WO2019206231A1 - Dcdc变换器、车载充电机和电动车辆 - Google Patents

Dcdc变换器、车载充电机和电动车辆 Download PDF

Info

Publication number
WO2019206231A1
WO2019206231A1 PCT/CN2019/084329 CN2019084329W WO2019206231A1 WO 2019206231 A1 WO2019206231 A1 WO 2019206231A1 CN 2019084329 W CN2019084329 W CN 2019084329W WO 2019206231 A1 WO2019206231 A1 WO 2019206231A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch tube
phase
phase bridge
module
capacitor
Prior art date
Application number
PCT/CN2019/084329
Other languages
English (en)
French (fr)
Inventor
张晓彬
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP19792280.0A priority Critical patent/EP3787169A4/en
Priority to JP2020559440A priority patent/JP7161548B2/ja
Priority to US17/050,124 priority patent/US11404965B2/en
Publication of WO2019206231A1 publication Critical patent/WO2019206231A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates to the field of vehicle technology, and in particular, to a DCDC converter, and an in-vehicle charger including the DCDC converter and an electric vehicle on which the in-vehicle charger is mounted.
  • a car charger In order to save charging and discharging time, a large-capacity battery module requires a more powerful two-way car charger (hereinafter referred to as a car charger).
  • the mainstream car charger power level in the industry is single-phase 3.3KW/6.6KW.
  • three-phase 10/20/40KW car chargers have an increasingly large market.
  • the main power topology of the vehicle charger generally includes PFC (Power Factor Correction) + bidirectional DCDC, PFC plays the role of power factor correction; bidirectional DCDC realizes energy controllable isolation transmission, which is the core power conversion unit of the vehicle charger. .
  • PFC Power Factor Correction
  • bidirectional DCDC realizes energy controllable isolation transmission, which is the core power conversion unit of the vehicle charger.
  • high-power bidirectional DCDC circuits usually adopt multi-module parallel mode, that is, two or more bidirectional DCDC modules are connected in parallel to achieve greater power charging, but there are some problems in paralleling multiple modules, so that High requirements are placed on the system hardware circuit design and software algorithms.
  • the present disclosure aims to solve at least one of the technical problems in the related art to some extent.
  • an embodiment of the present disclosure is to provide a DCDC converter that can realize switching of a small power output in a high power output and a light load mode with low cost and simple structure.
  • Yet another embodiment of the present disclosure is directed to an in-vehicle charger including the DCDC converter.
  • Yet another embodiment of the present disclosure is to provide an electric vehicle in which the in-vehicle charger is mounted.
  • a DCDC converter of a first aspect of the present disclosure includes: a first three-phase bridge module, a resonance module, a second three-phase bridge module, and a controller, wherein the first three-phase bridge module, For adjusting the frequency of the input signal of the DCDC converter when the battery module of the vehicle is externally charged, or for rectifying the output signal of the resonant module when the battery module discharges to the outside; the resonance a module, configured to resonate an output signal of the first adjustment module when the battery module of the vehicle is externally charged, or to output an output signal to the second adjustment module when the battery module discharges to the outside Resonating; the second three-phase bridge module is configured to adjust a frequency of an output signal of the battery module when the battery module of the vehicle discharges to the outside, or for charging the battery module when the outside is charged The output signal of the resonant module is rectified; the controller is respectively connected to a control end of the first three-phase bridge module and a control end of the second three-phase bridge
  • the resonant module can be bidirectionally resonant, realizes bidirectional energy transfer, and has smaller output ripple current and lower cost in a light load mode than a conventional three-phase interleaved LLC resonant converter.
  • the switching tube losses can be reduced and the working efficiency can be improved.
  • an in-vehicle charger of a second aspect of the present disclosure includes a three-phase PFC circuit and the DCDC converter.
  • the in-vehicle charger of the embodiment of the present disclosure by employing the DCDC converter of the embodiment of the above aspect, not only charging and discharging of a larger power can be achieved, but also switching loss in the light load mode can be reduced, and work efficiency can be improved.
  • an electric vehicle includes the above-described in-vehicle charger.
  • the in-vehicle charger of the embodiment of the above aspect by installing the in-vehicle charger of the embodiment of the above aspect, not only charging and discharging of a larger power can be realized, but also the switching loss is reduced in the light load mode, and the work efficiency is improved.
  • FIG. 1 is a topological schematic diagram of a three-module parallel bidirectional DCDC circuit in the related art
  • FIG. 2 is a block diagram of a DCDC converter in accordance with an embodiment of the present disclosure
  • FIG. 3 is a circuit topology diagram of a DCDC converter in accordance with an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a ripple current waveform during three-phase operation of a DCDC converter according to an embodiment of the present disclosure
  • FIG. 5 is a circuit topology diagram of a DCDC converter switching to a two-phase bridge arm input when charging in a light load mode, in accordance with an embodiment of the present disclosure
  • FIG. 6 is a circuit topology diagram of a DCDC converter switching to a phase bridge arm input when charging in a light load mode, in accordance with an embodiment of the present disclosure
  • FIG. 7 is a circuit topology diagram of a DCDC converter in accordance with an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a circuit topology for switching to a two-phase bridge arm input when charging in the light load mode of FIG. 7;
  • FIG. 9 is a schematic diagram of a circuit topology for switching to an input of a phase bridge arm when charging in the light load mode of FIG. 7;
  • FIG. 10 is a block diagram of an in-vehicle charger in accordance with an embodiment of the present disclosure.
  • FIG. 11 is a block diagram of an electric vehicle in accordance with an embodiment of the present disclosure.
  • Embodiments of the present disclosure are based on the inventors' knowledge and research on the following issues:
  • FIG. 1 it is a circuit diagram of a typical multi-module parallel bidirectional DCDC converter. More modules are connected in parallel and so on.
  • the cost of the device is high.
  • Each module requires independent voltage, current sampling, and drive control circuits.
  • the redundancy is large, and the cost and volume are difficult to optimize.
  • the output ripple current is still difficult to solve.
  • each module still needs a large filter capacitor.
  • the master-slave setup and high coordination requirements place high demands on the system hardware circuit design and software algorithms.
  • a DCDC converter 100 of an embodiment of the present disclosure includes a first three-phase bridge module 10, a resonance module 20, and a second three-phase bridge module 30. And controller 40.
  • the first three-phase bridge module 10 is configured to adjust the frequency of the input signal of the DCDC converter 100 to adjust the impedance of the resonant module 20 when the battery module of the vehicle is externally charged, where the external environment may be the power grid or Other power supply devices, such as a power grid, charge the battery module; or, when the battery module discharges to the outside, where the external environment may be an electrical load, for example, the battery module discharges the electrical load, and the output signal of the resonant module 20 is performed. Rectifier filtering for back-end loads.
  • the device, the device, or the like, which can be charged and discharged between the battery module and the battery module, is not specifically limited in the embodiment of the present disclosure.
  • the resonant module 20 is configured to resonate the output signal of the first three-phase bridge module 10 to generate a high-frequency resonant current when the battery module of the vehicle is externally charged, or to use the second to the third when the battery module discharges to the outside
  • the output signal of the phase bridge module 30 resonates to generate a high frequency resonant current.
  • the second three-phase bridge module 30 is configured to adjust the frequency of the output signal of the battery module to adjust the impedance of the resonant module 20 when the battery module of the vehicle discharges to the outside, or to adjust the resonance module when the battery module is externally charged.
  • the output signal of 20 is rectified, and the high-frequency resonant current is changed to direct current to be supplied to the battery module to charge the battery module.
  • the resonance module 20 can resonate to generate a high-frequency current during charging and discharging of the battery module, that is, bidirectional transmission of energy can be realized.
  • the resonance module 20 includes three primary LC units 21, three-phase transformer unit 22, and three secondary units.
  • LC unit 23 The resonance module 20 includes three primary LC units 21, three-phase transformer unit 22, and three secondary units.
  • the three primary LC units 21 and the three-phase transformer unit 22 are used to resonate the output signal of the first three-phase bridge module 10 to generate a high-frequency current, and the high-frequency current passes through After the two-phase bridge module 30 is rectified and filtered, it becomes DC power, and can be supplied to the battery module of the vehicle to realize charging of the battery module; when the battery module discharges to the outside, the three-way secondary LC unit 23 and the three-phase transformer unit 22 It is used to resonate the output signal of the second three-phase bridge module 30 to generate a high-frequency current, and the high-frequency current is rectified and filtered by the first three-phase bridge module 10 to become a direct current, and the direct current can be supplied to subsequent components for processing, and further Powering the load to achieve discharge of the battery module of the vehicle
  • each primary LC unit 21 is connected to a phase connection point of a corresponding phase bridge arm of the first three-phase bridge module 10, and the same name of the primary coil of the three-phase transformer unit 22 is respectively Connected to the other end of the corresponding primary LC unit 21, the synonyms of the primary coils of the three-phase transformer unit 22 are connected together to form a Y-connection.
  • the same-name ends of the secondary coils of the three-phase transformer unit 22 are respectively connected to one ends of the corresponding secondary LC units 23, and the different-name ends of the secondary coils of the three-phase transformer unit 22 are connected together to form a Y-type connection.
  • the Y-type connection method is beneficial to the automatic current sharing of the three-phase bridge circuit, and avoids uneven power distribution due to device parameter deviation of the three-phase bridge circuit.
  • phase line connection point of each phase leg of the second three-phase bridge module 30 is connected to the other end of the corresponding secondary LC unit 23.
  • the controller 40 is connected to the control end of the switch tube of the first three-phase bridge module 10 and the control end of the switch tube of the second three-phase bridge module 30, respectively.
  • the controller 40 can control the switching tubes of the first three-phase bridge module 10 and the second three-phase bridge module 30 according to the charging and discharging signals to realize three-phase input and output, and can provide more power with respect to single or bidirectional output.
  • the three-phase transformer unit 22 may adopt three independent magnetic cores or may be wound by the same magnetic core.
  • each primary LC unit 21 and the primary coil of the corresponding transformer unit 22 may constitute a corresponding input resonant cavity, and the controller 40 performs high on the first three-phase bridge module 10.
  • Frequency resonance control and rectification control of the second three-phase bridge module 30, the first three-phase bridge module 10 and the three primary LC units 21 and the primary coil of the three-phase transformer unit 22 form a three-phase interleaved LLC to operate at high frequency resonance
  • the state outputs a high-frequency current, and the high-frequency current is rectified by the second three-phase bridge module 30 to become a direct current output, which can be realized as a high-power charging of the entire vehicle battery module of the electric vehicle.
  • each secondary LC unit 23 and the secondary coil of the corresponding transformer unit 22 may constitute a corresponding input resonant cavity, and the controller 40 performs high frequency resonance control on the second three-phase bridge module 30 and The first three-phase bridge module 10 performs rectification control, and the second three-phase bridge module 10 and the three-way secondary LC unit 23 and the secondary coil of the three-phase transformer unit 22 form a three-phase interleaved LLC to operate in a high-frequency resonance state, and The high-frequency current is output, and the high-frequency current is rectified by the first three-phase bridge module 10 to become a direct current output, which can realize high-power discharge of the battery module.
  • the DCDC converter 100 of the embodiment of the present disclosure is a novel three-phase interleaved LLC resonant bidirectional converter, which has fewer devices and less ripple current than the multi-module parallel high power bidirectional DCDC converter shown in FIG. High power charging and discharging can achieve better results.
  • the on-board charger works, it does not always operate at full power, especially the discharge direction often works in light load mode. Since all devices of the three-phase interleaved resonant bidirectional DCDC converter power circuit have been working in the high frequency operation mode, in order to stabilize the output voltage under light load conditions, the system must increase the system operating frequency to obtain a smaller gain, and the increase of the operating frequency means the switch. The increase in tube loss is based on the above-described circuit topology, which does not optimize system efficiency in light load mode.
  • the light load mode means that the light load is relative to the full load, and refers to the load range of the circuit within 30% or less, or 50% or less.
  • the controller 40 is configured to control the first three-phase bridge module 10 to switch to a two-phase bridge arm input when the battery module of the vehicle is externally charged in the light load mode of the DCDC converter 100 or
  • the one-phase bridge arm inputs and controls the second three-phase bridge module 30 to switch to the two-phase bridge arm output, or controls the second three-phase bridge module 30 to switch to the two-phase bridge arm input or one phase when the battery module discharges to the outside.
  • the bridge arm inputs and controls the first three-phase bridge module 10 to switch to a two-phase bridge arm output.
  • the DCDC converter 100 of the embodiment of the present disclosure is switched to a "two-phase" or “one-phase” LLC interleaved resonant DCDC converter, and the switching loss can be reduced by reducing the number of resonant bridge arm switching transistors.
  • the secondary side of the transformer unit increases the resonance unit compared to the conventional three-phase interleaved LLC resonant converter, and can perform bidirectional resonance, realize energy bidirectional transmission, and have uniform power distribution and output.
  • the ripple current is smaller and the cost is lower.
  • the switching loss can be reduced and the working efficiency can be improved.
  • the first three-phase bridge module 10 and the second three-phase bridge module 30 may be constituted by a switching tube such as a MOS tube or an IGBT or other components, and the LC unit may include a capacitor and an inductor, and the voltage is transformed.
  • the unit can be implemented by a transformer structure.
  • the first three-phase bridge module 10 includes a first one-phase bridge arm, a first two-phase bridge arm, and a first three-phase bridge arm.
  • the first phase bridge arm includes a first switch tube Q1 and a second switch tube Q2.
  • first switch tube Q1 is connected to one end of the second switch tube Q2, and one end of the first switch tube Q1 and the second switch tube Q2 There is a first phase line connection point Z1 between one end;
  • the first two-phase bridge arm includes a third switch tube Q3 and a fourth switch tube Q4, one end of the third switch tube Q3 is connected to one end of the fourth switch tube Q4, and the third A second phase line connection point Z2 is formed between one end of the switch tube Q3 and one end of the fourth switch tube Q4;
  • the first three bridge arm includes a fifth switch tube Q5 and a sixth switch tube Q6, and one end of the fifth switch tube Q5 is One end of the sixth switch tube Q6 is connected, and one end of the fifth switch tube Q5 and one end of the sixth switch tube Q6 have a third phase line connection point Z3;
  • the other end of the first switch tube Q1 and the third switch tube Q3 The other end is connected to the other end of the fifth switch tube Q5 to form a first end point S11 of the first three-
  • the first three-phase bridge module 10 further includes a first capacitor C1.
  • One end of the first capacitor C1 is connected to the first end point S11 of the first three-phase bridge module 10, and the other end of the first capacitor C1 is The second end point S12 of the first three-phase bridge module 10 is connected to filter the output or input of the first three-phase bridge module 10.
  • the three-way primary LC unit 21 includes a first primary LC unit, a second primary LC unit, and a third primary LC unit.
  • the first primary LC unit includes a second capacitor C2 and a first inductor L1.
  • One end of the second capacitor C2 is connected to the first phase line connection point Z1, and the other end of the second capacitor C2 is connected to one end of the first inductor L1.
  • the second primary LC unit includes a third capacitor C3 and a second inductor L2, and one end of the third capacitor C3 is connected to the second phase line Z2 Connected, the other end of the third capacitor C3 is connected to one end of the second inductor L2, the other end of the second inductor L2 is connected to the same end of the primary coil of the corresponding phase shifting unit 22; the third primary LC unit includes a fourth capacitor C4.
  • one end of the fourth capacitor C4 is connected to the third phase line connection point Z3
  • the other end of the fourth capacitor C4 is connected to one end of the third inductor L3
  • the other end of the third inductor L3 is corresponding to the phase change.
  • the same name end of the primary coil of the press unit 22 is connected.
  • the three-phase transformation unit 22 includes a first phase transformation unit T1, a second phase transformation unit T2, and a third phase transformation unit T3.
  • the first phase transformation unit T1 includes a first primary coil and a first secondary coil, and the same end of the first primary coil is connected to the other end of the first inductor L1, and the same name end of the first secondary coil and the corresponding secondary One end of the LC unit 23 is connected;
  • the second phase transforming unit T2 includes a second primary coil and a second secondary coil, the same end of the second primary coil is connected to the other end of the second inductor L2, and the second secondary coil has the same name The end is connected to one end of the corresponding secondary LC unit 23;
  • the third phase transforming unit T3 includes a third primary coil and a third secondary coil, and the same end of the third primary coil is connected to the other end of the third inductor L3, and the third The same-name end of the secondary coil is connected to one end of the corresponding secondary LC unit 23;
  • the different-name end of the first primary coil, the different-name end of the second primary coil, and the different-name end of the third primary coil are connected together, for example
  • the second three-phase bridge module 30 includes a second one-phase bridge arm, a second two-phase bridge arm, and a second three-phase bridge arm.
  • the second phase bridge arm includes a seventh switch tube Q7 and an eighth switch tube Q8.
  • One end of the seventh switch tube Q7 is connected to one end of the eighth switch tube Q8, and one end of the seventh switch tube Q7 and the eighth switch tube
  • the second two-phase bridge arm includes a ninth switch tube Q9 and a tenth switch tube Q10, and one end of the ninth switch tube Q9 is connected to one end of the tenth switch tube Q10,
  • a fifth phase line connection point Z5 is formed between one end of the ninth switch tube Q9 and one end of the tenth switch tube Q10;
  • the second three-phase bridge arm includes an eleventh switch tube Q11 and a twelfth switch tube Q12, the eleventh One end of the switch tube Q11 is connected to one end of the twelfth switch tube Q12, and one end of the eleventh switch tube Q11 and one end of the twelfth switch tube Q12 have a sixth
  • the second three-phase bridge module 30 further includes a fifth capacitor C5.
  • One end of the fifth capacitor C5 is connected to the first end point S21 of the second three-phase bridge module 30, and the other end of the fifth capacitor C5 is The second end point S22 of the second three-phase bridge module 30 is connected.
  • the fifth capacitor C5 can filter the output or input of the second three-phase bridge module 30.
  • the three-way secondary LC unit 23 includes a first secondary LC unit, a second secondary LC unit, and a third secondary LC unit.
  • the first secondary LC unit includes a fourth inductor L4 and a sixth capacitor C6.
  • One end of the fourth inductor L4 is connected to the same end of the first secondary coil, and the other end of the fourth inductor L4 and one end of the sixth capacitor C6.
  • the other end of the sixth capacitor C6 is connected to the fourth phase line connection point Z4;
  • the second secondary LC unit includes a fifth inductor L5 and a seventh capacitor C7, and one end of the fifth inductor L5 has the same name as the second secondary coil
  • the other end of the fifth inductor L5 is connected to one end of the seventh capacitor C7, the other end of the seventh capacitor C7 is connected to the fifth phase line connection point Z5, and
  • the third secondary LC unit includes a sixth inductor L6 and the eighth The capacitor C8, one end of the sixth inductor L6 is connected to the same end of the third coil, the other end of the sixth inductor L6 is connected to one end of the eighth capacitor C8, and the other end of the eighth capacitor C8 is connected to the sixth phase line Z6. Connected.
  • the first three-phase bridge module 10 is connected to the charging input
  • the second three-phase bridge module 30 is connected to the battery module of the electric vehicle
  • the second capacitor C2 the first inductor L1 and the first
  • the primary coil constitutes a resonant cavity of the first one-phase bridge arm
  • the third capacitor C3, the second inductor L2 and the second primary coil constitute a resonant cavity of the first two-phase bridge arm
  • a fourth capacitor C4 a third inductor L3 and a third The primary coil constitutes a resonant cavity of the first three-phase bridge arm.
  • the second capacitor C2, the third capacitor C3, and the fourth capacitor C4 are referred to as primary resonant capacitors, and the first inductor L1, the second inductor L2, and the third inductor L3 are referred to as primary resonant inductors.
  • each phase bridge arm of the first three-phase bridge arm circuit 10 and its corresponding resonance module constitute a three-phase interleaved LLC and operate in a high frequency resonance state
  • the controller 40 controls the first switch.
  • the tube Q1 and the second switching tube Q2, the third switching tube Q3 and the fourth opening tube Q4, the fifth switching tube Q5 and the sixth switching tube Q6 are alternately switched at a duty ratio of 50%, respectively, and the first switching tube Q1 is controlled.
  • the phase difference between the three switch tube Q3 and the fifth switch tube Q5 is 120°, respectively, and the phase between the second switch tube Q2, the fourth switch tube Q4 and the sixth switch tube Q6 is controlled by 120°, and the second is switched.
  • the three-phase bridge module 30 performs rectification control, and the second three-phase bridge module 30 functions as a secondary three-phase rectifier bridge.
  • the high-frequency current is rectified by the diode in the switching body of the second three-phase bridge module 30, and then converted into direct current and supplied to the whole
  • the high voltage battery module of the vehicle wherein, as shown generally in FIG. 4, each of the switch tubes includes a diode element, which may be referred to as a switch body diode. If the drive signal is applied to the switch tube of the second three-phase bridge module 30, the second three-phase bridge module 30 will form a synchronous rectification circuit, further improving product efficiency.
  • the first three-phase bridge module 10 is connected to the power side
  • the second three-phase bridge module 30 is connected to the battery module of the electric vehicle
  • the sixth capacitor C6, the fourth inductor L4 and
  • the first secondary coil constitutes a resonant cavity of the second phase bridge arm
  • the seventh capacitor C7, the fifth inductor L5 and the second secondary coil constitute a resonant cavity of the second two-phase bridge arm
  • the L6 and the third secondary coil constitute a resonant cavity of the second three-phase bridge arm.
  • the sixth capacitor C6, the seventh capacitor C7, and the eighth capacitor C8 are referred to as secondary resonant capacitors
  • the fourth inductor L4, the fifth inductor L5, and the sixth inductor L6 are referred to as secondary resonances. inductance.
  • each phase bridge arm of the second three-phase bridge arm circuit 30 and its corresponding resonance module form a three-phase interleaved LLC and operate in a high-frequency resonance state, and the controller 40 controls the seventh switch tube Q7.
  • the eighth switch tube Q8, the ninth switch tube Q9 and the tenth switch tube Q10, the eleventh switch tube Q11 and the twelfth switch tube Q12 are respectively alternately switched at a 50% duty ratio, and the seventh switch tube Q7 is controlled.
  • the phase between the nine switch tube Q9 and the eleventh switch tube Q11 is 120° different from each other, and the phase between the eighth switch tube Q8, the tenth switch tube Q10 and the twelfth switch tube Q12 is controlled by 120°, respectively, and
  • the first three-phase bridge module 10 performs rectification control, and the first three-phase bridge module 30 functions as a discharge output three-phase rectifier bridge.
  • the high-frequency current is rectified by the diode in the switching body of the first three-phase bridge module 30, and then converted into direct current and provided.
  • the first three-phase bridge module 10 will form a synchronous rectification circuit, further improving product efficiency.
  • the above embodiment describes a process for realizing high-power charge and discharge based on the DCDC converter 100 of the embodiment of the present disclosure as shown in FIG. 3, and the charging and discharging in the light load mode of the embodiment of the present disclosure will be described below.
  • the controller 40 controls the fifth switch tube Q5 and the sixth switch tube Q5 to be in a normally closed state and control the eleventh switch.
  • the tube Q11 and the twelfth switch tube Q12 are in a normally closed state. That is, a certain corresponding bridge arm of the primary and secondary in the resonance module 20 is turned off, for example, the third phase bridge arm of the primary and secondary sides is turned off.
  • the system topology is equivalent to that shown in FIG.
  • the DCDC converter 100 of the embodiment of the present disclosure becomes a "two-phase" LLC interleaved resonant DCDC converter, wherein the second capacitor C2, the first inductor L1, the first phase transforming unit T1, the third capacitor C3, the second inductor L3, and the second phase transforming unit T2 are In series mode, the equivalent parameters of the cavity are unchanged, then the circuit topology shown in Figure 5 becomes a full-bridge DCDC converter with synchronous rectification, which can meet the charging requirements in light load mode without increasing the switching tube. loss.
  • the controller 40 controls the eleventh switch tube Q11 and the twelfth switch tube Q12 to be in a normally off state and control the fifth switch tube Q5 and the sixth switch tube Q6.
  • the DCDC converter 100 of the embodiment of the present disclosure becomes a "two-phase" LLC interleaved resonant DCDC converter, and the primary side becomes a full-bridge structure using synchronous rectification, which can satisfy the discharge in the light load mode. Demand, without increasing switching tube losses.
  • the controller 40 controls the fifth switch tube Q5 and the sixth switch tube Q6 to be in a normally closed state, and to control the third
  • the switch tube Q3 is in the normally off state and controls the fourth switch tube Q4 to be in the normally open state, and controls the eleventh switch tube Q11 and the twelfth switch tube Q12 to be in the normally off state, that is, on the basis of FIG.
  • the primary side is The upper switch tube on the first two-phase bridge arm is kept normally closed, the lower open light tube is kept normally open, and the topology is switched to a "one-phase" LLC interlaced resonant DCDC converter, and the equivalent circuit topology diagram is shown in FIG.
  • the secondary output side is a full-bridge synchronous rectification circuit structure. It should be noted that due to the change of the topology structure, if the operating frequency is constant, the system output voltage will be halved. In order to keep the output voltage constant, it is necessary to reduce the operating frequency to improve. System gain characteristics.
  • the controller 40 controls the eleventh switch tube Q11 and the twelfth switch tube Q12 to be in a normally off state, and controls the ninth switch tube Q9 to be in a normally off state and controls the tenth switch tube Q10.
  • the fifth switch tube Q5 and the sixth switch tube Q6 are controlled to be in a normally closed state.
  • the DCDC converter 100 of the embodiment of the present disclosure becomes a "one-phase" LLC interleaved resonant DCDC converter, and the primary side becomes a full-bridge structure using synchronous rectification, which can meet the discharge requirement in the light load mode, without Will increase the switching tube loss.
  • the design requirements are: the input voltage and output voltage rating of the DCDC converter are both 750V, and the full load power in both the charging direction and the discharging direction is 20KW.
  • the cavity parameter setting since the forward charging voltage and the power are equal, the resonant cavity corresponding to the first three-phase bridge module 10, for example, the resonant cavity of the primary resonant cavity and the corresponding second three-phase bridge module 30 is called, for example.
  • the parameters of the secondary resonator are the same.
  • the switch tube Q1-Q12 is a 1200V/40m ⁇ silicon oxide MOS (metal oxide semiconductor) tube, specifically as shown in FIG.
  • the DCDC converter 100 of the embodiment of the present disclosure adds a three-way resonance unit to the transformer secondary side as compared with the conventional three-phase full-bridge DCDC converter, and the second three-phase bridge module 30 employs a controllable switch tube.
  • bidirectional resonance can realize energy bidirectional transmission, and bidirectional transmission works in soft switching mode; forming three-phase interleaved LLC, can achieve greater power conversion, compared with ordinary three-phase interleaved LLC
  • the power switch tube can be saved, and the three-phase transformer unit 22 adopts a Y-connection method, which can realize automatic current sharing of the three-phase bridge circuit, avoid uneven power distribution, and the DCDC converter 100 based on the embodiment of the present disclosure.
  • the circuit structure has a smaller output ripple current, and the smaller ripple current can save the output filter capacitor, which is more conducive to reducing cost and reducing product volume.
  • one or two phase bridge arms in the three-phase bridge are selected according to the load.
  • the switching tube loss can be reduced, and the system working efficiency can be improved.
  • the in-vehicle charger 1000 of the embodiment of the present disclosure includes a three-phase PFC circuit 200 and the DCDC converter 100 of the above embodiment, a three-phase PFC circuit. 200 functions as a power factor correction.
  • the DCDC converter 100 implements controllable isolated transmission of energy. The specific structure and operation of the DCDC converter 100 are described with reference to the above embodiments.
  • the in-vehicle charger 100 of the embodiment of the present disclosure by employing the DCDC converter 100 of the embodiment of the above aspect, not only charging and discharging of a larger power but also charging and discharging control in a light load mode can be achieved, and in the light load mode Switching loss is reduced and work efficiency is improved.
  • an electric vehicle 10000 of an embodiment of the present disclosure includes the in-vehicle charger 1000 of the above-described embodiment.
  • the charging and discharging of a larger power but also the charging and discharging control in the light load mode can be realized by installing the in-vehicle charger 1000 of the embodiment of the above aspect, and the switch is operated in the light load mode. Reduced loss and improved work efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本公开公开了DCDC变换器、车载充电机和电动车辆,该DCDC变换器包括第一三相桥模块、谐振模块、第二三相桥模块和控制器,第一三相桥模块用于在充电时对输入信号的频率进行调节;谐振模块用于在充电时对第一调整模块的输出信号进行谐振,在放电时对第二调整模块的输出信号进行谐振;第二三相桥模块用于在放电时对电池模块的输出信号的频率进行调节;控制器用于在轻载模式下,在充电时控制第一三相桥模块切换为两相桥臂输入或一相桥臂输入并控制第二三相桥模块切换为两相桥臂输出,在放电时控制第二三相桥模块切换为两相桥臂输入或一相桥臂输入并控制第一三相桥模块切换为三相桥臂输出。可以降低轻载模式下开关损耗。

Description

DCDC变换器、车载充电机和电动车辆
相关申请的交叉引用
本申请基于申请号为201810386529.X,申请日为2018年04月26日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及车辆技术领域,尤其涉及一种DCDC变换器,以及包括该DCDC变换器的车载充电机和安装该车载充电机的电动车辆。
背景技术
随着电动车辆的不断发展,电动车辆的电池模块的容量越来越大。为了节省充放电时间,大容量的电池模块需要更大功率的双向车载充电机(以下简称车载充电机)。目前行业上主流车载充电机功率等级为单相3.3KW/6.6KW,随着大功率车载充电机的进一步需求,三相10/20/40KW车载充电机有着越来越大的市场。
车载充电机主功率拓扑一般包括PFC(Power Factor Correction,功率因数校正)+双向DCDC两部分,PFC起到功率因素校正作用;双向DCDC实现能量可控隔离传输,是车载充电机的核心功率转换单元。为了满足大功率充放电的需求,大功率双向DCDC电路通常采用多模块并联方式,即采用两个或更多个双向DCDC模块并联方式实现更大功率充电,但是,多模块并联存在一些问题,使得对***硬件电路设计及软件算法均提出很高要求。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开的一个实施例在于提出一种DCDC变换器,该DCDC变换器可以实现大功率输出和轻载模式下的小功率输出的切换,成本低,结构简单。
本公开的再一个实施例在于提出一种包括该DCDC变换器的车载充电机。
本公开的又一个实施例在于提出一种安装该车载充电机的电动车辆。
为了达到上述目的,本公开第一方面实施例的DCDC变换器,包括:第一三相桥模块、谐振模块、第二三相桥模块和控制器,其中,所述第一三相桥模块,用于在外界对车辆的电池模块充电时对DCDC变换器的输入信号的频率进行调节,或者,用于在所述电池模块对外界放电时对所述谐振模块的输出信号进行整流;所述谐振模块,用于在外界对车辆的电 池模块进行充电时对所述第一调整模块的输出信号进行谐振,或者,用于在所述电池模块对外界放电时对所述第二调整模块的输出信号进行谐振;所述第二三相桥模块,用于在车辆的电池模块对外界放电时对所述电池模块的输出信号的频率进行调节,或者,用于在外界对所述电池模块充电时对所述谐振模块的输出信号进行整流;所述控制器分别与所述第一三相桥模块的控制端和所述第二三相桥模块的控制端相连,所述控制器用于在所述DCDC变换器的轻载模式下,在外界对所述电池模块充电时,控制所述第一三相桥模块切换为两相桥臂输入或一相桥臂输入并控制所述第二三相桥模块切换为两相桥臂输出,或者,用于在所述电池模块对外界放电时,控制所述第二三相桥模块切换为两相桥臂输入或一相桥臂输入并控制所述第一三相桥模块切换为两相桥臂输出。
根据本公开实施例的DCDC变换器,相较于普通的三相交错LLC谐振变换器,谐振模块可以双向谐振,实现能量双向传输,且输出纹波电流更小,成本低,在轻载模式下,通过减少工作桥臂的数量以及工作开关管的数量,可以降低开关管损耗,提高工作效率。
为了达到上述目的,本公开第二方面实施例的车载充电机,包括三相PFC电路和所述的DCDC变换器。
根据本公开实施例的车载充电机,通过采用上述方面实施例的DCDC变换器,不仅可以实现更大功率的充放电,并且可以降低轻载模式下的开关损耗,提高工作效率。
为了达到上述目的,本公开第三方面实施例的电动车辆,包括所述的车载充电机。
根据本公开实施例的电动车辆,通过安装上述方面实施例的车载充电机,不仅可以实现更大功率的充放电,并且轻载模式下开关损耗降低,工作效率提高。
附图说明
图1是相关技术中的三模块并联双向DCDC电路拓扑示意图;
图2是根据本公开实施例的DCDC变换器的框图;
图3是根据本公开的一个实施例的DCDC变换器的电路拓扑示意图;
图4是根据本公开的一个实施例的DCDC变换器的三相工作时的纹波电流波形示意图;
图5是根据本公开的一个实施例的DCDC变换器在轻载模式下充电时切换至两相桥臂输入的电路拓扑示意图;
图6是根据本公开的一个实施例的DCDC变换器在轻载模式下充电时切换至一相桥臂输入的电路拓扑示意图;
图7是根据本公开的一个实施例的DCDC变换器的电路拓扑示意图;
图8是针对图7的在轻载模式下充电时切换至两相桥臂输入的电路拓扑示意图;
图9是针对图7的在轻载模式下充电时切换至一相桥臂输入的电路拓扑示意图;
图10是根据本公开实施例的车载充电机的框图;
图11是根据本公开实施例的电动车辆的框图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
本公开的实施例是基于发明人对以下问题的认识和研究做出的:
如图1所示,为典型的多模块并联双向DCDC变换器的电路示意图,更多模块并联以此类推。对于如图1所示的方案存在一些问题,例如,器件多成本高,每个模块需要独立的电压、电流采样以及驱动控制电路,冗余性较大,成本、体积难以最优化;再例如,输出波纹电流大仍难以解决,为了降低波纹电流,每个模块仍需要较大的滤波电容,当然也有多个独立模块之间进行相位交错降低波纹电流,但也需要不同模块时间协同工作,需要有主从机设置且协同要求高,这对***硬件电路设计及软件算法均提出很高要求。
下面参照附图描述根据本公开实施例的DCDC变换器。
图2是根据本公开实施例的DCDC变换器的框图,如图2所示,本公开实施例的DCDC变换器100包括第一三相桥模块10、谐振模块20、第二三相桥模块30和控制器40。
其中,其中,第一三相桥模块10用于在外界对车辆的电池模块充电时对DCDC变换器100的输入信号的频率进行调节以调整谐振模块20的阻抗,在这里,外界可以是电网或其他供电设备,例如电网对电池模块充电;或者,用于在电池模块对外界放电时,在这里,外界可以是用电负载,例如电池模块对用电负载放电,对谐振模块20的输出信号进行整流滤波以供后端负载用。其中,外界为能够与电池模块之间实现充放电的设备、装置或其他,在本公开的实施例中不作具体限定。
谐振模块20用于在外界对车辆的电池模块进行充电时对第一三相桥模块10的输出信号进行谐振以产生高频谐振电流,或者,用于在电池模块对外界放电时对第二三相桥模块30的输出信号进行谐振以产生高频谐振电流。
第二三相桥模块30用于在车辆的电池模块对外界放电时对电池模块的输出信号的频率进行调节以调节谐振模块20的阻抗,或者,用于在外界对电池模块充电时对谐振模块20的输出信号进行整流,高频谐振电流变为直流电,以提供给电池模块,实现对电池模块的充电。
本公开实施例的DCDC变换器100,通过设置谐振模块20,谐振模块20在电池模 块的充放电时均可以进行谐振以产生高频电流,即可以实现能量的双向传输。
参照图3所示为根据本公开的一个实施例的DCDC变换器的电路拓扑示意图,如图3所示,谐振模块20包括三路初级LC单元21、三相变压单元22和三路次级LC单元23。
其中,在外界对电池模块充电时,三路初级LC单元21和三相变压单元22用于对第一三相桥模块10的输出信号进行谐振以产生高频电流,进而高频电流通过第二三相桥模块30整流滤波后变成直流电,可以提供给车辆的电池模块,实现对电池模块的充电;在电池模块对外界放电时,三路次级LC单元23和三相变压单元22用于对第二三相桥模块30的输出信号进行谐振以产生高频电流,高频电流通过第一三相桥模块10进行整流滤波后变为直流电,直流电可提供给后续元器件处理,进而为负载供电,实现车辆的电池模块的放电
在本公开的一些实施例中,每一路初级LC单元21的一端与第一三相桥模块10中对应相桥臂的相线连接点相连,三相变压单元22的初级线圈的同名端分别与对应初级LC单元21的另一端相连,三相变压单元22的初级线圈的异名端连接在一起,以形成Y型连接。三相变压单元22的次级线圈的同名端分别与对应次级LC单元23的一端相连,三相变压单元22的次级线圈的异名端连接在一起,以形成Y型连接,采用Y型接法,有利于三相桥电路实现自动均流,避免由于三相桥电路的器件参数偏差带来的功率分布不均。
第二三相桥模块30的每一相桥臂的相线连接点与对应次级LC单元23的另一端相连。
控制器40分别与第一三相桥模块10的开关管的控制端和第二三相桥模块30的开关管的控制端相连。控制器40可以根据充放电信号对第一三相桥模块10和第二三相桥模块30的开关管进行控制,实现三相输入输出,相对于单项或双向输出可以提供更大功率。
在本公开的实施例中,三相变压单元22可以采用三个独立磁芯也可以采用同一个磁芯绕制。
在实施例中,在对车载电池模块充电时,每一路初级LC单元21与对应的变压单元22的初级线圈可以构成对应输入的谐振腔,控制器40对第一三相桥模块10进行高频谐振控制以及对第二三相桥模块30进行整流控制,第一三相桥模块10与三路初级LC单元21以及三相变压单元22的初级线圈组成三相交错LLC工作于高频谐振状态,并输出高频电流,高频电流通过第二三相桥模块30进行整流之后变成直流电输出,可以实现为电动车辆的整车电池模块的大功率充电。
在电池模块放电时,每一路次级LC单元23与对应的变压单元22的次级线圈可以构成对应输入的谐振腔,控制器40对第二三相桥模块30进行高频谐振控制以及对第一三相桥模块10进行整流控制,第二三相桥模块10与三路次级LC单元23以及三相变压单元22的次级线圈组成三相交错LLC工作于高频谐振状态,并输出高频电流,高频电流通过第一三 相桥模块10进行整流之后变成直流电输出,可以实现电池模块的大功率放电。
基于本公开实施例的DCDC变换器100,输出波纹电流小,如图4所示,P1为普通全桥电路输出波纹电流曲线,P2为本申请结构的输出波纹电流曲线,与普通全桥电路相比,在相同输出电流I 0的条件下,普通全桥电路输出波纹电流I ripple=πI 0/2=1.57I 0,而基于本申请的电路,输出波纹电流为
Figure PCTCN2019084329-appb-000001
显然输出纹波电流更小,更小的纹波电流更加有利于节省输出滤波电容。
本公开实施例的DCDC变换器100是新颖的三相交错LLC谐振双向变换器,与图1所示的多模块并联方式的大功率双向DCDC变换器相比,器件较少,纹波电流更小,可以实现更好效果的大功率充放电。
但是,因为车载充电机工作时,并不是一直工作于满功率状态,特别是放电方向经常工作于轻载模式。因三相交错谐振双向DCDC变换器功率回路所有器件一直工作于高频工作模式,为了使得轻载条件下输出电压稳定,***必须提高***工作频率以获得较小增益,工作频率的提高意味着开关管损耗的增加,因此基于上述电路拓扑结构,在轻载模式下不能使得***效率达到最优。
需要说明的是,轻载模式是指:轻载是相对于全载来说的,指的是在电路的负载范围内,负载率在30%以下,或者在50%以下。
基于本公开实施例的DCDC变换器100,提出新颖的控制方法,以实现大功率与小功率充放电的切换,使得在轻载模式下***效率也可达到最优。在本公开的实施例中,控制器40用于在DCDC变换器100的轻载模式下,在外界对车辆的电池模块充电时,控制第一三相桥模块10切换为两相桥臂输入或一相桥臂输入并控制第二三相桥模块30切换为两相桥臂输出,或者,在电池模块对外界放电时,控制第二三相桥模块30切换为两相桥臂输入或一相桥臂输入并控制第一三相桥模块10切换为两相桥臂输出。
在轻载模式下,本公开实施例的DCDC变换器100切换为“两相”或“一相”的LLC交错谐振DCDC变换器,通过减少谐振桥臂工作开关管的数量,可以降低开关损耗,提高工作频率,通过减少工作的谐振桥臂数量,使得工作桥臂负载不至于太轻,***开关频率与满负载相比增加不多,可有效降低开关管开关损耗,提高工作效率。
根据本公开实施例的DCDC变换器100,相较于普通的三相交错LLC谐振变换器,变压单元的次级侧增加谐振单元,可以双向谐振,实现能量双向传输,且功率分布均匀,输出纹波电流更小,成本低,在轻载模式下,通过减少工作桥臂的数量以及工作开关管的数量,可以降低开关损耗,提高工作效率。
下面参照附图对本公开的各个单元及其连接关系进一步说明。其中,在实施例中,第 一三相桥模块10和第二三相桥模块30可以由开关管例如MOS管或IGBT或其他元件构成三相桥结构,LC单元可以包括电容和电感,变压单元可以由变压器结构实现。
在本公开的一些实施例中,如图3所示,第一三相桥模块10包括第一一相桥臂、第一二相桥臂和第一三相桥臂。第一一相桥臂包括第一开关管Q1和第二开关管Q2,第一开关管Q1的一端与第二开关管Q2的一端相连,第一开关管Q1的一端与第二开关管Q2的一端之间具有第一相线连接点Z1;第一二相桥臂包括第三开关管Q3和第四开关管Q4,第三开关管Q3的一端与第四开关管Q4的一端相连,第三开关管Q3的一端与第四开关管Q4的一端之间具有第二相线连接点Z2;第一三桥臂包括第五开关管Q5和第六开关管Q6,第五开关管Q5的一端与第六开关管Q6的一端相连,第五开关管Q5的一端与第六开关管Q6的一端之间具有第三相线连接点Z3;第一开关管Q1的另一端、第三开关管Q3的另一端和第五开关管Q5的另一端连接在一起以形成第一三相桥模块的第一端点S11,第二开关管Q2的另一端、第四开关管Q4的另一端和第六开关管Q6的另一端连接在一起以形成第一三相桥模块10的第二端点S12,第一端点S11和第二端点S12可以连接其他模块以输入或输出。
如图3所示,第一三相桥模块10还包括第一电容C1,第一电容C1的一端与第一三相桥模块10的第一端点S11相连,第一电容C1的另一端与第一三相桥模块10的第二端点S12相连,可以对第一三相桥模块10的输出或输入进行滤波。
如图3所示,三路初级LC单元21包括第一初级LC单元、第二初级LC单元和第三初级LC单元。第一初级LC单元包括第二电容C2和第一电感L1,第二电容C2的一端与第一相线连接点Z1相连,第二电容C2的另一端与第一电感L1的一端相连,第一电感L1的另一端与对应相变压单元22的初级线圈的同名端相连;第二初级LC单元包括第三电容C3和第二电感L2,第三电容C3的一端与第二相线连接点Z2相连,第三电容C3的另一端与第二电感L2的一端相连,第二电感L2的另一端与对应相变压单元22的初级线圈的同名端相连;第三初级LC单元包括第四电容C4和第三电感L3相连,第四电容C4的一端与第三相线连接点Z3相连,第四电容C4的另一端与第三电感L3的一端相连,第三电感L3的另一端与对应相变压单元22的初级线圈的同名端相连。
在本公开的实施例中,如图3所示,三相变压单元22包括第一相变压单元T1、第二相变压单元T2和第三相变压单元T3。
其中,第一相变压单元T1包括第一初级线圈和第一次级线圈,第一初级线圈的同名端与第一电感L1的另一端相连,第一次级线圈的同名端与对应次级LC单元23的一端相连;第二相变压单元T2包括第二初级线圈和第二次级线圈,第二初级线圈的同名端与第二电感L2的另一端相连,第二次级线圈的同名端与对应次级LC单元23的一端相连;第三相变压单元T3包括第三初级线圈和第三次级线圈,第三初级线圈的同名端与第三电感L3的另一 端相连,第三次级线圈的同名端与对应次级LC单元23的一端相连;第一初级线圈的异名端、第二初级线圈的异名端和第三初级线圈的异名端连接在一起例如连接于NP,以形成Y型接法,第一次级线圈的异名端、第二次级线圈的异名端和第三次级线圈的异名端连接在一起例如连接于NS,以形成Y型接法。采用Y型接法,可以使得三相桥实现自动均流,避免由于三相桥器件参数偏差带来的功率分布不均。
如图3所示,第二三相桥模块30包括第二一相桥臂、第二二相桥臂和第二三相桥臂。
其中,第二一相桥臂包括第七开关管Q7和第八开关管Q8,第七开关管Q7的一端与第八开关管Q8的一端相连,第七开关管Q7的一端与第八开关管Q8的一端之间具有第四相线连接点Z4;第二二相桥臂包括第九开关管Q9和第十开关管Q10,第九开关管Q9的一端与第十开关管Q10的一端相连,第九开关管Q9的一端与第十开关管Q10的一端之间具有第五相线连接点Z5;第二三相桥臂包括第十一开关管Q11和第十二开关管Q12,第十一开关管Q11的一端与第十二开关管Q12的一端相连,第十一开关管Q11的一端与第十二开关管Q12的一端之间具有第六相线连接点Z6;第七开关管Q7的另一端,第九开关管Q9的另一端和第十一开关管Q11的另一端连接在一起以形成第二三相桥模块30的第一端点S21,第八开关管Q8的另一端、第十开关管Q10的另一端和第十二开关管Q12的另一端连接在一起以形成第二三相桥模块30的第二端点S22。第一端点S21和第二端点S22可以连接其他模块以输入或输出。
如图3所示,第二三相桥模块30还包括第五电容C5,第五电容C5的一端与第二三相桥模块30的第一端点S21相连,第五电容C5的另一端与第二三相桥模块30的第二端点S22相连。第五电容C5可以对第二三相桥模块30的输出或输入进行滤波。
在本公开的一些实施例中,如图3所示,三路次级LC单元23包括第一次级LC单元、第二次级LC单元和第三次级LC单元。
其中,第一次级LC单元包括第四电感L4和第六电容C6,第四电感L4的一端与第一次级线圈的同名端相连,第四电感L4的另一端与第六电容C6的一端相连,第六电容C6的另一端与第四相线连接点Z4相连;第二次级LC单元包括第五电感L5和第七电容C7,第五电感L5的一端与第二次级线圈的同名端相连,第五电感L5的另一端与第七电容C7的一端相连,第七电容C7的另一端与第五相线连接点Z5相连;第三次级LC单元包括第六电感L6和第八电容C8,第六电感L6的一端与第三次线圈的同名端相连,第六电感L6的另一端与第八电容C8的一端相连,第八电容C8的另一端与第六相线连接点Z6相连。
在一些实施例中,对于正向充电来说,第一三相桥模块10连接充电输入,第二三相桥模块30连接电动车辆的电池模块,第二电容C2、第一电感L1和第一初级线圈构成第一一相桥臂的谐振腔,第三电容C3、第二电感L2和第二初级线圈构成第一二相桥臂的谐振腔, 第四电容C4、第三电感L3和第三初级线圈构成第一三相桥臂的谐振腔。其中,在一些实施例中,第二电容C2、第三电容C3和第四电容C4被称为初级谐振电容,第一电感L1、第二电感L2和第三电感L3被称为初级谐振电感。
在外界对车辆的电池模块充电时,第一三相桥臂电路10的每一相桥臂及其对应的谐振模块组成三相交错LLC并工作于高频谐振状态,控制器40控制第一开关管Q1与第二开关管Q2、第三开关管Q3与第四开光管Q4、第五开关管Q5与第六开关管Q6分别以50%占空比交替开关,控制第一开关管Q1、第三开关管Q3和第五开关管Q5之间相位分别相差120°开关,控制第二开关管Q2、第四开关管Q4和第六开关管Q6之间相位分别相差120°开关,以及对第二三相桥模块30进行整流控制,第二三相桥模块30作为次级三相整流桥,高频电流通过第二三相桥模块30的开关管体中二极管整流之后转换为直流电并提供给整车的高压电池模块,其中,通常地如图4中所示,每个开关管中包括二极管元件,可以称之为开关管体二极管。如果将驱动信号给到第二三相桥模块30的开关管,第二三相桥模块30将形成同步整流电路,进一步提高产品效率。
在一些实施例中,对于电池模块的放电来说,第一三相桥模块10连接用电侧,第二三相桥模块30连接电动车辆的电池模块,第六电容C6、第四电感L4和第一次级线圈构成第二一相桥臂的谐振腔,第七电容C7、第五电感L5和第二次级线圈构成第二二相桥臂的谐振腔,第八电容C8、第六电感L6和第三次级线圈构成第二三相桥臂的谐振腔。其中,在一些实施例中,第六电容C6、第七电容C7和第八电容C8被称为次级谐振电容,第四电感L4、第五电感L5和第六电感L6被称为次级谐振电感。
在电池模块对外界放电时,第二三相桥臂电路30的每一相桥臂及其对应的谐振模块组成三相交错LLC并工作于高频谐振状态,控制器40控制第七开关管Q7与第八开关管Q8、第九开关管Q9与第十开关管Q10、第十一开关管Q11与第十二开关管Q12分别以50%占空比交替开关,控制第七开关管Q7、第九开关管Q9和第十一开关管Q11之间相位分别相差120°开关,控制第八开关管Q8、第十开关管Q10和第十二开关管Q12之间相位分别相差120°开关,以及对第一三相桥模块10进行整流控制,第一三相桥模块30作为放电输出三相整流桥,高频电流通过第一三相桥模块30的开关管体中二极管整流之后转换为直流电并提供给用电输出侧的模块,如果将驱动信号给到第一三相桥模块10的开关管,第一三相桥模块10将形成同步整流电路,进一步提高产品效率。
以上实施例描述了基于如图3所示的本公开实施例的DCDC变换器100实现大功率充放电的过程,下面对本公开实施例的实现轻载模式下的充放电进行说明。
在本公开的一些实施例中,在轻载模式下,在外界对车辆的电池模块充电时,控制器40控制第五开关管Q5和第六开关管Q5处于常关状态并控制第十一开关管Q11和第十二开 关管Q12处于常关状态。即关断谐振模块20中初次级某一对应桥臂,比如关断初次级侧的第三相桥臂,此时***拓扑等效于图5所示,本公开实施例的DCDC变换器100成为“两相”的LLC交错谐振DCDC变换器,其中,第二电容C2、第一电感L1、第一相变压单元T1、第三电容C3、第二电感L3和第二相变压单元T2处于串联模式,谐振腔等效参数不变,则如图5所示的电路拓扑成为次级采用同步整流的全桥DCDC变换器,因而可以满足轻载模式下的充电需求,又不会增加开关管损耗。
或者,在轻载模式下,在电池模块对外界放电时,控制器40控制第十一开关管Q11和第十二开关管Q12处于常关状态并控制第五开关管Q5和第六开关管Q6处于常关状态,同理地,本公开实施例的DCDC变换器100成为“两相”的LLC交错谐振DCDC变换器,初级侧成为采用同步整流的全桥结构,可以满足轻载模式下的放电需求,又不会增加开关管损耗。
在本公开的另一些实施例中,在轻载模式下,在外界对车辆的电池模块充电时,控制器40控制第五开关管Q5和第六开关管Q6处于常闭状态,以及控制第三开关管Q3处于常关状态并控制第四开关管Q4处于常开状态,控制第十一开关管Q11和第十二开关管Q12处于常关状态,也就是在图5的基础上,将初级侧的第一二相桥臂上的上开关管保持常关,下开光管保持常开,拓扑结构切换为“一相”的LLC交错谐振DCDC变换器,等效电路拓扑示意图如图6所示,此时次级输出侧为全桥同步整流电路结构,需要注意的是由于拓扑结构的变化,如果工作频率不变,***输出电压将减半,为了保持输出电压不变,需要降低工作频率以提高***增益特性。
或者,在电池模块对外界放电时,控制器40控制第十一开关管Q11和第十二开关管Q12处于常关状态,以及控制第九开关管Q9处于常关状态并控制第十开关管Q10处于常开状态,控制第五开关管Q5和第六开关管Q6处于常关状态。,同理地,本公开实施例的DCDC变换器100成为“一相”的LLC交错谐振DCDC变换器,初级侧成为采用同步整流的全桥结构,可以满足轻载模式下的放电需求,又不会增加开关管损耗。
下面以20KW三相交错LLC双向DCDC变换器为例进行说明。其中,设计需求为:DCDC变换器的输入电压和输出电压额定值均为750V,充电方向和放电方向满载功率均为20KW。对于谐振腔参数设定:因为正向充电电压、功率相等,因此,对应第一三相桥模块10的谐振腔例如称为初级谐振腔与对应第二三相桥模块30的谐振腔例如称为次级谐振腔的参数一致,假设电路谐振频率为150KHZ,根据三相交错LLC电路的相关计算公式可以得到:初级谐振电容C2=C3=C4=次级谐振电容C5=C6=C7=80nF,初级谐振电感L1=L2=L3=次级谐振电感L4=L5=L6=14μH,三相变压单元22匝比T1=T2=T3=1:1,三相变压单元22的初级线圈的感量T 1-1=T 2-1=T 3-1=次级线圈的感量=T 1-2=T 2-2=T 3-2=70μH,根据对电流、电压需求以及散热 要求等的考虑,开关管Q1-Q12选用1200V/40mΩ碳化硅MOS(metal oxide semiconductor,金属-氧化物-半导体)管,具体地如图7所示。
以轻载模式下充电方向为例,当关断其中一相桥臂例如第三相桥臂时,即切换为两相桥臂输入和两相桥臂输出,等效电路示意图如图8所示;当关断两相桥臂输入时,即切换为一相输入和两相的全桥整流输出,等效电路示意图如图9所示。
本公开实施例的DCDC变换器100,与普通三相全桥DCDC变换器相比,在变压次级侧增加三路谐振单元,第二三相桥模块30采用可控开关管。
其中,对于大功率充放电来说,双向谐振,可以实现能量双向传输,且双向传输均工作于软开关模式;构成三相交错LLC,可以实现更大功率转换,相较于普通三相交错LLC,可以节省功率开关管,并且,三相变压单元22采用Y型接法,可以实现三相桥电路的自动均流,避免功率分布不均,以及基于本公开实施例的DCDC变换器100的电路结构,输出纹波电流更小,更小的纹波电流可以节省输出滤波电容,更加有利于降低成本和减小产品体积。
对于轻载模式来说,根据负载选择三相桥中的一相或两相桥臂,通过减少谐振桥臂的工作开关管数量或减少谐振桥臂数量,可以降低开关管损耗,提高***工作效率。
基于上述方面实施例的DCDC变换器,下面参照附图描述根据本公开实施例的车载充电机。
图10是根据本公开实施例的车载充电机的框图,如图10所示,本公开实施例的车载充电机1000包括三相PFC电路200和上面实施例的DCDC变换器100,三相PFC电路200起到功率因数校正的作用,DCDC变换器100实现能量的可控隔离传输,DCDC变换器100的具体结构和工作过程参照上面实施例说明。
根据本公开实施例的车载充电机100,通过采用上述方面实施例的DCDC变换器100,不仅可以实现更大功率的充放电,也可以满足轻载模式下的充放电控制,并且轻载模式下开关损耗降低,工作效率提高。
图11是根据本公开实施例的电动车辆的框图,如图9所示,本公开实施例的电动车辆10000包括上述方面实施例的车载充电机1000。
根据本公开实施例的电动车辆10000,通过安装上述方面实施例的车载充电机1000,不仅可以实现更大功率的充放电,也可以满足轻载模式下的充放电控制,并且轻载模式下开关损耗降低,工作效率提高。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述 不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (14)

  1. 一种DCDC变换器,其特征在于,包括第一三相桥模块、谐振模块、第二三相桥模块和控制器,其中,
    所述第一三相桥模块,用于在外界对车辆的电池模块充电时对DCDC变换器的输入信号的频率进行调节,或者,用于在所述电池模块对外界放电时对所述谐振模块的输出信号进行整流;
    所述谐振模块,用于在外界对车辆的电池模块进行充电时对所述第一调整模块的输出信号进行谐振,或者,用于在所述电池模块对外界放电时对所述第二调整模块的输出信号进行谐振;
    所述第二三相桥模块,用于在车辆的电池模块对外界放电时对所述电池模块的输出信号的频率进行调节,或者,用于在外界对所述电池模块充电时对所述谐振模块的输出信号进行整流;
    所述控制器分别与所述第一三相桥模块的控制端和所述第二三相桥模块的控制端相连,所述控制器用于在所述DCDC变换器的轻载模式下,在外界对所述电池模块充电时,控制所述第一三相桥模块切换为两相桥臂输入或一相桥臂输入并控制所述第二三相桥模块切换为两相桥臂输出,或者,用于在所述电池模块对外界放电时,控制所述第二三相桥模块切换为两相桥臂输入或一相桥臂输入并控制所述第一三相桥模块切换为两相桥臂输出。
  2. 如权利要求1所述的DCDC变换器,其特征在于,所述谐振模块包括三路初级LC单元、三相变压单元和三路次级LC单元,其中,
    在外界对所述电池模块充电时,所述三路初级LC单元和所述三相变压单元用于对所述第一调整模块的输出信号进行谐振以产生高频电流;
    在所述电池模块对外界放电时,所述三路次级LC单元和所述三相变压单元用于对所述第二调整模块的输出信号进行谐振以产生高频电流。
  3. 如权利要求2所述的DCDC变换器,其特征在于,
    每一路初级LC单元的一端与所述第一三相桥模块中对应相桥臂的相线连接点相连,所述三相变压单元的初级线圈的同名端分别与对应初级LC单元的另一端相连,所述三相变压单元的初级线圈的异名端连接在一起,所述三相变压单元的次级线圈的同名端分别与对应次级LC单元的一端相连,所述三相变压单元的次级线圈的异名端连接在一起;
    所述第二三相桥模块的每一相桥臂的相线连接点与对应次级LC单元的另一端相连;
    所述控制器分别与所述第一三相桥模块的开关管的控制端和所述第二三相桥模块的开关管的控制端相连。
  4. 如权利要求3所述的DCDC变换器,其特征在于,所述第一三相桥模块包括:
    第一一相桥臂,所述第一一相桥臂电路包括第一开关管和第二开关管,所述第一开关管的一端与所述第二开关管的一端相连,所述第一开关管的一端与所述第二开关管的一端之间具有第一相线连接点;
    第一二相桥臂,所述第一二相桥臂包括第三开关管和第四开关管,所述第三开关管的一端与所述第四开关管的一端相连,所述第三开关管的一端与所述第四开关管的一端之间具有第二相线连接点;
    第一三相桥臂,所述第一三桥臂包括第五开关管和第六开关管,所述第五开关管的一端与所述第六开关管的一端相连,所述第五开关管的一端与所述第六开关管的一端之间具有第三相线连接点;
    所述第一开关管的另一端、所述第三开关管的另一端和所述第五开关管的另一端连接在一起以形成所述第一三相桥模块的第一端点,所述第二开关管的另一端、所述第四开关管的另一端和所述第六开关管的另一端连接在一起以形成所述第一三相桥模块的第二端点。
  5. 如权利要求4所述的DCDC变换器,其特征在于,所述第一三相桥模块还包括:
    第一电容,所述第一电容的一端与所述第一三相桥模块的第一端点相连,所述第一电容的另一端与所述第一三相桥模块的第二端点相连。
  6. 如权利要求4或5所述的DCDC变换器,其特征在于,所述三路初级LC单元包括:
    第一初级LC单元,所述第一初级LC单元包括第二电容和第一电感,所述第二电容的一端与所述第一相线连接点相连,所述第二电容的另一端与所述第一电感的一端相连,所述第一电感的另一端与对应相变压单元的初级线圈的同名端相连;
    第二初级LC单元,所述第二初级LC单元包括第三电容和第二电感,所述第三电容的一端与所述第二相线连接点相连,所述第三电容的另一端与所述第二电感的一端相连,所述第二电感的另一端与对应相变压单元的初级线圈的同名端相连;
    第三初级LC单元,所述第三初级LC单元包括第四电容和第三电感相连,所述第四电容的一端与所述第三相线连接点相连,所述第四电容的另一端与所述第三电感的一端相连,所述第三电感的另一端与对应相变压单元的初级线圈的同名端相连。
  7. 如权利要求6所述的DCDC变换器,其特征在于,所述三相变压单元包括:
    第一相变压单元,所述第一相变压单元包括第一初级线圈和第一次级线圈,所述第一初级线圈的同名端与所述第一电感的另一端相连,所述第一次级线圈的同名端与对应次级LC单元的一端相连;
    第二相变压单元,所述第二相变压单元包括第二初级线圈和第二次级线圈,所述第二 初级线圈的同名端与所述第二电感的另一端相连,所述第二次级线圈的同名端与对应次级LC单元的一端相连;
    第三相变压单元,所述第三相变压单元包括第三初级线圈和第三次级线圈,所述第三初级线圈的同名端与所述第三电感的另一端相连,所述第三次级线圈的同名端与对应次级LC单元的一端相连;
    所述第一初级线圈的异名端、所述第二初级线圈的异名端和所述第三初级线圈的异名端连接在一起,所述第一次级线圈的异名端、所述第二次级线圈的异名端和所述第三次级线圈的异名端连接在一起。
  8. 如权利要求7所述的DCDC变换器,其特征在于,所述第二三相桥模块包括:
    第二一相桥臂,所述第二一相桥臂包括第七开关管和第八开关管,所述第七开关管的一端与所述第八开关管的一端相连,所述第七开关管的一端与所述第八开关管的一端之间具有第四相线连接点;
    第二二相桥臂,所述第二二相桥臂包括第九开关管和第十开关管,所述第九开关管的一端与所述第十开关管的一端相连,所述第九开关管的一端与所述第十开关管的一端之间具有第五相线连接点;
    第二三相桥臂,所述第二三相桥臂包括第十一开关管和第十二开关管,所述第十一开关管的一端与所述第十二开关管的一端相连,所述第十一开关管的一端与所述第十二开关管的一端之间具有第六相线连接点;
    所述第七开关管的另一端,所述第九开关管的另一端和所述第十一开关管的另一端连接在一起以形成所述第二三相桥模块的第一端点,所述第八开关管的另一端、所述第十开关管的另一端和所述第十二开关管的另一端连接在一起以形成所述第二三相桥模块的第二端点。
  9. 如权利要求8所述的DCDC变换器,其特征在于,所述第二三相桥模块还包括:
    第五电容,所述第五电容的一端与所述第二三相桥模块的第一端点相连,所述第五电容的另一端与所述第二三相桥模块的第二端点相连。
  10. 如权利要求8或9所述的DCDC变换器,其特征在于,所述三路次级LC单元包括:
    第一次级LC单元,所述第一次级LC单元包括第四电感和第六电容,所述第四电感的一端与所述第一次级线圈的同名端相连,所述第四电感的另一端与所述第六电容的一端相连,所述第六电容的另一端与所述第四相线连接点相连;
    第二次级LC单元,所述第二次级LC单元包括第五电感和第七电容,所述第五电感的一端与所述第二次级线圈的同名端相连,所述第五电感的另一端与所述第七电容的一端相连,所述第七电容的另一端与所述第五相线连接点相连;
    第三次级LC单元,所述第三次级LC单元包括第六电感和第八电容,所述第六电感的一端与所述第三次线圈的同名端相连,所述第六电感的另一端与所述第八电容的一端相连,所述第八电容的另一端与所述第六相线连接点相连。
  11. 如权利要求10所述的DCDC变换器,其特征在于,所述控制器在所述的DCDC变换器的轻载模式下用于,
    在外界对电池模块充电时,控制所述第五开关管和所述第六开关管处于常关状态并控制所述第十一开关管和所述第十二开关管处于常关状态;
    或者,在电池模块对外界放电时,控制所述第十一开关管和所述第十二开关管处于常关状态并控制所述第五开关管和所述第六开关管处于常关状态。
  12. 如权利要求10或11所述的DCDC变换器,其特征在于,所述控制器在轻载模式下用于,
    在外界对电池模块充电时,控制所述第五开关管和所述第六开关管处于常闭状态,以及控制所述第三开关管处于常关状态并控制所述第四开关管处于常开状态,控制所述第十一开关管和所述第十二开关管处于常关状态;
    或者,在电池模块对外界放电时,控制所述第十一开关管和所述第十二开关管处于常关状态,以及控制所述第九开关管处于常关状态并控制所述第十开关管处于常开状态,控制所述第五开关管和所述第六开关管处于常关状态。
  13. 一种车载充电机,其特征在于,包括三相PFC电路和如权利要求1-12任一项所述的DCDC变换器。
  14. 一种电动车辆,其特征在于,包括如权利要求13所述的车载充电机。
PCT/CN2019/084329 2018-04-26 2019-04-25 Dcdc变换器、车载充电机和电动车辆 WO2019206231A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19792280.0A EP3787169A4 (en) 2018-04-26 2019-04-25 DCDC CONVERTER, VEHICLE MOUNTED CHARGER AND ELECTRIC VEHICLE
JP2020559440A JP7161548B2 (ja) 2018-04-26 2019-04-25 Dcdcコンバータ、車載充電器及び電気自動車
US17/050,124 US11404965B2 (en) 2018-04-26 2019-04-25 DC-DC converter, on-board charger, and electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810386529.XA CN110417267A (zh) 2018-04-26 2018-04-26 Dcdc变换器、车载充电机和电动车辆
CN201810386529.X 2018-04-26

Publications (1)

Publication Number Publication Date
WO2019206231A1 true WO2019206231A1 (zh) 2019-10-31

Family

ID=68293738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084329 WO2019206231A1 (zh) 2018-04-26 2019-04-25 Dcdc变换器、车载充电机和电动车辆

Country Status (5)

Country Link
US (1) US11404965B2 (zh)
EP (1) EP3787169A4 (zh)
JP (1) JP7161548B2 (zh)
CN (1) CN110417267A (zh)
WO (1) WO2019206231A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022017179A (ja) * 2020-07-13 2022-01-25 台達電子工業股▲ふん▼有限公司 絶縁型共振コンバータ及びその制御方法
WO2023057163A1 (fr) * 2021-10-04 2023-04-13 Vitesco Technologies GmbH Systeme electrique pour vehicule automobile

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417266A (zh) * 2018-04-26 2019-11-05 比亚迪股份有限公司 Dcdc变换器、车载充电机和电动车辆
CN110417267A (zh) * 2018-04-26 2019-11-05 比亚迪股份有限公司 Dcdc变换器、车载充电机和电动车辆
CN111756084A (zh) * 2019-03-26 2020-10-09 现代自动车株式会社 双向车载充电器及其控制方法
US11070138B2 (en) * 2019-10-31 2021-07-20 Deere & Company System for controlling a direct-current-to-direct-current converter to provide electrical energy to a vehicle implement
US11070136B2 (en) * 2019-10-31 2021-07-20 Deere & Company System for controlling a direct-current-to-direct-current converter to provide electrical energy to a vehicle implement
CN111409482B (zh) * 2020-03-30 2023-01-31 上海电气集团股份有限公司 车载充电机和电机控制器的集成电路、电动汽车
CN111446858A (zh) * 2020-04-13 2020-07-24 威睿电动汽车技术(宁波)有限公司 Cllc双向直流-直流变换器及低增益控制方法
US11088625B1 (en) * 2020-05-26 2021-08-10 Institute Of Electrical Engineering, Chinese Academy Of Sciences Three-phase CLLC bidirectional DC-DC converter and a method for controlling the same
TWI814025B (zh) * 2020-06-30 2023-09-01 台達電子工業股份有限公司 Dc-dc諧振轉換器及其控制方法
US11404966B2 (en) * 2020-07-02 2022-08-02 Delta Electronics, Inc. Isolated multi-phase DC/DC converter with reduced quantity of blocking capacitors
CN113659857B (zh) * 2021-07-02 2023-06-02 杭州中恒电气股份有限公司 一种三相llc谐振变换器的纹波抑制方法
CN115589149A (zh) * 2021-07-06 2023-01-10 光宝电子(广州)有限公司 三相交错谐振变换器和电源电路
CN114172375B (zh) * 2022-02-10 2022-04-26 浙江大学杭州国际科创中心 一种直流变换器
CN115173714B (zh) * 2022-08-09 2023-05-23 河北科技大学 一种三相clllc谐振变换器轻载运行控制***及方法
CN115995966B (zh) * 2023-03-23 2023-07-18 深圳市永联科技股份有限公司 双向非隔离dcdc拓扑控制电路及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202218161U (zh) * 2011-08-30 2012-05-09 刘闯 双向隔离式的移相全桥dc/dc变换器
CN203851025U (zh) * 2013-04-15 2014-09-24 罗姆股份有限公司 Dc/dc变换器和使用它的电子设备
CN104506039A (zh) * 2014-12-25 2015-04-08 石家庄通合电子科技股份有限公司 一种双向隔离直流-直流变换器
CN105871215A (zh) * 2016-05-17 2016-08-17 华南理工大学 用于双向clllc谐振变换器的整流控制电路
DE102016006549A1 (de) * 2016-05-25 2017-11-30 Leopold Kostal Gmbh & Co. Kg Bidirektionale Gleichspannungswandleranordnung

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841244A (zh) * 2009-03-20 2010-09-22 力博特公司 一种低输出损耗的llc谐振变换器
JP2011072067A (ja) * 2009-09-24 2011-04-07 Toyota Motor Corp 車両の電源システムおよびそれを備える電動車両
GB2476278A (en) * 2009-12-17 2011-06-22 Eltek Valere As Resonant circuit with transformer having three sets of windings
JP5995139B2 (ja) 2012-10-12 2016-09-21 富士電機株式会社 双方向dc/dcコンバータ
US20160006346A1 (en) * 2013-02-13 2016-01-07 Panasonic Intellectual Property Management Co., Ltd. Power supply device, on-board power supply device, and electric automobile
US9755534B2 (en) * 2013-02-14 2017-09-05 Nuvolta Technologies, Inc. High efficiency high frequency resonant power conversion
JP2014226026A (ja) 2013-04-15 2014-12-04 ローム株式会社 Dc/dcコンバータおよびそれを用いた電子機器
KR101333586B1 (ko) * 2013-06-14 2013-12-02 한국전기연구원 광범위한 부하 범위를 가지는 고정밀 직류/직류 공진형 컨버터
CN103683964A (zh) 2013-12-20 2014-03-26 华为技术有限公司 谐振式双向变换器及不间断电源装置、及控制方法
CN107659161A (zh) * 2016-07-25 2018-02-02 中兴通讯股份有限公司 一种三相半桥 llc 谐振变换器的控制方法及装置
US20210351713A1 (en) * 2016-08-01 2021-11-11 Koninklijke Philips N.V. Multilevel resonant dc-dc converter
CN107757388B (zh) 2016-08-23 2019-11-22 比亚迪股份有限公司 电动汽车及其车载充电***和车载充电***的控制方法
CN106411162A (zh) * 2016-09-30 2017-02-15 深圳市奥耐电气技术有限公司 三相ac‑dc电源转换***
US10003267B1 (en) * 2016-12-19 2018-06-19 Analog Devices Global Isolated DC-DC converter with an H-bridge circuit
CN107017816B (zh) 2017-04-25 2019-06-04 南京航空航天大学 具有容错能力的电动汽车驱动和充电***及故障重构方法
CN107294392A (zh) * 2017-08-11 2017-10-24 何晓东 一种双向dcdc变换器
CN110417266A (zh) * 2018-04-26 2019-11-05 比亚迪股份有限公司 Dcdc变换器、车载充电机和电动车辆
CN110417267A (zh) * 2018-04-26 2019-11-05 比亚迪股份有限公司 Dcdc变换器、车载充电机和电动车辆
DE102018210807A1 (de) * 2018-06-29 2020-01-02 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Elektrische Schaltung für Zero-Voltage-Soft-Switching in einem Gleichspannungswandler
DE102018210806A1 (de) * 2018-06-29 2020-01-02 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Elektrische Schaltung mit Hilfsspannungsquelle für Zero-Voltage-Switching in einem Gleichspannungswandler unter sämtlichen Lastbedingungen
JP2020061892A (ja) * 2018-10-12 2020-04-16 パナソニックIpマネジメント株式会社 電圧変換装置
JP2020061893A (ja) * 2018-10-12 2020-04-16 パナソニックIpマネジメント株式会社 電力変換装置
JP2020061894A (ja) * 2018-10-12 2020-04-16 パナソニックIpマネジメント株式会社 電力変換装置
US11616450B2 (en) * 2019-03-29 2023-03-28 Qatar Foundation For Education, Science And Community Development Modular DC-DC converter and a battery charging device including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202218161U (zh) * 2011-08-30 2012-05-09 刘闯 双向隔离式的移相全桥dc/dc变换器
CN203851025U (zh) * 2013-04-15 2014-09-24 罗姆股份有限公司 Dc/dc变换器和使用它的电子设备
CN104506039A (zh) * 2014-12-25 2015-04-08 石家庄通合电子科技股份有限公司 一种双向隔离直流-直流变换器
CN105871215A (zh) * 2016-05-17 2016-08-17 华南理工大学 用于双向clllc谐振变换器的整流控制电路
DE102016006549A1 (de) * 2016-05-25 2017-11-30 Leopold Kostal Gmbh & Co. Kg Bidirektionale Gleichspannungswandleranordnung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3787169A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022017179A (ja) * 2020-07-13 2022-01-25 台達電子工業股▲ふん▼有限公司 絶縁型共振コンバータ及びその制御方法
JP7289871B2 (ja) 2020-07-13 2023-06-12 台達電子工業股▲ふん▼有限公司 絶縁型共振コンバータ及びその制御方法
WO2023057163A1 (fr) * 2021-10-04 2023-04-13 Vitesco Technologies GmbH Systeme electrique pour vehicule automobile

Also Published As

Publication number Publication date
CN110417267A (zh) 2019-11-05
EP3787169A1 (en) 2021-03-03
US11404965B2 (en) 2022-08-02
JP2021522769A (ja) 2021-08-30
US20210067048A1 (en) 2021-03-04
EP3787169A4 (en) 2022-01-19
JP7161548B2 (ja) 2022-10-26

Similar Documents

Publication Publication Date Title
WO2019206231A1 (zh) Dcdc变换器、车载充电机和电动车辆
WO2019206230A1 (zh) Dcdc变换器、车载充电机和电动车辆
US20230142869A1 (en) Method and system for adjusting double-sided lcc compensation network of wireless charging system
CN109560711B (zh) 一种隔离型双向dc-dc变换器及其调制方法
CN201541200U (zh) 具有极宽ac输入电压范围的ac-dc中间电路转换器
CN110936827B (zh) 无线充电***、无线充电控制方法及汽车无线充电装置
CN106936319B (zh) 一种隔离型三端口双向dc-dc变换器
CN108512256B (zh) 一种多功能车载充放电一体化***
CN110949152A (zh) 无线充电***、方法及汽车无线充电装置
CN109039121B (zh) 一种高频隔离型交直流变换电路及其控制方法
WO2022116413A1 (zh) 一种可切换无线电能传输线圈与补偿电容的可变电路拓扑
CN103138381A (zh) 可改善待机电力效率的交直流电源转换装置
CN216134292U (zh) 副边cl/s恒流恒压ipt充电***
Ishigaki et al. A new isolated multi-port converter using interleaving and magnetic coupling inductor technologies
CN109842299B (zh) 组合式直流变换***及其控制方法
US12027986B2 (en) Magnetic integration of three-phase resonant converter and accessory power supply
CN109474082A (zh) 一种基于变补偿网络结构的双向无线电能传输***及方法
Itoh et al. A single-stage rectifier with interleaved totem-pole PFC and dual active bridge (DAB) converter for PHEV/BEV on-board charger
CN113314315B (zh) 一种具有高抗偏移特性的混合ipt耦合器
CN109412420B (zh) 双向隔离dc/dc电路及其采用的控制方法
WO2021033131A1 (en) Vehicle-grid-home power interface
WO2019206229A1 (zh) Dcdc变换器、车载充电机和电动车辆
CN113794288A (zh) 一种双并联电感的无线电能传输补偿拓扑结构
Luo et al. A primary shunt inductor compensated inductive power transfer system with natural ZVS for battery charging application
CN115208206B (zh) 一种CLLC谐振电路与Buck-Boost电路组合的三端口双向DC-DC变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792280

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559440

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019792280

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019792280

Country of ref document: EP

Effective date: 20201126