WO2019204955A1 - 一种光学检测设备及检测方法 - Google Patents

一种光学检测设备及检测方法 Download PDF

Info

Publication number
WO2019204955A1
WO2019204955A1 PCT/CN2018/084015 CN2018084015W WO2019204955A1 WO 2019204955 A1 WO2019204955 A1 WO 2019204955A1 CN 2018084015 W CN2018084015 W CN 2018084015W WO 2019204955 A1 WO2019204955 A1 WO 2019204955A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
detected
device body
detecting
detection
Prior art date
Application number
PCT/CN2018/084015
Other languages
English (en)
French (fr)
Inventor
骆磊
牟涛涛
迟雪
Original Assignee
深圳达闼科技控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳达闼科技控股有限公司 filed Critical 深圳达闼科技控股有限公司
Priority to CN201880001109.3A priority Critical patent/CN108780036B/zh
Priority to PCT/CN2018/084015 priority patent/WO2019204955A1/zh
Publication of WO2019204955A1 publication Critical patent/WO2019204955A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the present application relates to the field of optical detection technologies, and in particular, to an optical detection device and a detection method.
  • the current professional optical substance testing equipment is mostly contact type detection, such as Raman spectroscopy. Since the focus of the lens on the optical detecting device is fixed, the laser has a fixed focal length, so as long as the substance is placed in the focus position. Test. However, due to the user's own operation, the hand is unstable, or the focus control is not in place, so that the detection result of the substance is greatly affected. Therefore, many detection devices currently use a convex probe structure such that the optical focus is located at the foremost end of the convex probe, that is, when the substance to be tested is placed on the probe, the substance is located at the focus position.
  • the inventors have found that the convex structure on the existing optical detecting device enables the material to be located at the optical focus position.
  • the untrained user or the first-time tester still has many times.
  • the substance cannot be accurately placed in the focus position.
  • the detection laser emission is selected first, then the substance is moved to the focus position, or the substance is removed after the detection is not finished, etc., which may cause the detection letter. Noise ratio reduction or even detection of error occurs.
  • a technical problem to be solved in some embodiments of the present application is to provide an optical detecting device and a detecting method for solving the problem that the substance to be detected cannot be accurately placed in the process of detecting a substance using the optical detecting device.
  • An embodiment of the present application provides an optical detecting apparatus, including: a device body, a detecting probe, and a pressure sensor.
  • the pressure sensor is disposed on the detecting probe, the detecting probe is aligned with the light entrance and exit of the device body, and the pressure sensor establishes communication with the device body.
  • the pressure sensor is configured to detect the pressure value of the detecting probe and transmit the pressure value to the main body of the device; the main body of the device is configured to obtain the pressure value transmitted by the pressure sensor, and determine whether there is a substance to be detected according to the pressure value, and The detection process is initiated after determining that the object to be tested is placed.
  • An embodiment of the present application further provides a detecting method, which is applied to the optical detecting device in the above embodiment, comprising: a pressure sensor transmitting the detected pressure value of the detecting detecting probe to the device body; and the device body determining whether the pressure value is based on the pressure value There is a substance to be detected; the main body of the device determines that there is a substance to be detected, and then starts the detection process.
  • a pressure sensor is disposed on the detecting probe, so that the device body can know whether the detected object is placed on the detecting probe through the pressure value transmitted by the pressure sensor, and is determined to be After the placed object to be detected, the detection is started, and the phenomenon that the position of the object to be detected is inaccurate due to human factors is affected to affect the detection result.
  • the device body can judge the condition of the object to be detected according to the pressure value, The user is required to place the object to be tested according to the experience of use, whereby even an untrained user or a person who uses it for the first time can quickly and easily use the optical detecting device, thereby improving the user's operating experience.
  • FIG. 1 is a schematic structural view of an optical detecting device in a first embodiment of the present application
  • FIG. 2 is a schematic structural view of an optical detecting device in a second embodiment of the present application.
  • FIG. 3 is a flow chart of a detecting method in a third embodiment of the present application.
  • FIG. 4 is a flow chart of a detecting method in a fourth embodiment of the present application.
  • a first embodiment of the present application relates to an optical detecting apparatus including: an apparatus main body 10, a detecting probe 20, and a pressure sensor 30. As shown in FIG. 1, a pressure sensor 30 is disposed on the detecting probe 20, and the detecting probe 20 is aligned with the apparatus. a light entrance and exit of the main body 10 (not shown), and the pressure sensor 30 establishes a communication connection with the device body 10;
  • the pressure sensor 30 is configured to detect the pressure value received by the detecting probe 20 and transmit the pressure value to the device body 10; the device body 10 is configured to acquire the pressure value transmitted by the pressure sensor 30, and determine whether there is a placed to be detected according to the pressure value. And start the detection process after determining that the object to be tested is placed.
  • the detecting probe 20 is provided with a convex portion at a position for contacting the object to be detected; wherein the pressure sensor 30 is used for detecting the pressure value received by the convex portion.
  • the pressure sensor 30 is used for detecting the pressure value received by the convex portion.
  • the contact optical detecting device that is the focus position of the detecting probe is taken as an example.
  • the pressure sensor can be set at the focus position. On the component, the pressure sensor can sense the pressure change as long as the object to be detected is placed.
  • the pressure sensor disposed on the convex portion is an annular pressure sensor, and a conversion circuit is disposed on the detection probe 20, the conversion circuit is electrically connected to the pressure sensor 30, and is communicably connected with the device body 10; the conversion circuit is a pressure sensor.
  • the output signal of 30 is converted into a voltage value, and the voltage value is transmitted to the apparatus main body 10.
  • the conversion circuit of the annular pressure sensor enables the main body of the device to know the pressure distribution of the annular portion of the detecting probe according to the pressure value transmitted by the annular pressure sensor, and to know whether the object to be detected is placed at the focus position.
  • the process of determining, by the device body 10, the placed object to be detected is: determining whether the pressure value is greater than or equal to a preset threshold value, and if so, determining that the object to be detected is placed.
  • the value of the preset threshold value that needs to be set for the actual detection may be updated, and the preset threshold value may be different due to different quality of different objects to be detected, for example, the detection quality is relatively low to be detected.
  • the preset threshold value can be set to 2
  • the pressure sensor detects that the pressure value of the convex portion is greater than 2
  • the apparatus body can determine that the object to be detected is placed on the detecting probe according to the pressure value not being 2
  • the preset threshold value can be set to 5
  • the pressure sensor detects that the pressure value of the convex portion is greater than 5.
  • the main body of the device can determine that the object to be detected is placed on the detecting probe according to the pressure value. This is only an example, and does not limit the value of the preset threshold.
  • whether the detection ends by the preset signal-to-noise ratio or the detection duration may be determined, for example, acquiring spectral data of the object to be detected after the detection starts, and calculating a signal-to-noise ratio, when the calculated signal-to-noise ratio is less than or When the preset signal-to-noise ratio is equal to the completion of the detection process, or the detection time is recorded after the start of the detection, when the detection time is greater than or equal to the preset detection duration, the detection process is completed. Determining the completion of the detection process is not limited to the above-mentioned manner, and is merely illustrative here.
  • the device body is used to: determine that the acquired pressure value is greater than Or equal to the preset threshold value being less than the preset threshold value, saving the acquired spectral data or the detected detection duration of the record, and issuing a prompt that the detection has not been completed; if it is determined within the preset duration, the acquired pressure value is greater than or If it is equal to the preset threshold, the acquired spectral data is extracted and the detection is continued.
  • the detection process is to collect the spectral data of the object to be detected multiple times, when the detection interruption occurs, the currently acquired spectral data is saved, and after subsequent determination to continue the detection, if necessary, the last time may be discarded.
  • the collected spectral data and continue to collect the spectral data of the analyte until the number of times the spectrum of the collected material is determined to meet the number of times the spectrum of the detected substance is required, indicates that the detection is completed.
  • the spectral data of the last collected spectral data is incomplete due to the interruption of the detection.
  • the spectral data collected last time is discarded, and the number of times the spectrum is collected is increased once after the detection is continued. In order to ensure that the complete spectral data of the object to be detected can be obtained.
  • the spectral data includes at least one of a substance spectrum and a reflection spectrum.
  • the detection timing is also suspended, and the subsequent recovery detection continues to count until the detection duration reaches the preset detection duration, and then the detection ends.
  • the basis for determining the end of the detection is not limited to the above-mentioned detection duration or preset signal-to-noise ratio. If the detection is interrupted due to the change of the position of the object to be detected during the detection process, the detection is determined after the detection is resumed. The basis for the end depends on the specific material spectral data collection strategy, which is not limited here.
  • a pressure sensor is disposed on the detecting probe, so that the device body can know whether there is a placed object to be detected on the detecting probe through the pressure value transmitted by the pressure sensor, and after determining the placed object to be detected.
  • the detection starts, which avoids the phenomenon that the position of the object to be detected is inaccurate due to human factors affecting the detection result.
  • the main body of the device can judge the condition of the object to be detected according to the pressure value, and the user does not need to use the experience according to the experience.
  • the object to be tested is placed, whereby even an untrained user or a person who uses it for the first time can quickly and easily use the optical detecting device, thereby improving the user's operating experience.
  • the second embodiment of the present application relates to an optical detecting apparatus, and the second embodiment is substantially the same as the first embodiment, and the main difference is that the setting position of the pressure sensor is changed in the second embodiment, and its structure is as follows.
  • Figure 2 shows.
  • the pressure sensor 30 is disposed at the junction of the detection probe 20 and the apparatus body 10, and the pressure sensor 30 can be used to detect the total pressure value that the entire detection probe 20 is subjected to. It should be noted that, since the pressure sensor 30 is disposed at the connection between the detecting probe 20 and the device body 10, the pressure value of the detecting probe 20 at a certain point cannot be specifically determined, but the pressure sensor 30 can determine whether the object to be detected and the detecting are based on the pressure value. Probe contact.
  • the apparatus main body 10 can determine whether the object to be detected is placed at the focus position according to the pressure value detected by the pressure sensor 30. .
  • the detecting probe can also set the pressure sensor at other positions as long as the pressure value of the detecting probe can be obtained, and the specific position of the pressure sensor setting is not limited here.
  • a pressure sensor is provided at the connection between the detecting probe and the main body of the device, for example, a single pressure sensor, since the pressure sensor can directly feed back the acquired pressure value to the device body, there is no need to design a conversion circuit.
  • the detection probe can be a simple metal or plastic part with a simple structure.
  • the pressure sensor is disposed at the connection between the detecting probe and the device body, so that no additional circuit needs to be designed on the detecting probe, which simplifies the structure of the detecting probe and reduces the cost.
  • the object to be detected is placed at a focus position.
  • the object to be detected is placed at the focus position of the front end of the detecting probe. If the pressure sensor is disposed at the front end of the detecting probe, the object to be detected is in direct contact with the pressure sensor, otherwise, the object to be detected is The front end of the test probe is in direct contact.
  • the third embodiment of the present application relates to a detection method, which is applied to the optical detection device according to the first or second embodiment.
  • the specific implementation process is as shown in FIG. 3, and includes:
  • Step 301 The pressure sensor transmits the detected pressure value of the detecting probe to the device body.
  • a conversion circuit is needed, and the conversion circuit converts the signal output by the pressure sensor into a voltage value; the conversion circuit transmits the voltage value to the device body.
  • the pressure sensor directly transmits the acquired pressure value to the main body of the device, and the conversion circuit can be set and adjusted according to the type of the pressure sensor, and no limitation is made here. .
  • Step 302 The device body determines whether there is a placed object to be detected according to the pressure value.
  • the device body determines whether the pressure value is greater than or equal to a preset threshold; if so, the device body determines that the object to be detected is placed.
  • Step 303 The device body starts the detection process after determining that the object to be detected is placed.
  • the present embodiment is an embodiment of the method corresponding to the first embodiment, and the present embodiment can be implemented in cooperation with the first embodiment.
  • the related technical details mentioned in the first embodiment are still effective in the present embodiment, and are not described herein again in order to reduce repetition. Accordingly, the related art details mentioned in the present embodiment can also be applied to the first embodiment.
  • the fourth embodiment of the present application relates to a detection method, and the fourth embodiment is substantially the same as the third embodiment.
  • the main difference is that the processing method for detecting interruption occurs in the detection process is further included in the embodiment, as shown in FIG. 4 . Shown.
  • the detection interruption that may occur is after the start of the detection process, that is, after the step 303 of the third embodiment. Therefore, the steps 301 to 303 are not described in this embodiment, and only the steps after the step 303 are added. step.
  • Step 401 If the device body determines that the acquired pressure value changes from greater than or equal to the preset threshold value to less than the preset threshold value.
  • Step 402 The device body saves the obtained spectral data or the detected detection duration and issues a prompt that the detection has not been completed.
  • Step 403 If the device body determines that the acquired force value is greater than or equal to the preset threshold value within a preset duration.
  • Step 404 The device body extracts the acquired spectral data to continue the detection.
  • This embodiment is an embodiment of the method corresponding to the above-mentioned optical detecting device.
  • the technical details mentioned in the above embodiments are still applicable in this embodiment, and are not described herein again.
  • a fifth embodiment of the present application is directed to a computer readable storage medium, which is a computer readable storage medium having stored therein computer instructions that enable a computer to perform the present application The detection method involved in the third or fourth method embodiment.
  • the display method in the above embodiment is completed by a program instructing related hardware, and the program is stored in a storage medium, and includes a plurality of instructions for making a device (may be It is a single chip, a chip, etc. or a processor that performs all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM), and a random access memory (RAM, Random-Access).
  • RAM random access memory

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种光学检测设备,包括:设备主体(10)、检测探头(20)和压力传感器(30),压力传感器(30)设置在检测探头(20)上,检测探头(20)对准所述设备主体(10)的光线出入口,压力传感器(30)与设备主体(10)建立通信连接;压力传感器(30),用于检测所述检测探头(20)承受的压力值,并将压力值传输给设备主体(10);设备主体(10),用于获取压力传感器(30)传输的压力值,根据压力值判断是否有放置的待检测物,并在确定有放置的待检测物后启动检测过程。还公开了一种光学检测方法。该光学检测设备及光学检测方法能够解决使用光学检测设备检测物质的过程中不能放置待检测的物质的情况。

Description

一种光学检测设备及检测方法 技术领域
本申请涉及光学检测技术领域,尤其涉及一种光学检测设备及检测方法。
背景技术
当前专业光学物质检测设备,多是接触式的检测,如拉曼光谱仪等,由于光学检测设备上透镜的焦点是固定的,激光有一个固定的焦距,因此,只要将物质放置在焦点位置即可进行检测。但是,由于用户自身操作手持不稳,或者对焦点的把控不到位,使得物质的检测结果受到较大影响。所以,目前很多的检测设备采用一个凸起探头的结构,使光学焦点恰好位于凸起探头的最前端,也就是将待测物质抵在探头上时,物质正好位于焦点位置。
技术问题
发明人在研究现有技术的过程中发现,现有的光学检测设备上的凸起结构能够使得物质正好位于光学焦点位置,然而,未经过培训的使用者或首次使用的测试人员依然在很多时候不能将物质准确放置在焦点位置,另外,物质还未处于焦点位置时,先选择了检测激光发射,然后才将物质移动到焦点位置,或者检测尚未结束就将物质移开等都可能造成检测信噪比降低甚至检测错误的情况发生。
因此,需要避免上述不能准确放置物质的情况和检测异常状况的发生。
技术解决方案
本申请部分实施例所要解决的技术问题在于提供一种光学检测设备及检测方法,用以解决使用光学检测设备检测物质的过程中不能准确放置待检测的物质的情况。
本申请的一个实施例提供了一种光学检测设备,包括:设备主体、检测探头和压力传感器,压力传感器设置在检测探头上,检测探头对准设备主体的光线出入口,压力传感器与设备主体建立通信连接;压力传感器,用于检测检测探头承受的压力值,并将压力值传输给设备主体;设备主体,用于获取压力传感器传输的压力值,根据压力值判断是否有放置的待检测物,并在确定有放置的待检测物后启动检测过程。
本申请的一个实施例还提供了一种检测方法,应用于上述实施例中的光学检测设备,包括:压力传感器将检测的检测探头承受的压力值传输到设备主体;设备主体根据压力值判断是否有放置的待检测物;设备主体确定有放置的待检测物后启动检测过程。
有益效果
相对于现有技术而言,本申请部分实施例中在检测探头上设置压力传感器,使设备主体能够通过压力传感器传输的压力值实时了解检测探头上是否有放置的待检测物,且在确定有放置的待检测物之后开始检测,避免了因人为因素放置待检测物位置不准确影响检测结果的现象发生,另外,通过设置压力传感器,设备主体能够根据压力值判断待检测物放置的状况,不需要用户根据使用经验去放置待检测物,由此,即使是未经过培训的使用者或第一次使用的人也能够快速简单的使用该光学检测设备,提高了用户的操作体验。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请第一实施例中光学检测设备的结构示意图;
图2是本申请第二实施例中光学检测设备的结构示意图;
图3是本申请第三实施例中检测方法的流程图;
图4是本申请第四实施例中检测方法的流程图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请部分实施例进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。然而,本领域的普通技术人员可以理解,在本申请的各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。
本申请的第一实施例涉及一种光学检测设备,包括:设备主体10、检测探头20和压力传感器30,如图1所示,压力传感器30设置在检测探头20上,检测探头20对准设备主体10的光线出入口(图中未示出),压力传感器30与设备主体10建立通信连接;
压力传感器30,用于检测检测探头20承受的压力值,并将压力值传输给设备主体10;设备主体10,用于获取压力传感器30传输的压力值,根据压力值判断是否有放置的待检测物,并在确定有放置的待检测物后启动检测过程。
具体的,检测探头20用于与待检测物接触的位置设有凸起部;其中,压力传感器30用于检测凸起部承受的压力值。需要说明的是,在启动光学检测设备检测待检测物时,需预先将待检测物放置在检测探头的焦点位置,才能够使得光学检测设备能够准确的对待检测物进行检测,使得收集获取的待检测物光谱更准确、检测结果更可靠,也就是说,压力传感器用于检测凸起部承受的压力值,使设备主体在检测时能够根据压力传感器传输的压力值确保待检测物放置于焦点位置,提升了检测设备的智能性。
值得一提的是,本实施例中仅是以检测探头顶端即为焦点位置的接触式光学检测设备为例进行说明,对于非接触式光学检测设备,可以将压力传感器设置于焦点位置处的其他部件上,只要在放置待检测物时,使得压力传感器能够感知到压力变化即可。
一个具体实现中,设置于凸起部的压力传感器为环形压力传感器,则在检测探头20上设置转换电路,转换电路与压力传感器30电连接,且与设备主体10通信连接;转换电路将压力传感器30输出的信号转换为电压值,并传输电压值到设备主体10。
需要说明的是,由于环形压力传感器的结构能够很好的贴合于凸起部,且能够准确检测凸起部环形部分的压力分布,根据环形压力传感器的结构特征,需要在检测探头上设置匹配环形压力传感器的转换电路,使设备主体能够根据环形压力传感器传输的压力值了解到检测探头上环形部分的压力分布,进而了解到待检测物是否放置于焦点位置。
值得一提的是,在检测探头的凸起部还可设置其他类型的压力传感器,如半导体压力传感器,因设置不同的压力传感器需要设计不同的转换电路,上述仅是举例说明,并不限制设置于凸起部的压力传感器类型和转换电路的结构。
具体的,在检测的过程中,设备主体10确定有放置的待检测物的过程为:判断压力值是否大于或等于预设门限值,若是,则确定有放置的待检测物。
需要说明的是,可以更新实际检测的需要设置预设门限值的取值,由于不同的待检测物的质量不同对应的预设门限值也可能不同,例如,检测质量较轻的待检测物时,可将预设门限值设为2,压力传感器检测到凸起部的压力值大于2,设备主体根据不为2的压力值可确定检测探头上有放置待检测物;检测质量较重的待检测物,如金属等,可将预设门限值设为5,压力传感器检测到凸起部的压力值大于5,设备主体可根据压力值确定检测探头上有放置待检测物。此处仅为举例说明,具体不限制预设门限值的取值。
具体的,在开始检测之后,可通过预设信噪比或检测时长确定检测是否结束,如检测开始后获取待检测物的光谱数据,并计算信噪比,当计算获得的信噪比小于或等于预设信噪比时,则说明检测过程完成;或者,在检测开始之后记录检测的时间,当检测时间大于或等于预设的检测时长,则说明检测过程完成。确定检测过程完成不限于上述提到的方式,此处仅为举例说明。
值得一提的是,在检测开始之后,检测尚未完成时,若压力传感器检测到检测探头承受的压力值减小,为避免影响检测结果,设备主体用于:在确定获取到的压力值从大于或等于预设门限值变化为小于预设门限值时,保存已获得的光谱数据或记录的检测时长,并发出检测尚未完成的提示;若在预设时长内确定获取到压力值大于或等于预设门限值,则提取已获得的光谱数据继续进行检测。
一个具体的实现中,若检测过程是多次收集待检测物的光谱数据,则有检测中断发生时,保存当前已获取的光谱数据,在后续确定继续检测之后,若有必要可选择丢弃最后一次的收集的光谱数据,并继续收集待检测物的光谱数据,直到确定收集物质光谱的次数满足检测物质光谱的次数要求,则说明检测完成。
需要说明的是,最后一次收集的光谱数据由于检测中断导致光谱数据不完整,为了保证检测结果的准确性,将最后一次收集的光谱数据丢弃,并在继续检测之后对收集光谱的次数增加一次,以保证能够得到完整的待检测物的光谱数据。
值得一提的是,光谱数据至少包括物质光谱和反射光谱中的一个。
另一个具体实现中,根据检测时长确定是否完成检测,若有检测中断的情况发生,检测计时也暂停,后续恢复检测后继续计时,直至检测时长达到预设的检测时长,则确定检测结束。
需要说明的是,具体判断检测结束的依据并不局限于上述提到的检测时长或预设信噪比,在检测过程中若发生因待检测物位置变化而中断检测的,恢复检测后确定检测结束的依据取决于具体的物质光谱数据收集策略,此处不做限制。
相对于现有技术而言,在检测探头上设置压力传感器,使设备主体能够通过压力传感器传输的压力值实时了解检测探头上是否有放置的待检测物,且在确定有放置的待检测物之后开始检测,避免了因人为因素放置待检测物位置不准确影响检测结果的现象发生,另外,通过设置压力传感器,使得设备主体能够根据压力值判断待检测物放置的状况,不需要用户根据使用经验去放置待检测物,由此,即使是未经过培训的使用者或第一次使用的人也能够快速简单的使用该光学检测设备,提高了用户的操作体验。
本申请的第二实施例涉及一种光学检测设备,第二实施例与第一实施例大致相同,主要区别之处在于,在第二实施例中压力传感器的设置位置发生了改变,其结构如图2所示。
将压力传感器30设置于检测探头20与设备主体10的连接处,压力传感器30可用于检测整个检测探头20承受的总的压力值。需要说明的是,由于压力传感器30设置于检测探头20与设备主体10的连接处,不能具体确定检测探头20某一点的压力值,但是,压力传感器30能够根据压力值确定是否有待检测物与检测探头接触。
由于检测探头20凸起部的顶端即为镜头焦点位置,将待检测物放置于凸起部的前端,设备主体10即能够根据压力传感器30检测到的压力值确定是否有待检测物放置在焦点位置。
需要说明的是,该检测探头还可以在其他的位置设置压力传感器,只要能够获取到检测探头承受的压力值即可,此处不限制压力传感器设置的具***置。
值得一提的是,若在检测探头与设备主体的连接处设置压力传感器,例如,单颗的压力传感器,由于该压力传感器直接能够将获取的压力值反馈给设备主体,不需要设计转换电路,检测探头可以为一个简单金属件或塑料件,结构简单。
相对于现有技术而言,在检测探头和设备主体的连接处设置压力传感器,使得检测探头上不需要设计额外的电路,简化了检测探头的结构,降低了成本。
以上各实施例中,有放置的待检测物,是指待检测物放置在焦点位置。其中,对于接触式光学检测设备,是指待检测物放置在检测探头的前端的焦点位置,若压力传感器设置在检测探头的前端,则待检测物与压力传感器直接接触,否则,待检测物与检测探头的前端直接接触。
本申请的第三实施例涉及一种检测方法,应用于上述第一或第二实施例所涉及的光学检测设备,具体实施流程如图3所示,包括:
步骤301:压力传感器将检测的检测探头承受的压力值传输到设备主体。
一个具体实现中,若压力传感器设置于检测探头的凸起部,则需要设置转换电路,转换电路将压力传感器输出的信号转换为电压值;转换电路将电压值传输到设备主体。
需要说明的是,对于不需要设置转换电路的压力传感器,该压力传感器直接将获取到的压力值传输到设备主体即可,转换电路可依据压力传感器的类型进行设置和调整,此处不做限制。
步骤302:设备主体根据压力值判断是否有放置的待检测物。
具体的,设备主体判断压力值是否大于或等于预设门限值;若是,设备主体确定有放置的待检测物。
步骤303:设备主体确定有放置的待检测物后启动检测过程。
不难发现,本实施方式为与第一实施方式相对应的方法实施例,本实施方式可与第一实施方式互相配合实施。第一实施方式中提到的相关技术细节在本实施方式中依然有效,为了减少重复,这里不再赘述。相应地,本实施方式中提到的相关技术细节也可应用在第一实施方式中。
本申请的第四实施例涉及一种检测方法,第四实施例与第三实施例大致相同,主要区别在于,在本实施例中还包括检测过程中发生检测中断的处理方式,具体如图4所示。
需要说明的是,可能发生的检测中断是在检测过程开始之后,也就是第三实施例步骤303之后,因而本实施例中对于步骤301至步骤303就不再赘述,仅说明步骤303之后增加的步骤。
步骤401:若设备主体确定获取到压力值从大于或等于预设门限值变化为小于预设门限值。
步骤402:设备主体保存已获得的光谱数据或记录的检测时长并发出检测尚未完成的提示。
步骤403:若设备主体在预设时长内确定获取到力值大于或等于预设门限值。
步骤404:设备主体提取已获得的光谱数据继续进行检测。
本实施例是与上述光学检测装置对应的方法的实施例,在上述实施例中提到的技术细节在本实施例中依然适用,此处不再赘述。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本申请的第五实施例涉及一种计算机可读存储介质,该可读存储介质为计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,该计算机指令使计算机能够执行本申请第三或第四方法实施例中涉及的检测方法。
需要说明的是,本领域的技术人员能够理解,上述实施例中显示方法是通过程序来指令相关的硬件来完成的,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random-Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (12)

  1. 一种光学检测设备,其中,包括:设备主体、检测探头和压力传感器,所述压力传感器设置在所述检测探头上,所述检测探头对准所述设备主体的光线出入口,所述压力传感器与所述设备主体建立通信连接;
    所述压力传感器,用于检测所述检测探头承受的压力值,并将所述压力值传输给所述设备主体;
    所述设备主体,用于获取所述压力传感器传输的所述压力值,根据所述压力值判断是否有放置的待检测物,并在确定有放置的待检测物后启动检测过程。
  2. 根据权利要求1所述的光学检测设备,其中,所述检测探头用于与所述待检测物接触的位置设有凸起部;其中,所述压力传感器用于检测所述凸起部承受的所述压力值。
  3. 根据权利要求2所述的光学检测设备,其中,所述压力传感器设置于所述凸起部;
    所述检测探头上设置转换电路,所述转换电路与所述压力传感器电连接,且与所述设备主体通信连接;
    所述转换电路将所述压力传感器输出的信号转换为电压值,并传输所述电压值到所述设备主体。
  4. 根据权利要求2或3所述的光学检测设备,其中,设置于所述凸起部的所述压力传感器为环形压力传感器。
  5. 根据权利要求1所述的光学检测设备,其中,所述压力传感器设置于所述检测探头与所述设备主体的连接处。
  6. 根据权利要求1至5任一项所述的光学检测设备,其中,所述设备主体具体用于:
    判断所述压力值是否大于或等于预设门限值,若是,则确定有放置的待检测物。
  7. 根据权利要求6所述的光学检测设备,其中,所述设备主体用于:
    在确定获取到的所述压力值从大于或等于所述预设门限值变化为小于所述预设门限值时,保存已获得的光谱数据或记录的检测时长,并发出检测尚未完成的提示;
    若在预设时长内确定获取到所述压力值大于或等于所述预设门限值,则提取所述已获得的光谱数据继续进行检测。
  8. 根据权利要求7所述的光学检测设备,其中,所述光谱数据至少包括:物质光谱和反射光谱中的一个。
  9. 一种检测方法,应用于如权利要求1至8任一项所述的光学检测设备,其中,包括:
    所述压力传感器将检测的所述检测探头承受的压力值传输到所述设备主体;
    所述设备主体根据所述压力值判断是否有放置的待检测物;
    所述设备主体确定有放置的待检测物后启动检测过程。
  10. 根据权利要求9所述的检测方法,其中,若所述压力传感器设置于所述检测探头的凸起部,所述压力传感器将检测的所述检测探头承受的压力值传输到所述设备主体,具体包括:
    所述转换电路将所述压力传感器输出的信号转换为电压值;
    所述转换电路将所述电压值传输到所述设备主体。
  11. 根据权利要求9所述的检测方法,其中,所述设备主体根据所述压力值判断是否有放置的待检测物,包括:
    所述设备主体判断所述压力值是否大于或等于预设门限值;
    若是,所述设备主体确定有放置的待检测物。
  12. 根据权利要求9至11任一项所述的检测方法,其中,所述设备主体确定有放置的待检测物后启动检测过程之后,所述检测方法包括:
    若所述设备主体确定获取到所述压力值从大于或等于所述预设门限值变化为小于所述预设门限值,保存已获得的光谱数据或记录的检测时长并发出检测尚未完成的提示;
    若所述设备主体在预设时长内确定获取到所述压力值大于或等于所述预设门限值,提取已获得的所述光谱数据继续进行检测。
PCT/CN2018/084015 2018-04-23 2018-04-23 一种光学检测设备及检测方法 WO2019204955A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880001109.3A CN108780036B (zh) 2018-04-23 2018-04-23 一种光学检测设备及检测方法
PCT/CN2018/084015 WO2019204955A1 (zh) 2018-04-23 2018-04-23 一种光学检测设备及检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/084015 WO2019204955A1 (zh) 2018-04-23 2018-04-23 一种光学检测设备及检测方法

Publications (1)

Publication Number Publication Date
WO2019204955A1 true WO2019204955A1 (zh) 2019-10-31

Family

ID=64029127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084015 WO2019204955A1 (zh) 2018-04-23 2018-04-23 一种光学检测设备及检测方法

Country Status (2)

Country Link
CN (1) CN108780036B (zh)
WO (1) WO2019204955A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4444459C1 (de) * 1994-12-14 1996-02-29 Jenoptik Technologie Gmbh Anordnung zur automatischen Bestimmung der Andruckkraft bei Augendruckuntersuchungen
CN1158239A (zh) * 1996-08-01 1997-09-03 合肥恒星工贸公司 智能袖珍压平式眼压计
US6413214B1 (en) * 1997-08-22 2002-07-02 Paul S. Yang Applanating tonometers
JP2004157042A (ja) * 2002-11-07 2004-06-03 Shimadzu Corp 光学測定用圧力装置
CN102813501A (zh) * 2012-08-06 2012-12-12 淮南师范学院 动态眼压测量装置及控制探头与眼球共轴的方法
CN202714842U (zh) * 2012-08-06 2013-02-06 淮南师范学院 动态眼压测量装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008555A (en) * 1988-04-08 1991-04-16 Eaton Leonard Technologies, Inc. Optical probe with overlapping detection fields
CN101699280B (zh) * 2009-10-15 2011-08-17 北京索瑞特医学技术有限公司 超声无损检测粘弹性介质弹性的方法及其装置
WO2014141277A1 (en) * 2013-03-14 2014-09-18 Or-Nim Medical Ltd. Probe for non invasive optical monitoring
CN104181312B (zh) * 2014-08-08 2016-06-01 安徽易康达光电科技有限公司 一种用于动脉粥样硬化风险评估的皮肤游离胆固醇无创检测装置
CN105259357A (zh) * 2015-11-09 2016-01-20 苏州怡创医疗器械有限公司 一种全自动化学发光测定仪
CN105334337A (zh) * 2015-11-18 2016-02-17 江苏科凌医疗器械有限公司 一种传输带式样品检测***
CN205538979U (zh) * 2016-04-08 2016-08-31 北京德鲁伊医疗器材有限公司 一种多功能医疗检测仪及多功能医疗检测***
CN106908466A (zh) * 2017-03-29 2017-06-30 中国科学院过程工程研究所 一种在线x射线荧光光谱分析***
CN107064104A (zh) * 2017-04-07 2017-08-18 江苏师范大学 一种便携式微型拉曼光谱仪非接触一体化采样装置
CN208547562U (zh) * 2018-04-23 2019-02-26 深圳达闼科技控股有限公司 一种光学检测设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4444459C1 (de) * 1994-12-14 1996-02-29 Jenoptik Technologie Gmbh Anordnung zur automatischen Bestimmung der Andruckkraft bei Augendruckuntersuchungen
CN1158239A (zh) * 1996-08-01 1997-09-03 合肥恒星工贸公司 智能袖珍压平式眼压计
US6413214B1 (en) * 1997-08-22 2002-07-02 Paul S. Yang Applanating tonometers
JP2004157042A (ja) * 2002-11-07 2004-06-03 Shimadzu Corp 光学測定用圧力装置
CN102813501A (zh) * 2012-08-06 2012-12-12 淮南师范学院 动态眼压测量装置及控制探头与眼球共轴的方法
CN202714842U (zh) * 2012-08-06 2013-02-06 淮南师范学院 动态眼压测量装置

Also Published As

Publication number Publication date
CN108780036B (zh) 2021-10-22
CN108780036A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
JP2013539997A5 (ja) イン−バンド方式でインピーダンス検出を用いる電極システム
CN110160980B (zh) 样本吸光度变化率的分析方法、分析装置及光学检测***
KR102007287B1 (ko) 독립형 지중케이블 부분방전 신호 측정 방법 및 그 장치
EP3165930B1 (en) Electronic detection interpretation method and electronic detection interpretation device
KR20200078548A (ko) 컬러 형성 반응에 기초하여 분석 측정을 수행하기 위한 방법들 및 디바이스들
CN109443525A (zh) 一种设备异响检测***及检测方法
WO2018232752A1 (zh) 一种物质检测方法、装置及设备
CN109786278B (zh) 一种探针卡的针尖的智能检测及处理方法
CN107528646B (zh) 一种基于宽带频谱的干扰信号识别及提取方法
JP6116692B2 (ja) 試料塗布を判定する方法および装置
CN103654735B (zh) 耳温测量装置和寻找最高耳温的方法
WO2019204955A1 (zh) 一种光学检测设备及检测方法
CN112557282B (zh) 一种血球分析仪的小孔堵孔识别方法和装置
CN115356479B (zh) 一种金免疫层析检测方法和***
CN208547562U (zh) 一种光学检测设备
CN108201450B (zh) 一种基于电子设备确定***检测时间的方法和装置
US20040208230A1 (en) Thermometer with image display
JP3630393B2 (ja) 異常箇所検出装置
CN115290165A (zh) 超声水表的检测方法、***以及装置
EP3497617A1 (en) Skinprint analysis method and apparatus
AU2018234280B2 (en) Method and apparatus for use in diagnosis and monitoring of colorectal cancer
JP3630394B2 (ja) 異常箇所検出装置
CN110737922A (zh) 一种基于独立成分分析的硬件木马检测方法
JP2007333687A (ja) 時系列信号を用いた物品の良否判定装置及び良否判定方法
WO2022160499A1 (zh) 特定蛋白反应曲线的异常识别方法及识别装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/03/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18916385

Country of ref document: EP

Kind code of ref document: A1