WO2019202940A1 - 超音波霧化分離装置および調湿装置 - Google Patents

超音波霧化分離装置および調湿装置 Download PDF

Info

Publication number
WO2019202940A1
WO2019202940A1 PCT/JP2019/013666 JP2019013666W WO2019202940A1 WO 2019202940 A1 WO2019202940 A1 WO 2019202940A1 JP 2019013666 W JP2019013666 W JP 2019013666W WO 2019202940 A1 WO2019202940 A1 WO 2019202940A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
atomization
ultrasonic
bubbles
bubble
Prior art date
Application number
PCT/JP2019/013666
Other languages
English (en)
French (fr)
Inventor
井出 哲也
豪 鎌田
惇 佐久間
奨 越智
洋香 濱田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2019202940A1 publication Critical patent/WO2019202940A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification

Definitions

  • the present invention relates to an ultrasonic atomization separation device and a humidity control device.
  • ultrasonic atomizers are conventionally used in technical fields such as humidifiers and separators.
  • a lot of mist-like droplets are generated from a liquid by irradiating the liquid with ultrasonic waves.
  • Patent Document 1 discloses an ultrasonic wave including a container that stores a liquid, an ultrasonic vibrator that is installed in the container so as to be in contact with the liquid, and an air supply mechanism that supplies air into the liquid.
  • An atomization device is disclosed.
  • the ultrasonic atomizer When an ultrasonic atomizer is used as a separation device, it is required that, for example, two components present in a liquid are separated with a desired degree of separation. Therefore, the ultrasonic atomizer needs to have a high atomization capability.
  • Patent Document 1 “In the present invention, a large amount of bubbles are generated in a liquid column by applying ultrasonic vibration to a liquid in which air is dissolved, and the bubbles can be ruptured to scatter droplets. The amount of atomization can be increased. " However, when bubbles are generated in the liquid, the bubbles inhibit the propagation of ultrasonic waves in the liquid depending on the size and amount of the bubbles. As a result, the atomization amount may rather decrease compared to the case where bubbles are not generated.
  • Patent Document 1 since it is not assumed that an ultrasonic atomizer is used as a separator, no consideration is given to the size of bubbles suitable for increasing the degree of separation.
  • an ultrasonic atomizing / separating apparatus stores a processing liquid and generates a liquid column by ultrasonic waves on the liquid surface of the processing liquid to thereby generate the processing liquid.
  • An atomizing tank that generates mist-like droplets, an ultrasonic generator that generates the ultrasonic waves, and a bubble generator that contains bubbles in the processing liquid, the bubble generator
  • the bubbles having a diameter larger than the diameter of the cavitation bubbles generated by resonance at the frequency of the ultrasonic wave generating portion and 1 atm and smaller than the thickness of the liquid column are contained in the processing liquid.
  • the mist-like droplets include film droplets and jet droplets
  • the bubble generating unit has the generation probability of the film droplets.
  • the bubbles having a size higher than the probability of jet droplet generation may be generated.
  • a humidity control apparatus includes a moisture absorption tank that brings a liquid moisture absorbent material containing a hygroscopic substance into contact with air, and absorbs at least a part of moisture contained in the air into the liquid moisture absorbent material. And an atomization regeneration unit that regenerates the liquid moisture absorbent by atomizing and removing at least a portion of moisture contained in the liquid moisture absorbent supplied from the moisture absorbent.
  • the section is constituted by the ultrasonic atomizing / separating device according to one aspect of the present invention, and the liquid hygroscopic material in which at least a part of the moisture is absorbed is used as the treatment liquid.
  • the humidity control apparatus may further include a humidity reducing unit that reduces the humidity inside the bubbles.
  • the humidity lowering section may be configured by the bubble generating section disposed inside the moisture absorption tank.
  • the moisture absorption tank includes a gas-liquid contact portion including a structure that increases a contact area between the liquid moisture absorbent and the air, and the bubble generating portion is It may be provided on the upstream side of the gas-liquid contact portion in the flow direction of the liquid hygroscopic material.
  • the humidity reduction unit is configured by the bubble generation unit provided in the atomization tank, and the gas supplied to the bubble generation unit is the atomization tank. It may be a carrier gas introduced inside.
  • an ultrasonic atomization separation apparatus that can obtain a desired degree of separation.
  • one aspect of the present invention can provide a humidity control apparatus that can efficiently regenerate the liquid moisture absorbent.
  • FIG. 1 is a schematic configuration diagram of the ultrasonic atomization separation apparatus according to the first embodiment.
  • the scale of the size may be varied depending on the component.
  • the ultrasonic atomization separation device 10 includes an atomization tank 11, an ultrasonic wave generator 12, a bubble generator 13, a first air supply pipe 14, an exhaust pipe 15, and a liquid supply pipe. 16, a drainage pipe 17, and blowers 18 and 19.
  • the atomization tank 11 has an internal space 11a for storing the processing liquid S, an air supply port 11b, an exhaust port 11c, a liquid supply port 11d, and a liquid discharge port 11e.
  • the atomization tank 11 is a container formed from materials, such as a metal and resin, for example, and a constituent material is not specifically limited.
  • the atomizing tank 11 stores the processing liquid S in the internal space 11 a and generates a liquid column C by ultrasonic waves on the liquid surface of the processing liquid S to generate droplets D of the processing liquid S.
  • the ultrasonic atomizing / separating apparatus 10 of the present embodiment assumes that a liquid having a viscosity higher than that of water is used as the processing liquid S.
  • the treatment liquid S include a glycerin aqueous solution, an ethylene glycol aqueous solution, a sodium polyacrylate aqueous solution, a polyethylene glycol aqueous solution, a triethylene glycol aqueous solution, a calcium chloride aqueous solution, a lithium chloride aqueous solution, or a mixture thereof.
  • the liquid has a property of absorbing moisture in the air.
  • a case where water and glycerin are separated from the treatment liquid S will be described by using, as an example, a glycerin aqueous solution in a state where moisture has been absorbed.
  • a liquid having a viscosity higher than that of water is referred to as a high viscosity liquid.
  • the ultrasonic generator 12 is provided in the atomization tank 11 and generates droplets D from the processing liquid S by irradiating the processing liquid S with ultrasonic waves.
  • the ultrasonic generator 12 includes an ultrasonic transducer 21 provided on the bottom plate of the atomization tank 11.
  • the number and arrangement of the ultrasonic transducers 21 are not particularly limited.
  • the ultrasonic waves are concentrated at specific locations on the liquid surface of the treatment liquid S by adjusting the generation conditions of the ultrasonic waves.
  • the liquid column C can be generated.
  • the droplets D are generated from an arbitrary position on the liquid surface, but are particularly generated from the liquid column C and the vicinity of the liquid column C.
  • the ultrasonic vibrator 21 is installed such that the vibration generation surface is inclined with respect to the bottom surface of the atomization tank 11. Thereby, the liquid column C is formed to be inclined with respect to a direction (vertical direction) perpendicular to the liquid surface of the processing liquid S. If the liquid column C is formed along a direction perpendicular to the liquid surface of the processing liquid S, the processing liquid S once raised falls inside the liquid column C, and thus the liquid column C is not formed stably. There is. In addition, if the ultrasonic transducer 21 is not installed to be inclined with respect to the liquid surface, the ultrasonic wave reflected by the liquid surface returns directly to the ultrasonic transducer 21, which may cause damage to the ultrasonic transducer 21. is there. By forming the liquid column C so as to be inclined with respect to the direction perpendicular to the liquid surface of the processing liquid S, the above problems can be improved.
  • the bubble generating unit 13 is provided in the atomization tank 11 and generates a large number of bubbles K in the processing liquid S.
  • the bubble generation unit 13 includes a bubble generator 23 provided at the bottom of the internal space 11 a of the atomization tank 11, a second supply pipe 24 connected to the bubble generator 23, and a second supply pipe. And a blower 25 provided at 24. Air is supplied to the bubble generator 23 through the second air supply pipe 24.
  • the specific form and number of the bubble generators 23 are not particularly limited. For example, a sub-milli bubble generator using bubbling can be used.
  • the first air supply pipe 14 is connected to the air supply port 11 b of the atomization tank 11.
  • a blower 18 is provided in the middle of the first air supply pipe 14.
  • the exhaust pipe 15 is connected to the exhaust port 11 c of the atomization tank 11.
  • a blower 19 is provided in the middle of the exhaust pipe 15.
  • the air containing the droplets D is exhausted from the internal space 11a through the exhaust pipe 15.
  • the first air supply pipe 14 since the first air supply pipe 14 is provided, it is preferable in that an air flow from the air supply port 11b of the atomization tank 11 toward the exhaust port 11c is easily formed, but the first air supply pipe 14 is not necessarily provided. It does not have to be done.
  • the liquid supply pipe 16 is connected to the liquid supply port 11 d of the atomization tank 11.
  • the processing liquid S is supplied to the internal space 11 a through the liquid supply pipe 16.
  • the drainage pipe 17 is connected to the drainage port 11 e of the atomization tank 11.
  • the processing liquid S is discharged from the internal space 11 a through the drain pipe 17.
  • the ultrasonic atomizing / separating apparatus 10 of the present embodiment includes the liquid supply pipe 16 and the drainage pipe 17 and has a configuration in which the processing liquid S is continuously processed.
  • the ultrasonic atomizing / separating apparatus may not necessarily include the liquid supply pipe and the drain pipe, and may have a configuration in which the processing liquid is batch-processed.
  • the droplets D generated from the treatment liquid S include droplets D having various particle diameters, for example, from nano order to micron order.
  • the particle size of the droplet D can be obtained by measurement using a light scattering method, measurement using an electrostatic particle size measuring device (EAA: Electrical Aerosol Analyzer), or the like.
  • the particle diameter of the droplet D generated from the processing liquid S depends on the frequency of the ultrasonic wave, the input power to the ultrasonic vibrator 21, etc., depending on the type of the processing liquid S. Further, the intermolecular force between water molecules and hygroscopic substance molecules such as glycerin is weaker than the intermolecular force between water molecules. Therefore, it is considered that the droplet D having a relatively small particle size does not easily contain a hygroscopic substance. On the other hand, it is considered that the droplet D having a relatively large particle size is likely to contain a hygroscopic substance. That is, when the particle size of the droplet D is different, the content ratio of the water and the hygroscopic substance in one droplet D is also different.
  • the present inventors generate liquid columns by irradiating various liquids with ultrasonic waves, and the liquid column and the vicinity thereof are observed by a high-speed camera. Observed.
  • the liquids used are three types: water, 80 wt% glycerin aqueous solution, and 80 wt% ethylene glycol aqueous solution.
  • a liquid hygroscopic material when the concentration of hygroscopic substances such as glycerin and ethylene glycol exceeds 80 wt%, the atomization efficiency is low, and when the concentration is 60 wt% or less, the degree of separation between water and the hygroscopic substance decreases. . Based on this finding, the concentration of the hygroscopic substance was set to 80 wt%.
  • the atomization efficiency is a value defined by the ratio of the atomization amount to the power supplied to the ultrasonic transducer.
  • FIG. 2 is a photograph observing the state of the liquid column of water.
  • FIG. 3 is a photograph of the liquid column of the glycerin aqueous solution observed.
  • FIG. 4 is a photograph of the appearance of the liquid column of the ethylene glycol aqueous solution.
  • mist-like droplets As shown in FIG. 2, in the case of water, a fine scale-like pattern that appears to be caused by capillary waves is generated on the surface of the liquid column. In addition, a large amount of mist-like droplets having a small particle diameter are generated from the surface of the liquid column. In the photograph, the portion of the liquid column that appears black as if wrinkled is near the surface of the liquid column is a mist-like droplet.
  • the particle size of one droplet is, for example, on the order of submicrons.
  • glycerin aqueous solution and ethylene glycol aqueous solution are less likely to generate droplets having a smaller particle diameter than water. This is presumed to be due to the fact that the glycerin aqueous solution and the ethylene glycol aqueous solution have a higher viscosity than water.
  • sea salt particles are particles in which minute droplets released from the sea surface into the atmosphere remain in the state of droplets or float in the atmosphere as dry solid particles.
  • FIG. 5 is a diagram for explaining a generation model of sea salt particles.
  • air is taken into the seawater by waves or the like and exists as bubbles.
  • the seawater film G1 on the upper surface of the bubbles K1 becomes thin and bursts.
  • the particle diameter of the droplet Df is, for example, about 0.06 ⁇ m to 0.15 ⁇ m.
  • the droplets generated by the rupture of the liquid film when the bubbles rise to the liquid level are referred to as film droplets Df.
  • the seawater on the side surface flows toward the bottom of the depression K2, and the flowing seawater G rises at the center of the depression K2. Thereafter, the tip of the rising seawater G is torn off, and several droplets Dj having a particle size larger than the film droplet Df are generated one after another.
  • the particle diameter of the droplet Dj is, for example, about 70 ⁇ m to 100 ⁇ m (1/15 to 1/10 of a bubble having a diameter of 1 mm).
  • the droplet generated from the rising of the liquid level after the bubble bursts is referred to as a jet droplet Dj.
  • FIG. 6 is a graph showing the relationship between the diameter of bubbles contained in seawater and the amount of droplets generated.
  • the horizontal axis of the graph is the bubble particle size, and the vertical axis is the amount of droplets generated, both of which are relative values.
  • a solid line graph indicated by a symbol F indicates a film droplet Df
  • a one-dot chain line graph indicated by a symbol J indicates a jet droplet Dj.
  • the generation amount of the film droplet Df and the generation amount of the jet droplet Dj also change. Specifically, for the film droplet Df, the amount of film droplet Df generated increases as the bubble diameter increases. On the other hand, with respect to the jet droplet Dj, contrary to the film droplet Df, the amount of jet droplet Dj generated decreases as the bubble diameter increases. Therefore, it is assumed that the occurrence probability of each of the film droplet Df and the jet droplet Dj can be controlled by the bubble diameter.
  • the present inventors Since the order of the particle size of the droplet in the generation model of sea salt particles is close to the order of the particle size of the droplet by the above-described high-speed camera observation, the present inventors have an appropriate diameter in the treatment liquid S. It was conceived that by introducing the bubbles K and actively generating the film droplets Df, it is possible to generate droplets having a small particle diameter even with a high viscosity liquid.
  • FIG. 7 is a schematic diagram showing the liquid column C2 in the ultrasonic atomization separation device of the comparative example.
  • FIG. 8 is a schematic diagram showing the liquid column C in the ultrasonic atomization separation device 10 of the present embodiment.
  • the comparative example is an ultrasonic atomizing / separating device that does not include a bubble generating unit. Both treatment liquids are assumed to be highly viscous liquids.
  • the ultrasonic atomizing / separating apparatus of the comparative example does not include a bubble generating unit, the processing liquid contains minute bubbles due to cavitation or the like. Therefore, as shown in FIG. 7, film droplets Df and jet droplets Dj are generated by microbubbles existing inside the liquid column C2. However, the frequency of occurrence is not so high.
  • the ultrasonic atomization separation device 10 of the present embodiment includes the bubble generation unit 13
  • the bubbles K can be contained in the processing liquid S.
  • many bubbles K also exist inside the liquid column C.
  • these bubbles K burst on the surface of the liquid column C, many film droplets Df are generated, and jet droplets Dj are also generated as the film droplets Df are generated.
  • the diameter of the bubbles K contained in the treatment liquid S is larger than the diameter of the cavitation bubbles generated by resonance at the frequency of the ultrasonic wave generation unit 12 and 1 atmosphere, and smaller than the thickness of the liquid column C. That is, even if the ultrasonic atomizing / separating apparatus 10 does not include the bubble generating unit 13, cavitation bubbles are generated by resonance of the ultrasonic generating unit 12 at the frequency of 1 atm when the treatment liquid S is irradiated with ultrasonic waves. Will occur. It has already been confirmed by observation with the high-speed camera that the cavitation bubbles cannot generate many film droplets Df and jet droplets Dj.
  • the bubble generation unit 13 it is necessary for the bubble generation unit 13 to generate bubbles K that are larger than the diameter of the cavitation bubbles generated by resonance at the frequency of the ultrasonic generation unit 12 and 1 atm and smaller than the thickness of the liquid column C. Furthermore, it is preferable that the bubble generation unit 13 generates bubbles K having a size such that the generation probability of the film droplet Df is higher than the generation probability of the jet droplet Dj.
  • the droplet D with a small particle diameter can be produced
  • Water can be separated from the treatment liquid S such as a glycerin aqueous solution with a high degree of separation.
  • FIG. 9 is a schematic configuration diagram of a humidity control apparatus according to the second embodiment.
  • the humidity control apparatus 40 includes a moisture absorption part 41, an atomization regeneration part 42, a first liquid moisture absorbent transport pipe 43, a second liquid moisture absorbent transport pipe 44, A first air supply pipe 45, a first air discharge pipe 46, a second air supply pipe 47, and a second air discharge pipe 48 are provided.
  • the humidity control apparatus 40 is installed indoors, and an example in the case of reducing indoor humidity using the humidity control apparatus 40 will be described below.
  • the atomization reproduction unit 42 is composed of the ultrasonic atomization separation device of the present invention.
  • the atomization regeneration unit 42 separates moisture from the liquid moisture absorbent S1 (treatment liquid) such as a glycol aqueous solution that has absorbed moisture in the air in the moisture absorbent 41, thereby desorbing moisture from the liquid moisture absorbent S1 and The hygroscopic material S1 is regenerated.
  • the moisture absorption part 41 includes a moisture absorption tank 50, a nozzle 51, and a gas-liquid contact part 52.
  • the hygroscopic part 41 causes the liquid hygroscopic material S1 to absorb at least a part of moisture contained in the air by bringing the liquid hygroscopic material S1 containing a hygroscopic substance into contact with indoor air. Although it is desirable for the moisture absorption part 41 to absorb as much water as possible into the liquid moisture absorbent S1, the liquid moisture absorbent S1 may absorb at least a part of moisture contained in the air. Inside the moisture absorption tank 50, the liquid moisture absorbent S1 is stored. The liquid hygroscopic material S1 will be described later.
  • a first air supply pipe 45, a first air discharge pipe 46, a first liquid hygroscopic material transport pipe 43 and a second liquid hygroscopic material transport pipe 44 are connected to the moisture absorption tank 50.
  • the indoor air is supplied to the internal space of the moisture absorption tank 50 through the first air supply pipe 45 by the blower 54.
  • the nozzle 51 is disposed in the upper part of the internal space of the moisture absorption tank 50.
  • the liquid hygroscopic material S1 returned to the hygroscopic unit 41 via the second liquid hygroscopic material transport pipe 44 flows down from the nozzle 51 to the gas-liquid contact unit 52,
  • the liquid contacts 52 come into contact with air while flowing down.
  • This type of contact between the liquid hygroscopic material S1 and air is generally referred to as a “flow-down method”. Note that the contact form between the liquid hygroscopic material S1 and air is not limited to the flow-down method, and other methods such as a bubbling method may be used.
  • the gas-liquid contact part 52 includes a structure 55 that increases the contact area between the liquid hygroscopic material S1 and air as compared with a configuration in which the liquid hygroscopic material S1 is simply allowed to flow into the space.
  • a structure 55 for example, a structure having a honeycomb structure is used. In addition, a structure having a large number of fins or uneven shapes may be used.
  • the liquid hygroscopic material S1 flows down from the upper part of this type of structure 55, the liquid hygroscopic material S1 flows down along, for example, the honeycomb structure, so that the amount of moisture absorbed by the liquid hygroscopic material S1 can be increased.
  • the air in the moisture absorption tank 50 forms an air flow from the first air supply pipe 45 toward the first air discharge pipe 46 and comes into contact with the liquid hygroscopic material S ⁇ b> 1 flowing down from the nozzle 51 in the gas-liquid contact portion 52. At this time, at least part of the moisture contained in the air is removed by being absorbed by the liquid moisture absorbent S1. In the moisture absorption part 41, since the air from which the water
  • the first air discharge pipe 46 is provided with a blower 56 for discharging air.
  • the liquid hygroscopic material S1 is a liquid that exhibits a property of absorbing moisture (hygroscopicity), and for example, a liquid that exhibits hygroscopicity under conditions of a temperature of 25 ° C., a relative humidity of 50%, and atmospheric pressure is preferable.
  • the liquid hygroscopic material S1 contains a hygroscopic substance to be described later. Further, the liquid hygroscopic material S1 may include a hygroscopic substance and a solvent. Examples of this type of solvent include a solvent that dissolves the hygroscopic substance or is miscible with the hygroscopic substance, for example, water.
  • the hygroscopic substance may be an organic material or an inorganic material.
  • Examples of the organic material used as the hygroscopic substance include known materials used as raw materials for dihydric or higher alcohols, ketones, organic solvents having an amide group, sugars, moisturizing cosmetics, and the like. Among them, known organic materials that are used as raw materials for dihydric or higher alcohols, organic solvents having an amide group, saccharides, moisturizing cosmetics, and the like because of their high hydrophilicity. Is mentioned.
  • divalent or higher alcohol examples include glycerin, propanediol, butanediol, pentanediol, trimethylolpropane, butanetriol, ethylene glycol, diethylene glycol, and triethylene glycol.
  • organic solvent having an amide group examples include formamide and acetamide.
  • saccharide examples include sucrose, pullulan, glucose, xylol, fructose, mannitol, sorbitol and the like.
  • Examples of known materials used as raw materials for moisturizing cosmetics include 2-methacryloyloxyethyl phosphorylcholine (MPC), betaine, hyaluronic acid, collagen, and the like.
  • MPC 2-methacryloyloxyethyl phosphorylcholine
  • betaine betaine
  • hyaluronic acid collagen, and the like.
  • inorganic materials used as hygroscopic substances include calcium chloride, lithium chloride, magnesium chloride, potassium chloride, sodium chloride, zinc chloride, aluminum chloride, lithium bromide, calcium bromide, potassium bromide, sodium hydroxide, pyrrolidone.
  • examples thereof include sodium carboxylate.
  • the hygroscopic substance has high hydrophilicity, for example, when the hygroscopic substance material and water are mixed, the ratio of water molecules near the surface (liquid surface) of the liquid hygroscopic material S1 increases.
  • the droplet D is generated from the surface vicinity of liquid hygroscopic material S1, and a water
  • the ratio of the hygroscopic substance in the vicinity of the surface of the liquid hygroscopic material S1 is relatively small, it is preferable in that the loss of the hygroscopic substance in the atomization reproduction unit 42 can be suppressed.
  • the concentration of the hygroscopic substance contained in the liquid hygroscopic material S1 used for the treatment in the hygroscopic portion 41 is not particularly limited, but is preferably 40% by mass or more.
  • the concentration of the hygroscopic substance is 40% by mass or more, the liquid hygroscopic material S1 can efficiently absorb moisture.
  • the viscosity of the liquid hygroscopic material S1 is preferably 25 mPa ⁇ s or less. Thereby, in the atomization reproduction
  • the atomization device of the present invention that provides a high degree of separation without depending on the viscosity of the liquid to be atomized is provided as the atomization regenerating unit 42, the viscosity of the liquid moisture absorbent S1 is high. Even if it is high, water can be separated more efficiently than in the past.
  • the atomization reproduction unit 42 is constituted by the ultrasonic atomization separation device of the present invention.
  • the bubble generation unit 13 is provided in the atomization tank 11, whereas in the present embodiment, the bubble generation unit 13 is in the moisture absorption tank 50. Is provided. Therefore, bubbles K are contained in the liquid moisture absorbent S1 stored in the lower part of the moisture absorption tank 50.
  • the bubble generating unit 13 of the present embodiment also functions as a humidity reducing unit 58 that reduces the humidity inside the bubble K (air in the bubble K).
  • the humidity control apparatus 40 according to the present embodiment further includes a humidity reduction unit 58 that reduces the humidity inside the bubble K, and the humidity reduction unit 58 is the bubble generation unit 13 disposed inside the moisture absorption tank 50. It is configured.
  • the second air supply pipe 24 branched from the first air supply pipe 45 is connected to the bubble generator 23.
  • the indoor air that is the subject of humidity adjustment is also supplied to the bubble generator 23 and becomes bubbles in the liquid hygroscopic material S1.
  • gas-liquid contact by bubbling occurs even inside the stored liquid hygroscopic material S1, and moisture in the bubbles supplied from the bubble generator 23 is absorbed by the liquid hygroscopic material S1. Thereby, the humidity inside the bubble K falls.
  • the hygroscopic part 41 and the atomization regeneration part 42 are connected by a first liquid hygroscopic material transport pipe 43 and a second liquid hygroscopic material transport pipe 44 that constitute a circulation channel of the liquid hygroscopic material S1.
  • a pump 60 for circulating the liquid hygroscopic material S1 is provided in the middle of the second liquid hygroscopic material transport pipe 44.
  • the first liquid hygroscopic material transport pipe 43 transports the liquid hygroscopic material S1 in which at least a part of moisture has been absorbed from the hygroscopic part 41 to the atomization regeneration part 42. At this time, the liquid hygroscopic material S1 to be transported already contains bubbles.
  • One end of the first liquid hygroscopic material transport pipe 43 is connected to the lower part of the hygroscopic tank 50.
  • the connection location of the first liquid absorbent material transport pipe 43 in the moisture absorbent tank 50 is located below the liquid level of the liquid absorbent material S 1 in the moisture absorbent tank 50.
  • the other end of the first liquid hygroscopic material transport pipe 43 is connected to the lower portion of the atomization tank 11.
  • the connection location of the first liquid absorbent material transport pipe 43 in the atomization tank 11 is located below the liquid surface of the liquid absorbent material S1 in the atomization tank 11.
  • the second liquid hygroscopic material transport pipe 44 transports the liquid hygroscopic material S1 regenerated by removing moisture from the atomization regenerating unit 42 to the hygroscopic unit 41.
  • One end of the second liquid hygroscopic material transport pipe 44 is connected to the lower part of the atomization tank 11.
  • the connection location of the second liquid hygroscopic material transport pipe 44 in the atomization tank 11 is located below the liquid level of the liquid hygroscopic material S1 in the atomization tank 11.
  • the other end of the second liquid hygroscopic material transport pipe 44 is connected to the upper portion of the hygroscopic tank 50.
  • the connection location of the second liquid absorbent material transport pipe 44 in the moisture absorbent tank 50 is located above the liquid surface of the liquid absorbent material S1 in the moisture absorbent tank 50 and is connected to the nozzle 51 described above.
  • the humidity control apparatus 40 of this embodiment since the liquid hygroscopic material S1 is regenerated in the atomization regenerating unit 42, the moisture absorption performance of the liquid hygroscopic material S1 can be enhanced, and moisture separation in the atomizing regenerating unit 42 is possible. Since the degree is high, the atomization reproduction performance can be improved. Thereby, the energy saving of the humidity control apparatus 40 and the improvement of a processing speed can be aimed at.
  • the bubble K is already contained in the liquid absorbent material S1. Is contained.
  • the liquid hygroscopic material S1 has a high viscosity, the water vapor in the bubbles K is absorbed while the liquid hygroscopic material S1 is transported to the atomization tank 11, and the humidity inside the bubbles K decreases. Therefore, the introduction of the bubbles K having a reduced humidity can improve the atomization efficiency without reducing the atomization regeneration efficiency.
  • FIG. 10 is a schematic configuration diagram of a humidity control apparatus according to the third embodiment. 10, the same code
  • the bubble generation unit 13 is provided in a liquid reservoir 50 a provided in the upper part of the moisture absorption tank 50 of the moisture absorption unit 71.
  • the bubble generating unit 13 is provided on the upstream side of the gas-liquid contact unit 52 in the flow direction of the liquid hygroscopic material S1.
  • the nozzle 51 is provided below the liquid reservoir 50a. Therefore, in the present embodiment, the liquid hygroscopic material S ⁇ b> 1 containing the bubbles K flows down from the nozzle 51 toward the gas-liquid contact portion 52.
  • the bubble generating unit 13 and the nozzle 51 may be integrated.
  • Other configurations of the humidity control apparatus 70 are the same as those in the second embodiment.
  • the moisture absorption performance of the liquid moisture absorbent S1 can be enhanced and the atomization regeneration performance can be improved as in the second embodiment. Thereby, the energy saving of the humidity control apparatus 70 and the improvement of a processing speed can be aimed at.
  • the liquid hygroscopic material S1 including the bubbles K adheres to the surface of the structure 55 that constitutes the gas-liquid contact portion 52, so that in the gas-liquid contact portion 52, compared to the second embodiment. Apparent gas-liquid contact area increases. Thereby, moisture absorption performance can be improved.
  • FIG. 11 is a schematic configuration diagram of a humidity control apparatus according to the fourth embodiment.
  • the same components as those in FIG. 9 of the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the bubble generation unit 13 is provided in the lower part of the atomization tank 11 of the atomization regeneration unit 82.
  • the bubble generating unit 13 of the present embodiment functions as a humidity reducing unit 58 that reduces the humidity inside the bubble K (air in the bubble K).
  • the humidity control apparatus 80 according to the present embodiment further includes a humidity reducing unit 58 that reduces the humidity inside the bubble K, and the humidity reducing unit 58 is disposed in the atomizing tank 11. It is comprised with the bubble generation part 13 containing.
  • the moisture absorption part 81 is configured to include a normal moisture absorption tank 50.
  • a second air supply pipe 24 branched from a second air supply pipe 47 that supplies air to the atomization tank 11 is connected to the bubble generator 23.
  • air as a carrier gas for transporting the droplets D inside the atomization tank 11 is also supplied to the bubble generator 23 to become bubbles K inside the liquid hygroscopic material S1.
  • the other structure of the humidity control apparatus 80 is the same as that of 2nd Embodiment.
  • the moisture absorption performance of the liquid moisture absorbent S1 can be enhanced and the atomization regeneration performance can be improved as in the second embodiment. Thereby, the energy saving of the humidity control apparatus 80 and the improvement of a processing speed can be aimed at.
  • the bubbles K having a high temperature and a low relative humidity can be introduced into the liquid moisture absorbent S1.
  • the condition that the equilibrium vapor pressure inside the bubble K that has reached the equilibrium temperature by the heat exchange between the liquid moisture absorbent S1 and the bubbles K in the atomization tank 11 is lower than the equilibrium vapor pressure of the regenerated liquid moisture absorbent S1.
  • the humidity control apparatus of the present invention may have not only a humidity adjustment function but also a temperature adjustment function.
  • the present invention can be used for an ultrasonic atomization separation device and a humidity control device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Drying Of Gases (AREA)
  • Central Air Conditioning (AREA)
  • Special Spraying Apparatus (AREA)

Abstract

所定の分離度が得られる超音波霧化分離装置を提供する。本発明の超音波霧化分離装置は、処理液を貯留するとともに、処理液の液面に超音波による液柱を発生させて処理液の霧状液滴を発生させる霧化槽と、超音波を発生させる超音波発生部と、処理液の中に気泡を含有させる気泡発生部と、を備える。気泡発生部は、超音波発生部の周波数で1気圧での共振により発生するキャビテーション気泡の径よりも大きく、液柱の太さよりも小さい径を有する気泡を処理液の中に含有させる。

Description

超音波霧化分離装置および調湿装置
 本発明は、超音波霧化分離装置および調湿装置に関する。
 本願は、2018年4月20日に、日本に出願された特願2018-081477に優先権を主張し、その内容をここに援用する。
 例えば加湿装置、分離装置などの技術分野において、超音波霧化装置が従来から使用されている。超音波霧化装置では、液体に超音波を照射することによって液体から霧状の多数の液滴を発生させる。
 例えば下記の特許文献1には、液体を貯留する容器と、液体に接触するように容器に設置された超音波振動子と、液体中に空気を供給する空気供給機構と、を備えた超音波霧化装置が開示されている。
特開2016-185506号公報
 超音波霧化装置を分離装置として用いる場合、例えば液体中に存在する2つの成分同士が所望の分離度をもって分離されることが求められる。そのために、超音波霧化装置は、高い霧化能力を有している必要がある。
 特許文献1には、「本発明では、空気を溶解させた液体に超音波振動を加えることによって液柱内に大量の気泡を発生させ、気泡を破裂させて液滴を飛散させることができ、霧化量を増大させることができる」と記載されている。しかしながら、液体に気泡を発生させる場合、気泡のサイズや量によっては、気泡が液体内での超音波の伝播を阻害する。その結果、気泡を発生させない場合に比べて、霧化量がむしろ減少することがある。
 さらに、特許文献1では、超音波霧化装置を分離装置として用いることを想定していないため、分離度を高めるために好適な気泡のサイズ等については、何ら考慮されていない。
 本発明の一つの態様は、上記の課題を解決するためになされたものであって、所望の分離度が得られる超音波霧化分離装置を提供することを目的の一つとする。また、本発明の一つの態様は、上記の超音波霧化分離装置を備え、液体吸湿材を効率的に再生することができる調湿装置を提供することを目的の一つとする。
 上記の目的を達成するために、本発明の一つの態様の超音波霧化分離装置は、処理液を貯留するとともに、前記処理液の液面に超音波による液柱を発生させて前記処理液の霧状液滴を発生させる霧化槽と、前記超音波を発生させる超音波発生部と、前記処理液の中に気泡を含有させる気泡発生部と、を備え、前記気泡発生部は、前記超音波発生部の周波数、1気圧での共振により発生するキャビテーション気泡の径よりも大きく、前記液柱の太さよりも小さい径を有する前記気泡を前記処理液の中に含有させる。
 本発明の一つの態様の超音波霧化分離装置において、前記霧状液滴は、フィルム液滴とジェット液滴とを含んでおり、前記気泡発生部は、前記フィルム液滴の発生確率が前記ジェット液滴の発生確率よりも高くなるサイズの前記気泡を発生させてもよい。
 本発明の一つの態様の調湿装置は、吸湿性物質を含む液体吸湿材と空気とを接触させる吸湿槽を備え、前記空気に含まれる水分の少なくとも一部を前記液体吸湿材に吸収させる吸湿部と、前記吸湿部から供給された前記液体吸湿材に含まれる水分の少なくとも一部を霧化し、除去することによって前記液体吸湿材を再生する霧化再生部と、を備え、前記霧化再生部は、本発明の一つの態様の超音波霧化分離装置から構成され、前記処理液として、前記水分の少なくとも一部が吸収された前記液体吸湿材が用いられる。
 本発明の一つの態様の調湿装置は、前記気泡の内部の湿度を低下させる湿度低下部をさらに備えていてもよい。
 本発明の一つの態様の調湿装置において、前記湿度低下部は、前記吸湿槽の内部に配置された前記気泡発生部で構成されていてもよい。
 本発明の一つの態様の調湿装置において、前記吸湿槽は、前記液体吸湿材と前記空気との接触面積を増大させる構造体を含む気液接触部を備えており、前記気泡発生部は、前記液体吸湿材の流れ方向において前記気液接触部の上流側に設けられていてもよい。
 本発明の一つの態様の調湿装置において、前記湿度低下部は、前記霧化槽に設けられた前記気泡発生部で構成され、前記気泡発生部に供給される気体は、前記霧化槽の内部に導入されるキャリアガスであってもよい。
 本発明の一つの態様によれば、所望の分離度が得られる超音波霧化分離装置を提供することができる。また、本発明の一つの態様は、液体吸湿材を効率的に再生することが可能な調湿装置を提供することができる。
第1実施形態の超音波霧化分離装置の概略構成図である。 ハイスピードカメラを用いて水の液柱の様子を観察した写真である。 ハイスピードカメラを用いてグリセリン水溶液の液柱の様子を観察した写真である。 ハイスピードカメラを用いてエチレングリコール水溶液の液柱の様子を観察した写真である。 海塩粒子の生成モデルを示す図である。 海水中の気泡の径と液滴の発生量との関係を示すグラフである。 比較例の超音波霧化分離装置における液柱を示す模式図である。 本実施形態の超音波霧化分離装置における液柱を示す模式図である。 第2実施形態の調湿装置の概略構成図である。 第2実施形態の調湿装置の概略構成図である。 第3実施形態の調湿装置の概略構成図である。
[第1実施形態]
 以下、本発明の第1実施形態について、図1~図8を用いて説明する。
 図1は、第1実施形態の超音波霧化分離装置の概略構成図である。
 なお、以下の各図面においては各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
 図1に示すように、超音波霧化分離装置10は、霧化槽11と、超音波発生部12と、気泡発生部13と、第1給気管14と、排気管15と、給液管16と、排液管17と、ブロア18,19と、を備えている。
 霧化槽11は、処理液Sを貯留する内部空間11aと、給気口11bと、排気口11cと、給液口11dと、排液口11eと、を有している。霧化槽11は、例えば金属、樹脂等の材料から形成された容器であり、構成材料は特に限定されない。霧化槽11は、内部空間11aにおいて、処理液Sを貯留するとともに、処理液Sの液面に超音波による液柱Cを発生させて処理液Sの液滴Dを発生させる。
 本実施形態の超音波霧化分離装置10は、処理液Sとして、水の粘度よりも高い粘度を有する液体を用いることを想定している。処理液Sの例として、グリセリン水溶液、エチレングリコール水溶液、ポリアクリル酸ナトリウム水溶液、ポリエチレングリコール水溶液、トリエチレングリコール水溶液、塩化カルシウム水溶液、塩化リチウム水溶液、もしくはこれらの混合液などが挙げられる。
 上記の液体は、空気中の水分を吸収する性質を有している。本実施形態では、一例として、水分を吸収した状態のグリセリン水溶液を処理液Sとして、この処理液Sから水とグリセリンとを分離する場合について説明する。
 以下、本明細書では、水の粘度よりも高い粘度を有する液体を高粘度液体と称する。
 超音波発生部12は、霧化槽11に設けられ、処理液Sに超音波を照射することにより処理液Sから液滴Dを発生させる。本実施形態において、超音波発生部12は、霧化槽11の底板に設けられた超音波振動子21を備えている。超音波振動子21の個数や配置は、特に限定されない。超音波振動子21から処理液Sに超音波を照射する際、超音波の発生条件を調整することによって、処理液Sの液面の特定の個所に超音波を集中させて、処理液Sの液柱Cを発生させることができる。液滴Dは、液面の任意の個所から発生するが、液柱Cおよび液柱Cの近傍から特に多く発生する。
 超音波振動子21は、振動発生面が霧化槽11の底面に対して傾くように設置されている。これにより、液柱Cは、処理液Sの液面に垂直な方向(鉛直方向)に対して傾いて形成される。仮に液柱Cが処理液Sの液面に垂直な方向に沿って形成されたとすると、一旦上昇した処理液Sが液柱Cの内部を落下するため、液柱Cが安定して形成されない場合がある。また、超音波振動子21が液面に対して傾いて設置されていないと、液面で反射した超音波が超音波振動子21に直接戻るため、超音波振動子21がダメージを受けるおそれがある。液柱Cを処理液Sの液面に垂直な方向に対して傾けて形成することによって、上記の不具合を改善することができる。
 気泡発生部13は、霧化槽11に設けられ、処理液Sの中に多数の気泡Kを発生させる。本実施形態において、気泡発生部13は、霧化槽11の内部空間11aの底部に設けられた気泡発生器23と、気泡発生器23に接続された第2給気管24と、第2給気管24に設けられたブロア25と、を備えている。気泡発生器23には、第2給気管24を通じて空気が供給される。気泡発生器23の具体的な形態や個数等については、特に限定されないが、例えばバブリングを用いたサブミリバブル発生器等を用いることができる。
 第1給気管14は、霧化槽11の給気口11bに接続されている。また、第1給気管14の途中には、ブロア18が設けられている。第1給気管14を通じて霧化槽11に空気が供給されることにより、内部空間11aにおいて給気口11bから排気口11cに向かう気流が形成される。
 排気管15は、霧化槽11の排気口11cに接続されている。また、排気管15の途中には、ブロア19が設けられている。液滴Dを含む空気は、排気管15を通じて内部空間11aから排出される。本実施形態では、第1給気管14が設けられているため、霧化槽11の給気口11bから排気口11cに向かう気流が形成されやすい点で好ましいが、第1給気管14は必ずしも設けられていなくてもよい。
 給液管16は、霧化槽11の給液口11dに接続されている。処理液Sは、給液管16を通じて内部空間11aに供給される。排液管17は、霧化槽11の排液口11eに接続されている。処理液Sは、排液管17を通じて内部空間11aから排出される。このように、本実施形態の超音波霧化分離装置10は、給液管16と排液管17とを備え、処理液Sが連続的に処理される構成を有しているが、本発明の超音波霧化分離装置は、必ずしも給液管と排液管とを備えていなくてもよく、処理液がバッチ処理される構成を有していてもよい。
 処理液Sから発生する液滴Dには、例えばナノオーダーからミクロンオーダーまで様々な粒径を有する液滴Dが含まれている。液滴Dの粒径は、光散乱法による測定、静電式粒径測定器(EAA:Electrical Aerosol Analyzer)を用いた測定などによって求めることができる。
 処理液Sから発生する液滴Dの粒径は、処理液Sの種類にもよるが、超音波の周波数、超音波振動子21への投入電力などに影響される。また、水分子とグリセリン等の吸湿性物質分子との分子間力は、水分子同士の分子間力と比べて弱い。そのため、粒径が比較的小さい液滴Dには、吸湿性物質が含有されにくいと考えられる。これに対して、粒径が比較的大きい液滴Dには、吸湿性物質が含有されやすいと考えられる。すなわち、液滴Dの粒径が異なると、一つの液滴Dの水と吸湿性物質との含有比率も異なる。
 そのため、本実施形態において、処理液S(水分を吸収したグリセリン水溶液)から水分を分離するためには、粒径が小さい液滴Dを形成する必要がある。
 そこで、本発明者らは、液滴が実際に形成される様子を確認するため、各種の液体に超音波を照射して液柱を発生させ、液柱とその近傍の様子をハイスピードカメラによって観察した。
 使用した液体は、水、80wt%グリセリン水溶液、80wt%エチレングリコール水溶液の3種類である。液体吸湿材において、グリセリン、エチレングリコール等の吸湿性物質の濃度が80wt%を超えると、霧化効率が低く、濃度が60wt%以下であると、水と吸湿性物質との分離度が低下する。この知見に基づき、吸湿性物質の濃度を80wt%に設定した。なお、霧化効率は、超音波振動子への供給電力に対する霧化量の比で定義される値である。
 図2は、水の液柱の様子を観察した写真である。図3は、グリセリン水溶液の液柱の様子を観察した写真である。図4は、エチレングリコール水溶液の液柱の様子を観察した写真である。
 図2に示すように、水の場合、液柱の表面にキャピラリー波に起因すると思われる鱗状の微細なパターンが生じている。また、粒径が小さい霧状の液滴が液柱の表面から大量に発生している。写真において、液柱の表面近傍に靄が掛かったように黒く見える部分が霧状の液滴である。一つの液滴の粒径は、例えばサブミクロンオーダー程度である。
 これに対して、図3に示すように、グリセリン水溶液の場合、液柱の表面に水の場合のような微細なパターンは生じていない。また、液柱の表面の液体が引きちぎられるようにして、粒径が比較的大きい液滴が所々で発生している。一つの液滴の粒径は、例えば百ミクロンオーダー程度である。
 図4に示すように、エチレングリコール水溶液の場合も、グリセリン水溶液と同様、粒径が比較的大きい液滴が所々で発生している。また、粒径が比較的大きい液滴の発生頻度は、グリセリン水溶液よりも高い。
 以上の観察結果から、本発明者らは、グリセリン水溶液やエチレングリコール水溶液は、水に比べて粒径が小さい液滴が発生しにくいことを確認した。これは、グリセリン水溶液やエチレングリコール水溶液が、水に比べて高い粘度を有していることが影響していると推察される。
 ここで、本発明者らは、グリセリン水溶液等の高粘度液体から粒径が小さい液滴を発生させる手段を模索するため、海塩粒子が生成されるモデルに着目した。海塩粒子は、海面から大気中に放出された微小な液滴が液滴の状態のまま、もしくは乾燥した固体粒子として大気中に浮遊する粒子である。
 海塩粒子の生成モデルによれば、3通りのモデルで生成される液滴が存在するが、そのうちの一つである、海面から引きちぎられた飛沫から生成される液滴の粒径は大きく、直ちに海面に落下するため、本発明の参考にはならない。
 したがって、他の2つのモデルについて以下、説明する。
 図5は、海塩粒子の生成モデルを説明するための図である。
 通常、波等によって海水の内部には空気が取り込まれ、気泡として存在している。
 図5に示すように、海水Gに存在する気泡K1は海面Gaまで浮上した後、気泡K1の上面の海水膜G1が薄くなって破裂する。この際、海面Gaを上方から見ると、気泡K1を中心として円環状に吹き上げられた数百個程度の微細な液滴Dfが生成される。液滴Dfの粒径は、例えば0.06μm~0.15μm程度である。以下、このように、気泡が液面に上昇した際に液膜が破裂して生成される液滴をフィルム液滴Dfと称する。
 次に、海面Gaに窪みK2ができた際に、側面の海水が窪みK2の底部に向けて流れ込み、流れ込んだ海水Gが窪みK2の中央で盛り上がる。その後、盛り上がった海水Gの先端が引きちぎられ、フィルム液滴Dfよりも粒径が大きい数個程度の液滴Djが次々と生成される。液滴Djの粒径は、例えば70μm~100μm(直径が1mmの気泡の1/15~1/10)程度である。以下、このように、気泡が破裂した後の液面の盛り上がりから生成される液滴をジェット液滴Djと称する。
 また、フィルム液滴Dfおよびジェット液滴Djの各々の発生量は、気泡K1の径に影響を受ける。
 図6は、海水に含まれる気泡の径と液滴の発生量との関係を示すグラフである。グラフの横軸は気泡の粒径であり、縦軸は液滴の発生量であり、ともに相対値である。符号Fで示す実線のグラフはフィルム液滴Dfを示し、符号Jで示す1点鎖線のグラフはジェット液滴Djを示している。
 図6に示すように、海水に含まれる気泡の径が変化すると、フィルム液滴Dfの発生量およびジェット液滴Djの発生量も変化する。具体的に、フィルム液滴Dfについては、気泡の径が大きくなるにつれてフィルム液滴Dfの発生量が多くなる。一方、ジェット液滴Djについては、フィルム液滴Dfとは逆に、気泡の径が大きくなるにつれてジェット液滴Djの発生量が少なくなる。したがって、フィルム液滴Dfおよびジェット液滴Djの各々の発生確率は気泡の径によって制御が可能であると推察される。
 本発明者らは、海塩粒子の生成モデルにおける液滴の粒径のオーダーが、前述のハイスピードカメラ観察による液滴の粒径のオーダーと近いことから、処理液S中に適切な径の気泡Kを導入し、フィルム液滴Dfを積極的に発生させることによって、高粘度液体であっても粒径が小さい液滴を発生させることができることに想到した。
 すなわち、本発明者らは、本発明の超音波霧化分離装置に海塩粒子の生成モデルを応用したときに生じる作用を以下のように考えた。
 図7は、比較例の超音波霧化分離装置における液柱C2を示す模式図である。図8は、本実施形態の超音波霧化分離装置10における液柱Cを示す模式図である。なお、比較例は、気泡発生部を備えていない超音波霧化分離装置である。処理液は、ともに高粘度液体を想定している。
 比較例の超音波霧化分離装置は、気泡発生部を備えていないとは言え、処理液の中にはキャビテーション等に起因する微小な気泡が含まれている。そのため、図7に示すように、液柱C2の内部に存在する微小気泡によりフィルム液滴Dfおよびジェット液滴Djが発生する。ただし、発生頻度はそれ程多くない。
 これに対して、本実施形態の超音波霧化分離装置10は、気泡発生部13を備えているため、処理液S中に気泡Kを含有させることができる。これにより、図8に示すように、液柱Cの内部にも多くの気泡Kが存在する。これらの気泡Kが液柱Cの表面で破裂することにより、多くのフィルム液滴Dfが発生し、フィルム液滴Dfの発生に伴ってジェット液滴Djも発生する。
 この場合、処理液Sに含有させる気泡Kの径は、超音波発生部12の周波数、1気圧での共振により発生するキャビテーション気泡の径よりも大きく、液柱Cの太さよりも小さい。すなわち、仮に超音波霧化分離装置10が気泡発生部13を備えていなかったとしても、処理液Sに超音波を照射した際に超音波発生部12の周波数、1気圧での共振によってキャビテーション気泡が発生する。このキャビテーション気泡では、フィルム液滴Dfおよびジェット液滴Djを多く発生させることができないことは、先のハイスピードカメラによる観察で確認済みである。
 したがって、気泡発生部13は、超音波発生部12の周波数、1気圧での共振により発生するキャビテーション気泡の径よりも大きく、液柱Cの太さよりも小さい気泡Kを発生させる必要がある。さらに、気泡発生部13は、フィルム液滴Dfの発生確率がジェット液滴Djの発生確率よりも高くなるサイズの気泡Kを発生させることが好ましい。
 このように、本実施形態の超音波霧化分離装置10によれば、フィルム液滴Dfを優先的に発生させることで粒径が小さい液滴Dを生成することができるため、水分を吸収したグリセリン水溶液等の処理液Sから高い分離度で水分を分離することができる。
[第2実施形態]
 以下、本発明の第2実施形態について、図9を用いて説明する。
 本実施形態では、本発明の超音波霧化分離装置を備えた調湿装置について説明する。
 図9は、第2実施形態の調湿装置の概略構成図である。
 図9に示すように、本実施形態の調湿装置40は、吸湿部41と、霧化再生部42と、第1液体吸湿材輸送管43と、第2液体吸湿材輸送管44と、第1空気供給管45と、第1空気排出管46と、第2空気供給管47と、第2空気排出管48と、を備えている。調湿装置40は、室内に設置されており、調湿装置40を用いて室内の湿度を低下させる場合の例について以下、説明する。
 霧化再生部42は、本発明の超音波霧化分離装置から構成されている。霧化再生部42は、吸湿部41において空気中の水分を吸収したグリコール水溶液等の液体吸湿材S1(処理液)から水分を分離することにより、液体吸湿材S1から水分を脱離させ、液体吸湿材S1を再生する。
 吸湿部41は、吸湿槽50と、ノズル51と、気液接触部52と、を備えている。吸湿部41は、吸湿性物質を含む液体吸湿材S1と室内の空気とを接触させることにより、空気に含まれる水分の少なくとも一部を液体吸湿材S1に吸収させる。吸湿部41は、できるだけ多くの水分を液体吸湿材S1に吸収させることが望ましいが、空気に含まれる水分のうちの少なくとも一部の水分を液体吸湿材S1に吸収させればよい。吸湿槽50の内部には、液体吸湿材S1が貯留されている。液体吸湿材S1については後述する。
 吸湿槽50には、第1空気供給管45、第1空気排出管46、第1液体吸湿材輸送管43および第2液体吸湿材輸送管44が接続されている。室内の空気は、ブロア54によって第1空気供給管45を介して吸湿槽50の内部空間に供給される。
 ノズル51は、吸湿槽50の内部空間の上部に配置されている。後述する霧化再生部42によって再生された後、第2液体吸湿材輸送管44を介して吸湿部41に戻された液体吸湿材S1は、ノズル51から気液接触部52に流下し、気液接触部52を流下する間に空気と接触する。この種の液体吸湿材S1と空気との接触の形態は、一般に「流下方式」と呼ばれる。なお、液体吸湿材S1と空気との接触形態は、流下方式に限らず、バブリング方式等の他の方式を用いてもよい。
 気液接触部52は、液体吸湿材S1を空間中に流下させただけの構成に比べて、液体吸湿材S1と空気との接触面積を増大させる構造体55を備えている。構造体55は、例えばハニカム構造を有する構造体などが用いられる。その他、多数のフィンや凹凸形状を有する構造体などが用いられてもよい。この種の構造体55の上部から液体吸湿材S1を流下させた際、液体吸湿材S1は、例えばハニカム構造に沿って流れ落ちるため、液体吸湿材S1への水分の吸収量を増やすことができる。
 吸湿槽50内の空気は、第1空気供給管45から第1空気排出管46に向かう気流を形成し、気液接触部52においてノズル51から流下する液体吸湿材S1と接触する。このとき、空気中に含まれる水分の少なくとも一部は、液体吸湿材S1に吸収されることによって除去される。吸湿部41では、室内の空気から水分が除去された空気が得られるため、この空気は室内の空気よりも乾燥した状態となる。このように、乾燥した空気が第1空気排出管46を介して室内に排出される。第1空気排出管46には、空気を排出するためのブロア56が設けられている。
 液体吸湿材S1は、水分を吸収する性質(吸湿性)を示す液体であり、例えば温度が25℃、相対湿度が50%、大気圧下の条件で吸湿性を示す液体が好ましい。液体吸湿材S1は、後述する吸湿性物質を含んでいる。また、液体吸湿材S1は、吸湿性物質と溶媒とを含んでいてもよい。この種の溶媒としては、吸湿性物質を溶解させる、または吸湿性物質と混和する溶媒が挙げられ、例えば水が挙げられる。吸湿性物質は、有機材料であってもよいし、無機材料であってもよい。
 吸湿性物質として用いられる有機材料としては、例えば2価以上のアルコール、ケトン、アミド基を有する有機溶媒、糖類、保湿化粧品などの原料として用いられる公知の材料などが挙げられる。それらの中でも、親水性が高いことから、吸湿性物質として好適に用いられる有機材料としては、2価以上のアルコール、アミド基を有する有機溶媒、糖類、保湿化粧品等の原料として用いられる公知の材料が挙げられる。
 2価以上のアルコールとしては、例えばグリセリン、プロパンジオール、ブタンジオール、ペンタンジオール、トリメチロールプロパン、ブタントリオール、エチレングリコール、ジエチレングリコール、トリエチレングリコールなどが挙げられる。
 アミド基を有する有機溶媒としては、例えばホルムアミド、アセトアミドなどが挙げられる。
 糖類としては、例えばスクロース、プルラン、グルコース、キシロール、フラクトース、マンニトール、ソルビトールなどが挙げられる。
 保湿化粧品などの原料として用いられる公知の材料としては、例えば2-メタクリロイルオキシエチルホスホリルコリン(MPC)、ベタイン、ヒアルロン酸、コラーゲンなどが挙げられる。
 吸湿性物質として用いられる無機材料としては、例えば塩化カルシウム、塩化リチウム、塩化マグネシウム、塩化カリウム、塩化ナトリウム、塩化亜鉛、塩化アルミニウム、臭化リチウム、臭化カルシウム、臭化カリウム、水酸化ナトリウム、ピロリドンカルボン酸ナトリウムなどが挙げられる。
 吸湿性物質の親水性が高いと、例えば吸湿性物質の材料と水とを混合させたときに、液体吸湿材S1の表面(液面)近傍における水分子の割合が多くなる。霧化再生部42では、液体吸湿材S1の表面近傍から液滴Dを発生させ、液体吸湿材S1から水分を分離する。そのため、液体吸湿材S1の表面近傍における水分子の割合が多いと、水分を効率的に分離できる点で好ましい。また、液体吸湿材S1の表面近傍における吸湿性物質の割合が相対的に少なくなるため、霧化再生部42での吸湿性物質の損失を抑えられる点で好ましい。
 液体吸湿材S1のうち、吸湿部41での処理に用いられる液体吸湿材S1に含まれる吸湿性物質の濃度は、特に限定されないが、40質量%以上であることが好ましい。吸湿性物質の濃度が40質量%以上である場合、液体吸湿材S1は、効率良く水分を吸収することができる。
 液体吸湿材S1の粘度は、25mPa・s以下であることが好ましい。これにより、後述する霧化再生部42において、液体吸湿材S1の液面に液体吸湿材S1の液柱Cを生じさせやすい。そのため、液体吸湿材S1から効率良く水分を分離することができる。ただし、本実施形態では、霧化再生部42として、霧化させる液体の粘度に依らずに高い分離度が得られる本発明の霧化装置を備えているため、たとえ液体吸湿材S1の粘度が高くても、従来に比べて効率良く水分を分離することができる。
 上述したように、霧化再生部42は、本発明の超音波霧化分離装置から構成されている。第1実施形態の超音波霧化分離装置10においては、気泡発生部13が霧化槽11の内部に設けられていたのに対し、本実施形態では、気泡発生部13が吸湿槽50の内部に設けられている。したがって、吸湿槽50の下部に貯留された液体吸湿材S1に気泡Kが含有される。
 後述するように、本実施形態の気泡発生部13は、気泡Kの内部(気泡K内の空気)の湿度を低下させる湿度低下部58としても機能する。換言すると、本実施形態の調湿装置40は、気泡Kの内部の湿度を低下させる湿度低下部58をさらに備え、湿度低下部58は、吸湿槽50の内部に配置された気泡発生部13で構成されている。
 本実施形態の場合、第1空気供給管45から分岐された第2給気管24が気泡発生器23に接続されている。この構成では、湿度調整の対象である室内の空気が気泡発生器23にも供給され、液体吸湿材S1において気泡となる。また、この構成によれば、貯留された液体吸湿材S1の内部でもバブリングによる気液接触が生じ、気泡発生器23から供給された気泡内の水分が液体吸湿材S1に吸収される。これにより、気泡Kの内部の湿度が低下する。
 吸湿部41と霧化再生部42とは、液体吸湿材S1の循環流路を構成する第1液体吸湿材輸送管43と第2液体吸湿材輸送管44とによって接続されている。第2液体吸湿材輸送管44の途中には、液体吸湿材S1を循環させるためのポンプ60が設けられている。
 第1液体吸湿材輸送管43は、水分の少なくとも一部が吸収された液体吸湿材S1を吸湿部41から霧化再生部42に輸送する。このとき、輸送される液体吸湿材S1には既に気泡が含有されている。第1液体吸湿材輸送管43の一端は、吸湿槽50の下部に接続されている。吸湿槽50における第1液体吸湿材輸送管43の接続箇所は、吸湿槽50内の液体吸湿材S1の液面よりも下方に位置している。一方、第1液体吸湿材輸送管43の他端は、霧化槽11の下部に接続されている。霧化槽11における第1液体吸湿材輸送管43の接続箇所は、霧化槽11内の液体吸湿材S1の液面よりも下方に位置している。
 第2液体吸湿材輸送管44は、水分が除去されて再生された液体吸湿材S1を霧化再生部42から吸湿部41に輸送する。第2液体吸湿材輸送管44の一端は、霧化槽11の下部に接続されている。霧化槽11における第2液体吸湿材輸送管44の接続箇所は、霧化槽11内の液体吸湿材S1の液面よりも下方に位置している。一方、第2液体吸湿材輸送管44の他端は、吸湿槽50の上部に接続されている。吸湿槽50における第2液体吸湿材輸送管44の接続箇所は、吸湿槽50内の液体吸湿材S1の液面よりも上方に位置し、上述のノズル51に接続されている。
 本実施形態の調湿装置40によれば、霧化再生部42において液体吸湿材S1を再生するため、液体吸湿材S1の吸湿性能を高めることができるとともに、霧化再生部42における水分の分離度が高いため、霧化再生性能を向上させることができる。これにより、調湿装置40の省エネルギー化および処理速度の向上を図ることができる。
 特に本実施形態の場合、気泡発生部13が吸湿槽50の内部に設置され、吸湿槽50の内部に液体吸湿材S1が貯留されている時点で、液体吸湿材S1の中には既に気泡Kが含有されている。ところが、液体吸湿材S1の粘度が高いため、液体吸湿材S1が霧化槽11に輸送される間に気泡K内の水蒸気が吸湿され、気泡Kの内部の湿度が低下する。したがって、湿度が低下した気泡Kが導入されることによって、霧化再生効率を低下させることがなく、霧化効率を向上させることができる。
[第3実施形態]
 以下、本発明の第3実施形態について、図10を用いて説明する。
 本実施形態の調湿装置の基本構成は第2実施形態と同様であり、気泡発生部の構成が第2実施形態と異なる。
 図10は、第3実施形態の調湿装置の概略構成図である。
 図10において、第2実施形態の図9と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
 図10に示すように、本実施形態の調湿装置70において、気泡発生部13は、吸湿部71の吸湿槽50の上部に設けられた液溜まり部50aに設けられている。換言すると、気泡発生部13は、液体吸湿材S1の流れ方向において気液接触部52の上流側に設けられている。
 ノズル51は、液溜まり部50aの下方に設けられている。したがって、本実施形態の場合、気泡Kが含有された液体吸湿材S1がノズル51から気液接触部52に向けて流下する。なお、気泡発生部13とノズル51とは、一体化されていてもよい。
 調湿装置70のその他の構成は、第2実施形態と同様である。
 本実施形態の調湿装置70においても、第2実施形態と同様、液体吸湿材S1の吸湿性能を高めることができるとともに、霧化再生性能を向上させることができる。これにより、調湿装置70の省エネルギー化および処理速度の向上を図ることができる。
 また、本実施形態の場合、気液接触部52を構成する構造体55の表面に気泡Kを含む液体吸湿材S1が付着することにより、第2実施形態に比べて、気液接触部52における見かけ上の気液接触面積が増加する。これにより、吸湿性能を向上させることができる。
[第4実施形態]
 以下、本発明の第4実施形態について、図11を用いて説明する。
 本実施形態の調湿装置の基本構成は第2実施形態と同様であり、気泡発生部の構成が第2実施形態と異なる。
 図11は、第4実施形態の調湿装置の概略構成図である。
 図11において、第2実施形態の図9と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
 図11に示すように、本実施形態の調湿装置80において、気泡発生部13は、霧化再生部82の霧化槽11の下部に設けられている。後述するように、本実施形態の気泡発生部13は、気泡Kの内部(気泡K内の空気)の湿度を低下させる湿度低下部58として機能する。換言すると、本実施形態の調湿装置80は、気泡Kの内部の湿度を低下させる湿度低下部58をさらに備え、湿度低下部58は、霧化槽11の内部に配置された気泡発生器23を含む気泡発生部13で構成されている。吸湿部81は、通常の吸湿槽50を含む構成である。
 本実施形態の場合、霧化槽11に空気を供給する第2空気供給管47から分岐された第2給気管24が気泡発生器23に接続されている。この構成では、霧化槽11の内部の液滴Dを輸送するキャリアガスとしての空気が気泡発生器23にも供給され、液体吸湿材S1の内部で気泡Kとなる。
 調湿装置80のその他の構成は、第2実施形態と同様である。
 本実施形態の調湿装置80においても、第2実施形態と同様、液体吸湿材S1の吸湿性能を高めることができるとともに、霧化再生性能を向上させることができる。これにより、調湿装置80の省エネルギー化および処理速度の向上を図ることができる。
 また、本実施形態の場合、気泡発生器23に供給する空気を加熱しておけば、高温で相対湿度が低い気泡Kを液体吸湿材S1に導入することができる。このとき、霧化槽11における液体吸湿材S1と気泡Kとの熱交換によって平衡温度に達した気泡Kの内部の平衡蒸気圧は、再生した液体吸湿材S1の平衡蒸気圧よりも低いという条件を満たす。これにより、霧化再生効率を低下させることなく、霧化効率を向上させることができる。
 なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば上記実施形態では、気泡発生部としてバブリングを用いたサブミリバブル発生器を用いる例を挙げたが、その他、キャビテーションを用いた低周波超音波発生器、撹拌時の空気の巻き込みを利用した撹拌装置等を用いることができる。
 その他、超音波霧化分離装置および調湿装置を構成する各構成要素の数、形状、配置、材料等については適宜変更が可能である。
 また、本発明の調湿装置は、湿度調整機能だけでなく、温度調節機能を兼ね備えていてもよい。
 本発明は、超音波霧化分離装置および調湿装置に利用が可能である。

Claims (7)

  1.  処理液を貯留するとともに、前記処理液の液面に超音波による液柱を発生させて前記処理液の霧状液滴を発生させる霧化槽と、
     前記超音波を発生させる超音波発生部と、
     前記処理液の中に気泡を含有させる気泡発生部と、
     を備え、
     前記気泡発生部は、前記超音波発生部の周波数、1気圧での共振により発生するキャビテーション気泡の径よりも大きく、前記液柱の太さよりも小さい径を有する前記気泡を前記処理液の中に含有させる、超音波霧化分離装置。
  2.  前記霧状液滴は、フィルム液滴とジェット液滴とを含み、
     前記気泡発生部は、前記フィルム液滴の発生確率が前記ジェット液滴の発生確率よりも高くなるサイズの前記気泡を発生させる、請求項1に記載の超音波霧化分離装置。
  3.  吸湿性物質を含む液体吸湿材と空気とを接触させる吸湿槽を備え、前記空気に含まれる水分の少なくとも一部を前記液体吸湿材に吸収させる吸湿部と、
     前記吸湿部から供給された前記液体吸湿材に含まれる水分の少なくとも一部を霧化し、除去することによって前記液体吸湿材を再生する霧化再生部と、を備え、
     前記霧化再生部は、請求項1に記載の超音波霧化分離装置から構成され、
     前記処理液として、前記水分の少なくとも一部が吸収された前記液体吸湿材が用いられる、調湿装置。
  4.  前記気泡の内部の湿度を低下させる湿度低下部をさらに備えた、請求項3に記載の調湿装置。
  5.  前記湿度低下部は、前記吸湿槽の内部に配置された前記気泡発生部で構成されている、請求項4に記載の調湿装置。
  6.  前記吸湿槽は、前記液体吸湿材と前記空気との接触面積を増大させる構造体を含む気液接触部を備え、
     前記気泡発生部は、前記液体吸湿材の流れ方向において前記気液接触部の上流側に設けられている、請求項5に記載の調湿装置。
  7.  前記湿度低下部は、前記霧化槽に設けられた前記気泡発生部で構成され、
     前記気泡発生部に供給される気体は、前記霧化槽の内部に導入されるキャリアガスである、請求項4に記載の調湿装置。
PCT/JP2019/013666 2018-04-20 2019-03-28 超音波霧化分離装置および調湿装置 WO2019202940A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-081477 2018-04-20
JP2018081477A JP2021107039A (ja) 2018-04-20 2018-04-20 超音波霧化分離装置および調湿装置

Publications (1)

Publication Number Publication Date
WO2019202940A1 true WO2019202940A1 (ja) 2019-10-24

Family

ID=68238937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013666 WO2019202940A1 (ja) 2018-04-20 2019-03-28 超音波霧化分離装置および調湿装置

Country Status (2)

Country Link
JP (1) JP2021107039A (ja)
WO (1) WO2019202940A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114504942A (zh) * 2022-03-02 2022-05-17 华北理工大学 一种钢铁厂烟气的处理***及处理方法
WO2023112707A1 (ja) * 2021-12-17 2023-06-22 ナノミストテクノロジーズ株式会社 超音波霧化装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289237A (en) * 1976-01-21 1977-07-26 Mitsubishi Electric Corp Super sonic atomizer
JPS5388815U (ja) * 1976-12-22 1978-07-21
JP2005066554A (ja) * 2003-08-27 2005-03-17 Choonpa Jozosho Kk 溶液の超音波分離方法とこの方法に使用される超音波分離装置
JP2005233435A (ja) * 2004-02-17 2005-09-02 Miyazaki Prefecture 吸収式除湿空調システム
JP2010036093A (ja) * 2008-08-04 2010-02-18 Dyna-Air Co Ltd 調湿装置
WO2012086191A1 (ja) * 2010-12-20 2012-06-28 花王株式会社 濃縮グリセリンの製造方法
JP2013124256A (ja) * 2011-12-13 2013-06-24 Cameron Japan Ltd グリコール再生システム
JP2016185506A (ja) * 2015-03-27 2016-10-27 株式会社フコク 超音波霧化装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289237A (en) * 1976-01-21 1977-07-26 Mitsubishi Electric Corp Super sonic atomizer
JPS5388815U (ja) * 1976-12-22 1978-07-21
JP2005066554A (ja) * 2003-08-27 2005-03-17 Choonpa Jozosho Kk 溶液の超音波分離方法とこの方法に使用される超音波分離装置
JP2005233435A (ja) * 2004-02-17 2005-09-02 Miyazaki Prefecture 吸収式除湿空調システム
JP2010036093A (ja) * 2008-08-04 2010-02-18 Dyna-Air Co Ltd 調湿装置
WO2012086191A1 (ja) * 2010-12-20 2012-06-28 花王株式会社 濃縮グリセリンの製造方法
JP2013124256A (ja) * 2011-12-13 2013-06-24 Cameron Japan Ltd グリコール再生システム
JP2016185506A (ja) * 2015-03-27 2016-10-27 株式会社フコク 超音波霧化装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112707A1 (ja) * 2021-12-17 2023-06-22 ナノミストテクノロジーズ株式会社 超音波霧化装置
CN114504942A (zh) * 2022-03-02 2022-05-17 华北理工大学 一种钢铁厂烟气的处理***及处理方法

Also Published As

Publication number Publication date
JP2021107039A (ja) 2021-07-29

Similar Documents

Publication Publication Date Title
WO2019202940A1 (ja) 超音波霧化分離装置および調湿装置
JP2008149316A (ja) 溶液の霧化方法とこの方法に使用する超音波霧化機
US20210107027A1 (en) Atomizer and humidity controller
WO2018235773A1 (ja) 調湿装置および調湿方法
WO2019168028A1 (ja) 霧化装置および調湿装置
JP7169443B2 (ja) 超音波霧化装置および調湿装置
US20210053010A1 (en) Humidity control device and separation device
WO2019116986A1 (ja) 調湿装置および調湿方法
WO2019235411A1 (ja) 調湿装置
WO2020059284A1 (ja) 調湿システム
WO2020145388A1 (ja) 調湿装置、霧化再生装置
WO2022190670A1 (ja) 超音波霧化分離装置及び調湿システム
US11376549B2 (en) Humidity conditioning device and humidity conditioning method
US20210113958A1 (en) Air conditioner
CN106583139A (zh) 一种用于悬浊液的超声波雾化装置
CN202942576U (zh) 一种超细水雾全淹没灭火装置
CN102961841B (zh) 一种超细水雾全淹没灭火装置及方法
WO2022059428A1 (ja) 調湿装置
JP5678916B2 (ja) 超音波霧化機
WO2020049878A1 (ja) 調湿システム
JP4851228B2 (ja) 溶液の霧化方法とこの方法に使用される霧化装置
JP3124081B2 (ja) 充填塔スプレーの分散方法
JP2023009315A (ja) 超音波霧化分離装置
JP2022065220A (ja) 海水淡水化装置および海水淡水化方法
JPS5828512B2 (ja) 塔体ベルマウス内面に親水処理をした冷却塔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP