 g/minutes (voire entre 10 g/minutes et 19 g/minutes) peut améliorer :  Typically, a plasma torch power of between 10 kW and 40 kW (or even between 10 kW and 30 kW) coupled with a precursor powder flow rate of between 10 g / minute and 30 g / minute (or even between 10 g / minute and 19 g / min). g / minutes) can improve:
la proportion de particules d'oxyde ayant précipité : typiquement, cette proportion améliorée est telle que 80 % à 100 % en poids de l'atome métallique contenu dans l'ensemble de l'alliage renforcé est sous forme de particules d'oxyde cristallisées, préférentiellement 90 % à 100 %, encore plus préférentiellement 100 % ; et/ou  the proportion of oxide particles having precipitated: typically, this improved proportion is such that 80% to 100% by weight of the metal atom contained in the whole of the reinforced alloy is in the form of crystallized oxide particles, preferably 90% to 100%, even more preferably 100%; and or
- le coefficient de circularité moyen des particules de la poudre d'alliage renforcé : typiquement pour 80 % à 100 % en poids des particules d'oxyde cristallisées (préférentiellement 90 % à 100 %, encore plus préférentiellement pour 100 %), ce coefficient de circularité moyen amélioré est compris entre 0,95 et 1, voire entre 0, 98 et 1.  the mean circularity coefficient of the particles of the reinforced alloy powder: typically for 80% to 100% by weight of the crystallized oxide particles (preferably 90% to 100%, even more preferentially for 100%), this coefficient of Mean circularity improved is between 0.95 and 1, or even between 0, 98 and 1.
La poudre précurseur et/ou le gaz plasmagène peuvent être introduits dans la torche plasma via une sonde d' inj ëction . La poudre précurseur peut être injectée dans la torche plasma simultanément avec le gaz plasmagène, par exemple via la sonde d'injection. La sonde d'injection peut être balayée sur sa surface externe par un gaz de gainage qui peut aider à stabiliser le plasma et augmenter le rendement du procédé de fabrication de l'invention. The precursor powder and / or the plasmagenic gas may be introduced into the plasma torch via an injection probe. The precursor powder may be injected into the plasma torch simultaneously with the plasma gas, for example via the injection probe. The injection probe can be scanned on its outer surface by a cladding gas which can help stabilize the plasma and increase the efficiency of the manufacturing process of the invention.
Le gaz de gainage peut être introduit dans la torche plasma selon un débit compris entre 10 litres/minutes et 100 litres/minutes .  The cladding gas can be introduced into the plasma torch at a flow rate of between 10 liters / minute and 100 liters / minute.
Il peut être choisi parmi l'argon, l'hélium, l'azote, l'hydrogène ou leurs mélanges.  It may be chosen from argon, helium, nitrogen, hydrogen or their mixtures.
Le gaz de gainage peut être un mélange d' au moins un gaz de gainage principal et d'au moins un gaz de gainage complémentaire.  The cladding gas may be a mixture of at least one main cladding gas and at least one complementary cladding gas.
Le gaz de gainage principal (le plus souvent l'argon) peut être introduit dans la torche plasma selon un débit élevé, par exemple un débit compris entre 40 litres/minutes et 100 litres/minutes. The main cladding gas (usually argon) can be introduced into the plasma torch at a high flow rate, for example a flow rate of between 40 liters / minute and 100 liters / minute.
Le gaz de gainage complémentaire présente une bonne conductivité thermique, ce qui améliore le transfert thermique entre le gaz plasmagène et la poudre précurseur.The complementary cladding gas has a good thermal conductivity, which improves the heat transfer between the plasma gas and the precursor powder.
Il s'agit par exemple de l'hélium, l'azote ou de préférence l'hydrogène pour ses propriétés réductrices qui limitent l'oxydation en surface des particules de poudre précurseur. Le gaz de gainage complémentaire peut être injecté dans la torche plasma selon un débit inférieur au débit d'introduction du gaz de gainage principal, par exemple selon un débit compris entre 1 litre/minutes et 40 litres/minutes. À l'issue de l'étape iii) de traitement par plasma thermique selon le procédé de fabrication, une poudre d'un alliage ODS est obtenue. It is for example helium, nitrogen or preferably hydrogen for its reducing properties which limit the surface oxidation of the precursor powder particles. The additional cladding gas may be injected into the plasma torch at a rate lower than the rate of introduction of the main cladding gas, for example at a flow rate of between 1 liter / minute and 40 liters / minute. At the end of step iii) of thermal plasma treatment according to the manufacturing method, a powder of an ODS alloy is obtained.
Les particules de cette poudre ont généralement une taille proche ou identique à celle de la poudre précurseur obtenue à l'issue de l'étape ii) de broyage.  The particles of this powder generally have a size that is close to or identical to that of the precursor powder obtained at the end of the grinding step ii).
Concernant leur microstructure, les particules de la poudre d'alliage ODS comprennent les particules d'oxyde dispersées et en tout ou partie cristallisées dans le volume de la matrice métallique de l'alliage ODS.  Regarding their microstructure, the particles of the ODS alloy powder comprise the dispersed oxide particles and wholly or partly crystallized in the volume of the metal matrix of the ODS alloy.
Les particules d' oxyde peuvent être réparties de manière homogène dans la totalité du volume de la matrice métallique, et pas seulement dans une zone déterminée. En particulier, elles ne se localisent pas de manière privilégiée aux joints de grains d'une particule de poudre de l'alliage ODS, ce qui serait néfaste aux propriétés mécaniques d'un matériau obtenu à partir d'une poudre d'alliage ODS (fissures, ténacité plus faible,...). The oxide particles can be homogeneously distributed throughout the entire volume of the metal matrix, not just in a specific area. In particular, they do not localize in a privileged way to the grain boundaries of a powder particle of the ODS alloy, which would be detrimental to the mechanical properties of a material obtained from an ODS alloy powder ( cracks, weaker toughness, ...).
La microstructure isotrope de l'alliage renforcé garantit notamment des propriétés mécaniques homogènes dans l'ensemble de la poudre, et donc dans un matériau éventuellement fabriqué avec cette poudre, et ce quelle que soit la direction de sollicitation mécanique de ce matériau.  The isotropic microstructure of the reinforced alloy guarantees in particular homogeneous mechanical properties in all of the powder, and therefore in a material possibly manufactured with this powder, and whatever the mechanical stressing direction of this material.
Les particules d'oxyde peuvent comprendre au moins un oxyde choisi parmi Y2O3, TXO2, AI2O3, Hf02, Si02, ZrÛ2, TI1O2, MgO AI2O3, Y2T12O7, Y2TÎ05-The oxide particles may comprise at least one oxide selected from Y 2 O 3, TXO 2, Al 2 O 3, Hf0 2, Si0 2, ZrO 2, TI1O2, MgO Al 2 O 3, Y 2 T1 2 O 7, Y 2 TÎ0 5 -
Généralement, lorsque la poudre complémentaire ne contient qu'un seul composé intermédiaire, typiquement un oxyde métallique, il entre directement dans la composition de la particule d'oxyde dispersée dans l'alliage ODS, voire se retrouve partiellement dans la matrice si une partie de la poudre complémentaire n'a pas précipité. Lorsque la poudre complémentaire comprend plusieurs composés intermédiaires, un ou plusieurs types de combinaisons chimiques entre ces composés peuvent se produire, pouvant mener à la formation d'oxydes mixtes. Par exemple, lorsque la poudre complémentaire comprend l'oxyde d'yttrium Y2O3 et l'hydrure de titane TiH2, au moins un oxyde choisi parmi Y2Ti207, Y2Ti05, YT1O3, YTi206 peut composer tout ou partie de la particule d'oxyde de l'alliage ODS. Generally, when the complementary powder contains only a single intermediate compound, typically a metal oxide, it enters directly into the composition of the oxide particle dispersed in the ODS alloy, or even partially found in the matrix if a part of the complementary powder did not precipitate. When the complementary powder comprises several intermediate compounds, one or more types of chemical combinations between these compounds can occur, which can lead to the formation of mixed oxides. For example, when the complementary powder comprises yttrium oxide Y 2 O 3 and titanium hydride TiH 2 , at least one oxide selected from Y 2 Ti 2 O 7 , Y 2 TiO 5 , YTlO 3 , YTi 2 0 6 can compose all or part of the oxide particle of the ODS alloy.
Le plus souvent, lorsque l'oxyde comprend de l'yttrium et/ou du titane, il s'agit d'un oxyde de structure pyrochlore tel que par exemple Y2Ti207. Most often, when the oxide comprises yttrium and / or titanium, it is an oxide of pyrochlore structure such as, for example, Y 2 Ti 2 O 7 .
Les particules d'oxyde formées dans l'alliage ODS peuvent avoir un diamètre médian (dso) compris entre 1 nm et 500 nm. De préférence, il est compris entre 1 nm et 200 nm, voire entre 1 nm et 150 nm : il s'agit donc de nanoparticules. De manière inattendue, un tel résultat peut être obtenu par le procédé de fabrication de l'invention sans utiliser un anneau de trempe incorporé dans la torche plasma . The oxide particles formed in the ODS alloy may have a median diameter (dso) of between 1 nm and 500 nm. Preferably, it is between 1 nm and 200 nm, or even between 1 nm and 150 nm: it is therefore nanoparticles. Unexpectedly, such a result can be obtained by the manufacturing method of the invention without using a quench ring incorporated in the plasma torch.
Le plus souvent, tout ou partie des particules de la poudre d'alliage renforcé est sphérique, ou tout du moins sphéroïdale. Most often, all or part of the particles of the reinforced alloy powder is spherical, or at least spheroidal.
Le coefficient de circularité moyen des particules de la poudre d'alliage renforcé (typiquement pour 80 % à 100 % en poids des particules d’oxyde cristallisées, préférentiellement 90 % à 100 %, encore plus préférentiellement pour 100 %) peut ainsi être compris entre 0,95 et 1, voire entre 0,98 et 1. Plus la valeur de ce coefficient pour une poudre est proche de 1, plus grande est la proportion des particules de cette poudre qui ont une morphologie proche de la sphère. Comme indiqué dans la publication « G. Mollon "Mécanique des matériaux granulaires" , INSA de Lyon, 2015 »The mean circularity coefficient of the particles of the reinforced alloy powder (typically 80% to 100% by weight of the crystallized oxide particles, preferably 90% to 100%, even more preferably 100%) can thus be included between 0.95 and 1, or even between 0.98 and 1. The greater the value of this coefficient for a powder is close to 1, the greater the proportion of particles of this powder which have a morphology close to the sphere. As indicated in the publication "G. Mollon" Mechanics of granular materials ", INSA Lyon, 2015"
(en particulier les pages 23 et 24) [référence 7] disponible à l'adresse Internet suivante : (especially pages 23 and 24) [reference 7] available at the following Internet address:
"http: //guilhem. mollon. free. fr/Telechargements/Mecaniq ue_des_Materiaux_Granulaires . pdf"  "http: // guilhem.mollon.free.fr/Downloads/Mechanics_of_GranularMaterials.pdf"
, et conformément à la norme ISO 9276-6 (édition 2008), le coefficient de circularité d'une particule est un descripteur de forme pouvant être calculé à partir de la formule suivante à partir du rayon du cercle totalement inscrit dans la particule (Rinscr) et du rayon du cercle qui circonscrit totalement la particule (RCirc) , ces rayons étant représentés sur la Figure 6 extraite de la référence [7] : , and in accordance with ISO 9276-6 (2008 edition), the circularity coefficient of a particle is a shape descriptor that can be calculated from the following formula from the radius of the circle totally inscribed in the particle (Rinscr ) and the radius of the circle which totally circumscribes the particle (R C irc), these rays being represented in Figure 6 extracted from reference [7]:
Figure imgf000021_0001
Figure imgf000021_0001
En pratique, le coefficient de circularité moyen d'une poudre peut être obtenu à partir de photographies de la particule suivie de son analyse numérique automatisée. De préférence, plusieurs photographies de la même particule sont prises sous des angles différents. La circularité moyennée pour ces différents angles est alors calculée. Une fois cette opération réalisée sur plusieurs grains, la moyenne sur tous ces grains de la circularité moyennée pour chaque grain aboutit au coefficient de circularité moyen de la poudre. In practice, the mean circularity coefficient of a powder can be obtained from photographs of the particle followed by its automated numerical analysis. Preferably, several photographs of the same particle are taken from different angles. The circularity averaged for these different angles is then calculated. Once this operation is carried out on several grains, the average of all these grains of the circularity averaged for each grain results in the mean circularity coefficient of the powder.
D'un point de vue instrumental, le coefficient de circularité moyen d'une poudre peut être obtenu automatiquement à l'aide d'un appareillage tel que le « CAMSIZER Dynamic Image Analyzer » commercialisé par la société HORIBA Scientic. Concernant sa composition, l'alliage renforcé peut en outre comprendre en poids au moins un des éléments suivants : From an instrumental point of view, the mean circularity coefficient of a powder can be obtained automatically using an apparatus such as the "CAMSIZER Dynamic Image Analyzer" marketed by the company HORIBA Scientic. As regards its composition, the reinforced alloy may further comprise, by weight, at least one of the following elements:
- de 10 à 5000 ppm de silicium ;  from 10 to 5000 ppm of silicon;
- de 10 à 100 ppm de soufre ;  from 10 to 100 ppm of sulfur;
- moins de 20 ppm de chlore ;  - less than 20 ppm chlorine;
- de 2 à 10 ppm de phosphore ;  from 2 to 10 ppm of phosphorus;
- de 0,1 à 10 ppm de bore ;  from 0.1 to 10 ppm of boron;
- de 0,1 à 10 ppm de calcium ;  from 0.1 to 10 ppm of calcium;
- moins de 0,1 ppm de chacun des éléments suivants : lithium, fluor, métaux lourds, Sn, As, Sb.  less than 0.1 ppm of each of the following elements: lithium, fluorine, heavy metals, Sn, As, Sb.
Ces éléments sont le plus souvent contenus initialement dans l’alliage maître. Puisque la composition chimique de la poudre mère métallique n’est généralement pas modifiée au cours du procédé de fabrication de l’invention, ces éléments se retrouvent dans ce cas inchangés dans la matrice métallique.  These elements are most often initially contained in the master alloy. Since the chemical composition of the parent metal powder is generally not modified during the manufacturing process of the invention, these elements are found in this case unchanged in the metal matrix.
Puisque tout ou partie de la matrice métallique et/ou des particules d’oxyde qu’elle contient peut être cristallisée, la poudre d’alliage renforcé peut elle-même être cristallisée en tout ou partie (de préférence totalement cristallisée) . Since all or part of the metal matrix and / or the oxide particles that it contains can be crystallized, the reinforced alloy powder can itself be crystallized in whole or in part (preferably completely crystallized).
La microstructure des particules de la poudre d'alliage renforcé peut être de préférence monocristalline (toutes les particules ont la même structure cristalline) , ou également polycristalline (les particules peuvent avoir des structures cristallines différentes) .  The microstructure of the particles of the reinforced alloy powder may be preferably monocrystalline (all the particles have the same crystalline structure), or also polycrystalline (the particles may have different crystalline structures).
La proportion élevée de poudre d’alliage renforcé qui est cristallisée peut être mise à profit pour son utilisation dans des procédés de fabrication de type projection à froid (dit « cold spray » en anglais) . D' autres caractéristiques de microstructure et/ou de composition de l'alliage renforcé obtenu par le procédé de fabrication de l'invention seront précisées ci-après. The high proportion of reinforced alloy powder that is crystallized can be used for its use in cold spray-type manufacturing processes (so-called "cold spray"). Other characteristics of microstructure and / or composition of the reinforced alloy obtained by the manufacturing method of the invention will be specified below.
L'invention concerne également une poudre d'alliage renforcé obtenue ou susceptible d'être obtenue par le procédé de fabrication tel que défini dans la présente description, notamment dans une ou plusieurs des variantes décrites pour ce procédé, telles que par exemple la microstructure et/ou la composition de la poudre d'alliage renforcé . The invention also relates to a reinforced alloy powder obtained or obtainable by the manufacturing method as defined in the present description, in particular in one or more of the variants described for this process, such as for example the microstructure and or the composition of the reinforced alloy powder.
L'invention concerne plus particulièrement une poudre d'alliage renforcé dont les grains formant les particules de la poudre comprennent une matrice métallique dans le volume de laquelle sont dispersées des particules d' oxyde cristallisées. The invention more particularly relates to a reinforced alloy powder, the grains forming the particles of the powder comprise a metal matrix in the volume of which are dispersed crystallized oxide particles.
À la connaissance des inventeurs, il n’a jamais été obtenu un alliage ODS directement sous forme de poudre, ce qui a notamment pour avantage de procurer un bon contrôle des précipités, de pouvoir être utilisé dans un procédé de mise en forme à froid (par exemple de type « cold spray ») et/ou d'obtenir via un procédé de fabrication additive un alliage ODS (par exemple un acier ODS) présentant une densité améliorée. Cette obtention directe sous forme de poudre (donc sous forme d'un matériau divisé, pulvérulent), et non pas sous forme d'un matériau déjà densifié, a notamment pour avantage de permettre une utilisation directe, éventuellement continue par exemple en mode batch, de la poudre d'alliage renforcé selon l'invention dans un procédé de densification permettant comme précisé ci-après d'obtenir un matériau massif, et plus particulièrement une pièce. La proportion en poids des particules d'oxyde qui sont cristallisées est de préférence telle que les particules d'oxyde cristallisées comprennent en poids 80 % à 100 %, (préférentiellement 90 % à 100 %, encore plus préférentiellement 100 %) de l'atome métallique contenu dans l'ensemble de l'alliage renforcé. Cet atome métallique correspond à celui présent initialement dans le composé intermédiaire, par exemple l'yttrium, le titane, le fer, le chrome, le tungstène, le silicium, le zirconium, le thorium, le magnésium, l'aluminium ou l' hafnium. To the inventors' knowledge, an ODS alloy has never been obtained directly in the form of powder, which has the particular advantage of providing good control of the precipitates, to be used in a cold forming process ( for example of the "cold spray" type) and / or to obtain via an additive manufacturing process an ODS alloy (for example an ODS steel) having an improved density. This direct obtaining in powder form (thus in the form of a divided, powdery material), and not in the form of an already densified material, has the particular advantage of allowing direct use, possibly continuous, for example in batch mode, reinforced alloy powder according to the invention in a densification process allowing as specified below to obtain a solid material, and more particularly a part. The proportion by weight of the oxide particles which are crystallized is preferably such that the crystallized oxide particles comprise, by weight, 80% to 100%, (preferably 90% to 100%, even more preferably 100%) of the atom metallic content throughout the reinforced alloy. This metal atom corresponds to that initially present in the intermediate compound, for example yttrium, titanium, iron, chromium, tungsten, silicon, zirconium, thorium, magnesium, aluminum or hafnium .
Autrement dit, la matrice métallique peut comprendre sous forme dissoute (typiquement à l'échelle atomique, par exemple en solution solide) et/ou sous forme de particules d'oxyde amorphe ; par rapport au poids total dudit atome métallique contenu dans l'ensemble de l'alliage renforcé : In other words, the metal matrix may comprise in dissolved form (typically at the atomic scale, for example in solid solution) and / or in the form of amorphous oxide particles; relative to the total weight of said metal atom contained in the whole of the reinforced alloy:
- préférentiellement 0 % à 20 % en poids dudit atome métallique ;  preferably 0% to 20% by weight of said metal atom;
- encore plus préférentiellement 0 % à 10 %, voire 0 % dudit atome métallique.  more preferably 0% to 10% or even 0% of said metal atom.
Le poids de l'atome métallique dans les différentes zones de l'alliage renforcé peut être mesuré par exemple via une microanalyse X par EDX par Microscopie Electronique à Transmission (MET) (par exemple pour une zone témoin qui est extrapolée à l'ensemble de l'alliage renforcé), typiquement pour une mesure dans la matrice métallique. Le cas échéant, le poids de l'atome métallique contenu dans les particules d'oxyde amorphe et/ou les particules d'oxyde cristallisées peut être également déterminé par une analyse chimique, ou déterminé en considérant que ce poids est le complément au poids d'atome métallique qui est contenu dans la seule matrice métallique (à savoir que la somme de ces deux poids équivaut au poids d'atome métallique total initialement présent dans la poudre complémentaire) . The weight of the metal atom in the various zones of the reinforced alloy can be measured for example by X-ray microanalysis by Transmission Electron Microscopy (TEM) (for example for a control zone which is extrapolated to the whole of reinforced alloy), typically for measurement in the metal matrix. If appropriate, the weight of the metal atom contained in the amorphous oxide particles and / or the crystallized oxide particles may also be determined by chemical analysis, or determined by considering that this weight is the complement to the weight of the metal atom which is contained in the single metal matrix (ie the sum of these two weights equals the total metal atom weight initially present in the complementary powder).
Les particules de l'alliage renforcé peuvent avoir un coefficient de circularité moyen qui est compris entre 0,95 et 1. The particles of the reinforced alloy may have an average circularity coefficient which is between 0.95 and 1.
La matrice métallique de l'alliage renforcé peut être cristallisée . The metal matrix of the reinforced alloy can be crystallized.
De préférence, les particules d'oxyde sont réparties de manière homogène dans le volume de la matrice métallique, en particulier les particules d'oxyde ne sont pas présentes préférentiellement aux joints de grains des particules de poudre de l'alliage renforcé. Preferably, the oxide particles are distributed homogeneously in the volume of the metal matrix, in particular the oxide particles are not preferentially present at the grain boundaries of the powder particles of the reinforced alloy.
La matrice métallique peut être composée d'un alliage de base fer, un alliage de base nickel ou un alliage de base aluminium. The metal matrix may be composed of an iron base alloy, a nickel base alloy or an aluminum base alloy.
L' alliage de base fer peut comprendre en poids : The iron base alloy may comprise by weight:
10 % à 30 % de chrome.  10% to 30% chromium.
10 % à 30 % d'aluminium.  10% to 30% aluminum.
8 % à 25 % de chrome et 3 % à 8 % d'aluminium.  8% to 25% chromium and 3% to 8% aluminum.
L'alliage de base fer peut être un acier, par exemple un acier austénitique, martensitique ou ferritique, le cas échéant respectant les compositions en poids précédentes.  The iron base alloy may be a steel, for example austenitic, martensitic or ferritic steel, where appropriate respecting the previous compositions by weight.
L'alliage de base nickel peut comprendre en poids : The nickel base alloy may comprise by weight:
10 % à 40 % de chrome, tel que par exemple l'Inconel® 600 comprenant 14 % à 17 % de chrome.  10% to 40% chromium, such as for example Inconel® 600 comprising 14% to 17% chromium.
10 % à 40 % de chrome, 0,2 % à 5 % d'aluminium, 0,3 % à 5 % de titane, 0 % à 5 % de tungstène, 0 % à 2 % de molybdène et 0 % à 2 % de tantale, tels que par exemple les Inconel® 625 ou 718 comprenant respectivement 20 % à 23 % ou 17 % à 21 % de chrome. 10% to 40% chromium, 0.2% to 5% aluminum, 0.3% to 5% titanium, 0% to 5% tungsten, 0% to 2% molybdenum and 0% to 2% tantalum, such as for example Inconel® 625 or 718 containing respectively 20% to 23% or 17% to 21% of chromium.
10 % à 30 % d'aluminium.  10% to 30% aluminum.
De manière générale, l'alliage de base nickel peut être un Inconel®.  In general, the nickel base alloy can be an Inconel®.
Lorsque la matrice métallique est composée d'un alliage de base fer ou d'un alliage de base nickel, l'alliage renforcé peut comprendre en poids 0,1 % à 2,5 % des particules d'oxyde, voire 0,1 % à 0,5 %. When the metal matrix is composed of an iron base alloy or a nickel base alloy, the reinforced alloy may comprise 0.1% to 2.5% by weight of the oxide particles, or even 0.1% by weight at 0.5%.
L'alliage de base aluminium peut comprendre en poids de 0 % à 1 % de fer (voire de 0 % à 0,5 % de fer), de 0 % àThe aluminum base alloy may comprise, by weight, from 0% to 1% iron (or even from 0% to 0.5% iron), from 0% to
1 % de silicium et de 0 % à 1 % de magnésium. 1% silicon and 0% to 1% magnesium.
Il s'agit par exemple des compositions en poids suivantes :  These are, for example, the following compositions by weight:
- l'alliage d'aluminium 1100 comprenant 0,95 % de fer, 0,05 % de magnésium, 0,2 % de cuivre, et 0,1 % de zinc ;  the 1100 aluminum alloy comprising 0.95% iron, 0.05% magnesium, 0.2% copper and 0.1% zinc;
- l'alliage d'aluminium 6262 comprenant jusqu'à 0,7 % de fer ;  aluminum alloy 6262 comprising up to 0.7% iron;
- un alliage d'aluminium de la série 1000, comme par exemple l'alliage d'aluminium 1050 contenant moins de 0,4 % de fer, moins de 0,25 % de silicium et pas de magnésium ;  an aluminum alloy of the 1000 series, such as, for example, the aluminum alloy 1050 containing less than 0.4% iron, less than 0.25% silicon and no magnesium;
- un alliage d'aluminium de la série 6000, comme par exemple l'alliage d'aluminium 6063 contenant moins de 0,35 % de fer, moins de 0,6 % de silicium et moins de 0,9 % de magnésium.  an aluminum alloy of the 6000 series, such as, for example, the aluminum alloy 6063 containing less than 0.35% iron, less than 0.6% silicon and less than 0.9% magnesium.
Le fer est le plus souvent une impureté et le silicium améliore la coulabilité de l'alliage.  Iron is most often an impurity and silicon improves the flowability of the alloy.
Lorsque la matrice métallique est composée d'un alliage de base aluminium, l'alliage renforcé peut comprendre en poids 0,2 % à 5 % des particules d'oxyde. La proportion des particules d'oxyde dans l'alliage renforcé est telle qu'il peut comprendre en poids 0,1 % à 0,5 % des particules d'oxyde. When the metal matrix is composed of an aluminum base alloy, the reinforced alloy may comprise 0.2% to 5% by weight of the oxide particles. The proportion of oxide particles in the reinforced alloy is such that it may comprise 0.1% to 0.5% by weight of the oxide particles.
S'il reste une partie de la poudre complémentaire n'ayant pas précipité au cours du procédé de fabrication de l'invention, l'alliage renforcé peut comprendre de 0,1 % à 2,5 % en poids d'un atome du composé intermédiaire If some of the additional powder that has not precipitated during the manufacturing process of the invention remains, the reinforced alloy may comprise from 0.1% to 2.5% by weight of an atom of the compound intermediate
(typiquement l'atome métallique) destiné à former les particules d'oxyde, de préférence de 0,1 % à 1 %, voire moins de 0,1 %. Le composé intermédiaire est alors généralement localisé dans la matrice métallique. Ce pourcentage traduit le degré de précipitation du ou des composés intermédiaires sous forme de particule d'oxyde. Il peut notamment être mesuré par microanalyse X (par exemple analyse EDX au Microscope Électronique à Transmission) focalisée sur un volume de la matrice métallique ne comprenant pas de particules d'oxyde. (typically the metal atom) for forming the oxide particles, preferably from 0.1% to 1%, or even less than 0.1%. The intermediate compound is then generally located in the metal matrix. This percentage reflects the degree of precipitation of the intermediate compound (s) in the form of an oxide particle. It may in particular be measured by X microanalysis (for example transmission electron microscope EDX analysis) focused on a volume of the metal matrix not comprising oxide particles.
S'il subsiste dans l'alliage renforcé, le composé intermédiaire destiné à former les particules d' oxyde peut être YFe3, Y2O3, Fe203, Fe2Ti, FeCrWTi, TiH2, Ti02, A1203, Hf02, Si02, Zr02, Th02, MgO ou leurs mélanges. If it remains in the reinforced alloy, the intermediate compound for forming the oxide particles may be YFe 3, Y 2 O 3 , Fe 2 O 3 , Fe 2 Ti, FeCrWTi, TiH 2 , TiO 2 , Al 2 O 3 , Hf0 2 , Si0 2 , Zr0 2 , Th0 2 , MgO or mixtures thereof.
Partant de cette composition, les particules d'oxyde peuvent comprendre au moins un oxyde choisi parmi Y203, Ti02, A1203, Hf02, Si02, Zr02, Th02, MgO A1203, Y2Ti207, Y2Ti05. From this composition, the oxide particles may comprise at least one oxide selected from Y 2 0 3, Ti0 2, A1 2 0 3, Hf0 2, Si0 2, Zr0 2, Th0 2, A1 2 0 3 MgO, Y 2 Ti 2 O 7 , Y 2 TiO 5 .
Les particules d'oxyde peuvent avoir un diamètre médian (dso) compris entre 1 nm et 500 nm, voire entre 1 nm et 200 nm. The oxide particles may have a median diameter (dso) of between 1 nm and 500 nm, or even between 1 nm and 200 nm.
L'alliage renforcé peut en outre comprendre en poids au moins un des éléments suivants : The reinforced alloy may further comprise by weight at least one of the following:
- de 10 à 5000 ppm de silicium ;  from 10 to 5000 ppm of silicon;
- de 10 à 100 ppm de soufre ;  from 10 to 100 ppm of sulfur;
- moins de 20 ppm de chlore ; - de 2 à 10 ppm de phosphore ; - less than 20 ppm chlorine; from 2 to 10 ppm of phosphorus;
- de 0,1 à 10 ppm de bore ;  from 0.1 to 10 ppm of boron;
- de 0,1 à 10 ppm de calcium ;  from 0.1 to 10 ppm of calcium;
- moins de 0,1 ppm de chacun des éléments suivants : lithium, fluor, métaux lourds, Sn, As, Sb.  less than 0.1 ppm of each of the following elements: lithium, fluorine, heavy metals, Sn, As, Sb.
Ces éléments se retrouvent le plus souvent dans la matrice métallique.  These elements are most often found in the metal matrix.
L'invention concerne également l'utilisation d'une poudre d'alliage renforcé telle que définie précédemment (à savoir, la poudre d'alliage renforcé obtenue ou susceptible d'être obtenue par le procédé de fabrication de l'invention ou la poudre d'alliage renforcé dont les grains formant les particules de la poudre comprennent une matrice métallique dans le volume de laquelle sont dispersées des particules d'oxyde cristallisées) selon une ou plusieurs des variantes décrites dans la présente description, utilisation dans laquelle la poudre d'alliage renforcé de l'invention est soumise à un procédé de densification de la poudre d'alliage renforcé, afin de fabriquer un matériau massif (plus particulièrement une pièce) ou à un procédé de revêtement afin de revêtir un support avec la poudre d'alliage renforcé (plus particulièrement une fine épaisseur, typiquement comprise entre 20 pm et 50 mm) . The invention also relates to the use of a reinforced alloy powder as defined above (namely, the reinforced alloy powder obtained or obtainable by the manufacturing method of the invention or the powder of reinforced alloy whose grains forming the particles of the powder comprise a metal matrix in the volume of which are dispersed crystallized oxide particles) according to one or more of the variants described in the present description, use in which the alloy powder of the invention is subjected to a densification process of the reinforced alloy powder, in order to manufacture a solid material (more particularly a part) or to a coating process in order to coat a support with the reinforced alloy powder (more particularly a thin thickness, typically between 20 pm and 50 mm).
Comme indiqué précédemment, les caractéristiques de la poudre d'alliage renforcé selon l'invention se prêtent particulièrement à sa densification en vue d'obtenir un matériau massif, plus particulièrement sous forme d'une pièce ou son dépôt sur un support sous forme d'un revêtement (qui selon les cas, en particulier pour une épaisseur relativement importante,, peut également être considéré comme une couche d'un matériau densifié). Le procédé de densification peut être choisi parmi une large gamme de procédés de densification d'une poudre (en particulier d'une poudre d'alliage ODS) qui sont bien connus de l'homme du métier, par exemple un procédé de fabrication additive ou un procédé de moulage par injection de poudre, afin de fabriquer le matériau massif, plus particulièrement la pièce ou le revêtement. As indicated above, the characteristics of the reinforced alloy powder according to the invention are particularly suitable for its densification in order to obtain a solid material, more particularly in the form of a part or its deposit on a support in the form of a coating (which, depending on the case, in particular for a relatively large thickness, may also be considered as a layer of a densified material). The densification process may be chosen from a wide range of densification processes for a powder (in particular an ODS alloy powder) which are well known to those skilled in the art, for example an additive manufacturing process or a powder injection molding method, for manufacturing the solid material, more particularly the part or the coating.
Le principe de la fabrication additive (également appelée « impression 3D ») est celle d'un processus de fabrication génératif se résumant à deux étapes réitérées jusqu'à l'obtention du produit fini massif : The principle of additive manufacturing (also called "3D printing") is that of a generative manufacturing process that can be summed up in two repeated steps until the massive finished product is obtained:
1. Génération d'une couche de matière suivant un contour et une épaisseur fixés. La matière est déposée uniquement là où elle est nécessaire ;  1. Generation of a layer of material following a fixed contour and thickness. Matter is deposited only where it is needed;
2. Réalisation de la nouvelle couche par addition de matière au-dessus de la couche précédente. La fabrication peut se résumer à une fabrication dite "en escalier".  2. Realization of the new layer by adding material above the previous layer. The manufacture can be summed up to a so-called "staircase" manufacture.
La fabrication additive est décrite plus en détail par exemple dans les documents suivants qui sont intégrés par référence à la présente description :  Additive manufacturing is described in more detail for example in the following documents which are incorporated by reference to the present description:
[référence 8] : F. Laverne et al., "Fabrication additive - Principes généraux", Techniques de l'ingénieur, Fascicule BM7017 V2 (publication du 10 février 2016) ;  [reference 8]: F. Laverne et al., "Additive Manufacturing - General Principles", Engineering Techniques, Fascicule BM7017 V2 (published February 10, 2016);
[référence 9] : H. Fayazfara et al., "critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties", Materials & Design, Volume 144, 2018, Pages 98-128. [Ref. 9]: H. Fayazfara et al., "Critical Review of Powder-Based Additive Manufacturing of Ferrous Alloys: Process Parameters, Microstructure and Mechanical Properties," Materials & Design, Volume 144, 2018, Pages 98-128.
[référence 10] : T . DebRoy et al., "Additive manufacturing of metallic components - Process, structure and properties", Progress in Materials Science, Volume 92, 2018, pages 112-224. [reference 10]: T. DebRoy et al., "Additive Manufacturing of Metallic Components - Process, structure and properties ", Progress in Materials Science, Volume 92, 2018, pages 112-224.
[référence 11] : Ministère de l'économie et des finances, République Française, "Prospective - futur de la fabrication additive - rapport final", édition de janvier 2017, ISBN : 978-2-11-151552-9 ; en particulier l'Annexe 2 (pages 205 à 220) notamment lorsqu'il décrit les procédés de fabrication additive utilisant une poudre [reference 11]: Ministry of Economy and Finance, French Republic, "Prospective - Future of Additive Manufacturing - Final Report", January 2017 issue, ISBN: 978-2-11-151552-9; in particular Annex 2 (pages 205 to 220) especially when it describes additive manufacturing processes using a powder
métallique (annexe 2, Les procédés de fabrication, paragraphes 3, 4 et 5) .  metal (Annex 2, Manufacturing processes, paragraphs 3, 4 and 5).
Plus particulièrement, le procédé de fabrication additive est choisi parmi un procédé de fusion sélective par laser (en anglais "Sélective Laser Melting" (SLM) ou "Laser Powder Bed Fusion" (L-PBF) ) , de fusion sélective par faisceau d'électrons (en anglais "Electron Beam Melting" (EBM ) ou "Electron Powder Bed Fusion" (E-PBF) ) , de frittage sélectif par laser (en anglais "Sélective Laser Sintering" (SLS) ) , de projection laser (en anglais "Direct Métal Déposition" (DMD) ou "laser cladding") ou de projection de liant (en anglais "binder jetting"). More particularly, the additive manufacturing process is chosen from a Selective Laser Melting (SLM) or Laser Powder Bed Fusion (L-PBF) method, selective beam melting Electron Beam Melting (EBM), Electron Powder Bed Fusion (E-PBF), Selective Laser Sintering (SLS), Laser Projection "Direct Metal Deposition" (DMD) or "laser cladding") or binder projection (in English "binder jetting").
Le principe du moulage par injection de poudre (en anglais "Powder injection molding") est un moulage par injection de pièces à partir de mélange de poudre métallique ou céramique et de liant polymère, suivi par un déliantage (élimination du liant) de la pièce dans un four sous atmosphère contrôlée (typiquement une atmosphère similaire ou identique au milieu gazeux de broyage décrit précédemment à l'exception de l'hydrogène), puis par la consolidation de celle-ci par frittage. La température de frittage est par exemple comprise entre 350 °C et 1220 °C. Selon le matériau utilisé, on parle en anglais de "Ceramic Injection Molding" (CIM) ou de "Métal Injection Molding" (MIM) . The principle of powder injection molding (in English "powder injection molding") is an injection molding of parts from a mixture of metal or ceramic powder and polymeric binder, followed by debinding (removal of the binder) of the piece in a furnace under a controlled atmosphere (typically an atmosphere similar or identical to the gaseous grinding medium described above with the exception of hydrogen), then by consolidating it by sintering. The sintering temperature is for example between 350 ° C and 1220 ° C. Depending on the material used, we speak in English of "Ceramic Injection Molding" (CIM) or "Metal Injection Molding" (MIM).
Le moulage par injection de poudre est décrit plus en détail par exemple dans le document suivant qui est intégré par référence à la présente description :  Injection molding powder is described in more detail for example in the following document which is incorporated by reference into the present description:
[référence 12] : D. Moinard et al., "Procédés de frittage PIM", Techniques de l'ingénieur, Fascicule M3320 VI (publication du 10 juin 2011) .  [reference 12]: D. Moinard et al., "Sintering processes PIM", Engineering Techniques, Fascicle M3320 VI (publication of June 10, 2011).
Le procédé de revêtement peut quant à lui être choisi parmi un procédé de revêtement bien connu de l'homme du métier, par exemple un procédé de projection à froid ou un procédé de projection thermique. The coating method can be selected from a coating method well known to those skilled in the art, for example a cold spraying process or a thermal spraying process.
Le principe de la projection à froid consiste à accélérer un gaz (tel que par exemple l'azote, l'hélium ou l'argon), chauffé généralement à une température de 100 °C à 700°C, à des vitesses supersoniques dans une buse du type « De Laval » puis la poudre de matériau à projeter (ici, la poudre d'alliage renforcé ODS selon l'invention) est introduite dans la partie haute pression (entre 10 bars et 40 bars) de la buse et est projetée à « l'état non fondu » vers la surface de la pièce à revêtir à une vitesse pouvant aller de 600 m/s à 1200 m/s. Au contact de la pièce, les particules subissent une déformation plastique et forment à l'impact un revêtement dense et adhérent. The principle of cold spraying consists in accelerating a gas (such as, for example, nitrogen, helium or argon), generally heated to a temperature of 100 ° C to 700 ° C, at supersonic speeds in a nozzle type "De Laval" then the powder material to be sprayed (here, the ODS reinforced alloy powder according to the invention) is introduced into the high pressure part (between 10 bar and 40 bar) of the nozzle and is projected "Unmelted" to the surface of the part to be coated at a speed of between 600 m / s and 1200 m / s. In contact with the workpiece, the particles undergo a plastic deformation and form on impact a dense and adherent coating.
L'intérêt de ce mode de réalisation réside dans l'absence de fusion des particules, donc dans un risque d'oxydation très faible et une possible intégration en milieu hostile.  The advantage of this embodiment lies in the absence of melting of the particles, therefore in a very low risk of oxidation and possible integration in a hostile environment.
La projection à froid est décrite plus en détail par exemple dans le document suivant qui est intégré par référence à la présente description : [référence 13] : A. Papyrin, "Cold Spray Technology", ISBN-13 : 978-0-08-045155-8 , édition 2007. The cold projection is described in more detail for example in the following document which is incorporated by reference into the present description: [Reference 13]: A. Papyrin, "Cold Spray Technology", ISBN-13: 978-0-08-045155-8, 2007 Edition.
Le procédé de projection thermique peut être choisi parmi un procédé de projection thermique flamme, un procédé de projection arc électrique entre deux fils ou un procédé de projection plasma soufflé. The thermal spraying method may be selected from a flame thermal spraying method, an electric arc spraying method between two yarns or a blown plasma spraying method.
La projection thermique est décrite plus en détail par exemple dans le document suivant qui est intégré par référence à la présente description :  Thermal spraying is described in more detail for example in the following document which is incorporated by reference into the present description:
[référence 14] : A. Prôner, "Revêtements par projection thermique", Techniques de l'ingénieur, Fascicule M1645 V2 (publication du 10 septembre 1999) .  [reference 14]: A. Prôner, "Thermal Spray Coatings", Techniques of the Engineer, Fact Sheet M1645 V2 (publication of September 10, 1999).
L'invention est avantageusement complétée par les caractéristiques suivantes, prises seules ou selon l'une quelconque de leurs combinaisons techniquement possibles. The invention is advantageously completed by the following features, taken alone or according to any of their technically possible combinations.
EXPOSE DETAILLE DE L' INVENTION DETAILED DESCRIPTION OF THE INVENTION
Dans la présente description de l'invention, un verbe tel que «comprendre», «incorporer», «inclure», « contenir » et ses formes conjuguées sont des termes ouverts et n'excluent donc pas la présence d'élément (s) et/ou étape (s) additionnels s'ajoutant aux élément (s) et/ou étape (s) initiaux énoncés après ces termes. Toutefois, ces termes ouverts visent en outre un mode de réalisation particulier dans lequel seul (s) le (s) élément (s) et/ou étape (s) initiaux, à l'exclusion de tout autre, sont visés ; auquel cas le terme ouvert vise en outre le terme fermé «consister en», «constituer », «composer de » et ses formes conjuguées. L' usage de l'article indéfini « un » ou « une » pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité d'éléments ou étapes. In the present description of the invention, a verb such as "to understand", "to incorporate", "to include", "to contain" and its conjugated forms are open terms and therefore do not exclude the presence of element (s) and / or additional step (s) in addition to the element (s) and / or initial step (s) stated after these terms. However, these open terms also include a particular embodiment in which only the element (s) and / or initial stage (s), to the exclusion of all others, are targeted; in which case the open term also refers to the closed term "consisting of", "constituting", "composing of" and its conjugated forms. The use of the indefinite article "a" or "an" for an element or a step does not exclude, unless otherwise stated, the presence of a plurality of elements or steps.
Tout signe de référence entre parenthèses dans les revendications ne saurait être interprété comme limitatif de la portée de l'invention.  Any reference sign in parentheses in the claims can not be interpreted as limiting the scope of the invention.
Par ailleurs, sauf indication contraire :  In addition, unless otherwise indicated:
les valeurs aux bornes sont incluses dans les gammes de paramètres indiquées ;  the terminal values are included in the ranges of parameters indicated;
- les températures indiquées sont considérées pour une mise en œuvre à pression atmosphérique ;  the temperatures indicated are considered for use at atmospheric pressure;
tout pourcentage en poids d'un composant de l'alliage renforcé, de l'alliage maître, du mélange de poudres se rapporte au poids total de cet alliage ou de ce mélange.  any percentage by weight of a component of the reinforced alloy, the master alloy, the powder mixture refers to the total weight of this alloy or mixture.
Dans la présente description, on entend désigner par « alliage de base » du métal entrant notamment dans la composition de l'alliage maître ou de tout autre alliage, tout alliage à base du métal dans lequel la teneur du métal est au minimum de 50 % en poids du métal de l'alliage, particulièrement plus de 90 %, voire plus de 95 %. Le métal de base est par exemple le fer, le nickel ou l'aluminium. L'alliage de base est de préférence apte à être utilisé dans le domaine nucléaire et/ou sous irradiation. In the present description, the term "base alloy" is intended to denote metal used in particular in the composition of the master alloy or any other alloy, any alloy based on the metal in which the metal content is at least 50%. by weight of the metal of the alloy, particularly more than 90% or more than 95%. The base metal is, for example, iron, nickel or aluminum. The base alloy is preferably suitable for use in the nuclear field and / or under irradiation.
L'expression « selon une ou plusieurs des variantes décrites dans la présente description » pour une matière / un élément, se réfère notamment aux variantes qui concernent la composition chimique et/ou la proportion des constituants de cette matière et de toute espèce chimique supplémentaire qu' il peut éventuellement contenir et notamment aux variantes qui concernent la composition chimique, la structure, la géométrie, l'agencement dans l'espace et/ou la composition chimique de cet élément ou d'un sous-élément constitutif de l'élément. Ces variantes sont par exemple celles indiquées dans les revendications. The expression "according to one or more of the variants described in the present description" for a material / element, refers in particular to the variants which concern the chemical composition and / or the proportion of the constituents of this material and of any additional chemical species that it may possibly contain and in particular to the variants which concern the chemical composition, the structure, the geometry, the arrangement in space and / or the chemical composition of this element or of a constituent sub-element of the element. These variants are for example those indicated in the claims.
D'autres objets, caractéristiques et avantages de l'invention vont maintenant être précisés dans la description qui suit de modes de réalisation particuliers de l’invention, donnés à titre illustratif et non limitatif, en référence aux Figures IA à 6 annexées. Other objects, features and advantages of the invention will now be specified in the following description of particular embodiments of the invention, given by way of illustration and not limitation, with reference to Figures IA to 6 attached.
BREVE DESCRIPTION DES FIGURES BRIEF DESCRIPTION OF THE FIGURES
Les Figures IA (vue générale) et IB (vue d'une coupe) représentent des clichés obtenus par Microscopie Électronique à Balayage (MEB) d'une poudre précurseur obtenue après l'étape ii) de broyage du procédé de fabrication de l'invention. FIGS. 1A (general view) and 1B (view of a section) represent electron scanning microscopy (SEM) photographs of a precursor powder obtained after step ii) of grinding the manufacturing process of the invention. .
Les Figures 2A (vue générale), 2B et 3A (vue d'une coupe) ainsi que 3B (vue zoomée d'une coupe se focalisant sur les précipités d'oxyde) représentent des clichés MEB d'une poudre d'un alliage renforcé obtenue après l'étape iii) de traitement plasma du procédé de fabrication de l'invention.  Figures 2A (general view), 2B and 3A (view of a section) and 3B (zoomed view of a section focusing on the oxide precipitates) represent SEM images of a powder of a reinforced alloy obtained after step iii) of plasma treatment of the manufacturing method of the invention.
La Figure 3C est un tableau indiquant des pourcentages molaires atomiques obtenus par spectrométrie rayons X par dispersion d'énergie (connu par l'acronyme anglais EDX pour « Energy Dispersive X-Ray spectrometry ») au sein des précipités d'oxyde identifiés par les index numériques 1 à 7 sur la Figure 3B.  FIG. 3C is a table showing atomic molar percentages obtained by energy dispersive X-ray spectrometry (EDX) for the oxide precipitates identified by the indexes. numerals 1 to 7 in Figure 3B.
Les Figures 4A et 4B représentent un cliché MET en champ clair d'une coupe d'un alliage ODS obtenu par le procédé de fabrication de l'invention.  FIGS. 4A and 4B show a MET plate in a light field of a section of an ODS alloy obtained by the manufacturing method of the invention.
Les Figures 5A à 5D représentent une série de clichés visant à analyser un précipité d'oxyde contenu dans la matrice d'une poudre alliage ODS obtenu par le procédé de fabrication de l'invention. La Figure 5A obtenue par MET champ clair est centrée sur le précipité d'oxyde analysé. Les Figures 5B et 5C sont des clichés de diffraction MET obtenus selon une inclinaison du porte-échantillon d'un angle de -2° selon X, respectivement sous forme brute et sous forme annotée après analyse pour repérer les tâches de diffraction correspondant à la matrice et au précipité d'oxyde. La Figure 5D est le cliché annoté correspondant obtenu par inclinaison du porte-échantillon d'un angle de - 20° selon X. Figures 5A to 5D show a series of snapshots for analyzing an oxide precipitate contained in the matrix of an ODS alloy powder obtained by the manufacturing method of the invention. Figure 5A obtained by MET light field is centered on the analyzed oxide precipitate. FIGS. 5B and 5C are TEM diffraction patterns obtained at an inclination of the sample holder at an angle of -2 ° according to X, respectively in raw form and in annotated form after analysis to identify the diffraction spots corresponding to the matrix and the oxide precipitate. Figure 5D is the corresponding annotated plate obtained by inclining the sample holder by an angle of -20 ° according to X.
La Figure 6 est un schéma illustrant les paramètres Rinscr et Rcirc nécessaires au calcul de la circularité d'un grain de poudre à partir d'un cliché pris pour un angle donné . Figure 6 is a diagram illustrating the parameters Ri nscr and R circ needed to calculate the circularity of a grain of powder from a snapshot taken for a given angle.
EXPOSE DE MODES DE REALISATION PARTICULIERS DESCRIPTION OF PARTICULAR EMBODIMENTS
Les modes de réalisation particuliers qui suivent concernent le procédé de fabrication de l'invention, ainsi que la composition et la microstructure de l'alliage renforcé qu'il permet d'obtenir. The particular embodiments which follow relate to the manufacturing method of the invention, as well as the composition and the microstructure of the reinforced alloy which it makes it possible to obtain.
1. Mise en œuyre du procédé de fabrication d'un alliage renforcé selon l'invention. 1. Implementation of the process for manufacturing a reinforced alloy according to the invention.
Dans un broyeur à boulets sous atmosphère d'hydrogène, une poudre mère métallique composée d'un alliage maître à base de fer (composition en poids : 14 % de Cr, 1 % de W, 0,3 % de Si, 0,3 % de Mn et de 0,2 % de Ni, 1000 ppm de C, et le reste de Fe) est mélangée avec une poudre complémentaire, comprenant en poids par rapport au mélange total de poudres, 0,3 % d'une poudre d'hydrure de titane (TiH2) et 0,3 % d'une poudre d'oxyde d'yttrium (Y203) en tant que composés intermédiaires destinés à former des particules d' oxyde . In a ball mill under a hydrogen atmosphere, a parent metal powder composed of an iron master alloy (composition by weight: 14% Cr, 1% W, 0.3% Si, 0.3 % Mn and 0.2% Ni, 1000 ppm C, and the rest of Fe) is mixed with a complementary powder, comprising by weight relative to the total mixture of powders, 0.3% of a powder of titanium hydride (TiH 2 ) and 0.3% of an yttrium oxide powder (Y 2 O 3 ) as as intermediate compounds for forming oxide particles.
Le mélange de poudres est broyé pendant 176 heures afin de former par mécanosynthèse une poudre précurseur comprenant une matrice métallique composée de l'alliage maître dans lequel les atomes de titane, yttrium et oxygène se sont incorporés.  The powder mixture is milled for 176 hours to mechanically form a precursor powder comprising a metal matrix composed of the master alloy in which the titanium, yttrium and oxygen atoms are incorporated.
À ce stade du procédé de fabrication de l'invention, aucune particule d'oxyde sous forme de précipités n'est encore formée.  At this stage of the manufacturing process of the invention, no oxide particle in the form of precipitates is yet formed.
La poudre précurseur est ensuite introduite dans une torche plasma radiofréquence à couplage inductif pouvant délivrer jusqu'à 80 kW de puissance (modèle PL50 commercialisé par la société Tekna) . The precursor powder is then introduced into an inductively coupled radiofrequency plasma torch capable of delivering up to 80 kW of power (PL50 model marketed by Tekna).
Ce type de torche est décrit par exemple dans le document « Kim , K. S.; Moradian , A.; Mostaghimi, J.; Soucy, G. Modeling of Induction Plasma Process for Fullerene Synthesis : Effect of Plasma Gas Composition and Operating Pressure ; Plasma Chemistry and Plasma Processing 2010, 30, 91-110 ». This type of torch is described for example in the document "Kim, K. S .; Moradian, A .; Mostaghimi, J .; Soucy, G. Modeling of Induction Plasma Process for Fullerene Synthesis: Effect of Plasma Gas Composition and Operating Pressure; Plasma Chemistry and Plasma Processing 2010, 30, 91-110.
La torche plasma comprend un tube de confinement en céramique baignant dans de l'eau de refroidissement circulant à grande vitesse le long de sa paroi externe. Le refroidissement du tube est indispensable pour le protéger de l'important flux thermique généré par le plasma. Autour du tube de confinement et au-delà du canal de refroidissement se trouve la bobine d' induction incrustée dans le corps de la torche plasma et reliée au générateur haute fréquence. Cette bobine génère le champ magnétique alternatif qui crée le milieu plasma. A l'intérieur du tube de confinement, un gaz plasmagène (aussi appelé gaz central) est injecté en continu . The plasma torch comprises a ceramic containment tube bathed in cooling water flowing at high speed along its outer wall. The cooling of the tube is essential to protect it from the large thermal flux generated by the plasma. Around the containment tube and beyond the cooling channel is the induction coil embedded in the body of the plasma torch and connected to the high frequency generator. This coil generates the alternating magnetic field that creates the plasma medium. Inside the containment tube, a plasma gas (also called central gas) is injected continuously.
Pour protéger la paroi interne du tube de confinement en céramique, un gaz de gainage est introduit en vortex le long de la paroi interne du tube de confinement grâce à un tube intermédiaire en quartz placé à l'intérieur du tube de confinement .  To protect the inner wall of the ceramic containment tube, a cladding gas is vortexed along the inner wall of the containment tube through a quartz intermediate tube placed inside the containment tube.
La poudre précurseur est injectée directement au centre de la décharge plasma via une sonde d'injection refroidie par eau et positionnée dans le premier tiers amont de l'enceinte réactionnelle de la torche plasma. Elle est alors chauffée en vol et fondue. Puisque les plasmas à induction fonctionnent sans électrode en contact avec le gaz plasmagène, un traitement sans contamination peut être réalisé .  The precursor powder is injected directly into the center of the plasma discharge via a water-cooled injection probe positioned in the first upstream third of the reaction chamber of the plasma torch. It is then heated in flight and melted. Since induction plasmas operate without an electrode in contact with the plasma gas, a treatment without contamination can be realized.
La poudre précurseur obtenue précédemment est soumise à un plasma thermique selon les conditions opératoires indiquées dans le Tableau 1. Les débits de gaz sont les suivants : The precursor powder obtained above is subjected to a thermal plasma according to the operating conditions indicated in Table 1. The gas flow rates are as follows:
- gaz plasmagène (argon) = 30 L/minutes ;  - Plasma gas (argon) = 30 L / minutes;
gaz de gainage principal (argon) = de 80 à 100 L/minutes ;  main cladding gas (argon) = 80 to 100 L / min;
- gaz de gainage complémentaire (hélium ou hydrogène) = de 0 à 30 L/minutes.  - Cladding gas complementary (helium or hydrogen) = 0 to 30 L / minutes.
La proportion en poids de poudre ODS conforme à l'invention (plus particulièrement des particules d'oxyde cristallisées ayant en outre un coefficient de circularité moyen qui est compris entre 0,95 et 1) par rapport au poids total de mélange de poudres traité est indiquée à la dernière colonne du Tableau 1. Elle est estimée en première approximation par une analyse des clichés MEB des poudres obtenues à l'issue du procédé de fabrication de l' invention .
Figure imgf000038_0001
The proportion by weight of ODS powder according to the invention (more particularly crystallized oxide particles having in addition a mean circularity coefficient which is between 0.95 and 1) relative to the total weight of the treated powder mixture is indicated in the last column of Table 1. It is estimated in the first approximation by SEM analysis of the powders obtained at the end of the manufacturing process of the invention.
Figure imgf000038_0001
Tableau 1 Le Tableau 1 montre que la proportion d' oxyde qui a précipité est plus importante pour des puissances modérées de torche plasma (typiquement entre 10 kW et 40 kW, voire entre 10 kW et 30 kW) et un débit modéré d'injection de la poudre précurseur dans la torche plasma (typiquement <30 g/min) . Table 1 Table 1 shows that the proportion of oxide that has precipitated is greater for moderate powers of plasma torch (typically between 10 kW and 40 kW, or even between 10 kW and 30 kW) and a moderate rate of injection of the powder. precursor in the plasma torch (typically <30 g / min).
Ainsi, dans les essais 4, 12, 17 et 18, une poudre d'alliage ODS dont les particules sont sphériques et dans lesquelles 100 % des nanorenforts d'oxydes ont germé est obtenue avec :  Thus, in the tests 4, 12, 17 and 18, an ODS alloy powder whose particles are spherical and in which 100% of the nanoreenforcements of oxides have germinated is obtained with:
- un débit de poudre de 12 g/minutes (essais 4 et 12) ou 15 g/minutes (essais 17 et 18),  a powder flow rate of 12 g / min (tests 4 and 12) or 15 g / min (tests 17 and 18),
- une puissance pour la torche plasma de 25 kW (essais 4 et 12) ou 40 kW (essais 17 et 18),  - a power for the plasma torch of 25 kW (tests 4 and 12) or 40 kW (tests 17 and 18),
- une pression de 6 psi soit 41369 Pa (essais 4 et 12) ou 10 psi soit 68947 Pa (essais 17 et 18) dans l'enceinte réactionnelle de la torche plasma,  a pressure of 6 psi or 41369 Pa (tests 4 and 12) or 10 psi or 68947 Pa (tests 17 and 18) in the reaction chamber of the plasma torch,
- débits de gaz de 30 litres/minutes d'argon pour le gaz central, 100 litres/minutes d'argon pour le gaz de gainage principal et de 10 litres/minutes d'hélium pour le gaz de gainage complémentaire (essais 4 et 12) ; ou débits de gaz de 30 litres/minutes d'argon pour le gaz central, 60 litres/minutes d'argon pour le gaz de gainage principal et de 40 litres/minutes d'hélium pour le gaz de gainage complémentaire (essai 17) ; ou débits de gaz de 30 litres/minutes d'argon pour le gaz central, 80 litres/minutes d'argon pour le gaz de gainage principal et de 20 litres/minutes d'hydrogène pour le gaz de gainage complémentaire (essai 18).  - gas flows of 30 liters / minute of argon for the central gas, 100 liters / minute of argon for the main cladding gas and 10 liters / minute of helium for the complementary cladding gas (tests 4 and 12) ); or gas flows of 30 liters / minute of argon for the central gas, 60 liters / minute of argon for the main cladding gas and 40 liters / minute of helium for the complementary cladding gas (test 17); or gas flow rates of 30 liters / minute of argon for the central gas, 80 liters / minute of argon for the main cladding gas and 20 liters / minute of hydrogen for the complementary cladding gas (test 18).
La comparaison des essais 4 et 12 montre également la parfaite reproductibilité du procédé de fabrication de l'invention, et donc le contrôle des caractéristiques de la poudre d'alliage ODS qu'il permet avantageusement d'obtenir. Typiquement, pour obtenir une poudre d'alliage ODS base fer dont les particules sont sphériques (plus particulièrement avec un coefficient de circularité moyen qui est compris entre 0,95 et 1) et comprennent une proportion déterminée de nanorenforts (de taille moyenne typiquement comprise entre 50 nm à 500 nm, de préférence comprise entre 50 nm et 200 nm) d'oxyde dispersés de manière homogène dans la matrice métallique de l'alliage ODS, l'homme du métier peut par exemple utiliser les conditions opératoires suivantes pour la torche plasma, les paramètres prioritaires sur lesquels agir de manière séparée ou combinée étant la puissance de la torche plasma et le débit de poudre précurseur : The comparison of the tests 4 and 12 also shows the perfect reproducibility of the manufacturing method of the invention, and therefore the control of the characteristics of the ODS alloy powder which it advantageously allows to obtain. Typically, to obtain an iron-base ODS alloy powder whose particles are spherical (more particularly with a mean circularity coefficient which is between 0.95 and 1) and comprise a determined proportion of nanoreenforcements (average size typically between 50 nm at 500 nm, preferably between 50 nm and 200 nm) of oxide homogeneously dispersed in the metal matrix of the ODS alloy, the person skilled in the art can for example use the following operating conditions for the plasma torch , the priority parameters on which to act separately or in combination are the plasma torch power and the precursor powder flow rate:
=î> pour 20 % à 30 % en poids de particules d'oxydes cristallisées par rapport au poids initial de la poudre complémentaire (à savoir que 70 % à 80 % de la poudre complémentaire n'a pas produit de particules d'oxyde cristallisées) :  for 20% to 30% by weight of crystallized oxide particles relative to the initial weight of the complementary powder (ie 70% to 80% of the complementary powder did not produce crystallized oxide particles) ):
* puissance de la torche plasma : entre 40 kW et 80 kW (voire entre 30 kW et 80 kW) ,  * power of the plasma torch: between 40 kW and 80 kW (even between 30 kW and 80 kW),
débit de poudre précurseur : entre 20 g/min et 45 g/min, flow rate of precursor powder: between 20 g / min and 45 g / min,
et éventuellement au moins l'une des conditions opératoires suivantes :  and optionally at least one of the following operating conditions:
une pression dans l'enceinte réactionnelle de la torche plasma : entre 5 psi soit 34474 Pa et 14,5 psi (soit la pression atmosphérique) , a pressure in the reaction chamber of the plasma torch: between 5 psi or 34 474 Pa and 14.5 psi (the atmospheric pressure)
débit du gaz de gainage principal : entre 80 L/min et 100 L/min, main cladding gas flow rate: between 80 L / min and 100 L / min,
* débit du gaz de gainage complémentaire : entre 10 L/min et 40 L/min.  * additional cladding gas flow: between 10 L / min and 40 L / min.
=> pour plus de 80 % en poids de particules d'oxyde cristallisées par rapport au poids initial de la poudre complémentaire (à savoir que moins de 20 % de la poudre complémentaire n'a pas produit de particules d'oxyde cristallisées) : => for more than 80% by weight of crystallized oxide particles with respect to the initial weight of the complementary powder (ie less than 20% of the complementary powder did not produce crystalline oxide particles):
puissance de la torche plasma : entre 20 kW et 40 kW (voire entre 20 kW et 30 kW) , power of the plasma torch: between 20 kW and 40 kW (even between 20 kW and 30 kW),
débit de poudre précurseur : entre 10 g/min et 30 g/min, flow rate of precursor powder: between 10 g / min and 30 g / min,
et éventuellement au moins l'une des conditions opératoires suivantes :  and optionally at least one of the following operating conditions:
une pression dans l'enceinte réactionnelle de la torche plasma : entre 4 psi et 8 psi (soit entre 27,6 kPa et 55,1 kPa) , a pressure in the reaction chamber of the plasma torch: between 4 and 8 psi psi (between 27.6 kPa and 55.1 kPa)
débit du gaz de gainage principal : entre 80 L/min (voire 60 L/min) et 100 L/min, main cladding gas flow rate: between 80 L / min (or 60 L / min) and 100 L / min,
débit du gaz -de gainage complémentaire : entre 10 L/min et 40 L/min. gas flow - additional sheathing: between 10 L / min and 40 L / min.
2. Composition et microstructure d' un alliage renforcé de l' invention . 2. Composition and microstructure of a reinforced alloy of the invention.
La poudre précurseur et la poudre d' alliage renforcé obtenues respectivement à l'issue de l'étape de mécanosynthèse puis de l'étape de précipitation des oxydes dans la torche plasma selon l'essai n° 4 sont caractérisées par MEB (Figures 1D, IB, 2A, 2B, 3A et 3B) , MET (Figures 4A et 4B) et EDX (tableau de la Figure 3C) .  The precursor powder and the reinforced alloy powder obtained respectively at the end of the mechanosynthesis step and then the oxide precipitation step in the plasma torch according to test No. 4 are characterized by SEM (FIGS. IB, 2A, 2B, 3A and 3B), MET (FIGS. 4A and 4B) and EDX (table of FIG. 3C).
D'après ces analyses, les particules de la poudre précurseur sont de forme variable (Figure IA) et ont une microstructure chaotique non cristallisée ne contenant aucune particule d'oxyde ayant germé pour constituer un renfort de l'alliage maître (Figure IB) . According to these analyzes, the particles of the precursor powder are of variable shape (FIG. 1A) and have a non-crystallized chaotic microstructure containing no oxide particle having sprouted to form a reinforcement of the master alloy (FIG. 1B).
En revanche, la combinaison des étapes ii) de broyage et iii) de traitement plasma selon le procédé de fabrication de l'invention permet d'obtenir un alliage renforcé de type ODS dont les particules de poudre sont essentiellement sphériques et/ou sphéroïdales (Figures 2D, 2B et 3A) et constituées de grains composés d'une matrice métallique cristallisée dans laquelle sont incorporés de manière homogène des particules cristallisées d'oxyde apparaissant sous forme de points noirs sur le fond gris de teinte variable constituant la matrice métallique des grains (Figures 2B, 3A et 3B) . Les particules cristallisées d'oxyde sont des nanorenforts, leur diamètre médian d50 étant compris entre 150 nm et 200 nm. De nombreux précipités de taille inférieure à 5 nm sont également présents. On the other hand, the combination of steps ii) grinding and iii) plasma treatment according to the manufacturing process of the invention makes it possible to obtain an ODS-type reinforced alloy whose powder particles are essentially spherical and / or spheroidal (FIGS. 2D, 2B and 3A) and consist of grains composed of a crystallized metal matrix in which are incorporated by homogeneous manner of the crystallized particles of oxide appearing in the form of black dots on the gray background of varying hue constituting the metal matrix of the grains (FIGS. 2B, 3A and 3B). The crystallized particles of oxide are nanorenforts, their median diameter d50 being between 150 nm and 200 nm. Many precipitates smaller than 5 nm are also present.
Des analyses EDX ont également été réalisées par microscopie électronique MEB et MET. Elles sont regroupées dans le tableau de la Figure 3C qui montre que les nanorenforts présents dans les zones 1 à 5 au sein des particules de la poudre d'alliage ODS sont riches en titane, yttrium et oxygène. A contrario, les analyses EDX correspondantes réalisées dans les zones 6 et 7 de la matrice métallique montrent l'absence d'oxygène, de titane, d'aluminium et d'yttrium dans la matrice (% molaire < à 0,1 % à la marge d'incertitude près, voire nul lorsque qu'aucune valeur n'est indiquée comme pour l'aluminium et l'yttrium). Ces résultats prouvent que tous les atomes de la poudre complémentaire destinés à former les particules d'oxyde dispersées ont bien précipité sous forme de nanorenforts au sein des particules de la poudre d'alliage ODS, comme le montrent également les vues rapprochées des Figures 4A et 4B. EDX analyzes were also performed by electron microscopy MEB and MET. They are grouped together in the table of FIG. 3C which shows that the nanorenches present in the zones 1 to 5 within the particles of the ODS alloy powder are rich in titanium, yttrium and oxygen. In contrast, the corresponding EDX analyzes carried out in zones 6 and 7 of the metal matrix show the absence of oxygen, titanium, aluminum and yttrium in the matrix (molar% <0.1% at margin of uncertainty close to zero when no value is indicated as for aluminum and yttrium). These results prove that all the atoms of the complementary powder intended to form the dispersed oxide particles have precipitated well in the form of nanorenches within the particles of the ODS alloy powder, as also shown by the close-up views of FIGS. 4B.
Les Figures 5B, 5C et 5D sont obtenues par diffraction MET de la zone représentée sur la Figure 5A qui est centrée sur un précipité d'oxyde de l'alliage ODS de l'invention. Elles présentent des pics de diffraction de surstructure (à savoir qu'une tache sur deux est plus lumineuse) qui sont caractéristiques d'un oxyde de type pyrochlore Y2Ti207 classiquement obtenu dans un alliage ODS base fer. Figures 5B, 5C and 5D are obtained by TEM diffraction of the area shown in Figure 5A which is centered on an oxide precipitate of the ODS alloy of the invention. They exhibit superstructure diffraction peaks (i.e. one spot in two is brighter) which are characteristic of a pyrochlore type oxide Y 2 Ti 7 conventionally obtained in an iron-base ODS alloy.
La présente invention n'est nullement limitée aux formes de réalisation décrites et représentées, et l'homme du métier saura les combiner et y apporter avec ses connaissances générales de nombreuses variantes et modifications . The present invention is not limited to the embodiments described and shown, and the skilled person will combine them and bring with its general knowledge many variations and modifications.
REFERENCES CITEES REFERENCES CITED
[1] C. Suryanarayana "Mechanical alloying and milling", Progress in Materials Science 2001, 46, 1-184. [1] C. Suryanarayana "Mechanical alloying and milling", Progress in Materials Science 2001, 46, 1-184.
[2] DJ Lloyd ; "Particle reinforced aluminium and magnésium matrix composites" ; International materials reviews, 1994 , vol. 39, n° 1, pages 1 à 23. [2] DJ Lloyd; "Particle reinforced aluminum and magnesium matrix composites"; International materials reviews, 1994, vol. 39, No. 1, pages 1 to 23.
[3] Fan, X.; Gitzhofer, F.; Boulos, M., "Statistical Design of Expérimente for the Spheroidization of Powdered Alumina by Induction Plasma Processing", J Therm Spray Tech 1998, 7 (2), 247-253. [3] Fan, X .; Gitzhofer, F .; Boulos, M., "Statistical Design of Experiments for Spheroidization of Powdered Alumina by Induction Plasma Processing", J Therm Spray Tech 1998, 7 (2), 247-253.
[4] Jiang, X.-L.; Boulos, M. , "Induction Plasma [4] Jiang, X.-L .; Boulos, M., "Induction Plasma
Spheroidization of Tungsten and Molybdenum Powders", Spheroidization of Tungsten and Molybdenum Powders ",
Transactions of Nonferrous Metals Society of China 2006, 16 (1), 13-17. Transactions of Nonferrous Metals Society of China 2006, 16 (1), 13-17.
[5] Ye, R.; Ishigaki, T.; Jurewicz, J.; Proulx, P.; Boulos, M. I., "In-Flight Spheroidization of Alumina Powders in Ar- H2 and Ar-N2 Induction Plasmas", Plasma Chem Plasma Process 2004, 24 (4), 555-571. [5] Ye, R .; Ishigaki, T .; Jurewicz, J .; Proulx, P .; Boulos, M. I., "In-Flight Spheroidization of Alumina Powders in Ar-H2 and Ar-N2 Induction Plasmas", Plasma Chem Plasma Process 2004, 24 (4), 555-571.
[6] P. Fauchais, "Plasmas thermiques : aspects [6] P. Fauchais, "Thermal plasmas: aspects
fondamentaux", Techniques de l'ingénieur, fascicule D2810 VI, 2005) . "Techniques de l'ingénieur," D2810 VI, 2005).
[7] G. Mollon "Mécanique des matériaux granulaires" , INSA de Lyon, 2015 » (en particulier les pages 23 et 24 de la version téléchargée en avril 2018), disponible à l'adresse Internet suivante : [7] G. Mollon "Mechanics of granular materials", INSA Lyon, 2015 "(in particular pages 23 and 24 of the version downloaded in April 2018), available at the following Internet address:
"http : //guilhem. mollon . free . fr/Telechargements/Mecanique_des _Materiaux_Granulaires . pdf"  "http: // guilhem.mollon.free.fr/ Downloads / Mecanique_des _Materiaux_Granulaires.pdf"
[8] F. Laverne et al., "Fabrication additive - Principes généraux", Techniques de l'ingénieur, Fascicule BM7017 V2 (publication du 10 février 2016) . [9] H. Fayazfara et al., "Critical review of powder-based additive manufacturing of ferrous alloys: Process [8] F. Laverne et al., "Additive Manufacturing - General Principles", Engineering Techniques, Fascicule BM7017 V2 (published February 10, 2016). [9] H. Fayazfara et al., "Critical Review of Powder-Based Additive Manufacturing of Ferrous Alloys: Process
parameters, microstructure and mechanical properties", Materials & Design, Volume 144, 2018, Pages 98-128. parameters, microstructure and mechanical properties ", Materials & Design, Volume 144, 2018, Pages 98-128.
[10] T . DebRoy et al., "Additive manufacturing of metallic components - Process, structure and properties", Progress in Materials Science, Volume 92, 2018, pages 112-224. [10] T. DebRoy et al., "Additive Manufacturing of Metallic Components - Process, Structure and Properties," Progress in Materials Science, Volume 92, 2018, pages 112-224.
[11] Ministère de l'économie et des finances, République Française, "Prospective - futur de la fabrication additive - rapport final", édition de janvier 2017, ISBN : 978-2-11- 151552-9. [11] Ministry of Economy and Finance, French Republic, "Prospective - Future of Additive Manufacturing - Final Report", January 2017 issue, ISBN: 978-2-11-151552-9.
[12] D. Moinard et al., "Procédés de frittage PIM", [12] D. Moinard et al., "PIM sintering processes",
Techniques de l'ingénieur, Fascicule M3320 VI (publication du 10 juin 2011) . Engineering Techniques, Paper M3320 VI (publication of June 10, 2011).
[13] A. Papyrin, "Cold Spray Technology", ISBN-13 : 978-0-08- 045155-8, édition 2007. [13] A. Papyrin, "Cold Spray Technology", ISBN-13: 978-0-08-045155-8, 2007 edition.
[14] A. Prôner, "Revêtements par projection thermique", Techniques de l'ingénieur, Fascicule M1645 V2 (publication du 10 septembre 1999) . [14] A. Prôner, "Thermal Spray Coatings", Techniques of the Engineer, Fascicule M1645 V2 (publication of September 10, 1999).

Claims

REVENDICATIONS
1) Procédé de fabrication d'une poudre d'un alliage renforcé dont les grains formant les particules de la poudre comprennent une matrice métallique dans le volume de laquelle sont dispersées des particules d'oxyde cristallisées, le procédé comprenant les étapes successives suivantes : 1) A process for manufacturing a powder of a reinforced alloy, the grains forming the particles of the powder comprise a metal matrix in the volume of which are dispersed crystallized oxide particles, the process comprising the following successive steps:
1) disposer d'un mélange de poudres à broyer comprenant :  1) have a mixture of powders to grind comprising:
une poudre mère métallique comprenant un alliage maître destiné à former la matrice métallique ;  a metal master powder comprising a master alloy for forming the metal matrix;
- une poudre complémentaire comprenant au moins un composé intermédiaire destiné à incorporer dans la matrice métallique des atomes destinés à former les particules d' oxyde dispersées ;  a complementary powder comprising at least one intermediate compound intended to incorporate in the metal matrix atoms intended to form the dispersed oxide particles;
ii) broyer le mélange de poudres dans un milieu gazeux de broyage selon un procédé de mécanosynthèse pour fabriquer une poudre précurseur comprenant une matrice métallique incorporant lesdits atomes ;  ii) grinding the powder mixture in a grinding gaseous medium by a mechanosynthesis process for producing a precursor powder comprising a metal matrix incorporating said atoms;
iii) soumettre la poudre précurseur à un plasma thermique généré par une torche plasma comprenant un gaz plasmagène, afin d'obtenir la poudre d'alliage renforcé.  iii) subjecting the precursor powder to a thermal plasma generated by a plasma torch comprising a plasmagenic gas, in order to obtain the reinforced alloy powder.
2) Procédé de fabrication d'une poudre selon la revendication 1, dans lequel l'alliage maître est choisi parmi un alliage de base fer, un alliage de base nickel ou un alliage de base aluminium. 2) A method of manufacturing a powder according to claim 1, wherein the master alloy is selected from an iron base alloy, a nickel base alloy or an aluminum base alloy.
3) Procédé de fabrication d'une poudre selon la revendication 2, dans lequel l'alliage de base fer comprend en poids 10 % à 30 % de chrome. 4) Procédé de fabrication d'une poudre selon la revendication 2, dans lequel l'alliage de base fer comprend en poids 10 % à 30 % d'aluminium. 3) A method of manufacturing a powder according to claim 2, wherein the iron base alloy comprises by weight 10% to 30% chromium. 4) A method of manufacturing a powder according to claim 2, wherein the iron base alloy comprises by weight 10% to 30% aluminum.
5) Procédé de fabrication d'une poudre selon la revendication 2, dans lequel l'alliage de base fer comprend en poids 8 % à 25 % de chrome et 3 % à 8 % d'aluminium. 5) A method of manufacturing a powder according to claim 2, wherein the iron base alloy comprises by weight 8% to 25% chromium and 3% to 8% aluminum.
6) Procédé de fabrication d'une poudre selon l'une quelconque des revendications 2 à 5, dans lequel l'alliage de base fer est un acier. 6) A method of manufacturing a powder according to any one of claims 2 to 5, wherein the iron base alloy is a steel.
7) Procédé de fabrication d'une poudre selon la revendication 2, dans lequel l'alliage de base nickel comprend en poids 10 % à 40 % de chrome. 7) A method of manufacturing a powder according to claim 2, wherein the nickel base alloy comprises by weight 10% to 40% chromium.
8) Procédé de fabrication d'une poudre selon la revendication 7, dans lequel l'alliage de base nickel comprend en poids 10 % à 40 % de chrome, 0,2 % à 5 % d'aluminium, 0,3 % à 5 % de titane, 0 % à 5 % de tungstène, 0 % à 2 % de molybdène et 0 % à 2 % de tantale. 8) A method of manufacturing a powder according to claim 7, wherein the nickel base alloy comprises by weight 10% to 40% chromium, 0.2% to 5% aluminum, 0.3% to 5%. % titanium, 0% to 5% tungsten, 0% to 2% molybdenum and 0% to 2% tantalum.
9) Procédé de fabrication d'une poudre selon la revendication 2, dans lequel l'alliage de base nickel comprend en poids 10 % à 30 % d'aluminium 9) A method of manufacturing a powder according to claim 2, wherein the nickel base alloy comprises by weight 10% to 30% aluminum
10) Procédé de fabrication d'une poudre selon l'une quelconque des revendications 3 à 9, dans lequel, lorsque l'alliage maître est un alliage de base fer ou un alliage de base nickel, le mélange de poudres comprend en poids 0,1 % à 2,5 % de la poudre complémentaire. 10) A method of manufacturing a powder according to any one of claims 3 to 9, wherein, when the master alloy is an iron base alloy or a nickel base alloy, the powder mixture comprises by weight 0, 1% to 2.5% of the complementary powder.
11) Procédé de fabrication d'une poudre selon la revendication 2, dans lequel l'alliage de base aluminium comprend en poids de 0 % à 0,5 % de fer, de 0 % à 0,3 % de silicium et de 0 % à 1 % de magnésium. 11) A method of manufacturing a powder according to claim 2, wherein the aluminum base alloy comprises by weight 0% to 0.5% iron, 0% to 0.3% silicon and 0% to 1% magnesium.
12) Procédé de fabrication d'une poudre selon la revendication 2 ou 11, dans lequel, lorsque l'alliage maître est un alliage de base aluminium, le mélange de poudres comprend en poids 0,2 % à 5 % de la poudre complémentaire. 12) A method of manufacturing a powder according to claim 2 or 11, wherein, when the master alloy is an aluminum base alloy, the powder mixture comprises by weight 0.2% to 5% of the complementary powder.
13) Procédé de fabrication d'une poudre selon l'une quelconque des revendications 2 à 12, dans lequel le mélange de poudres comprend en poids 0,1 % à 0,3 % de la poudre complémentaire . 13) A method of manufacturing a powder according to any one of claims 2 to 12, wherein the powder mixture comprises 0.1% to 0.3% by weight of the additional powder.
14) Procédé de fabrication d'une poudre selon l'une quelconque des revendications précédentes, dans lequel le composé intermédiaire destiné à former les particules d'oxyde dispersées est choisi parmi YFe3 Y2O3, Fe203, Fe2Ti, FeCrWTi, TiH2 , Ti02, A1203, Hf02, Si02, Zr02, Th02, MgO ou leurs mélanges. 14) A method of manufacturing a powder according to any one of the preceding claims, wherein the intermediate compound for forming the dispersed oxide particles is selected from YFe 3 Y 2 O 3 , Fe 2 O 3 , Fe 2 Ti , FeCrWTi, TiH 2, Ti0 2, A1 2 0 3, Hf0 2, Si0 2, Zr0 2, Th0 2, MgO or mixtures thereof.
15) Procédé de fabrication d'une poudre selon l'une quelconque des revendications précédentes, dans lequel lesdits atomes destinés à former les particules d'oxyde dispersées comprennent au moins un atome métallique choisi parmi l'yttrium, le titane, le fer, le chrome, le tungstène, le silicium, le zirconium, le thorium, le magnésium, l'aluminium ou l' hafnium. 15) A method of manufacturing a powder according to any one of the preceding claims, wherein said atoms for forming the dispersed oxide particles comprise at least one metal atom selected from yttrium, titanium, iron, chromium, tungsten, silicon, zirconium, thorium, magnesium, aluminum or hafnium.
16) Procédé de fabrication d'une poudre selon l'une quelconque des revendications précédentes, dans lequel la torche plasma est une torche plasma radiofréquence à couplage inductif, une torche à arc soufflé ou une torche à arc transféré. 17) Procédé de fabrication d'une poudre selon l'une quelconque des revendications précédentes, dans lequel la puissance de la torche plasma est comprise entre 20 kW et 80 kW. 16) A method of manufacturing a powder according to any one of the preceding claims, wherein the plasma torch is an inductively coupled radiofrequency plasma torch, a blown arc torch or a transferred arc torch. 17) A method of manufacturing a powder according to any one of the preceding claims, wherein the power of the plasma torch is between 20 kW and 80 kW.
18) Procédé de fabrication d'une poudre selon l'une quelconque des revendications précédentes, dans lequel le gaz plasmagène est choisi parmi l'argon, l'hélium, l'azote ou leurs mélanges. 18) A method of manufacturing a powder according to any one of the preceding claims, wherein the plasmagenic gas is selected from argon, helium, nitrogen or mixtures thereof.
19) Procédé de fabrication d'une poudre selon l'une quelconque des revendications précédentes, dans lequel le gaz plasmagène est injecté dans la torche plasma selon un débit compris entre 10 litres/minutes et 40 litres/minutes. 19) A method of manufacturing a powder according to any one of the preceding claims, wherein the plasma gas is injected into the plasma torch at a flow rate of between 10 liters / minute and 40 liters / minute.
20) Procédé de fabrication d'une poudre selon l'une quelconque des revendications précédentes, dans lequel la poudre précurseur est injectée dans la torche plasma selon un débit compris entre 10 grammes/minute et 45 grammes/minute . 20) A method of manufacturing a powder according to any one of the preceding claims, wherein the precursor powder is injected into the plasma torch at a rate between 10 grams / minute and 45 grams / minute.
21) Procédé de fabrication d'une poudre selon la revendication 20, dans lequel la poudre précurseur est injectée dans la torche plasma selon un débit compris entre 10 grammes/.minute et 30 grammes/minute, et la puissance de la torche plasma est comprise entre 20 kW et 40 kW. 21) A method of manufacturing a powder according to claim 20, wherein the precursor powder is injected into the plasma torch at a flow rate between 10 grams / min and 30 grams / minute, and the power of the plasma torch is included between 20 kW and 40 kW.
22) Poudre d'alliage renforcé obtenue ou susceptible d'être obtenue par le procédé de fabrication tel que défini dans l'une quelconque des revendications précédentes. 22) reinforced alloy powder obtained or obtainable by the manufacturing method as defined in any one of the preceding claims.
23) Poudre d'alliage renforcé dont les grains formant les particules de la poudre comprennent une matrice métallique dans le volume de laquelle sont dispersées des particules d'oxyde cristallisées. 24) Poudre d'alliage renforcé selon la revendication 23, dans lequel les particules de l'alliage renforcé ont un coefficient de circularité moyen qui est compris entre 0,95 et 1. 23) Reinforced alloy powder whose grains forming the particles of the powder comprise a metal matrix in the volume of which are dispersed crystallized oxide particles. 24) reinforced alloy powder according to claim 23, wherein the particles of the reinforced alloy have a mean circularity coefficient which is between 0.95 and 1.
25) Poudre d'alliage renforcé selon la revendication25) Reinforced alloy powder according to claim
23 ou 24, dans lequel la matrice métallique est cristallisée . 23 or 24, wherein the metal matrix is crystallized.
26) Poudre d'alliage renforcé selon l'une quelconque des revendications 23 à 25, dans lequel les particules d'oxyde sont réparties de manière homogène dans le volume de la matrice métallique. 26. Reinforced alloy powder according to any one of claims 23 to 25, wherein the oxide particles are homogeneously distributed in the volume of the metal matrix.
27) Poudre d'alliage renforcé selon l'une quelconque des revendications 23 à 26, dans lequel la matrice métallique est composée d'un alliage de base fer, un alliage de base nickel ou un alliage de base aluminium. The reinforced alloy powder according to any one of claims 23 to 26, wherein the metal matrix is composed of an iron base alloy, a nickel base alloy or an aluminum base alloy.
28) Poudre d'alliage renforcé selon la revendication 27, dans lequel l'alliage de base fer comprend en poids 10 % à 30 % de chrome. 28. Reinforced alloy powder according to claim 27, wherein the iron base alloy comprises by weight 10% to 30% chromium.
29) Poudre d'alliage renforcé selon la revendication 27, dans lequel l'alliage de base fer comprend en poids 10 % à 30 % d'aluminium. 29) Reinforced alloy powder according to claim 27, wherein the iron base alloy comprises by weight 10% to 30% aluminum.
30) Poudre d'alliage renforcé selon la revendication 27, dans lequel l'alliage de base fer comprend en poids 8 % à 25 % de chrome et 3 % à 8 % d'aluminium. 30) Reinforced alloy powder according to claim 27, wherein the iron base alloy comprises by weight 8% to 25% chromium and 3% to 8% aluminum.
31) Poudre d'alliage renforcé selon l'une quelconque des revendications 27 à 30, dans lequel l'alliage de base fer est un acier. 32) Poudre d'alliage renforcé selon la revendication 27, dans lequel l'alliage de base nickel comprend en poids 10 % à 40 % de chrome. 31) Reinforced alloy powder according to any one of claims 27 to 30, wherein the iron base alloy is a steel. 32) Reinforced alloy powder according to claim 27, wherein the nickel base alloy comprises by weight 10% to 40% chromium.
33) Poudre d'alliage renforcé selon la revendication 32, dans lequel l'alliage de base nickel comprend en poids 10 % à 40 % de chrome, 0,2 % à 5 % d'aluminium, 0,3 % à 5 % de titane, 0 % à 5 % de tungstène, 0 % à 2 % de molybdène et 0 % à 2 % de tantale. 33) Reinforced alloy powder according to claim 32, wherein the nickel base alloy comprises by weight 10% to 40% chromium, 0.2% to 5% aluminum, 0.3% to 5% aluminum. titanium, 0% to 5% tungsten, 0% to 2% molybdenum and 0% to 2% tantalum.
34) Poudre d'alliage renforcé selon la revendication 27, dans lequel l'alliage de base nickel comprend en poids 10 % à 30 % d' aluminium. The reinforced alloy powder of claim 27, wherein the nickel base alloy comprises 10% to 30% by weight aluminum.
35) Poudre d'alliage renforcé selon l'une quelconque des revendications 28 à 34, dans lequel, lorsque la matrice métallique est composée d'un alliage de base fer ou d'un alliage de base nickel, l'alliage renforcé comprend en poids 0,1 % à 2,5 % des particules d'oxyde. The reinforced alloy powder according to any one of claims 28 to 34, wherein when the metal matrix is composed of an iron base alloy or a nickel base alloy, the reinforced alloy comprises by weight 0.1% to 2.5% of the oxide particles.
36) Poudre d'alliage renforcé selon la revendication 27, dans lequel l'alliage de base aluminium comprend en poids de 0 % à 0,5 % de fer, de 0 % à 0,3 % de silicium et de 0 % à 1 % de magnésium. 36) Reinforced alloy powder according to claim 27, wherein the aluminum base alloy comprises by weight 0% to 0.5% iron, 0% to 0.3% silicon and 0% to 1% % magnesium.
37) Poudre d'alliage renforcé selon la revendication 27 ou 36, dans lequel, lorsque la matrice métallique est composée d'un alliage de base aluminium, l'alliage renforcé comprend en poids 0,2 % à 5 % des particules d'oxyde. A reinforced alloy powder according to claim 27 or 36, wherein, when the metal matrix is composed of an aluminum base alloy, the reinforced alloy comprises 0.2% to 5% by weight of the oxide particles .
38) Poudre d'alliage renforcé selon l'une quelconque des revendications précédentes 27 à 37, dans lequel l'alliage renforcé comprend en poids 0,1 % à 0,5 % des particules d'oxyde. 38) Reinforced alloy powder according to any one of the preceding claims 27 to 37, in wherein the reinforced alloy comprises 0.1% to 0.5% by weight of the oxide particles.
39) Poudre d'alliage renforcé selon l'une quelconque des revendications 23 à 38, dans lequel l'alliage renforcé comprend 0,1 % à 2,5 % en poids d'un atome du composé intermédiaire destiné à former les particules d'oxyde. 39) Reinforced alloy powder according to any one of claims 23 to 38, wherein the reinforced alloy comprises 0.1% to 2.5% by weight of an atom of the intermediate compound for forming the particles of oxide.
40) Poudre d'alliage renforcé selon la revendication 39, dans lequel composé intermédiaire destiné à former les particules d'oxyde est YFe3, Y2O3, Fe203, Fe2Ti,40) Reinforced alloy powder according to claim 39, wherein the intermediate compound for forming the oxide particles is YFe 3 , Y 2 O 3 , Fe 2 O 3 , Fe 2 Ti,
FeCrWTi, TiH2 , Ti02, A1203, Hf02, Si02, Zr02, Th02, MgO ou leurs mélanges. FeCrWTi, TiH 2, Ti0 2, A1 2 0 3, Hf0 2, Si0 2, Zr0 2, Th0 2, MgO or mixtures thereof.
41) Poudre d'alliage renforcé selon l'une quelconque des revendications 23 à 40, dans lequel les particules d'oxyde comprennent au moins un oxyde choisi parmi Y203, Ti02, A1203, Hf02 , Si02, Zr02, Th02, MgO Al203, Y2Ti207, Y2Ti05. 41) reinforced alloy powder according to any one of claims 23 to 40, wherein the oxide particles comprise at least one oxide selected from Y 2 0 3 , Ti0 2 , Al 2 0 3 , Hf0 2 , Si0 2 , Zr0 2 , Th0 2 , MgO Al 2 O 3 , Y 2 Ti 2 O 7 , Y 2 TiO 5 .
42) Poudre d'alliage renforcé selon l'une quelconque des revendications 23 à 41, dans lequel les particules d'oxyde ont un diamètre médian (dso) compris entre 1 nm et 500 nm . 42) reinforced alloy powder according to any one of claims 23 to 41, wherein the oxide particles have a median diameter (dso) between 1 nm and 500 nm.
43) Poudre d'alliage renforcé selon la revendication 42, dans lequel les particules d'oxyde ont un diamètre médian (dso) compris entre 1 nm et 200 nm. 43) reinforced alloy powder according to claim 42, wherein the oxide particles have a median diameter (dso) of between 1 nm and 200 nm.
44) Poudre d'alliage renforcé selon l'une quelconque des revendications 23 à 43, dans lequel l'alliage renforcé comprend en outre en poids au moins un des éléments suivants : 44) Reinforced alloy powder according to any one of claims 23 to 43, wherein the reinforced alloy further comprises by weight at least one of the following:
- de 10 à 5000 ppm de silicium ;  from 10 to 5000 ppm of silicon;
- de 10 à 100 ppm de soufre ; - moins de 20 ppm de chlore ; from 10 to 100 ppm of sulfur; - less than 20 ppm chlorine;
- de 2 à 10 ppm de phosphore ;  from 2 to 10 ppm of phosphorus;
- de 0,1 à 10 ppm de bore ;  from 0.1 to 10 ppm of boron;
- de 0,1 à 10 ppm de calcium ;  from 0.1 to 10 ppm of calcium;
- moins de 0,1 ppm de chacun des éléments suivants : lithium, fluor, métaux lourds, Sn, As, Sb.  less than 0.1 ppm of each of the following elements: lithium, fluorine, heavy metals, Sn, As, Sb.
45) Poudre d'alliage renforcé selon l'une quelconque des revendications 23 à 44, dans lequel la matrice métallique comprend sous forme dissoute 0 % à 20 % en poids dudit atome métallique par rapport au poids total dudit atome métallique contenu dans l'ensemble de l'alliage renforcé . 45) reinforced alloy powder according to any one of claims 23 to 44, wherein the metal matrix comprises in dissolved form 0% to 20% by weight of said metal atom relative to the total weight of said metal atom contained in the assembly reinforced alloy.
46) Utilisation d'une poudre d'alliage renforcé telle que définie selon l'une quelconque des revendications 22 à 45, dans laquelle la poudre d'alliage renforcé est soumise à un procédé de densification de la poudre d'alliage renforcé afin de fabriquer un matériau massif ou à un procédé de revêtement afin de revêtir un support avec la poudre d'alliage renforcé. 46) Use of a reinforced alloy powder as defined in any one of claims 22 to 45, wherein the reinforced alloy powder is subjected to a process of densifying the reinforced alloy powder to manufacture a solid material or a coating process for coating a support with the reinforced alloy powder.
47) Utilisation selon la revendication 46, dans laquelle le procédé de densification est un procédé de fabrication additive ou un procédé de moulage par injection de poudre . The use of claim 46, wherein the densification process is an additive manufacturing process or a powder injection molding method.
48) Utilisation selon la revendication 47, dans laquelle le procédé de fabrication additive est choisi parmi un procédé de fusion sélective par laser, de fusion sélective par faisceau d'électrons, de frittage sélectif par laser, de projection laser ou de projection de liant. 48. Use according to claim 47, wherein the additive manufacturing process is selected from a laser selective melting, electron beam selective melting, laser selective sintering, laser projection or binder spraying method.
49) Utilisation selon la revendication 46, dans laquelle le procédé de revêtement est choisi parmi un procédé de projection à froid ou un procédé de projection thermique . 49. The use according to claim 46, wherein the coating process is selected from cold spraying method or thermal spraying method.
50) Utilisation selon la revendication 49, dans laquelle le procédé de projection thermique est choisi parmi un procédé de projection thermique flamme, un procédé de projection arc électrique entre deux fils ou un procédé de projection plasma soufflé. 50) Use according to claim 49, wherein the thermal spraying process is selected from a flame thermal spraying method, a two-wire electric arc spraying method or a blown plasma spraying method.
PCT/FR2019/000067 2018-05-03 2019-05-03 Ods alloy powder, method for producing same by means of plasma treatment, and use thereof WO2019211534A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112020022410-3A BR112020022410A2 (en) 2018-05-03 2019-05-03 reinforced alloy powder, method of producing it and use of this
US17/052,076 US20210230722A1 (en) 2018-05-03 2019-05-03 Ods alloy powder, method for producing same by means of plasma treatment, and use thereof
CN201980044821.6A CN112469520A (en) 2018-05-03 2019-05-03 ODS alloy powder, use thereof, and method for producing same by plasma treatment
JP2020561784A JP2021521344A (en) 2018-05-03 2019-05-03 ODS alloy powder, its production method by plasma treatment, and its use
KR1020207031635A KR102432787B1 (en) 2018-05-03 2019-05-03 ODS alloy powder, production method thereof by plasma treatment, and use thereof
EP19728473.0A EP3787822B1 (en) 2018-05-03 2019-05-03 Ods alloy powder, method for producing same by means of plasma treatment, and use thereof
JP2022143945A JP2022192063A (en) 2018-05-03 2022-09-09 Ods alloy powder, method for producing the same by means of plasma treatment, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1853836A FR3080786A1 (en) 2018-05-03 2018-05-03 ODS ALLOY POWDER AND PROCESS FOR PRODUCING THE SAME BY PLASMA PROCESSING
FR1853836 2018-05-03

Publications (2)

Publication Number Publication Date
WO2019211534A1 true WO2019211534A1 (en) 2019-11-07
WO2019211534A9 WO2019211534A9 (en) 2019-12-19

Family

ID=64049305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/000067 WO2019211534A1 (en) 2018-05-03 2019-05-03 Ods alloy powder, method for producing same by means of plasma treatment, and use thereof

Country Status (8)

Country Link
US (1) US20210230722A1 (en)
EP (1) EP3787822B1 (en)
JP (2) JP2021521344A (en)
KR (1) KR102432787B1 (en)
CN (1) CN112469520A (en)
BR (1) BR112020022410A2 (en)
FR (1) FR3080786A1 (en)
WO (1) WO2019211534A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102370831B1 (en) * 2020-10-26 2022-03-07 한국생산기술연구원 Nanoparticle dispersion strengthened titanium powder with improved uniformity and manufacturing method thereof
KR102370830B1 (en) * 2020-10-26 2022-03-07 한국생산기술연구원 Nanoparticle dispersion strengthened titanium powder and manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114178538B (en) * 2021-11-19 2023-02-21 西南交通大学 Preparation method of ultrahigh-sphericity nanometer yttrium oxide dispersion-strengthened titanium alloy powder
CN116033982A (en) * 2022-05-30 2023-04-28 清华大学 Alloy and preparation method thereof
CN115449659B (en) * 2022-08-01 2024-01-30 中南大学深圳研究院 Oxide dispersion strengthening nickel-based superalloy, and preparation method and application thereof
CN116477940B (en) * 2023-03-17 2024-04-12 电子科技大学 Yttrium titanate doped zirconia ceramic material and preparation method and application thereof
CN116287873B (en) * 2023-05-19 2023-08-04 北京煜鼎增材制造研究院股份有限公司 Nickel-based superalloy for 1100 ℃ and additive manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986006366A1 (en) * 1985-04-26 1986-11-06 Martin Marietta Corporation Aluminum-ceramic composites
US4689075A (en) * 1984-10-16 1987-08-25 National Research Institute For Metals Process for producing mixed ultrafine powder of metals or ceramics
US4755221A (en) * 1986-03-24 1988-07-05 Gte Products Corporation Aluminum based composite powders and process for producing same
US20110103961A1 (en) * 2009-11-04 2011-05-05 Rolls-Royce Plc Method of producing an oxide dispersion strengthened nickel-base superalloy
CN102251131A (en) * 2011-06-30 2011-11-23 北京科技大学 Method for preparing injection-molding nickel-base ODS (oxide dispersion strengthened) alloy
CN103060591A (en) * 2013-01-08 2013-04-24 北京科技大学 Method for near-net shaping of porous Ni-based ODS (oxide dispersion strengthening) alloy
US20150093279A1 (en) * 2013-10-02 2015-04-02 Honywell International Inc. Methods for forming oxide dispersion-strengthened alloys
CN107760933A (en) * 2017-09-11 2018-03-06 南京航空航天大学 A kind of 3D printing strengthens Al alloy powder and preparation method thereof with in-situ nano complex phase ceramic

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278726A (en) * 1994-04-08 1995-10-24 Mitsubishi Heavy Ind Ltd Production of oxide dispersion strengthened ferrite steel
JP2003139273A (en) 2001-11-06 2003-05-14 Jgc Corp Heating furnace pipe and usage therefor
KR101586546B1 (en) 2013-03-29 2016-01-29 한국원자력연구원 Ferritic oxide dispersion strengthened alloy with enhanced room temperature and high temperature strength and manufacturing method thereof
FR3008014B1 (en) 2013-07-04 2023-06-09 Association Pour La Rech Et Le Developpement De Methodes Et Processus Industriels Armines METHOD FOR THE ADDITIVE MANUFACTURING OF PARTS BY FUSION OR SINTERING OF POWDER PARTICLES BY MEANS OF A HIGH ENERGY BEAM WITH POWDERS SUITABLE FOR THE PROCESS/MATERIAL TARGETED COUPLE
EP3756799A1 (en) * 2015-07-17 2020-12-30 AP&C Advanced Powders And Coatings Inc. Plasma atomization metal powder manufacturing processes and systems therefore
SG11201900636WA (en) 2016-09-09 2019-02-27 Arconic Inc Aluminum alloy products, and methods of making the same
CN108856725A (en) * 2018-06-13 2018-11-23 东南大学 A kind of preparation method and application of dispersion-strengthened Cu in situ composites
CN115896565A (en) * 2022-10-31 2023-04-04 国营芜湖机械厂 3D printing high-strength aluminum alloy powder and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689075A (en) * 1984-10-16 1987-08-25 National Research Institute For Metals Process for producing mixed ultrafine powder of metals or ceramics
WO1986006366A1 (en) * 1985-04-26 1986-11-06 Martin Marietta Corporation Aluminum-ceramic composites
US4755221A (en) * 1986-03-24 1988-07-05 Gte Products Corporation Aluminum based composite powders and process for producing same
US20110103961A1 (en) * 2009-11-04 2011-05-05 Rolls-Royce Plc Method of producing an oxide dispersion strengthened nickel-base superalloy
CN102251131A (en) * 2011-06-30 2011-11-23 北京科技大学 Method for preparing injection-molding nickel-base ODS (oxide dispersion strengthened) alloy
CN103060591A (en) * 2013-01-08 2013-04-24 北京科技大学 Method for near-net shaping of porous Ni-based ODS (oxide dispersion strengthening) alloy
US20150093279A1 (en) * 2013-10-02 2015-04-02 Honywell International Inc. Methods for forming oxide dispersion-strengthened alloys
CN107760933A (en) * 2017-09-11 2018-03-06 南京航空航天大学 A kind of 3D printing strengthens Al alloy powder and preparation method thereof with in-situ nano complex phase ceramic

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
A. PAPYRIN, COLD SPRAY TECHNOLOGY, 2007, ISBN: 13:978-0-08-045155-8
A. PRONER: "Revêtements par projection thermique", TECHNIQUES DE L'INGÉNIEUR, FASCICULE M1645 V2, 10 September 1999 (1999-09-10)
C. SURYANARAYANA: "Mechanical alloying and milling", PROGRESS IN MATERIALS SCIENCE, vol. 46, 2001, pages 1 - 184, XP002556513, DOI: doi:10.1016/S0079-6425(99)00010-9
D. MOINARD ET AL.: "Procédés de frittage PIM", TECHNIQUES DE L'INGÉNIEUR, FASCICULE M3320 V1, 10 June 2011 (2011-06-10)
D. MOINARD ET AL.: "Procédés de frittage PIM", TECHNIQUES DE L'INGÉNIEUR, FASCICULE M3320 VI, 10 June 2011 (2011-06-10)
DJ LLOYD: "Particle reinforced aluminium and magnesium matrix composites", INTERNATIONAL MATERIALS REVIEWS, vol. 39, no. 1, 1994, pages 1 - 23
DJ LLOYD: "Particle reinforced aluminium and magnésium matrix composites", INTERNATIONAL MATERIALS REVIEWS, vol. 39, no. 1, 1994, pages 1 - 23
F. LAVERNE ET AL.: "Fabrication additive - Principes généraux", TECHNIQUES DE L'INGÉNIEUR, 10 February 2016 (2016-02-10)
F. LAVERNE ET AL.: "Fabrication additive - Principes généraux", TECHNIQUES DE L'INGÉNIEUR, FASCICULE BM7017 V2, 10 February 2016 (2016-02-10)
FAN, X.GITZHOFER, F.BOULOS, M.: "Statistical Design of Experiments for the Spheroidization of Powdered Alumina by Induction Plasma Processing", J THERM SPRAY TECH, vol. 7, no. 2, 1998, pages 247 - 253
G. MOLLON, MÉCANIQUE DES MATÉRIAUX GRANULAIRES, 2015, pages 23,24
G. MOLLON: "Mécanique des matériaux granulaires", INSA DE LYON, 2015, pages 23 - 24
H. FAYAZFARA ET AL.: "critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties", MATERIALS & DESIGN, vol. 144, 2018, pages 98 - 128
HE PEI ET AL: "An in situ SANS study of nanoparticles formation in 9Cr ODS steel powders", MATERIALS LETTERS, vol. 209, 15 August 2017 (2017-08-15), pages 535 - 538, XP085204904, ISSN: 0167-577X, DOI: 10.1016/J.MATLET.2017.08.051 *
JIANG, X.-L.BOULOS, M.: "Induction Plasma Spheroidization of Tungsten and Molybdenum Powders", TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, vol. 16, no. 1, 2006, pages 13 - 17, XP022935342, DOI: doi:10.1016/S1003-6326(06)60003-4
KIM, K. S.MORADIAN, A.MOSTAGHIMI, J.SOUCY, G: "Modeling of Induction Plasma Process for Fullerene Synthesis : Effect of Plasma Gas Composition and Operating Pressure", PLASMA CHEMISTRY AND PLASMA PROCESSING, vol. 30, 2010, pages 91 - 110, XP019793900
LONGZHOU MA ET AL: "Characterization of Oxide-Dispersion-Strengthened (ODS) Alloy Powders Processed by Mechano-Chemical-Bonding (MCB) and Balling Milling (BM)", KONA., vol. 31, no. 0, 1 January 2014 (2014-01-01), JP, pages 146 - 155, XP055570738, ISSN: 0288-4534, DOI: 10.14356/kona.2014004 *
MINISTÈRE DE L'ÉCONOMIE ET DES FINANCES, RÉPUBLIQUE FRANÇAISE, PROSPECTIVE - FUTUR DE LA FABRICATION ADDITIVE - RAPPORT FINAL, January 2017 (2017-01-01), pages 205 - 220, ISBN: 978-2-11-151552-9
OESTERLE: "Mikrostruktur eines ODS-Pulvers auf Nikkelbasis nach dem mechanischen Legieren", ZEITSCHRIFT FUR METALLKUNDE, 1 February 1993 (1993-02-01), pages 85, XP055570731, Retrieved from the Internet <URL:https://www.tib.eu/en/search/id/BLSE%3AEN004127821/Mikrostruktur-eines-ODS-Pulvers-auf-Nikkelbasis/> [retrieved on 20190318] *
P. FAUCHAIS: "Plasmas thermiques : aspects fondamentaux", TECHNIQUES DE L'INGÉNIEUR, FASCICULE D2810 VI, 2005
P. FAUCHAIS: "Plasmas thermiques : aspects fondamentaux", TECHNIQUES DE L'INGÉNIEUR, FASCICULE, 2005
T.DEBROY ET AL.: "Additive manufacturing of metallic components - Process, structure and properties", PROGRESS IN MATERIALS SCIENCE, vol. 92, 2018, pages 112 - 224, XP055542717, DOI: doi:10.1016/j.pmatsci.2017.10.001
YE, R.ISHIGAKI, T.JUREWICZ, J.PROULX, P.BOULOS, M. I.: "In-Flight Spheroidization of Alumina Powders in Ar-H2 and Ar-N2 Induction Plasmas", PLASMA CHEM PLASMA PROCESS, vol. 24, no. 4, 2004, pages 555 - 571, XP019290254

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102370831B1 (en) * 2020-10-26 2022-03-07 한국생산기술연구원 Nanoparticle dispersion strengthened titanium powder with improved uniformity and manufacturing method thereof
KR102370830B1 (en) * 2020-10-26 2022-03-07 한국생산기술연구원 Nanoparticle dispersion strengthened titanium powder and manufacturing method thereof

Also Published As

Publication number Publication date
JP2022192063A (en) 2022-12-28
EP3787822C0 (en) 2023-10-11
EP3787822B1 (en) 2023-10-11
EP3787822A1 (en) 2021-03-10
WO2019211534A9 (en) 2019-12-19
BR112020022410A2 (en) 2021-02-02
KR20200131906A (en) 2020-11-24
FR3080786A1 (en) 2019-11-08
CN112469520A (en) 2021-03-09
KR102432787B1 (en) 2022-08-12
US20210230722A1 (en) 2021-07-29
JP2021521344A (en) 2021-08-26

Similar Documents

Publication Publication Date Title
EP3787822B1 (en) Ods alloy powder, method for producing same by means of plasma treatment, and use thereof
US11590568B2 (en) Process for producing spheroidized powder from feedstock materials
Popovich et al. Metal powder additive manufacturing
JP6463746B2 (en) Additional manufacturing method for parts by melting or sintering powder particles using high energy beam and powder suitable for target method / material combination
JP2009132962A (en) Ag-BASED SPUTTERING TARGET
US20190194781A1 (en) Aluminum alloy powder for additive manufacturing, and method for manufacturing a piece by manufacturing from this powder
FR3096989A1 (en) Additive manufacturing process for a part in a nitrided CCA alloy
JP7176661B2 (en) Alloys, alloy powders, alloy members and composite members
EP3950177A1 (en) Ni-based alloy, ni-based alloy powder, ni-based alloy member, and product provided with ni-based alloy member
JP7103548B2 (en) Ni—Cr—Mo alloy member, Ni—Cr—Mo alloy powder, and composite member
EP3950992A1 (en) Alloy composition, method for producing alloy composition, and die
WO2020196578A1 (en) Method of producing solid spherical powder, and method of producing shaped product
JP2007045670A (en) Manufacturing method of metal carbide
EP3819046A1 (en) Method for manufacturing an optimised steel material
EP3819047A1 (en) Optimised steel material
WO2023214567A1 (en) Alloy, alloy powder, alloy member, and composite member
FR3096990A1 (en) Age hardened nitrided CCA alloy
FR3096988A1 (en) Manufacturing process by sintering a part in a nitrided CCA alloy
WO2023095805A1 (en) Composite material, manufacturing method for composite material, and mold
WO2023176450A1 (en) Composite material, method for producing composite material, and mold
WO2024090450A1 (en) Copper alloy powder for metal am and method for manufacturing laminate molded article
WO2023231267A1 (en) Alloy and preparation method therefor
WO2023162524A1 (en) Method of manufacturing mixed powder for additive manufacturing
Wang et al. Laser assisted synthesis of Al0. 1CoCrFeNi High Entropy Alloy Coating: Microstructures and Properties
EP3819044A1 (en) Part comprising an optimised steel material and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19728473

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20207031635

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2020561784

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020022410

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2019728473

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019728473

Country of ref document: EP

Effective date: 20201203

ENP Entry into the national phase

Ref document number: 112020022410

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201103