WO2019205214A1 - Satellite-ground quantum key distribution fast time synchronization method based on laser pulse - Google Patents

Satellite-ground quantum key distribution fast time synchronization method based on laser pulse Download PDF

Info

Publication number
WO2019205214A1
WO2019205214A1 PCT/CN2018/088123 CN2018088123W WO2019205214A1 WO 2019205214 A1 WO2019205214 A1 WO 2019205214A1 CN 2018088123 W CN2018088123 W CN 2018088123W WO 2019205214 A1 WO2019205214 A1 WO 2019205214A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
len
sequence
satellite
time
Prior art date
Application number
PCT/CN2018/088123
Other languages
French (fr)
Chinese (zh)
Inventor
吴纯青
Original Assignee
佛山市顺德区德雅军民融合创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市顺德区德雅军民融合创新研究院 filed Critical 佛山市顺德区德雅军民融合创新研究院
Publication of WO2019205214A1 publication Critical patent/WO2019205214A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/118Arrangements specific to free-space transmission, i.e. transmission through air or vacuum specially adapted for satellite communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0855Quantum cryptography involving additional nodes, e.g. quantum relays, repeaters, intermediate nodes or remote nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0858Details about key distillation or coding, e.g. reconciliation, error correction, privacy amplification, polarisation coding or phase coding

Definitions

  • the invention relates to a time synchronization method based on laser pulses, in particular to a laser pulse based fast time synchronization method for satellite quantum key distribution.
  • Quantum key distribution unlike traditional encryption technology, based on the basic principles of quantum mechanics, can generate information-based security keys for negotiation between communication parties.
  • information-based secure communication can be realized.
  • both parties need to encode, transmit and measure the quantum state.
  • extremely weak photons are mostly used as quantum state carriers, so the communication parties cannot perform complex time coding on the transmitted quantum state signal sequences.
  • the high-speed relative motion between the two communicating parties, the time of modulation and transmission of the quantum state and the time of receiving the quantum state have Doppler effect, accurately mapping the quantum states of both sides of the communication.
  • Signal sequences and precise time synchronization are key steps in achieving quantum key distribution.
  • the current time synchronization method can be divided into two types: Einstein synchronization method and Eddington synchronization method.
  • the Einstein synchronization method is a time synchronization method for two-way communication. It often requires that the synchronization signal be sent from one party to the other and the returned round-trip path is the same, or the difference is as small as possible. It is difficult to achieve high-precision time synchronization by using the Einstein synchronization method between high-speed relative motion satellites and ground stations.
  • the existing quantum key distribution system mainly uses the Eddington synchronization method to achieve accurate mapping between the quantum signal sequences of both sides of the communication.
  • the communication party Alice first activates the synchronous laser transmission to the other party (Bob), while the two parties respectively record the time of excitation and detection; secondly, the communication party (such as Alice) will record the synchronization pulse.
  • the time value sequence is sent to the other party (Bob).
  • Bob synchronizes the local clock to the clock of the Alice terminal, and specifically performs time synchronization by calculating a second-order correlation function (referred to as the G2 equation) between the time series recorded by both parties.
  • G2 equation second-order correlation function
  • the laser pulse-based time synchronization method when accurately mapping the laser pulses between the two communication parties, it is often necessary to combine the satellite orbit and attitude information to predict the communication delay between the satellites, and then pass Continuously correct the communication delay in the G2 equation to synchronize the transmission and reception time of the laser pulse, and the work efficiency is low.
  • this patent proposes a fast time synchronization method based on laser pulse. It can adaptively modify G2 without predicting the orbit and attitude of the satellite. The communication delay in the equation can efficiently realize the time synchronization of the quantum state signals between the communication parties in the process of distributing the quantum key in the star.
  • the technical problem to be solved by the present invention is that the present invention provides a smarter, faster, and more efficient target for a star-ground quantum key, in view of the technical problems existing in the laser pulse-based time synchronization method in the existing satellite quantum key distribution system.
  • Laser pulse-based fast time synchronization method for distribution systems is that the present invention provides a smarter, faster, and more efficient target for a star-ground quantum key, in view of the technical problems existing in the laser pulse-based time synchronization method in the existing satellite quantum key distribution system.
  • the present invention adopts the following technical solutions:
  • a laser pulse-based fast time synchronization method for satellite quantum key distribution the steps of which are:
  • S1 The satellite and the ground station record the time measurement sequence of the detected sync pulse and quantum state signal respectively, labeled TA and TB, in the sequence TA(TB) TA.Value[i](TB.Value[i] ) indicates the time measurement of the i-th pulse, TA.CH[i](TB.CH[i]) indicates the channel to which the i-th pulse belongs, including the quantum channel (H, V, D, A) and the synchronization channel (S) (This patent takes the polarization direction to characterize the quantum state as an example, H, V, D, A, which respectively characterize horizontal polarization, vertical polarization, 45° polarization and 135° polarization; S characterizes the sync pulse channel);
  • S2 extracting the synchronization pulse time measurement sequence SA from the TA, and recording the index address sequence LA of the SA in the TA;
  • S4 Calculate the peak significant value S ⁇ , S ⁇ ⁇ ( ⁇ ⁇ ) -0.5 for determining the time synchronization performance, wherein the value of ⁇ can be selected according to the actual configuration of the system, generally between 0.8 and 1.0, and ⁇ ⁇ is A coincidence counting window of laser pulses is detected between the stars and the ground;
  • S6 accurately map the synchronization pulse, and calculate the synchronization pulse mapping sequence MS.
  • Each row in the MS represents a time series value of a pair of synchronous light pulses mapped between the stars and the ground, and MS.Value[i][0] is the satellite synchronization pulse time.
  • the index of the measured value in the TA sequence, MS.Value[i][1] is the index address of the ground station sync pulse time measurement value in the TB sequence, i ⁇ [0,MS.Len], MS.Len represents MS The length of the sequence;
  • the quantum state signals measured by the ground station are accurately mapped by using the measurement time on the satellite as the standard time, and the MT signal mapping sequence MT of the ground station is obtained.
  • step S6 is:
  • step S605 If R sig /R acc ⁇ S ⁇ , calculate MS according to SA, SB, LA, LB, ⁇ AB and ⁇ ⁇ ; otherwise, return to step S602 to continue execution.
  • step S604 the specific process of calculating R sig in step S604 is:
  • step S60402 If i ⁇ SB.Len and j ⁇ SA.Len, perform step S60403; otherwise, terminate;
  • the specific process of calculating the MS in the step S605 is:
  • step S60502 If i ⁇ SB.Len and j ⁇ SA.Len, go to step S60503; otherwise, terminate;
  • the specific process of calculating the MT in the step S7 is:
  • the laser pulse-based fast time synchronization method for satellite quantum key distribution can quickly correct the quantum state signal transmission delay between the two sides of the communication according to the spectral characteristics of the synchronous pulse laser. Realizing the time synchronization between the quantum state signals between the stars and the ground, compared with the traditional method, it is not necessary to calculate the quantum state signal transmission delay by predicting the satellite attitude and orbit information, especially for the high-speed satellite quantum key distribution system, which can realize more Intelligent, fast, efficient and precise time synchronization.
  • Fig. 1 is a diagram showing the relationship between the structure of various sequences involved in the present invention and the relationship between them.
  • FIG. 1 is a diagram showing the relationship between the organization of various sequences and the relationship between them.
  • a laser pulse-based fast time synchronization method for satellite quantum key distribution according to the present invention has the following steps:
  • S1 The satellite and the ground station record the time measurement sequence of the detected sync pulse and quantum state signal respectively, labeled TA and TB, in the sequence TA(TB) TA.Value[i](TB.Value[i] ) indicates the time measurement of the i-th pulse, TA.CH[i](TB.CH[i]) indicates the channel to which the i-th pulse belongs, including the quantum channel (H, V, D, A) and the synchronization channel (S) (This patent takes the polarization direction to characterize the quantum state as an example, H, V, D, A, which respectively characterize horizontal polarization, vertical polarization, 45° polarization and 135° polarization; S characterizes the sync pulse channel);
  • S2 extracting the synchronization pulse time measurement sequence SA from the TA, and recording the index address sequence LA of the SA in the TA;
  • S4 Calculate the peak significant value S ⁇ , S ⁇ ⁇ ( ⁇ ⁇ ) -0.5 for determining the time synchronization performance, wherein the value of ⁇ can be selected according to the actual configuration of the system, generally between 0.8 and 1.0, and ⁇ ⁇ is A coincidence counting window of laser pulses is detected between the stars and the ground;
  • S6 accurately map the synchronization pulse, and calculate the synchronization pulse mapping sequence MS.
  • Each row in the MS represents a time series value of a pair of synchronous light pulses mapped between the stars and the ground, and MS.Value[i][0] is the satellite synchronization pulse time.
  • the index of the measured value in the TA sequence, MS.Value[i][1] is the index address of the ground station sync pulse time measurement value in the TB sequence, i ⁇ [0, MS.Len], MS.Len represents MS The length of the sequence.
  • S604 Calculate the coincidence count R sig of the synchronization pulse sequence between the stars according to SA, SB, ⁇ AB , ⁇ ⁇ and CurIndex.
  • step S60402 If i ⁇ SB.Len and j ⁇ SA.Len, perform step S60403; otherwise, terminate;
  • step S605 If R sig /R acc ⁇ S ⁇ , calculate MS according to SA, SB, LA, LB, ⁇ AB and ⁇ ⁇ ; otherwise, return to step S602 to continue execution.
  • step S60502 If i ⁇ SB.Len and j ⁇ SA.Len, go to step S60503; otherwise, terminate;
  • the quantum state signals measured by the ground station are accurately mapped by using the measurement time on the satellite as the standard time, and the MT signal mapping sequence MT of the ground station is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Relay Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Disclosed by the present invention is a fast time synchronization method on the basis of a laser pulse for satellite-ground quantum key distribution, which comprises the following steps: S1: a satellite and a ground station recording a time measurement sequence of detected synchronous pulses and a quantum state signal respectively and labeling same as TA and TB; S2: extracting a synchronous pulse time measurement sequence SA from TA, and recording an index address sequence LA of SA in TA; S3: extracting a synchronous pulse time measurement sequence SB from TB, and recording an index address sequence LB of SB in TB; S4: calculating a peak saliency value Sτ for determining time synchronization performance; S5: calculating a background compliance count Racc; S6: accurately mapping the synchronous pulses and calculating a synchronous pulse mapping sequence MS; S7: and according to the MS sequence, using a measurement time on the satellite as the standard time, and accurately mapping the quantum state signal measured by the ground station to obtain a ground station quantum state signal mapping sequence MT. The present invention has the advantages of being adaptive, fast, highly efficient and accurate.

Description

一种基于激光脉冲的星地量子密钥分发快速时间同步方法Fast time synchronization method for satellite quantum key distribution based on laser pulse 技术领域Technical field
本发明涉及一种基于激光脉冲的时间同步方法,尤其是一种用于星地量子密钥分发的基于激光脉冲的快速时间同步方法。The invention relates to a time synchronization method based on laser pulses, in particular to a laser pulse based fast time synchronization method for satellite quantum key distribution.
背景技术Background technique
随着计算技术的不断进步,特别是量子计算技术的迅猛发展,基于数学问题复杂性为安全基础的加密技术面临着严峻的安全威胁。量子密钥分发,与传统的加密技术不同,基于量子力学基本原理,可以为通信双方之间协商生成信息论安全的密钥,同时配合“一次一密”的加密算法,可以实现信息论安全的通信。With the continuous advancement of computing technology, especially the rapid development of quantum computing technology, encryption technology based on the complexity of mathematical problems is facing a serious security threat. Quantum key distribution, unlike traditional encryption technology, based on the basic principles of quantum mechanics, can generate information-based security keys for negotiation between communication parties. At the same time, with the "one-time-one-density" encryption algorithm, information-based secure communication can be realized.
在量子密钥分发过程中,通信双方需要对量子态进行编码、传输和测量。在实际量子密钥分发***中,大多采用极其微弱的光子作为量子态载体,因而通信双方无法对传输的量子态信号序列进行复杂的时间编码。特别是在卫星与地面站之间的量子密钥分发过程中,通信双方之间高速相对运动,调制发送量子态的时间和接收到量子态的时间存在多普勒效应,精准映射通信双方量子态信号序列,实现精准的时间同步是实现量子密钥分发的关键步骤。In the quantum key distribution process, both parties need to encode, transmit and measure the quantum state. In the actual quantum key distribution system, extremely weak photons are mostly used as quantum state carriers, so the communication parties cannot perform complex time coding on the transmitted quantum state signal sequences. Especially in the process of quantum key distribution between satellite and ground station, the high-speed relative motion between the two communicating parties, the time of modulation and transmission of the quantum state and the time of receiving the quantum state have Doppler effect, accurately mapping the quantum states of both sides of the communication. Signal sequences and precise time synchronization are key steps in achieving quantum key distribution.
目前的时间同步方法从原理上可以分为爱因斯坦同步方法和艾丁顿同步方法两类。爱因斯坦同步方法是一种双向通信的时间同步方法,往往要求同步信号从一方发送至另一方并反馈回来的往返路径相同,或者差异尽可能小。而在高速相对运动的卫星与地面站之间采用爱因斯坦同步方法很难实现高精准的时间同步。The current time synchronization method can be divided into two types: Einstein synchronization method and Eddington synchronization method. The Einstein synchronization method is a time synchronization method for two-way communication. It often requires that the synchronization signal be sent from one party to the other and the returned round-trip path is the same, or the difference is as small as possible. It is difficult to achieve high-precision time synchronization by using the Einstein synchronization method between high-speed relative motion satellites and ground stations.
现有量子密钥分发***主要采用艾丁顿同步方法实现通信双方量子态信号序列之间的精准映射。在基于激光脉冲的时间同步方法中,通信一方(Alice)首先激发同步激光发送至另一方(Bob),同时双方各自记录激发和探测的时间;其次,通信一方(如Alice)将记录的同步脉冲时间值序列发送至另一方(Bob),最后,Bob将本地的时钟同步至Alice端的时钟,具体的通过计算双方记录的时间序列之间的二阶关联函数(简称G2方程)进行时间同步。The existing quantum key distribution system mainly uses the Eddington synchronization method to achieve accurate mapping between the quantum signal sequences of both sides of the communication. In the laser pulse-based time synchronization method, the communication party (Alice) first activates the synchronous laser transmission to the other party (Bob), while the two parties respectively record the time of excitation and detection; secondly, the communication party (such as Alice) will record the synchronization pulse. The time value sequence is sent to the other party (Bob). Finally, Bob synchronizes the local clock to the clock of the Alice terminal, and specifically performs time synchronization by calculating a second-order correlation function (referred to as the G2 equation) between the time series recorded by both parties.
在G2方程的计算过程中,需要知道通信双方之间信号的传输时延。对于静态的通信双方,两者之间信号的传输延时相对固定,计算较简单。现有星地量子密钥分发***中基于激光脉冲的时间同步方法,在精准映射通信双方之间的激光脉冲时,往往需要结合卫星轨道和姿态信息预测星地之间的通信时延,然后通过不断修正G2方程中的通信时延对激光脉冲的发送和接收时间进行同步,工作效率较低。In the calculation process of the G2 equation, it is necessary to know the transmission delay of the signal between the two communicating parties. For static communication parties, the signal transmission delay between the two is relatively fixed, and the calculation is relatively simple. In the existing star-ground quantum key distribution system, the laser pulse-based time synchronization method, when accurately mapping the laser pulses between the two communication parties, it is often necessary to combine the satellite orbit and attitude information to predict the communication delay between the satellites, and then pass Continuously correct the communication delay in the G2 equation to synchronize the transmission and reception time of the laser pulse, and the work efficiency is low.
在基于激光脉冲的时间同步过程中,激光器会激发具有一定宽度频谱的同步脉冲,由此相邻激光脉冲之间的时间差各不相同,而且星地之间高速相对运动导致的多普勒效应在相邻激光脉冲之间比较微弱,利用激光脉冲的这一特性,本专利拟发明一种基于激光脉冲的快速时间同步方法,不需要对卫星的轨道和姿态进行预测,就能够自适应的修改G2方程中的通信时延,可高效的实现星地量子密钥分发过程中通信双方之间量子态信号的时间同步。In the time synchronization process based on laser pulse, the laser will excite the sync pulse with a certain width spectrum, so the time difference between adjacent laser pulses is different, and the Doppler effect caused by the high-speed relative motion between the stars is The adjacent laser pulses are relatively weak. Using this characteristic of the laser pulse, this patent proposes a fast time synchronization method based on laser pulse. It can adaptively modify G2 without predicting the orbit and attitude of the satellite. The communication delay in the equation can efficiently realize the time synchronization of the quantum state signals between the communication parties in the process of distributing the quantum key in the star.
发明内容Summary of the invention
本发明要解决的技术问题在于,针对现有星地量子密钥分发***中基于激光脉冲的时间同步方法存在的技术问题,本发明提供一种更加智能、快速、高效的针对星地量子密钥分发***的基于激光脉冲的快速时间同步方法。The technical problem to be solved by the present invention is that the present invention provides a smarter, faster, and more efficient target for a star-ground quantum key, in view of the technical problems existing in the laser pulse-based time synchronization method in the existing satellite quantum key distribution system. Laser pulse-based fast time synchronization method for distribution systems.
为解决上述技术问题,本发明采用以下技术方案:In order to solve the above technical problems, the present invention adopts the following technical solutions:
一种用于星地量子密钥分发的基于激光脉冲的快速时间同步方法,其步骤为:A laser pulse-based fast time synchronization method for satellite quantum key distribution, the steps of which are:
S1:卫星和地面站分别记录下探测到的同步脉冲和量子态信号的时间测量值序列,标记为TA和TB,在序列TA(TB)中TA.Value[i](TB.Value[i])表示第i个脉冲的时间测量值,TA.CH[i](TB.CH[i])表示第i个脉冲所属信道,包括量子信道(H、V、D、A)和同步信道(S)(本专利以偏振方向表征量子态为例,H、V、D、A,分别表征水平偏振、竖直偏振、45°偏振和135°偏振;S表征同步脉冲信道);S1: The satellite and the ground station record the time measurement sequence of the detected sync pulse and quantum state signal respectively, labeled TA and TB, in the sequence TA(TB) TA.Value[i](TB.Value[i] ) indicates the time measurement of the i-th pulse, TA.CH[i](TB.CH[i]) indicates the channel to which the i-th pulse belongs, including the quantum channel (H, V, D, A) and the synchronization channel (S) (This patent takes the polarization direction to characterize the quantum state as an example, H, V, D, A, which respectively characterize horizontal polarization, vertical polarization, 45° polarization and 135° polarization; S characterizes the sync pulse channel);
S2:从TA中提取同步脉冲时间测量值序列SA,并记录SA在TA中的索引地址序列LA;S2: extracting the synchronization pulse time measurement sequence SA from the TA, and recording the index address sequence LA of the SA in the TA;
S3:从TB中提取同步脉冲时间测量值序列SB,并记录SB在TB中的索引地址序列LB;S3: extracting the synchronization pulse time measurement sequence SB from the TB, and recording the index address sequence LB of the SB in the TB;
S4:计算用于判定时间同步性能的峰值显著值S τ,S τ≈α(τ ω) -0.5,其中α的值可以根据***实际配置进行选择,一般在0.8~1.0之间,τ ω为星地之间探测到激光脉冲的符合计数窗口; S4: Calculate the peak significant value S τ , S τ ≈α(τ ω ) -0.5 for determining the time synchronization performance, wherein the value of α can be selected according to the actual configuration of the system, generally between 0.8 and 1.0, and τ ω is A coincidence counting window of laser pulses is detected between the stars and the ground;
S5:计算背景符合计数R acc,R acc=SA.Len×SB.Len×τ ω,其中SA.Len和SB.Len分别表示SA序列和SB序列的长度; S5: Calculate the background coincidence count R acc , R acc =SA.Len×SB.Len×τ ω , where SA.Len and SB.Len represent the lengths of the SA sequence and the SB sequence, respectively;
S6:精准映射同步脉冲,计算得到同步脉冲映射序列MS,MS中每一行表示星地之间映射的一对同步光脉冲的时间序列值,MS.Value[i][0]为卫星同步脉冲时间测量值在TA序列中的索引地址,MS.Value[i][1]为地面站同步脉冲时间测量值在TB序列中的索引地址,i∈[0,MS.Len],MS.Len表示MS序列的长度;S6: accurately map the synchronization pulse, and calculate the synchronization pulse mapping sequence MS. Each row in the MS represents a time series value of a pair of synchronous light pulses mapped between the stars and the ground, and MS.Value[i][0] is the satellite synchronization pulse time. The index of the measured value in the TA sequence, MS.Value[i][1] is the index address of the ground station sync pulse time measurement value in the TB sequence, i∈[0,MS.Len], MS.Len represents MS The length of the sequence;
S7:根据MS序列,以卫星上测量时间为标准时间,将地面站测量得到的量子态信号进行精准映射,得到地面站量子态信号映射序列MT。S7: According to the MS sequence, the quantum state signals measured by the ground station are accurately mapped by using the measurement time on the satellite as the standard time, and the MT signal mapping sequence MT of the ground station is obtained.
作为本发明的进一步改进:所述步骤S6的具体流程为:As a further improvement of the present invention, the specific process of the step S6 is:
S601:设参数CurIndex表示SB系列中元素的当前位置;初始值CurIndex=0;S601: setting the parameter CurIndex to indicate the current position of the element in the SB series; the initial value CurIndex=0;
S602:若CurIndex≤SB.Len,则CurIndex=CurIndex+1;S602: If CurIndex≤SB.Len, then CurIndex=CurIndex+1;
S603:计算星地之间同步脉冲传输延时Δ AB=SB.Value[CurIndex]-SA.Value[0]; S603: Calculating the synchronization pulse transmission delay between the stars and the ground Δ AB = SB. Value [CurIndex] - SA. Value [0];
S604:根据SA,SB,Δ AB,τ ω和CurIndex计算星地之间同步脉冲序列的符合计数R sigS604: Calculate the coincidence count R sig of the synchronization pulse sequence between the stars according to SA, SB, Δ AB , τ ω and CurIndex;
S605:若R sig/R acc≥S τ,则根据SA,SB,LA,LB,Δ AB和τ ω计算MS;否则返回S602步骤继续执行。 S605: If R sig /R acc ≥S τ , calculate MS according to SA, SB, LA, LB, Δ AB and τ ω ; otherwise, return to step S602 to continue execution.
作为本发明的进一步改进:所述步骤S604中计算R sig的具体流程为: As a further improvement of the present invention, the specific process of calculating R sig in step S604 is:
S60401:初始化i=CurIndex,j=0,R sig=0; S60401: Initialize i=CurIndex, j=0, R sig =0;
S60402:若i<SB.Len且j<SA.Len,执行步骤S60403;否则,终止;S60402: If i<SB.Len and j<SA.Len, perform step S60403; otherwise, terminate;
S60403:若(SB.Value[i]–SA.Value[j]–ΔAB)<-τ ω/2,则i=i+1;否则,执行步骤S60404; S60403: If (SB.Value[i] - SA.Value[j] - ΔAB) < - τ ω /2, then i = i + 1; otherwise, step S60404;
S60404:若(SB.Value[i]–SA.Value[j]–ΔAB)>τ ω/2,则j=j+1;否则,执行步骤S60405; S60404: If (SB.Value[i] - SA.Value[j] - ΔAB) > τ ω /2, then j = j + 1; otherwise, step S60405;
S60405:计算Δ AB=SB.Value[i]-SA.Value[j],i=i+1,j=j+1,R sig=R sig+1,执行步骤S60402。 S60405: Calculate Δ AB = SB.Value[i]-SA.Value[j], i=i+1, j=j+1, R sig =R sig +1, and perform step S60402.
作为本发明的进一步改进:所述步骤S605中计算MS的具体流程为:As a further improvement of the present invention, the specific process of calculating the MS in the step S605 is:
S60501:初始化i=0,j=0,MS.Len=0;S60501: Initialize i=0, j=0, MS.Len=0;
S60502:若i<SB.Len且j<SA.Len,执行步骤S60503;否则,终止;S60502: If i<SB.Len and j<SA.Len, go to step S60503; otherwise, terminate;
S60503:若(SB.Value[i]–SA.Value[j]–ΔAB)<-τ ω/2,则i=i+1;否则,执行步骤S60504; S60503: If (SB.Value[i] - SA.Value[j] - ΔAB) < - τ ω /2, then i = i + 1; otherwise, step S60504;
S60504:若(SB.Value[i]–SA.Value[j]–ΔAB)>τ ω/2,则j=j+1;否则,执行步骤S60505; S60504: If (SB.Value[i] - SA.Value[j] - ΔAB) > τ ω /2, then j = j + 1; otherwise, step S60505;
S60505:计算Δ AB=SB.Value[i]-SA.Value[j],MS.Value[MS.Len][0]=LB.Value[i],MS.Value[MS.Len][1]=LA.Value[i],i=i+1,j=j+1,MS.Len=MS.Len+1,执行步骤S60502。 S60505: Calculate Δ AB = SB.Value[i]-SA.Value[j], MS.Value[MS.Len][0]=LB.Value[i], MS.Value[MS.Len][1] =LA.Value[i], i=i+1, j=j+1, MS.Len=MS.Len+1, step S60502 is performed.
作为本发明的进一步改进:所述步骤S7中计算MT的具体流程为:As a further improvement of the present invention, the specific process of calculating the MT in the step S7 is:
S701:初始化i=0,MT.Len=0;S701: Initialize i=0, MT.Len=0;
S702:若i<MS.Len-1,执行步骤703;否则,终止;S702: If i<MS.Len-1, go to step 703; otherwise, terminate;
S703:计算MS序列中当前和下一个卫星同步光脉冲的位置,Cur SA=MS.Value[i][1],Next SA=MS.Value[i+1][1]; S703: Calculate the position of the current and next satellite sync optical pulses in the MS sequence, Cur SA = MS.Value[i][1], Next SA = MS.Value[i+1][1];
S704:计算MS序列中当前和下一个地面站同步光脉冲的位置,Cur SB=MS.Value[i][0],Next SB=MS.Value[i+1][0]; S704: Calculate the position of the current and next ground station synchronization light pulses in the MS sequence, Cur SB = MS.Value[i][0], Next SB = MS.Value[i+1][0];
S705:以卫星上时间为参考标准,计算时间修正参数θ=(TA.Value[Next SA]-TA.Value[Cur SA])/(TB.Value[Next SB]-TB.Value[Cur SB]); S705: Calculate the time correction parameter θ=(TA.Value[Next SA ]-TA.Value[Cur SA ])/(TB.Value[Next SB ]-TB.Value[Cur SB ] with the time on the satellite as the reference standard. );
S706:设j=Cur SBS706: setting j=Cur SB ;
S707:若j≤Next SB,执行步骤S708;否则,i=i+1,返回步骤S702继续执行; S707: If j≤Next SB , step S708 is performed; otherwise, i=i+1, returning to step S702 to continue execution;
S708:若TB.CH[j]为量子信道(例如以偏振方向表征量子态,则TB.CH[j]可以取值为H、V、 D、A,分别表征水平偏振、竖直偏振、45°偏振和135°偏振),则计算地面站映射后的量子态信号的时间测量值MT.Value[MT.Len]=(TB.Value[j]-TB.Value[Cur SB])×θ+TA.Value[Cur SA],MT.CH[MT.Len]=TB.CH[j],MT.Len=MT.Len+1; S708: If TB.CH[j] is a quantum channel (for example, characterizing a quantum state in a polarization direction, TB.CH[j] may take values of H, V, D, and A, respectively representing horizontal polarization, vertical polarization, 45 °Polarization and 135° polarization), calculate the time measurement value of the quantum state signal after mapping of the ground station MT.Value[MT.Len]=(TB.Value[j]-TB.Value[Cur SB ])×θ+ TA.Value[Cur SA ], MT.CH[MT.Len]=TB.CH[j], MT.Len=MT.Len+1;
S709:j=j+1,返回步骤S707继续执行。S709: j=j+1, returning to step S707 to continue execution.
与现有技术相比,本发明的优点在于:The advantages of the present invention over the prior art are:
本发明的一种用于星地量子密钥分发的基于激光脉冲的快速时间同步方法,根据同步脉冲激光的频谱特征,通过自动修正通信的星地双方之间量子态信号传输延时,可快速实现星地间量子态信号之间的时间同步,与传统方式相比,无需通过预测卫星姿态和轨道信息计算量子态信号传输延时,特别是针对高速星地量子密钥分发***,可以实现更加智能、快速、高效、精准的时间同步。The laser pulse-based fast time synchronization method for satellite quantum key distribution according to the present invention can quickly correct the quantum state signal transmission delay between the two sides of the communication according to the spectral characteristics of the synchronous pulse laser. Realizing the time synchronization between the quantum state signals between the stars and the ground, compared with the traditional method, it is not necessary to calculate the quantum state signal transmission delay by predicting the satellite attitude and orbit information, especially for the high-speed satellite quantum key distribution system, which can realize more Intelligent, fast, efficient and precise time synchronization.
附图说明DRAWINGS
图1是本发明涉及到的各种序列的组织结构和相互之间的关系图。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a diagram showing the relationship between the structure of various sequences involved in the present invention and the relationship between them.
具体实施方式detailed description
以下将结合说明书附图和具体实施例对本发明做进一步详细说明。The invention will be further described in detail below in conjunction with the drawings and specific embodiments.
图1所示为本发明涉及到的各种序列的组织结构和相互之间的关系图。结合图1,本发明的一种用于星地量子密钥分发的基于激光脉冲的快速时间同步方法,其步骤为:Figure 1 is a diagram showing the relationship between the organization of various sequences and the relationship between them. Referring to FIG. 1, a laser pulse-based fast time synchronization method for satellite quantum key distribution according to the present invention has the following steps:
S1:卫星和地面站分别记录下探测到的同步脉冲和量子态信号的时间测量值序列,标记为TA和TB,在序列TA(TB)中TA.Value[i](TB.Value[i])表示第i个脉冲的时间测量值,TA.CH[i](TB.CH[i])表示第i个脉冲所属信道,包括量子信道(H、V、D、A)和同步信道(S)(本专利以偏振方向表征量子态为例,H、V、D、A,分别表征水平偏振、竖直偏振、45°偏振和135°偏振;S表征同步脉冲信道);S1: The satellite and the ground station record the time measurement sequence of the detected sync pulse and quantum state signal respectively, labeled TA and TB, in the sequence TA(TB) TA.Value[i](TB.Value[i] ) indicates the time measurement of the i-th pulse, TA.CH[i](TB.CH[i]) indicates the channel to which the i-th pulse belongs, including the quantum channel (H, V, D, A) and the synchronization channel (S) (This patent takes the polarization direction to characterize the quantum state as an example, H, V, D, A, which respectively characterize horizontal polarization, vertical polarization, 45° polarization and 135° polarization; S characterizes the sync pulse channel);
S2:从TA中提取同步脉冲时间测量值序列SA,并记录SA在TA中的索引地址序列LA;S2: extracting the synchronization pulse time measurement sequence SA from the TA, and recording the index address sequence LA of the SA in the TA;
S3:从TB中提取同步脉冲时间测量值序列SB,并记录SB在TB中的索引地址序列LB;S3: extracting the synchronization pulse time measurement sequence SB from the TB, and recording the index address sequence LB of the SB in the TB;
S4:计算用于判定时间同步性能的峰值显著值S τ,S τ≈α(τ ω) -0.5,其中α的值可以根据***实际配置进行选择,一般在0.8~1.0之间,τ ω为星地之间探测到激光脉冲的符合计数窗口; S4: Calculate the peak significant value S τ , S τ ≈α(τ ω ) -0.5 for determining the time synchronization performance, wherein the value of α can be selected according to the actual configuration of the system, generally between 0.8 and 1.0, and τ ω is A coincidence counting window of laser pulses is detected between the stars and the ground;
S5:计算背景符合计数R acc,R acc=SA.Len×SB.Len×τ ω,其中SA.Len和SB.Len分别表示SA序列和SB序列的长度; S5: Calculate the background coincidence count R acc , R acc =SA.Len×SB.Len×τ ω , where SA.Len and SB.Len represent the lengths of the SA sequence and the SB sequence, respectively;
S6:精准映射同步脉冲,计算得到同步脉冲映射序列MS,MS中每一行表示星地之间映射的一对同步光脉冲的时间序列值,MS.Value[i][0]为卫星同步脉冲时间测量值在TA序列中的索引地址,MS.Value[i][1]为地面站同步脉冲时间测量值在TB序列中的索引地址,i∈[0, MS.Len],MS.Len表示MS序列的长度。S6: accurately map the synchronization pulse, and calculate the synchronization pulse mapping sequence MS. Each row in the MS represents a time series value of a pair of synchronous light pulses mapped between the stars and the ground, and MS.Value[i][0] is the satellite synchronization pulse time. The index of the measured value in the TA sequence, MS.Value[i][1] is the index address of the ground station sync pulse time measurement value in the TB sequence, i∈[0, MS.Len], MS.Len represents MS The length of the sequence.
S601:设参数CurIndex表示SB系列中元素的当前位置;初始值CurIndex=0;S601: setting the parameter CurIndex to indicate the current position of the element in the SB series; the initial value CurIndex=0;
S602:若CurIndex≤SB.Len,则CurIndex=CurIndex+1;S602: If CurIndex≤SB.Len, then CurIndex=CurIndex+1;
S603:计算星地之间同步脉冲传输延时Δ AB=SB.Value[CurIndex]-SA.Value[0]; S603: Calculating the synchronization pulse transmission delay between the stars and the ground Δ AB = SB. Value [CurIndex] - SA. Value [0];
S604:根据SA,SB,Δ AB,τ ω和CurIndex计算星地之间同步脉冲序列的符合计数R sigS604: Calculate the coincidence count R sig of the synchronization pulse sequence between the stars according to SA, SB, Δ AB , τ ω and CurIndex.
S60401:初始化i=CurIndex,j=0,R sig=0; S60401: Initialize i=CurIndex, j=0, R sig =0;
S60402:若i<SB.Len且j<SA.Len,执行步骤S60403;否则,终止;S60402: If i<SB.Len and j<SA.Len, perform step S60403; otherwise, terminate;
S60403:若(SB.Value[i]–SA.Value[j]–ΔAB)<-τ ω/2,则i=i+1;否则,执行步骤S60404; S60403: If (SB.Value[i] - SA.Value[j] - ΔAB) < - τ ω /2, then i = i + 1; otherwise, step S60404;
S60404:若(SB.Value[i]–SA.Value[j]–ΔAB)>τ ω/2,则j=j+1;否则,执行步骤S60405; S60404: If (SB.Value[i] - SA.Value[j] - ΔAB) > τ ω /2, then j = j + 1; otherwise, step S60405;
S60405:计算Δ AB=SB.Value[i]-SA.Value[j],i=i+1,j=j+1,R sig=R sig+1,执行步骤S60402。 S60405: Calculate Δ AB = SB.Value[i]-SA.Value[j], i=i+1, j=j+1, R sig =R sig +1, and perform step S60402.
S605:若R sig/R acc≥S τ,则根据SA,SB,LA,LB,Δ AB和τ ω计算MS;否则返回S602步骤继续执行。 S605: If R sig /R acc ≥S τ , calculate MS according to SA, SB, LA, LB, Δ AB and τ ω ; otherwise, return to step S602 to continue execution.
S60501:初始化i=0,j=0,MS.Len=0;S60501: Initialize i=0, j=0, MS.Len=0;
S60502:若i<SB.Len且j<SA.Len,执行步骤S60503;否则,终止;S60502: If i<SB.Len and j<SA.Len, go to step S60503; otherwise, terminate;
S60503:若(SB.Value[i]–SA.Value[j]–ΔAB)<-τ ω/2,则i=i+1;否则,执行步骤S60504; S60503: If (SB.Value[i] - SA.Value[j] - ΔAB) < - τ ω /2, then i = i + 1; otherwise, step S60504;
S60504:若(SB.Value[i]–SA.Value[j]–ΔAB)>τ ω/2,则j=j+1;否则,执行步骤S60505; S60504: If (SB.Value[i] - SA.Value[j] - ΔAB) > τ ω /2, then j = j + 1; otherwise, step S60505;
S60505:计算Δ AB=SB.Value[i]-SA.Value[j],MS.Value[MS.Len][0]=LB.Value[i],MS.Value[MS.Len][1]=LA.Value[i],i=i+1,j=j+1,MS.Len=MS.Len+1,执行步骤S60502。 S60505: Calculate Δ AB = SB.Value[i]-SA.Value[j], MS.Value[MS.Len][0]=LB.Value[i], MS.Value[MS.Len][1] =LA.Value[i], i=i+1, j=j+1, MS.Len=MS.Len+1, step S60502 is performed.
S7:根据MS序列,以卫星上测量时间为标准时间,将地面站测量得到的量子态信号进行精准映射,得到地面站量子态信号映射序列MT。S7: According to the MS sequence, the quantum state signals measured by the ground station are accurately mapped by using the measurement time on the satellite as the standard time, and the MT signal mapping sequence MT of the ground station is obtained.
S701:初始化i=0,MT.Len=0;S701: Initialize i=0, MT.Len=0;
S702:若i<MS.Len-1,执行步骤703;否则,终止;S702: If i<MS.Len-1, go to step 703; otherwise, terminate;
S703:计算MS序列中当前和下一个卫星同步光脉冲的位置,Cur SA=MS.Value[i][1],Next SA=MS.Value[i+1][1]; S703: Calculate the position of the current and next satellite sync optical pulses in the MS sequence, Cur SA = MS.Value[i][1], Next SA = MS.Value[i+1][1];
S704:计算MS序列中当前和下一个地面站同步光脉冲的位置,Cur SB=MS.Value[i][0],Next SB=MS.Value[i+1][0]; S704: Calculate the position of the current and next ground station synchronization light pulses in the MS sequence, Cur SB = MS.Value[i][0], Next SB = MS.Value[i+1][0];
S705:以卫星上时间为参考标准,计算时间修正参数θ=(TA.Value[Next SA]-TA.Value[Cur SA])/(TB.Value[Next SB]-TB.Value[Cur SB]); S705: Calculate the time correction parameter θ=(TA.Value[Next SA ]-TA.Value[Cur SA ])/(TB.Value[Next SB ]-TB.Value[Cur SB ] with the time on the satellite as the reference standard. );
S706:设j=Cur SBS706: setting j=Cur SB ;
S707:若j≤Next SB,执行步骤S708;否则,i=i+1,返回步骤S702继续执行; S707: If j≤Next SB , step S708 is performed; otherwise, i=i+1, returning to step S702 to continue execution;
S708:若TB.CH[j]为量子信道(例如以偏振方向表征量子态,则TB.CH[j]可以取值为H、V、D、A,分别表征水平偏振、竖直偏振、45°偏振和135°偏振),则计算地面站映射后的量子态信号的时间测量值MT.Value[MT.Len]=(TB.Value[j]-TB.Value[Cur SB])×θ+TA.Value[Cur SA],MT.CH[MT.Len]=TB.CH[j],MT.Len=MT.Len+1; S708: If TB.CH[j] is a quantum channel (for example, characterizing a quantum state in a polarization direction, TB.CH[j] may take values of H, V, D, and A, respectively representing horizontal polarization, vertical polarization, 45 °Polarization and 135° polarization), calculate the time measurement value of the quantum state signal after mapping of the ground station MT.Value[MT.Len]=(TB.Value[j]-TB.Value[Cur SB ])×θ+ TA.Value[Cur SA ], MT.CH[MT.Len]=TB.CH[j], MT.Len=MT.Len+1;
S709:j=j+1,返回步骤S707继续执行。S709: j=j+1, returning to step S707 to continue execution.

Claims (5)

  1. 一种用于星地量子密钥分发的基于激光脉冲的快速时间同步方法,其特征在于,步骤为:A laser pulse-based fast time synchronization method for satellite quantum key distribution, characterized in that the steps are:
    S1:卫星和地面站分别记录下探测到的同步脉冲和量子态信号的时间测量值序列,标记为TA和TB;S1: a sequence of time measurement values of the detected sync pulse and quantum state signal recorded by the satellite and the ground station, respectively, labeled TA and TB;
    S2:从TA中提取同步脉冲时间测量值序列SA,并记录SA在TA中的索引地址序列LA;S2: extracting the synchronization pulse time measurement sequence SA from the TA, and recording the index address sequence LA of the SA in the TA;
    S3:从TB中提取同步脉冲时间测量值序列SB,并记录SB在TB中的索引地址序列LB;S3: extracting the synchronization pulse time measurement sequence SB from the TB, and recording the index address sequence LB of the SB in the TB;
    S4:计算用于判定时间同步性能的峰值显著值S τ,S τ≈α(τ ω) -0.5,其中α的值可以根据***实际配置进行选择,τ ω为星地之间探测到激光脉冲的符合计数窗口; S4: Calculate the peak significant value S τ , S τ ≈α(τ ω ) -0.5 for determining the time synchronization performance, wherein the value of α can be selected according to the actual configuration of the system, and τ ω is the laser pulse detected between the stars and the ground. Compliance with the count window;
    S5:计算背景符合计数R acc,R acc=SA.Len×SB.Len×τ ω,其中SA.Len和SB.Len分别表示SA序列和SB序列的长度; S5: Calculate the background coincidence count R acc , R acc =SA.Len×SB.Len×τ ω , where SA.Len and SB.Len represent the lengths of the SA sequence and the SB sequence, respectively;
    S6:精准映射同步脉冲,计算得到同步脉冲映射序列MS,MS中每一行表示星地之间映射的一对同步光脉冲的时间序列值,MS.Value[i][0]为卫星同步脉冲时间测量值在TA序列中的索引地址,MS.Value[i][1]为地面站同步脉冲时间测量值在TB序列中的索引地址,i∈[0,S6: accurately map the synchronization pulse, and calculate the synchronization pulse mapping sequence MS. Each row in the MS represents a time series value of a pair of synchronous light pulses mapped between the stars and the ground, and MS.Value[i][0] is the satellite synchronization pulse time. The index of the measured value in the TA sequence, MS.Value[i][1] is the index address of the ground station sync pulse time measurement value in the TB sequence, i∈[0,
    MS.Len],MS.Len表示MS序列的长度;MS.Len], MS.Len represents the length of the MS sequence;
    S7:根据MS序列,以卫星上测量时间为标准时间,将地面站测量得到的量子态信号进行精准映射,得到地面站量子态信号映射序列MT。S7: According to the MS sequence, the quantum state signals measured by the ground station are accurately mapped by using the measurement time on the satellite as the standard time, and the MT signal mapping sequence MT of the ground station is obtained.
  2. 根据权利要求1所述的用于星地量子密钥分发的基于激光脉冲的快速时间同步方法,其特征在于,所述步骤S6的具体流程为:The method of claim 1, wherein the specific process of step S6 is:
    S601:设参数CurIndex表示SB系列中元素的当前位置;初始值CurIndex=0;S601: setting the parameter CurIndex to indicate the current position of the element in the SB series; the initial value CurIndex=0;
    S602:若CurIndex≤SB.Len,则CurIndex=CurIndex+1;S602: If CurIndex≤SB.Len, then CurIndex=CurIndex+1;
    S603:计算星地之间同步脉冲传输延时Δ AB=SB.Value[CurIndex]-SA.Value[0]; S603: Calculating the synchronization pulse transmission delay between the stars and the ground Δ AB = SB. Value [CurIndex] - SA. Value [0];
    S604:根据SA,SB,Δ AB,τ ω和CurIndex计算星地之间同步脉冲序列的符合计数R sigS604: Calculate the coincidence count R sig of the synchronization pulse sequence between the stars according to SA, SB, Δ AB , τ ω and CurIndex;
    S605:若R sig/R acc≥S τ,则根据SA,SB,LA,LB,Δ AB和τ ω计算MS;否则返回S602步骤继续执行。 S605: If R sig /R acc ≥S τ , calculate MS according to SA, SB, LA, LB, Δ AB and τ ω ; otherwise, return to step S602 to continue execution.
  3. 根据权利要求2所述的用于星地量子密钥分发的基于激光脉冲的快速时间同步方法,其特征在于,所述步骤S604的具体流程为:The method of claim 2, wherein the specific process of step S604 is:
    S60401:初始化i=CurIndex,j=0,R sig=0; S60401: Initialize i=CurIndex, j=0, R sig =0;
    S60402:若i<SB.Len且j<SA.Len,执行步骤S60403;否则,终止;S60402: If i<SB.Len and j<SA.Len, perform step S60403; otherwise, terminate;
    S60403:若(SB.Value[i]–SA.Value[j]–ΔAB)<-τ ω/2,则i=i+1;否则,执行步骤S60404; S60403: If (SB.Value[i] - SA.Value[j] - ΔAB) < - τ ω /2, then i = i + 1; otherwise, step S60404;
    S60404:若(SB.Value[i]–SA.Value[j]–ΔAB)>τ ω/2,则j=j+1;否则,执行步骤S60405; S60404: If (SB.Value[i] - SA.Value[j] - ΔAB) > τ ω /2, then j = j + 1; otherwise, step S60405;
    S60405:计算Δ AB=SB.Value[i]-SA.Value[j],i=i+1,j=j+1,R sig=R sig+1,执行步骤S60402。 S60405: Calculate Δ AB = SB.Value[i]-SA.Value[j], i=i+1, j=j+1, R sig =R sig +1, and perform step S60402.
  4. 根据权利要求2或3所述的用于星地量子密钥分发的基于激光脉冲的快速时间同步方法,其特征在于,所述步骤S605的具体流程为:The laser pulse-based fast time synchronization method for satellite-based quantum key distribution according to claim 2 or 3, wherein the specific process of step S605 is:
    S60501:初始化i=0,j=0,MS.Len=0;S60501: Initialize i=0, j=0, MS.Len=0;
    S60502:若i<SB.Len且j<SA.Len,执行步骤S60503;否则,终止;S60502: If i<SB.Len and j<SA.Len, go to step S60503; otherwise, terminate;
    S60503:若(SB.Value[i]–SA.Value[j]–ΔAB)<-τ ω/2,则i=i+1;否则,执行步骤S60504; S60503: If (SB.Value[i] - SA.Value[j] - ΔAB) < - τ ω /2, then i = i + 1; otherwise, step S60504;
    S60504:若(SB.Value[i]–SA.Value[j]–ΔAB)>τ ω/2,则j=j+1;否则,执行步骤S60505; S60504: If (SB.Value[i] - SA.Value[j] - ΔAB) > τ ω /2, then j = j + 1; otherwise, step S60505;
    S60505:计算Δ AB=SB.Value[i]-SA.Value[j],MS.Value[MS.Len][0]=LB.Value[i], S60505: Calculate Δ AB = SB.Value[i]-SA.Value[j], MS.Value[MS.Len][0]=LB.Value[i],
    MS.Value[MS.Len][1]=LA.Value[i],i=i+1,j=j+1,MS.Len=MS.Len+1,执行步骤S60502。MS.Value[MS.Len][1]=LA.Value[i], i=i+1, j=j+1, MS.Len=MS.Len+1, step S60502 is performed.
  5. 根据权利要求4所述的用于星地量子密钥分发的基于激光脉冲的快速时间同步方法,其特征在于,所述步骤S7的具体流程为:The laser pulse-based fast time synchronization method for satellite-based quantum key distribution according to claim 4, wherein the specific process of the step S7 is:
    S701:初始化i=0,MT.Len=0;S701: Initialize i=0, MT.Len=0;
    S702:若i<MS.Len-1,执行步骤703;否则,终止;S702: If i<MS.Len-1, go to step 703; otherwise, terminate;
    S703:计算MS序列中当前和下一个卫星同步光脉冲的位置,Cur SA=MS.Value[i][1],Next SA=MS.Value[i+1][1]; S703: Calculate the position of the current and next satellite sync optical pulses in the MS sequence, Cur SA = MS.Value[i][1], Next SA = MS.Value[i+1][1];
    S704:计算MS序列中当前和下一个地面站同步光脉冲的位置,Cur SB=MS.Value[i][0],Next SB=MS.Value[i+1][0]; S704: Calculate the position of the current and next ground station synchronization light pulses in the MS sequence, Cur SB = MS.Value[i][0], Next SB = MS.Value[i+1][0];
    S705:以卫星上时间为参考标准,计算时间修正参数θ=(TA.Value[Next SA]-TA.Value[Cur SA])/(TB.Value[Next SB]-TB.Value[Cur SB]); S705: Calculate the time correction parameter θ=(TA.Value[Next SA ]-TA.Value[Cur SA ])/(TB.Value[Next SB ]-TB.Value[Cur SB ] with the time on the satellite as the reference standard. );
    S706:设j=Cur SBS706: setting j=Cur SB ;
    S707:若j≤Next SB,执行步骤S708;否则,i=i+1,返回步骤S702继续执行; S707: If j≤Next SB , step S708 is performed; otherwise, i=i+1, returning to step S702 to continue execution;
    S708:若TB.CH[j]为量子信道(例如以偏振方向表征量子态,则TB.CH[j]可以取值为H、V、D、A,分别表征水平偏振、竖直偏振、45°偏振和135°偏振),则计算地面站映射后的量子态信号的时间测量值MT.Value[MT.Len]=(TB.Value[j]-TB.Value[Cur SB])×θ+TA.Value[Cur SA],MT.CH[MT.Len]=TB.CH[j],MT.Len=MT.Len+1; S708: If TB.CH[j] is a quantum channel (for example, characterizing a quantum state in a polarization direction, TB.CH[j] may take values of H, V, D, and A, respectively representing horizontal polarization, vertical polarization, 45 °Polarization and 135° polarization), calculate the time measurement value of the quantum state signal after mapping of the ground station MT.Value[MT.Len]=(TB.Value[j]-TB.Value[Cur SB ])×θ+ TA.Value[Cur SA ], MT.CH[MT.Len]=TB.CH[j], MT.Len=MT.Len+1;
    S709:j=j+1,返回步骤S707继续执行。S709: j=j+1, returning to step S707 to continue execution.
PCT/CN2018/088123 2018-04-23 2018-05-24 Satellite-ground quantum key distribution fast time synchronization method based on laser pulse WO2019205214A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810364720.4A CN108540250B (en) 2018-04-23 2018-04-23 Laser pulse-based rapid time synchronization method for satellite-ground quantum key distribution
CN201810364720.4 2018-04-23

Publications (1)

Publication Number Publication Date
WO2019205214A1 true WO2019205214A1 (en) 2019-10-31

Family

ID=63477406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088123 WO2019205214A1 (en) 2018-04-23 2018-05-24 Satellite-ground quantum key distribution fast time synchronization method based on laser pulse

Country Status (2)

Country Link
CN (1) CN108540250B (en)
WO (1) WO2019205214A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2605192A (en) * 2021-03-26 2022-09-28 Arqit Ltd A system and method for time synchronisation
CN117240354A (en) * 2023-11-10 2023-12-15 武汉量子技术研究院 Satellite-ground quantum key distribution code quantity estimation method based on beacon light intensity change

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109274420B (en) * 2018-11-16 2020-05-05 西安电子科技大学 Method for estimating transmission rate of entangled photon pair for satellite-ground downlink
CN111193681B (en) * 2019-02-28 2020-10-16 成都坤恒顺维科技股份有限公司 Fast time synchronization method based on high-speed data transmission
CN111817791B (en) * 2019-04-10 2022-04-29 全球能源互联网研究院有限公司 Quantum remote state transfer device for improving communication safety of power system
CN111934784A (en) * 2020-06-22 2020-11-13 南京南瑞信息通信科技有限公司 Satellite-ground integrated quantum key distribution system suitable for power system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010127723A1 (en) * 2009-05-08 2010-11-11 Hewlett-Packard Development Company, L.P. Quantum repeater and system and method for creating extended entanglements
CN104993925A (en) * 2015-07-01 2015-10-21 清华大学 Quantum key distribution system of aircraft
CN107856888A (en) * 2017-10-11 2018-03-30 上海微小卫星工程中心 Star double light path to Barebone
CN107947930A (en) * 2017-12-29 2018-04-20 中南大学 The modulation compensated system of continuous variable quantum key distribution and its implementation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2266250A1 (en) * 2008-03-13 2010-12-29 University College Cork-National University of Ireland, Cork An optical communication system and method for secure data communication using quantum key distribution
CN102724036B (en) * 2012-06-04 2015-01-14 上海交通大学 Continuous variable quantum key distribution system and synchronous realization method thereof
CN203761414U (en) * 2014-04-17 2014-08-06 哈尔滨理工大学 Quantum key distribution device based on polarization beacon tracking compensation
CN104506313B (en) * 2015-01-19 2017-12-26 中国人民解放军国防科学技术大学 A kind of quantum key distribution secrecy Enhancement Method for supporting extensive dynamic change
CN206135937U (en) * 2016-11-15 2017-04-26 上海国盾量子信息技术有限公司 A automatic chronogenesis adjusting device for quantum key distribution system
CN106612176B (en) * 2016-12-16 2019-09-24 中国电子科技集团公司第三十研究所 One kind being based on quantum true random number arranging key negotiating system and machinery of consultation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010127723A1 (en) * 2009-05-08 2010-11-11 Hewlett-Packard Development Company, L.P. Quantum repeater and system and method for creating extended entanglements
CN104993925A (en) * 2015-07-01 2015-10-21 清华大学 Quantum key distribution system of aircraft
CN107856888A (en) * 2017-10-11 2018-03-30 上海微小卫星工程中心 Star double light path to Barebone
CN107947930A (en) * 2017-12-29 2018-04-20 中南大学 The modulation compensated system of continuous variable quantum key distribution and its implementation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
REN, JIGANG ET AL.: "Synchronization for Quantum Key Distribution from Ground to Satellite", JOURNAL OF INFRARED AND MILLIMETER WAVES, vol. 30, no. 4, 31 August 2011 (2011-08-31) *
SHEN, QI: "The Research on High Resolution Time to Digital Convertion for Quantum Communication", ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE , CHINA DOCTOR DISSERTATION FULL-TEXT DATABASE (ELECTRONIC JOURNAL, 15 April 2014 (2014-04-15) *
SHEN, ZEYUAN ET AL.: "Synchronous Scheme and Experimental Realization in Continuous Variable Quautum Key Distribution System", CHINESE JOURNAL OF LASERS, vol. 40, no. 3, 31 March 2013 (2013-03-31) *
ZHAO, BAOKANG ET AL.: "A Tutorial on Quantum Key Distribution", 2015 10TH INTERNATIONAL CONFERENCE ON BROADBAND AND WIRELESS COMPUTING, COMMUNICATION AND APPLICATIONS (BWCCA, 3 March 2016 (2016-03-03) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2605192A (en) * 2021-03-26 2022-09-28 Arqit Ltd A system and method for time synchronisation
WO2022200757A1 (en) * 2021-03-26 2022-09-29 Arqit Limited A system and method for time synchronisation
GB2605192B (en) * 2021-03-26 2023-05-31 Arqit Ltd A system and method for time synchronisation
CN117240354A (en) * 2023-11-10 2023-12-15 武汉量子技术研究院 Satellite-ground quantum key distribution code quantity estimation method based on beacon light intensity change
CN117240354B (en) * 2023-11-10 2024-01-12 武汉量子技术研究院 Satellite-ground quantum key distribution code quantity estimation method based on beacon light intensity change

Also Published As

Publication number Publication date
CN108540250A (en) 2018-09-14
CN108540250B (en) 2020-04-21

Similar Documents

Publication Publication Date Title
WO2019205214A1 (en) Satellite-ground quantum key distribution fast time synchronization method based on laser pulse
CN102449940B (en) Network synchronization method and apparatus for performing time synchronization between nodes
Kwak et al. A new double two-way ranging algorithm for ranging system
US6784827B2 (en) Determining a time of arrival of a sent signal
CN103384990B (en) System and method for the frequency offset compensation of the radio system with quick Doppler frequency shift
Kim Double-sided two-way ranging algorithm to reduce ranging time
US20050199812A1 (en) System and method for clock synchronization and position determination using entangled photon pairs
CN106054204A (en) Long distance and high accuracy oriented compound laser range finding method and system
CN101002396A (en) Method for estimating time of arrival of signal received in wireless communication system
JP7301414B2 (en) Bisection Clock Synchronization System and Method Based on Polarization Entangled GHZ States
CN113541819B (en) Time synchronization system for quantum key distribution
CN108535596A (en) A kind of travelling wave ranging method not depending on clock synchronization
CN115001597A (en) Gating signal tuning method and device for quantum communication system
WO2022262019A1 (en) 5g communication-based alternating current/direct current electric power transmission line traveling wave fault distance-measuring method and system
CN110350996A (en) Clock drift rate tracking and system based on Interacting Multiple Model Algorithm
US20040087277A1 (en) Method and apparatus for improving accuracy of radio timing measurements
JP3897413B2 (en) Apparatus and method for measuring distance between two stations connected by communication channel
US20220385519A1 (en) MOBILE DEVICE FREQUENCY OFFSET DETERMINATION AND TDoA LOCALIZATION
CN109696603B (en) Real-time monitoring method for two-side external clocks of two-end traveling wave ranging
CN103427976A (en) High-precision time synchronization method for distributed optical fibers
Net et al. Optical telemetry ranging
CN105933976A (en) Heartbeat locating method, device and system under one-dimensional scene
CN116318431A (en) Time synchronization method and system for quantum communication
CN106034003B (en) Method based on double-fiber transmitting ultraprecise frequency time signal
Oh et al. Traffic-reduced precise ranging protocol for asynchronous UWB positioning networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915964

Country of ref document: EP

Kind code of ref document: A1