WO2019205938A1 - 玻璃组合物 - Google Patents

玻璃组合物 Download PDF

Info

Publication number
WO2019205938A1
WO2019205938A1 PCT/CN2019/082035 CN2019082035W WO2019205938A1 WO 2019205938 A1 WO2019205938 A1 WO 2019205938A1 CN 2019082035 W CN2019082035 W CN 2019082035W WO 2019205938 A1 WO2019205938 A1 WO 2019205938A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
sio
mgo
cao
glass composition
Prior art date
Application number
PCT/CN2019/082035
Other languages
English (en)
French (fr)
Inventor
毛露路
孙伟
匡波
Original Assignee
成都光明光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810380182.8A external-priority patent/CN108298811B/zh
Priority claimed from CN201810380183.2A external-priority patent/CN110395904B/zh
Application filed by 成都光明光电股份有限公司 filed Critical 成都光明光电股份有限公司
Priority to JP2020559548A priority Critical patent/JP7269957B2/ja
Priority to US17/050,571 priority patent/US11440836B2/en
Publication of WO2019205938A1 publication Critical patent/WO2019205938A1/zh

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass

Definitions

  • the present invention relates to a glass composition, and more particularly to a glass composition having a high Young's modulus and a low density.
  • the most effective way to improve the reading speed of hard disks is to increase the speed of hard disks.
  • the speed of the hard disk on the market is usually 5200 rpm - 7200 rpm.
  • the rotational speed of the hard disk disk needs to reach 10000 rpm or more and remain unchanged for a long time. Disk deformation under high-speed rotation is a fatal flaw for the hard disk, which requires a very high specific rate of material for the disk.
  • the specific elastic ratio refers to the ratio of the Young's modulus and the density of the material.
  • the Young's modulus is generally required to be greater than 80 GPa, the shear modulus is greater than 35 GPa, and the ratio of Young's modulus to density, that is, the value of E(GPa)/ ⁇ is greater than 30.
  • the magnetic material needs to be sputtered onto the glass substrate in a high temperature environment, it is required that the glass does not deform at a temperature of 600 ° C or higher. More importantly, the glass should not contain more bubbles. If there are more bubbles, the substrate will be disturbed during high-speed rotation. Therefore, such glass needs to be considered in the composition design to lower the high temperature viscosity, thereby facilitating the elimination of air bubbles during the production process.
  • the surface roughness of the hard disk substrate is required to be Left and right, and it is very difficult for the glass-ceramic to reach this standard under the current processing conditions. More importantly, if there are crystal grains in the surface of the glass substrate, the storage data will be lost, and thus the glass-ceramic glass is in the glass hard disk. The field of substrates is difficult to find widely used.
  • CN1207086A describes a SiO 2 -Al 2 O 3 -RO alkali-free glass, wherein RO refers to an alkaline earth metal oxide having a Young's modulus of up to 110 GPa or more.
  • RO refers to an alkaline earth metal oxide having a Young's modulus of up to 110 GPa or more.
  • such glass has a very high viscosity at high temperatures, and it is very difficult to remove bubbles.
  • such a glass requires a melting temperature of about 1600 ° C, which easily causes inclusions inside the glass to cause scrapping, and also requires the addition of As 2 O 3 as a fining agent to obtain a glass having relatively good bubbles. This brings about two problems.
  • the furnace body working at 1600 °C needs special design, and the overhaul interval is more than 50% shorter than the working at 1500 °C, which brings more energy consumption and waste discharge.
  • As 2 O 3 is banned from entering the glass according to existing environmental regulations and does not meet environmental requirements.
  • CN102432171A describes a SiO 2 -Al 2 O 3 -RO-R 2 0 system glass, wherein RO refers to an alkaline earth metal oxide, and R 2 O refers to an alkali metal oxide which contains 10% by mole or more of an alkali metal, especially Containing more than 5% by mole of Li 2 O, a large amount of alkali metal oxide lowers the viscosity at high temperature, so that the bubbles are better excluded, but the heat resistance of the glass is rapidly lowered, especially when more Li 2 O is used.
  • the Tg temperature drops rapidly, making the glass substrate less resistant to heat and not being able to withstand higher temperatures during disk manufacturing.
  • the alkali metal content increases, the water and acid resistance of the glass will be greatly deteriorated, and the surface quality is easily reduced during the cleaning process. More importantly, when the alkali metal-containing glass is subjected to high-temperature treatment during the manufacturing process of the magnetic disk, the alkali metal component is easily precipitated, thereby causing fatal defects.
  • the technical problem to be solved by the present invention is to provide a glass composition having a high Young's modulus and a low density.
  • a glass composition which comprises a percentage of a molar mass, comprising: SiO 2 52-70%, B 2 O 3 5-10%, Al 2 O 3 5-15%, CaO 8-20%, MgO 5-18%.
  • it further contains: SrO 0-5%, BaO 0-5%, ZnO 0-5%, La 2 O 3 0-3%, Y 2 O 3 0-5%, TiO 2 0-10%, ZrO 2 0-5%, Sb 2 O 3 0-2%, CeO 2 0-2%, SnO 2 0-2%.
  • the glass composition the composition of the molar percentage is expressed as: SiO 2 52-70%, B 2 O 3 5-10%, Al 2 O 3 5-15%, CaO 8-20%, MgO 5-18%, SrO 0-5%, BaO 0-5%, ZnO 0-5%, La 2 O 3 0-3%, Y 2 O 3 0-5%, TiO 2 0-10%, ZrO 2 0-5%, Sb 2 O 3 0-2%, CeO 2 0-2%, SnO 2 0-2%.
  • the glass composition contains SiO 2 , B 2 O 3 , Al 2 O 3 , CaO and MgO, and the glass has a Young's modulus of 80 GPa or more and a density of 3.10 g/cm 3 or less.
  • the percentage of the composition of the molars is: SiO 2 52-70%, B 2 O 3 5-10%, Al 2 O 3 5-15%, CaO 8-20%, MgO 5-18%, SrO 0-5%, BaO 0-5%, ZnO 0-5%, La 2 O 3 0-3%, Y 2 O 3 0-5%, TiO 2 0-10%, ZrO 2 0-5%, Sb 2 O 3 0-2%, CeO 2 0-2%, SnO 2 0-2%, R 2 O not more than 10%, wherein R 2 O is the total value of Na 2 O, K 2 O and Li 2 O .
  • each component satisfies one or more of the following six conditions:
  • each component satisfies one or more of the following six conditions:
  • each component satisfies one or more of the following six conditions:
  • the above glass composition contains: R 2 O is not more than 10%, preferably not more than 5%, more preferably not more than 3%, further preferably not more than 1%, wherein R 2 O is Na 2 O, K 2 The total value of O and Li 2 O.
  • the glass composition has a Young's modulus of 80 to 100 GPa, preferably 82 to 100 GPa, more preferably 84 to 100 GPa, and a density of 2.80 g/cm 3 or less, preferably 2.70 g/cm 3 or less. Preferably it is 2.65 g/cm ⁇ 3> or less.
  • the glass composition has a water resistance stability of 2 or more, preferably 1 type, and the acid resistance stability is 2 or more, and preferably 1 type.
  • the glass composition has a transition temperature of 670 ° C or higher, preferably 675 ° C or higher, more preferably 680 ° C or higher; and the viscosity of the glass in a molten state at 1400 ° C is 400 poise or less, preferably 350 poise or less, more preferably Below 300 poise.
  • the hard disk substrate is composed of the above glass composition.
  • the above glass compositions are useful in semiconductor sealing applications.
  • the invention has the beneficial effects that the glass composition of the invention has high Young's modulus, low density, good heat resistance and chemical stability, and high temperature viscosity by rationally designing the content of each component by using common chemical raw materials. It is relatively small, low in raw material cost, easy to eliminate streaks and bubbles during manufacturing, and is suitable for hard disk substrate fabrication and other fields requiring high Young's modulus materials.
  • SiO 2 is a main network forming body of glass and is a skeleton constituting glass.
  • the content of SiO 2 should be limited to 52-70%, preferably 53-65%. It is further preferably 54-62%.
  • B 2 O 3 is also one of the glass forming bodies and also a good cosolvent.
  • the addition of a suitable amount of B 2 O 3 can significantly improve the melting properties of the glass raw materials, reduce the density of the glass, and lower the high temperature viscosity of the glass.
  • excessive addition of B 2 O 3 to the glass significantly reduces the Young's modulus of the glass and reduces the chemical stability of the glass.
  • the addition amount of B 2 O 3 is less than 5%, the glass raw material becomes extremely difficult to melt, the high temperature viscosity of the glass increases, and the bubbles are not easily excluded in the production process; if the addition amount of B 2 O 3 is higher than 10 %, the Young's modulus of the glass is significantly reduced, and the chemical stability of the glass, especially the water resistance, is lowered. Therefore, the content thereof is limited to 5 to 10%, preferably 5 to 8%, further preferably 5 to 7%.
  • the addition of Al 2 O 3 to the glass of the system of the present invention can increase the Young's modulus of the glass while reducing the density of the glass. If the content is less than 5%, the Young's modulus of the glass will be lower than the design expectation, and the density of the glass will increase; if the content is higher than 15%, since the Al 2 O 3 is very refractory, it will lead to the glass raw material. The melting performance drops rapidly and the high temperature viscosity of the glass rises sharply. Therefore, in order to balance the Young's modulus, density, melting property, and high-temperature viscosity of the glass, the amount of Al 2 O 3 added is limited to 5-15%, preferably 7-13%, and further preferably 8-12%. .
  • the inventors have found through extensive experiments that the above three oxides are the main components of the glass skeleton, and their mutual proportional relationship has a significant influence on the structure of the glass, and further on the properties of the glass, such as melting properties, high temperature viscosity, Yang. There is a strong correlation between modulus, density, chemical stability, and heat resistance.
  • both SiO 2 and Al 2 O 3 are refractory oxides, and if the total content of SiO 2 +Al 2 O 3 exceeds 75%, the melting property of the glass will drastically decrease, and the viscosity at high temperature will rise. insolubles likely to occur and air bubbles; if the total content of SiO and SiO 2 Al 2 O 3 is 2 + Al 2 O 3 less than 60%, Young's modulus and chemical stability of the glass will be less than design requirements. In order to achieve both the melting property and the Young's modulus, SiO 2 +Al 2 O 3 is 60-75%, preferably 62-73%, and more preferably 64-70%.
  • the prior art generally believes that the melting properties and high temperature viscosity of the glass increase linearly with the increase of Al 2 O 3 .
  • the inventors have found through extensive experiments that when the ratio of Al 2 O 3 to SiO 2 , Al 2 O 3 /SiO 2 , is in the range of 0-0.05, the melting property of the glass decreases linearly with the increase of the Al 2 O 3 content.
  • the inventors have also found that when Al 2 O 3 /SiO 2 is in the range of 0.05-0.30, the Young's modulus and heat resistance of the glass sharply become larger as the value of Al 2 O 3 /SiO 2 becomes larger. . Therefore, when Al 2 O 3 /SiO 2 is in the range of 0.05-0.30, preferably in the range of 0.10-0.25, and more preferably in the range of 0.15-0.20, a large Young's modulus and better heat resistance can be obtained. Sex, while the high temperature viscosity of the glass is relatively small, the melting performance is relatively good.
  • Al 2 O 3 and B 2 O 3 may undergo structural changes in the glass of the system as the glass composition changes.
  • B 2 O 3 may improve the melting property and lower the glass. High temperature viscosity, but will reduce the Young's modulus of the glass. Therefore, in order to obtain a glass with a high Young's modulus, the prior art usually sacrifices the melting property and the high temperature viscosity, by reducing the introduction of B 2 O 3 or even not adding it. B 2 O 3 to obtain a glass with a high Young's modulus.
  • Al 2 O 3 ratio of Al B 2 O 3 2 O 3 / B 2 O 3 is between 0.5 and 2.5, preferably 0.8 to 1.8, more preferably 1.0 to 1.6, i.e., the glass can By achieving the designed Young's modulus, relatively good melting properties and relatively low high temperature viscosity can also be obtained.
  • CaO, MgO, SrO and BaO belong to alkaline earth metal oxides.
  • the addition of an appropriate amount of alkaline earth metal oxides to the glass can increase the Young's modulus of the glass, lower the high temperature viscosity of the glass, balance the glass components, and improve the melting properties of the glass.
  • too much alkaline earth metal oxide will reduce the anti-crystallization property of the glass.
  • the anti-crystallization property of the glass is very important for the hard disk substrate glass because the softening of the glass is required in the process of making the blank of the hard disk substrate. The glass block is softened and pressed into a thin blank near the point. If the anti-crystallization property of the glass is not good, crystallized particles are generated in the glass.
  • the physical properties such as the hardness of the crystallization particles are very different from those of the surrounding glass, which causes defects in the processing process and makes the surface roughness of the substrate less than required. Therefore, when the value of (CaO+MgO+BaO+SrO)/SiO 2 is between 0.2 and 0.7, preferably 0.3-0.6, further preferably 0.4-0.6, the anti-crystallization property, high-temperature viscosity of the glass, and Young's modulus is the most balanced.
  • the above four alkaline earth metal oxides have in common that the high temperature viscosity can be lowered and the melting property of the glass is improved, the ability to lower the viscosity at high temperature affects the degree of crystallization resistance of the glass and the degree of influence on the density of the glass and The degree of improvement in Young's modulus and heat resistance is inconsistent and has a large difference.
  • the inventors have found that the addition of MgO to glass can increase the Young's modulus of the glass and lower the high temperature viscosity of the glass. However, if the content is less than 5%, the effect of lowering the density and increasing the Young's modulus is not obvious; Above 18%, the anti-crystallization properties of the glass are significantly reduced. Therefore, the content thereof is limited to 5-18%, preferably 7-16%, and further preferably 8-15%.
  • the effect of CaO in reducing the high temperature viscosity of these four alkaline earth metal oxides is the most obvious, and it also has the effect of increasing the Young's modulus of the glass. Compared with MgO, its effect of increasing the Young's modulus is slightly lower, and at the same time The ability to reduce the density of the glass is also slightly lower than that of MgO.
  • the CaO addition amount is less than 8%, the Young's modulus of the glass does not meet the design requirements, and the effect of lowering the high temperature viscosity of the glass is not obvious; if the content is higher than 20%, the anti-crystallization property of the glass The sharp drop, while the chemical stability of the glass, especially the water resistance, will drop rapidly. Therefore, the content thereof is limited to 8-20%, preferably 10-18%, and further preferably 12-17%.
  • the ability of SrO to increase the Young's modulus of glass and reduce the density of glass is lower than that of CaO and MgO.
  • a small amount of addition can improve the anti-crystallization property of glass. If the content is higher than 5%, the anti-crystallization ability of glass decreases, and the chemical stability decreases.
  • the cost of glass has increased significantly. Therefore, the content thereof is limited to 0 to 5%, preferably 0 to 3%, and further preferably is not added.
  • BaO significantly increases the density of the glass relative to the other three alkaline earth metal oxides, and at the same time causes a significant decrease in the chemical stability of the glass.
  • the addition of a small amount of BaO increases the Young's modulus and the anti-crystallization property of the glass, when it exceeds 5%, the density of the glass is remarkably increased, and the chemical stability, especially the water resistance, is remarkably lowered. Therefore, the content thereof is limited to 0 to 5%, preferably 0 to 3%, more preferably 0-1%, and further preferably no addition.
  • the inventors have found through extensive experiments that when CaO and MgO coexist and satisfy the ratio of CaO to MgO, CaO/MgO is in the range of 0.9-3.0, the internal structure of the glass is relative to the addition of an alkaline earth metal oxide alone. The structure changes to the direction of the compaction, resulting in a higher Young's modulus of the glass, a stronger anti-crystallization ability of the glass, and a lower high temperature viscosity and better chemical stability. Therefore, the value of CaO/MgO is limited to be between 0.9 and 3.5, preferably 1.0 to 2.5, further preferably 1.1 to 2.0.
  • the inventors have found that the Young's modulus, high temperature viscosity, density, chemical stability of the glass and the total CaO and MgO values in the glass are significantly correlated with the relative contents of Al 2 O 3 .
  • the reason is that the content of these two main alkaline earth metal oxides causes the structure of Al 2 O 3 to change significantly inside the glass, resulting in changes in the properties of glass Young's modulus, high temperature viscosity, density, chemical stability and the like.
  • the Young's modulus of the glass Key indicators such as high temperature viscosity, density and chemical stability are the most balanced.
  • the small addition of ZnO to the glass improves the anti-crystallization temperature and chemical stability of the glass, while reducing the high temperature viscosity of the glass.
  • the content exceeds 5%, the density of the glass will rise significantly and fail to meet the design requirements. Therefore, the content thereof is limited to 0 to 5%, preferably 0 to 2%, and further preferably is not added.
  • a small amount of ZrO 2 added to the glass improves the anti-crystallization ability of the glass while enhancing the chemical stability of the glass.
  • the content thereof is limited to 0 to 5%, preferably 0 to 2%, and further preferably is not added.
  • a small amount of La 2 O 3 added to the glass can increase the Young's modulus of the glass, increase the Tg temperature of the glass, improve the heat resistance of the glass, and lower the high temperature viscosity of the glass.
  • the content exceeds 3%, the density of the glass will rise significantly, failing to meet the design requirements, and the anti-crystallization property of the glass will be significantly reduced. Therefore, the content thereof is limited to 0 to 3%, preferably 0-1%, and further preferably is not added.
  • the small addition of Y 2 O 3 to the glass can significantly increase the Young's modulus and heat resistance of the glass, and at the same time reduce the high temperature viscosity of the glass, making the bubbles easy to remove.
  • the content exceeds 5%, the anti-crystallization property of the glass is remarkably lowered, and the density is also remarkably increased. Therefore, the content thereof is limited to 0 to 5%, preferably 0.2 to 3%, further preferably 0.3 to 1%.
  • a small amount of TiO 2 added to the glass can increase the Young's modulus of the glass while also lowering the high temperature viscosity of the glass.
  • the content exceeds 10%, the anti-crystallization property of the glass is remarkably lowered, and the structure of Al 2 O 3 is promoted to change in the direction of looseness, resulting in a decrease in Young's modulus.
  • excessive addition of TiO 2 to the glass results in a rapid decrease in the visible light transmittance of the glass blue, making the glass unsuitable for applications requiring high transmittance in the blue band. Therefore, the content thereof is limited to 0 to 10%, preferably 0 to 5%, further preferably 0 to 2%.
  • the total value of the alkali metal oxides Na 2 O, K 2 O, and Li 2 O is referred to as R 2 O
  • the alkali metal oxide is added to the glass of the present invention to lower the high temperature viscosity of the glass and improve the glass. Material properties make it easier to remove bubbles and inclusions in the glass.
  • the total amount of alkali metal oxide exceeds 10%, the Tg temperature of the glass will drop sharply. More seriously, the glass substrate is more likely to precipitate alkali metal ions during the manufacturing process, and the magnetic disk of the disk is contaminated.
  • the dielectric layer causes the product to be scrapped.
  • the R 2 O content is not more than 10%, preferably not more than 5%, more preferably not more than 3%, further preferably not more than 1%. Further, from the viewpoint of the type of the alkali metal oxide, Li 2 O is preferred, followed by Na 2 O, and K 2 O is not selected as much as possible.
  • a clarifying agent of 0 to 2%, preferably 0-1%, further preferably 0 to 0.5 may be introduced into the glass of the present invention, and these clarifying agents may be selected from Sb 2 O 3 or/and CeO 2 or/and SnO 2 .
  • optical glass of the present invention The performance of the optical glass of the present invention will be described below:
  • the Young's modulus (E) of the glass is ultrasonically tested for the longitudinal wave velocity and the transverse wave velocity, and then calculated according to the following formula.
  • E is the Young's modulus, Pa
  • G is the shear modulus, Pa
  • V T is the shear wave velocity, m/s
  • V S is the longitudinal wave velocity, m/s
  • is the glass density, g/cm 3 ;
  • the density ( ⁇ ) of the glass is tested according to the method specified in GB/T7962.20-2010.
  • the glass transition temperature (Tg) is tested according to the method specified in GB/T7962.16-2010.
  • the high temperature viscosity of the glass was tested by the rotation method using a THETA Rheotronic II high temperature viscometer, and the numerical unit is dPaS (poise). The smaller the value, the smaller the viscosity.
  • the water resistance stability (D W ) of the glass was tested according to the method of GB/T17129.
  • the acid resistance stability (D A ) of the glass was tested according to the method of GB/T17129.
  • the optical glass of the present invention has been tested to have the following properties: the Young's modulus (E) of the glass is 80 GPa or more, preferably 80-100 GPa, more preferably 82-100 GPa, further preferably 84-100 GPa; density of glass ( ⁇ ) is 3.10g / cm 3 or less, preferably 2.80g / cm 3 or less, and more preferably from 2.7g / cm 3 or less, more preferably 2.65g / cm 3 or less; glass transition temperature (Tg) of less than 670 °C, It is preferably 675 ° C or higher, more preferably 680 ° C or higher; the viscosity (K) of the glass in a molten state at 1400 ° C is 400 poise or less, preferably 350 poise or less, and more preferably 300 poise or less; the glass powder method is stable in water resistance
  • the properties (D W ) are 2 or more, preferably 1; the powder method of glass has an acid-resistant stability (D A ) of
  • the optical glass of the present invention can be used to fabricate a hard disk substrate, and can be applied to semiconductor sealing.
  • optical glass examples 1 to 20 shown in Table 1 were used to weigh and mix ordinary raw materials (such as oxides, hydroxides, carbonates, nitrates, etc.) for optical glass by the ratios of the respective examples shown in Table 1.
  • the mixed raw material is placed in a platinum crucible, melted at 1400-1500 ° C for 4-6 hours, and after clarification, stirring and homogenization, a homogeneous molten glass free from bubbles and containing no unmelted material is obtained, which is melted.
  • the glass is cast and annealed in a mold.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Glass Compositions (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

一种杨氏模量高、密度低的玻璃组合物。玻璃组合物,其组成按摩尔百分比表示,含有:SiO 2 52-70%、B 2O 3 5-10%、Al 2O 3 5-15%、CaO 8-20%、MgO 5-18%。该玻璃组合物的杨氏模量高、密度低,耐热性和化学稳定性好,高温粘度相对较小,原料成本低,制造中易于消除条纹与气泡,适用于硬盘基板制作以及其他需要高杨氏模量材料的领域。

Description

玻璃组合物 技术领域
本发明涉及一种玻璃组合物,特别是涉及一种杨氏模量高、密度较低的玻璃组合物。
背景技术
近年来,随着大数据云存储等产业的快速发展,对硬盘的读取速度提出了更高的要求,提高硬盘的读取速度最有效的方法是提高硬盘的转速。目前市场上硬盘转速通常为5200rpm-7200rpm,若要进一步提高硬盘的传输速度,需要硬盘盘片的转速到达10000rpm以上并且长期保持不变形。高速旋转下的盘片变形对硬盘来说是致命的缺陷,这就需要制作盘片的材料需要非常高的比弹率。比弹率是指材料杨氏模量和密度的比值,若材料的比弹率越大,则该材料制作的基片在高速转动中变形量越小。传统的铝合金盘片由于杨氏模量较小,约为70GPa,不适用于制作高转速硬盘。
基于以上原因,硬盘厂商趋向于使用高杨氏模量玻璃来替代铝合金材料作为硬盘使用。对于作为硬盘基片的玻璃材料来说,一般要求其杨氏模量大于80GPa,剪切模量大于35GPa,杨氏模量与密度的比值,即E(GPa)/ρ的值大于30。另外,由于磁性材料需要在高温环境下溅射到玻璃基片上,需要玻璃在600℃以上温度下不产生变形。更为重要的是,玻璃中不能含有较多气泡,若气泡较多,基板会在高速转动中发生扰动。因此,此类玻璃在组分设计中需要考虑降低高温粘度,从而易于在生产过程中排除气泡。
2003年发表的文献《硬盘基板用微晶玻璃材料研究》中描述了一种Li 2O-Al 2O 3-SiO 2-P 2O 5体系的微晶玻璃,其杨氏模量可以达到100GPa,密度低于2.60g/cm 3,这样的数值对于提升硬盘的转速是非常有利的。但由于微晶玻璃的机理是在玻璃组分中析出和周围玻璃相不同的晶粒,来提高玻璃的杨氏模量和强度,而析出的晶粒和周围玻璃相的成分是不一致的,其加工性能有较大的差别。目前硬盘基板的表面粗糙度要求为
Figure PCTCN2019082035-appb-000001
左右,而微晶玻璃在目前的加工条件下达到这个标准是非常困难的,更为重要的是,玻璃基板表面中若存在晶粒,会导致存储数据的丢失,也因此微晶玻璃在玻 璃硬盘基板领域很难得到广泛应用。
CN1207086A描述了一种SiO 2-Al 2O 3-RO无碱玻璃,其中RO指碱土金属氧化物,其杨氏模量能达到110GPa以上。但此类玻璃高温粘度非常高,排除气泡非常困难。另外,此类玻璃需要1600℃左右的熔炼温度,容易在玻璃内部产生夹杂物从而导致报废,而且还需要加入As 2O 3作为澄清剂才能获得气泡相对良好的玻璃。这带来两个方面的问题,一方面是工作在1600℃的炉体需要特殊设计,大修间隔时间比工作在1500℃短50%以上,这带来了更多的能源消耗和废弃物的排放;另一方面是As 2O 3根据现有的环保规定是禁止加入到玻璃之中的,不符合环保要求。
CN102432171A描述了一种SiO 2-Al 2O 3-RO-R 20体系玻璃,其中RO指碱土金属氧化物,R 2O指碱金属氧化物,其含有10%摩尔以上的碱金属,尤其是含有5%摩尔以上的Li 2O,大量的碱金属氧化物虽然会降低高温粘度,使气泡较好排除,但玻璃的耐热性会快速下降,尤其在使用较多的Li 2O时,玻璃的Tg温度会快速下降,使得玻璃基板耐热性下降,在磁盘制造环节不能承受更高的温度。同时,随着碱金属含量的增加,玻璃的耐水耐酸性能会发生较大的劣化,在加工流程的清洗过程中,其表面质量容易降低。更为重要的是,含碱金属的玻璃在磁盘制作过程中进行高温处理时,碱金属成分容易析出,从而带来致命的缺陷。
发明内容
本发明所要解决的技术问题是提供一种杨氏模量高、密度低的玻璃组合物。
本发明解决技术问题所采用的技术方案是:玻璃组合物,其组成按摩尔百分比表示,含有:SiO 2 52-70%、B 2O 3 5-10%、Al 2O 3 5-15%、CaO 8-20%、MgO 5-18%。
进一步的,还含有:SrO 0-5%、BaO 0-5%、ZnO 0-5%、La 2O 3 0-3%、Y 2O 3 0-5%、TiO 2 0-10%、ZrO 2 0-5%、Sb 2O 3 0-2%、CeO 2 0-2%、SnO 2 0-2%。
玻璃组合物,其组成按摩尔百分比表示为:SiO 2 52-70%、B 2O 3 5-10%、Al 2O 3 5-15%、CaO 8-20%、MgO 5-18%、SrO 0-5%、BaO 0-5%、ZnO 0-5%、La 2O 3 0-3%、Y 2O 3 0-5%、TiO 2 0-10%、ZrO 2 0-5%、Sb 2O 3 0-2%、CeO 2 0-2%、 SnO 2 0-2%。
玻璃组合物,含有SiO 2、B 2O 3、Al 2O 3、CaO和MgO,玻璃的杨氏模量为80GPa以上,密度为3.10g/cm 3以下。
进一步的,其组成按摩尔百分比表示,含有:SiO 2 52-70%、B 2O 3 5-10%、Al 2O 3 5-15%、CaO 8-20%、MgO 5-18%、SrO 0-5%、BaO 0-5%、ZnO 0-5%、La 2O 3 0-3%、Y 2O 3 0-5%、TiO 2 0-10%、ZrO 2 0-5%、Sb 2O 3 0-2%、CeO 2 0-2%、SnO 2 0-2%、R 2O不超过10%,其中,R 2O为Na 2O、K 2O和Li 2O的合计值。
进一步的,其中:SiO 2 53-65%、和/或B 2O 3 5-8%、和/或Al 2O 3 7-13%、和/或CaO 10-18%、和/或MgO 7-16%、和/或SrO 0-3%、和/或BaO 0-3%、和/或ZnO 0-2%、和/或La 2O 3 0-1%、和/或Y 2O 3 0.2-3%、和/或TiO 2 0-5%、和/或ZrO 2 0-2%、和/或Sb 2O 3 0-1%、和/或CeO 2 0-1%、和/或SnO 2 0-1%。
进一步的,各组分含量满足以下6种条件中的一种或一种以上:
(1)SiO 2+Al 2O 3:60-75%;
(2)Al 2O 3/SiO 2:0.05-0.30;
(3)Al 2O 3/B 2O 3:0.5-2.5;
(4)CaO/MgO:0.9-3.5;
(5)(CaO+MgO+BaO+SrO)/SiO 2:0.2-0.7;
(6)(CaO+MgO)/Al 2O 3:1.5-6.0。
进一步的,其中:SiO 2 54-62%、和/或B 2O 3 5-7%、和/或Al 2O 3 8-12%、和/或CaO 12-17%、和/或MgO 8-15%、和/或BaO 0-1%、和/或Y 2O 3 0.3-1%、和/或TiO 2 0-2%、和/或Sb 2O 3 0-0.5%、和/或CeO 2 0-0.5%、和/或SnO 2 0-0.5%。
进一步的,各组分含量满足以下6种条件中的一种或一种以上:
(1)SiO 2+Al 2O 3:62-73%;
(2)Al 2O 3/SiO 2:0.10-0.25;
(3)Al 2O 3/B 2O 3:0.8-1.8;
(4)CaO/MgO:1.0-2.5;
(5)(CaO+MgO+BaO+SrO)/SiO 2:0.3-0.6;
(6)(CaO+MgO)/Al 2O 3:2.0-5.5。
进一步的,各组分含量满足以下6种条件中的一种或一种以上:
(1)SiO 2+Al 2O 3:64-70%;
(2)Al 2O 3/SiO 2:0.15-0.20;
(3)Al 2O 3/B 2O 3:1.0-1.6;
(4)CaO/MgO:1.1-2.0;
(5)(CaO+MgO+BaO+SrO)/SiO 2:0.4-0.6;
(6)(CaO+MgO)/Al 2O 3:2.5-5.0。
进一步的,上述的玻璃组合物,含有:R 2O不超过10%,优选不超过5%,更优选不超过3%,进一步优选不超过1%其中,R 2O为Na 2O、K 2O和Li 2O的合计值。
进一步的,上述的玻璃组合物的杨氏模量为80-100GPa,优选为82-100Gpa,更优选为84-100GPa;密度为2.80g/cm 3以下,优选为2.70g/cm 3以下,进一步优选为2.65g/cm 3以下。
进一步的,上述的玻璃组合物的耐水作用稳定性为2类及以上,优选为1类;耐酸作用稳定性为2类及以上,优选为1类。
进一步的,上述的玻璃组合物的转变温度为670℃以上,优选675℃以上,更优选680℃以上;玻璃在1400℃熔融状态下的粘度为400泊以下,优选为350泊以下,更优选为300泊以下。
硬盘基板,由上述的玻璃组合物构成。
上述的玻璃组合物用于半导体封接的应用。
本发明的有益效果是:使用常用的化工原料,通过合理设计各组分的含量,使本发明的玻璃组合物的杨氏模量高、密度低,耐热性和化学稳定性好,高温粘度相对较小,原料成本低,制造中易于消除条纹与气泡,适用于硬盘基板制作以及其他需要高杨氏模量材料的领域。
具体实施方式
下面将描述本发明玻璃的各个组分,除非另有说明,各个组分的含量都采用摩尔%表示。
SiO 2是玻璃主要的网络形成体,是构成玻璃的骨架,在本发明体系玻璃中,当其含量高于70%时,玻璃的熔化性能下降,高温粘度急剧上升;当其含量低于52%时,玻璃的化学稳定性会降低,玻璃的密度超出设计预 期。因此,要维持较好的化料性能,获得较低的高温粘度,获得较低的密度以及维持较好的化学稳定性,SiO 2的含量需限定在52-70%,优选为53-65%,进一步优选为54-62%。
B 2O 3也是玻璃形成体之一,同时也是一种良好的助溶剂,合适量B 2O 3的加入会显著提升玻璃原料的熔解性能,降低玻璃的密度,降低玻璃的高温粘度。然而,过多的B 2O 3加入到玻璃中会显著降低玻璃的杨氏模量,降低玻璃的化学稳定性。因此,若B 2O 3的添加量低于5%,玻璃原料会变得极难熔化,玻璃的高温粘度升高,在生产过程中气泡不易排除;若B 2O 3的添加量高于10%,玻璃的杨氏模量会显著降低,玻璃的化学稳定性尤其是耐水性会降低。因此,其含量限定为5-10%,优选为5-8%,进一步优选为5-7%。
Al 2O 3加入本发明体系玻璃中可以提升玻璃的杨氏模量,同时可以降低玻璃的密度。若其含量低于5%,玻璃的杨氏模量会低于设计预期,玻璃的密度也会增大;若其含量高于15%,由于Al 2O 3非常难熔,会导致玻璃原料的熔化性能快速下降,玻璃的高温粘度急剧上升。因此,为了在玻璃的杨氏模量、密度、熔化性能、高温粘度方面取得平衡,Al 2O 3的加入量限定在5-15%,优选为7-13%,进一步优选为8-12%。
进一步的,发明人经过大量试验发现,以上三种氧化物是玻璃骨架的主体成分,其相互的比例关系对玻璃的结构有重大的影响,进而对玻璃的性能,如熔化性能、高温粘度,杨氏模量、密度、化学稳定性、耐热性等有极强相关性。
在本发明中,SiO 2与Al 2O 3均属于难熔氧化物,其合计含量SiO 2+Al 2O 3若超过75%,玻璃的熔化性能将会急剧下降,高温粘度将会上升,玻璃中容易产生不熔物和气泡;若SiO 2与Al 2O 3的合计含量SiO 2+Al 2O 3低于60%,玻璃的杨氏模量和化学稳定性将达不到设计要求。为了兼顾熔化性能和杨氏模量,SiO 2+Al 2O 3为60-75%,优选为62-73%,进一步优选为64-70%。
更为重要的是,在此体系玻璃中,现有技术通常认为玻璃的熔化性能和高温粘度是随Al 2O 3的增加而线性增加的。发明人经过大量实验发现,当Al 2O 3与SiO 2的比值Al 2O 3/SiO 2在0-0.05范围内时,玻璃的熔化性能是随着Al 2O 3含量增加而线性急剧下降的;但当Al 2O 3/SiO 2处在0.05-0.30范围内 时,玻璃的高温粘度不再剧烈上升,玻璃的熔化性能也不会明显下降;而当Al 2O 3/SiO 2的值超过0.30时,玻璃的高温粘度继续急剧上升,玻璃的溶解性能继续急剧下降。简单来说,当Al 2O 3/SiO 2处在0.05-0.30范围内时,玻璃的溶解性能和高温粘度随Al 2O 3的增加变化较小。同时发明人还发现,当Al 2O 3/SiO 2处在0.05-0.30范围内时,玻璃的杨氏模量和耐热性随着Al 2O 3/SiO 2值的变大而急剧变大。因此,当Al 2O 3/SiO 2处在0.05-0.30范围内,优选在0.10-0.25范围内,进一步优选在0.15-0.20范围内时,可以获得较大杨氏模量以及较好的耐热性,同时玻璃的高温粘度相对较小,熔化性能相对较好。
进一步的,Al 2O 3和B 2O 3在本体系玻璃中会随着玻璃组分的变化而产生结构变化,现有技术中认为B 2O 3的加入虽然会提升玻璃的熔化性能和降低高温粘度,但会降低玻璃的杨氏模量,因此,为了获得高杨氏模量的玻璃,现有技术通常会牺牲熔化性能和高温粘度,通过减少B 2O 3的引入,甚至是不添加B 2O 3,以获得高杨氏模量的玻璃。但发明人研究发现,当Al 2O 3与B 2O 3的比值Al 2O 3/B 2O 3处于0.5-2.5之间,优选为0.8-1.8,进一步优选为1.0-1.6,玻璃即能达到设计的杨氏模量,也能获得相对较好的熔化性能和相对较低的高温粘度。
CaO、MgO、SrO和BaO属于碱土金属氧化物,合适量的碱土金属氧化物加入玻璃中可以提升玻璃的杨氏模量,降低玻璃的高温粘度,同时平衡玻璃组分,改善玻璃的熔化性能。但是过多的碱土金属氧化物会降低玻璃的抗析晶性能,玻璃的抗析晶性能对于硬盘基板玻璃来说是非常重要的,原因在于在制作硬盘基板的毛坯过程中,需要在玻璃的软化点附近将玻璃块料软化后压制成薄毛坯,若玻璃的抗析晶性能不佳,就会在玻璃中产生析晶颗粒。析晶颗粒硬度等物理性能和周围玻璃有非常大的不同,这样就会在加工过程中产生缺陷,使基板的表面粗糙度达不到要求。因此,本发明当(CaO+MgO+BaO+SrO)/SiO 2的值处于0.2-0.7之间,优选为0.3-0.6,进一步优选为0.4-0.6时,玻璃的抗析晶性能、高温粘度以及杨氏模量最为平衡。
虽然以上四种碱土金属氧化物的共同点在于可以降低高温粘度,改善 玻璃的熔化性能,但是其对降低高温粘度的能力,影响玻璃抗析晶性能的程度,以及对玻璃密度的影响程度和对杨氏模量及其耐热性的提升程度是不一致的,有着较大的区别。
发明人研究发现,MgO添加到玻璃中可以提升玻璃的杨氏模量,降低玻璃的高温粘度,但若其含量低于5%,降低密度和提升杨氏模量的效果不明显;若其含量超过18%,玻璃的抗析晶性能明显下降。因此,其含量限定为5-18%,优选为7-16%,进一步优选为8-15%。
CaO在这四种碱土金属氧化物中降低高温粘度的作用是最明显的,同时其又有提升玻璃杨氏模量的作用,与MgO相比,其提升杨氏模量的作用稍低,同时降低玻璃密度的能力也比MgO稍低。在本发明中,CaO添加量若低于8%,玻璃的杨氏模量达不到设计要求,同时降低玻璃高温粘度的效果不明显;若其含量高于20%,玻璃的抗析晶性能急剧下降,同时玻璃的化学稳定性,尤其是耐水性会快速下降。因此,其含量限定为8-20%,优选为10-18%,进一步优选为12-17%。
SrO提升玻璃杨氏模量、降低玻璃密度的能力低于CaO和MgO,少量加入可以提升玻璃的抗析晶性能;若其含量高于5%,玻璃的抗析晶能力下降,化学稳定性下降,玻璃的成本显著升高。因此其含量限定为0-5%,优选为0-3%,进一步优选为不添加。
BaO相对于其他三种碱土金属氧化物,可显著增加玻璃的密度,同时会导致玻璃的化学稳定性显著下降。虽然少量的BaO加入会提升玻璃的杨氏模量以及抗析晶性能,但是其含量超过5%时,会显著提升玻璃的密度,化学稳定性尤其是耐水性显著下降。因此其含量限定为0-5%,优选为0-3%,更优选为0-1%,进一步优选为不添加。
进一步的,发明人经过大量试验发现,当CaO与MgO共存,并满足CaO与MgO的比值CaO/MgO处在0.9-3.0范围内时,玻璃的内部结构相对于单独添加某种碱土金属氧化物的结构会发生向紧致方向的变化,从而导致玻璃的杨氏模量较高,玻璃的抗析晶能力较强,同时具备较低的高温粘度和较好的化学稳定性。因此,CaO/MgO的值限定为0.9-3.5之间,优选为1.0-2.5,进一步优选为1.1-2.0。
更进一步的,发明人研究发现玻璃的杨氏模量、高温粘度、密度、化学稳定性与玻璃中的CaO、MgO合计值与Al 2O 3的相对含量显著相关。原因在于这两种主要的碱土金属氧化物的含量会导致Al 2O 3的结构在玻璃内部发生显著变化,从而导致玻璃杨氏模量、高温粘度、密度、化学稳定性等性能发生变化。当CaO、MgO合计值与Al 2O 3的比值(CaO+MgO)/Al 2O 3满足1.5-6.0之间,优选为2.0-5.5,进一步优选为2.5-5.0时,玻璃的杨氏模量、高温粘度、密度、化学稳定性等关键指标最为平衡。
ZnO少量添加到玻璃中会改善玻璃的抗析晶温度和化学稳定性,同时会降低玻璃的高温粘度。但当其含量超过5%,玻璃的密度会显著上升而达不到设计要求。因此其含量限定为0-5%,优选为0-2%,进一步优选为不添加。
ZrO 2少量添加到玻璃中可以改善玻璃的抗析晶能力,同时增强玻璃的化学稳定性。但若其含量超过5%,玻璃的熔解性能会显著下降,同时玻璃高温粘度会显著上升,玻璃中易出现不熔物。因此,其含量限定为0-5%,优选为0-2%,进一步优选为不添加。
La 2O 3少量添加到玻璃中可以提升玻璃的杨氏模量,还可以提升玻璃的Tg温度,改善玻璃的耐热性,降低玻璃的高温粘度。但若其含量超过3%,玻璃的密度会显著上升,达不到设计要求,同时玻璃的抗析晶性能会显著下降。因此其含量限定为0-3%,优选为0-1%,进一步优选为不添加。
Y 2O 3少量添加到玻璃中可以显著提升玻璃的杨氏模量和耐热性,同时可以降低玻璃的高温粘度,使得气泡容易排除。但若其含量超过5%,玻璃的抗析晶性能显著下降,密度也会显著上升。因此,其含量限定为0-5%,优选为0.2-3%,进一步优选为0.3-1%。
TiO 2少量添加到玻璃中可以提升玻璃的杨氏模量,同时还可以降低玻璃的高温粘度。但若其含量超过10%,玻璃的抗析晶性能显著下降,同时会促进Al 2O 3的结构向疏松方向变化,导致杨氏模量的下降。另外,过多的TiO 2加入玻璃中会导致玻璃蓝色可见光透过率的快速下降,使得玻璃不适用于需要蓝色波段透过率高的应用中。因此,其含量限定为0-10%,优选为0-5%,进一步优选为0-2%。
本发明中,将碱金属氧化物Na 2O、K 2O和Li 2O的合计值称为R 2O,碱金属氧化物加入本发明玻璃中,可以降低玻璃的高温粘度,改善玻璃的化料性能,使得玻璃中的气泡和夹杂物排除更为容易。就本发明来说,碱金属氧化物合计量若超过10%,玻璃的Tg温度将会急剧下降,更为严重的是,玻璃基板在制造过程中更容易析出碱金属离子,污染盘片的磁介质层,导致产品报废。若出于降低玻璃生产难度的考虑,需要添加一定的碱金属氧化物,但R 2O含量不超过10%,优选不超过5%,更优选不超过3%,进一步优选不超过1%。另外,从碱金属氧化物种类方面考虑,优先选择Li 2O,其次选择Na 2O,尽量不选择K 2O。
另外,本发明玻璃中可以引入0-2%、优选为0-1%、进一步优选为0-0.5的澄清剂,这些澄清剂可选用Sb 2O 3或/和CeO 2或/和SnO 2
下面将描述本发明的光学玻璃的性能:
[杨氏模量]
玻璃的杨氏模量(E)采用超声波测试其纵波速度和横波速度,再按以下公式计算得出。
Figure PCTCN2019082035-appb-000002
其中,G=V S 2ρ
式中:
E为杨氏模量,Pa;
G为剪切模量,Pa;
V T为横波速度,m/s;
V S为纵波速度,m/s;
ρ为玻璃密度,g/cm 3
[玻璃的密度]
玻璃的密度(ρ)按GB/T7962.20-2010规定方法测试。
[转变温度]
玻璃的转变温度(Tg)按GB/T7962.16-2010规定方法测试。
[高温粘度]
玻璃的高温粘度使用THETA Rheotronic II高温粘度计采用旋转法测试,数值单位为dPaS(泊),其数值越小,表示粘度越小。
[化学稳定性]
玻璃的耐水作用稳定性(D W)按GB/T17129方法测试。
玻璃的耐酸作用稳定性(D A)按GB/T17129方法测试。
经过测试,本发明的光学玻璃具有以下性能:玻璃的杨氏模量(E)为80GPa以上,优选为80-100GPa,更优选为82-100GPa,进一步优选为84-100GPa;玻璃的密度(ρ)为3.10g/cm 3以下,优选为2.80g/cm 3以下,更优选为2.7g/cm 3以下,进一步优选为2.65g/cm 3以下;玻璃的转变温度(Tg)为670℃以上,优选为675℃以上,进一步优选为680℃以上;玻璃在1400℃熔融状态下的粘度(K)为400泊以下,优选为350泊以下,进一步优选为300泊以下;玻璃的粉末法耐水作用稳定性(D W)在2类及其以上,优选为1类;玻璃的粉末法耐酸作用稳定性(D A)在2类及其以上,优选为1类。
由于具有上述性能,本发明的光学玻璃可以用于制作硬盘基板,以及可应用于半导体封接中。
实施例
为了进一步了解本发明的技术方案,下面将描述本发明光学玻璃的实施例。应该注意到,这些实施例没有限制本发明的范围。
表1中显示的光学玻璃实施例1~20是通过按照表1所示各个实施例的比值称重并混合光学玻璃用普通原料(如氧化物、氢氧化物、碳酸盐、硝酸盐等),将混合原料放置在铂金坩埚中,在1400-1500℃中熔化4-6小时,并且经澄清、搅拌和均化后,得到没有气泡及不含未熔解物质的均质熔融玻璃,将此熔融玻璃在模具内铸型并退火而成。
本发明实施例1~20的组成与杨氏模量(E)、密度(ρ)、转变温度(Tg)、1400℃温度下的粘度(K)、耐水稳定性(D W)、耐酸稳定性(D A)、SiO 2+Al 2O 3以A表示、Al 2O 3/SiO 2以B表示、Al 2O 3/B 2O 3以C表示、CaO/MgO以D表示、(CaO+MgO+BaO+SrO)/SiO 2以F表示、(CaO+MgO)/Al 2O 3以G表示。
表1
Figure PCTCN2019082035-appb-000003
表2
Figure PCTCN2019082035-appb-000004
Figure PCTCN2019082035-appb-000005

Claims (16)

  1. 玻璃组合物,其特征在于,其组成按摩尔百分比表示,含有:SiO 252-70%、B 2O 3 5-10%、Al 2O 3 5-15%、CaO 8-20%、MgO 5-18%。
  2. 如权利要求1所述的玻璃组合物,其特征在于,还含有:SrO 0-5%、BaO 0-5%、ZnO 0-5%、La 2O 3 0-3%、Y 2O 3 0-5%、TiO 2 0-10%、ZrO 2 0-5%、Sb 2O 30-2%、CeO 2 0-2%、SnO 2 0-2%。
  3. 玻璃组合物,其特征在于,其组成按摩尔百分比表示为:SiO 2 52-70%、B 2O 3 5-10%、Al 2O 3 5-15%、CaO 8-20%、MgO 5-18%、SrO 0-5%、BaO 0-5%、ZnO 0-5%、La 2O 3 0-3%、Y 2O 3 0-5%、TiO 2 0-10%、ZrO 2 0-5%、Sb 2O 3 0-2%、CeO 2 0-2%、SnO 2 0-2%。
  4. 玻璃组合物,其特征在于,含有SiO 2、B 2O 3、Al 2O 3、CaO和MgO,玻璃的杨氏模量为80GPa以上,密度为3.10g/cm 3以下。
  5. 如权利要求4所述的玻璃组合物,其特征在于,其组成按摩尔百分比表示,含有:SiO 2 52-70%、B 2O 3 5-10%、Al 2O 3 5-15%、CaO 8-20%、MgO 5-18%、SrO 0-5%、BaO 0-5%、ZnO 0-5%、La 2O 3 0-3%、Y 2O 3 0-5%、TiO 2 0-10%、ZrO 2 0-5%、Sb 2O 3 0-2%、CeO 2 0-2%、SnO 2 0-2%、R 2O不超过10%,其中,R 2O为Na 2O、K 2O和Li 2O的合计值。
  6. 如权利要求1-5任一权利要求所述的玻璃组合物,其特征在于,其中:SiO 2 53-65%、和/或B 2O 3 5-8%、和/或Al 2O 3 7-13%、和/或CaO 10-18%、和/或MgO 7-16%、和/或SrO 0-3%、和/或BaO 0-3%、和/或ZnO 0-2%、和/或La 2O 3 0-1%、和/或Y 2O 3 0.2-3%、和/或TiO 2 0-5%、和/或ZrO 2 0-2%、和/或Sb 2O 3 0-1%、和/或CeO 2 0-1%、和/或SnO 2 0-1%。
  7. 如权利要求1-5任一权利要求所述的玻璃组合物,其特征在于,各组分含量满足以下6种条件中的一种或一种以上:
    (1)SiO 2+Al 2O 3:60-75%;
    (2)Al 2O 3/SiO 2:0.05-0.30;
    (3)Al 2O 3/B 2O 3:0.5-2.5;
    (4)CaO/MgO:0.9-3.5;
    (5)(CaO+MgO+BaO+SrO)/SiO 2:0.2-0.7;
    (6)(CaO+MgO)/Al 2O 3:1.5-6.0。
  8. 如权利要求1-5任一权利要求所述的玻璃组合物,其特征在于,其中:SiO 2 54-62%、和/或B 2O 3 5-7%、和/或Al 2O 3 8-12%、和/或CaO 12-17%、和/或MgO 8-15%、和/或BaO 0-1%、和/或Y 2O 3 0.3-1%、和/或TiO 2 0-2%、和/或Sb 2O 3 0-0.5%、和/或CeO 2 0-0.5%、和/或SnO 2 0-0.5%。
  9. 如权利要求1-5任一权利要求所述的玻璃组合物,其特征在于,各组分含量满足以下6种条件中的一种或一种以上:
    (1)SiO 2+Al 2O 3:62-73%;
    (2)Al 2O 3/SiO 2:0.10-0.25;
    (3)Al 2O 3/B 2O 3:0.8-1.8;
    (4)CaO/MgO:1.0-2.5;
    (5)(CaO+MgO+BaO+SrO)/SiO 2:0.3-0.6;
    (6)(CaO+MgO)/Al 2O 3:2.0-5.5。
  10. 如权利要求1-5任一权利要求所述的玻璃组合物,其特征在于,各组分含量满足以下6种条件中的一种或一种以上:
    (1)SiO 2+Al 2O 3:64-70%;
    (2)Al 2O 3/SiO 2:0.15-0.20;
    (3)Al 2O 3/B 2O 3:1.0-1.6;
    (4)CaO/MgO:1.1-2.0;
    (5)(CaO+MgO+BaO+SrO)/SiO 2:0.4-0.6;
    (6)(CaO+MgO)/Al 2O 3:2.5-5.0。
  11. 如权利要求1-2或4-5任一权利要求所述的玻璃组合物,其特征在于,含有:R 2O不超过10%,优选不超过5%,更优选不超过3%,进一步优选不超过1%其中,R 2O为Na 2O、K 2O和Li 2O的合计值。
  12. 如权利要求1-5任一权利要求所述的玻璃组合物,其特征在于,玻璃的杨氏模量为80-100GPa,优选为82-100Gpa,更优选为84-100GPa;密度为2.80g/cm 3以下,优选为2.70g/cm 3以下,进一步优选为2.65g/cm 3以下。
  13. 如权利要求1-5任一权利要求所述的玻璃组合物,其特征在于,玻璃的耐水作用稳定性为2类及以上,优选为1类;耐酸作用稳定性为2类及以上,优选为1类。
  14. 如权利要求1-5任一权利要求所述的玻璃组合物,其特征在于,玻璃的转变温度为670℃以上,优选675℃以上,更优选680℃以上;玻璃在1400℃熔融状态下的粘度为400泊以下,优选为350泊以下,更优选为300泊以下。
  15. 硬盘基板,由权利要求1-14任一权利要求所述的玻璃组合物构成。
  16. 权利要求1-14任一权利要求所述的玻璃组合物用于半导体封接的应用。
PCT/CN2019/082035 2018-04-25 2019-04-10 玻璃组合物 WO2019205938A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020559548A JP7269957B2 (ja) 2018-04-25 2019-04-10 ガラス組成物
US17/050,571 US11440836B2 (en) 2018-04-25 2019-04-10 Glass composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810380183.2 2018-04-25
CN201810380182.8A CN108298811B (zh) 2018-04-25 2018-04-25 玻璃组合物
CN201810380183.2A CN110395904B (zh) 2018-04-25 2018-04-25 玻璃组合物
CN201810380182.8 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019205938A1 true WO2019205938A1 (zh) 2019-10-31

Family

ID=68293717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082035 WO2019205938A1 (zh) 2018-04-25 2019-04-10 玻璃组合物

Country Status (4)

Country Link
US (1) US11440836B2 (zh)
JP (1) JP7269957B2 (zh)
TW (1) TWI722419B (zh)
WO (1) WO2019205938A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115872617A (zh) * 2021-09-29 2023-03-31 成都光明光电股份有限公司 玻璃组合物
CN114956549B (zh) * 2022-06-14 2023-07-04 成都光明光电有限责任公司 封接玻璃

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461329A (en) * 1987-08-31 1989-03-08 Central Glass Co Ltd Alkali-free glass
CN1898168A (zh) * 2003-12-26 2007-01-17 旭硝子株式会社 无碱玻璃、其制造方法及液晶显示板
JP2008150228A (ja) * 2006-12-14 2008-07-03 Asahi Glass Co Ltd 無アルカリガラスおよびその製造方法
CN105948489A (zh) * 2016-05-04 2016-09-21 东旭科技集团有限公司 制备铝硼硅酸盐玻璃用组合物、铝硼硅酸盐玻璃及其制备方法和应用
CN108298811A (zh) * 2018-04-25 2018-07-20 成都光明光电股份有限公司 玻璃组合物

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3737294A (en) * 1970-08-28 1973-06-05 Corning Glass Works Method for making multi-layer laminated bodies
JPS60215547A (ja) * 1984-04-09 1985-10-28 Nippon Electric Glass Co Ltd 紫外線透過ガラス
GB9204537D0 (en) * 1992-03-03 1992-04-15 Pilkington Plc Alkali-free glass compositions
JP3858293B2 (ja) * 1995-12-11 2006-12-13 日本電気硝子株式会社 無アルカリガラス基板
MY118912A (en) 1996-09-04 2005-02-28 Hoya Corp Glass for information recording medium substrate and glass substrate
DE10000838B4 (de) * 2000-01-12 2005-03-17 Schott Ag Alkalifreies Aluminoborosilicatglas und dessen Verwendungen
DE10000836B4 (de) * 2000-01-12 2005-03-17 Schott Ag Alkalifreies Aluminoborosilicatglas und dessen Verwendungen
JP2005008509A (ja) * 2003-05-29 2005-01-13 Nippon Electric Glass Co Ltd 光半導体パッケージ用カバーガラス及びその製造方法
JP4218839B2 (ja) * 2005-05-18 2009-02-04 Hoya株式会社 情報記録媒体用ガラス基板及びそれを用いた磁気情報記録媒体
CN102432171B (zh) 2006-06-08 2014-12-31 Hoya株式会社 供信息记录介质用基板使用的玻璃及化学强化玻璃
JP5359271B2 (ja) * 2006-07-13 2013-12-04 旭硝子株式会社 無アルカリガラス基板及びその製造方法並びに液晶ディスプレイパネル
US9556059B2 (en) * 2009-08-03 2017-01-31 Hong Li Glass compositions and fibers made therefrom
KR101951085B1 (ko) * 2011-12-28 2019-02-21 아반스트레이트 가부시키가이샤 플랫 패널 디스플레이용 유리 기판 및 그 제조 방법
JP5947364B2 (ja) * 2014-12-17 2016-07-06 Hoya株式会社 ガラス基板
WO2016125787A1 (ja) * 2015-02-06 2016-08-11 旭硝子株式会社 ガラス基板、積層基板、およびガラス基板の製造方法
CN107352794B (zh) * 2017-08-18 2020-01-31 武汉理工大学 一种适用于狭缝下拉法的柔性玻璃及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461329A (en) * 1987-08-31 1989-03-08 Central Glass Co Ltd Alkali-free glass
CN1898168A (zh) * 2003-12-26 2007-01-17 旭硝子株式会社 无碱玻璃、其制造方法及液晶显示板
JP2008150228A (ja) * 2006-12-14 2008-07-03 Asahi Glass Co Ltd 無アルカリガラスおよびその製造方法
CN105948489A (zh) * 2016-05-04 2016-09-21 东旭科技集团有限公司 制备铝硼硅酸盐玻璃用组合物、铝硼硅酸盐玻璃及其制备方法和应用
CN108298811A (zh) * 2018-04-25 2018-07-20 成都光明光电股份有限公司 玻璃组合物

Also Published As

Publication number Publication date
TWI722419B (zh) 2021-03-21
TW201945307A (zh) 2019-12-01
US11440836B2 (en) 2022-09-13
US20210238081A1 (en) 2021-08-05
JP2021522152A (ja) 2021-08-30
JP7269957B2 (ja) 2023-05-09

Similar Documents

Publication Publication Date Title
CN108298811B (zh) 玻璃组合物
WO2021068422A1 (zh) 锂锆质铝硅酸盐玻璃、强化玻璃及其制备方法和显示器件
KR102294910B1 (ko) 전자기기 커버판 용 결정화 유리 제품 및 결정화 유리
WO2020083287A1 (zh) 微晶玻璃、微晶玻璃制品及其制造方法
CN109608047B (zh) 一种高结晶度钠霞石透明微晶玻璃及其制备方法
US11440835B2 (en) Glass composition
HRP20010552A2 (en) Glass with high proportion of zirconium-oxide and its uses
JPH04325435A (ja) 無アルカリガラス
JPH04325436A (ja) 無アルカリガラス
JP2001229526A (ja) 化学強化用ガラス組成物からなる磁気ディスク基板および磁気ディスク媒体。
JP2001236634A (ja) 化学強化用ガラス組成物からなる磁気ディスク基板および磁気ディスク媒体。
CN108423985B (zh) 玻璃组合物
CN110395904B (zh) 玻璃组合物
CN108101358B (zh) 玻璃组合物
CN111574049A (zh) 玻璃组合物
TWI722419B (zh) 玻璃組合物
CN112851113B (zh) 玻璃组合物
CN110885187A (zh) 无碱玻璃
CN108083631B (zh) 玻璃组合物
JPH0667774B2 (ja) 透明結晶化ガラス
WO2020078075A1 (zh) 一种具有高应变点、可快速离子交换和耐弱酸性的锌磷铝硅酸盐玻璃
CN112707638B (zh) 玻璃组合物
JP2001226137A (ja) 化学強化用のガラス素板の製造方法およびそれを用いて得られる化学強化ガラス物品
TW202204278A (zh) 玻璃及化學強化玻璃
TW202344485A (zh) 玻璃、化學強化玻璃及覆蓋玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559548

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792809

Country of ref document: EP

Kind code of ref document: A1