WO2019206290A1 - 有机电致发光器件 - Google Patents

有机电致发光器件 Download PDF

Info

Publication number
WO2019206290A1
WO2019206290A1 PCT/CN2019/084627 CN2019084627W WO2019206290A1 WO 2019206290 A1 WO2019206290 A1 WO 2019206290A1 CN 2019084627 W CN2019084627 W CN 2019084627W WO 2019206290 A1 WO2019206290 A1 WO 2019206290A1
Authority
WO
WIPO (PCT)
Prior art keywords
ebi
ebii
layer
organic
electroluminescent device
Prior art date
Application number
PCT/CN2019/084627
Other languages
English (en)
French (fr)
Inventor
张兆超
李崇
王立春
Original Assignee
江苏三月光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏三月光电科技有限公司 filed Critical 江苏三月光电科技有限公司
Publication of WO2019206290A1 publication Critical patent/WO2019206290A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers

Definitions

  • the present invention relates to the field of semiconductor technology, and more particularly to an organic electroluminescent device, particularly an organic electroluminescent device comprising an electron blocking layer.
  • the organic electroluminescent device technology can be used for manufacturing new display products as well as for preparing new lighting products, and is expected to replace the existing liquid crystal display and fluorescent lighting, and has a wide application prospect.
  • An organic electroluminescent device is used as a current device. When a voltage is applied to electrodes at both ends thereof and an electric field acts on the positive and negative charges in the organic layer functional material film layer, the positive and negative charges are further recombined in the organic light-emitting layer, that is, Electroluminescence.
  • Organic electroluminescent devices are generally multilayer in structure, and various auxiliary functional layers other than the luminescent layer also play a vital role in device performance.
  • a reasonable device structure can effectively improve the performance of the device, and an electron injecting layer, an electron transporting layer, a hole blocking layer, an emitting layer, an electron blocking layer, a hole transporting layer, and a hole injecting layer are widely used to improve the performance of the device.
  • the carriers (holes and electrons) in the organic electroluminescent device are respectively injected into the device by the two electrodes of the device under the driving of the electric field, and are combined to emit light in the luminescent layer.
  • a hole transporting material used in a conventional organic electroluminescent device such as an aromatic amine derivative, has excellent hole mobility, but due to insufficient electron blocking property, a part of electrons pass through the light emitting layer. It is impossible to expect an increase in luminous efficiency.
  • a reasonable energy level structure facilitates the formation of a step barrier for the energy levels in each layer of the device, reduces the potential barrier of hole injection, and reduces the driving voltage of the device, thereby improving the luminous efficiency and lifetime of the device.
  • the present invention provides an organic electroluminescent device, which is provided with a substrate, a first electrode, an organic functional material layer and a second electrode in this order from bottom to top, and the organic functional material layer comprises:
  • a light emitting layer over the hole transporting region, comprising a host material and a guest material
  • An electron transport region located above the light emitting layer,
  • the hole transporting region comprises a hole injecting layer and/or a hole transporting layer above the first electrode and an electron blocking layer thereon, and
  • the electron blocking layer material includes first and second organic materials doped at a mass ratio of 0.5:9.5 to 9.5:0.5, wherein a highest occupied molecular orbital (HOMO) level of the first organic material is between the luminescent layer body
  • the HOMO level of the material is between -75.75 ev
  • the HOMO level of the second organic material is between the HOMO level and the -75.75 ev of the hole injection layer/hole transport layer adjacent thereto;
  • the difference between the lowest unoccupied molecular orbital (LUMO) level of the first and second organic materials and the LUMO energy level of the primary and guest materials of the luminescent layer is ⁇ 0.2 ev.
  • the HOMO level of the material of the electron blocking layer is between the HOMO energy of the hole injection layer/hole transport layer
  • the HOMO level of the material of the level or the light-emitting layer is between -5.75 ev.
  • This level matching reduces the barrier between the anode and the interface of the light-emitting layer, which facilitates the injection of holes from the anode into the light-emitting layer, thereby improving
  • the injection efficiency of the holes reduces the driving voltage of the device; at the same time, the LUMO energy level of the material of the electron blocking layer is higher than the LUMO energy level of the light-emitting layer, which is advantageous for effectively blocking electrons in the light-emitting layer, thereby improving
  • the composite probability of carriers increases the luminous efficiency of the device. Therefore, the electron blocking layer can have both a hole transport function and an electron blocking function.
  • the higher triplet excitation level of the electron blocking layer can block excitons generated in the luminescent layer in the luminescent layer, thereby improving the luminous efficiency of the device.
  • the higher glass transition temperature of the electron blocking layer of the present invention increases the heat resistance of the device.
  • Figure 1 is a schematic cross-sectional view showing an organic electroluminescent device of one embodiment of the present invention
  • Fig. 2 schematically shows an energy transfer mechanism of an organic electroluminescent device of one embodiment of the present invention.
  • any numerical range recited herein is intended to include all sub-ranges that have the For example, "1.0 to 10.0" means including all subranges (and 1.0 and 10.0) between the listed minimum value of 1.0 and the listed maximum value of 10.0, that is, having a minimum value equal to or greater than 1.0 and equal to Or all subranges of values less than 10.0. Any of the maximum numerical limits set forth herein are meant to include all of the smaller numerical limits that are included herein, and any minimum numerical limitation listed herein is meant to include all of the greater numerical limitations included herein. The Applicant reserves the right to modify the present specification, including the claims, to clearly describe any sub-ranges that fall within the scope of the invention.
  • Fig. 1 schematically shows a cross-sectional view of an organic electroluminescent device of one embodiment of the present invention.
  • an organic electroluminescent device according to an embodiment of the present invention is provided with a substrate 1, a first electrode 2, a hole transporting region A, a light emitting layer 6, an electron transporting region B, and a second electrode 10 in this order from bottom to top.
  • the hole transporting region A includes a hole injecting layer 3, a hole transporting layer 4, and an electron blocking layer 5 in this order from bottom to top
  • the electron transporting region B includes a hole blocking layer 7, an electron transporting layer 8, and electrons in order from bottom to top.
  • Inject layer 9 is provided with a substrate 1, a first electrode 2, a hole transporting region A, a light emitting layer 6, an electron transporting region B, and a second electrode 10 in this order from bottom to top.
  • the hole transporting region A includes a hole injecting layer 3, a hole transporting layer 4, and an electron blocking layer 5 in this order from bottom to top
  • any substrate commonly used for an organic electroluminescence device can be selected.
  • transparent substrates such as glass or transparent plastic substrates; opaque substrates such as silicon substrates; flexible PI film substrates.
  • Different substrates have different mechanical strength, thermal stability, transparency, surface smoothness, and water repellency, and the direction of use is different depending on the nature.
  • a transparent substrate is preferably used.
  • the thickness of the substrate is not particularly limited.
  • a first electrode is formed on the substrate, and the first electrode and the second electrode may face each other.
  • the first electrode can be an anode.
  • the first electrode may be a transmissive electrode, a semi-transmissive electrode or a reflective electrode.
  • the first electrode may be formed using a transparent metal oxide such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), or indium tin zinc oxide ( ITZO) and so on.
  • the first electrode may include Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, or a mixture of metals.
  • the thickness of the first electrode layer depends on the material used, and is usually from 50 to 500 nm, preferably from 70 to 300 nm and more preferably from 100 to 200 nm.
  • the organic functional material layer disposed between the first electrode and the second electrode includes a hole transporting region, a light emitting layer, and an electron transporting region in order from bottom to top.
  • the hole transporting region may be disposed between the first electrode and the light emitting layer.
  • the hole transporting region may include a hole injecting layer, a hole transporting layer, and an electron blocking layer, but is not limited thereto.
  • the hole transporting region may include a hole injecting layer, a hole transporting layer, and an electron blocking layer disposed on the first electrode in order from bottom to top.
  • an organic material having a p-type property which is easily oxidized and electrochemically stabilized when it is oxidized, is mainly used as a hole injecting material or a hole transporting material.
  • an organic material having an n-type property which is easily reduced and electrochemically stabilized when it is reduced, is used as an electron injecting material or an electron transporting material.
  • a material having both a p-type property and an n-type property is preferable, which is stable when it is oxidized and reduced, and preferably has a high luminescence for converting excitons into light when excitons are formed. Efficiency material.
  • the material of the hole injection layer is usually a material preferably having a high work function, so that holes are easily injected into the organic material layer.
  • Specific examples of the material of the hole injection layer include, but are not limited to, copper phthalocyanine, N,N'-diphenyl-N,N'-bis-[4-(phenyl-m-toluene-amino)-phenyl ]-Biphenyl-4,4'-diamine (DNTPD), 4,4',4"-tris(3-methylphenylphenylamino)triphenylamine (m-MTDATA), 4,4'4" -Tris(N,N-diphenylamino)triphenylamine (TDATA), 4,4',4"-tris ⁇ N,-(2-naphthyl)-N-phenylamino ⁇ -triphenylamine (2TNATA) , poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulf
  • the material of the hole transport layer is preferably a material having a high hole mobility, which enables holes to be transferred from the anode or the hole injection layer to the light-emitting layer.
  • Specific examples of the material of the hole transport layer include, but are not limited to, carbazole-based derivatives such as N-phenylcarbazole or polyvinylcarbazole; anthracene-based derivatives; triphenylamine-based derivatives such as N , N'-bis(3-methylphenyl)-N,N'-diphenyl-[1,1-biphenyl]-4,4'-diamine (TPD) and 4,4',4" -Tris(N-carbazolyl)triphenylamine (TCTA), N,N'-bis(1-naphthyl)-N,N'-diphenylbenzidine (NPB), 4,4'-cyclohexylene Bis[N,N-bis(4-methylphenyl)aniline](TA
  • the hole injection layer and/or the hole transport layer may further include a charge generating material for improving conductivity.
  • the charge generating material may be a p-dopant.
  • P-dopants are, for example, anthracene derivatives such as tetracyanoquinodimethane (TCNQ) and 2,3,5,6-tetrafluoro-tetracyano-1,4- Benzodiazepine (F4-TCNQ); hexaazatriphenylene derivative, such as 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaaza Triphenylene (HAT-CN); a cyclopropane derivative such as 4,4',4"-((1E,1'E,1"E)-cyclopropane-1,2,3-trimethylenetris(cyanide) Carbididinide)) Tris(2,3,5,6-tetrafluorobenzyl); metal oxides such as tungsten oxide,
  • the electron blocking layer of the present invention may be disposed over the hole injection layer/hole transport layer.
  • the electron blocking layer material comprises a first organic material and a second organic material, wherein a ratio of the first organic material to the second organic material is 0.5:9.5-9.5:0.5, preferably 3:7-7:3, more preferably Is 4:6-6:4 and most preferably 5:5, based on mass, and wherein the HOMO level of the first organic material is between the HOMO level of the luminescent layer host material and -75.
  • the HOMO energy level of the second organic material is between HOMO energy level and -75.75 ev of the hole injection layer/hole transport layer adjacent thereto;
  • LUMO energy of the first and second organic materials The difference between the level and the LUMO energy level of the host material material of the light-emitting layer is ⁇ 0.2 ev.
  • FIG. 2 is a view schematically showing an energy transfer mechanism of an organic electroluminescent device according to an embodiment of the present invention, wherein a represents a hole injection layer, b represents an electron blocking layer, c represents a guest of the light-emitting layer, and d represents a light-emitting layer.
  • e represents an electron transport layer.
  • the absolute value of the difference between the HOMO levels of the first organic material and the luminescent layer host material is ⁇ 0.3 ev
  • the absolute value of the difference between the HOMO levels of the hole transport layer material is ⁇ 0.3 ev.
  • the difference between the LUMO energy level of the first and second organic materials and the LUMO energy level of the host material material of the light-emitting layer is ⁇ 0.2 ev, preferably ⁇ 0.3 ev and more preferably ⁇ 0.5 ev, which may It is effective to prevent electrons from being injected from the light emitting layer into the hole transporting region. Therefore, the electron blocking layer has both a hole transporting function and an electron blocking function.
  • the first organic material may be selected from the group consisting of ruthenium, azaindene, snail, azaindene, acridine, acridine derivative, homo benzene, carbazole or carbazole derivative.
  • ruthenium azaindene
  • snail azaindene
  • acridine acridine derivative
  • homo benzene carbazole or carbazole derivative.
  • the above (EBI-1), (EBI-3), (EBI-4), (EBI-7), (EBI-10), (EBI-11), (EBI) are preferably used.
  • the second organic material may be selected from the group consisting of ruthenium, azaindene, snail, azaindole, phenoxazine, phenothiazine, phenoxazine derivative, acridine derivative, and A compound of one or more of benzene, triarylamine, spirooxazepine or spirodimethylhydrazine, exemplified by a compound having the following structural formula:
  • EBII-1 to EBII-59 can be synthesized according to methods known to those skilled in the art, for example, in the application numbers 2016112059861, 2016102612529, 2016111795124, 2015107629517, 2016112004214, 2016102592864, 2016111611012, 2016102620987, 2016102592807, 2016111870337, 201610797543.X The methods of the Chinese Patent Application No. 2017108971089, the disclosure of the entire disclosure of the entire disclosure of
  • EBII-4 As the second organic material of the present invention, it is preferred to use the above (EBII-4), (EBII-6), (EBII-8), (EBII-10), (EBII-12), (EBII-13), (EBII). -16), (EBII-20), (EBII-21), (EBII-22), (EBII-24), (EBII-25), (EBII-27), (EBII-29), (EBII-30) ), (EBII-31), (EBII-33), (EBII-34), (EBII-37), (EBII-38), (EBII-39), (EBII-42), (EBII-43), (EBII-46), (EBII-47), (EBII-48), (EBII-52), (EBII-53), (EBII-54), (EBII-56), (EBII-57) or (EBII One or more of -58), more preferably using the above (EBII-4),
  • the electron blocking layer material of the present invention has a hole mobility of from 1 ⁇ 10 -5 to 1 ⁇ 10 -2 cm 2 /(V ⁇ s), preferably from 1 ⁇ 10 -4 to 1 ⁇ 10 -2 cm 2 / ( V ⁇ s) is more preferably 1 ⁇ 10 -4 to 1 ⁇ 10 -3 cm 2 /(V ⁇ s).
  • the electron blocking layer material of the present invention has a glass transition temperature of ⁇ 120 ° C, preferably ⁇ 130 ° C and more preferably ⁇ 140 ° C.
  • the electron blocking layer of the present invention may have a thickness of from 1 to 200 nm, preferably from 5 to 150 nm and more preferably from 10 to 100 nm.
  • the light emitting layer may be disposed over the hole transporting region.
  • the material of the light-emitting layer is a material capable of emitting visible light by respectively receiving holes and electrons from the hole transport layer and the electron transport layer, and combining the received holes and electrons, preferably having high fluorescence and phosphorescence. Quantum efficient materials. Depending on the color of the luminescent material, the luminescent material is divided into blue, green and red luminescent materials, and in addition to the need for more natural colors, it is additionally divided into yellow and orange luminescent materials.
  • the light emitting layer may include a host material and a guest material.
  • a host material and the guest material of the light-emitting layer of the organic electroluminescent device of the present invention a light-emitting layer material for an organic electroluminescence device which is known in the art may be used, and the host material may be, for example, a thiazole derivative or a benzene.
  • the guest material may be, for example, quinacridone, coumarin, red fluorescent Alkene, anthracene and derivatives thereof, benzopyran derivatives, rhodamine derivatives or aminostyrene derivatives.
  • the luminescent material may also comprise a phosphorescent or fluorescent material.
  • the phosphorescent material include phosphorescent materials of metal complexes of ruthenium, platinum, and the like.
  • a green phosphorescent material such as Ir(ppy) 3 [fac-tris(2-phenylpyridine)fluorene]
  • a blue phosphorescent material such as FIrpic or FIr6
  • a red phosphorescent material such as Btp2Ir (acac)
  • the fluorescent material those known in the art can be used.
  • non-host-guest doping system materials known in the art for luminescent layers in organic electroluminescent devices with thermally activated delayed fluorescence (TADF) can be used.
  • TADF thermally activated delayed fluorescence
  • the ratio of the host material to the guest material used is from 99:1 to 70:30, preferably from 99:1 to 85:15 and more preferably from 97:3 to 87:13, based on the mass. meter.
  • the thickness of the light-emitting layer of the present invention may be from 5 to 60 nm, preferably from 10 to 50 nm, more preferably from 20 to 45 nm.
  • the electron transporting region may include a hole blocking layer, an electron transporting layer, and an electron injecting layer disposed on the light emitting layer in this order from the bottom to the top, but is not limited thereto.
  • the hole blocking layer is a layer that blocks holes injected from the anode through the light emitting layer and enters the cathode, thereby extending the life of the device and improving the performance of the device.
  • the hole blocking layer of the present invention may be disposed on the light emitting layer to the top.
  • a compound having a hole blocking function known in the art for example, a phenanthroline derivative such as batholine (referred to as BCP), or aluminum can be used.
  • the hole blocking layer of the present invention may have a thickness of 2 to 200 nm, preferably 5 to 150 nm, and more preferably 10 to 100 nm.
  • the electron transport layer can be disposed over the luminescent layer or, if present, the hole blocking layer.
  • the electron transport layer material is a material that easily receives electrons from the cathode and transfers the received electrons to the light emitting layer. Materials having high electron mobility are preferred.
  • an electron transport layer material for an organic electroluminescence device known in the art for example, a quinolinol derivative typified by Alq 3 or BAlq can be used.
  • the electron transport layer of the present invention may have a thickness of 10 to 80 nm, preferably 20 to 60 nm, and more preferably 25 to 45 nm.
  • the electron injection layer may be disposed on the electron transport layer.
  • the electron injecting layer material is generally a material preferably having a low work function such that electrons are easily injected into the organic functional material layer.
  • an electron injecting layer material for an organic electroluminescence device known in the art for example, an alkali metal such as lithium fluoride (LiF) or cesium fluoride can be used.
  • An alkaline earth metal salt such as a salt or magnesium fluoride or a metal oxide such as alumina.
  • the electron injecting layer of the present invention may have a thickness of 0.1 to 5 nm, preferably 0.5 to 3 nm, and more preferably 0.8 to 1.5 nm.
  • the second electrode may be disposed over the electron transport region.
  • the second electrode can be a cathode.
  • the second electrode EL2 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.
  • the second electrode may include, for example, Li, Ca, LiF/Ca, LiF/Al, Al, Mg, BaF, Ba, Ag, or a compound or mixture thereof; when the second electrode is a semi-transmissive electrode Or when the electrode is reflective, the second electrode may include Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Li, Ca, LiF/Ca, LiF/Al, Mo, Ti or a compound or mixture thereof .
  • the organic electroluminescent device of the present invention may be of a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
  • the first electrode may be a reflective electrode and the second electrode may be a transmissive electrode or a semi-transmissive electrode.
  • the first electrode may be a transmissive electrode or a semi-transmissive electrode, and the second electrode may be a reflective electrode.
  • the organic electroluminescent device may further include a package structure.
  • the package structure may be a protective structure for preventing foreign substances such as moisture and oxygen from entering the organic layer of the organic electroluminescent device.
  • the package structure may be, for example, a can, such as a glass jar or a metal can; or a film covering the entire surface of the organic layer.
  • the organic electroluminescent device of the present invention can be prepared, for example, by sequentially laminating a first electrode, an organic functional material layer, and a second electrode on a substrate.
  • a physical vapor deposition method such as a sputtering method or an electron beam vapor method, or a vacuum evaporation method may be used, but is not limited thereto.
  • the above compound can be used to form an organic functional material layer by, for example, a vacuum deposition method, a vacuum evaporation method, or a solution coating method.
  • the solution coating method means a spin coating method, a dip coating method, a jet printing method, a screen printing method, a spray method, and a roll coating method, but is not limited thereto.
  • Vacuum evaporation means heating and plating a material onto a substrate in a vacuum environment. In the present invention, it is preferred to form the respective layers using a vacuum evaporation method.
  • the materials for forming the respective layers described in the present invention may be used as a single layer by separately forming a film, or may be formed as a single layer by mixing with other materials, or may be separately formed.
  • Glass transition temperature Tg measured by differential scanning calorimetry (DSC, Germany NETZSCH DSC204F1 differential scanning calorimeter), heating rate 10 ° C / min;
  • HOMO energy level using vacuum evaporation equipment, under the pressure of 1.0E -5 Pa vacuum, the evaporation rate is controlled
  • the material was evaporated onto an ITO substrate and then tested by an ionization energy test system (IPS3) to test the vacuum environment;
  • IPS3 ionization energy test system
  • Eg level based on the UV spectrophotometric (UV absorption) baseline of the material single film and the rising side of the first absorption peak, the tangent line is calculated using the tangent and baseline intersection values.
  • LUMO level calculated based on the difference between the aforementioned HOMO level and the Eg level.
  • Hole mobility The material was fabricated into a single charge device and measured by the SCLC method.
  • EBI-1 Synthesized according to the following process:
  • Elemental analysis structure (Formula C 24 H 15 BrO): Theory C, 72.19; H, 3.79; Br, 20.01; O, 4.01; test value: C, 72.17; H, 3.78 ; Br, 20.03; O, 4.02.
  • HPLC-MS The theoretical molecular weight of the material was 398.03, and the measured molecular weight was 398.61.
  • Elemental analysis structure (Molecular formula C 27 H 20 BrN): Theory C, 73.98; H, 4.60; Br, 18.23; N, 3.20; Tests: C, 73.96; H, 4.61; Br, 18.21; N, 3.22.
  • HPLC-MS The theoretical molecular weight of the material was 437.08, and the measured molecular weight was 437.53.
  • reaction system was heated to 0 ° C, 50 mL of a 2 mol/L hydrochloric acid solution was added, and the mixture was stirred for 3 hours, and the reaction was completed. After that, diethyl ether was added for extraction, and the extract was dried over anhydrous magnesium sulfate, and then evaporated, and then recrystallized from ethanol solvent to afford intermediate D1, and the purity of HPLC was 99.1%, and the yield was 62.2%.
  • Elemental analysis structure (Molecular formula C 27 H 22 BNO 2 ): Theory C, 80.41; H, 5.50; B, 2.68; N, 3.47; O, 7.93; Test value: C, 80.43; H, 5.52; B, 2.69 ;N, 3.45; O, 7.91.
  • HPLC-MS The theoretical molecular weight of the material was 403.17, and the measured molecular weight was 403.49.
  • HPLC-MS The theoretical molecular weight of the material was 677.27, and the measured molecular weight was 677.55.
  • the solid tertiary alcohol intermediate W1 had a purity of 99.2% by HPLC and a yield of 72.5%.
  • Elemental Analysis Structure (Molecular Formula C 19 H 13 Br): Theory C, 71.04; H, 4.08; Br, 24.88; Tests: C, 71.07; H, 4.06; Br, 24.87.
  • Elemental analysis structure (molecular formula C 33 H 25 N): Theory C, 91.00; H, 5.79; N, 3.22; ⁇ / RTI> ⁇ /RTI> C, 90.97; H, 5.80; N, 3.23.
  • Elemental analysis structure (molecular formula C 33 H 26 BNO 2 ): Theory C, 82.68; H, 5.47; B, 2.26; N, 2.92; O, 6.68; Tests: C, 82.69; H, 5.49; B, 2.24; N, 2.93; O, 6.65.
  • Elemental analysis structure (Molecular formula C 52 H 37 N): Theory C, 92.41; H, 5.52; N, 2.07; ⁇ / RTI> C, 92.42; H, 5.54; N, 2.04.
  • Elemental analysis structure (Molecular formula C 40 H 27 NO 2 ): calcd. C, 86.78; H, 4.92; N, 2.53; O, 5.78; C, 86.77; H, 4.91; N, 2.55; O, 5.77.
  • Elemental analysis structure (Molecular formula C 40 H 27 N): Theory C, 92.10; H, 5.22; N, 2.69; Tests: C, 92.09; H, 5.21.; N, 2.70.
  • Elemental analysis structure (Molecular formula C 46 H 31 N): Theory C, 92.43; H, 5.23; N, 2.34; ⁇ / RTI> ⁇ /RTI> C, 92.44; H, 5.21.; N, 2.35.
  • Elemental Analysis Structure (Molecular Formula C 49 H 41 NO): Theory C, 89.19; H, 6.26; N, 2.12; O, 2.42; Tests: C, 89.21; H, 6.27; N, 2.11; O, 2.41.
  • Elemental analysis structure (Molecular formula C 37 H 25 N): Theory C, 91.89; H, 5.21.; N, 2.90; Tests: C, 91.89; H, 5.20; N, 2.91.
  • Elemental analysis structure (Molecular formula C 52 H 37 N): Theory C, 92.41; H, 5.52; N, 2.07; ⁇ / RTI> C, 92.44; H, 5.51; N, 2.05.
  • EBII-48 synthesized according to the following process
  • Elemental analysis structure (Molecular formula C 52 H 39 N): Theory C, 92.13; H, 5.80; N, 2.07; ⁇ / RTI> C, 92.13; H, 5.82; N, 2.05.
  • Table 1 shows the respective energy level test results of the first and second organic materials used and the host material CBP of the luminescent material, the guest material Ir(PPy) 3 , and the hole transporting material HT1 adjacent thereto.
  • the HOMO energy level of the first organic material of the present invention is between the HOMO energy level of the light-emitting layer host material and -75. ev
  • the HOMO energy level of the second organic material is between a HOMO energy level of -5.75 ev between the material of the hole transport layer adjacent thereto; and a difference between the LUMO energy level of the first and second organic materials and the LUMO energy level of the host material and the guest material of the light-emitting layer ⁇ 0.2ev.
  • EBI-1 and EBII-39 were placed in two evaporation sources using CIC evaporation equipment (manufactured by Changzhou Industrial Co., Ltd.), and the EBI-1 evaporation rate was controlled under a vacuum of 1.0E -5 Pa. Control the EBII-39 evaporation rate to The electronic barrier layer material 1 of the present invention is obtained by co-mixing.
  • Example 2 The preparation process of Example 1 was repeated except that the evaporation rate of EBI-1 was The evaporation rate of EBII-39 is An electron blocking layer material 2 is obtained.
  • Example 1 The preparation process of Example 1 was repeated except that the evaporation rate of EBI-1 was The evaporation rate of EBII-39 is An electron blocking layer material 3 is obtained.
  • Example 1 The preparation procedure of Example 1 was repeated except that EBI-37 and EBII-21 were used to obtain an electron blocking layer material 4.
  • Example 1 The preparation procedure of Example 1 was repeated except that EBI-49 and EBII-48 were used to obtain an electron blocking layer material 5.
  • vacuum evaporation is performed under the following conditions: using a CIC vapor deposition apparatus (manufactured by Changzhou Industry Co., Ltd.), the vapor deposition rate is controlled under a vacuum of 1.0 E -5 Pa.
  • HAT-CN is deposited by a vacuum evaporation method to a thickness of 10 nm, this layer serves as a hole injection layer;
  • HT1 is deposited by vacuum evaporation, the thickness is 90 nm, the layer is a hole transport layer;
  • the electron blocking layer material 1 obtained in Example 1 for preparing an electron blocking layer material is deposited by vacuum evaporation, having a thickness of 20 nm, the layer being an electron blocking layer;
  • the host material is CBP
  • the doping material is Ir(PPy) 3
  • the CBP and Ir(PPy) 3 mass ratio is 90:10
  • the thickness is 40nm;
  • TPBI is evaporated by vacuum evaporation to a thickness of 40 nm, and the layer serves as an electron transport layer;
  • the layer is an electron injection layer
  • the layer is a second electrode layer
  • Table 3 shows the results of measuring the properties of the produced organic electroluminescent device at a current density of 10 mA/cm 2 .
  • the LT90 refers to the time it takes for the device brightness to decay to 90% at a constant current density of 10 mA/cm 2 .
  • the life test system is the OLED device life tester jointly researched by the owner of the invention and Shanghai University.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件,由下至上依次设置有基板、第一电极、有机功能材料层和第二电极,有机功能材料层由下至上依次包括位于第一电极上的空穴传输区域、发光层和电子传输区域,其中发光层包括主体和客体材料,空穴传输区域包括空穴注入层和/或空穴传输层及位于其上的电子阻挡层,该电子阻挡层包括以0.5∶9.5至9.5∶0.5质量比掺杂的第一和第二有机材料,其中第一有机材料的HOMO能级介于发光层主体材料的HOMO能级和-5.75ev之间,且第二有机材料的HOMO能级介于与其邻接的空穴注入层/空穴传输层的HOMO能级和-5.75ev之间,第一和第二有机材料的LUMO能级与发光层主、客体材料的LUMO能级之差≥0.2ev。

Description

有机电致发光器件 技术领域
本发明涉及半导体技术领域,更具体而言,涉及一种有机电致发光器件,尤其是包括电子阻挡层的有机电致发光器件。
背景技术
有机电致发光器件技术既可以用于制造新型显示产品,也可以用于制备新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。有机电致发光器件作为电流器件,当对其两端电极施加电压,并通过电场作用于有机层功能材料膜层中的正负电荷上,正负电荷进一步在有机发光层中复合,即产生有机电致发光。
有机电致发光器件一般为多层结构,除了发光层之外的各种辅助功能层对器件性能同样起着至关重要的作用。合理的器件结构能够有效提高器件的性能,电子注入层、电子传输层、空穴阻挡层、发光层、电子阻挡层、空穴传输层和空穴注入层被广泛用来提高器件的性能。
目前对有机电致发光器件提高性能的研究包括:降低器件的驱动电压、提高器件的发光效率、提高器件的使用寿命等。为了实现有机电致发光器件的性能的不断提升,不但需要有机电致发光器件结构和制备工艺的创新,更需要有机电致发光功能材料的不断研究和创新,制造出更高性能的有机电致发光功能材料。
有机电致发光器件中的载流子(空穴和电子)在电场的驱动下分别由器件的两个电极注入到器件中,并在发光层相遇复合发光。已知现有的有机电致发光器件中使用的空穴传输材料,例如芳香族胺衍生物,具有优异的空穴迁移率,但由于其电子阻挡性不充分,导致电子的一部分穿过发光层,无法期待其发光效率的提升。
此外,在有机电致发光器件中,并不是所有材料的能级都能很好地匹配,它们之间的势垒严重阻碍空穴的有效注入。合理的能级结构有利于器件各层中的能级形成阶梯势垒,能够降低空穴注入的势垒,降低器件的驱动电压,从而改善器件的发光效率和寿命。
因此,不断需要开发具有优异的发光效率和寿命的有机电致发光器件。
发明内容
本发明提供一种有机电致发光器件,由下至上依次设置有基板、第一电极、有机功能材料层和第二电极,所述有机功能材料层包括:
空穴传输区域,位于所述第一电极之上;
发光层,位于所述空穴传输区域之上,其包括主体材料和客体材料;
电子传输区域,位于所述发光层之上,
其中,所述空穴传输区域包括位于第一电极之上的空穴注入层和/或空穴传输层以及位于其上的电子阻挡层,以及
所述电子阻挡层材料包括第一和第二有机材料,它们以0.5∶9.5至9.5∶0.5的质量比例掺杂,其中第一有机材料的最高占据分子轨道(HOMO)能级介于发光层主体材料的HOMO能级和-5.75ev之间,且第二有机材料的HOMO能级介于与其邻接的空穴注入层/空穴传输层的HOMO能级和-5.75ev之间;
所述第一和第二有机材料的最低未占据分子轨道(LUMO)能级与所述发光层主、客体材料的LUMO能级之间的差值≥0.2ev。
在包括含本发明的第一和第二有机材料的电子阻挡层的有机电致发光器件中,所述电子阻挡层的材料的HOMO能级介于空穴注入层/空穴传输层的HOMO能级或发光层主体材料的HOMO能级与-5.75ev之间,这种能级匹配使阳极与发光层界面间的势垒减小,这有利于空穴从阳极注入到发光层中,提高了空穴的注入效率,并降低了器件的驱动电压;同时所述电子阻挡层的材料的LUMO能级高于发光层的LUMO能级,这有利于将电子有效地阻挡在发光层中,提高了载流子的复合机率,从而提高了 器件的发光效率。因此,所述电子阻挡层可同时具有空穴传输功能和电子阻挡功能。同时,所述电子阻挡层的较高的三重态激发能级可将在发光层中产生的激子封锁在发光层中,从而改善器件的发光效率。此外,本发明电子阻挡层的较高的玻璃化转变温度,提高了器件的耐热性。
附图说明
图1示意性地示出了本发明的一个实施方案的有机电致发光器件的剖视图;
图2示意性地示出了本发明的一个实施方案的有机电致发光器件的能量转移机制。
具体实施方式
下文中将参照附图更详细地描述本发明,但不意欲限制本发明。
本文中所列出的任何数值范围意指包括纳入所列范围内具有相同数值精度的全部子范围。例如,“1.0至10.0”意指包括在所列最小值1.0和所列最大值10.0之间的全部子范围(且包括1.0和10.0),也就是说,具有等于或大于1.0的最小值和等于或小于10.0的最大值的全部子范围。本文所列出的任何最大数值限制意指包括纳入本文的全部更小的数值限制,并且本文所列出的任何最小数值限制意指包括纳入本文的全部更大的数值限制。因此,申请人保留修改包括权利要求书的本说明书的权利,以明确描述落入本文明确描述的范围内的任何子范围。
需理解的是,本文中使用的表述“第一和第二有机材料的最低未占据分子轨道(LUMO)能级与所述发光层主、客体材料的LUMO能级之间的差值≥0.2ev”意指第一和第二有机材料中的LUMO能级的较低值与发光层主、客体材料的LUMO能级的较低值之差≥0.2ev。
在附图中,为了清楚起见,层和区域的尺寸可被夸大。还将理解,当层或元件称为在另一层或者基板“之上”时,该层或元件可直接位于该另一层或者基板之上,或者也可存在中间层。此外,还将理解,当层称为在两个层“之间”时,该层可以是这两个层之间的唯一的层,或者也可存在一个或者多个中间层。全文中相同的附图标记表示相同的元件。
下文中,将描述根据实施方案的有机电致发光器件。
图1示意性地示出了本发明的一个实施方案的有机电致发光器件的剖视图。参照图1,本发明的一个实施方案的有机电致发光器件由下至上依次设置有基板1、第一电极2、空穴传输区域A、发光层6、电子传输区域B和第二电极10,其中空穴传输区域A由下至上依次包括空穴注入层3、空穴传输层4和电子阻挡层5,并且电子传输区域B由下至上依次包括空穴阻挡层7、电子传输层8和电子注入层9。
作为本发明有机电致发光器件的基板,可选用任何常用于有机电致发光器件的基板。实例为透明基板,如玻璃或透明塑料基板;不透明基板,如硅基板;柔性PI膜基板。不同基板具有不同的机械强度、热稳定性、透明性、表面光滑度、防水性,根据性质不同,使用方向不同。在本发明中,优选使用透明基板。基板的厚度没有特别限制。
在基板上形成第一电极,第一电极与第二电极可彼此相对。第一电极可以是阳极。第一电极可以是透射电极、半透射电极或者反射电极。当第一电极是透射电极时,第一电极可使用透明金属氧化物来形成,例如铟锡氧化物(ITO)、铟锌氧化物(IZO)、氧化锌(ZnO)或铟锡锌氧化物(ITZO)等。当第一电极是半透射电极或反射电极时,第一电极可包括Ag、Mg、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr或金属混合物。第一电极层的厚度取决于所使用的材料,通常为50-500nm,优选为70-300nm且更优选为100-200nm。
设置于第一电极和第二电极之间的有机功能材料层由下至上依次包括空穴传输区域、发光层和电子传输区域。
空穴传输区域可设置在第一电极与发光层之间。空穴传输区域可包括空穴注入层、空穴传输层和电子阻挡层,但不限于此。例如,参照图1,空穴传输区域可包括由下至上依次设置在第一电极之上的空穴注入层、空穴传输层和电子阻挡层。
通常,具有p型性质的有机材料——其易被氧化且当其被氧化时电化学稳定——主要用作空穴注入材料或空穴传输材料。同时,具有n型性质的有机材料——其易被还原且当被还原时电化 学稳定——用作电子注入材料或电子传输材料。作为发光层材料,优选既具有p型性质又具有n型性质的材料,当其被氧化和还原时均稳定,还优选当形成激子时具有较高的用于将激子转化为光的发光效率的材料。
空穴注入层的材料通常是优选具有高功函数的材料,使得空穴容易地注入有机材料层中。空穴注入层的材料的具体实例包括,但不限于,酞菁铜、N,N’-二苯基-N,N’-双-[4-(苯基-间甲苯-氨基)-苯基]-联苯-4,4’-二胺(DNTPD)、4,4’,4”-三(3-甲基苯基苯基氨基)三苯胺(m-MTDATA)、4,4’4”-三(N,N-二苯基氨基)三苯胺(TDATA)、4,4’,4”-三{N,-(2-萘基)-N-苯基氨基}-三苯胺(2TNATA)、聚(3,4-亚乙二氧基噻吩)/聚(4-苯乙烯磺酸酯)(PEDOT/PSS)、聚苯胺/十二烷基苯磺酸(PANI/DBSA)、聚苯胺/樟脑磺酸(PANI/CSA)或(聚苯胺)/聚(4-苯乙烯磺酸酯)(PANI/PSS)。本发明的空穴注入层的厚度可以是5-100nm、优选是5-50nm且更优选是5-20nm。
空穴传输层的材料优选为具有高的空穴迁移率的材料,这能使空穴从阳极或空穴注入层转移到发光层。空穴传输层的材料的具体实例包括,但不限于:基于咔唑的衍生物,例如N-苯基咔唑或聚乙烯咔唑;基于芴的衍生物;基于三苯胺的衍生物,例如N,N’-双(3-甲基苯基)-N,N’-二苯基-[1,1-联苯]-4,4’-二胺(TPD)和4,4’,4”-三(N-咔唑基)三苯胺(TCTA)、N,N’-二(1-萘基)-N,N’-二苯基联苯胺(NPB)、4,4’-亚环己基双[N,N-双(4-甲基苯基)苯胺](TAPC)和HT1(下文将示出其具体结构式)。根据本发明,优选使用HT1作为空穴传输层材料。本发明的空穴传输层的厚度可以是5-200nm、优选是10-150nm且更优选是20-100nm。
空穴注入层和/或空穴传输层还可以包含用于改善传导性的电荷产生材料。所述电荷产生材料可以为p-掺杂物。P-掺杂物的非限定性化合物的实例为,例如,醌衍生物,例如四氰基醌二甲烷(TCNQ)和2,3,5,6-四氟-四氰基-1,4-苯醌二甲烷(F4-TCNQ);六氮杂三亚苯衍生物,例如2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂三亚苯(HAT-CN);环丙烷衍生物,例如4,4’,4”-((1E,1’E,1”E)-环丙烷-1,2,3-三亚甲基三(氰基甲酰亚基))三(2,3,5,6-四氟苄基);金属氧化物,例如氧化钨和氧化钼。
本发明的电子阻挡层可设置在空穴注入层/空穴传输层之上。所述电子阻挡层材料包括第一有机材料和第二有机材料,其中第一有机材料与第二有机材料的比例为0.5∶9.5-9.5∶0.5,优选为3∶7-7∶3,更优选为4∶6-6∶4且最优选为5∶5,基于质量计,并且,其中所述第一有机材料的HOMO能级介于所述发光层主体材料的HOMO能级和-5.75ev之间,且所述第二有机材料的HOMO能级介于与其邻接的空穴注入层/空穴传输层的HOMO能级和-5.75ev之间;所述第一和第二有机材料的LUMO能级与所述发光层主客体材料的LUMO能级之间的差值为≥0.2ev。
图2示意性地示出了本发明的一个实施方案的有机电致发光器件的能量转移机制,其中a代表空穴注入层,b代表电子阻挡层,c代表发光层的客体,d代表发光层的主体。以及e代表电子传输层。
在一个实施方案中,所述第一有机材料和发光层主体材料的HOMO能级之间差值的绝对值为≤0.3ev,且所述第二有机材料和与其邻接的空穴注入层材料/空穴传输层材料的HOMO能级之间差值的绝对值为≤0.3ev。所述电子阻挡材料与发光层材料之间较小的能量势垒使得空穴可容易地经由电子阻挡层注入至发光层中。所述第一和第二有机材料的LUMO能级与所述发光层主客体材料的LUMO能级之间的差值为≥0.2ev、优选为≥0.3ev且更优选为≥0.5ev,这可有效地防止电子从发光层注入至空穴传输区域中。因此,所述电子阻挡层既具有空穴传输功能又具有电子阻挡功能。
根据本发明的一个实施方案,第一有机材料可选自包含芴、氮杂芴、螺芴、氮杂螺芴、吖啶、吖啶衍生物、均苯、咔唑或咔唑衍生物中的一种或多种的化合物,实例为具有下述结构式的化合物:
Figure PCTCN2019084627-appb-000001
Figure PCTCN2019084627-appb-000002
Figure PCTCN2019084627-appb-000003
Figure PCTCN2019084627-appb-000004
上述化合物EBI-1至EBI-67可根据本领域技术人员已知的方法合成,例如记载于申请号为201610797543.X、2016102612529、2016111795124、2015107629517、201610743566.2、2016102592807、2016111870337、2016112071045、2016111870500、201610259334X、2016112059518、2017105481707、2017104224787、2017108995990、2017109001681、2017111804306和2017109097307的中国专利申请中的方法,所述文献全部以引用的方式纳入本文中。
作为本发明的第一有机材料,优选使用上述(EBI-1)、(EBI-3)、(EBI-4)、(EBI-7)、(EBI-10)、(EBI-11)、(EBI-12)、(EBI-14)、(EBI-18)、(EBI-22)、(EBI-23)、(EBI-29)、(EBI-30)、(EBI-31)、(EBI-33)、(EBI-34)、(EBI-35)、(EBI-37)、(EBI-38)、(EBI-39)、(EBI-40)、(EBI-44)、(EBI-46)、(EBI-48)、(EBI-49)、(EBI-52)、(EBI-53)、(EBI-58)、(EBI-59)、(EBI-60)、(EBI-63)、(EBI-64)或(EBI-67)中的一种或多种,更优选使用上述(EBI-1)、(EBI-4)、(EBI-7)、(EBI-10)、(EBI-14)、(EBI-18)、(EBI-23)、(EBI-33)、(EBI-35)、(EBI-37)、(EBI-39)、(EBI-40)、(EBI-44)、(EBI-46)、(EBI-48)、(EBI-49)、(EBI-53)、(EBI-56)、(EBI-60)或(EBI-64)中的一种或多种。
根据本发明的一个实施方案,第二有机材料可选自包含芴、氮杂芴、螺芴、氮杂螺芴、吩噁嗪、吩噻嗪、吩噁嗪衍生物、吖啶衍生物、均苯、三芳胺、螺氧杂蒽芴或螺二甲基蒽芴中的一种或多种的化合物,实例为具有下述结构式的化合物:
Figure PCTCN2019084627-appb-000005
Figure PCTCN2019084627-appb-000006
Figure PCTCN2019084627-appb-000007
上述化合物EBII-1至EBII-59可根据本领域技术人员已知的方法合成,例如记载于申请号为2016112059861、2016102612529、2016111795124、2015107629517、2016112004214、2016102592864、2016111611012、2016102620987、2016102592807、2016111870337、201610797543.X、2017108971089、2017113683804和2017109090670的中国专利申请中的方法,所述文献全部以引用的方式纳入本文中。
作为本发明的第二有机材料,优选使用上述(EBII-4)、(EBII-6)、(EBII-8)、(EBII-10)、(EBII-12)、(EBII-13)、(EBII-16)、(EBII-20)、(EBII-21)、(EBII-22)、(EBII-24)、(EBII-25)、(EBII-27)、(EBII-29)、(EBII-30)、(EBII-31)、(EBII-33)、(EBII-34)、(EBII-37)、(EBII-38)、(EBII-39)、(EBII-42)、(EBII-43)、(EBII-46)、(EBII-47)、(EBII-48)、(EBII-52)、(EBII-53)、(EBII-54)、(EBII-56)、(EBII-57)或(EBII-58)中的一种或多种,更优选使用上述(EBII-4)、(EBII-8)、(EBII-10)、(EBII-12)、(EBII-21)、(EBII-22)、(EBII-24)、(EBII-29)、(EBII-34)、(EBII-37)、(EBII-38)、(EBII-39)、(EBII-42)、(EBII-43)、(EBII-46)、(EBII-47)、(EBII-52)、(EBII-53)、(EBII-56)或(EBII-57)中的一种或多种。
本发明的电子阻挡层材料的空穴迁移率为1×10 -5至1×10 -2cm 2/(V·s)、优选为1×10 -4至1×10 -2cm 2/(V·s)且更优选为1×10 -4至1×10 -3cm 2/(V·s)。
本发明的电子阻挡层材料的玻璃化转变温度为≥120℃,优选为≥130℃且更优选为≥140℃。
本发明的电子阻挡层的厚度可为1-200nm、优选为5-150nm且更优选为10-100nm。
发光层可设置在空穴传输区域之上。发光层的材料是一种通过分别接收来自空穴传输层和电子传 输层的空穴和电子,并将所接收的空穴和电子结合而能发出可见光的材料,优选对荧光和磷光具有高的量子效率的材料。根据其发光颜色,发光材料分为蓝色、绿色和红色发光材料,此外为了实现更多自然色的需要,另外分为黄色和橙色发光材料。其具体的实例包括羟基喹啉衍生物的金属络合物、各种金属络合物、蒽衍生物、双苯乙烯苯衍生物、芘衍生物、噁唑衍生物和聚对苯乙烯衍生物等,但不限于此。此外,发光层可以包含主体材料和客体材料。作为本发明有机电致发光器件发光层的主体材料和客体材料,均可以使用现有技术中公知的用于有机电致发光器件的发光层材料,所述主体材料可为例如噻唑衍生物、苯并咪唑衍生物、聚二烷基芴衍生物或4,4′-双(9-咔唑基)联苯(CBP);所述客体材料可为例如喹吖啶酮、香豆素、红荧烯、苝及其衍生物、苯并吡喃衍生物、罗丹明衍生物或氨基苯乙烯衍生物。
此外,为了改进荧光或磷光特性,发光材料还可包括磷光或荧光材料。磷光材料的具体实例包括铱、铂等的金属络合物的磷光材料。例如,可以使用Ir(ppy) 3[fac-三(2-苯基吡啶)铱]等绿色磷光材料,FIrpic、FIr6等蓝色磷光材料和Btp2Ir(acac)等红色磷光材料。对于荧光材料,可使用本领域中已知的那些。
此外,除了上述所使用的荧光或磷光主客体材料之外,还可以使用本领域中公知的用于有机电致发光器件中发光层的非主客体掺杂体系材料、具有热活化延迟荧光(TADF)功能的主客体材料,以及TADF功能材料和上述荧光、磷光材料相互组合搭配的形式。
在本发明的发光层中,所使用的主体材料与客体材料的比例为99∶1-70∶30,优选为99∶1-85∶15且更优选为97∶3-87∶13,基于质量计。
本发明的发光层的厚度可以为5-60nm,优选为10-50nm,更优选为20-45nm。
在本发明中,电子传输区域可由下至上依次包括设置在发光层之上的空穴阻挡层、电子传输层和电子注入层,但不限于此。
空穴阻挡层为阻挡从阳极注入的空穴穿过发光层而进入阴极,由此延长器件的寿命并提高器件的效能的层。本发明的空穴阻挡层可设置在发光层至上。作为本发明有机电致发光器件的空穴阻挡层材料,可以使用现有技术中公共知的具有空穴阻挡作用的化合物,例如,浴铜灵(称为BCP)等菲咯啉衍生物、铝(III)双(2-甲基-8-喹啉)-4-苯基酚盐(BAlq)等羟基喹啉衍生物的金属络合物、各种稀土类络合物、噁唑衍生物、***衍生物、三嗪衍生物等。本发明的空穴阻挡层的厚度可为2-200nm、优选为5-150nm且更优选为10-100nm。
电子传输层可设置在发光层或(若存在的话)空穴阻挡层之上。电子传输层材料是一种容易接收阴极的电子并将接收的电子转移至发光层的材料。优选具有高的电子迁移率的材料。作为本发明有机电致发光器件的电子传输层,可以使用现有技术中公知的用于有机电致发光器件的电子传输层材料,例如,以Alq 3、BAlq为代表的羟基喹啉衍生物的金属络合物、各种金属络合物、***衍生物、三嗪衍生物、噁二唑衍生物、噻二唑衍生物、碳化二亚胺衍生物、喹喔啉衍生物、菲咯啉衍生物、硅基化合物衍生物等。本发明的电子传输层的厚度可以为10-80nm、优选为20-60nm且更优选为25-45nm。
电子注入层可设置在电子传输层之上。电子注入层材料通常是优选具有低功函数的材料,使得电子容易地注入有机功能材料层中。作为本发明有机电致发光器件的电子注入层材料,可以使用现有技术中公知的用于有机电致发光器件的电子注入层材料,例如,氟化锂(LiF)、氟化铯等碱金属盐、氟化镁等碱土金属盐、氧化铝等金属氧化物等。本发明的电子注入层的厚度可以是0.1-5nm、优选为0.5-3nm且更优选为0.8-1.5nm。
第二电极可设置在电子传输区域之上。第二电极可以是阴极。第二电极EL2可以是透射电极、半透射电极或者反射电极。当第二电极是透射电极时,第二电极可以包括例如Li、Ca、LiF/Ca、LiF/Al、Al、Mg、BaF、Ba、Ag或者其化合物或混合物;当第二电极是半透射电极或者反射电极时,第二电极可包括Ag、Mg、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr、Li、Ca、LiF/Ca、LiF/Al、Mo、Ti或者其化合物或混合物。
取决于所用的材料,本发明的有机电致发光器件可为顶部发光型、底部发光型或双面发光型。
在有机电致发光器件是顶部发光类型的情况下,第一电极可以是反射电极,而第二电极可以是透射电极或者半透射电极。在有机电致发光器件是底部发光类型的情况下,第一电极可以是透射电极或者半透射电极,而第二电极可以是反射电极。
有机电致发光器件还可包括封装结构。所述封装结构可为防止外界物质例如湿气和氧气进入有机电致发光器件的有机层的保护结构。所述封装结构可为例如罐,如玻璃罐或金属罐;或覆盖有机层整个表面的薄膜。
在制备有机电致发光器件的过程中,例如可通过在基板上相继层压第一电极、有机功能材料层和第二电极来制备本发明的有机电致发光器件。关于此点,可使用物理气相沉积方法,如溅射法或电子束蒸汽法,或者真空蒸镀法,但不限于此。并且,可通过例如真空沉积法、真空蒸镀法或溶液涂覆法将上述化合物用于形成有机功能材料层。关于此点,溶液涂覆法意指旋涂法、浸涂法、喷射印刷法、筛网印刷法、喷雾法和辊涂法,但不限于此。真空蒸镀意指在真空环境中,将材料加热并镀到基材上。在本发明中,优选使用真空蒸镀法来形成所述各个层。
另外,需要说明的是,本发明所述的用于形成各个层的材料均可以单独成膜而作为单层使用,也可以与其他材料混合后成膜而作为单层使用,还可以为单独成膜的层之间的层叠结构、混合后成膜的层之间的层叠结构或者单独成膜的层与混合后成膜的层的层叠结构。
本文中已经公开了示例性的实施方案,虽然其中使用了特定的术语,但是这些术语仅用于且仅解释为一般和描述性含义,而并非出于限制的目的。在一些情况下,如随着本申请的递交而对本领域普通技术人员所显而易见的,除非具体地表示,否则结合特定实施方案描述的特征、特性和/或元件可单独地使用或者与结合其他实施方案描述的特征、特性和/或元件组合使用。相应地,本领域技术人员将理解,在不背离本发明的精神和范围的前提下,可在形式和细节方面作出多种变化。
以下实施例旨在更好地解释本发明,但本发明的范围不限于此。
实施例
本文中所使用的检测方法如下:
玻璃化转变温度Tg:通过示差扫描量热法(DSC,德国耐驰公司DSC204F1示差扫描量热仪)测定,升温速率10℃/min;
HOMO能级:利用真空蒸镀设备,在真空度1.0E -5Pa压力下,控制蒸镀速率为
Figure PCTCN2019084627-appb-000008
将材料蒸镀到ITO基板上,然后用电离能量测试***(IPS3)测试,测试为真空环境;
Eg能级:基于材料单膜的紫外分光光度(UV吸收)基线与第一吸收峰的上升侧画切线,用切线和基线交叉点数值算出。
LUMO能级:基于前述HOMO能级与Eg能级的差值计算得出。
电极材料的功函数:使用上海大学研发的表面功函数测试仪在大气环境下测试。
空穴迁移率:将材料制作成单电荷器件,用SCLC方法测定。
制备电子阻挡层材料
I.制备所使用的第一有机材料:
EBI-1:根据以下过程合成:
Figure PCTCN2019084627-appb-000009
在氮气气氛下,向250mL的三口瓶中加入0.02mol 4-二苯并呋喃硼酸、0.03mol 3,5-二溴-1,1’联苯,加入混合溶剂(90ml甲苯,45ml乙醇)将其溶解,然后加入0.06mol Na 2CO 3水溶液(2M),通氮气搅拌1小时。然后,加入0.0002mol Pd(PPh 3) 4,加热至100℃,回流反应15小时,利用薄层色谱 (TLC)观察反应,直至反应完全。自然冷却至室温后,过滤,将滤液减压旋蒸至无馏分。所得物质通过硅胶柱纯化(石油醚作为洗脱剂),得到中间体A1,高效液相色谱法(HPLC)分析纯度为99.8%,收率为57.9%。
元素分析结构(分子式C 24H 15BrO):理论值C,72.19;H,3.79;Br,20.01;O,4.01;测试值:C,72.17;H,3.78;Br,20.03;O,4.02。
HPLC-MS:材料理论分子量为398.03,实测分子量398.61。
Figure PCTCN2019084627-appb-000010
在氮气气氛下,向250mL的三口瓶中加入0.04mol原料B1、0.06mol 1,3-二溴苯、0.12mol叔丁醇钠、4×10 -4mol Pd 2(dba) 3、4×10 -4mol三叔丁基膦、150ml甲苯,加热至120℃,回流反应24小时,利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱纯化(石油醚作为洗脱剂),得到中间体C1,HPLC分析纯度为99.1%,收率为62.2%。
元素分析结构:(分子式C 27H 20BrN):理论值C,73.98;H,4.60;Br,18.23;N,3.20;测试值:C,73.96;H,4.61;Br,18.21;N,3.22。
HPLC-MS:材料理论分子量为437.08,实测分子量437.53。
Figure PCTCN2019084627-appb-000011
在氮气气氛下,向250mL的三口瓶中加入0.02mol所制备的中间体C1,然后加入40ml四氢呋喃将其完全溶解,冷却至-78℃。然后,向反应体系中加入15mL的1.6mol/L正丁基锂于四氢呋喃中的溶液,在-78℃下反应3h后加入0.024mol硼酸三异丙酯,再反应2h。然后,将反应体系升温至0℃,加入50mL的2mol/L盐酸溶液,搅拌3h,反应完全。之后,加入***进行萃取,将萃取液通过无水硫酸镁干燥,旋蒸,然后用乙醇溶剂重结晶,得到中间体D1,HPLC分析纯度为99.1%,收率为62.2%。
元素分析结构:(分子式C 27H 22BNO 2):理论值C,80.41;H,5.50;B,2.68;N,3.47;O,7.93;测试值:C,80.43;H,5.52;B,2.69;N,3.45;O,7.91。
HPLC-MS:材料理论分子量为403.17,实测分子量403.49。
Figure PCTCN2019084627-appb-000012
在氮气气氛下,向250mL的三口瓶中加入0.01mol所得中间体A1、0.015mol所得中间体D1,然后加入混合溶剂(90ml甲苯,45ml乙醇)将其溶解。之后加入0.03mol Na 2CO 3水溶液(2M),通氮气搅拌1小时,然后加入0.0001mol Pd(PPh 3) 4,加热至100℃,回流反应15小时,利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱纯化(正己烷作为洗脱剂),得到目标产物EBI-1,HPLC分析纯度为99.4%,收率为66.2%。
元素分析结构(分子式C 51H 35NO):理论值C,90.37;H,5.20;N,2.07;O,2.36;测试值:C,90.38;H,5.21;N,2.06;O,2.35。
HPLC-MS:材料理论分子量为677.27,实测分子量677.55。
EBI-37:根据以下过程合成:
Figure PCTCN2019084627-appb-000013
Figure PCTCN2019084627-appb-000014
在氮气气氛下,向250mL的三口瓶中加入0.05mol溴苯、0.06mol Mg粉,然后加入60ml干燥四氢呋喃将其溶解,之后加入0.0004mol单质I 2。将反应混合物加热至40℃,搅拌至溶液由黄色变为无色。再将改混合溶液加热至80℃下,搅拌反应4小时,无镁粉剩余,反应完全,得到格式试剂中间体V1。
Figure PCTCN2019084627-appb-000015
在氮气气氛下,向250mL的三口瓶中加入0.03mol 9-芴酮,然后加入40ml干燥四氢呋喃将其溶解。之后,缓慢滴加上述格式试剂中间体V1溶液,加热至80℃,回流反应15小时,生成大量白色沉淀的格式盐。然后将其冷却至室温,加入饱和NHCl 4将该格式盐转化为醇;反应完毕后,用***萃取,干燥旋蒸,并通过硅胶柱纯化(乙酸乙酯作为洗脱剂),得到略带黄色的固体叔醇中间体W1,HPLC分析纯度为99.2%,收率为72.5%。
Figure PCTCN2019084627-appb-000016
在氮气气氛下,向250mL的三口瓶中加入0.02mol所得中间体W1,然后加入用50ml甲苯将其溶解。之后缓慢滴加48%HBr水溶液(40ml),并在25℃下搅拌反应24小时,反应结束后分液,水相用甲苯萃取,有机相合并后用无水硫酸钠干燥,然后抽滤,滤饼再用乙酸乙酯冲洗,将滤液和冲洗液旋蒸至无溶剂。将所得物质通过硅胶柱纯化(石油醚作为洗脱剂),得到中间体M1,HPLC分析纯度为99.2%,收率为75.9%。
元素分析结构(分子式C 19H 13Br):理论值C,71.04;H,4.08;Br,24.88;测试值:C,71.07;H,4.06;Br,24.87。
HPLC-MS:理论值为320.02,实测值为320.52。
Figure PCTCN2019084627-appb-000017
在氮气气氛下,向250mL的三口瓶中入0.02mol原料A1、0.024mol 3-溴-1,1’联苯、0.05mol叔丁醇钠、1.0×10 -4mol Pd 2(dba) 3、1.0×10 -4mol三叔丁基磷,然后加入150ml甲苯将其溶解,加热至120℃,回流反应10小时,利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱纯化(石油醚作为洗脱剂),得到中间体O1,HPLC分析纯度为99.5%,收率为85.7%。
元素分析结构(分子式C 33H 25N):理论值C,91.00;H,5.79;N,3.22;测试值:C,90.97;H,5.80;N,3.23。
HPLC-MS:理论值为435.20,实测值为435.66。
Figure PCTCN2019084627-appb-000018
Figure PCTCN2019084627-appb-000019
称取0.02mol中间体O1溶于50ml乙酸中,用冰盐浴降温至0℃;称取0.015mol液溴溶于冰醋酸中,并缓慢滴加至中间体O1的乙酸溶液中,室温搅拌5h,利用TLC观察反应,至显示中间体O1剩余,反应完全;反应结束后,向反应液中加入Na 2CO 3溶液中和,用二氯甲烷萃取,分层,取有机相过滤,滤液减压旋蒸至无馏分,过硅胶柱(石油醚作为洗脱剂),得到中间体O2;
在氮气保护下,称取0.01mol中间体O2溶于100ml四氢呋喃中,冷却至-78℃,然后向反应体系中加入1.6mol/L正丁基锂的四氢呋喃溶液,在-78℃下反应3h后加入0.02mol硼酸三异丙酯,反应2h,然后将反应体系升至0℃,加入2mol/L盐酸溶液50ml,搅拌3h,反应完全,加入***萃取,萃取液加入无水硫酸镁干燥,旋蒸,用乙醇溶剂重结晶,得到中间体O3。
元素分析结构(分子式C 33H 26BNO 2):理论值C,82.68;H,5.47;B,2.26;N,2.92;O,6.68;测试值:C,82.69;H,5.49;B,2.24;N,2.93;O,6.65。
HPLC-MS:理论值为479.21,实测值为479.58。
Figure PCTCN2019084627-appb-000020
在氮气气氛下,向250mL的三口瓶中加入0.01mol中间体M1、0.015mol中间体O3,然后加入混合溶剂(90ml甲苯,45ml乙醇)将其溶解。之后加入0.03mol Na 2CO 3水溶液(2M),通氮气搅拌1小时,然后加入0.0001mol Pd(PPh3)4,加热至100℃,回流反应15小时,,利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱纯化(甲苯作为洗脱剂),得到目标产物EBI-37,HPLC分析纯度为99.5%,收率为76.4%。
元素分析结构(分子式C 52H 37N):理论值C,92.41;H,5.52;N,2.07;测试值:C,92.42;H,5.54;N,2.04。
HPLC-MS:理论值为675.29,实测值为675.55。
EBI-49:根据以下过程合成:
Figure PCTCN2019084627-appb-000021
在氮气气氛下,向250mL的三口瓶中加入0.05mol原料I、0.075mol原料II,然后加入混合溶剂(90ml甲苯,45ml乙醇)将其溶解,之后加入0.15mol Na 2CO 3水溶液(2M),通氮气搅拌1小时,然后加入0.0005mol Pd(PPh 3) 4,加热至100℃,回流反应15小时利用薄层色谱(TLC)观察反应,直至反应完全。自然冷却至室温后,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱纯化(乙酸乙酯作为洗脱剂),得到中间体I,HPLC分析纯度为99.1%,收率为77.3%。
元素分析结构(分子式C 40H 27NO 2):理论值C,86.78;H,4.92;N,2.53;O,5.78;测试值:C,86.77;H,4.91;N,2.55;O,5.77。
HPLC-MS:理论值为553.20,实测值为553.56。
Figure PCTCN2019084627-appb-000022
在氮气气氛下,向250mL的三口瓶中入0.03mol中间体I、0.036mol三苯基膦,然后加入50ml邻二氯苯将其溶解,加热至170℃,反应15小时,利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱纯化(石油醚作为洗脱剂),得到中间体II,HPLC分析纯度为99.3%,收率为76.6%。
元素分析结构(分子式C 40H 27N):理论值C,92.10;H,5.22;N,2.69;测试值:C,92.09;H,5.21;N,2.70。
HPLC-MS:理论值为521.21,实测值为521.68。
Figure PCTCN2019084627-appb-000023
在氮气气氛下,向250mL的三口瓶中入0.01mol中间体II、0.012mol溴苯、0.03mol叔丁醇钠、5×10-5mol Pd 2(dba) 3、5×10 -5mol三叔丁基磷,然后加入150ml甲苯将其溶解,加热至120℃,回流反应24小时利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱纯化(甲苯作为洗脱剂),得到目标产物EBI-49,HPLC分析纯度为99.4%,收率为78.1%。
元素分析结构(分子式C 46H 31N):理论值C,92.43;H,5.23;N,2.34;测试值:C,92.44;H,5.21;N,2.35。
HPLC-MS:理论值为597.25,实测值为597.72。
II.制备所使用的第二有机材料:
EBII-21:根据以下过程合成:
Figure PCTCN2019084627-appb-000024
在氮气气氛下,向250mL的四口瓶中加入0.05molN-([1,1’-联苯基]-2-基)-N-(4-溴苯基)-9,9-二甲基芴-3-胺和0.06mol Mg粉、60ml四氢呋喃,加热至80℃,回流4小时,直至反应完全,得到生成格式试剂(即中间体P1)。
Figure PCTCN2019084627-appb-000025
将0.05mol的10,10-二甲基蒽酮溶于50ml四氢呋喃中,滴加上述格式试剂P1,60℃下反应24小时,生成大量白色沉淀格式盐,最后加入饱和NHCl 4将格式盐转化为醇。反应完毕后,用***萃取,干燥旋蒸,将所得物质通过硅胶柱(石油醚∶二氯甲烷混合溶剂(3∶2)作为洗脱剂)纯化,得到略带黄色的固体叔醇(即中间体Q1)(收率为85%)。
元素分析结构(分子式C 49H 41NO):理论值C,89.19;H,6.26;N,2.12;O,2.42;测试值:C,89.21;H,6.27;N,2.11;O,2.41。
HPLC-MS:理论值为659.32,实测值为659.77。
Figure PCTCN2019084627-appb-000026
按1∶1.5当量取0.04mol上述叔醇(即中间体Q1)和0.06mol苯溶于100ml二氯甲烷中,在室温条件下滴加8ml三氟化硼·***络合物,反应30分钟,加入20ml乙醇和20ml水淬灭反应,然后用二氯甲烷(20ml*3)萃取,干燥旋蒸。所得物质通过硅胶柱(石油醚作为洗脱剂)纯化,然后用乙醇∶二氯甲烷(1∶2)重结晶,得到目标产物EBII-21(收率为68%)。
元素分析结构(分子式C 55H 45N):理论值C,91.75;H,6.30;N,1.95;测试值:C,91.76;H,6.31;N,1.93。
HPLC-MS:理论值为719.36,实测值为719.81。
EBII-39:根据以下过程合成:
Figure PCTCN2019084627-appb-000027
在氮气气氛下,向1L三口瓶中加入10.6mmol 1,1’-双(二苯基膦)二茂铁、10.6mmol乙酸钯和921mmol叔丁醇钠、709mmol联苯-4-胺、709mmol 4-溴-9,9-螺二芴溶解到400ml甲苯中,加热至120℃,回流反应20小时,反应结束后,冷却至室温,过滤,滤液旋蒸。然通过硅胶柱纯化(正己烷作为洗脱剂),并用异丙醇重结晶,得浅黄色固体中间体X,收率为87%。
元素分析结构(分子式C 37H 25N):理论值C,91.89;H,5.21;N,2.90;测试值:C,91.89;H,5.20;N,2.91。
HPLC-MS:理论值为483.20,实测值为483.63。
Figure PCTCN2019084627-appb-000028
在氮气气氛下,向1L三口瓶中加入4.4ml的1.0M的三叔丁基膦甲苯溶液、1.1mmol乙酸钯、166mmol叔丁醇钠、110mmol中间体X、140mmol 2-溴-9,9-二甲基芴和500ml甲苯,加热至120℃,回流反应10小时,反应结束后,冷却至室温,过滤,滤液旋蒸,并通过过硅胶柱纯化(甲苯作为洗脱剂),然后用乙酸乙酯重结晶,得到目标产物EBII-39,HPLC分析纯度为99.7%,收率为69.9%。
元素分析结构(分子式C 52H 37N):理论值C,92.41;H,5.52;N,2.07;测试值:C,92.44;H,5.51;N,2.05。
HPLC-MS:理论值为675.29,实测值为675.74。
EBII-48:根据以下过程合成;
Figure PCTCN2019084627-appb-000029
在氮气气氛下,向250ml的三口瓶中加入0.01mol原料A、0.012mol原料B、0.03mol叔丁醇钾、1×10 -4molPd 2(dba) 3、1×10 -4mol三叔丁基膦和150ml甲苯,加热至120℃,回流反应12小时,利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱纯化(甲苯作为洗脱剂),得到目标化合物EBII-48,HPLC分析纯度为99.4%,收率为81.5%。
元素分析结构(分子式C 52H 39N):理论值C,92.13;H,5.80;N,2.07;测试值:C,92.13;H,5.82;N,2.05。
HPLC-MS:理论值为677.87,实测值为678.35。
表1示出了所使用的第一和第二有机材料与发光材料的主体材料CBP、客体材料Ir(PPy) 3以及与其邻接的空穴传输材料HT1的各能级测试结果。
表1
材料名称 Tg(℃) HOMO能级(ev) LUMO能级(ev) 空穴迁移率(cm 2/(V·s)
HT1 101 -5.49 -2.39 1.0E -4
CBP - -6.17 -2.81 -
Ir(PPy) 3 - -5.46 -3.03 -
EBI-1 139.9 -5.88 -2.57 5.2E -4
EBI-37 150.4 -5.83 -2.58 2.5E -4
EBI-49 155.7 -5.85 -2.56 1.4E -4
EBII-21 135.6 -5.54 -2.40 1.5E -4
EBII-39 142 -5.66 -2.36 6.4E -4
EBII-48 145.1 -5.58 -2.37 8.7E -3
由表1的结果可以看出,本发明的第一有机材料的HOMO能级介于所述发光层主体材料的HOMO能级和-5.75ev之间,并且第二有机材料的HOMO能级介于与其邻接的空穴传输层材料的HOMO能级和-5.75ev之间;并且所述第一和第二有机材料的LUMO能级与发光层的主体材料和客体材料的LUMO能级的差值均≥0.2ev。
实施例1
使用CIC蒸镀设备(长州产业制造),分别将EBI-1和EBII-39放在两个蒸镀源中,在真空度1.0E -5Pa压力下,控制EBI-1蒸镀速率为
Figure PCTCN2019084627-appb-000030
控制EBII-39蒸镀速率为
Figure PCTCN2019084627-appb-000031
共同混蒸得到本发明的电子阻挡层材料1。
实施例2
重复实施例1的制备过程,不同之处在于EBI-1的蒸镀速率为
Figure PCTCN2019084627-appb-000032
EBII-39的蒸镀速率为
Figure PCTCN2019084627-appb-000033
得到电子阻挡层材料2。
实施例3
重复实施例1的制备过程,不同之处在于EBI-1的蒸镀速率为
Figure PCTCN2019084627-appb-000034
EBII-39的蒸镀速率为
Figure PCTCN2019084627-appb-000035
Figure PCTCN2019084627-appb-000036
得到电子阻挡层材料3。
实施例4
重复实施例1的制备过程,不同之处在于使用EBI-37和EBII-21,得到电子阻挡层材料4。
实施例5
重复实施例1的制备过程,不同之处在于使用EBI-49和EBII-48,得到电子阻挡层材料5。
制备有机电致发光器件
需要说明的是,真空蒸镀在下述条件下进行:使用CIC蒸镀设备(长州产业制造),在真空度1.0E -5Pa压力下,控制蒸镀速率为
Figure PCTCN2019084627-appb-000037
器件制备实施例1
按照以下过程进行:
a)使用透明玻璃作为基板,在其上涂覆厚度为150nm的ITO,作为阳极层,然后分别用去离子水、丙酮、乙醇超声清洗各15分钟,然后在等离子体清洗器中处理2分钟;
b)在经洗涤的第一电极层上,通过真空蒸镀方法蒸镀HAT-CN,厚度为10nm,这层作为空穴注入层;
c)在空穴注入层上,通过真空蒸镀方式蒸镀HT1,厚度为90nm,该层为空穴传输层;
d)在空穴传输层上,通过真空蒸镀方式蒸镀在制备电子阻挡层材料的实施例1中获得的电子阻挡层材料1,厚度为20nm,该层为电子阻挡层;
e)在电子阻挡层上,通过真空蒸镀方式蒸镀发光层材料,主体材料为CBP,掺杂材料为Ir(PPy) 3,CBP和Ir(PPy) 3质量比为90∶10,厚度为40nm;
f)在发光层上,通过真空蒸镀方式蒸镀TPBI,厚度为40nm,该层作为电子传输层;
g)在电子传输层上,通过真空蒸镀方式蒸镀LiF,厚度为1nm,该层为电子注入层;
h)在电子注入层之上,真空蒸镀Al,厚度为100nm,该层为第二电极层;
其中,涉及到的材料结构式如下:
Figure PCTCN2019084627-appb-000038
器件制备实施例2
按照器件制备实施例1的过程进行,不同之处在于在步骤d)中使用在制备电子阻挡层材料的实施例2中获得的电子阻挡层材料2。
器件制备实施例3
按照器件制备实施例1的过程进行,不同之处在于在步骤d)中使用在制备电子阻挡层材料的实施例3中获得的电子阻挡层材料3。
器件制备实施例4
按照器件制备实施例1的过程进行,不同之处在于在步骤d)中使用在制备电子阻挡层材料的实施例4中获得的电子阻挡层材料4。
器件制备实施例5
按照器件制备实施例1的过程进行,不同之处在于在步骤d)中使用在制备电子阻挡层材料的实施例5中获得的电子阻挡层材料5。
比较实施例1
按照器件制备实施例1的过程进行,不同之处在于仅使用EBI-1作为电子阻挡层材料。
比较实施例2
按照器件制备实施例1的过程进行,不同之处在于仅使用EBII-39作为电子阻挡层材料。
比较实施例3
按照器件制备实施例1的过程进行,不同之处在于仅使用EBI-37作为电子阻挡层材料。
比较实施例4
按照器件制备实施例1的过程进行,不同之处在于仅使用EBI-49作为电子阻挡层材料。
比较实施例5
按照器件制备实施例1的过程进行,不同之处在于仅使用EBII-21作为电子阻挡层材料。
比较实施例6
按照器件制备实施例1的过程进行,不同之处在于仅使用EBII-48作为电子阻挡层材料。
表3示出了在10mA/cm 2电流密度下测定所制作的有机电致发光器件的性能结果。
表3
Figure PCTCN2019084627-appb-000039
注:*代表比较实施例
LT90指的是定电流密度为10mA/cm 2情况下,器件亮度衰减到90%所用时间。
寿命测试***为本发明所有权人与上海大学共同研究的OLED器件寿命测试仪。
由表3的结果可以看出,与单独使用有机材料作为电子阻挡层材料的比较实施例1至6相比,本发明的器件制备实施例1至5的驱动电压明显降低,并且发光亮度、发光效率(即电流效率)和寿命均显著提高。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制。本领域技术人员在不脱离本发明技术方案的宗旨和范围的情况下,对本发明的技术方案进行的修改或者等同替换,均应涵盖在本发明的权利要求范围当中。

Claims (9)

  1. 一种有机电致发光器件,其由下至上依次设置有基板、第一电极、有机功能材料层和第二电极,所述有机功能材料层包括
    空穴传输区域,位于所述第一电极之上;
    发光层,位于所述空穴传输区域之上,其包括主体材料和客体材料;
    电子传输区域,位于所述发光层之上,
    其中,所述空穴传输区域包括位于第一电极之上的空穴注入层和/或空穴传输层以及位于其上的电子阻挡层,以及
    所述电子阻挡层包括第一和第二有机材料,所述第一和第二有机材料的比例为0.5∶9.5至9.5∶0.5,优选为3∶7-7∶3,更优选为4∶6-6∶4且最优选为5∶5,基于质量计;并且,其中第一有机材料的HOMO能级介于发光层主体材料的HOMO能级和-5.75ev之间,且第二有机材料的HOMO能级介于与其邻接的空穴注入层/空穴传输层的HOMO能级和-5.75ev之间,以及所述第一和第二有机材料的LUMO能级与发光层主、客体材料的LUMO能级之间的差值≥0.2ev。
  2. 根据权利要求1的有机电致发光器件,其中所述第一有机材料和发光层主体材料的HOMO能级之间差值的绝对值≤0.3ev,且所述第二有机材料和与其邻接的空穴注入层材料/空穴传输层材料的HOMO能级之间差值的绝对值≤0.3ev。
  3. 根据权利要求1或2所述的有机电致发光器件,其中所述第一有机材料可选自包含芴、氮杂芴、螺芴、氮杂螺芴、吖啶、吖啶衍生物、均苯、咔唑或咔唑衍生物中的一种或多种的化合物。
  4. 根据权利要求3所述的有机电致发光器件,其中所述第一有机材料为具有以下结构式的化合物:
    Figure PCTCN2019084627-appb-100001
    Figure PCTCN2019084627-appb-100002
    Figure PCTCN2019084627-appb-100003
    优选使用(EBI-1)、(EBI-3)、(EBI-4)、(EBI-7)、(EBI-10)、(EBI-11)、(EBI-12)、(EBI-14)、(EBI-18)、(EBI-22)、(EBI-23)、(EBI-29)、(EBI-30)、(EBI-31)、(EBI-33)、(EBI-34)、(EBI-35)、(EBI-37)、(EBI-38)、 (EBI-39)、(EBI-40)、(EBI-44)、(EBI-46)、(EBI-48)、(EBI-49)、(EBI-52)、(EBI-53)、(EBI-58)、(EBI-59)、(EBI-60)、(EBI-63)、(EBI-64)或(EBI-67)中的一种或多种,更优选使用(EBI-1)、(EBI-4)、(EBI-7)、(EBI-10)、(EBI-14)、(EBI-18)、(EBI-23)、(EBI-33)、(EBI-35)、(EBI-37)、(EBI-39)、(EBI-40)、(EBI-44)、(EBI-46)、(EBI-48)、(EBI-49)、(EBI-53)、(EBI-56)、(EBI-60)或(EBI-64)中的一种或多种。
  5. 根据权利要求1至4中任一项所述的有机电致发光器件,其中所述第二有机材料可选自包含芴、氮杂芴、螺芴、氮杂螺芴、吩噁嗪、吩噻嗪、吩噁嗪衍生物、吖啶衍生物、均苯、三芳胺、螺氧杂蒽芴或螺二甲基蒽芴中的一种或多种的化合物。
  6. 根据权利要求5所述的有机电致发光器件,其中所述第二有机材料为具有以下结构式的化合物:
    Figure PCTCN2019084627-appb-100004
    Figure PCTCN2019084627-appb-100005
    Figure PCTCN2019084627-appb-100006
    优选使用(EBII-4)、(EBII-6)、(EBII-8)、(EBII-10)、(EBII-12)、(EBII-13)、(EBII-16)、(EBII-20)、(EBII-21)、(EBII-22)、(EBII-24)、(EBII-25)、(EBII-27)、(EBII-29)、(EBII-30)、(EBII-31)、(EBII-33)、(EBII-34)、(EBII-37)、(EBII-38)、(EBII-39)、(EBII-42)、(EBII-43)、(EBII-46)、(EBII-47)、(EBII-48)、(EBII-52)、(EBII-53)、(EBII-54)、(EBII-56)、(EBII-57)或(EBII-58)中的一种或多种,更优选使用(EBII-4)、(EBII-8)、(EBII-10)、(EBII-12)、(EBII-21)、(EBII-22)、(EBII-24)、(EBII-29)、(EBII-34)、(EBII-37)、(EBII-38)、(EBII-39)、(EBII-42)、(EBII-43)、(EBII-46)、(EBII-47)、(EBII-52)、(EBII-53)、(EBII-56)或(EBII-57)中的一种或多种。
  7. 根据权利要求1至6中任一项所述的有机电致发光器件,其中所述电子阻挡层的空穴迁移率为1×10 -5至1×10 -2cm 2/(V.s)、优选为1×10 -4至1×10 -2cm 2/(V.s)且更优选为1×10 -4至1×10 -3cm 2/(V.s)。
  8. 根据权利要求1至7中任一项所述的有机电致发光器件,其中所述电子阻挡层的玻璃化转变温度为≥120℃,优选为≥130℃且更优选为≥140℃。
  9. 根据权利要求1至8中任一项所述的有机电致发光器件,其中所述电子阻挡层的厚度为1-200nm,优选为5-150nm且更优选为10-100nm。
PCT/CN2019/084627 2018-04-28 2019-04-26 有机电致发光器件 WO2019206290A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810403470.0 2018-04-28
CN201810403470.0A CN110416419B (zh) 2018-04-28 2018-04-28 有机电致发光器件

Publications (1)

Publication Number Publication Date
WO2019206290A1 true WO2019206290A1 (zh) 2019-10-31

Family

ID=68293496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084627 WO2019206290A1 (zh) 2018-04-28 2019-04-26 有机电致发光器件

Country Status (2)

Country Link
CN (1) CN110416419B (zh)
WO (1) WO2019206290A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022188457A1 (zh) * 2021-03-08 2022-09-15 京东方科技集团股份有限公司 发光器件、发光基板和发光装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934544A (zh) * 2014-03-21 2015-09-23 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN104993062A (zh) * 2015-05-20 2015-10-21 上海交通大学 一种调整白色有机电致发光二极管的白光光谱的方法
JP2016225498A (ja) * 2015-06-01 2016-12-28 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
CN107851727A (zh) * 2015-07-23 2018-03-27 株式会社半导体能源研究所 发光元件、显示装置、电子装置及照明装置
WO2018056645A1 (en) * 2016-09-22 2018-03-29 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent device comprising an electron buffer layer and an electron transport layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934544A (zh) * 2014-03-21 2015-09-23 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN104993062A (zh) * 2015-05-20 2015-10-21 上海交通大学 一种调整白色有机电致发光二极管的白光光谱的方法
JP2016225498A (ja) * 2015-06-01 2016-12-28 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
CN107851727A (zh) * 2015-07-23 2018-03-27 株式会社半导体能源研究所 发光元件、显示装置、电子装置及照明装置
WO2018056645A1 (en) * 2016-09-22 2018-03-29 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent device comprising an electron buffer layer and an electron transport layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022188457A1 (zh) * 2021-03-08 2022-09-15 京东方科技集团股份有限公司 发光器件、发光基板和发光装置

Also Published As

Publication number Publication date
CN110416419B (zh) 2021-03-26
CN110416419A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
EP3226320B1 (en) Organic electroluminescent device
KR101381505B1 (ko) 유기 전계발광 소자용 물질
EP2296204B1 (en) Light-emitting element
JP5807011B2 (ja) カルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
KR101944699B1 (ko) 유기전기소자용 신규 화합물, 이를 이용하는 유기전기소자 및 그 전자 장치
WO2016009823A1 (ja) モノアミン誘導体、それを用いた発光素子材料および発光素子
WO2013122082A1 (ja) 発光素子材料および発光素子
JP2013183113A (ja) 発光素子材料および発光素子
CN110010784B (zh) 一种含有多通道载流子传输材料的全色有机电致发光器件
US10991890B2 (en) Compound containing a 5-membered heterocycle and organic light-emitting diode using same, and terminal for same
KR102152013B1 (ko) 유기 화합물을 포함하는 유기전계발광소자
KR20150018230A (ko) 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
KR102004385B1 (ko) 신규한 화합물 및 이를 포함하는 유기전계발광소자
JP5640460B2 (ja) 発光素子および発光素子材料
US8785002B1 (en) High-energy triplet host materials, luminescent layer comprising the same, and organic electroluminescent device comprising the luminescent layer
WO2014024750A1 (ja) 発光素子材料および発光素子
WO2019206290A1 (zh) 有机电致发光器件
KR102304989B1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
JP6860765B1 (ja) 化合物及びこれを含む有機発光素子
CN114075116A (zh) 一种螺芴类化合物及包含该化合物的有机电致发光器件
CN114075115A (zh) 一种胺类化合物和包含该化合物的有机电致发光器件
CN114315694A (zh) 一种芳胺类化合物及其制备的有机电致发光器件
US9905780B2 (en) Organic electroluminescent materials containing N-phenylcarboline and organic electroluminescent device by using the same
TWI843910B (zh) 化合物、有機薄膜發光元件、顯示裝置及照明裝置
CN114478265B (zh) 一种芳胺类化合物及其在有机电致发光器件的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793857

Country of ref document: EP

Kind code of ref document: A1