WO2019207724A1 - 血液成分分離デバイス、血液成分分離方法、及び血液成分分析方法 - Google Patents

血液成分分離デバイス、血液成分分離方法、及び血液成分分析方法 Download PDF

Info

Publication number
WO2019207724A1
WO2019207724A1 PCT/JP2018/017040 JP2018017040W WO2019207724A1 WO 2019207724 A1 WO2019207724 A1 WO 2019207724A1 JP 2018017040 W JP2018017040 W JP 2018017040W WO 2019207724 A1 WO2019207724 A1 WO 2019207724A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
blood
filter
separation device
plasma
Prior art date
Application number
PCT/JP2018/017040
Other languages
English (en)
French (fr)
Inventor
遼 小林
慶治 三井
哲臣 高崎
百合香 越智
耕磨 林
久皇 鈴木
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2018/017040 priority Critical patent/WO2019207724A1/ja
Priority to JP2020515400A priority patent/JP6939988B2/ja
Publication of WO2019207724A1 publication Critical patent/WO2019207724A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Definitions

  • the present invention relates to a blood component separation device, a blood component separation method, and a blood component analysis method.
  • the blood cell component and the plasma component are usually separated and analyzed separately.
  • the method for separating the blood cell component and the plasma component include a centrifugal separation method and a method using a blood cell separation filter.
  • the centrifugal separation method the centrifugal operation is complicated.
  • a blood cell separation filter for example, Patent Document 1 describes a glass fiber filter for blood filtration and the like.
  • the conventional method using a blood cell separation filter cannot sufficiently prevent the mixing of plasma components into the blood cell fraction.
  • One embodiment of the present invention includes a first flow path including a first introduction port into which a solution containing blood cells and plasma is introduced, and a filter unit in which a filter for capturing blood cells is installed, and the first flow
  • a blood component separation device including a second flow path connected to the filter portion of the path.
  • the second flow path may have a second introduction port, and may intersect the first flow path at the filter portion of the first flow path.
  • One embodiment of the present invention is a method for separating blood components using the blood component separation device, wherein (a) a solution containing blood cells and plasma is introduced from the first inlet into the first. Introducing into the flow path, causing the filter to capture blood cells in the solution, and moving the plasma in the solution in the first flow path; and (b) from the first inlet or the second inlet. Introducing a hemolytic agent, hemolyzing blood cells in the filter, and moving blood cell components released by hemolysis in the second flow path.
  • One embodiment of the present invention is a method for analyzing blood components using the blood component separation device, wherein (a) a solution containing blood cells and plasma is introduced from the first inlet into the first. A step of introducing into the flow channel and causing the filter to capture blood cells in the solution; and (b) after the step (a), the cleaning liquid is supplied from the first introduction port or the second introduction port. A step of removing the plasma in the filter by introducing into the passage, and (c) after the step (b), introducing a hemolytic agent from the first inlet or the second inlet, and blood cells in the filter And (d) analyzing the blood cells hemolyzed in the step (c).
  • One embodiment of the present invention is a method for analyzing hemoglobin A1c, wherein (a) a filter for separating blood cells and plasma captures blood cells in a solution containing blood cells and plasma; and (b) ) After the step (a), passing the washing solution through the filter and removing the plasma in the filter; (c) after the step (b), introducing a hemolytic agent into the filter; And hemolyzing A1c in the blood cells hemolyzed in the step (c), and (d) analyzing the hemoglobin A1c in the blood cells hemolyzed in the step (c).
  • FIG. 1 shows an example of the structure of the pump parts P1 and P2 of the blood component separation device 700 of FIG.
  • (A)-(d) is sectional drawing explaining operation
  • Experimental example 2 it is a graph which shows the result of having evaluated the influence of the plasma content which has on the measured value of HbA1c.
  • FIG. 6 is a schematic diagram showing the structure of a blood component separation device used in Experimental Examples 3 to 7.
  • Experimental example 3 it is a graph which shows the result of having measured the plasma in a blood cell fraction.
  • Experimental example 4 it is a graph which shows the result of having measured the plasma in a blood cell fraction.
  • Experiment 5 it is a photograph of each blood component separation device after hemolyzing and collecting blood cells after washing the filter with 20 ⁇ L, 25 ⁇ L or 30 ⁇ L of washing solution.
  • Experimental Example 6 it is a graph which shows the result of having evaluated the reproducibility of the measured value of HbA1c.
  • Experimental Example 7 it is a graph which shows the result of having evaluated the reproducibility of the HbA1c measured value.
  • the present invention is connected to a first flow path that includes a first inlet and a filter section in which a filter that separates blood cells and plasma is installed, and to the filter section of the first flow path.
  • a blood component separation device including a second flow path.
  • FIG. 1 is a schematic diagram showing an example of a blood component separation device of the present embodiment.
  • the blood component separation device 100 includes a first channel 10, a second channel 20, a third channel 30, a plasma analyzer 50, and a blood cell analyzer 60.
  • the first flow path 10 has a first introduction port 12 and a filter unit 11.
  • the second flow path 20 and the third flow path 30 are connected to the filter part 11 of the first flow path 10 and intersect the first flow path 10 at the filter part 11.
  • the first flow path 10, the second flow path 20, and the third flow path 30 may be formed of, for example, a tube such as a glass tube or a resin tube, and a groove is formed between two bonded plates.
  • a flow path may be formed by forming.
  • the width and height of the first channel 10, the second channel 20, and the third channel 30 are not particularly limited, and may be arbitrarily selected according to the type of sample. For example, the width and height of these channels can be set to such a size that the sample can pass through, and examples thereof include 1 ⁇ m or more, 10 ⁇ m or more, 50 ⁇ m or more, 100 ⁇ m or more.
  • the widths of the first flow path 10, the second flow path 20, and the third flow path 30 may be the same or different.
  • the diameter of the first channel 10 can be 50 ⁇ m or more, 80 ⁇ m or more, 100 ⁇ m or more, and the like.
  • the upper limits of the width and height of these channels are not particularly limited, and may be appropriately selected according to the size of the blood component separation device. Examples of the upper limit values of the width and height of these channels include 100 mm or less, 50 mm or less, 10 mm or less, 5 m or less, 2 mm or less, and the like. An example is a width of about 0.5 to 2.0 mm and a height of about 0.2 mm to 2.0 mm.
  • the shapes of the first flow path 10, the second flow path 20, and the third flow path 30 are not particularly limited, and the cross section of the flow path may be circular or rectangular.
  • the first flow path 10 includes a first inlet 12, a filter unit 11, and a valve V1.
  • the first inlet 12 introduces a solution containing blood cells and plasma into the first flow path 10. Moreover, it may be used to introduce other samples, reagents, and the like.
  • the first inlet 12 may have a funnel shape so that the sample can be easily introduced.
  • the filter unit 11 is a part where a filter for capturing blood cells is installed in the flow path.
  • the filter that captures blood cells selectively captures blood cells in the blood and separates them from components other than blood cells in the blood, including plasma. Therefore, it is possible to separate blood cells and plasma in blood.
  • the filter is not particularly limited as long as it has a material and a structure capable of capturing blood cells and allowing plasma to pass through, and a known blood cell separation filter can be used.
  • Examples of the filter include a porous film and a glass fiber film.
  • Examples of the filter material include polypropylene, polyethylene, polyethylene terephthalate, polybutylene terephthalate, polystyrene, polyvinyl alcohol, urethane, acrylic, rayon, and glass.
  • the filter examples include, for example, a fiber in which the above-described material is integrated in a nonwoven fabric, a molded body such as an open-cell foam in which continuous pores are formed using the above-described material, and a substantially spherical fine particle formed from the above-described material.
  • a fiber in which the above-described material is integrated in a nonwoven fabric a molded body such as an open-cell foam in which continuous pores are formed using the above-described material, and a substantially spherical fine particle formed from the above-described material.
  • a fiber in which the above-described material is integrated in a nonwoven fabric
  • a molded body such as an open-cell foam in which continuous pores are formed using the above-described material
  • a substantially spherical fine particle formed from the above-described material are integrated so as to form a close-packed structure, or are integrally molded by sintering the accumulated material, or are formed by forming a through-hole in a film formed
  • the average pore diameter of the filter is not limited so long as it captures blood cells and does not inhibit the passage of plasma, and examples thereof include 2 to 10 ⁇ m or 3 to 8 ⁇ m.
  • the average pore diameter is measured by a bubble point test method (JIS K 3832), an actual measurement method using an enlarged image by an electron microscope, or the like.
  • the porosity of the filter is not particularly limited, and examples thereof include 20 to 97% and 30 to 95% in order to ensure a practical filtration time and maintain the filter stability.
  • the valve V1 is for controlling the first flow path 10 in an open state or a closed state.
  • the valve V ⁇ b> 1 is disposed on the opposite side of the first introduction port 12 with respect to the filter unit 11 in the first flow path 10.
  • bulb V1 are located in this order.
  • the first inlet 12 is on the upstream side of the first flow path 10
  • the valve portion V1 is on the downstream side.
  • the solution introduced from the first introduction port 12 passes through the filter unit 11 and flows toward the valve unit V1.
  • the structure of the valve V1 is not particularly limited, and any valve used for a fluid device or the like can be used.
  • the valve V ⁇ b> 1 is disposed in the vicinity of the downstream end of the filter unit 11.
  • the valve V1 and the filter unit 11 are preferably in contact with each other.
  • the distance between the end of the valve V1 and the end of the filter unit 11 is at most about several millimeters. Is preferred.
  • the distance between the end of the valve V1 and the end of the filter unit 11 is about 0 to 10 mm, and is about 0 to 5 mm.
  • the blood cell fraction hemolyzed by the hemolysis process described later can be efficiently collected via the second flow path 20 or the third flow path 30.
  • the blood component separation device of the present embodiment may be configured without the valve V1.
  • a valve may be provided between the first introduction port 12 and the filter unit 11.
  • the plasma analysis unit 50 is for analyzing the plasma that has passed through the filter unit 11.
  • the plasma analysis unit 50 can be configured to analyze any plasma component according to the purpose.
  • the plasma analysis unit 50 may be a glucose analysis unit.
  • the plasma analysis unit 50 analyzes total cholesterol, LDL, HDL, TG, UA, blood creatinine, albumin, total protein, ALT, AST, ⁇ GTP, BUN, K ion, Na ion, Ca ion, Cl ion, and the like. It may be a thing.
  • the plasma analysis unit 50 may analyze BV, HCV, CRP, cTnT, cTnI, BNP, H-FAB, CK-MB, IL-6, etc., and analyze tumor markers, miRNA, etc. You may do.
  • the plasma analysis unit 50 may analyze a single item, or may analyze a plurality of items.
  • the blood component separation device includes the plasma analysis unit 50, the plasma component separated by the filter unit 11 can be directly analyzed in the device. Since the plasma component is sent from the filter unit 11 to the plasma analysis unit 50 through the flow path on the blood component separation device, there is no risk of contamination or contamination of the apparatus, and simple plasma. Analysis of components becomes possible. In addition, since the plasma component can be measured directly from the separation of blood cell components, the loss of non-specific measurement objects is eliminated, the accuracy is improved, and the examination time is further shortened.
  • the blood component separation device of the present embodiment may be provided with a plasma analysis unit 50 and / or a plasma recovery unit.
  • the blood component separation device of the present embodiment may be configured to provide a plasma recovery unit instead of the plasma analysis unit 50 and recover the plasma that has passed through the filter unit 11.
  • the collected plasma may be analyzed manually or using a plasma analyzer or the like, and may be stored for later analysis.
  • it is good also as a structure which provides a plasma collection
  • FIG. the plasma that has been analyzed by the plasma analysis unit 50 can be collected by the plasma collection unit.
  • the first flow path 10 may further include a fluid control unit that controls the flow of fluid in the flow path.
  • a fluid control part is arrange
  • the filter unit 11 is disposed between the first introduction port 12 and the fluid control unit, the speed at which the sample introduced into the first flow path from the first introduction port 12 passes through the filter unit 11 is increased. It can be controlled by the fluid control unit.
  • the fluid control unit may employ any configuration used for controlling the flow of fluid in the flow path by a fluid device or the like. Examples of the fluid control unit include an intake port, a pump, and a valve connected to the intake pump.
  • the fluid moves in the axial direction of the flow path from upstream to downstream.
  • This direction may be referred to as the first direction or the axial direction of the first flow path.
  • the first direction is a direction from the first inlet 12 toward the filter unit 11, and when the valve V1 is provided, the first direction is a direction from the filter unit 11 toward the valve V1.
  • the first flow path 10 may further include a waste liquid recovery unit that recovers the cleaning liquid in a cleaning process described later.
  • the second flow path 20 is connected to the filter unit 11 of the first flow path 10 in a direction different from the axial direction of the first flow path 10.
  • the second flow path 20 intersects the first flow path 10 at the filter unit 11.
  • the second flow path 20, the second introduction port 22, and valves V ⁇ b> 2 a and V ⁇ b> 2 b disposed on both sides sandwiching the connecting portion between the first flow path 10 are provided.
  • the angle at which the second flow path 20 intersects the first flow path 10 is not particularly limited, and may be an arbitrary angle.
  • the second flow path 20 is orthogonal to the first flow path 10.
  • the second flow path 20 and the first flow path 10 are disposed on substantially the same plane. By arranging these flow paths on substantially the same plane, the blood component separation device can be miniaturized.
  • the second inlet 22 is used to introduce a reagent such as a hemolytic agent into the second flow path 20.
  • the second inlet 22 may have a funnel shape so that a reagent or the like can be easily introduced.
  • the second introduction port 22 may be configured to be connected to a chemical solution port or the like (not shown).
  • the valves V2a and V2b are for controlling the second flow path 20 to an open state or a closed state.
  • the structure of the valves V2a and V2b is not particularly limited, and any valve used for a fluid device or the like can be used. As an example, a valve similar to the above-described valve V1 may be employed.
  • the valves V2a and V2b are arranged in the vicinity of the filter unit 11 as an example. In order to reduce the dead volume, for example, the valves V2a and V2b are preferably in contact with the filter unit 11.
  • the distance between the ends of the valves V2a, V2b and the filter unit 11 is a few millimeters at most. It is preferable that it is a grade.
  • the distance between the ends of the valves V2a and V2b and the end of the filter unit 11 is about 0 to 10 mm, and is about 0 to 5 mm.
  • valve V2a By providing the valve V2a, the valve V2a is closed while the blood cell component and the plasma component are separated in the first flow path 10, and the valve V2a is released after the separation reaction between the blood cell component and the plasma component. It becomes possible. This is effective when a reagent is introduced into the second inlet 22 in advance. In addition, by providing the valve V2b, it is possible to retain a reagent or the like in the second flow path 20. This is effective when it takes time to react the components in the filter unit 11 with the reagents.
  • the side of the second flow path 20 opposite to the second introduction port 22 with respect to the filter unit 11 may be closed or opened. Alternatively, it may be connected to a waste liquid recovery unit or the like.
  • the fluid moves in a second direction different from the first direction.
  • the second direction is a direction different from the axial direction of the first flow path, and is the axial direction of the second flow path.
  • the second direction is a direction from the second introduction port 22 toward the filter unit 11.
  • the third flow path 30 is connected to the filter unit 11 of the first flow path 10 in a direction different from the axial direction of the first flow path 10.
  • the third flow path 30 intersects the first flow path 10 at the filter unit 11 at a position different from the second flow path 20.
  • the first introduction port 12, the connection portion with the second flow path 20, and the connection portion with the third flow path 30 are arranged in this order.
  • the connection part with the 1st inlet 12, the 3rd flow path 30, and the 2nd flow path 20 may be arrange
  • the third flow path 30 includes valves V3a and V3b that are arranged on both sides of the connection portion with the first flow path 10.
  • the angle at which the third flow path 30 intersects the first flow path 10 is not particularly limited, and can be any angle.
  • the second channel 20 and the third channel may intersect the first channel 10 at substantially the same angle.
  • the third flow path 30 is orthogonal to the first flow path 10.
  • the third flow path 30 is disposed on substantially the same plane as the first flow path 10 and the second flow path 20. By arranging these flow paths on substantially the same plane, the blood component separation device can be miniaturized.
  • the valves V3a and V3b are for controlling the third flow path 30 to an open state or a closed state.
  • the valves V3a and V3b are disposed on both sides of the connection portion with the first flow path 10.
  • the valve V3a, the connection portion with the first flow path 10, and the valve V3b are arranged in this order.
  • the structure of the valves V3a and V3b is not particularly limited, and any valve used for a fluid device or the like can be used. As an example, valves similar to the above-described valves V1, V2a, and V2b may be employed.
  • the valves V3a and V3b are arranged in the vicinity of the filter unit 11 as an example.
  • the valves V3a and V3b and the filter unit 11 are preferably in contact with each other.
  • the distance between the ends of the valves V3a, V3b and the filter unit 11 is a few millimeters at most. It is preferable that it is a grade.
  • the distance between the ends of the valves V3a and V3b and the end of the filter unit 11 is about 0 to 10 mm, and is about 0 to 5 mm.
  • the blood component separation device of the present embodiment may be configured not to provide the valves V3a and V3b, or may be configured to provide only one of the valves V3a and V3b.
  • the valve V3a By providing the valve V3a, the valve V3a is closed while the blood cell component and the plasma component are separated in the first flow path 10, and the valve V3a is released after the separation reaction between the blood cell component and the plasma component. It becomes possible.
  • the valve V3b it is possible to retain a reagent or the like in the third flow path 30. This is effective when it takes time to react the components in the filter unit 11 with the reagents.
  • the third flow path 30 is connected to the blood cell analysis unit 60.
  • the blood cell analyzer 60 is for analyzing the blood cells captured by the filter unit 11. As will be described later, the blood cells captured by the filter unit 11 are hemolyzed by a hemolyzing agent or the like, and are carried to the blood cell analysis unit 60 via the third flow path 30.
  • the blood cell analyzer 60 can be configured to analyze any blood cell component according to the purpose.
  • the blood cell analysis unit 60 may be configured to analyze hemoglobin A1c (HbA1c) (HbA1c measurement unit).
  • the blood cell analysis unit 60 includes a configuration for measuring HbA1c by a latex agglutination method.
  • the blood cell analyzer 60 may have a configuration for measuring the amount of hemoglobin.
  • the blood cell analyzer 60 may have a configuration for measuring the activity of erythrocyte enzymes, typified by glucose 6-phosphate dehydrogenase and pyruvate kinase.
  • the blood cell analysis unit 60 may analyze a single item, or may analyze a plurality of items. Since the blood component separation device includes the blood cell analysis unit 60, the blood cell component separated by the filter unit 11 can be directly analyzed in the device. Since the blood cell component is fed from the filter unit 11 to the blood cell analysis unit 60 via the flow path on the blood component separation device, there is no risk of contamination and the blood cell component can be easily analyzed. .
  • the blood component separation device of the present embodiment may include a blood cell analysis unit 60 and / or a blood cell collection unit.
  • the blood component separation device of the present embodiment may have a configuration in which a blood cell collection unit is provided instead of the blood cell analysis unit 60 and the blood cell component captured by the filter unit 11 and hemolyzed is collected.
  • the collected blood cell components may be analyzed using a manual operation, a blood cell analyzer (such as a HbA1c measuring device), or the like, or may be stored for later analysis. Moreover, it is good also as a structure which provides a blood cell collection
  • the third flow path 30 may further include a fluid control unit that controls the flow of fluid in the flow path. Since the third flow path 30 includes the fluid control unit, the flow of fluid from the filter unit 11 to the third flow path 30 can be controlled.
  • the fluid control unit may employ any configuration used for controlling the flow of fluid in the flow path by a fluid device or the like. Examples of the fluid control unit include an intake port, a pump, and a valve connected to the intake pump.
  • the other end of the third flow path 30 that is not connected to the blood cell analyzer 60 may be closed or open. Alternatively, it may be connected to a waste liquid recovery unit or the like.
  • the fluid moves in a third direction different from the first direction.
  • the third direction is the axial direction of the third flow path 30.
  • the third direction is a direction from the filter unit 11 toward the blood cell analysis unit 60 or the blood cell collection unit.
  • the second flow path 20 and the third flow path 30 may be substantially parallel. In this case, the second direction and the third direction are substantially the same.
  • the valve V1 is opened, and the valves V2a, V2b, V3a, V3b are closed.
  • a blood sample is introduced into the first channel 10 from the first inlet 12.
  • the blood sample is not particularly limited as long as it contains a blood cell component and a plasma component, and an example is a whole blood sample.
  • the blood sample may be a blood sample obtained by removing white blood cells and the like.
  • the blood sample introduced into the first flow path 10 from the first introduction port 12 passes through the filter unit 11. At this time, blood cells are selectively captured by the filter. Most of the plasma passes through the filter. Some plasma may remain on the filter.
  • the first flow path 10 includes a fluid control unit
  • the flow of the blood sample passing through the filter unit 11 may be controlled by the fluid control unit. By controlling the flow of the blood sample, the blood sample passing speed in the filter unit 11 can be shortened.
  • the plasma that has passed through the filter unit 11 is analyzed in the plasma analysis unit 50 connected to the first flow path 10.
  • the plasma may be recovered in the plasma recovery unit.
  • the washing solution is not particularly limited as long as it does not destroy blood cells, and a known cell washing solution or the like can be used.
  • the washing liquid include phosphate buffered saline (PBS), physiological saline, and the like.
  • PBS phosphate buffered saline
  • the flow of the cleaning liquid that passes through the filter unit 11 may be controlled by the fluid control unit.
  • the washing solution that has washed the filter unit may be collected by the plasma analysis unit 50, and if the first flow path 10 includes a plasma collection unit or a waste solution collection unit, they may be collected by these.
  • the above-described cleaning process may be performed by opening the valve V2a and introducing the cleaning liquid from the second introduction port 22.
  • the cleaning liquid introduced from the second introduction port 22 is introduced into the filter unit 11 via the second flow path 20.
  • the plasma remaining in the filter unit 11 can be removed by the washing liquid introduced into the filter unit 11 as described above.
  • the valve V1 when one end of the third flow path 30 having the valve V3a is connected to the waste liquid recovery unit, the valve V1 is closed, the valve V3a is opened, and the cleaning liquid is supplied from the first introduction port 12. It may be introduced.
  • the plasma remaining in the filter unit 11 can be collected together with the washing solution in the waste liquid collecting unit connected to the third channel 30 via the third channel 30.
  • the valves V2a and V3a may be opened and the cleaning liquid may be introduced from the second introduction port 22 into the filter unit 11 via the second flow path.
  • the plasma remaining in the filter unit 11 can be collected together with the washing solution in the waste liquid collecting unit connected to the third channel 30 via the third channel 30.
  • a hemolytic agent is introduced into the second flow path 20 from the second introduction port 22.
  • Any hemolytic agent may be used as long as it can destroy blood cells (for example, erythrocytes), and any known hemolytic agent can be used without particular limitation.
  • the hemolytic agent include hypotonic solution, water and the like.
  • the hemolytic agent introduced from the second introduction port 22 reaches the filter unit 11 via the second flow path 20, and the filter unit 11 is in the same direction as the direction in which the blood sample has moved through the filter unit 11 (first direction). To move.
  • blood cells for example, red blood cells
  • the blood cell component released by hemolysis moves through the filter unit 11 together with the hemolytic agent, and moves to the third channel 30 when it reaches the connection with the third channel 30.
  • the fluid control unit causes the hemolytic agent to flow from the second flow path to the filter unit 11 and the third flow from the filter unit 11 to the third flow.
  • the flow of blood cell components to the path 30 may be controlled. By controlling these flows, the time required for the blood cell component to reach the blood cell analyzer 60 can be shortened.
  • the blood cell component moved from the filter unit 11 to the third flow path 30 is analyzed in the blood cell analysis unit 60 connected to the third flow path 30.
  • the blood cell component separation device includes a blood cell collection unit instead of the blood cell analysis unit 60, the blood cell component may be collected by the blood cell collection unit.
  • the hemolysis step may be performed by closing the valves V1, V2a, V2b, and V3a, opening the valve V3b, and introducing the hemolytic agent from the first introduction port 12.
  • the hemolytic agent introduced from the first introduction port 12 hemolyzes the blood cells captured by the filter unit 11, and the released blood cell components are sent to the blood cell analysis unit 60 via the third flow path in the same manner as described above. And move.
  • the plasma and blood cells can be separated and then each collected or analyzed.
  • the blood component separation device includes both the plasma analysis unit 50 and the blood cell analysis unit 60
  • plasma analysis and blood cell analysis can be performed simultaneously with one device, so that blood analysis can be performed quickly and easily. It can be performed. Since the blood cell separation part (filter part) and the plasma analysis part, and the blood cell separation part (filter part) and the blood cell analysis part are connected by the flow path, there is an advantage that there is no risk of contamination.
  • the conventional blood cell separation method cannot prevent the plasma from being mixed into the blood cell fraction, and the analysis result of the blood cell component may become unstable due to the plasma being mixed.
  • the measurement value becomes unstable, and a reliable measurement value cannot be obtained.
  • the plasma remaining on the filter can be removed by the washing liquid, so that the amount of plasma mixed into the blood cell fraction can be reduced. As a result, the influence of plasma in blood cell component analysis can be reduced, and stable blood cell component measurement values can be obtained.
  • the blood component separation device of the present embodiment is not limited to the aspect described above, and each component can be changed as appropriate without departing from the spirit of the present invention.
  • the following modifications 1 to 6 are also within the scope of the blood component separation device of the present embodiment.
  • FIG. 2 is a schematic diagram showing Modification 1 of the blood component separation device of the present embodiment.
  • Blood component separation device 200 has the same configuration as blood component separation device 100 except that it does not have third flow path 30.
  • the side of the second channel 20 opposite to the second inlet 22 with respect to the connection with the first channel is connected to the blood cell analyzer 60.
  • the valve V1 in the hemolysis step of hemolyzing the blood cells captured by the filter unit 11, the valve V1 is closed, the valves V2a and V2b are opened, and the second flow path 20 is opened from the second introduction port 22.
  • Introduce a hemolytic agent The hemolytic agent introduced into the second flow path 20 reaches the filter unit 11 via the second flow path 20, and a direction (second direction) different from the direction (first direction) in which the blood sample moves through the filter unit 11.
  • the filter unit 11 is moved in the direction).
  • the blood cells captured in the second direction in which the hemolytic agent moves are hemolyzed by the hemolytic agent.
  • the blood cell component released by hemolysis is transported from the filter unit 11 to the blood cell analysis unit 60 via the second flow path 20 and analyzed by the blood cell analysis unit 60.
  • the second flow path 20 may include a blood cell collection unit instead of the blood cell analysis unit 60 or in addition to the blood cell analysis unit 60.
  • the second flow path 20 may include a fluid control unit that controls the flow of fluid in the second flow path 20. The same applies to Modifications 4 and 5 described later.
  • FIG. 3 is a schematic diagram showing Modification Example 2 of the blood component separation device of the present embodiment.
  • the blood component separation device 300 has the same configuration as the blood component separation device 100 except that the second flow path 20 and the third flow path 30 do not intersect the first flow path 10.
  • the second flow path 20 and the third flow path 30 are configured to protrude from the filter unit 11, respectively.
  • the valve V1 in the hemolysis step of hemolyzing the blood cells captured by the filter unit 11, the valve V1 is closed, the valves V2a and V3a are opened, and the second flow path 20 is opened from the second introduction port 22. Introduce a hemolytic agent.
  • the hemolyzed hemolytic agent introduced into the second flow path 20 reaches the filter unit 11 via the second flow path 20 and is in the same direction as the direction in which the blood sample has moved through the filter unit 11 (first direction).
  • the filter unit 11 is moved.
  • blood cells captured by the filter are hemolyzed by the hemolytic agent.
  • the blood cell component released by hemolysis moves through the filter unit 11 together with the hemolytic agent, and moves to the third channel 30 when it reaches the connection with the third channel 30. Then, it is carried to the blood cell analyzer 60 via the third flow path 30 and analyzed by the blood cell analyzer 60.
  • FIG. 4 is a schematic diagram showing a third modification of the blood component separation device of the present embodiment.
  • the blood component separation device 400 has the same configuration as the blood component separation device 300 except that the second flow path 20 and the third flow path 30 are arranged in the same direction with respect to the first flow path 10. .
  • the hemolysis process can be performed in the same manner as the blood component separation device 300.
  • FIG. 5 is a schematic diagram showing a fourth modification of the blood component separation device of the present embodiment.
  • the blood component separation device 500 does not have the third flow path 30, and the second flow path 20 does not intersect the first flow path 10.
  • the second flow path 20 is connected to the blood cell analyzer 60.
  • the valve V1 in the hemolysis step of hemolyzing the blood cells captured by the filter unit 11, the valve V1 is closed, the valve V2a is opened, and the first introduction port 12 is connected to the first flow path 10.
  • Introduce hemolytic agent The hemolytic agent introduced into the first channel 10 reaches the filter unit 11 and moves the filter unit 11 in the same direction as the direction in which the blood sample has moved the filter unit 11 (first direction). At this time, blood cells captured by the filter are hemolyzed by the hemolytic agent.
  • the blood cell component released by hemolysis moves through the filter unit 11 together with the hemolytic agent, and moves to the second channel 20 when it reaches the connection with the second channel 20. Then, it is carried to the blood cell analyzer 60 via the second flow path 20 and analyzed in the blood cell analyzer 60.
  • the second flow path 20 may include a blood cell collection unit instead of the blood cell analysis unit 60 or in addition to the blood cell analysis unit 60.
  • the second flow path 20 may include a fluid control unit that controls the flow of fluid in the second flow path 20.
  • FIG. 6 is a schematic diagram showing a fifth modification of the blood component separation device of the present embodiment.
  • the blood component separation device 600 does not have the third flow path 30 and the second flow path 20 does not intersect the first flow path 10.
  • the second flow path 20 is connected to the blood cell analyzer 60.
  • the fourth flow path 40 is connected between the first introduction port 12 of the first flow path 10 and the filter unit 11.
  • the fourth flow path 40 includes a fourth introduction port 42 and a valve V4a.
  • the valve V1 in the hemolysis step of hemolyzing the blood cells captured by the filter unit 11, the valve V1 is closed, the valves V2a and V4a are opened, and the fourth flow path 40 is opened from the fourth inlet 42. Introduce a hemolytic agent.
  • the hemolyzed hemolytic agent introduced into the fourth flow path 40 reaches the first flow path 10 through the fourth flow path 40, moves through the first flow path 10, and reaches the filter unit 11.
  • the hemolytic agent moves through the filter unit 11 in the same direction as the direction in which the blood sample moves through the filter unit 11 (first direction). At this time, blood cells captured by the filter are hemolyzed by the hemolytic agent.
  • the blood cell component released by hemolysis moves through the filter unit 11 together with the hemolytic agent, and moves to the second channel 20 when it reaches the connection with the second channel 20. Then, it is carried to the blood cell analyzer 60 via the second flow path 20 and analyzed in the blood cell analyzer 60.
  • FIG. 7 is a schematic diagram showing Modification 6 of the blood component separation device of the present embodiment.
  • the blood component separation device 700 has a first flow path and a second flow path formed in the plate 70.
  • the first flow path is composed of first flow paths 10a and 10b
  • the second flow path is composed of second flow paths 20a, 20b and 20c.
  • the first flow paths 10a and 10b are connected to each other via a valve V1a.
  • the first flow path 10 a has a first introduction port 12 and a filter unit 11.
  • the first channel 10b includes a pump unit P1 as a channel controller and a plasma analyzer 50.
  • the first flow path 10b is connected to the inlet I1 through the valve V1f.
  • the inlet I1 is connected to a reagent reservoir (not shown) disposed below the plate 70. Therefore, the reagent can be introduced from the inlet I1 into the first flow path 10b by opening the valve V1f.
  • the first flow path 10b is connected to the waste liquid recovery unit W1 via the valve V1c or V1d.
  • the first flow path 10b forms a circulation flow path (first circulation path) by closing the valves V1a, V1c, V1d, and V1f and opening the valves V1b and V1e.
  • the first flow path 10b and the waste liquid collection unit W1 close the valves V1a, V1b, and V1f, and open the valves V1c, V1d, and V1e, thereby allowing fluid to be discharged from the first flow path 10b.
  • a flow path (first discharge path) for discharging to W1 is formed.
  • the second flow paths 20a and 20b are connected to each other via a valve V2e.
  • the second flow paths 20b and 20c are connected to each other via valves V2k and V2m.
  • the second flow path 20 a has a second introduction port 22.
  • the second inlet 22 is connected to a hemolytic agent reservoir (not shown) disposed below the plate 70, and the hemolytic agent can be introduced into the second flow path 20 a from the second inlet 22.
  • the second flow path 20a is connected to the filter portion 11 of the first flow path 10a and intersects the first flow path 10a.
  • Valves V2a and V2b are installed on both sides of the connection portion with the first flow path 10a in the second flow path 20a.
  • the second flow path 20a is connected to the inlet I2 via the valve V2d.
  • the inlet I2 is connected to a reagent reservoir (not shown) disposed below the plate 70. Therefore, the reagent can be introduced from the inlet I2 into the second flow path 20a by opening the valve V2d. Furthermore, the reagent can be introduced into the second flow path 20b by opening the valve V2e. Further, the second flow path 20a is connected to the air inlet A via a valve V2c.
  • the second flow path 20b includes a pump unit P2 as a fluid control unit and a blood cell analysis unit 60.
  • the second flow path 20b is connected to the waste liquid recovery unit W2 via the valve V2h or V2i. Therefore, the waste liquid can be discharged from the second flow path 20b to the waste liquid recovery part W2 by opening the valve V2h or V2i.
  • the second flow path 20c is connected to the inlet I3 through the valve V2n.
  • the inlet I3 is connected to a reagent reservoir (not shown) disposed below the plate 70.
  • the reagent can be introduced from the inlet I3 into the second flow path 20c by opening the valve V2n. Furthermore, the reagent can be introduced into the second flow path 20b by opening the valve V2k or the valve V2m.
  • the second flow path 20c is connected to the waste liquid recovery unit W2 via the valve V2j. Therefore, the waste liquid can be discharged from the second flow path 20c to the waste liquid recovery unit W2 by opening the valve V2j.
  • the second flow path 20b forms a circulation flow path (second circulation path) by closing the valves V2e, V2h, V2i, V2k, V2m and opening the valves V2f, V2g, V2l.
  • the second flow paths 20b and 20c are configured so that the valves V2e, V2h, V2i, V2j, V2l, and V2n are closed, and the valves V2f, V2g, V2k, and V2m are opened, so that the circulation flow path (third (Circulation path) is formed.
  • the second flow path 20b and the waste liquid collection unit W2 close the valves V2e, V2g, V2k, and V2m and open the valves V2f, V2h, V2i, and V2l, thereby allowing fluid to flow into the second flow path 20b.
  • a flow path (second discharge path) for discharging from the waste liquid to the waste liquid recovery unit W2 is formed.
  • the second flow paths 20b and 20c and the waste liquid recovery unit W2 close the valves V2e, V2g, V2i, V2k, V2l, and V2n and open the valves V2f, V2h, V2j, and V2m,
  • a flow path (third discharge path) for discharging the fluid from the second flow paths 20b and 20c to the waste liquid recovery unit W2 is formed.
  • the pump parts P1 and P2 are composed of three valves.
  • the valve include a diaphragm valve including a diaphragm member, and examples of the diaphragm member include an elastomer material.
  • FIGS. 8A and 8B are cross-sectional views for explaining an example of the structure of the diaphragm valve.
  • 8A shows the opened state of the diaphragm valve 800
  • FIG. 8B shows the closed state of the diaphragm valve 800.
  • the diaphragm valve 800 includes a first substrate 310, a diaphragm member 330 made of an elastomer material, and a second substrate 320.
  • the second substrate 320 and the diaphragm member 330 are bonded in close contact.
  • the space between the first substrate 310 and the diaphragm member 330 forms a flow path 315 through which a fluid flows.
  • a through hole 340 is provided in part of the second substrate 320. Further, the diaphragm member 330 is exposed in the through hole 340.
  • the diaphragm valve 800 is arranged in the flow path 315 (the first flow path 10b or the second flow path 20b in the blood component separation device 700), and adjusts the flow of fluid inside the flow path 315.
  • a convex portion is formed in the region of the first substrate 310 facing the through hole 340. 311 may be formed.
  • valve control fluid examples include N2 gas, gas such as air, and liquid such as water and oil.
  • the fluid for valve control can be supplied by, for example, a tube connected to the through hole 340.
  • the elastomer material forming the diaphragm member 330 is not particularly limited as long as it is a material that can be deformed in the axial direction of the through hole 340 in accordance with a change in pressure inside the through hole 340.
  • PDMS polydimethylsiloxane
  • Silicone elastomers such as polymethylphenylsiloxane and polydiphenylsiloxane.
  • a pump can be formed by three or more valves, that is, by arranging three or more valves.
  • FIGS. 9A to 9D are cross-sectional views illustrating the operation of an example of a pump including three diaphragm valves 800a, 800b, and 800c.
  • valve 800a is controlled to be closed, and the valves 800b and 800c are left open. As a result, the fluid flow inside the flow path 315 is blocked by the valve 800a.
  • valves 800a and 800b are controlled to be closed, and the valve 800c is left open.
  • the diaphragm member 330 is deformed, so that the fluid existing around the valve 800b is pushed away.
  • the valve 800a is in the closed state, the displaced fluid moves to the right in the direction indicated by the arrow in FIG. 9C, that is, FIG. 9C. As a result, the fluid flows in the direction indicated by the arrow.
  • valves 800b and 800c are controlled to be closed.
  • the diaphragm member 330 is deformed, so that the fluid existing around the valve 800c is pushed away.
  • the valve 800a since the valve 800a is in the closed state, the displaced fluid moves to the right side in the direction indicated by the arrow in FIG. 9D, that is, in FIG. 9D.
  • the valve 800a may be controlled to an open state as shown in FIG. 9D, or may be maintained in a closed state.
  • valves 800a, 800b and 800c are all controlled to be opened.
  • the fluid inside the flow path 315 may continue to move to the right as viewed in FIG. 9A due to inertia.
  • the flow of fluid inside the flow path 315 can be controlled by repeating the above steps.
  • the above process is an example of a method for controlling a pump including three valves, and the method for controlling a pump including three valves is not limited thereto.
  • the flow of the fluid inside the flow path 315 can be controlled in the opposite direction to that described above by reversing the timing of opening and closing the valves 800a and 800c. It is also possible to control the flow rate by adjusting the cycle in which the operations in FIGS. 9A to 9D are repeated to form a pulsed minute solution flow.
  • the flow velocity can also be controlled by adjusting the pressure of the gas driving the valves 800a to 800c and the diameter of the valve.
  • the structure of the diaphragm valve is not limited to that described above.
  • a diaphragm valve a cylindrical structure having an outer cylinder part and an inner cylinder part described in International Publication No. 2016/006615, and a thin film part arranged to cover one end of the inner cylinder part
  • a valve provided with a diaphragm member having a circumference of the thin film portion and an anchor portion closely attached along the inner wall of the outer cylinder portion and the outer wall of the inner cylinder portion may be used.
  • other usable valves include, for example, a two-color molded valve obtained by continuously molding a resin portion and an elastomer portion using two molds. Illustrated.
  • the two-color molded valve has advantages that the time required for production is short and the adhesiveness between the resin and the elastomer is high.
  • the substrate 909 includes a recess (eg, a flow path) 940A formed on a lower surface (one surface) 909a, a bottom of the recess 940A (eg, an upper side of the recess 90A in FIG. 10), and the substrate 909. And an opening 952 opening (penetrating) in the upper surface (other surface) 909b.
  • a valve driven unit 970 is provided in the opening 952.
  • the valve driven part 970 is made of the same soft material as the valve part 950 described above, and includes a valve part (deformation part) 971 and a cylinder part (connection part) 973.
  • the valve portion 971 closes the lower surface 909 a side of the substrate 909 in the opening 952.
  • the tubular portion 973 is formed of a single member with the valve portion 971, is provided along the inner peripheral surface of the opening portion 952, and is integrally connected to the valve portion 971 at the lower end.
  • the inner space of the cylinder portion 973 is closed at the lower end by the valve portion 971 and forms an opening 970a having an upper end opened.
  • a fluid eg, a solution containing a sample substance, a cleaning liquid, etc.
  • the lower surface 909a of the substrate 909 is joined to the upper surface 908b of the lower plate 908.
  • a curved surface (eg, hemispherical) concave surface 980 is formed on the upper surface 908b at a position facing the depression 940A.
  • the valve driven unit 970 having the above-described configuration is configured such that, for example, when a downward force (eg, air pressure, hydraulic pressure, mechanical force, etc.) is applied to the valve unit 971 through the opening 970a,
  • a downward force eg, air pressure, hydraulic pressure, mechanical force, etc.
  • the open / close state of the flow path eg, the depression 940A
  • the valve portion 971 is deformed and bent toward the recess 940 ⁇ / b> A and contacts the concave surface 980 to close the flow path (e.g., the recess 940 ⁇ / b> A) (the valve is closed).
  • valve driven portion 970 is released from the downward force applied to the valve portion 971, so that the deformation (eg, bending) of the valve portion 971 is eliminated and the flow path ( For example, the recess 940A) is opened (the valve is open).
  • the above-described two-color molded valve can be manufactured, for example, by the method described in International Publication No. 2018/012429.
  • known ones such as those described in International Publication No. 2018/012429 can be used without particular limitation.
  • the valves V1a, V1b, and V1e are opened, and the other valves are closed, and a blood sample (eg, a whole blood sample or the like) is introduced from the first inlet 12 into the first flow path 10a.
  • a blood sample eg, a whole blood sample or the like
  • the blood sample introduced into the first flow path 10a reaches the filter unit 11, and moves the filter unit 11 in the direction of the valve V1a (first direction). At this time, blood cells in the blood sample are captured by the filter.
  • most of the plasma passes through the filter unit 11 and reaches the first flow path 10b.
  • the valve V1a is closed and the pump unit P1 is operated as appropriate, the plasma that has reached the first flow path 10b can be circulated through the first circulation path including the first flow path 10b.
  • a reagent for plasma analysis is introduced from the inlet I1, and circulated through the first circulation path to be mixed with plasma.
  • the plasma analysis unit 50 can perform plasma analysis while circulating the plasma in the first circulation path.
  • the fluid circulating in the first circulation path can be discharged to the waste liquid recovery unit W1 through the first discharge path with the valves V1b and V1f being closed and the valves V1c, V1d and V1e being opened as necessary. .
  • valves V1a, V1c, V1d, and V1e are opened, the other valves are closed, and the cleaning liquid is introduced from the first introduction port 12 into the first flow path 10a.
  • the cleaning liquid introduced into the first flow path 10a reaches the filter unit 11, and moves the filter unit 11 in the valve V1a direction (first direction).
  • the plasma remaining on the filter moves in the first direction together with the washing liquid, and is introduced into the first flow path 10b through the valve V1a.
  • the washing liquid containing plasma introduced into the first flow path 10b can be discharged to the waste liquid collecting part W1 through the first discharge path with the valves 1b and V1f closed and the valves V1c, V1d and V1e opened. .
  • valves V2a, V2b, V2e, V2f, V2g, V2l are opened, the other valves are closed, and the hemolytic agent is introduced from the second inlet 22 into the second flow path 20a.
  • the hemolytic agent introduced into the second flow path 20a reaches the filter unit 11 and moves the filter unit 11 in the valve V2b direction (second direction).
  • the blood cells captured by the filter are hemolyzed by the hemolytic agent.
  • the blood cell component released by hemolysis moves in the second flow path 20a along with the hemolytic agent in the axial direction, and is introduced from the valve V2b to the second flow path 20b via the valve V2e.
  • valve V2b is closed, the valve V2c is opened, and air is blown into the second flow path 20a from the air inlet A. It can guide to the flow path 20b.
  • the blood cell component introduced into the second flow path 20b can be circulated through the second circulation path including the second flow path 20b by closing the valve V2e and appropriately operating the pump part P2.
  • a reagent for blood cell analysis is introduced from inlet I2, and circulated through the second circulation path to be mixed with blood cell components.
  • a reagent for blood cell analysis is introduced from the inlet I3 and circulated through the third circulation path including the second flow paths 20b and 20c to be mixed with the blood cell component.
  • the blood cell analysis unit 60 can perform blood cell analysis while circulating the blood cell component in the second circulation path or the third circulation path.
  • the fluid circulating through the second circulation path or the third circulation path can be discharged to the waste liquid recovery unit W2 through the second discharge path or the third discharge path as necessary.
  • the present invention provides a method for separating blood components using the blood component separation device of the above embodiment.
  • the method of this embodiment includes (a) introducing a blood sample from the first introduction port into the first flow path, and causing the filter to capture blood cells in the blood sample; and (b) the first A hemolysis step of introducing a hemolytic agent from the introduction port or the second introduction port and hemolyzing the blood cells in the filter.
  • the blood component separation method of the present embodiment can be performed in the same manner as the method exemplified in “(Usage method)” described in the above “[Blood component separation device]”.
  • the cleaning liquid is supplied from the first introduction port or the second introduction port.
  • the present invention provides a method for analyzing blood components using the blood component separation device of the above embodiment.
  • the method of this embodiment includes (a) introducing a blood sample from the first introduction port into the first flow path, and causing the filter to capture blood cells in the blood sample; and (b) the step ( After a), a step of introducing a washing liquid into the first flow path from the first introduction port or the second introduction port to remove plasma in the filter, and (c) after the step (b) Introducing a hemolytic agent from the first inlet or the second inlet and hemolyzing the blood cells in the filter; (d) analyzing the blood cells hemolyzed in the step (c); including.
  • the blood component analysis method of the present embodiment can be performed in the same manner as the method exemplified in “(Usage method)” described in “[Blood component separation device]” above.
  • the blood cell analysis unit 60 can analyze the blood cell component in the step (d).
  • the method of the present embodiment further includes (d) a step of analyzing the plasma that has passed through the filter after the step (a) or the step (b). May be included.
  • a blood component separation device including the plasma analysis unit 50 the plasma analysis can be performed by the plasma analysis unit 50.
  • the present invention provides a method for analyzing hemoglobin A1c.
  • the method of this embodiment includes (a) a step of capturing blood cells in a blood sample with a filter that separates blood cells and plasma, and (b) a washing liquid is passed through the filter after the step (a), Removing the plasma in the filter; (c) after the step (b), introducing a hemolytic agent into the filter and hemolyzing the blood cells in the filter; and (d) in the step (c) Analyzing hemoglobin A1c in the hemolyzed blood cells.
  • the method of the present embodiment can be performed in the same manner as the method exemplified in “(Usage method)” described in “[Blood component separation device]” above. Further, the method of this embodiment may be performed using a column or the like equipped with a blood cell separation filter without using the blood component separation device of the above embodiment.
  • HbA1c can be performed using a known HbA1c measurement method.
  • a method for measuring hemoglobin A1c include latex agglutination.
  • latex agglutination method latex particles are adsorbed with HbA1c (adsorption reaction), reacted with an anti-HbA1c antibody (mouse IgG or the like), and further reacted with a secondary antibody (anti-mouse IgG antibody or the like).
  • HbA1c is cross-linked by the anti-HbA1c antibody and the secondary antibody, and latex particles aggregate (aggregation reaction). The higher the HbA1c concentration, the greater the amount of latex particles aggregated.
  • Non-aggregated latex particles do not reflect light, but when aggregated, light is reflected, so the amount of transmitted light varies depending on the amount of latex particles aggregated. Therefore, the HbA1c concentration can be measured by measuring the absorbance after the aggregation reaction. As an example, the HbA1c concentration can be calculated from a value obtained by subtracting the absorbance at 800 nm from the absorbance at 660 nm.
  • the measured value of HbA1c becomes unstable when plasma is present, and a highly reliable measured value cannot be obtained.
  • blood cells are captured by the filter, and then the filter is washed with a washing solution to remove plasma in the filter. Thereby, the amount of plasma mixed in the blood cell component hemolyzed by the hemolytic agent can be greatly reduced. Therefore, a highly reliable HbA1c measurement value can be obtained.
  • HbA1c concentration 6.1%, HbA1c concentration 10%; hemoglobin A1c cut-off test certified reference material, laboratory medicine reference material mechanism Human plasma was added so as to be 60% (v / v).
  • the HbA1c concentration of the HbA1c standard test reagent to which human plasma was added was measured by a latex agglutination method using Lapidia (registered trademark) Auto HbA1c-L (Fujirebio).
  • the plasma content in the sample is desirably 15% (v / v) or less.
  • Cyra-added rabbit whole blood was prepared by adding 1 ⁇ L of Cy5 and mixing it with 1000 ⁇ L of rabbit whole blood to trace plasma components.
  • the Cy5-added rabbit whole blood sample was centrifuged (centrifugal force (1000 ⁇ g), 5 minutes) to separate a blood cell fraction and a plasma fraction.
  • a dilution series of the blood cell fraction and the plasma fraction was prepared, and a calibration curve for the amount of hemoglobin and the amount of Cy5 was prepared using each dilution series.
  • the blood cell separation of the Cy5-added rabbit whole blood sample was performed using a blood component separation device having the structure shown in FIG.
  • the ports a and c of the second flow path are closed, 100 ⁇ L of hypotonic solution is introduced from the port d of the third flow path, the blood cell fraction captured by the filter is dissolved, and hemolysis is performed from the port b.
  • the collected blood cell fraction was collected.
  • the collected blood cell fraction was measured for hemoglobin absorbance and Cy5 fluorescence, and the plasma content in the blood cell fraction was calculated from the calibration curve prepared above.
  • FIG. 16 is a photograph of each blood component separation device after the blood cell fraction was collected after washing the filter with each PBS amount. Comparing the color of the liquid immediately after passing through the filter (dotted oval), it was qualitatively shown that the blue component of Cy5 becomes lighter as the amount of cleaning liquid increases. When the blue portion of Cy5 was plasma, it was considered that most of the plasma in the filter was removed with a washing liquid volume of 25 ⁇ L.
  • Example 5 Reproducibility evaluation of measured values of HbA1c (Example 1) Using a blood component separation device having the structure shown in FIG. 11, blood cell separation of human refrigerated blood (normal human whole blood / type O, Kojin Bio) was performed. From the inlet, 10 ⁇ L of human chilled blood was introduced into the first flow path, negative pressure was applied at 10 kPa for 2 minutes from the opposite side of the inlet, and the human chilled blood was passed through the filter. Next, PBS 25 ⁇ L, 25 ⁇ L, or 30 ⁇ L was introduced into the first channel from the inlet (10 kPa negative pressure: 2 minutes), and the filter was washed.
  • human refrigerated blood normal human whole blood / type O, Kojin Bio
  • the port a of the second flow path and the port d of the third flow path are closed, 100 ⁇ L of hypotonic solution is introduced from the port c of the second flow path, and the blood cell fraction captured by the filter is dissolved.
  • the hemolyzed blood cell fraction was collected from port b of the third flow path.
  • a latex agglutination method using Lapidia (registered trademark) Auto HbA1c-L was performed using 5 ⁇ L of the hemolyzed blood collected as described above, and absorbance at 660 nm and 800 nm was measured. From the measured absorbance, the HbAc1 concentration and the coefficient of variation (CV) were calculated.
  • Example 1 The results of Example 1 and Comparative Examples 1 and 2 are shown in FIG. In Example 1, as compared with Comparative Examples 1 and 2, it was confirmed that the coefficient of variation (CV) was small and measurement with high reproducibility was possible.
  • CV coefficient of variation
  • the port a of the second channel and the port d of the third channel are closed, 50 ⁇ L of hypotonic solution is introduced from the port c of the second channel, and the blood cell fraction captured by the filter is dissolved.
  • the hemolyzed blood cell fraction was collected from port b of the third flow path.
  • the recovery of the hemolyzed blood was finished.
  • a latex agglutination method using Lapidia (registered trademark) Auto HbA1c-L was performed, and absorbance at 660 nm and 800 nm was measured.
  • the coefficient of variation (CV) was calculated from the measured absorbance.
  • the blood cell fraction of human whole blood was separated by centrifugal separation (centrifugal force (1000 ⁇ g), 5 minutes), and the absorbance at 660 nm and 800 nm was measured in the same manner.
  • HbAc1 concentration of human whole blood was measured using Affinion (registered trademark) HbAic (Alere)
  • the HbAc1 concentration was 5.06%.
  • Results are shown in FIG. In FIG. 18, a standard specimen (HbA1c concentration 6.1%, HbA1c concentration 10%; hemoglobin A1c cut-off test certified reference material, laboratory medicine reference material mechanism) was measured using Rapidia (registered trademark) Auto HbA1c-L. The results are also shown.
  • the measured HbA1c value equivalent to the blood cell fraction obtained by the centrifugation method was obtained.
  • the coefficient of variation (CV) was small compared with the centrifugation method.
  • the blood cell fraction separated using the blood component separation device had a lower measured value by the latex agglutination method than the standard specimen.
  • the HbA1c concentration of normal human whole blood is 6% or less. Therefore, the reliability of the measured value by this method was shown by comparison with the measured value of the standard specimen (HbA1c concentration 6.1%, HbA1c concentration 10%).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

第1導入口(12)と、血球と血漿とを分離するフィルターが設置されたフィルター部(11)と、を備える第1流路(10)と、前記第1流路の前記フィルター部に接続する第2流路(20)と、を含む、血液成分分離デバイス。

Description

血液成分分離デバイス、血液成分分離方法、及び血液成分分析方法
 本発明は、血液成分分離デバイス、血液成分分離方法、及び血液成分分析方法に関する。
 血液検査を行う際には、通常、血球成分と血漿成分とに分離され、それぞれ分析が行われる。血球成分と血漿成分とを分離する方法としては、遠心分離法、血球分離フィルターを用いる方法等がある。
 しかし、遠心分離法では、遠心分離の操作が煩雑であった。また、血球分離フィルターとしては、例えば、特許文献1には、血液濾過用のガラス繊維フィルター等が記載されている。しかし、従来の血球分離フィルターを用いた方法では、血球画分への血漿成分の混入を十分に防ぐことができなかった。
特開2006-38512号公報
 本発明の一実施態様は、血球と血漿とを含む溶液が導入される第1導入口と、血球を捕捉するフィルターが設置されたフィルター部と、を備える第1流路と、前記第1流路の前記フィルター部に接続する第2流路と、を含む、血液成分分離デバイス、である。前記第2流路は、第2導入口を有し、且つ前記第1流路の前記フィルター部で前記第1流路と交差していてもよい。
 また、本発明の一実施態様は、前記血液成分分離デバイスを用いて、血液成分を分離する方法であって、(a)前記第1導入口から、血球と血漿とを含む溶液を前記第1流路に導入し、前記フィルターに前記溶液中の血球を捕捉させ、前記溶液中の血漿を前記第1流路において移動させる工程と、(b)前記第1導入口又は前記第2導入口から溶血剤を導入し、前記フィルター内の血球を溶血させ、溶血により放出された血球成分を前記第2流路において移動させる工程と、を含む、方法である。
 また、本発明の一実施態様は、前記血液成分分離デバイスを用いて、血液成分を分析する方法であって、(a)前記第1導入口から、血球と血漿とを含む溶液を前記第1流路に導入し、前記フィルターに前記溶液中の血球を捕捉させる工程と、(b)前記工程(a)の後、前記第1導入口又は前記第2導入口から、洗浄液を前記第1流路に導入し、前記フィルター内の血漿を除去する工程と、(c)前記工程(b)の後、前記第1導入口又は前記第2導入口から溶血剤を導入し、前記フィルター内の血球を溶血させる工程と、(d)前記工程(c)で溶血させた前記血球を分析する工程と、を含む、方法である。
 また、本発明の一実施態様は、ヘモグロビンA1cを分析する方法であって、(a)血球と血漿とを分離するフィルターに血球と血漿とを含む溶液中の血球を捕捉させる工程と、(b)前記工程(a)の後、前記フィルターに洗浄液を通過させ、前記フィルター内の血漿を除去する工程と、(c)前記工程(b)の後、前記フィルターに溶血剤を導入し、前記フィルター内の血球を溶血させる工程と、(d)前記工程(c)で溶血させた前記血球中のヘモグロビンA1cを分析する工程と、を含む、方法である。
本発明の1実施形態に係る血液成分分離デバイスの一例を示す模式図である。 本発明に係る血液成分分離デバイスの変形例1を示す模式図である。 本発明に係る血液成分分離デバイスの変形例2を示す模式図である。 本発明に係る血液成分分離デバイスの変形例3を示す模式図である。 本発明に係る血液成分分離デバイスの変形例4を示す模式図である。 本発明に係る血液成分分離デバイスの変形例5を示す模式図である。 本発明に係る血液成分分離デバイスの変形例6を示す模式図である。 (a)及び(b)は、図7の血液成分分離デバイス700のポンプ部P1、P2の構造の一例を示す断面図である。 (a)~(d)は、図8のポンプ部の一例の動作を説明する断面図である。 図7の血液成分分離デバイス700のポンプ部P1、P2に適用可能な2色成型バルブの構造の一例を示す断面図である。 図7の血液成分分離デバイス700のポンプ部P1、P2に適用可能な2色成型バルブの構造の一例を示す断面図である。 実験例2において、HbA1c測定値に及ぼす血漿含有量の影響を評価した結果を示すグラフである。 実験例3~7で用いた血液成分分離デバイスの構造を示す模式図である。 実験例3において、血球画分中の血漿を測定した結果を示すグラフである。 実験例4において、血球画分中の血漿を測定した結果を示すグラフである。 実験例5において、20μL、25μL又は30μLの洗浄液でフィルターを洗浄後、血球を溶血して回収した後の各血液成分分離デバイスの写真である。 実験例6において、HbA1c測定値の再現性を評価した結果を示すグラフである。 実験例7において、HbA1c測定値の再現性を評価した結果を示すグラフである。
 以下、場合により図面を参照しつつ、本発明の実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一又は対応する符号を付し、重複する説明は省略する。なお、各図における寸法比は、説明のため誇張している部分があり、必ずしも実際の寸法比とは一致しない。
[血液成分分離デバイス]
 1実施形態において、本発明は、第1導入口と、血球と血漿とを分離するフィルターが設置されたフィルター部と、を備える第1流路と前記第1流路の前記フィルター部に接続する第2流路と、を含む、血液成分分離デバイスを提供する。
 図1は、本実施形態の血液成分分離デバイスの一例を示す模式図である。血液成分分離デバイス100は、第1流路10、第2流路20、第3流路30、血漿分析部50、及び血球分析部60を備えている。第1流路10は、第1導入口12とフィルター部11とを有している。第2流路20及び第3流路30は、第1流路10のフィルター部11に接続し、フィルター部11で第1流路10と交差している。
 第1流路10、第2流路20、及び第3流路30は、例えば、ガラス管、樹脂管等の管で形成してもよく、貼り合された2枚のプレートの間に溝を形成することにより流路を形成してもよい。
 第1流路10、第2流路20、及び第3流路30の幅及び高さは、特に限定されず、試料の種類に応じて、任意に選択すればよい。例えば、これらの流路の幅及び高さは、試料が通過できる程度の大きさとすることができ、1μm以上、10μm以上、50μm以上、100μm以上等が例示される。第1流路10、第2流路20、及び第3流路30の幅は、それぞれ同じであってもよく、異なっていてもよい。例えば、全血試料を用いる場合、第1流路10の直径としては、50μm以上、80μm以上、100μm以上等が例示できる。これらの流路の幅及び高さの上限値は、特に限定されず、血液成分分離デバイスのサイズに応じて適宜選択すればよい。これらの流路の幅及び高さの上限値としては、例えば、100mm以下、50mm以下、10mm以下、5m以下、2mm以下等が挙げられる。一例として、幅0.5~2.0mm程度、高さ0.2mm~2.0mm程度が挙げられる。
 第1流路10、第2流路20、及び第3流路30の形状は、特に限定されず、流路断面が円形であってもよく、矩形であってもよい。
(第1流路)
 第1流路10は、第1導入口12、フィルター部11、及びバルブV1を備えている。
 第1導入口12は、第1流路10に血球と血漿とを含む溶液を導入する。また、その他の試料や試薬等を導入するために用いられてもよい。第1導入口12は、試料を導入しやすいように漏斗状になっていてもよい。
 フィルター部11は、流路内に血球を捕捉するフィルターが設置された部位である。血球を捕捉するフィルターは、血液中の血球を選択的に捕捉して、血漿を含む、血液中の血球以外の成分から分離する。そのため、血液中の血球と血漿とを分離することが可能となる。フィルターは血球を捕捉し、且つ血漿が通過可能な材質及び構造を備えるものであれば特に限定されず、公知の血球分離フィルターを用いることができる。
 フィルターとしては、例えば、多孔質膜や、ガラス繊維膜等が例示される。フィルターの材料としては、例えば、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリスチレン、ポリビニルアルコール、ウレタン、アクリル、レーヨン、ガラス等が挙げられる。
 フィルターとしては、例えば、上記素材を成形した繊維を不織布状に集積させたもの、上記素材を用いて連続孔が形成された連続気泡発泡体などの成形体、上記素材を成形した略球形の微粒子を細密充填構造となるように集積したもの、あるいはこの集積したものを焼結することにより一体成形したもの、上記素材を成形したフィルムに貫通孔を形成させたもの、あるいはフィルムの片面ないし両面にコロナ放電やプレス加工によりシボ加工したシートを多数枚積層したもの等が挙げられる。
 フィルターの平均孔径は、血球を捕捉し且つ血漿の通過を阻害しない程度であればよく、例えば、2~10μm、又は3~8μm等が挙げられる。平均孔径は、バブルポイント試験法(JIS K 3832)や電子顕微鏡による拡大画像を用いた実測法などにより計測される。
 フィルターの空隙率は、特に限定されないが、実用可能な濾過時間の確保及びフィルタの安定性を維持するために、例えば、20~97%、30~95%等が例示される。
 バルブV1は、第1流路10を開状態又は閉状態に制御するためのものである。バルブV1は、第1流路10において、フィルター部11に対して、第1導入口12とは逆側に配置されている。第1流路10において、第1導入口12、フィルター部11、及びバルブV1が、この順に並んでいる。この時、第1導入口12が第1流路10の上流側であり、バルブ部V1は下流側である。第1導入口12から導入された溶液は、フィルター部11を通過し、バルブ部V1に向かって流れる。バルブV1の構造は、特に限定されず、流体デバイス等に使用される任意のバルブを用いることができる。一例として、後述する、図7におけるポンプ部P1、P2を構成するバルブと同様のものを用いることができる。
 バルブV1は、一例として、フィルター部11の下流側の末端の近傍に配置されている。デッドボリュームを小さくするため、例えば、バルブV1とフィルター部11とが接していることが好ましい。あるいは、バルブV1とフィルター部11との間が離れて配置されている場合であっても、バルブV1の端部とフィルター部11の端部との間の距離は広くとも数ミリ程度であることが好ましい。バルブV1の端部とフィルター部11の端部との距離は、0~10mm程度であり、0~5mm程度である。バルブV1をフィルター部11の近傍に配置することにより、後述する溶血工程により溶血された血球画分を第2流路20又は第3流路30を介して、効率よく回収することができる。
 なお、本実施形態の血液成分分離デバイスは、バルブV1を設けない構成としてもよい。また、第1導入口12とフィルター部11とが離れて配置されている場合には、第1導入口12とフィルター部11との間にもバルブを設けるようにしてもよい。
 第1流路10の、フィルター部11に対する、第1導入口12とは逆側は、血漿分析部50に接続している。血漿分析部50は、フィルター部11を通過した血漿を分析するためのものである。血漿分析部50は、目的に応じて任意の血漿成分を分析可能な構成とすることができる。例えば、血漿分析部50は、グルコース分析部であってもよい。血漿分析部50は、全コレステロール、LDL、HDL、TG、UA、血中クレアチニン、アルブミン、総タンパク質、ALT、AST、γGTP、BUN、Kイオン、Naイオン、Caイオン、及びClイオン等を分析するものであってもよい。また、血漿分析部50は、BV、HCV、CRP、cTnT、cTnI、BNP、H-FAB、CK-MB、及びIL-6等を分析するものであってもよく、腫瘍マーカー、miRNA等を分析するものであってもよい。血漿分析部50は、単独項目を分析するものであってもよく、複数項目を分析するものであってもよい。 血液成分分離デバイスが、血漿分析部50を備えることにより、フィルター部11で分離した血漿成分をそのままデバイス内で分析することができる。フィルター部11から血漿分析部50までは血液成分分離デバイス上の流路を介して、血漿成分が送液されるため、コンタミネーション等のおそれや、装置の汚染等の心配がなく、簡便な血漿成分の分析が可能となる。また、血球成分の分離からダイレクトに血漿成分を測定できるので、非特異的な測定物のロスがなくなり精度が上がり、さらに検査時間が短時間になる。
 本実施形態の血液成分分離デバイスは、血漿分析部50及び/又は血漿回収部を設けてもよい。あるいは、本実施形態の血液成分分離デバイスは、血漿分析部50の替わりに、血漿回収部を設け、フィルター部11を通過した血漿を回収する構成としてもよい。回収した血漿は、手作業や血漿分析装置等を用いて分析を行ってもよく、後の分析等のために保存してもよい。また、血漿分析部50とともに、血漿回収部を設ける構成としてもよい。この場合、血漿分析部50で分析を終えた血漿を、血漿回収部で回収する構成とすることができる。
 第1流路10は、さらに、流路内の流体の流れを制御する流体制御部を備えていてもよい。第1流路10が、流体制御部を備える場合、一例として、流体制御部は、フィルター部に対して、第1導入口とは逆側に配置される。この場合、第1導入口12と流体制御部との間にフィルター部11が配置されるため、第1導入口12から第1流路内に導入された試料がフィルター部11を通過する速度を、流体制御部により制御することができる。
 流体制御部は、流体デバイス等で流路内の流体の流れを制御するために用いられる任意の構成を採用することができる。流体制御部としては、例えば、吸気ポンプに接続する吸気ポート、ポンプ、バルブ等が挙げられる。
 第1流路10において、流体は、流路の軸方向を上流から下流に向かって移動する。この方向を第1方向、または、第1流路の軸方向と称してもよい。第1方向とは、第1導入口12からフィルター部11へと向かう方向であり、また、バルブV1を備える場合、フィルター部11からバルブV1に向かう方向である。
 また、第1流路10は、さらに、後述する洗浄工程において、洗浄液を回収する廃液回収部等を備えていてもよい。
(第2流路)
 第2流路20は、第1流路10の軸方向とは異なる方向において、第1流路10のフィルター部11に接続している。第2流路20は、フィルター部11で第1流路10と交差している。第2流路20、第2導入口22と、第1流路10との接続部を挟んだ両側に配置されるバルブV2a、V2bとを備えている。
 第2流路20が、第1流路10と交差する角度は、特に限定されず、任意の角度とすることができる。一例として、第2流路20は、第1流路10と直交している。また、一例として、第2流路20と第1流路10とは、略同一平面上に配置される。これらの流路を略同一平面上に配置することにより、血液成分分離デバイスを小型化することができる。
 第2導入口22は、第2流路20に、溶血剤等の試薬を導入するために用いられる。第2導入口22は、試薬等を導入しやすいように漏斗状になっていてもよい。また、第2導入口22は、図示しない薬液ポート等に接続する構成であってもよい。
 バルブV2a、V2bは、第2流路20を開状態又は閉状態に制御するためのものである。バルブV2a、V2bの構造は、特に限定されず、流体デバイス等に使用される任意のバルブを用いることができる。一例として、上述のバルブV1と同様のバルブを採用してもよい。
 バルブV2a、V2bは、一例として、フィルター部11の近傍に配置されている。デッドボリュームを小さくするため、例えば、バルブV2a、V2bとフィルター部11とが接していることが好ましい。あるいは、バルブV2a、V2bとフィルター部11との間が離れて配置されている場合であっても、バルブV2a、V2bの端部とフィルター部11の端部との間の距離は広くとも数ミリ程度であることが好ましい。バルブV2a、V2bの端部とフィルター部11の端部との距離は、0~10mm程度であり、0~5mm程度である。バルブV2a、V2bをフィルター部11の近傍に配置することにより、フィルター部11における血液成分の分離を効率よく行うことができる。
 なお、本実施形態の血液成分分離デバイスは、バルブV2a、V2bを設けない構成としてもよく、バルブV2a、V2bのいずれか一方のみを設ける構成としてもよい。バルブV2aを備えることにより、第1流路10において血球成分と血漿成分とを分離している間はバルブV2aを閉じておき、血球成分と血漿成分との分離反応後にバルブV2aを解放することが可能となる。このことは、事前に第2導入口22に試薬を導入しておく場合などに有効である。また、バルブV2bを備えることにより、第2流路20に試薬などを滞留することが可能となる。このことは、フィルター部11中の成分と試薬との反応に時間を要する場合などに有効である。
 第2流路20の、フィルター部11に対する第2導入口22とは逆側は、閉鎖されていてもよく、開放されていてもよい。あるいは、廃液回収部等に接続していてもよい。
 第2流路20において、流体は第1方向とは異なる第2方向に移動する。第2方向は、第1流路の軸方向と異なる方向であり、第2流路の軸方向である。第2方向とは、第2導入口22からフィルター部11にむかう方向である。
(第3流路)
 第3流路30は、第1流路10の軸方向とは異なる方向において、第1流路10のフィルター部11に接続している。第3流路30は、第2流路20とは異なる位置において、フィルター部11で第1流路10と交差している。第1流路10においては、第1導入口12、第2流路20との接続部、第3流路30との接続部が、この順番で配置されている。また、第1流路10においては、第1導入口12、第3流路30との接続部、及び第2流路20との接続部が、この順番で配置されていてもよい。第3流路30は、第1流路10との接続部を挟んだ両側に配置されるバルブV3a、V3bとを備えている。
 第3流路30が、第1流路10と交差する角度は、特に限定されず、任意の角度とすることができる。第2流路20と第3流路とは、実質同一の角度で第1流路10と交差してもよい。一例として、第3流路30は、第1流路10と直交している。また、一例として、第3流路30は、第1流路10及び第2流路20と、略同一平面上に配置される。これらの流路を略同一平面上に配置することにより、血液成分分離デバイスを小型化することができる。
 バルブV3a、V3bは、第3流路30を開状態又は閉状態に制御するためのものである。バルブV3a、V3bは、第1流路10との接続部を挟んだ両側に配置されている。第3流路30において、バルブV3a、第1流路10との接続部、及びバルブV3bが、この順に配置されている。バルブV3a、V3bの構造は、特に限定されず、流体デバイス等に使用される任意のバルブを用いることができる。一例として、上述のバルブV1、V2a、V2bと同様のバルブを採用してもよい。
 バルブV3a、V3bは、一例として、フィルター部11の近傍に配置されている。デッドボリュームを小さくするため、例えば、バルブV3a、V3bとフィルター部11とが接していることが好ましい。あるいは、バルブV3a、V3bとフィルター部11との間が離れて配置されている場合であっても、バルブV3a、V3bの端部とフィルター部11の端部との間の距離は広くとも数ミリ程度であることが好ましい。バルブV3a、V3bの端部とフィルター部11の端部との距離は、0~10mm程度であり、0~5mm程度である。バルブV3a、V3bをフィルター部11の近傍に配置することにより、フィルター部11における血液成分の分離を効率よく行うことができる。
 なお、本実施形態の血液成分分離デバイスは、バルブV3a、V3bを設けない構成としてもよく、バルブV3a、V3bのいずれか一方のみを設ける構成としてもよい。バルブV3aを備えることにより、第1流路10において血球成分と血漿成分とを分離している間はバルブV3aを閉じておき、血球成分と血漿成分との分離反応後にバルブV3aを解放することが可能となる。また、バルブV3bを備えることにより、第3流路30に試薬などを滞留することが可能となる。このことは、フィルター部11中の成分と試薬との反応に時間を要する場合などに有効である。
 第3流路30は、血球分析部60に接続している。血球分析部60は、フィルター部11により捕捉された血球を分析するためのものである。後述するように、フィルター部11に捕捉された血球は、溶血剤等により溶血され、第3流路30を介して血球分析部60に運ばれる。血球分析部60は、目的に応じて任意の血球成分を分析可能な構成とすることができる。例えば、血球分析部60は、ヘモグロビンA1c(HbA1c)を分析可能な構成(HbA1c測定部)であってもよい。一例として、血球分析部60は、ラテックス凝集法により、HbA1cを測定する構成を備える。血球分析部60は、ヘモグロビン量を測定する構成を備えていてもよい。また、血球分析部60は、グルコース6リン酸脱水素酵素やピルピン酸キナーゼ等に代表される、赤血球酵素の活性を測定する構成を備えていてもよい。血球分析部60は、単独項目を分析するものであってもよく、複数項目を分析するものであってもよい。
 血液成分分離デバイスが、血球分析部60を備えることにより、フィルター部11で分離した血球成分をそのままデバイス内で分析することができる。フィルター部11から血球分析部60までは血液成分分離デバイス上の流路を介して、血球成分が送液されるため、コンタミネーション等のおそれがなく、また簡便な血球成分の分析が可能となる。
 本実施形態の血液成分分離デバイスは、血球分析部60及び/又は血球回収部を設けてもよい。本実施形態の血液成分分離デバイスは、血球分析部60の替わりに、血球回収部を設け、フィルター部11に捕捉され溶血された血球成分を回収する構成としてもよい。回収した血球成分は、手作業や血球成分析装置(HbA1c測定装置など)等を用いて分析を行ってもよく、後の分析等のために保存してもよい。また、血球分析部60とともに、血球回収部を設ける構成としてもよい。この場合、血球分析部60で分析を終えた血球成分を、血球回収部で回収する構成とすることができる。
 第3流路30は、さらに、流路内の流体の流れを制御する流体制御部を備えていてもよい。第3流路30が、流体制御部を備えることにより、フィルター部11から第3流路30への流体の流れを制御することができる。
 流体制御部は、流体デバイス等で流路内の流体の流れを制御するために用いられる任意の構成を採用することができる。流体制御部としては、例えば、吸気ポンプに接続する吸気ポート、ポンプ、バルブ等が挙げられる。
 第3流路30の血球分析部60に接続しない他端は、閉鎖されていてもよく、開放されていてもよい。あるいは、廃液回収部等に接続していてもよい。
 第3流路30において、流体は第1方向とは異なる第3方向に移動する。第3方向は、第3流路30の軸方向である。第3方向とは、フィルター部11から血球分析部60または血球回収部に向かう方向である。第2流路20と第3流路30とは略平行であってもよく、この場合第2方向と第3方向とは略同一である。
(使用方法)
 上記のような構成を備えた血液成分分離デバイス100の使用方法について、例を挙げて説明する。
 まず、バルブV1を開状態にし、バルブV2a、V2b、V3a、V3bを閉状態にする。この状態で、第1導入口12から、第1流路10に、血液試料を導入する。血液試料は、血球成分と血漿成分とを含むものであれば、特に限定されないが、一例として全血試料が挙げられる。また、血液試料は、全血試料から、白血球等を除去したものであってもよい。
 第1導入口12から第1流路10に導入された血液試料は、フィルター部11を通過する。この際、血球はフィルターに選択的に捕捉される。血漿の大部分はフィルターを通過する。一部の血漿はフィルターに残存することもある。第1流路10が、流体制御部を有する場合には、流体制御部により、フィルター部11を通過する血液試料の流れを制御してもよい。血液試料の流れを制御することにより、フィルター部11における血液試料の通過速度を短縮することができる。
 フィルター部11を通過した血漿は、第1流路10に接続する血漿分析部50において分析される。なお、血球成分分離デバイスが、血漿分析部50に替えて血漿回収部を備える場合には、血漿回収部において血漿を回収してもよい。
 次に、第1導入口12から、第1流路10に、洗浄液を導入する。洗浄液は、血球を破壊しないものであれば、特に限定されず、公知の細胞洗浄液等を用いることができる。洗浄液としては、例えば、リン酸緩衝生理食塩水(Phosphate buffered saline:PBS)、生理食塩水等が挙げられる。これにより、フィルター部11に残っている血漿を除去することができる。血液成分分離デバイス100が、流体制御部を有する場合には、流体制御部により、フィルター部11を通過する洗浄液の流れを制御してもよい。洗浄液の流れを制御することにより、フィルター部11の洗浄を短縮することができる。
 フィルター部を洗浄した洗浄液は、血漿分析部50において回収してもよく、第1流路10が血漿回収部や廃液回収部を備えている場合には、これらにより回収してもよい。
 上記の洗浄工程は、バルブV2aを開状態にし、第2導入口22から洗浄液を導入することにより行ってもよい。第2導入口22から導入された洗浄液は、第2流路20を介して、フィルター部11に導入される。フィルター部11に導入された洗浄液により、上記と同様に、フィルター部11に残っている血漿を除去することができる。
 あるいは、第3流路30のバルブV3aを有する一端が、廃液回収部に接続している場合には、バルブV1を閉状態にし、バルブV3aを開状態にして、第1導入口12から洗浄液を導入してもよい。この場合、第3流路30を介して、第3流路30に接続する廃液回収部に、フィルター部11に残っている血漿を洗浄液とともに回収することができる。
 また、バルブV2a、V3aを開状態とし、第2導入口22から、第2流路を介して、洗浄液をフィルター部11に導入してもよい。この場合も、第3流路30を介して、第3流路30に接続する廃液回収部に、フィルター部11に残っている血漿を洗浄液とともに回収することができる。
 次に、バルブV1、V2b、V3aを閉状態にし、バルブV2a、V3bを開状態にする。この状態で、第2導入口22から、第2流路20に溶血剤を導入する。溶血剤は、血球(例えば、赤血球)を破壊できるものであればよく、公知の溶血剤と特に限定なく用いることができる。溶血剤としては、例えば、低張液、水等が挙げられる。第2導入口22から導入れた溶血剤は、第2流路20を介してフィルター部11に到達し、血液試料がフィルター部11を移動した方向(第1方向)と同じ方向にフィルター部11を移動する。この際に、フィルターに捕捉されている血球(例えば、赤血球)が溶血剤により溶血される。溶血により放出された血球成分は、溶血剤とともにフィルター部11を移動し、第3流路30との接続部に到達すると、第3流路30へと移動する。
 第2流路20又は第3流路30が、流体制御部を有する場合には、流体制御部により、第2流路からフィルター部11への溶血剤の流れ、及びフィルター部11から第3流路30への血球成分の流れを制御してもよい。これらの流れを制御することにより、血球成分が血球分析部60に到達する時間を短縮することができる。
 フィルター部11から第3流路30に移動した血球成分は、第3流路30に接続する血球分析部60において分析される。なお、血球成分分離デバイスが、血球分析部60に替えて血球回収部を備える場合には、血球回収部において血球成分を回収してもよい。
 上記の溶血工程は、バルブV1、V2a、V2b、V3aを閉状態にし、バルブV3bを開状態にして、第1導入口12から溶血剤を導入することにより行ってもよい。第1導入口12から導入された溶血剤は、フィルター部11に捕捉されている血球を溶血し、放出された血球成分は、上記と同様に、第3流路を介して血球分析部60へと移動する。
 上記のように、本実施形態の血液成分分離デバイスを用いることにより、血漿と血球とを分離した後、それぞれ回収又は分析を行うことができる。特に、血液成分分離デバイスが、血漿分析部50と血球分析部60との両方を備える場合には、血漿分析と血球分析とを1つのデバイスで同時に行うことができるため、迅速且つ簡易に血液分析を行うことができる。血球分離部(フィルター部)と血漿分析部、また、血球分離部(フィルター部)と血球分析部とが、流路で接続されているため、コンタミネーションのおそれがないというメリットがある。
 また、従来の血球分離方法では、血球画分への血漿の混入を防ぐことができず、当該血漿の混入により血球成分の分析結果が不安定となる場合があった。例えば、後述する実施例で示すように、血漿が存在する血球試料でHbA1cを測定した場合、測定値が不安定となり、信頼できる測定値を得ることができない。
 本実施形態の血液成分分離デバイスでは、フィルターで血球を捕捉した後、洗浄液でフィルターに残っている血漿を除去することができるため、血球画分への血漿の混入量を低減することができる。これにより、血球成分分析における血漿の影響を低減し、安定した血球成分測定値を得ることが可能となる。
 本実施形態の血液成分分離デバイスは、上記で説明した態様に限定されず、本発明の趣旨を逸脱しない範囲で、各構成要素を適宜変更することができる。例えば、以下のような変形例1~6も、本実施形態の血液成分分離デバイスの範囲内である。
<変形例1>
 図2は、本実施形態の血液成分分離デバイスの変形例1を示す模式図である。血液成分分離デバイス200は、第3流路30を有さない以外は、血液成分分離デバイス100と同様の構成となっている。第2流路20の、第1流路との接続部に対する、第2導入口22とは逆側は、血球分析部60に接続している。
 血液成分分離デバイス200では、フィルター部11に捕捉された血球を溶血させる溶血工程において、バルブV1を閉状態とし、バルブV2a、V2bを開状態として、第2導入口22から、第2流路20に、溶血剤を導入する。第2流路20に導入された溶血剤は、第2流路20を介してフィルター部11に到達し、血液試料がフィルター部11を移動した方向(第1方向)とは異なる方向(第2方向)にフィルター部11を移動する。溶血剤が移動する第2方向上に捕捉されている血球は、溶血剤により溶血される。溶血により放出された血球成分は、フィルター部11から第2流路20を介して血球分析部60に運ばれ、血球分析部60において分析される。
 第2流路20は、血球分析部60に替えて、又は血球分析部60に加えて、血球回収部を備えていてもよい。また、第2流路20は、第2流路20における流体の流れを制御する流体制御部を備えていてもよい。後述する変形例4、変形例5でも同様である。
<変形例2>
 図3は、本実施形態の血液成分分離デバイスの変形例2を示す模式図である。血液成分分離デバイス300は、第2流路20及び第3流路30が第1流路10と交差していない以外は、血液成分分離デバイス100と同様の構成となっている。血液成分分離デバイス300において、第2流路20及び第3流路30は、それぞれフィルター部11から突き出るような構成となっている。
 血液成分分離デバイス300では、フィルター部11に捕捉された血球を溶血させる溶血工程において、バルブV1を閉状態とし、バルブV2a、V3aを開状態として、第2導入口22から、第2流路20に、溶血剤を導入する。第2流路20に導入された溶血された溶血剤は、第2流路20を介してフィルター部11に到達し、血液試料がフィルター部11を移動した方向(第1方向)と同じ方向にフィルター部11を移動する。この際に、フィルターに捕捉されている血球が溶血剤により溶血される。溶血により放出された血球成分は、溶血剤とともにフィルター部11を移動し、第3流路30との接続部に到達すると、第3流路30へと移動する。そして、第3流路30を介して血球分析部60に運ばれ、血球分析部60において分析される。
<変形例3>
 図4は、本実施形態の血液成分分離デバイスの変形例3を示す模式図である。血液成分分離デバイス400は、第2流路20及び第3流路30が第1流路10に対して同方向に配置されている以外は、血液成分分離デバイス300と同様の構成となっている。
 溶血工程は、血液成分分離デバイス300と同様に行うことができる。
<変形例4>
 図5は、本実施形態の血液成分分離デバイスの変形例4を示す模式図である。血液成分分離デバイス500は、第3流路30を有さず、第2流路20が第1流路10と交差しない構成となっている。第2流路20は、血球分析部60に接続している。
 血液成分分離デバイス500では、フィルター部11に捕捉された血球を溶血させる溶血工程において、バルブV1を閉状態とし、バルブV2aを開状態として、第1導入口12から、第1流路10に、溶血剤を導入する。第1流路10に導入された溶血剤は、フィルター部11に到達し、血液試料がフィルター部11を移動した方向(第1方向)と同じ方向にフィルター部11を移動する。この際に、フィルターに捕捉されている血球が溶血剤により溶血される。溶血により放出された血球成分は、溶血剤とともにフィルター部11を移動し、第2流路20との接続部に到達すると、第2流路20へと移動する。そして、第2流路20を介して血球分析部60に運ばれ、血球分析部60において分析される。
 第2流路20は、血球分析部60に替えて、又は血球分析部60に加えて、血球回収部を備えていてもよい。また、第2流路20は、第2流路20における流体の流れを制御する流体制御部を備えていてもよい。
<変形例5>
 図6は、本実施形態の血液成分分離デバイスの変形例5を示す模式図である。血液成分分離デバイス600は、第3流路30を有さず、第2流路20が第1流路10と交差しない構成となっている。第2流路20は、血球分析部60に接続している。また、第1流路10の第1導入口12とフィルター部11との間に、第4流路40が接続している。第4流路40は、第4導入口42と、バルブV4aとを備えている。
 血液成分分離デバイス600では、フィルター部11に捕捉された血球を溶血させる溶血工程において、バルブV1を閉状態とし、バルブV2a、V4aを開状態として、第4導入口42から、第4流路40に、溶血剤を導入する。第4流路40に導入された溶血された溶血剤は、第4流路40を介して第1流路10に到達し、第1流路10を移動して、フィルター部11に到達する。フィルター部11において、溶血剤は、血液試料がフィルター部11を移動した方向(第1方向)と同じ方向にフィルター部11を移動する。この際に、フィルターに捕捉されている血球が溶血剤により溶血される。溶血により放出された血球成分は、溶血剤とともにフィルター部11を移動し、第2流路20との接続部に到達すると、第2流路20へと移動する。そして、第2流路20を介して血球分析部60に運ばれ、血球分析部60において分析される。
<変形例6>
 図7は、本実施形態の血液成分分離デバイスの変形例6を示す模式図である。血液成分分離デバイス700は、プレート70内に、第1流路及び第2流路が形成されている。第1流路は第1流路10a、10bから構成されており、第2流路は第2流路20a、20b、20cから構成されている。
 第1流路10a、10bは、バルブV1aを介して互いに接続されている。
 第1流路10aは、第1導入口12、及びフィルター部11を有している。
 第1流路10bは、流路制御部としてのポンプ部P1、及び血漿分析部50を備えている。第1流路10bは、バルブV1fを介して、インレットI1に接続している。インレットI1は、プレート70の下方に配置される図示しない試薬貯留部に接続している。そのため、バルブV1fを開状態とすることにより、インレットI1から、第1流路10bに試薬を導入することができる。第1流路10bは、バルブV1c又はV1dを介して、廃液回収部W1に接続している。そのため、バルブV1c又はV1dを開状態とすることにより、第1流路10bから廃液回収部W1に廃液を排出することができる。
 第1流路10bは、バルブV1a、V1c、V1d、V1fを閉状態とし、バルブV1b、V1eを開状態とすることにより、循環流路(第1循環経路)を形成する。
 また、第1流路10b及び廃液回収部W1は、バルブV1a、V1b、V1fを閉状態とし、バルブV1c、V1d、V1eを開状態とすることにより、流体を第1流路10bから廃液回収部W1へと排出する流路(第1排出経路)を形成する。
 第2流路20a、20bは、バルブV2eを介して互いに接続されている。第2流路20b、20cは、バルブV2k、V2mを介して互いに接続されている。
 第2流路20aは、第2導入口22を有している。第2導入口22は、プレート70の下方に配置される図示しない溶血剤貯留部に接続しており、第2導入口22から、第2流路20aに溶血剤を導入することができる。第2流路20aは、第1流路10aのフィルター部11に接続し、第1流路10aと交差している。第2流路20aにおける、第1流路10aとの接続部の両側には、バルブV2a、V2bが設置されている。バルブV2a、V2bを開状態とし、第2導入口22から第2流路20aに溶血剤を導入すると、溶血剤は、第2流路20aの軸方向に移動して、フィルター部11を通過する。第2流路20aは、バルブV2dを介して、インレットI2に接続している。インレットI2は、プレート70の下方に配置される図示しない試薬貯留部に接続している。そのため、バルブV2dを開状態とすることにより、インレットI2から、第2流路20aに試薬を導入することができる。さらに、バルブV2eを開状態とすることにより、第2流路20bに試薬を導入することができる。また、第2流路20aは、バルブV2cを介して、エア導入口Aに接続している。そのため、バルブV2eを開状態とすることにより、エア導入口Aから、第2流路20aにエアを導入することができる。さらに、バルブV2eを開状態とすることにより、第2流路20bにエアを導入することができる。
 第2流路20bは、流体制御部としてのポンプ部P2、及び血球分析部60を備えている。第2流路20bは、バルブV2h又はV2iを介して、廃液回収部W2に接続している。そのため、バルブV2h又はV2iを開状態とすることにより、第2流路20bから廃液回収部W2に廃液を排出することができる。
 第2流路20cは、バルブV2nを介して、インレットI3に接続している。インレットI3は、プレート70の下方に配置される図示しない試薬貯留部に接続している。そのため、バルブV2nを開状態とすることにより、インレットI3から、第2流路20cに試薬を導入することができる。さらに、バルブV2k又はバルブV2mを開状態とすることにより、第2流路20bに試薬を導入することができる。また、第2流路20cは、バルブV2jを介して、廃液回収部W2に接続している。そのため、バルブV2jを開状態とすることにより、第2流路20cから廃液回収部W2に廃液を排出することができる。
 第2流路20bは、バルブV2e、V2h、V2i、V2k、V2mを閉状態とし、バルブV2f、V2g、V2lを開状態とすることにより、循環流路(第2循環経路)を形成する。また、第2流路20b及び20cは、バルブV2e、V2h、V2i、V2j、V2l、V2nを閉状態とし、バルブV2f、V2g、V2k、V2mを開状態とすることにより、循環流路(第3循環経路)を形成する。
 また、第2流路20b及び廃液回収部W2は、バルブV2e、V2g、V2k、V2mを閉状態とし、バルブV2f、V2h、V2i、V2lを開状態とすることにより、流体を第2流路20bから廃液回収部W2へと排出する流路(第2排出経路)を形成する。また、第2流路20b、20c、及び廃液回収部W2は、バルブV2e、V2g、V2i、V2k、V2l、V2nを閉状態とし、バルブV2f、V2h、V2j、V2mを開状態とすることにより、流体を第2流路20b、20cから廃液回収部W2へと排出する流路(第3排出経路)を形成する。
 ポンプ部P1、P2は、3連のバルブから構成されている。前記バルブとしては、ダイアフラム部材を備えるダイアフラムバルブが例示され、ダイアフラム部材としてはエラストマー材料が例示される。
 図8(a)及び(b)は、ダイアフラムバルブの構造の一例を説明する断面図である。
図8(a)はダイアフラムバルブ800の開状態を示し、図8(b)はダイアフラムバルブ800の閉状態を示す。図8(a)及び(b)に示すように、ダイアフラムバルブ800は、第1の基板310と、エラストマー材料からなるダイアフラム部材330と、第2の基板320とを備えている。第2の基板320とダイアフラム部材330とは密着した状態で接着されている。また、第1の基板310とダイアフラム部材330との間の空間は流体が流れる流路315を形成している。また、第2の基板320の一部には貫通孔340が設けられている。また、貫通孔340においては、ダイアフラム部材330が露出している。
 ダイアフラムバルブ800は、流路315(血液成分分離デバイス700では第1流路10b又は第2流路20b)に配置されており、流路315の内部の流体の流れを調節するものである。
 図8(a)に示すダイアフラムバルブ800の開状態では、流路315の内部を流体が流れることができる。一方、図8(b)に示すように、ダイアフラムバルブ800の貫通孔340からバルブ制御用の流体を供給し、貫通孔340の内部を加圧すると、ダイアフラム部材330が変形し、変形したダイアフラム部材330の一部が第1の基板310と密着する。この状態は、ダイアフラムバルブ800の閉状態である。その結果、流路315の内部の流体の流れが遮断される。
 ここで、図8(a)及び(b)に示すように、ダイアフラムバルブ800の閉状態をより強固なものとするために、貫通孔340と対向する第1の基板310の領域には凸部311が形成されていてもよい。
 バルブ制御用の流体としては、N2ガス、空気等の気体、水、油等の液体等が挙げられる。バルブ制御用の流体は、例えば、貫通孔340に接続されたチューブ等により供給することができる。
 また、ダイアフラム部材330を形成するエラストマー材料としては、貫通孔340の内部の圧力変化に応じて貫通孔340の軸線方向に変形可能な材料であれば特に限定されず、例えば、ポリジメチルシロキサン(PDMS)、ポリメチルフェニルシロキサン、ポリジフェニルシロキサン等のシリコーン系エラストマー等が挙げられる。
 図8(b)に示す閉状態のダイアフラムバルブ800において、貫通孔340の内部に印加していた圧力を低下させると、変形していたダイアフラム部材330が元の形状に戻り、再び図8(a)に示す開状態となる。その結果、再び流路315の内部を流体が流れることができるようになる。
 3連以上のバルブにより、すなわちバルブを3個以上並べることにより、ポンプを形成することができる。図9(a)~(d)は、3個のダイアフラムバルブ800a、800b及び800cを備えるポンプの一例の動作を説明する断面図である。
 図9(a)に示す状態では、3個のバルブ800a、800b及び800cは、いずれも開状態である。この状態では、流路315の内部の流体の流れは制御されていないため、流体は図9(a)に向かって右側に流れる場合もあるし、左側に流れる場合もあるし、流体の流れが停止している場合もある。
 続いて、図9(b)に示すように、バルブ800aを閉状態に制御し、バルブ800b及び800cは開状態のままにする。この結果、流路315の内部の流体の流れはバルブ800aによって堰き止められる。
 続いて、図9(c)に示すように、バルブ800a及びバルブ800bを閉状態に制御し、バルブ800cは開状態のままにする。ここで、バルブ800bが開状態から閉状態に変化する過程で、ダイアフラム部材330が変形することにより、バルブ800bの周囲に存在していた流体が押しのけられる。ところが、バルブ800aが閉状態にあることから、押しのけられた流体は図9(c)の矢印で示す方向、すなわち、図9(c)に向かって右側に移動する。この結果、流体に矢印で示す方向の流れが生じる。
 続いて、図9(d)に示すように、バルブ800b及び800cを閉状態に制御する。
すると、バルブ800cが開状態から閉状態に変化する過程で、ダイアフラム部材330が変形することにより、バルブ800cの周囲に存在していた流体が押しのけられる。ところが、バルブ800aが閉状態にあることから、押しのけられた流体は図9(d)の矢印で示す方向、すなわち、図9(d)に向かって右側に移動する。この結果、流体に矢印で示す方向の流れが更に加速される。この時、バルブ800aは図9(d)に示すように開状態に制御してもよいし、閉状態のまま維持してもよい。
 続いて、再び図9(a)に示すように、バルブ800a、800b及び800cを、いずれも開状態に制御する。ここでは、慣性により、流路315の内部の流体は、図9(a)に向かって右側に移動し続けている場合がある。
 更に、以上の工程を繰り返すことにより、流路315の内部の流体の流れを制御することができる。
 以上の工程は、3個のバルブを備えるポンプの制御方法の一例であり、3個のバルブを備えるポンプの制御方法はこれに限られない。例えば、上述したバルブの制御において、バルブ800aとバルブ800cの開閉のタイミングを逆にすることにより、流路315の内部の流体の流れを上述したものと逆方向に制御することもできる。また、図9(a)~図9(d)の動作を繰り返す周期を調節して、パルス的な微小溶液のフローを形成し、流速を制御したりすることもできる。また、バルブ800a~800cを駆動する気体の圧力やバルブの径を調節することによっても、流速を制御することができる。
 また、バルブを4個以上備えるポンプにより、流路315の内部の流体の流れを制御することも可能である。
 また、ダイアフラムバルブの構造も、上述したものに限られない。例えば、ダイアフラムバルブとして、国際公開第2016/006615号に記載された、外筒部と内筒部とを有する筒状構造体と、前記内筒部の一端を覆うように配置された薄膜部と、前記薄膜部の周縁を一周し、前記外筒部の内壁及び前記内筒部の外壁に沿って密着したアンカー部と、を有するダイアフラム部材と、を備えたバルブを用いることもできる。
 本実施形態の血液成分分離デバイスにおいて、他に使用可能なバルブとしては、例えば、2つの金型を使って、樹脂部分とエラストマー部分を連続的に成形して得られた、2色成型バルブが例示される。2色成型バルブは、製造に要する時間が短く、樹脂とエラストマーとの密着性が高い利点がある。
 2色成型バルブの具体例を図10及び図11に例示する。図10に例示するバルブ900では、基板909は、下面(一面)909aに形成された窪み(例、流路)940Aと、窪み940Aの底部(例、図10の窪み90Aの上側)および基板909の上面(他面)909bに開口(貫通)する開口部952とを有している。開口部952には、被バルブ駆動部970が設けられている。被バルブ駆動部970は、上述のバルブ部950と同様の軟質材で形成されており、バルブ部(変形部)971、および筒部(接続部)973を備えている。バルブ部971は、開口部952における基板909の下面909a側を閉塞する。例えば、筒部973は、バルブ部971と単一部材で構成され、開口部952の内周面に沿って設けられ、下端においてバルブ部971に一体的に接続されている。筒部973の内部空間は下端がバルブ部971によって閉塞され、上端が開口する開口部970aを形成している。例えば、図10における窪み90Aが流路の場合、図面の左側から右側へ流体(例、試料物質を含む溶液、洗浄液等)が流れるように構成される。
 基板909の下面909aは、下板908の上面908bと接合されている。上面908bには、窪み940Aと対向する位置に曲面状(例、半球状)の凹面980が形成されている。
 上記構成の被バルブ駆動部970は、例えば、開口部970aを介してバルブ部971に下側への力(例、空圧、液圧、機械的な力など)が加わったときに、バルブ部971の変形によって流路(例、窪み940A)の開閉状態を制御する。一例として、図11に示すように、バルブ部971が窪み940A側に変形して撓んで凹面980に接触することにより流路(例、窪み940A)を閉塞する(バルブが閉じた状態)。また、被バルブ駆動部970は、バルブ部971に下側への力が加わることが解除されることによりバルブ部971の変形(例、撓み)が解消されて凹面980から離れることで流路(例、窪み940A)が開放される(バルブが開いた状態)。
 上述の2色成型バルブは、例えば、国際公開第2018/012429号に記載された方法により製造することができる。その他、2色成型バルブとしては、国際公開第2018/012429号に記載されたもの等の公知のものを特に制限なく用いることができる。
 上記のような構成を備えた血液成分分離デバイス700の使用方法について、例を挙げて説明する。
 まず、バルブV1a、V1b、V1eを開状態とし、他のバルブを閉状態として、第1導入口12から第1流路10aに血液試料(例、全血試料等)を導入する。第1流路10aに導入された血液試料は、フィルター部11に到達し、フィルター部11をバルブV1a方向(第1方向)に移動する。この際に、血液試料中の血球は、フィルターに捕捉される。一方、血漿の大部分は、フィルター部11を通過し、第1流路10bに到達する。ここで、バルブV1aを閉状態とし、ポンプ部P1を適宜作動させると、第1流路10bに到達した血漿を、第1流路10bからなる第1循環経路に循環させることができる。必要に応じて、血漿分析のための試薬をインレットI1から導入し、第1循環経路を循環させて血漿と混合する。血漿を第1循環経路に循環させながら、血漿分析部50で血漿分析を行うことができる。第1循環経路を循環する流体は、必要に応じて、バルブV1b、V1fを閉状態とし、バルブV1c、V1d、V1eを開状態として、第1排出経路により廃液回収部W1に排出することができる。
 次に、バルブV1a、V1c、V1d、V1eを開状態とし、他のバルブを閉状態として、第1導入口12から第1流路10aに洗浄液を導入する。第1流路10aに導入された洗浄液は、フィルター部11に到達し、フィルター部11をバルブV1a方向(第1方向)に移動する。この際に、フィルターに残っていた血漿が洗浄液とともに第1方向に移動し、バルブV1aを介して第1流路10bに導入される。第1流路10bに導入された血漿を含む洗浄液は、バルブ1b、V1fを閉状態とし、バルブV1c、V1d、V1eを開状態として、第1排出経路により廃液回収部W1に排出することができる。
 次に、バルブV2a、V2b、V2e、V2f、V2g、V2lを開状態とし、他のバルブを閉状態として、第2導入口22から第2流路20aに溶血剤を導入する。第2流路20aに導入された溶血剤は、フィルター部11に到達し、フィルター部11をバルブV2b方向(第2方向)に移動する。この際に、フィルターに捕捉されていた血球が溶血剤により溶血される。溶血により放出された血球成分は、溶血剤とともに第2流路20aを軸方向に移動して、バルブV2bからバルブV2eを介して、第2流路20bに導入される。ここで、バルブV2bを閉状態とし、バルブV2cを開状態として、エア導入口Aから第2流路20aにエアを吹き込むことにより、第2流路20aに滞留していた血球成分を、第2流路20bへと導くことができる。第2流路20bに導入された血球成分は、バルブV2eを閉状態とし、ポンプ部P2を適宜作動させることにより、第2流路20bからなる第2循環経路に循環させることができる。必要に応じて、血球分析のための試薬をインレットI2から導入し、第2循環経路を循環させて血球成分と混合する。あるいは、必要に応じて、血球分析のための試薬をインレットI3から導入し、第2流路20b、20cからなる第3循環経路を循環させて血球成分と混合する。血球成分を、第2循環経路又は第3循環経路に循環させながら、血球分析部60で血球分析を行なうことができる。第2循環経路又は第3循環経路を循環する流体は、必要に応じて、第2排出経路又は第3排出経路により、廃液回収部W2に排出することができる。
[血液成分分離方法]
 1実施形態において、本発明は、上記実施形態の血液成分分離デバイスを用いて、血液成分を分離する方法を提供する。本実施形態の方法は、(a)前記第1導入口から、血液試料を前記第1流路に導入し、前記フィルターに前記血液試料中の血球を捕捉させる工程と、(b)前記第1導入口又は前記第2導入口から溶血剤を導入し、前記フィルター内の血球を溶血させる溶血工程と、を含む。
 本実施形態の血液成分分離方法は、上記「[血液成分分離デバイス]」で説明した「(使用方法)」で例示した方法と同様に行うことができる。
 一例として、本実施形態の方法は、前記工程(a)の後であり前記工程(b)の前に、(c)前記第1導入口又は前記第2導入口から、洗浄液を前記第1流路に導入し、前記フィルター内の血漿を除去する血漿除去工程、を更に含むことができる。
[血液成分分析方法]
 1実施形態において、本発明は、上記実施形態の血液成分分離デバイスを用いて、血液成分を分析する方法を提供する。本実施形態の方法は、(a)前記第1導入口から、血液試料を前記第1流路に導入し、前記フィルターに前記血液試料中の血球を捕捉させる工程と、(b)前記工程(a)の後、前記第1導入口又は前記第2導入口から、洗浄液を前記第1流路に導入し、前記フィルター内の血漿を除去する工程と、(c)前記工程(b)の後、前記第1導入口又は前記第2導入口から溶血剤を導入し、前記フィルター内の血球を溶血させる工程と、(d)前記工程(c)で溶血させた前記血球を分析する工程と、を含む。
 本実施形態の血液成分分析方法は、上記「[血液成分分離デバイス]」で説明した「(使用方法)」で例示した方法と同様に行うことができる。本実施形態の方法に血球分析部60を備える血液成分分離デバイスを用いる場合には、工程(d)における血球成分の分析は、血球分析部60で行うことができる。血球分析部60を備えない血液成分分離デバイスを用いる場合には、血液成分分離デバイスから溶血させた血球成分を回収し、回収した血球成分を分析すればよい。
 本実施形態の方法は、上記(a)~(d)の工程に加えて、(d)前記工程(a)又は前記工程(b)の後、フィルターを通過した血漿を分析する工程、をさらに含んでいてもよい。血漿分析部50を備える血液成分分離デバイスを用いる場合には、血漿の分析は、血漿分析部50で行うことができる。血漿分析部50を備えない血液成分分離デバイスを用いる場合には、血液成分分離デバイスから溶血させた血漿を回収し、回収した血漿を分析すればよい。
[ヘモグロビンA1c分析方法]
 1実施形態において、本発明は、ヘモグロビンA1cを分析する方法を提供する。本実施形態の方法は、(a)血球と血漿とを分離するフィルターに血液試料中の血球を捕捉させる工程と、(b)前記工程(a)の後、前記フィルターに洗浄液を通過させ、前記フィルター内の血漿を除去する工程と、(c)前記工程(b)の後、前記フィルターに溶血剤を導入し、前記フィルター内の血球を溶血させる工程と、(d)前記工程(c)で溶血させた前記血球中のヘモグロビンA1cを分析する工程と、を含む。
 本実施形態の方法は、上記「[血液成分分離デバイス]」で説明した「(使用方法)」で例示した方法と同様に行うことができる。また、本実施形態の方法は、上記実施形態の血液成分分離デバイスを用いることなく、血球分離フィルターを備えたカラム等を用いて行ってもよい。
 HbA1cの分析は、公知のHbA1c測定方法を用いて行うことができる。ヘモグロビンA1cの測定方法としては、例えば、ラテックス凝集法が挙げられる。
 ラテックス凝集法では、ラテックス粒子にHbA1cを吸着させて(吸着反応)、抗HbA1c抗体(マウスIgG等)を反応させ、さらに二次抗体(抗マウスIgG抗体等)を反応させる。これにより、HbA1cが抗HbA1c抗体及び二次抗体で架橋され、ラテックス粒子が凝集する(凝集反応)。HbA1c濃度が高いほど、ラテックス粒子の凝集量が多くなる。凝集していないラテックス粒子は、光を反射しないが、凝集すると光を反射するため、光の透過量はラテックス粒子の凝集量により変化する。そのため、凝集反応後の吸光度を測定することにより、HbA1c濃度を測定することができる。一例として、660nmの吸光度から800nmの吸光度を差し引いた値から、HbA1c濃度を算出することができる。
 後述する実施例で示すように、HbA1cの測定値は、血漿が存在すると不安定になり、信頼性の高い測定値を得ることができない。本実施形態の方法は、フィルターに血球を捕捉させた後、洗浄液でフィルターを洗浄してフィルター中の血漿を除去する。これにより、溶血剤により溶血させた血球成分中に混入する血漿の量を大幅に低減することができる。そのため、信頼性の高いHbA1c測定値を得ることができる。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。
[実験例1]HbA1c測定値に及ぼす血漿含有量の影響
 HbA1c標準検査試薬(HbA1c濃度6.1%、HbA1c濃度10%;ヘモグロビンA1cカットオフテスト認証標準物質、検査医学標準物質機構)に0~60%(v/v)となるようにヒト血漿を添加した。前記ヒト血漿を添加したHbA1c標準検査試薬のHbA1c濃度を、ラピディア(登録商標) オートHbA1c-L(富士レビオ)を用いたラテックス凝集法により測定した。各サンプルについて、660nmの吸光度及び800nmの吸光度を測定し、660nmの吸光度-800nmの吸光度の値を求めた。
 その結果を表1及び図12に示す。
Figure JPOXMLDOC01-appb-T000001
 血漿含有量が15%(v/v)以下であれば、HbA1c濃度10%の標準検査試薬で変動係数(Coefficient of Variation;CV)は2.0%以下であり、ラテックス凝集反応が安定した。そのため、HbA1cを安定的に測定するためには、試料中の血漿含有量を15%(v/v)以下とすることが望ましいことが確認された。
[実験例2]血球画分中の血漿成分測定
 ウサギの全血1000μLに、血漿成分をトレースするためにCy5を1μLを添加して混合して、Cy5添加ウサギ全血を調製した。
 前記Cy5添加ウサギ全血試料を遠心分離(遠心力(1000×g)、5分)し、血球画分と血漿画分とを分離した。血球画分と血漿画分の希釈系列をそれぞれ調製し、各希釈系列を用いてヘモグロビン量及びCy5量に対する検量線を作成した。
 次に、図13に示す構造を備えた血液成分分離デバイスを用いて、前記のCy5添加ウサギ全血試料の血球分離を行った。導入口からCy5添加ウサギ全血試料15μLを第1流路に導入し(大気圧:1分間)、導入口の逆側から5kPaで2分間陰圧印加して、Cy5含有ウサギ全血試料をフィルターに通した。その後、第3流路のポートb及びdを塞ぎ、第2流路のポートcから100μLの低張液(超純水)を導入し、フィルターに捕捉されていた血球画分を溶解させて、ポートaから溶血した血球画分を回収した。同様に、第2流路のポートa及びcを塞ぎ、第3流路のポートdから100μLの低張液を導入し、フィルターに捕捉されていた血球画分を溶解させて、ポートbから溶血した血球画分を回収した。回収した血球画分について、ヘモグロビン吸光度及びCy5蛍光を測定し、上記で作成した検量線から、血球画分中の血漿含有量を算出した。
 結果を図14に示す。低張液を第2流路に導入して血球画分を回収した場合には、血漿画分含有量は26%(v/v)であった。一方、低張液を第3流路に導入して血球画分を回収した場合には、血漿画分含有量は42%(v/v)であった。
[実験例3]血球画分中の血漿成分測定(洗浄の影響)
 上記実験例1と同様に、Cy5添加ウサギ全血試料を調製し、図11に示す構造を備えた血液成分分離デバイスを用いて、前記のCy5添加ウサギ全血試料の血球分離を行った(大気圧:1分間、5kPa陰圧:2分間)。次いで、導入口からPBS 15μLを第1流路に導入し(5kPa陰圧:2分間)、フィルターの洗浄を行った。その後、第3流路のポートb及びポートdを塞ぎ、第2流路のポートcから100μLの低張液を導入し、フィルターに捕捉されていた血球画分を溶解させて、ポートaから溶血した血球画分を回収した。実験例1と同様に、回収した血球画分中の血漿含有量を算出した。
 結果を図13に示す。図153中、「洗浄なし」は、PBS洗浄を行わなかった場合であり、実験例1の第2流路にて血球画分を回収した場合と同様である。「洗浄あり」は、PBS洗浄を行った場合であり、「洗浄なし」と比較して、血漿成分含有量が大きく低減した。
[実験例4]フィルター洗浄液量の評価
 ウサギの全血9μLに、血漿をトレースするためにCy5を1μLを添加して混合して、Cy5添加ウサギ全血試料を調製した。
 次に、図13に示す構造を備えた血液成分分離デバイスを用いて、前記のCy5添加ウサギ全血試料の血球分離を行った。導入口からCy5添加ウサギ全血試料10μLを第1流路に導入し、導入口の逆側から10kPaで2分間陰圧印加して、Cy5含有ウサギ全血試料をフィルターに通した。次いで、導入口からPBS 20μL、25μL、又は30μLを第1流路に導入し(10kPa陰圧:2分間)、フィルターの洗浄を行った。その後、第2流路のポートa及び第3流路のポートdを塞ぎ、第2流路のポートcから50μLの低張液を導入し、フィルターに捕捉されていた血球画分を溶解させて、第3流路のポートbから溶血した血球画分を回収した。血液画分の大部分が押し出されたところで、低張液の導入を停止した。
 図16は、各PBS量でフィルターを洗浄後、血球画分を回収した後の各血液成分分離デバイスの写真である。フィルター通過直後(点線の楕円部分)の液体の色を比較すると、洗浄液量が多いほど、Cy5の青色成分が薄くなっていくことが定性的に示された。Cy5の青色部分が血漿とすると、洗浄液量25μLでフィルター内の血漿の大部分が除去されたと考えられた。
[実験例5]HbA1c測定値の再現性評価
(実施例1)
 図11に示す構造を備えた血液成分分離デバイスを用いて、ヒト冷蔵血液(正常ヒト全血液・O型、コージンバイオ)の血球分離を行った。導入口からヒト冷蔵血液10μLを第1流路に導入し、導入口の逆側から10kPaで2分間陰圧印加して、ヒト冷蔵血液をフィルターに通した。次いで、導入口からPBS 25μL、25μL、又は30μLを第1流路に導入し(10kPa陰圧:2分間)、フィルターの洗浄を行った。その後、第2流路のポートa及び第3流路のポートdを塞ぎ、第2流路のポートcから100μLの低張液を導入し、フィルターに捕捉されていた血球画分を溶解させて、第3流路のポートbから溶血した血球画分を回収した。溶血液が約15μL押し出された時点で、溶血液の回収を終了した。
 前記のように回収した溶血液5μLを用いて、ラピディア(登録商標) オートHbA1c-Lを用いたラテックス凝集法を行い、660nm及び800nmの吸光度を測定した。測定された吸光度から、HbAc1濃度、及び変動係数(CV)を算出した。
(比較例1)
 Cobas(登録商標) c101(Roche)のカートリッジ内で、ヒト冷蔵血液2.0μLを用いたラテックス凝集阻害法を行い、HbAc1濃度、及び変動係数(CV)を算出した。
(比較例2)
 Affinion(登録商標) HbAic(Alere)のカートリッジ内で、ヒト冷蔵血液1.5μLの溶血処理を行った。その後、ボロン酸アフィニティ―法により、HbA1cに起因する発色を測定した。発色の測定値から、HbAc1濃度、及び変動係数(CV)を算出した。
(結果)
 実施例1、並びに比較例1及び2の結果を図15に示す。実施例1では、比較例1及び2と比較して、変動係数(CV)を小さく、再現性の高い測定が可能であることが確認された。
[実験例6]HbA1c測定値の再現性評価
 図13に示す構造を備えた血液成分分離デバイスを用いて、ヒト全血(正常ヒト全血液・O型、コージンバイオ)の血球分離を行った。導入口からヒト全血15μLを第1流路に導入し、導入口の逆側から10kPaで2分間陰圧印加して、標準検査試薬をフィルターに通した。次いで、導入口からPBS25μLを第1流路に導入し(10kPa陰圧:2分間)、フィルターの洗浄を行った。その後、第2流路のポートa及び第3流路のポートdを塞ぎ、第2流路のポートcから50μLの低張液を導入し、フィルターに捕捉されていた血球画分を溶解させて、第3流路のポートbから溶血した血球画分を回収した。溶血液が約50μL押し出された時点で、溶血液の回収を終了した。
 前記のように回収した溶血液を用いて、ラピディア(登録商標) オートHbA1c-Lを用いたラテックス凝集法を行い、660nm及び800nmの吸光度を測定した。測定された吸光度から、変動係数(CV)を算出した。
 また、遠心分離法(遠心力(1000×g)、5分)により、ヒト全血の血球画分を分離し、同様に660nm及び800nmの吸光度を測定した。
 なお、Affinion(登録商標) HbAic(Alere)を用いて、ヒト全血のHbAc1濃度を測定ところ、HbAc1濃度は5.06%であった。
 結果を図18に示す。図18には、標準検体(HbA1c濃度6.1%、HbA1c濃度10%;ヘモグロビンA1cカットオフテスト認証標準物質、検査医学標準物質機構)を、ラピディア(登録商標) オートHbA1c-Lを用いて測定した結果も併せて示す。血液成分分離デバイスを用いて全血から分離された血球画分では、遠心分離法で得られた血球画分と同等のHbA1c測定値が得られた。また、変動係数(CV)は、遠心分離法と比較して、小さかった。さらに、血液成分分離デバイスを用いて分離された血球画分では、標準検体よりもラテックス凝集法による測定値が低かった。一般的に、正常ヒト全血のHbA1c濃度は、6%以下である。そのため、標準検体(HbA1c濃度6.1%、HbA1c濃度10%)の測定値との比較により、本方法による測定値の信頼性が示された。
 10,10a,10b  第1流路、
 11  フィルター部
 12  第1導入口
 20,20a,20b,20c  第2流路
 22  第2導入口
 30  第3流路
 40  第4流路
 42  第4導入口
 50  血漿分析部
 60  血球分析部
 70  プレート
 100,200,300,400,500,600,700 血液成分分離デバイス
 310  第1の基板
 311,311a,311b,311c  凸部
 315  流路
 320  第2の基板
 330  ダイアフラム部材
 331  アンカー部
 340,340a,340b,340c  貫通孔
 800,800a,800b,800c  ダイアフラムバルブ
 V1、V1a~V1f,V2a~V2n  バルブ
 P1,P2  ポンプ部
 I1~I3  インレット
 W1,W2  廃液回収部
 A  エア導入口

Claims (22)

  1.  血球と血漿とを含む溶液が導入される第1導入口と、血球を捕捉するフィルターが設置されたフィルター部と、を備える第1流路と、
     前記第1流路の前記フィルター部に接続する第2流路と、
     を含む、血液成分分離デバイス。
  2.  前記第2流路は、第2導入口を有し、且つ前記第1流路の前記フィルター部で前記第1流路と交差する、請求項1に記載の血液成分分離デバイス。
  3.  前記第1導入口から導入された溶液は、前記フィルター部の内部を前記第1流路の軸方向に流れ、
     前記第2導入口から導入された溶液は、前記フィルター部の内部を前記第1流路の軸方向とは異なる方向に流れる、請求項2に記載の血液成分分離デバイス。
  4.  前記第1流路に接続する血漿分析部をさらに備える、
     請求項1~3のいずれか一項に記載の血液成分分離デバイス。
  5.  血漿回収部をさらに備える、
     請求項1~4のいずれか一項に記載の血液成分分離デバイス。
  6.  前記第1流路は、
     前記第1流路内の流体の流れを制御する流体制御部をさらに備え、
     前記第1導入口と前記流体制御部との間に、前記フィルター部が配置されている、
     請求項1~5のいずれか一項に記載の血液成分分離デバイス。
  7.  前記流体制御部が、吸気ポンプに接続する吸気ポート、ポンプ、又はバルブを有する、請求項6に記載の血液成分分離デバイス。
  8.  前記第1流路は、前記フィルター部を挟んで前記第1導入口とは逆側に配置されるバルブを少なくとも1つ備える、
     請求項1~7のいずれか一項に記載の血液成分分離デバイス。
  9.  前記第2流路は、前記第1流路との接続部を挟んだ一方又は両方の流路に配置されるバルブを少なくとも1つ備える、
     請求項2~8のいずれか一項に記載の血液成分分離デバイス。
  10.  前記第1流路の前記フィルター部に接続する第3流路をさらに含み、
     前記第1流路において、前記第1導入口、前記第2流路との接続部、及び前記第3流路との接続部が、この順番で配置されている、
     請求項1~9のいずれか一項に記載の血液成分分離デバイス。
  11.  前記フィルター部において、
     前記第2流路との接続部は前記フィルター部の一端に配置され、
     前記第3流路との接続部は前記フィルター部の他端に配置される
     請求項10に記載の血液成分分離デバイス。
  12.  前記第3流路は、前記第1流路の前記フィルター部で、前記第1流路と交差している、請求項11に記載の血液成分分離デバイス。
  13.  前記第3流路は、前記第1流路との接続部を挟んだ一方又は両方の流路に配置されるバルブを少なくとも1つ備える 請求項10~12のいずれか一項に記載の血液成分分離デバイス。
  14.  溶血された血球を分析する血球分析部をさらに備える、請求項1~13のいずれか一項に記載の血液成分分離デバイス。
  15.  前記血球分析部は、前記第2流路又は前記第3流路に接続している、請求項14に記載の血液成分分離デバイス。
  16.  前記血球分析部は、ヘモグロビンA1cを測定するヘモグロビンA1c測定部である、請求項14又は15に記載の血液成分分離デバイス。
  17.  血球回収部をさらに備える、
     請求項1~16のいずれか一項に記載の血液成分分離デバイス。
  18.  請求項1~17のいずれか一項に記載の血液成分分離デバイスを用いて、血液成分を分離する方法であって、
    (a)前記第1導入口から、血球と血漿とを含む溶液を前記第1流路に導入し、前記フィルターに前記溶液中の血球を捕捉させ、前記溶液中の血漿を前記第1流路において移動させる工程と、
    (b)前記第1導入口又は前記第2導入口から溶血剤を導入し、前記フィルター内の血球を溶血させ、溶血により放出された血球成分を前記第2流路において移動させる工程と、
     を含む、方法。
  19. (c)前記工程(a)の後であり前記工程(b)の前に、前記第1導入口又は前記第2導入口から、洗浄液を前記第1流路に導入し、前記フィルター内の血漿を除去する血漿除去工程、を更に含む、請求項18に記載の方法。
  20.  請求項1~16のいずれか一項に記載の血液成分分離デバイスを用いて、血液成分を分析する方法であって、
    (a)前記第1導入口から、血球と血漿とを含む溶液を前記第1流路に導入し、前記フィルターに前記溶液中の血球を捕捉させる工程と、
    (b)前記工程(a)の後、前記第1導入口又は前記第2導入口から、洗浄液を前記第1流路に導入し、前記フィルター内の血漿を除去する工程と、
    (c)前記工程(b)の後、前記第1導入口又は前記第2導入口から溶血剤を導入し、前記フィルター内の血球を溶血させる工程と、
    (d)前記工程(c)で溶血させた前記血球を分析する工程と、
     を含む、方法。
  21.  (d)前記工程(a)又は前記工程(b)の後、前記フィルターを通過した血漿を分析する工程、をさらに含む、
     請求項20に記載の血液成分を分析する方法。
  22.  ヘモグロビンA1cを分析する方法であって、
    (a)血球と血漿とを分離するフィルターに血球と血漿とを含む溶液中の血球を捕捉させる工程と、
    (b)前記工程(a)の後、前記フィルターに洗浄液を通過させ、前記フィルター内の血漿を除去する工程と、
    (c)前記工程(b)の後、前記フィルターに溶血剤を導入し、前記フィルター内の血球を溶血させる工程と、
    (d)前記工程(c)で溶血させた前記血球中のヘモグロビンA1cを分析する工程と、
     を含む、方法。
PCT/JP2018/017040 2018-04-26 2018-04-26 血液成分分離デバイス、血液成分分離方法、及び血液成分分析方法 WO2019207724A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/017040 WO2019207724A1 (ja) 2018-04-26 2018-04-26 血液成分分離デバイス、血液成分分離方法、及び血液成分分析方法
JP2020515400A JP6939988B2 (ja) 2018-04-26 2018-04-26 血液成分分離デバイス、血液成分分離方法、及び血液成分分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017040 WO2019207724A1 (ja) 2018-04-26 2018-04-26 血液成分分離デバイス、血液成分分離方法、及び血液成分分析方法

Publications (1)

Publication Number Publication Date
WO2019207724A1 true WO2019207724A1 (ja) 2019-10-31

Family

ID=68293924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017040 WO2019207724A1 (ja) 2018-04-26 2018-04-26 血液成分分離デバイス、血液成分分離方法、及び血液成分分析方法

Country Status (2)

Country Link
JP (1) JP6939988B2 (ja)
WO (1) WO2019207724A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220505A1 (ko) * 2021-04-14 2022-10-20 계명대학교 산학협력단 글루코스 및 당화혈색소 측정시스템
WO2023127707A1 (ja) * 2021-12-29 2023-07-06 株式会社Provigate 微量血液内の血球成分の要素と非血球成分の要素とを測定するための方法、装置及びピペットカートリッジ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122713A (en) * 1978-03-17 1979-09-22 Asahi Chem Ind Co Ltd Separation of leukocyte
JP2006501449A (ja) * 2002-09-27 2006-01-12 ザ ジェネラル ホスピタル コーポレーション 細胞分離のためのマイクロ流体デバイスおよびその使用
JP2012088089A (ja) * 2010-10-15 2012-05-10 Nanbu Plastics Co Ltd 臨床検査キットおよび血液の検査方法
WO2014112318A1 (ja) * 2013-01-16 2014-07-24 富士レビオ株式会社 検体中のヘモグロビンA1cの免疫測定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122713A (en) * 1978-03-17 1979-09-22 Asahi Chem Ind Co Ltd Separation of leukocyte
JP2006501449A (ja) * 2002-09-27 2006-01-12 ザ ジェネラル ホスピタル コーポレーション 細胞分離のためのマイクロ流体デバイスおよびその使用
JP2012088089A (ja) * 2010-10-15 2012-05-10 Nanbu Plastics Co Ltd 臨床検査キットおよび血液の検査方法
WO2014112318A1 (ja) * 2013-01-16 2014-07-24 富士レビオ株式会社 検体中のヘモグロビンA1cの免疫測定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220505A1 (ko) * 2021-04-14 2022-10-20 계명대학교 산학협력단 글루코스 및 당화혈색소 측정시스템
WO2023127707A1 (ja) * 2021-12-29 2023-07-06 株式会社Provigate 微量血液内の血球成分の要素と非血球成分の要素とを測定するための方法、装置及びピペットカートリッジ

Also Published As

Publication number Publication date
JPWO2019207724A1 (ja) 2021-01-14
JP6939988B2 (ja) 2021-09-22

Similar Documents

Publication Publication Date Title
US11717824B2 (en) Methods of analyzing biological samples using a fluidic cartridge
US9767343B1 (en) Automated microscopic cell analysis
CA2456695C (en) Analytical test element and method for blood analyses
US8980635B2 (en) Disposable cartridge for fluid analysis
US9157903B2 (en) Microfluidic separation of plasma for colormetric assay
US9199233B2 (en) Biologic fluid analysis cartridge with deflecting top panel
US8741233B2 (en) Disposable cartridge for fluid analysis
US8741234B2 (en) Disposable cartridge for fluid analysis
US8741235B2 (en) Two step sample loading of a fluid analysis cartridge
US9199236B2 (en) Biologic fluid sample analysis cartridge with sample collection port
US20160008813A1 (en) Microfluidic distributing device
WO2019207724A1 (ja) 血液成分分離デバイス、血液成分分離方法、及び血液成分分析方法
Gao et al. A simple and rapid method for blood plasma separation driven by capillary force with an application in protein detection
KR20230021032A (ko) 생물학적 유체 분리 장치
US9903799B2 (en) Whole blood analytic device and method therefor
EP3160647B1 (en) Microfluidic test cartridge with no active fluid control
US20210291159A1 (en) Integrated system for sampling and processing a liquid suspension
US11859734B2 (en) Valve for microfluidic device
US20220111383A1 (en) In Vitro Diagnostic Device with Integrated Plasma Separator
TWM636774U (zh) 微流道晶片
CN116133751A (zh) 用于分析的***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916006

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515400

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916006

Country of ref document: EP

Kind code of ref document: A1