WO2019193721A1 - User terminal and wireless communication method - Google Patents

User terminal and wireless communication method Download PDF

Info

Publication number
WO2019193721A1
WO2019193721A1 PCT/JP2018/014624 JP2018014624W WO2019193721A1 WO 2019193721 A1 WO2019193721 A1 WO 2019193721A1 JP 2018014624 W JP2018014624 W JP 2018014624W WO 2019193721 A1 WO2019193721 A1 WO 2019193721A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
case
uci
transmission
control
Prior art date
Application number
PCT/JP2018/014624
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 松村
一樹 武田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN201880094362.8A priority Critical patent/CN112243577B/en
Priority to PCT/JP2018/014624 priority patent/WO2019193721A1/en
Publication of WO2019193721A1 publication Critical patent/WO2019193721A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 LTE-A (LTE-Advanced), FRA (Future Radio Access), 4G, 5G, 5G + (plus), NR ( New RAT) and LTE Rel.14, 15 ⁇ ) are also being considered.
  • a 1 ms subframe (also referred to as a transmission time interval (TTI), etc.) is used for downlink (DL) and / or uplink. Communication of a link (UL: Uplink) is performed.
  • the subframe is a transmission time unit of one channel-encoded data packet, and is a processing unit such as scheduling, link adaptation, retransmission control (HARQ: Hybrid Automatic Repeat reQuest).
  • the user terminal uses an uplink control channel (for example, PUCCH: Physical Uplink Control Channel) or an uplink data channel (for example, PUSCH: Physical Uplink Shared Channel). And transmits uplink control information (UCI).
  • uplink control channel for example, PUCCH: Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • UCI uplink control information
  • the configuration (format) of the uplink control channel is called a PUCCH format (PF: PUCCH Format) or the like.
  • the uplink control channels for example, LTE PUCCH format
  • the same period for example, 14 symbols in the normal cyclic prefix (CP)
  • CP normal cyclic prefix
  • future radio communication systems for example, LTE Rel. 14, 15 to 5G, NR, etc.
  • the first uplink control channel also referred to as short PUCCH, NR PUCCH format 0 and / or 2 of a relatively short period (for example, 1 to 2 symbols)
  • a second uplink control channel (hereinafter also referred to as at least one of long PUCCH, NR PUCCH formats 1, 3 and 4) having a longer period (for example, 4 to 14 symbols) than the first uplink control channel. Support is being considered.
  • the present disclosure provides a user terminal and a radio communication method capable of appropriately transmitting uplink control information even when transmitting at least one of an uplink control channel and an uplink shared channel in non-slot units. Is one of the purposes.
  • a user terminal includes a transmission unit that transmits uplink control information using at least one of an uplink control channel and an uplink shared channel set in one or a plurality of symbols, and a transform precoding A control unit that controls transmission of the uplink control information based on at least one of setting presence / absence, the number of symbols assigned to the uplink control channel and the uplink shared channel, and a predetermined condition set in advance, To do.
  • uplink control information can be appropriately transmitted even when at least one of the uplink control channel and the uplink shared channel is transmitted in non-slot units.
  • FIG. 1A to 1E are diagrams illustrating an example of a PUCCH configuration.
  • 2A to 2E are diagrams showing other examples of the PUCCH configuration.
  • 3A to 3E are diagrams illustrating an example of the PUSCH configuration.
  • 4A to 4E are diagrams illustrating other examples of the PUSCH configuration.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • a first uplink control channel having a relatively short period (eg, 1 to 2 symbols) and a period (eg, 4 to 4) longer than the first uplink control channel. It is under consideration to support a second uplink control channel of 14 symbols).
  • the first uplink control channel may also be called short PUCCH, PUCCH format 0, PUCCH format 2, or the like.
  • the second uplink control channel may be referred to as long PUCCH, PUCCH format 1, PUCCH format 3, PUCCH format 4, or the like.
  • a slot is one of basic transmission units, and one slot is composed of a predetermined number of symbols.
  • the slot period is composed of a first number of symbols (for example, 14 symbols), and in extended CP (extended CP), the slot period is composed of a second number of symbols (for example, 12 symbols). Is done.
  • a mini-slot corresponds to a period composed of a number of symbols equal to or less than a predetermined value (for example, 14 symbols (or 12 symbols)).
  • a predetermined value for example, 14 symbols (or 12 symbols)
  • the minislot may be configured with a predetermined number (for example, the number of symbols of 2, 4, or 7).
  • the slot-based scheduling (mapping type A) and the minislot-based scheduling (mapping type B) may be configured such that different resource allocation methods are applied.
  • the PDSCH start position in the slot is selected from preset candidate symbols, and the number of PDSCH allocation symbols (PDSCH length) is selected from a range from a predetermined value (X) to 14.
  • PDSCH length is selected from a range from a predetermined value (X) to 14.
  • X is, for example, 3.
  • minislot-based scheduling also referred to as PDSCH mapping type B
  • DL for example, PDSCH transmission
  • the number of PDSCH allocation symbols (PDSCH length) is selected from a preset number of candidate symbols, and the PDSCH start position in the slot is set to any location (symbol) in the slot.
  • the number of PDSCH-length candidate symbols corresponds to, for example, a predetermined number (2, 4, or 7 symbols). That is, the PDSCH start position is set flexibly.
  • PDSCH start position in the slot is selected from preset candidate symbols (for example, predetermined symbol index # 0), and the number of PDSCH allocation symbols (PDSCH length) is within a range from a predetermined value (Y) to 14. Selected. Y is 4, for example.
  • mini-slot based scheduling (also referred to as PUSCH mapping type B) is applied in UL (for example, PUSCH transmission).
  • the number of PDSCH allocation symbols (PDSCH length) is selected from a preset number of candidate symbols (1 to 14 symbols), and the PUSCH start position in the slot is set to any location (symbol) in the slot. . That is, the start position of PUSCH is set flexibly.
  • PDSCH and PUSCH that are not minislot-based scheduling may be referred to as PDSCH / PUSCH mapping type A
  • PDSCH and PUSCH that are minislot-based scheduling may be referred to as PDSCH / PUSCH mapping type B
  • DMRSs may be inserted at different positions according to the PDSCH / PUSCH mapping type.
  • which mapping type PDSCH / PUSCH is used may be set by higher layer signaling such as RRC, may be notified by DCI, or may be recognized by a combination of both. Also good.
  • UCI transmission and UL data (UL-SCH) transmission occur at the same timing, UCI and UL data are multiplexed and transmitted on PUSCH (UCI). piggyback on PUSCH and UCI on PUSCH).
  • NR can also use UCI on PUSCH as in the existing LTE system.
  • UCI on PUSCH allocation is scheduled on a symbol basis, how to control UCI transmission becomes a problem.
  • the present inventors focused on the case where PUSCH and PUCCH are allocated in non-slot units (for example, symbol units), and the uplink control information in the case where the transmission periods (or allocation areas) of PUSCH and PUCCH overlap.
  • the transmission control has been studied to arrive at the present invention.
  • DFT-s-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • CY multicarrier waveform
  • the DFT spread OFDM waveform can be rephrased as a UL signal or the like to which DFT spreading (also referred to as DFT precoding) is applied (with DFT-spreading), and the DFT spreading is not applied to the CP-OFDM waveform (without DFT- spreading) may be rephrased as a UL signal or the like.
  • DFT spreading also referred to as DFT precoding
  • DFT-spreading may be rephrased as a UL signal or the like.
  • the DFT spread OFDM waveform (hereinafter also referred to as the first waveform) is a single carrier waveform, it is possible to prevent an increase in peak-to-average power ratio (PAPR).
  • PAPR peak-to-average power ratio
  • the allocation of uplink data (PUSCH) is limited to physical resource blocks (PRBs) in which the allocation is continuous.
  • DFT spreading for UL transmission eg, PUSCH
  • DFT spread OFDM waveform hereinafter also referred to as first waveform
  • CP-OFDM waveform hereinafter also referred to as second waveform
  • the base station uses the upper layer signaling and / or downlink control information to set whether to apply the first waveform to the user terminal.
  • the waveform setting is also called transform-precoding, and when the transform-precoding is “enabled”, the first waveform (DFT spread OFDM waveform) is applied to transmit the PUSCH. I do.
  • the UE transmits the PUSCH without applying the first waveform (for example, applying the CP-OFDM waveform).
  • the present inventors have conceived of controlling UCI transmission (for example, whether or not to apply frequency hopping) based on the setting of transform precoding in UCI transmission using PUSCH.
  • the inventors have conceived of controlling transform precoding used for UCI transmission regardless of the set transform precoding.
  • UCI when UCI is piggybacked (PUI on PUSCH) to PUSCH, it may be possible to control so that UCI and a demodulation reference signal (for example, DMRS) are not frequency multiplexed (FDM).
  • DMRS demodulation reference signal
  • the present inventors have conceived of performing UCI on PUSCH using a predetermined PUSCH configuration when UCI and DMRS FDM are restricted in UCI on PUSCH.
  • PUCCH configuration 1 and 2 show examples of PUCCH configurations applicable in this embodiment. 1A-E corresponds to PUCCH format 2, and FIGS. 2A-E correspond to PUCCH format 0.
  • FIG. 1A shows a case where PUCCH is set to one symbol.
  • the uplink control information hereinafter also referred to as UCI
  • the demodulation reference signal hereinafter also referred to as DMRS
  • FIG. 1B-D shows a case where PUCCH is set to 2 symbols and frequency hopping (hereinafter also referred to as FH) is not applied.
  • UCI and DMRS may be configured to be frequency-multiplexed over two symbols (see FIG. 1B), or UCI and DMRS may be configured to be multiplexed (time multiplexed) on different symbols (see FIG. 1C).
  • FIG. 1D shows a configuration in which UCI is multiplexed on only one symbol, DMRS is multiplexed on two symbols, and UCI and DMRS are frequency-multiplexed in symbols on which UCI is multiplexed (see FIG. 1D).
  • FIG. 1E shows a case where PUCCH is set to 2 symbols and FH is applied.
  • UCI and DMRS may be frequency-multiplexed in each symbol to be FH.
  • FIG. 2A shows a case where PUCCH is set to one symbol.
  • PUCCH transmission may be performed by applying a predetermined PUCCH configuration.
  • the predetermined PUCCH configuration may be a sequence-based PUCCH (Sequence-based PUCCH) configuration in which a reference signal is not included, or a PUCCH configuration in which a reference signal is inserted before DFT.
  • FIG. 2B-D shows a case where PUCCH is set to 2 symbols and FH is not applied.
  • a configuration in which a predetermined PUCCH configuration is allocated over two symbols may be used, or a configuration in which UCI and DMRS are multiplexed (time multiplexed) on different symbols (FIGS. 2C and D).
  • the DMRSs may be arranged so as to be dispersed in the frequency direction (FIG. 2C) or may be arranged so as to be continuous in the frequency direction (FIG. 2D).
  • FIG. 2E shows a case where PUCCH is set to 2 symbols and FH is applied.
  • a predetermined PUCCH configuration may be arranged in each symbol to be FH.
  • FIGS. 1 and 2 may be applied. For example, at least one of FIGS. 1A, B, and E may be applied to PUCCH format 2, and at least one of FIGS. 2A, B, and E may be applied to PUCCH format 0.
  • FIG. 3 and 4 show examples of PUSCH configurations applicable in the present embodiment.
  • the PUSCH configuration shown in FIG. 3 and FIG. 4 includes at least the case of multiplexing UL data (for example, UL-SCH) and UCI, the case of multiplexing UL data and UCI, and the case of multiplexing only UCI. Available for one.
  • 3A to 3E correspond to a case where transform precoding is not applied (disabled)
  • FIGS. 4A to 4E correspond to a case where transform precoding is applied (enabled).
  • the PUSCH configuration applicable in the present embodiment is not limited to the configurations shown in FIGS.
  • FIG. 3A shows a case where PUSCH is set to one symbol.
  • at least one of UCI and UL data (hereinafter also referred to as UCI / UL data) and DMRS may be frequency-multiplexed.
  • FIGS. 3B-D show a case where PUSCH is set to 2 symbols and FH is not applied.
  • UCI / UL data and DMRS may be frequency-multiplexed over two symbols (see FIG. 3B), or UCI / UL data and DMRS may be multiplexed (time-multiplexed) into different symbols (see FIG. 3C). ).
  • UCI / UL data may be multiplexed on only one symbol
  • DMRS may be multiplexed over two symbols
  • UCI and DMRS may be frequency-multiplexed in a symbol on which UCI / UL data is multiplexed (see FIG. 3D). .
  • FIG. 3E shows a case where PUSCH is set to 2 symbols and FH is applied.
  • UCI / UL data and DMRS may be frequency-multiplexed in each symbol to be FH.
  • FIG. 4A shows a case where PUSCH is set to one symbol.
  • PUSCH transmission may be performed by applying a predetermined PUSCH configuration.
  • the predetermined PUSCH configuration may be a sequence-based PUSCH (Sequence-based PUSCH) configuration that does not include a reference signal, or a PUSCH configuration in which a reference signal is inserted before DFT.
  • FIG. 4B-D shows a case where PUSCH is set to 2 symbols and FH is not applied.
  • a configuration in which a predetermined PUSCH configuration is allocated over two symbols see FIG. 4B
  • a configuration in which UCI / UL data and DMRS are multiplexed (time multiplexed) in different symbols see FIGS. 4C and D.
  • the DMRS may be arranged so as to be dispersed in the frequency direction (see FIG. 4C) or may be arranged so as to be continuous in the frequency direction (see FIG. 4D).
  • FIG. 4E shows a case where PUSCH is set to 2 symbols and FH is applied.
  • a predetermined PUSCH configuration may be arranged in each symbol to be FH.
  • FIGS. 3 and 4 may be applied.
  • at least one of FIGS. 3A, B, and E may be applied when transform precoding is not applied, and FIG. 4D may be applied when transform precoding is applied.
  • FIG. 3C may be applied when transform precoding is not applied, and FIG. 4C or 4D may be applied when transform precoding is applied.
  • UCI and DMRS can be set without frequency multiplexing in UCI on PUSCH.
  • UCI transmission control transmission control of UCI in the case where the transmission periods of the uplink control channel (for example, PUCCH) and the uplink shared channel (for example, PUSCH) overlap will be described using a plurality of control examples as examples.
  • the following control example can be applied to the case where the start symbol of the PUCCH and the start symbol of the PUSCH coincide at least in a predetermined slot (aligned). Even when the PUCCH and PUSCH start symbols do not match, the following control example may be applicable when at least a part of the PUCCH transmission period and the PUSCH transmission period overlap.
  • Control example 1 corresponds to the case where the transmission periods of the 2-symbol PUCCH for which application of FH is set and the 2-symbol PUSCH for which application of FH is set overlap.
  • the UE controls UCI transmission using at least one of the following cases 1-6.
  • at least one operation in the following cases 1-6 may be limited.
  • the UE may control UCI transmission on the assumption that the UCI transmission method in the restricted configuration is not applied.
  • the UE drops the PUCCH and transmits a 2-symbol PUSCH (assigns the PUSCH to 2 symbols). Moreover, UE transmits FSCH by applying PUH. That is, UL data is transmitted without multiplexing UCI on PUSCH. In this case, the UE may use at least one of the PUSCH configurations of FIGS. 3E and 4E.
  • the UE drops the PUSCH and transmits a 2-symbol PUCCH (assigns a PUCCH to 2 symbols). Moreover, UE transmits FUCCH by applying FH. That is, UCI transmits using PUCCH, and UL data is not transmitted. In this case, the UE may use at least one of the PUCCH configurations of FIGS. 1E and 2E.
  • UE transmits UCI using PUSCH to which FH is not applied. That is, the UCI is multiplexed on the PUSCH (UCI on PUSCH) without using the PUCCH. Moreover, UE may control transmission of PUSCH based on the transform precoding set from the base station.
  • the UE when the application of transform precoding is set (enabled), the UE transmits the PUSCH by applying the transform precoding (for example, using DFT-s-OFDM).
  • the UE When application of transform precoding is not configured (disabled), the UE performs PUSCH transmission without applying transform precoding (for example, using CP-OFDM).
  • the UE may use at least one of the PUSCH configurations of FIGS. 3B-D and 4B-D depending on whether transform precoding is applied.
  • the UE may use at least one of the PUSCH configurations of FIGS. 3C, 4C, and 4D.
  • UCI can be transmitted without frequency multiplexing (FDM) of UCI and DMRS in UCI on PUSCH. Therefore, even when the FDM between UCI and DMRS in UCI on PUSCH is restricted, UCI transmission using PUSCH can be performed appropriately.
  • FDM frequency multiplexing
  • the UE transmits UCI using PUSCH to which FH is applied and transform precoding is not applied regardless of the presence or absence (or setting content) of transform precoding.
  • the UE performs UCI on PUSCH without applying transform precoding even when application of transform precoding is set (enabled).
  • the UE may transmit UCI using the PUSCH configuration of FIG. 3E.
  • the UE determines whether FH is applied to the PUSCH based on the presence / absence (or setting content) of transform precoding, and transmits the UCI using the PUSCH. For example, when application of transform precoding is set (enabled), FH is not applied, and when application of transform precoding is not set (disabled), FH is applied.
  • the UE when application of transform precoding is set (enabled), the UE performs UCI on PUSCH without applying FH and applying transform precoding.
  • the UE may transmit UCI using at least one PUSCH configuration of FIGS. 4B-D. Thereby, UCI transmission can be performed with low PAPR.
  • transform precoding when application of transform precoding is not set (disabled), transform precoding is not applied, and FH is applied to perform UCI on PUSCH.
  • the UE may transmit UCI using the PUSCH configuration of FIG. 3E. As a result, a frequency diversity effect can be obtained.
  • the UE performs UCI on PUSCH based on conditions (or parameters) set for PUSCH.
  • the condition set for PUSCH may be at least one of the number of symbols, whether FH is applied, and whether transform precoding is applied.
  • the presence / absence of application of transform precoding is determined by an application instruction for a configuration using a relatively low PAPR (FIG. 3A-E) or an application instruction for a configuration using a relatively high PAPR (FIG. 4A-E). There may be.
  • the UE when 2 symbols and PUSCH to which FH hopping is applied are set, the UE performs UCI on PUSCH by using the PUSCH to which 2 symbols and FH are applied. In this way, by applying the conditions set for the PUSCH, the UCI on PUSCH can be performed using the conditions set by the base station as they are.
  • Control example 2 corresponds to a case where the transmission periods of 2-symbol PUCCH for which FH non-application is set (or FH application is not set) and 2-symbol PUSCH for which FH application is set overlap.
  • the UE controls UCI transmission using at least one of the following cases 1-6.
  • at least one operation in the following cases 1-6 may be limited.
  • the UE may control UCI transmission on the assumption that the UCI transmission method in the restricted configuration is not applied.
  • the UE drops the PUCCH and transmits a 2-symbol PUSCH (assigns the PUSCH to 2 symbols). Moreover, UE transmits FSCH by applying PUH.
  • the UE may perform the same control as the case 1 of the control example 2 in the same manner as the case 1 of the control example 1 described above.
  • the UE drops the PUSCH and transmits a 2-symbol PUCCH (assigns a PUCCH to 2 symbols). Moreover, UE transmits PUCCH without applying FH. That is, UCI transmits using PUCCH, and UL data is not transmitted. In this case, the UE may use at least one of the PUCCH configurations of FIGS. 1B-D and 2B-D.
  • UE transmits UCI using PUSCH to which FH is not applied. That is, the UCI is multiplexed on the PUSCH (UCI on PUSCH) without using the PUCCH. In this case, FH non-application set in PUCCH is applied also to UCI on PUSCH. Moreover, UE may control transmission of PUSCH based on the transform precoding set from the base station.
  • the UE may perform the same control as the case 3 of the control example 2 in the same manner as the case 3 of the control example 1 described above.
  • the UE transmits UCI using PUSCH to which FH is applied and transform precoding is not applied regardless of the presence or absence (or setting content) of transform precoding.
  • the FH application set to PUSCH is also applied to UCI on PUSCH.
  • the UE may perform the same control as the case 4 of the control example 2 in the same manner as the case 4 of the control example 1 described above.
  • the UE determines whether FH is applied to the PUSCH based on the presence / absence (or setting content) of transform precoding, and transmits the UCI using the PUSCH.
  • the UE may perform the same control as the case 5 of the control example 2 as in the case 5 of the control example 1 described above.
  • the UE performs UCI on PUSCH based on conditions (or parameters) set for PUSCH.
  • the UE may control the case 6 of the control example 2 in the same manner as the case 6 of the control example 1 described above.
  • Control example 3 corresponds to a case where the transmission periods of the 2-symbol PUCCH for which application of FH is set and the 2-symbol PUSCH for which application of FH is not set overlap.
  • the UE controls UCI transmission using at least one of the following cases 1-6.
  • at least one operation in the following cases 1-6 may be limited.
  • the UE may control UCI transmission on the assumption that the UCI transmission method in the restricted configuration is not applied.
  • the UE drops the PUCCH and transmits a 2-symbol PUSCH (assigns the PUSCH to 2 symbols). Moreover, UE transmits PUSCH without applying FH. That is, UL data is transmitted without multiplexing UCI on PUSCH. In this case, the UE may use at least one of the PUSCH configurations of FIGS. 3B-D and 4B-D.
  • the UE drops the PUSCH and transmits a 2-symbol PUCCH (assigns a PUCCH to 2 symbols). Moreover, UE transmits FUCCH by applying FH. That is, UCI transmits using PUCCH, and UL data is not transmitted. In this case, the UE may use at least one of the PUCCH configurations of FIGS. 1E and 2E.
  • UE transmits UCI using PUSCH to which FH is not applied. That is, the UCI is multiplexed on the PUSCH (UCI on PUSCH) without using the PUCCH.
  • FH non-application set to PUSCH is applied also to UCI on PUSCH.
  • UE may control transmission of PUSCH based on the transform precoding set from the base station.
  • the UE may perform the same control as the case 3 of the control example 3 in the same manner as the case 3 of the control example 1 described above.
  • the UE transmits UCI (for example, 2 symbols UCI) using PUSCH to which FH is applied and transform precoding is not applied regardless of whether or not transform precoding is set (or setting content). Do.
  • FH application set to PUCCH is also applied to UCI on PUSCH.
  • the UE may control the case 4 of the control example 3 in the same manner as the case 4 of the control example 1 described above.
  • the UE determines whether FH is applied to the PUSCH based on the presence / absence (or setting content) of transform precoding, and transmits the UCI using the PUSCH.
  • the UE may control as the case 5 of the control example 3 in the same manner as the case 5 of the control example 1 described above.
  • the UE performs UCI on PUSCH based on conditions (or parameters) set for PUSCH.
  • the UE may control the case 6 of the control example 3 in the same manner as the case 6 of the control example 1 described above.
  • Control example 4 corresponds to a case where the transmission periods of the 2-symbol PUCCH for which FH non-application is set and the 2-symbol PUSCH for which FH non-application is set overlap.
  • the UE controls UCI transmission using at least one of the following cases 1-6.
  • at least one operation in the following cases 1-6 may be limited.
  • the UE may control UCI transmission on the assumption that the UCI transmission method in the restricted configuration is not applied.
  • the UE drops the PUCCH and transmits a 2-symbol PUSCH (assigns the PUSCH to 2 symbols). Moreover, UE transmits PUSCH without applying FH.
  • the UE may perform the same control as the case 1 of the control example 4 in the same manner as the case 1 of the control example 3 described above.
  • the UE drops the PUSCH and transmits a 2-symbol PUCCH (assigns a PUCCH to 2 symbols). Moreover, UE transmits PUCCH without applying FH. That is, UCI transmits using PUCCH, and UL data is not transmitted. In this case, the UE may use at least one of the PUCCH configurations of FIGS. 1B-D and 2B-D.
  • [Case 3] UE transmits UCI using PUSCH to which FH is not applied. That is, the UCI is multiplexed on the PUSCH (UCI on PUSCH) without using the PUCCH.
  • FH non-application set to PUCCH and PUSCH is applied to UCI on PUSCH.
  • the UE may control PUSCH transmission based on transform precoding set by the base station.
  • the UE may control as the case 3 of the control example 4 in the same manner as the case 3 of the control example 1 described above.
  • the UE transmits UCI using 2-symbol PUSCH to which transform precoding is applied and FH is not applied, regardless of whether transform precoding is set (or setting content).
  • FH non-application set to PUCCH and PUSCH is applied to UCI on PUSCH.
  • the UE performs UCI on PUSCH without applying FH and applying transform precoding.
  • the UE may perform UCI transmission using the PUSCH configuration of at least one of the PUSCH configurations of FIGS. 4B-D (eg, FIG. 4D).
  • the UE determines whether FH is applied to the PUSCH based on the presence / absence (or setting content) of transform precoding, and transmits the UCI using the PUSCH.
  • the UE may control the case 5 of the control example 4 in the same manner as the case 5 of the control example 1 described above.
  • the UE performs UCI on PUSCH based on conditions (or parameters) set for PUSCH.
  • the UE may perform the same control as the case 6 of the control example 4 in the same manner as the case 6 of the control example 1 described above.
  • Control example 5 corresponds to the case where the transmission periods (for example, start symbols) of one symbol PUCCH and two symbols of PUSCH for which application of FH is set overlap.
  • the UE controls UCI transmission using at least one of the following cases 1-7.
  • at least one operation in the following cases 1-7 may be limited.
  • the UE may control UCI transmission on the assumption that the UCI transmission method in the restricted configuration is not applied.
  • the UE drops the PUCCH and transmits a 2-symbol PUSCH (assigns the PUSCH to 2 symbols). Moreover, UE transmits FSCH by applying PUH. That is, UL data is transmitted without multiplexing UCI on PUSCH. In this case, the UE may use at least one of the PUSCH configurations of FIGS. 3E and 4E.
  • the UE drops the PUSCH and transmits one symbol PUCCH (assigns PUCCH to one symbol). That is, UCI transmits using PUCCH, and UL data is not transmitted.
  • the UE may use at least one of the PUCCH configurations of FIGS. 1A and 2A.
  • the UE transmits UCI using 2-symbol PUSCH to which FH is not applied. That is, the UCI is multiplexed on the PUSCH (UCI on PUSCH) without using the PUCCH. In this case, the UE may arrange UCI in one symbol (for example, the second symbol) of two symbols of PUSCH or in both.
  • the UE may control PUSCH transmission based on transform precoding set by the base station. For example, when application of transform precoding is set (enabled), the UE transmits PUSCH by applying transform precoding (for example, using DFT-s-OFDM). When application of transform precoding is not configured (disabled), the UE performs PUSCH transmission without applying transform precoding (for example, using CP-OFDM).
  • transform precoding for example, using DFT-s-OFDM
  • transform precoding for example, using CP-OFDM
  • the UE may use at least one of the PUSCH configurations of FIGS. 3B-D and 4B-D depending on whether transform precoding is applied.
  • the UE may use at least one of the PUSCH configurations of FIGS. 3C, 4C, and 4D.
  • UCI can be transmitted without frequency multiplexing (FDM) of UCI and DMRS in UCI on PUSCH. Therefore, even when the FDM between UCI and DMRS in UCI on PUSCH is restricted, UCI transmission using PUSCH can be performed appropriately.
  • FDM frequency multiplexing
  • the UE transmits UCI using PUSCH (for example, two-symbol PUSCH) to which FH is applied and transform precoding is not applied regardless of the presence / absence (or setting content) of transform precoding.
  • PUSCH for example, two-symbol PUSCH
  • the UE performs UCI on PUSCH without applying transform precoding even when application of transform precoding is set (enabled).
  • the UE may transmit UCI using the PUSCH configuration of FIG. 3E.
  • the UE transmits PUCCH and PUSCH.
  • control is performed so that PUCCH and PUSCH do not overlap with the same symbol.
  • the first symbol PUCCH is transmitted, and the first PUSCH symbol is not transmitted (for example, puncture processing is performed), and the second symbol PUSCH is transmitted.
  • the UE can transmit UCI using PUCCH, and can transmit UL data using PUSCH.
  • the UE may transmit the PUCCH using at least one of the PUCCH configurations in FIGS. 1A and 2A.
  • the UE may transmit the PUSCH without applying the transform precoding regardless of whether or not the transform precoding is set (or setting content). For example, the UE transmits the PUSCH without applying the transform precoding even if the application of the transform precoding is set (enabled). In this case, the UE may transmit UCI using the PUSCH configuration of FIG. 3A.
  • the UE determines the presence / absence of application of FH to the PUSCH based on the presence / absence (or setting content) of transform precoding, and transmits the UCI using the 2-symbol PUSCH (does not transmit the PUCCH). For example, when application of transform precoding is set (enabled), FH is not applied, and when application of transform precoding is not set (disabled), FH is applied.
  • the UE when application of transform precoding is set (enabled), the UE performs 2-symbol UCI on PUSCH without applying FH and applying transform precoding.
  • the UE may transmit UCI using at least one PUSCH configuration of FIGS. 4B-D. Thereby, UCI transmission can be performed with low PAPR.
  • the UE performs UCI on PUSCH based on conditions (or parameters) set for PUSCH.
  • the UE may control the case 7 of the control example 5 in the same manner as the case 6 of the control example 1 described above.
  • Control example 6 corresponds to a case where the transmission periods (for example, start symbols) of one symbol PUCCH and two symbols PUSCH for which FH non-application is set overlap.
  • the UE controls UCI transmission using at least one of the following cases 1-7.
  • at least one operation in the following cases 1-7 may be limited.
  • the UE may control UCI transmission on the assumption that the UCI transmission method in the restricted configuration is not applied.
  • the UE drops the PUCCH and transmits a 2-symbol PUSCH (assigns the PUSCH to 2 symbols). Moreover, UE transmits PUSCH without applying FH. That is, UL data is transmitted without multiplexing UCI on PUSCH. In this case, the UE may use at least one of the PUSCH configurations of FIGS. 3B-D and 4B-D.
  • the UE drops the PUSCH and transmits one symbol PUCCH (assigns PUCCH to one symbol). That is, UCI transmits using PUCCH, and UL data is not transmitted.
  • the UE may perform the same control as the case 2 of the control example 6 as in the case 2 of the control example 5 described above.
  • the UE transmits UCI using 2-symbol PUSCH to which FH is not applied. That is, the UCI is multiplexed on the PUSCH (UCI on PUSCH) without using the PUCCH. In this case, FH non-application set in PUSCH is also applied to UCI on PUSCH.
  • the UE may arrange UCI in one symbol (for example, the second symbol) of two symbols of PUSCH or in both. Moreover, UE may control transmission of PUSCH based on the transform precoding set from the base station.
  • the UE may perform the same control as the case 3 of the control example 6 in the same manner as the case 3 of the control example 5 described above.
  • the UE transmits UCI using PUSCH (for example, two-symbol PUSCH) to which FH is applied and transform precoding is not applied regardless of the presence / absence (or setting content) of transform precoding.
  • PUSCH for example, two-symbol PUSCH
  • the UE may control the case 4 of the control example 6 in the same manner as the case 4 of the control example 5 described above.
  • the UE transmits PUCCH and PUSCH.
  • control is performed so that PUCCH and PUSCH do not overlap with the same symbol.
  • the first symbol PUCCH is transmitted, and the first PUSCH symbol is not transmitted (for example, puncture processing is performed), and the second symbol PUSCH is transmitted.
  • the UE can transmit UCI using PUCCH, and can transmit UL data using PUSCH.
  • the UE may perform the same control as the case 5 of the control example 6 in the same manner as the case 5 of the control example 5.
  • the UE determines the presence / absence of application of FH to the PUSCH based on the presence / absence (or setting content) of transform precoding, and transmits the UCI using the 2-symbol PUSCH (does not transmit the PUCCH). For example, when application of transform precoding is set (enabled), FH is not applied, and when application of transform precoding is not set (disabled), FH is applied.
  • the UE may control as the case 6 of the control example 6 in the same manner as the case 6 of the control example 5 described above.
  • the UE performs UCI on PUSCH based on conditions (or parameters) set for PUSCH.
  • the UE may perform the same control as the case 7 of the control example 6 in the same manner as the case 6 of the control example 1 described above.
  • Control example 7 2 symbols PUCCH_FH present / 1 symbol PUSCH>
  • the control example 7 corresponds to a case where the transmission periods (for example, start symbols) of 2 symbols of PUCCH to which FH application is set and 1 symbol of PUSCH overlap.
  • the UE controls UCI transmission using at least one of the following cases 1-6.
  • at least one operation in the following cases 1-6 may be limited.
  • the UE may control UCI transmission on the assumption that the UCI transmission method in the restricted configuration is not applied.
  • the UE drops the PUCCH and transmits one symbol of PUSCH (assigns PUSCH to one symbol). That is, UL data is transmitted without multiplexing UCI on PUSCH.
  • the UE may use at least one of the PUSCH configurations of FIGS. 3A and 4A.
  • the UE drops the PUSCH and transmits a 2-symbol PUCCH (assigns a PUCCH to 2 symbols). Moreover, UE transmits FUCCH by applying FH. That is, UCI transmits using PUCCH, and UL data is not transmitted. In this case, the UE may use at least one of the PUCCH configurations of FIGS. 1E and 2E.
  • the UE determines at least one of the presence / absence of application of FH to the PUSCH and the number of symbols of the PUSCH based on the presence / absence (or setting content) of transform precoding, and transmits the UCI using the PUSCH. .
  • the UE when the application of transform precoding is set (enabled), the UE performs UCI transmission (UCI on PUSCH) using 2-symbol PUSCH to which FH is not applied.
  • Transform precoding may be applied to the PUSCH.
  • a symbol subsequent to a predetermined symbol for which PUSCH is set (for example, the next symbol) may be used as the second symbol.
  • a predetermined PUSCH configuration for example, FIGS. 4A, 4B, and 4E
  • a PUSCH configuration for example, FIGS. 4A, 4B, and 4E
  • the UE may use at least one of the PUSCH configurations of FIGS. 4B-D.
  • the UE when the application of transform precoding is not set (disabled), the UE performs UCI transmission (UCI on PUSCH) using one symbol PUSCH.
  • Transform precoding need not be applied to PUSCH.
  • the UE may use the PUSCH configuration of FIG. 3A. Thereby, UCI on PUSCH can be performed using 1 symbol previously set with respect to PUSCH.
  • the UE transmits UCI using 2-symbol PUSCH to which transform precoding is applied and FH is not applied, regardless of whether transform precoding is set (or setting content).
  • the UE performs UCI on PUSCH without applying FH and applying transform precoding.
  • the UE may transmit UCI using at least one of the PUSCH configurations of FIGS. 4B-D (eg, FIG. 4D).
  • the UE does not apply transform precoding and transmits UCI using one symbol PUSCH (does not transmit PUCCH).
  • UCI on PUSCH can be performed using the number of symbols set in advance for PUSCH transmission (here, one symbol).
  • the UE does not apply transform precoding and performs UCI on PUSCH with one symbol.
  • the UE may transmit UCI using the PUSCH configuration of FIG. 3A.
  • the UE performs UCI on PUSCH based on conditions (or parameters) set for PUSCH.
  • the UE may control the case 6 of the control example 7 in the same manner as the case 6 of the control example 1 described above.
  • Control example 8 corresponds to a case where the transmission periods (for example, start symbols) of two symbols of PUCCH for which FH non-application is set and one symbol of PUSCH overlap.
  • the UE controls UCI transmission using at least one of the following cases 1-6.
  • at least one operation in the following cases 1-6 may be limited.
  • the UE may control UCI transmission on the assumption that the UCI transmission method in the restricted configuration is not applied.
  • the UE drops the PUCCH and transmits one symbol of PUSCH (assigns PUSCH to one symbol). That is, UL data is transmitted without multiplexing UCI on PUSCH.
  • the UE may perform the same control as the case 1 of the control example 8 in the same manner as the case 1 of the control example 7.
  • the UE drops the PUSCH and transmits a 2-symbol PUCCH (assigns a PUCCH to 2 symbols). Moreover, UE transmits PUCCH without applying FH. That is, UCI transmits using PUCCH, and UL data is not transmitted. In this case, the UE may use at least one of the PUCCH configurations of FIGS. 1B-D and 2B-D.
  • the UE determines at least one of the presence / absence of application of FH to the PUSCH and the number of symbols of the PUSCH based on the presence / absence (or setting content) of transform precoding, and transmits the UCI using the PUSCH.
  • the UE may control the case 3 of the control example 8 in the same manner as the case 3 of the control example 7 described above.
  • the UE transmits UCI using 2-symbol PUSCH to which transform precoding is applied and FH is not applied, regardless of whether transform precoding is set (or setting content).
  • the UE may perform the same control as the case 4 of the control example 8 in the same manner as the case 4 of the control example 7 described above.
  • the UE does not apply transform precoding and transmits UCI using one symbol PUSCH (does not transmit PUCCH).
  • UCI on PUSCH can be performed using the number of symbols set in advance for PUSCH transmission (here, one symbol).
  • the UE may perform the same control as the case 5 of the control example 8 in the same manner as the case 5 of the control example 7 described above.
  • the UE performs UCI on PUSCH based on conditions (or parameters) set for PUSCH.
  • the UE may perform the same control as the case 6 of the control example 8 in the same manner as the case 6 of the control example 1 described above.
  • Control example 9 corresponds to a case where the transmission periods of one symbol PUCCH and one symbol PUSCH overlap.
  • the UE controls UCI transmission using at least one of the following cases 1-6.
  • at least one operation in the following cases 1-6 may be limited.
  • the UE may control UCI transmission on the assumption that the UCI transmission method in the restricted configuration is not applied.
  • the UE drops the PUCCH and transmits one symbol of PUSCH (assigns PUSCH to one symbol). That is, UL data is transmitted without multiplexing UCI on PUSCH.
  • the UE may use at least one of the PUSCH configurations of FIGS. 3A and 4A.
  • the UE drops the PUSCH and transmits one symbol PUCCH (assigns PUCCH to one symbol). That is, UCI transmits using PUCCH, and UL data is not transmitted.
  • the UE may use at least one of the PUCCH configurations of FIGS. 1A and 2A.
  • the UE determines the number of PUSCH symbols based on the presence / absence (or setting content) of transform precoding, and transmits UCI using the PUSCH.
  • the UE when the application of transform precoding is set (enabled), the UE performs UCI transmission (UCI on PUSCH) using 2-symbol PUSCH to which FH is not applied.
  • Transform precoding may be applied to the PUSCH.
  • a symbol subsequent to a predetermined symbol for which PUSCH is set (for example, the next symbol) may be used as the second symbol.
  • a predetermined PUSCH configuration for example, FIGS. 4A, 4B, and 4E
  • a PUSCH configuration for example, FIGS. 4A, 4B, and 4E
  • the UE may use at least one of the PUSCH configurations of FIGS. 4B-D.
  • the UE when the application of transform precoding is not set (disabled), the UE performs UCI transmission (UCI on PUSCH) using one symbol PUSCH.
  • Transform precoding need not be applied to PUSCH.
  • the UE may use the PUSCH configuration of FIG. 3A. Thereby, UCI on PUSCH can be performed using 1 symbol previously set with respect to PUSCH.
  • the UE does not apply transform precoding regardless of whether or not transform precoding is set (or setting content), and transmits UCI using one symbol PUSCH.
  • UCI can be transmitted using one symbol set in advance for PUSCH.
  • the UE performs UCI on PUSCH with one symbol without applying transform precoding even when application of transform precoding is set (enabled).
  • the UE may transmit UCI using the PUSCH configuration of FIG. 3A.
  • the UE transmits UCI using 2-symbol PUSCH to which transform precoding is applied and FH is not applied, regardless of whether transform precoding is set (or setting content).
  • the UE performs UCI on PUSCH without applying FH and applying transform precoding.
  • the UE may transmit UCI using at least one of the PUSCH configurations of FIGS. 4B-D (eg, FIG. 4D).
  • the UE performs UCI on PUSCH based on conditions (or parameters) set for PUSCH.
  • the UE may control the case 6 of the control example 9 in the same manner as the case 6 of the control example 1 described above.
  • wireless communication system Wireless communication system
  • communication is performed using any one or a combination of the wireless communication methods according to the above embodiments of the present invention.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G. 5th generation mobile communication system
  • NR New Radio
  • FRA Full Radio Access
  • New-RAT Radio Access Technology
  • the radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 at the same time using CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC) (for example, 5 or less CCs, 6 or more CCs).
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • the user terminal 20 can perform communication using time division duplex (TDD) and / or frequency division duplex (FDD) in each cell.
  • TDD time division duplex
  • FDD frequency division duplex
  • a single neurology may be applied, or a plurality of different neurology may be applied.
  • the wireless base station 11 and the wireless base station 12 are connected by wire (for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly. May be.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
  • SC-FDMA single carrier-frequency division multiple access
  • Frequency Division Multiple Access and / or OFDMA is applied.
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single carrier transmission in which the system bandwidth is divided into bands each composed of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between terminals. It is a method.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Moreover, MIB (Master Information Block) is transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
  • scheduling information may be notified by DCI.
  • DCI for scheduling DL data reception may be referred to as DL assignment
  • DCI for scheduling UL data transmission may be referred to as UL grant.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the PHICH transmits HARQ (Hybrid Automatic Repeat reQuest) delivery confirmation information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) to the PUSCH.
  • HARQ Hybrid Automatic Repeat reQuest
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • an uplink shared channel (PUSCH) shared by each user terminal 20
  • an uplink control channel (PUCCH: Physical Uplink Control Channel)
  • a random access channel (PRACH: Physical Random Access Channel)
  • User data, higher layer control information, etc. are transmitted by PUSCH.
  • downlink radio quality information CQI: Channel Quality Indicator
  • delivery confirmation information SR
  • scheduling request etc.
  • a random access preamble for establishing connection with the cell is transmitted by the PRACH.
  • a cell-specific reference signal CRS
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • a measurement reference signal SRS: Sounding Reference Signal
  • a demodulation reference signal DMRS
  • the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
  • FIG. 6 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ transmission processing
  • scheduling transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing
  • IFFT Inverse Fast Fourier Transform
  • precoding processing precoding processing, and other transmission processing
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • the transmission / reception unit 103 receives uplink control information using at least one of an uplink control channel and an uplink shared channel set in one or a plurality of symbols. Further, the transmission / reception unit 103 may transmit a signal (for example, higher layer signaling) that sets whether to apply transform precoding, a signal (for example, higher layer signaling) that sets whether to apply FH, or the like.
  • a signal for example, higher layer signaling
  • a signal for example, higher layer signaling
  • FIG. 7 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present invention.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
  • the control unit (scheduler) 301 controls the entire radio base station 10.
  • the control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
  • the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal allocation in the mapping unit 303, and the like.
  • the control unit 301 also controls signal reception processing in the reception signal processing unit 304, signal measurement in the measurement unit 305, and the like.
  • the control unit 301 schedules system information, downlink data signals (for example, signals transmitted by PDSCH), downlink control signals (for example, signals transmitted by PDCCH and / or EPDCCH, delivery confirmation information, etc.) (for example, resource Control).
  • the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal.
  • the control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
  • control unit 301 includes an uplink data signal (for example, a signal transmitted on PUSCH), an uplink control signal (for example, a signal transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.), a random access preamble (for example, Scheduling of the uplink reference signal and the like.
  • uplink data signal for example, a signal transmitted on PUSCH
  • uplink control signal for example, a signal transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.
  • a random access preamble for example, Scheduling of the uplink reference signal and the like.
  • control unit 301 controls the presence / absence of transform precoding setting, the number of symbols assigned to the uplink control channel and the uplink shared channel, the presence / absence of application of FH, and the like.
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates, for example, a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301.
  • the DL assignment and UL grant are both DCI and follow the DCI format.
  • the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
  • CSI Channel State Information
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301.
  • the reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal.
  • the measurement unit 305 includes received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
  • Signal strength for example, RSSI (Received Signal Strength Indicator)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 301.
  • FIG. 8 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment of the present invention.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission processing for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, etc. 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 transmits uplink control information using at least one of an uplink control channel and an uplink shared channel set in one or a plurality of symbols. Further, the transmission / reception unit 203 may receive a signal (for example, higher layer signaling) that sets whether to apply transform precoding, a signal (for example, higher layer signaling) that sets whether to apply FH, or the like.
  • a signal for example, higher layer signaling
  • a signal for example, higher layer signaling
  • FIG. 9 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal allocation in the mapping unit 403, and the like.
  • the control unit 401 also controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of retransmission control for the downlink control signal and / or the downlink data signal.
  • control unit 401 controls transmission of uplink control information based on at least one of the presence / absence of transform precoding setting, the number of symbols assigned to the uplink control channel and the uplink shared channel, and a predetermined condition set in advance.
  • the control unit 401 controls transmission of uplink control information using the uplink shared channel to which frequency hopping is not applied. Also good.
  • the control unit 401 does not apply transform precoding and transmits uplink control information using PUSCH to which frequency hopping is applied. You may control.
  • the control unit 401 controls the transmission of uplink control information using PUSCH that applies transform precoding and does not apply frequency hopping. May be.
  • the control unit 401 applies either the number of uplink shared channel allocation symbols or the number of uplink control channel allocation symbols when the transmission periods of the uplink shared channel and the uplink control channel with different numbers of allocated symbols overlap. Transmission of uplink control information may be controlled using the allocated PUSCH.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • CSI channel state information
  • the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401.
  • the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 401.
  • each functional block is realized using one device physically or logically coupled, or two or more devices physically or logically separated may be directly or indirectly (for example, (Using wired, wireless, etc.) and may be implemented using these multiple devices.
  • a wireless base station, a user terminal, and the like may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 10 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication or controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be constituted by.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured by one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed length of time (eg, 1 ms) that does not depend on numerology.
  • the neurology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • SCS SubCarrier Spacing
  • bandwidth For example, subcarrier spacing (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, radio frame configuration, transceiver in frequency domain
  • TTI Transmission Time Interval
  • number of symbols per TTI radio frame configuration
  • transceiver in frequency domain It may indicate at least one of a specific filtering process to be performed and a specific windowing process to be performed by the transceiver in the time domain.
  • a slot may be configured with one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on the numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may be configured with one or more symbols in the time domain. The minislot may also be called a subslot. A mini-slot may be composed of fewer symbols than slots.
  • PDSCH (or PUSCH) transmitted in units of time larger than a minislot may be referred to as PDSCH (PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using a minislot may be referred to as a PDSCH (PUSCH) mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1-13 symbols), or a period longer than 1 ms. It may be.
  • a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • a time interval for example, the number of symbols
  • a transport block, a code block, a code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
  • a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
  • a resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain.
  • the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
  • PRB physical resource blocks
  • SCG sub-carrier groups
  • REG resource element groups
  • PRB pairs RB pairs, etc. May be called.
  • the resource block may be configured by one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and included in the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • information, parameters, and the like described in the present disclosure may be expressed using absolute values, may be expressed using relative values from predetermined values, or may be expressed using other corresponding information. May be represented.
  • the radio resource may be indicated by a predetermined index.
  • the names used for parameters and the like in this disclosure are not limited names in any way.
  • various channels PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.
  • information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
  • the name is not limited in any way.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
  • information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (master information block (MIB), system information block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • the software uses websites using at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • system and “network” as used in this disclosure may be used interchangeably.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station may also be called terms such as a macro cell, a small cell, a femto cell, and a pico cell.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: Remote Radio Head)) can also provide communication services.
  • a base station subsystem eg, an indoor small base station (RRH: Remote Radio Head)
  • RRH Remote Radio Head
  • the terms “cell” or “sector” refer to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • Mobile station subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be referred to as a transmission device, a reception device, or the like.
  • the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unattended moving body (for example, a drone, an autonomous driving vehicle, etc.), or a robot (manned or unmanned).
  • at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
  • the radio base station in the present disclosure may be replaced with a user terminal.
  • the communication between the radio base station and the user terminal is replaced with communication between a plurality of user terminals (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc. may be called))
  • a plurality of user terminals for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc. may be called)
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”).
  • an uplink channel, a downlink channel, etc. may be read as a side channel.
  • the user terminal in the present disclosure may be replaced with a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the operation performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched according to execution.
  • the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction.
  • the methods described in this disclosure present elements of the various steps in an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication). system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (Registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.
  • the present invention may be applied to a system using other appropriate wireless communication methods, a next-generation system extended based on these, and the like.
  • a plurality of systems may be combined and applied (for example, a combination of LTE or LTE-A and 5G).
  • the phrase“ based on ”does not mean“ based only on, ”unless expressly specified otherwise.
  • the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations can be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination (decision)” includes determination, calculation, calculation, processing, derivation, investigating, looking up (eg, table, (Searching in a database or another data structure), ascertaining, etc. may be considered to be “determining”.
  • determination (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”.
  • determination is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • connection is any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • radio frequency domain microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) region, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The purpose of the present invention is to appropriately perform transmission of uplink control information even if an uplink control channel and/or an uplink shared channel is being transmitted in non-slot units. A user terminal according to one embodiment of the present disclosure comprises a transmitter that uses an uplink control channel and/or an uplink shared channel set to one or multiple symbols and transmits the uplink control information. The user terminal also comprises a controller that controls the transmission of the uplink control information on the basis of at least one of: whether transform precoding has been set or not; the number of allocation symbols of the uplink control channel and the uplink shared channel; and a pre-set prescribed condition.

Description

ユーザ端末及び無線通信方法User terminal and wireless communication method
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。 The present invention relates to a user terminal and a wireless communication method in a next generation mobile communication system.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、4G、5G、5G+(plus)、NR(New RAT)、LTE Rel.14、15~、などともいう)も検討されている。 In the UMTS (Universal Mobile Telecommunications System) network, Long Term Evolution (LTE) has been specified for the purpose of higher data rates and lower delay (Non-Patent Document 1). In order to further increase the bandwidth and speed from LTE, LTE successor systems (for example, LTE-A (LTE-Advanced), FRA (Future Radio Access), 4G, 5G, 5G + (plus), NR ( New RAT) and LTE Rel.14, 15 ~) are also being considered.
 既存のLTEシステム(例えば、LTE Rel.8-13)では、1msのサブフレーム(伝送時間間隔(TTI:Transmission Time Interval)等ともいう)を用いて、下りリンク(DL:Downlink)及び/又は上りリンク(UL:Uplink)の通信が行われる。当該サブフレームは、チャネル符号化された1データパケットの送信時間単位であり、スケジューリング、リンクアダプテーション、再送制御(HARQ:Hybrid Automatic Repeat reQuest)などの処理単位となる。 In an existing LTE system (for example, LTE Rel. 8-13), a 1 ms subframe (also referred to as a transmission time interval (TTI), etc.) is used for downlink (DL) and / or uplink. Communication of a link (UL: Uplink) is performed. The subframe is a transmission time unit of one channel-encoded data packet, and is a processing unit such as scheduling, link adaptation, retransmission control (HARQ: Hybrid Automatic Repeat reQuest).
 また、既存のLTEシステム(例えば、LTE Rel.8-13)では、ユーザ端末は、上り制御チャネル(例えば、PUCCH:Physical Uplink Control Channel)又は上りデータチャネル(例えば、PUSCH:Physical Uplink Shared Channel)を用いて、上りリンク制御情報(UCI:Uplink Control Information)を送信する。当該上り制御チャネルの構成(フォーマット)は、PUCCHフォーマット(PF:PUCCH Format)等と呼ばれる。 In the existing LTE system (for example, LTE Rel. 8-13), the user terminal uses an uplink control channel (for example, PUCCH: Physical Uplink Control Channel) or an uplink data channel (for example, PUSCH: Physical Uplink Shared Channel). And transmits uplink control information (UCI). The configuration (format) of the uplink control channel is called a PUCCH format (PF: PUCCH Format) or the like.
 既存のLTEシステム(例えば、LTE Rel.13以前)では、期間が同一(例えば、通常サイクリックプリフィクス(CP:Cyclic Prefix)では14シンボル)である複数のフォーマットの上り制御チャネル(例えば、LTE PUCCHフォーマット1~5等)がサポートされる。一方、将来の無線通信システム(例えば、LTE Rel.14、15~、5G、NRなど)では、少なくとも期間が異なる複数のフォーマットの上り制御チャネルをサポートすることが想定される。 In the existing LTE system (for example, LTE Rel. 13 or earlier), the uplink control channels (for example, LTE PUCCH format) having the same period (for example, 14 symbols in the normal cyclic prefix (CP)) are used. 1-5 etc.) are supported. On the other hand, it is assumed that future radio communication systems (for example, LTE Rel. 14, 15 to 5G, NR, etc.) will support uplink control channels of a plurality of formats having at least different periods.
 例えば、将来の無線通信システム(例えば、NR)では、相対的に短い期間(例えば、1~2シンボル)の第1の上り制御チャネル(ショートPUCCH、NR PUCCHフォーマット0及び/又は2等ともいう)と、当該第1の上り制御チャネルよりも長い期間(例えば、4~14シンボル)の第2の上り制御チャネル(以下、ロングPUCCH、NR PUCCHフォーマット1、3及び4の少なくとも一つ等ともいう)をサポートすることが検討されている。 For example, in a future wireless communication system (for example, NR), the first uplink control channel (also referred to as short PUCCH, NR PUCCH format 0 and / or 2) of a relatively short period (for example, 1 to 2 symbols) And a second uplink control channel (hereinafter also referred to as at least one of long PUCCH, NR PUCCH formats 1, 3 and 4) having a longer period (for example, 4 to 14 symbols) than the first uplink control channel. Support is being considered.
 また、将来の無線通信システム(例えば、NR)においては、所定期間(例えば、スロット)単位のスケジューリング制御に加えて、非所定期間(例えば、非スロット)単位でスケジューリングを制御することが検討されている。例えば、スロットに含まれる1以上のシンボル単位(例えば、ミニスロットとも呼ぶ)でデータ(例えば、PUSCH等)のスケジューリングを制御することも検討されている。 In future wireless communication systems (for example, NR), in addition to scheduling control in units of predetermined periods (for example, slots), it is considered to control scheduling in units of non-predetermined periods (for example, non-slots). Yes. For example, it is also under consideration to control scheduling of data (for example, PUSCH and the like) in units of one or more symbols (for example, also called minislots) included in a slot.
 例えば、シンボル単位で(例えば、1~2シンボルを利用して)データの送信を行うことも想定される。このように、非スロット単位(例えば、シンボル単位)で割当てが制御される上り制御チャネル及び上り共有チャネルの送信タイミングが重複する場合、上り制御情報の送信をどのように制御するかについてまだ十分に検討が進んでいない。シンボル単位を利用した上り制御情報の送信を適切に制御できない場合、通信品質の劣化等が生じるおそれがある。 For example, it is assumed that data transmission is performed in symbol units (for example, using 1 to 2 symbols). Thus, when the transmission timings of the uplink control channel and the uplink shared channel whose allocation is controlled in non-slot units (for example, symbol units) overlap, how to control the transmission of uplink control information is still sufficient. Consideration is not progressing. If transmission of uplink control information using a symbol unit cannot be controlled appropriately, communication quality may be degraded.
 そこで、本開示では、上り制御チャネル及び上り共有チャネルの少なくとも一方を非スロット単位で送信する場合であっても上り制御情報の送信を適切に行うことができるユーザ端末及び無線通信方法を提供することを目的の1つとする。 Therefore, the present disclosure provides a user terminal and a radio communication method capable of appropriately transmitting uplink control information even when transmitting at least one of an uplink control channel and an uplink shared channel in non-slot units. Is one of the purposes.
 本開示の一態様に係るユーザ端末は、1又は複数のシンボルに設定される上り制御チャネル及び上り共有チャネルの少なくとも一つを利用して上り制御情報を送信する送信部と、トランスフォームプリコーディングの設定有無、前記上り制御チャネルと前記上り共有チャネルの割当てシンボル数、及びあらかじめ設定された所定条件の少なくとも一つに基づいて前記上り制御情報の送信を制御する制御部と、を有することを特徴とする。 A user terminal according to an aspect of the present disclosure includes a transmission unit that transmits uplink control information using at least one of an uplink control channel and an uplink shared channel set in one or a plurality of symbols, and a transform precoding A control unit that controls transmission of the uplink control information based on at least one of setting presence / absence, the number of symbols assigned to the uplink control channel and the uplink shared channel, and a predetermined condition set in advance, To do.
 本発明によれば、上り制御チャネル及び上り共有チャネルの少なくとも一方を非スロット単位で送信する場合であっても上り制御情報の送信を適切に行うことが可能となる。 According to the present invention, uplink control information can be appropriately transmitted even when at least one of the uplink control channel and the uplink shared channel is transmitted in non-slot units.
図1A-図1Eは、PUCCH構成の一例を示す図である。1A to 1E are diagrams illustrating an example of a PUCCH configuration. 図2A-図2Eは、PUCCH構成の他の例を示す図である。2A to 2E are diagrams showing other examples of the PUCCH configuration. 図3A-図3Eは、PUSCH構成の一例を示す図である。3A to 3E are diagrams illustrating an example of the PUSCH configuration. 図4A-図4Eは、PUSCH構成の他の例を示す図である。4A to 4E are diagrams illustrating other examples of the PUSCH configuration. 図5は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 5 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention. 図6は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。FIG. 6 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention. 図7は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。FIG. 7 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present invention. 図8は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。FIG. 8 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment of the present invention. 図9は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention. 図10は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
 将来の無線通信システム(例えば、NR)では、相対的に短い期間(例えば、1~2シンボル)の第1の上り制御チャネルと、当該第1の上り制御チャネルよりも長い期間(例えば、4~14シンボル)の第2の上り制御チャネルをサポートすることが検討されている。第1の上り制御チャネルは、ショートPUCCH、PUCCHフォーマット0、又はPUCCHフォーマット2等とも呼ばれてもよい。第2の上り制御チャネルは、ロングPUCCH、PUCCHフォーマット1、PUCCHフォーマット3、又はPUCCHフォーマット4等と呼ばれてもよい。 In a future wireless communication system (eg, NR), a first uplink control channel having a relatively short period (eg, 1 to 2 symbols) and a period (eg, 4 to 4) longer than the first uplink control channel. It is under consideration to support a second uplink control channel of 14 symbols). The first uplink control channel may also be called short PUCCH, PUCCH format 0, PUCCH format 2, or the like. The second uplink control channel may be referred to as long PUCCH, PUCCH format 1, PUCCH format 3, PUCCH format 4, or the like.
 また、NRでは、スロットベースのスケジューリング及びミニスロットベースのスケジューリングを利用してデータ等の送信を行うことが検討されている。 Also, in NR, it is considered to transmit data and the like using slot-based scheduling and mini-slot-based scheduling.
 スロットは、送信の基本単位(basic transmission unit)の1つであり、1スロットは所定数のシンボルで構成される。例えば、ノーマルCP(Normal CP)ではスロット期間が第1のシンボル数(例えば、14シンボル)で構成され、拡張CP(Extended CP)ではスロット期間が第2のシンボル数(例えば、12シンボル)で構成される。 A slot is one of basic transmission units, and one slot is composed of a predetermined number of symbols. For example, in normal CP, the slot period is composed of a first number of symbols (for example, 14 symbols), and in extended CP (extended CP), the slot period is composed of a second number of symbols (for example, 12 symbols). Is done.
 ミニスロットは、所定値(例えば、14シンボル(又は、12シンボル))以下のシンボル数で構成される期間に相当する。一例として、DLの送信(例えば、PDSCH送信)において、ミニスロットは所定数(例えば、2、4又は7のシンボル数)で構成してもよい。 A mini-slot corresponds to a period composed of a number of symbols equal to or less than a predetermined value (for example, 14 symbols (or 12 symbols)). As an example, in DL transmission (for example, PDSCH transmission), the minislot may be configured with a predetermined number (for example, the number of symbols of 2, 4, or 7).
 スロットベーススケジューリング(マッピングタイプA)と、ミニスロットベーススケジューリング(マッピングタイプB)は、異なるリソースの割当て方法が適用される構成としてもよい。 The slot-based scheduling (mapping type A) and the minislot-based scheduling (mapping type B) may be configured such that different resource allocation methods are applied.
 DL(例えば、PDSCH送信)において、スロットベーススケジューリング(PDSCHマッピングタイプAとも呼ぶ)を適用する場合を想定する。この場合、スロットにおけるPDSCHの開始位置は予め設定された候補シンボルから選択され、PDSCHの割当てシンボル数(PDSCH長)は所定値(X)から14までの範囲から選択される。開始位置の候補となる候補シンボルは、例えば、スロット内の所定シンボルインデックス(例えば、#0、#1、#2、#3)に相当する。Xは例えば3である。 Assume a case where slot-based scheduling (also referred to as PDSCH mapping type A) is applied in DL (for example, PDSCH transmission). In this case, the PDSCH start position in the slot is selected from preset candidate symbols, and the number of PDSCH allocation symbols (PDSCH length) is selected from a range from a predetermined value (X) to 14. Candidate symbols that are candidates for the start position correspond to, for example, predetermined symbol indexes (for example, # 0, # 1, # 2, and # 3) in the slot. X is, for example, 3.
 DL(例えば、PDSCH送信)において、ミニスロットベーススケジューリング(PDSCHマッピングタイプBとも呼ぶ)を適用する場合を想定する。この場合、PDSCHの割当てシンボル数(PDSCH長)は予め設定された候補シンボル数から選択され、スロットにおけるPDSCHの開始位置はスロットのいずれかの場所(シンボル)に設定する。PDSCH長の候補シンボル数は、例えば、所定数(2、4、又は7シンボル)に相当する。つまり、PDSCHの開始位置は柔軟に設定される。 Assume a case where minislot-based scheduling (also referred to as PDSCH mapping type B) is applied in DL (for example, PDSCH transmission). In this case, the number of PDSCH allocation symbols (PDSCH length) is selected from a preset number of candidate symbols, and the PDSCH start position in the slot is set to any location (symbol) in the slot. The number of PDSCH-length candidate symbols corresponds to, for example, a predetermined number (2, 4, or 7 symbols). That is, the PDSCH start position is set flexibly.
 UL(例えば、PUSCH送信)において、スロットベーススケジューリング(PUSCHマッピングタイプAとも呼ぶ)を適用する場合を想定する。この場合、スロットにおけるPDSCHの開始位置は予め設定された候補シンボル(例えば、所定シンボルインデックス#0)から選択され、PDSCHの割当てシンボル数(PDSCH長)は所定値(Y)から14までの範囲から選択される。Yは例えば4である。 Suppose a case in which slot-based scheduling (also referred to as PUSCH mapping type A) is applied in UL (for example, PUSCH transmission). In this case, the PDSCH start position in the slot is selected from preset candidate symbols (for example, predetermined symbol index # 0), and the number of PDSCH allocation symbols (PDSCH length) is within a range from a predetermined value (Y) to 14. Selected. Y is 4, for example.
 UL(例えば、PUSCH送信)において、ミニスロットベーススケジューリング(PUSCHマッピングタイプBとも呼ぶ)を適用する場合を想定する。この場合、PDSCHの割当てシンボル数(PDSCH長)は予め設定された候補シンボル数(1~14シンボル数)から選択され、スロットにおけるPUSCHの開始位置はスロットのいずれかの場所(シンボル)に設定する。つまり、PUSCHの開始位置は柔軟に設定される。 It is assumed that mini-slot based scheduling (also referred to as PUSCH mapping type B) is applied in UL (for example, PUSCH transmission). In this case, the number of PDSCH allocation symbols (PDSCH length) is selected from a preset number of candidate symbols (1 to 14 symbols), and the PUSCH start position in the slot is set to any location (symbol) in the slot. . That is, the start position of PUSCH is set flexibly.
 ミニスロットベーススケジューリングでないPDSCH及びPUSCHは、PDSCH/PUSCHマッピングタイプA、ミニスロットベーススケジューリングのPDSCH及びPUSCHは、PDSCH/PUSCHマッピングタイプBと呼ばれてもよい。また、PDSCH/PUSCHのマッピングタイプに応じて、異なる位置にDMRSが挿入されるものとしてもよい。さらに、いずれのマッピングタイプのPDSCH/PUSCHとするかは、RRC等上位レイヤシグナリングによって設定されるものとしてもよいし、DCIによって通知されるものとしてもよいし、両者の組み合わせによって認識されるものとしてもよい。 PDSCH and PUSCH that are not minislot-based scheduling may be referred to as PDSCH / PUSCH mapping type A, and PDSCH and PUSCH that are minislot-based scheduling may be referred to as PDSCH / PUSCH mapping type B. Also, DMRSs may be inserted at different positions according to the PDSCH / PUSCH mapping type. Furthermore, which mapping type PDSCH / PUSCH is used may be set by higher layer signaling such as RRC, may be notified by DCI, or may be recognized by a combination of both. Also good.
 このように、NRでは、このように、非スロット単位(例えば、シンボル単位)でPUSCHとPUCCHの割当てが制御されることが想定される。一方で、UL伝送では、低いPAPR(Peak-to-Average Power Patio)及び/又は低い相互変調歪(IMD:inter-modulation distortion)を達成することも要求される。 Thus, in NR, it is assumed that the allocation of PUSCH and PUCCH is controlled in non-slot units (for example, symbol units). On the other hand, in UL transmission, it is also required to achieve low PAPR (Peak-to-Average Power Patio) and / or low inter-modulation distortion (IMD).
 UL伝送において低PAPR及び/又は低IMDを達成する方法として、UCI送信とULデータ(UL-SCH)送信が同じタイミングで生じた場合、UCIとULデータをPUSCHに多重して送信する方法(UCI piggyback on PUSCH、UCI on PUSCHとも呼ぶ)がある。 As a method for achieving low PAPR and / or low IMD in UL transmission, when UCI transmission and UL data (UL-SCH) transmission occur at the same timing, UCI and UL data are multiplexed and transmitted on PUSCH (UCI). piggyback on PUSCH and UCI on PUSCH).
 NRでも、既存のLTEシステムと同様にUCI on PUSCHを利用することも考えられる。しかし、PUSCHの割当てがシンボル単位でスケジューリングされる場合、UCIの送信をどのように制御するかが問題となる。 NR can also use UCI on PUSCH as in the existing LTE system. However, when PUSCH allocation is scheduled on a symbol basis, how to control UCI transmission becomes a problem.
 そこで、本発明者等は、PUSCHとPUCCHが非スロット単位(例えば、シンボル単位)で割当てられるケースに着目し、PUSCHとPUCCHの送信期間(又は、割当て領域)が重複した場合の上り制御情報の送信制御について検討して本願発明に至った。 Therefore, the present inventors focused on the case where PUSCH and PUCCH are allocated in non-slot units (for example, symbol units), and the uplink control information in the case where the transmission periods (or allocation areas) of PUSCH and PUCCH overlap. The transmission control has been studied to arrive at the present invention.
 また、本発明者等は、PUSCH送信に適用する波形に着目した。NRでは、UL送信(例えば、PUSCH送信)に対して、シングルキャリア波形であるDFT拡散OFDM(DFT-s-OFDM:Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing)波形と、マルチキャリア波形であるサイクリックプリフィクスOFDM(CP-OFDM:Cyclic Prefix-Orthogonal Frequency Division Multiplexing)波形をサポートすることが想定される。 In addition, the present inventors paid attention to the waveform applied to PUSCH transmission. In NR, for UL transmission (for example, PUSCH transmission), DFT spread OFDM (DFT-s-OFDM: Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing) waveform, which is a single carrier waveform, and multicarrier waveform, CY. It is assumed to support Click Prefix OFDM (CP-OFDM: Cyclic Prefix-Orthogonal Frequency Division Multiplexing) waveforms.
 DFT拡散OFDM波形は、DFT拡散(DFTプリコーディング等ともいう)が適用される(with DFT-spreading)UL信号等と言い換えることができ、CP-OFDM波形は、DFT拡散が適用されない(without DFT-spreading)UL信号等と言い換えてもよい。 The DFT spread OFDM waveform can be rephrased as a UL signal or the like to which DFT spreading (also referred to as DFT precoding) is applied (with DFT-spreading), and the DFT spreading is not applied to the CP-OFDM waveform (without DFT- spreading) may be rephrased as a UL signal or the like.
 DFT拡散OFDM波形(以下、第1の波形とも記す)は、シングルキャリア波形であるので、ピーク対平均電力比(PAPR:Peak to Average Power Ratio)の増大を防止できる。また、DFT拡散OFDM波形を適用する場合、上りデータ(PUSCH)の割当てが連続する物理リソースブロック(PRB:Physical Resource Block)に限定される。 Since the DFT spread OFDM waveform (hereinafter also referred to as the first waveform) is a single carrier waveform, it is possible to prevent an increase in peak-to-average power ratio (PAPR). In addition, when applying the DFT spread OFDM waveform, the allocation of uplink data (PUSCH) is limited to physical resource blocks (PRBs) in which the allocation is continuous.
 UL送信(例えば、PUSCH)に対して、DFT拡散を適用するか否か(DFT拡散OFDM波形(以下、第1の波形とも記す)、又はCP-OFDM波形(以下、第2の波形とも記す)は、ネットワーク(例えば、無線基地局)からユーザ端末に設定(configure)又は指定(indicate)されることが想定される。 Whether to apply DFT spreading for UL transmission (eg, PUSCH) (DFT spread OFDM waveform (hereinafter also referred to as first waveform) or CP-OFDM waveform (hereinafter also referred to as second waveform) Is assumed to be configured or indicated from the network (for example, a radio base station) to the user terminal.
 例えば、基地局は、上位レイヤシグナリング及び/又は下り制御情報を用いて、第1の波形の適用有無をユーザ端末に設定する。波形の設定は、トランスフォーム-プリコーディング(transform-precoding)とも呼ばれ、トランスフォーム-プリコーディングが“enabled”の場合には、第1の波形(DFT拡散OFDM波形)を適用してPUSCHの送信を行う。一方で、トランスフォーム-プリコーディングが“disabled”の場合には、UEは、第1の波形を適用せずに(例えば、CP-OFDM波形を適用して)PUSCHの送信を行う。 For example, the base station uses the upper layer signaling and / or downlink control information to set whether to apply the first waveform to the user terminal. The waveform setting is also called transform-precoding, and when the transform-precoding is “enabled”, the first waveform (DFT spread OFDM waveform) is applied to transmit the PUSCH. I do. On the other hand, when the transform-precoding is “disabled”, the UE transmits the PUSCH without applying the first waveform (for example, applying the CP-OFDM waveform).
 そこで、本発明者等は、PUSCHを利用したUCIの送信において、トランスフォームプリコーディングの設定に基づいてUCIの送信(例えば、周波数ホッピングの適用有無等)を制御することを着想した。あるいは、本発明者等は、設定されるトランスフォームプリコーディングに関わらずUCIの送信に利用するトランスフォームプリコーディングを制御することを着想した。 Therefore, the present inventors have conceived of controlling UCI transmission (for example, whether or not to apply frequency hopping) based on the setting of transform precoding in UCI transmission using PUSCH. Alternatively, the inventors have conceived of controlling transform precoding used for UCI transmission regardless of the set transform precoding.
 また、NRでは、PUSCHにUCIをピギーバック(UCI on PUSCH)する場合、UCIと復調用参照信号(例えば、DMRS)を周波数多重(FDM)しないように制御することも考えられる。このようにUCI on PUSCHにおいてUCIとDMRSのFDMが制限される場合、UCIの送信をどのように制御するかが問題となる。 Also, in NR, when UCI is piggybacked (PUI on PUSCH) to PUSCH, it may be possible to control so that UCI and a demodulation reference signal (for example, DMRS) are not frequency multiplexed (FDM). Thus, when UCI and DMRS FDM are restricted in UCI on PUSCH, how to control UCI transmission becomes a problem.
 そこで、本発明者等は、UCI on PUSCHにおいてUCIとDMRSのFDMが制限される場合に、所定のPUSCH構成を利用してUCI on PUSCHを行うことを着想した。 Therefore, the present inventors have conceived of performing UCI on PUSCH using a predetermined PUSCH configuration when UCI and DMRS FDM are restricted in UCI on PUSCH.
 以下、本発明に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法(例えば、制御例1-9等)は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。なお、以下の実施形態では、任意の信号及びチャネルに関して、NR用であることを示す「NR-」の接頭語が付与されて読み替えられてもよい。 Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. The wireless communication methods (for example, control examples 1-9 and the like) according to each embodiment may be applied alone or in combination. In the following embodiments, an arbitrary signal and channel may be read with a prefix of “NR−” indicating that it is for NR.
(PUCCH構成)
 図1、図2に本実施の形態で適用可能なPUCCH構成の一例を示す。図1A-Eは、PUCCHフォーマット2に対応し、図2A-Eは、PUCCHフォーマット0に対応する。なお、本実施の形態で適用可能なPUCCH構成は図1に示した構成に限られない。また、本実施の形態で適用可能なPUCCHフォーマットは、PUCCHフォーマット0又は2に限られない。
(PUCCH configuration)
1 and 2 show examples of PUCCH configurations applicable in this embodiment. 1A-E corresponds to PUCCH format 2, and FIGS. 2A-E correspond to PUCCH format 0. FIG. Note that the PUCCH configuration applicable in the present embodiment is not limited to the configuration shown in FIG. Further, the PUCCH format applicable in the present embodiment is not limited to PUCCH format 0 or 2.
<PUCCHフォーマット2>
 図1Aは、PUCCHが1シンボルに設定される場合を示している。この場合、上り制御情報(以下、UCIとも記す)と、復調用参照信号(以下、DMRSとも記す)とが周波数多重される構成としてもよい。
<PUCCH format 2>
FIG. 1A shows a case where PUCCH is set to one symbol. In this case, the uplink control information (hereinafter also referred to as UCI) and the demodulation reference signal (hereinafter also referred to as DMRS) may be frequency-multiplexed.
 図1B-Dは、PUCCHが2シンボルに設定され、且つ周波数ホッピング(以下、FHとも記す)が適用されない場合を示している。この場合、UCIとDMRSが2シンボルにわたって周波数多重される構成(図1B参照)としてもよいし、UCIとDMRSが異なるシンボルに多重(時間多重)される構成(図1C参照)としてもよい。あるいは、UCIを1シンボルのみに多重し、DMRSを2シンボルにわたって多重し、且つUCIが多重されるシンボルにおいてUCIとDMRSが周波数多重される構成(図1D参照)としてもよい。 FIG. 1B-D shows a case where PUCCH is set to 2 symbols and frequency hopping (hereinafter also referred to as FH) is not applied. In this case, UCI and DMRS may be configured to be frequency-multiplexed over two symbols (see FIG. 1B), or UCI and DMRS may be configured to be multiplexed (time multiplexed) on different symbols (see FIG. 1C). Alternatively, a configuration in which UCI is multiplexed on only one symbol, DMRS is multiplexed on two symbols, and UCI and DMRS are frequency-multiplexed in symbols on which UCI is multiplexed (see FIG. 1D).
 図1Eは、PUCCHが2シンボルに設定され、且つFHが適用される場合を示している。この場合、FHされる各シンボルにおいて、UCIとDMRSが周波数多重される構成としてもよい。 FIG. 1E shows a case where PUCCH is set to 2 symbols and FH is applied. In this case, UCI and DMRS may be frequency-multiplexed in each symbol to be FH.
<PUCCHフォーマット0>
 図2Aは、PUCCHが1シンボルに設定される場合を示している。この場合、所定のPUCCH構成を適用してPUCCH送信を行ってもよい。所定のPUCCH構成は、参照信号が含まれない系列ベースPUCCH(Sequence-based PUCCH)構成、又は参照信号がDFT前に挿入されるPUCCH構成としてもよい。
<PUCCH format 0>
FIG. 2A shows a case where PUCCH is set to one symbol. In this case, PUCCH transmission may be performed by applying a predetermined PUCCH configuration. The predetermined PUCCH configuration may be a sequence-based PUCCH (Sequence-based PUCCH) configuration in which a reference signal is not included, or a PUCCH configuration in which a reference signal is inserted before DFT.
 図2B-Dは、PUCCHが2シンボルに設定され、且つFHが適用されない場合を示している。この場合、所定のPUCCH構成が2シンボルにわたって割当てられる構成(図2B)としてもよいし、UCIとDMRSが異なるシンボルに多重(時間多重)される構成(図2C、D)としてもよい。なお、DMRSは、周波数方向に分散するように配置されてもよいし(図2C)、周波数方向に連続するように配置されてもよい(図2D)。 FIG. 2B-D shows a case where PUCCH is set to 2 symbols and FH is not applied. In this case, a configuration in which a predetermined PUCCH configuration is allocated over two symbols (FIG. 2B) may be used, or a configuration in which UCI and DMRS are multiplexed (time multiplexed) on different symbols (FIGS. 2C and D). The DMRSs may be arranged so as to be dispersed in the frequency direction (FIG. 2C) or may be arranged so as to be continuous in the frequency direction (FIG. 2D).
 図2Eは、PUCCHが2シンボルに設定され、且つFHが適用される場合を示している。この場合、FHされる各シンボルにおいて、所定のPUCCH構成が配置される構成としてもよい。 FIG. 2E shows a case where PUCCH is set to 2 symbols and FH is applied. In this case, a predetermined PUCCH configuration may be arranged in each symbol to be FH.
 なお、図1、図2に示す構成のうち一部の構成のみ適用してもよい。例えば、PUCCHフォーマット2について図1A、B、Eの少なくとも一つを適用し、PUCCHフォーマット0について図2A、B、Eの少なくとも一つを適用する構成としてもよい。 Note that only some of the configurations shown in FIGS. 1 and 2 may be applied. For example, at least one of FIGS. 1A, B, and E may be applied to PUCCH format 2, and at least one of FIGS. 2A, B, and E may be applied to PUCCH format 0.
(PUSCH構成)
 図3、図4に本実施の形態で適用可能なPUSCH構成の一例を示す。図3、図4に示すPUSCH構成は、ULデータ(例えば、UL-SCH)とUCIのうち、ULデータのみを多重する場合、ULデータとUCIを多重する場合、UCIのみを多重する場合の少なくとも一つに利用できる。図3A-Eは、トランスフォームプリコーディングを適用しない場合(disabled)に対応し、図4A-Eは、トランスフォームプリコーディングを適用する場合(enabled)に対応する。なお、本実施の形態で適用可能なPUSCH構成は図3、図4に示した構成に限られない。
(PUSCH configuration)
3 and 4 show examples of PUSCH configurations applicable in the present embodiment. The PUSCH configuration shown in FIG. 3 and FIG. 4 includes at least the case of multiplexing UL data (for example, UL-SCH) and UCI, the case of multiplexing UL data and UCI, and the case of multiplexing only UCI. Available for one. 3A to 3E correspond to a case where transform precoding is not applied (disabled), and FIGS. 4A to 4E correspond to a case where transform precoding is applied (enabled). Note that the PUSCH configuration applicable in the present embodiment is not limited to the configurations shown in FIGS.
<トランスフォームプリコーディング非適用>
 図3Aは、PUSCHが1シンボルに設定される場合を示している。この場合、UCI及びULデータの少なくとも一つ(以下、UCI/ULデータとも記す)と、DMRSとが周波数多重される構成としてもよい。
<Not applicable to transform precoding>
FIG. 3A shows a case where PUSCH is set to one symbol. In this case, at least one of UCI and UL data (hereinafter also referred to as UCI / UL data) and DMRS may be frequency-multiplexed.
 図3B-Dは、PUSCHが2シンボルに設定され、且つFHが適用されない場合を示している。この場合、UCI/ULデータとDMRSが2シンボルにわたって周波数多重される構成(図3B参照)としてもよいし、UCI/ULデータとDMRSが異なるシンボルに多重(時間多重)される構成(図3C参照)としてもよい。あるいは、UCI/ULデータを1シンボルのみに多重し、DMRSを2シンボルにわたって多重し、且つUCI/ULデータが多重されるシンボルにおいてUCIとDMRSが周波数多重される構成(図3D参照)としてもよい。 FIGS. 3B-D show a case where PUSCH is set to 2 symbols and FH is not applied. In this case, UCI / UL data and DMRS may be frequency-multiplexed over two symbols (see FIG. 3B), or UCI / UL data and DMRS may be multiplexed (time-multiplexed) into different symbols (see FIG. 3C). ). Alternatively, UCI / UL data may be multiplexed on only one symbol, DMRS may be multiplexed over two symbols, and UCI and DMRS may be frequency-multiplexed in a symbol on which UCI / UL data is multiplexed (see FIG. 3D). .
 図3Eは、PUSCHが2シンボルに設定され、且つFHが適用される場合を示している。この場合、FHされる各シンボルにおいて、UCI/ULデータとDMRSが周波数多重される構成としてもよい。 FIG. 3E shows a case where PUSCH is set to 2 symbols and FH is applied. In this case, UCI / UL data and DMRS may be frequency-multiplexed in each symbol to be FH.
<トランスフォームプリコーディング適用>
 図4Aは、PUSCHが1シンボルに設定される場合を示している。この場合、所定のPUSCH構成を適用してPUSCH送信を行ってもよい。所定のPUSCH構成は、参照信号が含まれない系列ベースPUSCH(Sequence-based PUSCH)構成、又は参照信号がDFT前に挿入されるPUSCH構成としてもよい。
<Applying transform precoding>
FIG. 4A shows a case where PUSCH is set to one symbol. In this case, PUSCH transmission may be performed by applying a predetermined PUSCH configuration. The predetermined PUSCH configuration may be a sequence-based PUSCH (Sequence-based PUSCH) configuration that does not include a reference signal, or a PUSCH configuration in which a reference signal is inserted before DFT.
 図4B-Dは、PUSCHが2シンボルに設定され、且つFHが適用されない場合を示している。この場合、所定のPUSCH構成が2シンボルにわたって割当てられる構成(図4B参照)としてもよいし、UCI/ULデータとDMRSが異なるシンボルに多重(時間多重)される構成(図4C、D参照)としてもよい。なお、DMRSは、周波数方向に分散するように配置されてもよいし(図4C参照)、周波数方向に連続するように配置されてもよい(図4D参照)。 FIG. 4B-D shows a case where PUSCH is set to 2 symbols and FH is not applied. In this case, a configuration in which a predetermined PUSCH configuration is allocated over two symbols (see FIG. 4B), or a configuration in which UCI / UL data and DMRS are multiplexed (time multiplexed) in different symbols (see FIGS. 4C and D). Also good. The DMRS may be arranged so as to be dispersed in the frequency direction (see FIG. 4C) or may be arranged so as to be continuous in the frequency direction (see FIG. 4D).
 図4Eは、PUSCHが2シンボルに設定され、且つFHが適用される場合を示している。この場合、FHされる各シンボルにおいて、所定のPUSCH構成が配置される構成としてもよい。 FIG. 4E shows a case where PUSCH is set to 2 symbols and FH is applied. In this case, a predetermined PUSCH configuration may be arranged in each symbol to be FH.
 なお、図3、図4に示す構成のうち一部の構成のみ適用してもよい。例えば、UCIをPUSCHに多重する構成において、トランスフォームプリコーディング非適用時に図3A、B、Eの少なくとも一つを適用し、トランスフォームプリコーディング適用時に図4Dを適用する構成としてもよい。 Note that only some of the configurations shown in FIGS. 3 and 4 may be applied. For example, in a configuration in which UCI is multiplexed on PUSCH, at least one of FIGS. 3A, B, and E may be applied when transform precoding is not applied, and FIG. 4D may be applied when transform precoding is applied.
 あるいは、UCIをPUSCHに多重する構成において、トランスフォームプリコーディング非適用時に図3Cを適用し、トランスフォームプリコーディング適用時に図4C又は図4Dを適用する構成としてもよい。この場合、UCI on PUSCHにおいて、UCIとDMRSを周波数多重せずに設定することが可能となる。 Alternatively, in a configuration in which UCI is multiplexed on PUSCH, FIG. 3C may be applied when transform precoding is not applied, and FIG. 4C or 4D may be applied when transform precoding is applied. In this case, UCI and DMRS can be set without frequency multiplexing in UCI on PUSCH.
(UCI送信制御)
 以下に、上り制御チャネル(例えば、PUCCH)と上り共有チャネル(例えば、PUSCH)の送信期間が重複する場合におけるUCIの送信制御について複数の制御例を例に挙げて説明する。なお、以下に示す制御例は、所定スロットにおいてPUCCHの開始シンボルとPUSCHの開始シンボルとが少なくとも一致する場合(aligned)に適用することができる。なお、PUCCHとPUSCHの開始シンボルが一致しない場合であっても、PUCCHの送信期間とPUSCHの送信期間の少なくとも一部が重複する場合に以下の制御例を適用可能としてもよい。
(UCI transmission control)
Hereinafter, transmission control of UCI in the case where the transmission periods of the uplink control channel (for example, PUCCH) and the uplink shared channel (for example, PUSCH) overlap will be described using a plurality of control examples as examples. Note that the following control example can be applied to the case where the start symbol of the PUCCH and the start symbol of the PUSCH coincide at least in a predetermined slot (aligned). Even when the PUCCH and PUSCH start symbols do not match, the following control example may be applicable when at least a part of the PUCCH transmission period and the PUSCH transmission period overlap.
 また、以下の説明では、1又は2シンボルのPUCCHと、1又は2シンボルのPUSCHとが重複する場合を例に挙げて説明するが、シンボル数はこれに限られない。例えば、1又は2シンボルのPUCCHと、3シンボル以上のPUSCHとが重複する場合に適用してもよい。また、3シンボル以上のPUCCHと、1又は2シンボルのPUSCHとが重複する場合に適用してもよい。 In the following description, a case where 1 or 2 symbol PUCCH overlaps with 1 or 2 symbol PUSCH is described as an example, but the number of symbols is not limited thereto. For example, the present invention may be applied when 1 or 2 symbol PUCCH overlaps with 3 or more symbol PUSCH. Moreover, you may apply when PUCCH of 3 symbols or more and PUSCH of 1 or 2 symbols overlap.
<制御例1:2シンボルPUCCH_FH有/2シンボルPUSCH_FH有>
 制御例1は、FHの適用が設定される2シンボルPUCCHと、FHの適用が設定される2シンボルのPUSCHの送信期間が重複する場合に相当する。この場合、UEは、以下のケース1-6の少なくとも一つを利用してUCIの送信を制御する。あるいは、以下のケース1-6の少なくとも一つの動作が制限される構成としてもよい。この場合、UEは、制限された構成におけるUCI送信方法は適用しないと想定してUCIの送信を制御してもよい。
<Control example 1: with 2 symbols PUCCH_FH / 2 symbols with PUSCH_FH>
Control example 1 corresponds to the case where the transmission periods of the 2-symbol PUCCH for which application of FH is set and the 2-symbol PUSCH for which application of FH is set overlap. In this case, the UE controls UCI transmission using at least one of the following cases 1-6. Alternatively, at least one operation in the following cases 1-6 may be limited. In this case, the UE may control UCI transmission on the assumption that the UCI transmission method in the restricted configuration is not applied.
[ケース1]
 UEは、PUCCHをドロップし、2シンボルのPUSCHを送信する(PUSCHを2シンボルに割当てる)。また、UEは、FHを適用してPUSCHの送信を行う。つまり、PUSCHにUCIは多重せずULデータの送信を行う。この場合、UEは、図3E及び図4EのPUSCH構成の少なくとも一つを利用してもよい。
[Case 1]
The UE drops the PUCCH and transmits a 2-symbol PUSCH (assigns the PUSCH to 2 symbols). Moreover, UE transmits FSCH by applying PUH. That is, UL data is transmitted without multiplexing UCI on PUSCH. In this case, the UE may use at least one of the PUSCH configurations of FIGS. 3E and 4E.
[ケース2]
 UEは、PUSCHをドロップし、2シンボルのPUCCHを送信する(PUCCHを2シンボルに割当てる)。また、UEは、FHを適用してPUCCHの送信を行う。つまり、UCIはPUCCHを利用して送信し、ULデータの送信は行わない。この場合、UEは、図1E及び図2EのPUCCH構成の少なくとも一つを利用してもよい。
[Case 2]
The UE drops the PUSCH and transmits a 2-symbol PUCCH (assigns a PUCCH to 2 symbols). Moreover, UE transmits FUCCH by applying FH. That is, UCI transmits using PUCCH, and UL data is not transmitted. In this case, the UE may use at least one of the PUCCH configurations of FIGS. 1E and 2E.
[ケース3]
 UEは、FHを適用しないPUSCHを利用してUCIの送信を行う。つまり、PUCCHは利用せずに、UCIをPUSCHに多重(UCI on PUSCH)する。また、UEは、基地局から設定されているトランスフォームプリコーディングに基づいてPUSCHの送信を制御してもよい。
[Case 3]
UE transmits UCI using PUSCH to which FH is not applied. That is, the UCI is multiplexed on the PUSCH (UCI on PUSCH) without using the PUCCH. Moreover, UE may control transmission of PUSCH based on the transform precoding set from the base station.
 例えば、トランスフォームプリコーディングの適用が設定されている場合(enabled)、UEはトランスフォームプリコーディングを適用して(例えば、DFT-s-OFDMを利用して)PUSCHの送信を行う。トランスフォームプリコーディングの適用が設定されてない場合(disabled)、UEはトランスフォームプリコーディングを適用せず(例えば、CP-OFDMを利用して)PUSCHの送信を行う。 For example, when the application of transform precoding is set (enabled), the UE transmits the PUSCH by applying the transform precoding (for example, using DFT-s-OFDM). When application of transform precoding is not configured (disabled), the UE performs PUSCH transmission without applying transform precoding (for example, using CP-OFDM).
 この場合、UEは、トランスフォームプリコーディングの適用有無に応じて、図3B-D及び図4B-DのPUSCH構成の少なくとも一つを利用してもよい。 In this case, the UE may use at least one of the PUSCH configurations of FIGS. 3B-D and 4B-D depending on whether transform precoding is applied.
 あるいは、UEは、図3C、図4C、及び図4DのPUSCH構成の少なくとも一つを利用してもよい。この場合、UCI on PUSCHにおいてUCIとDMRSを周波数多重(FDM)せずにUCIを送信することが可能となる。そのため、UCI on PUSCHにおけるUCIとDMRSとのFDMが制限される場合であっても、PUSCHを利用したUCIの送信を適切に行うことができる。 Alternatively, the UE may use at least one of the PUSCH configurations of FIGS. 3C, 4C, and 4D. In this case, UCI can be transmitted without frequency multiplexing (FDM) of UCI and DMRS in UCI on PUSCH. Therefore, even when the FDM between UCI and DMRS in UCI on PUSCH is restricted, UCI transmission using PUSCH can be performed appropriately.
[ケース4]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に関わらず、トランスフォームプリコーディングを適用せず、且つFHを適用したPUSCHを利用してUCIの送信を行う。
[Case 4]
The UE transmits UCI using PUSCH to which FH is applied and transform precoding is not applied regardless of the presence or absence (or setting content) of transform precoding.
 例えば、UEは、トランスフォームプリコーディングの適用が設定されている場合(enabled)であっても、トランスフォームプリコーディングを適用せずにUCI on PUSCHを行う。この場合、UEは、図3EのPUSCH構成を利用してUCIの送信を行ってもよい。 For example, the UE performs UCI on PUSCH without applying transform precoding even when application of transform precoding is set (enabled). In this case, the UE may transmit UCI using the PUSCH configuration of FIG. 3E.
 例えば、PUSCH構成として所定のPUSCH構成(例えば、図4A、B、E)がサポートされない場合、低いPAPRが要求されるトランスフォームプリコーディングを適用しつつFHを適用することは困難となる。そのため、ケース4では、FHを適用してUCI on PUSCHを行う場合には、トランスフォームプリコーディングを適用しない。なお、FHを適用してPUSCHを送信することにより周波数ダイバーシチ効果を得ることができる。 For example, when a predetermined PUSCH configuration (for example, FIGS. 4A, 4B, and 4E) is not supported as a PUSCH configuration, it is difficult to apply FH while applying transform precoding that requires low PAPR. Therefore, in Case 4, when UCI on PUSCH is performed by applying FH, transform precoding is not applied. Note that a frequency diversity effect can be obtained by transmitting PUSCH by applying FH.
[ケース5]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に基づいて、PUSCHに対するFHの適用有無を決定し、当該PUSCHを利用してUCIの送信を行う。例えば、トランスフォームプリコーディングの適用が設定されている場合(enabled)にはFHを適用せず、トランスフォームプリコーディングの適用が設定されていない場合(disabled)にはFHを適用する。
[Case 5]
The UE determines whether FH is applied to the PUSCH based on the presence / absence (or setting content) of transform precoding, and transmits the UCI using the PUSCH. For example, when application of transform precoding is set (enabled), FH is not applied, and when application of transform precoding is not set (disabled), FH is applied.
 具体的には、UEは、トランスフォームプリコーディングの適用が設定されている場合(enabled)、トランスフォームプリコーディングを適用し、且つFHは適用せずにUCI on PUSCHを行う。この場合、UEは、図4B-Dの少なくとも一つのPUSCH構成を利用してUCIの送信を行ってもよい。これにより、低いPAPRでUCIの送信を行うことができる。 Specifically, when application of transform precoding is set (enabled), the UE performs UCI on PUSCH without applying FH and applying transform precoding. In this case, the UE may transmit UCI using at least one PUSCH configuration of FIGS. 4B-D. Thereby, UCI transmission can be performed with low PAPR.
 一方で、トランスフォームプリコーディングの適用が設定されていない場合(disabled)、トランスフォームプリコーディングを適用せず、且つFHは適用してUCI on PUSCHを行う。この場合、UEは、図3EのPUSCH構成を利用してUCIの送信を行ってもよい。これにより、周波数ダイバーシチ効果を得ることができる。 On the other hand, when application of transform precoding is not set (disabled), transform precoding is not applied, and FH is applied to perform UCI on PUSCH. In this case, the UE may transmit UCI using the PUSCH configuration of FIG. 3E. As a result, a frequency diversity effect can be obtained.
[ケース6]
 UEは、PUSCH用に設定される条件(又は、パラメータ)に基づいてUCI on PUSCHを行う。PUSCH用に設定される条件としては、シンボル数、FH適用有無、及びトランスフォームプリコーディングの適用有無の少なくとも一つであってもよい。また、トランスフォームプリコーディングの適用有無は、相対的に低いPAPRを利用する構成(図3A-E)の適用指示、又は相対的に高いPAPRを利用する構成(図4A-E)の適用指示であってもよい。
[Case 6]
The UE performs UCI on PUSCH based on conditions (or parameters) set for PUSCH. The condition set for PUSCH may be at least one of the number of symbols, whether FH is applied, and whether transform precoding is applied. In addition, the presence / absence of application of transform precoding is determined by an application instruction for a configuration using a relatively low PAPR (FIG. 3A-E) or an application instruction for a configuration using a relatively high PAPR (FIG. 4A-E). There may be.
 例えば、UEは、2シンボル及びFHホッピングを適用するPUSCHが設定された場合、2シンボルの且つFHを適用するPUSCHを利用してUCI on PUSCHを行う。このように、PUSCHに設定される条件を適用することにより、基地局から設定された条件をそのまま利用してUCI on PUSCHを行うことができる。 For example, when 2 symbols and PUSCH to which FH hopping is applied are set, the UE performs UCI on PUSCH by using the PUSCH to which 2 symbols and FH are applied. In this way, by applying the conditions set for the PUSCH, the UCI on PUSCH can be performed using the conditions set by the base station as they are.
<制御例2:2シンボルPUCCH_FH無/2シンボルPUSCH_FH有>
 制御例2は、FHの非適用が設定される(又は、FHの適用が設定されない)2シンボルPUCCHと、FHの適用が設定される2シンボルのPUSCHの送信期間が重複する場合に相当する。この場合、UEは、以下のケース1-6の少なくとも一つを利用してUCIの送信を制御する。あるいは、以下のケース1-6の少なくとも一つの動作が制限される構成としてもよい。この場合、UEは、制限された構成におけるUCI送信方法は適用しないと想定してUCIの送信を制御してもよい。
<Control example 2: 2 symbols PUCCH_FH absent / 2 symbols PUSCH_FH present>
Control example 2 corresponds to a case where the transmission periods of 2-symbol PUCCH for which FH non-application is set (or FH application is not set) and 2-symbol PUSCH for which FH application is set overlap. In this case, the UE controls UCI transmission using at least one of the following cases 1-6. Alternatively, at least one operation in the following cases 1-6 may be limited. In this case, the UE may control UCI transmission on the assumption that the UCI transmission method in the restricted configuration is not applied.
[ケース1]
 UEは、PUCCHをドロップし、2シンボルのPUSCHを送信する(PUSCHを2シンボルに割当てる)。また、UEは、FHを適用してPUSCHの送信を行う。UEは、制御例2のケース1として、上記制御例1のケース1で示した内容と同様に制御してもよい。
[Case 1]
The UE drops the PUCCH and transmits a 2-symbol PUSCH (assigns the PUSCH to 2 symbols). Moreover, UE transmits FSCH by applying PUH. The UE may perform the same control as the case 1 of the control example 2 in the same manner as the case 1 of the control example 1 described above.
[ケース2]
 UEは、PUSCHをドロップし、2シンボルのPUCCHを送信する(PUCCHを2シンボルに割当てる)。また、UEは、FHを適用せずにPUCCHの送信を行う。つまり、UCIはPUCCHを利用して送信し、ULデータの送信は行わない。この場合、UEは、図1B-D及び図2B-DのPUCCH構成の少なくとも一つを利用してもよい。
[Case 2]
The UE drops the PUSCH and transmits a 2-symbol PUCCH (assigns a PUCCH to 2 symbols). Moreover, UE transmits PUCCH without applying FH. That is, UCI transmits using PUCCH, and UL data is not transmitted. In this case, the UE may use at least one of the PUCCH configurations of FIGS. 1B-D and 2B-D.
[ケース3]
 UEは、FHを適用しないPUSCHを利用してUCIの送信を行う。つまり、PUCCHは利用せずに、UCIをPUSCHに多重(UCI on PUSCH)する。この場合、PUCCHに設定されたFH非適用をUCI on PUSCHについても適用する。また、UEは、基地局から設定されているトランスフォームプリコーディングに基づいてPUSCHの送信を制御してもよい。
[Case 3]
UE transmits UCI using PUSCH to which FH is not applied. That is, the UCI is multiplexed on the PUSCH (UCI on PUSCH) without using the PUCCH. In this case, FH non-application set in PUCCH is applied also to UCI on PUSCH. Moreover, UE may control transmission of PUSCH based on the transform precoding set from the base station.
 UEは、制御例2のケース3として、上記制御例1のケース3で示した内容と同様に制御してもよい。 The UE may perform the same control as the case 3 of the control example 2 in the same manner as the case 3 of the control example 1 described above.
[ケース4]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に関わらず、トランスフォームプリコーディングを適用せず、且つFHを適用したPUSCHを利用してUCIの送信を行う。ここでは、PUSCHに設定されたFH適用をUCI on PUSCHについても適用する。
[Case 4]
The UE transmits UCI using PUSCH to which FH is applied and transform precoding is not applied regardless of the presence or absence (or setting content) of transform precoding. Here, the FH application set to PUSCH is also applied to UCI on PUSCH.
 UEは、制御例2のケース4として、上記制御例1のケース4で示した内容と同様に制御してもよい。 The UE may perform the same control as the case 4 of the control example 2 in the same manner as the case 4 of the control example 1 described above.
[ケース5]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に基づいて、PUSCHに対するFHの適用有無を決定し、当該PUSCHを利用してUCIの送信を行う。
[Case 5]
The UE determines whether FH is applied to the PUSCH based on the presence / absence (or setting content) of transform precoding, and transmits the UCI using the PUSCH.
 UEは、制御例2のケース5として、上記制御例1のケース5で示した内容と同様に制御してもよい。 The UE may perform the same control as the case 5 of the control example 2 as in the case 5 of the control example 1 described above.
[ケース6]
 UEは、PUSCH用に設定される条件(又は、パラメータ)に基づいてUCI on PUSCHを行う。UEは、制御例2のケース6として、上記制御例1のケース6で示した内容と同様に制御してもよい。
[Case 6]
The UE performs UCI on PUSCH based on conditions (or parameters) set for PUSCH. The UE may control the case 6 of the control example 2 in the same manner as the case 6 of the control example 1 described above.
<制御例3:2シンボルPUCCH_FH有/2シンボルPUSCH_FH無>
 制御例3は、FHの適用が設定される2シンボルPUCCHと、FHの非適用が設定される2シンボルのPUSCHの送信期間が重複する場合に相当する。この場合、UEは、以下のケース1-6の少なくとも一つを利用してUCIの送信を制御する。あるいは、以下のケース1-6の少なくとも一つの動作が制限される構成としてもよい。この場合、UEは、制限された構成におけるUCI送信方法は適用しないと想定してUCIの送信を制御してもよい。
<Control example 3: 2 symbols PUCCH_FH present / 2 symbol PUSCH_FH absent>
Control example 3 corresponds to a case where the transmission periods of the 2-symbol PUCCH for which application of FH is set and the 2-symbol PUSCH for which application of FH is not set overlap. In this case, the UE controls UCI transmission using at least one of the following cases 1-6. Alternatively, at least one operation in the following cases 1-6 may be limited. In this case, the UE may control UCI transmission on the assumption that the UCI transmission method in the restricted configuration is not applied.
[ケース1]
 UEは、PUCCHをドロップし、2シンボルのPUSCHを送信する(PUSCHを2シンボルに割当てる)。また、UEは、FHを適用せずにPUSCHの送信を行う。つまり、PUSCHにUCIは多重せずULデータの送信を行う。この場合、UEは、図3B-D及び図4B-DのPUSCH構成の少なくとも一つを利用してもよい。
[Case 1]
The UE drops the PUCCH and transmits a 2-symbol PUSCH (assigns the PUSCH to 2 symbols). Moreover, UE transmits PUSCH without applying FH. That is, UL data is transmitted without multiplexing UCI on PUSCH. In this case, the UE may use at least one of the PUSCH configurations of FIGS. 3B-D and 4B-D.
[ケース2]
 UEは、PUSCHをドロップし、2シンボルのPUCCHを送信する(PUCCHを2シンボルに割当てる)。また、UEは、FHを適用してPUCCHの送信を行う。つまり、UCIはPUCCHを利用して送信し、ULデータの送信は行わない。この場合、UEは、図1E及び図2EのPUCCH構成の少なくとも一つを利用してもよい。
[Case 2]
The UE drops the PUSCH and transmits a 2-symbol PUCCH (assigns a PUCCH to 2 symbols). Moreover, UE transmits FUCCH by applying FH. That is, UCI transmits using PUCCH, and UL data is not transmitted. In this case, the UE may use at least one of the PUCCH configurations of FIGS. 1E and 2E.
[ケース3]
 UEは、FHを適用しないPUSCHを利用してUCIの送信を行う。つまり、PUCCHは利用せずに、UCIをPUSCHに多重(UCI on PUSCH)する。ここでは、PUSCHに設定されたFH非適用をUCI on PUSCHについても適用する。また、UEは、基地局から設定されているトランスフォームプリコーディングに基づいてPUSCHの送信を制御してもよい。
[Case 3]
UE transmits UCI using PUSCH to which FH is not applied. That is, the UCI is multiplexed on the PUSCH (UCI on PUSCH) without using the PUCCH. Here, FH non-application set to PUSCH is applied also to UCI on PUSCH. Moreover, UE may control transmission of PUSCH based on the transform precoding set from the base station.
 UEは、制御例3のケース3として、上記制御例1のケース3で示した内容と同様に制御してもよい。 The UE may perform the same control as the case 3 of the control example 3 in the same manner as the case 3 of the control example 1 described above.
[ケース4]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に関わらず、トランスフォームプリコーディングを適用せず、且つFHを適用したPUSCHを利用してUCI(例えば、2シンボルUCI)の送信を行う。ここでは、PUCCHに設定されたFH適用をUCI on PUSCHについても適用する。
[Case 4]
The UE transmits UCI (for example, 2 symbols UCI) using PUSCH to which FH is applied and transform precoding is not applied regardless of whether or not transform precoding is set (or setting content). Do. Here, FH application set to PUCCH is also applied to UCI on PUSCH.
 UEは、制御例3のケース4として、上記制御例1のケース4で示した内容と同様に制御してもよい。 The UE may control the case 4 of the control example 3 in the same manner as the case 4 of the control example 1 described above.
[ケース5]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に基づいて、PUSCHに対するFHの適用有無を決定し、当該PUSCHを利用してUCIの送信を行う。
[Case 5]
The UE determines whether FH is applied to the PUSCH based on the presence / absence (or setting content) of transform precoding, and transmits the UCI using the PUSCH.
 UEは、制御例3のケース5として、上記制御例1のケース5で示した内容と同様に制御してもよい。 The UE may control as the case 5 of the control example 3 in the same manner as the case 5 of the control example 1 described above.
[ケース6]
 UEは、PUSCH用に設定される条件(又は、パラメータ)に基づいてUCI on PUSCHを行う。UEは、制御例3のケース6として、上記制御例1のケース6で示した内容と同様に制御してもよい。
[Case 6]
The UE performs UCI on PUSCH based on conditions (or parameters) set for PUSCH. The UE may control the case 6 of the control example 3 in the same manner as the case 6 of the control example 1 described above.
<制御例4:2シンボルPUCCH_FH無/2シンボルPUSCH_FH無>
 制御例4は、FHの非適用が設定される2シンボルPUCCHと、FHの非適用が設定される2シンボルのPUSCHの送信期間が重複する場合に相当する。この場合、UEは、以下のケース1-6の少なくとも一つを利用してUCIの送信を制御する。あるいは、以下のケース1-6の少なくとも一つの動作が制限される構成としてもよい。この場合、UEは、制限された構成におけるUCI送信方法は適用しないと想定してUCIの送信を制御してもよい。
<Control Example 4: No 2-symbol PUCCH_FH / No 2-symbol PUSCH_FH>
Control example 4 corresponds to a case where the transmission periods of the 2-symbol PUCCH for which FH non-application is set and the 2-symbol PUSCH for which FH non-application is set overlap. In this case, the UE controls UCI transmission using at least one of the following cases 1-6. Alternatively, at least one operation in the following cases 1-6 may be limited. In this case, the UE may control UCI transmission on the assumption that the UCI transmission method in the restricted configuration is not applied.
[ケース1]
 UEは、PUCCHをドロップし、2シンボルのPUSCHを送信する(PUSCHを2シンボルに割当てる)。また、UEは、FHを適用せずにPUSCHの送信を行う。UEは、制御例4のケース1として、上記制御例3のケース1で示した内容と同様に制御してもよい。
[Case 1]
The UE drops the PUCCH and transmits a 2-symbol PUSCH (assigns the PUSCH to 2 symbols). Moreover, UE transmits PUSCH without applying FH. The UE may perform the same control as the case 1 of the control example 4 in the same manner as the case 1 of the control example 3 described above.
[ケース2]
 UEは、PUSCHをドロップし、2シンボルのPUCCHを送信する(PUCCHを2シンボルに割当てる)。また、UEは、FHを適用せずにPUCCHの送信を行う。つまり、UCIはPUCCHを利用して送信し、ULデータの送信は行わない。この場合、UEは、図1B-D及び図2B-DのPUCCH構成の少なくとも一つを利用してもよい。
[Case 2]
The UE drops the PUSCH and transmits a 2-symbol PUCCH (assigns a PUCCH to 2 symbols). Moreover, UE transmits PUCCH without applying FH. That is, UCI transmits using PUCCH, and UL data is not transmitted. In this case, the UE may use at least one of the PUCCH configurations of FIGS. 1B-D and 2B-D.
[ケース3]
 UEは、FHを適用しないPUSCHを利用してUCIの送信を行う。つまり、PUCCHは利用せずに、UCIをPUSCHに多重(UCI on PUSCH)する。ここでは、PUCCH及びPUSCHに設定されたFH非適用をUCI on PUSCHについても適用する。UEは、基地局から設定されているトランスフォームプリコーディングに基づいてPUSCHの送信を制御してもよい。
[Case 3]
UE transmits UCI using PUSCH to which FH is not applied. That is, the UCI is multiplexed on the PUSCH (UCI on PUSCH) without using the PUCCH. Here, FH non-application set to PUCCH and PUSCH is applied to UCI on PUSCH. The UE may control PUSCH transmission based on transform precoding set by the base station.
 UEは、制御例4のケース3として、上記制御例1のケース3で示した内容と同様に制御してもよい。 The UE may control as the case 3 of the control example 4 in the same manner as the case 3 of the control example 1 described above.
[ケース4]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に関わらず、トランスフォームプリコーディングを適用し、且つFHを適用しない2シンボルのPUSCHを利用してUCIの送信を行う。ここでは、PUCCH及びPUSCHに設定されたFH非適用をUCI on PUSCHについても適用する。
[Case 4]
The UE transmits UCI using 2-symbol PUSCH to which transform precoding is applied and FH is not applied, regardless of whether transform precoding is set (or setting content). Here, FH non-application set to PUCCH and PUSCH is applied to UCI on PUSCH.
 例えば、UEは、トランスフォームプリコーディングの適用が設定されていない場合(disabled)であっても、トランスフォームプリコーディングを適用し、且つFHは適用せずにUCI on PUSCHを行う。この場合、UEは、図4B-DのPUSCH構成の少なくとも一つ(例えば、図4D)のPUSCH構成を利用してUCIの送信を行ってもよい。 For example, even when the application of transform precoding is not set (disabled), the UE performs UCI on PUSCH without applying FH and applying transform precoding. In this case, the UE may perform UCI transmission using the PUSCH configuration of at least one of the PUSCH configurations of FIGS. 4B-D (eg, FIG. 4D).
 例えば、PUSCH構成として所定のPUSCH構成(例えば、図4A、B、E)がサポートされない場合、低いPAPRが要求されるトランスフォームプリコーディングを適用しつつFHを適用することは困難となる。そのため、ケース4では、FHを適用せず、トランスフォームプリコーディングを適用してUCI on PUSCHを行う。これにより、低いPAPRでUCIを送信することができる。 For example, when a predetermined PUSCH configuration (for example, FIGS. 4A, 4B, and 4E) is not supported as a PUSCH configuration, it is difficult to apply FH while applying transform precoding that requires low PAPR. Therefore, in Case 4, UCI on PUSCH is performed by applying transform precoding without applying FH. Thereby, UCI can be transmitted with low PAPR.
[ケース5]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に基づいて、PUSCHに対するFHの適用有無を決定し、当該PUSCHを利用してUCIの送信を行う。
[Case 5]
The UE determines whether FH is applied to the PUSCH based on the presence / absence (or setting content) of transform precoding, and transmits the UCI using the PUSCH.
 UEは、制御例4のケース5として、上記制御例1のケース5で示した内容と同様に制御してもよい。 The UE may control the case 5 of the control example 4 in the same manner as the case 5 of the control example 1 described above.
[ケース6]
 UEは、PUSCH用に設定される条件(又は、パラメータ)に基づいてUCI on PUSCHを行う。UEは、制御例4のケース6として、上記制御例1のケース6で示した内容と同様に制御してもよい。
[Case 6]
The UE performs UCI on PUSCH based on conditions (or parameters) set for PUSCH. The UE may perform the same control as the case 6 of the control example 4 in the same manner as the case 6 of the control example 1 described above.
<制御例5:1シンボルPUCCH/2シンボルPUSCH_FH有>
 制御例5は、1シンボルPUCCHと、FHの適用が設定される2シンボルのPUSCHの送信期間(例えば、開始シンボル)が重複する場合に相当する。この場合、UEは、以下のケース1-7の少なくとも一つを利用してUCIの送信を制御する。あるいは、以下のケース1-7の少なくとも一つの動作が制限される構成としてもよい。この場合、UEは、制限された構成におけるUCI送信方法は適用しないと想定してUCIの送信を制御してもよい。
<Control example 5: 1 symbol PUCCH / 2 symbols PUSCH_FH present>
Control example 5 corresponds to the case where the transmission periods (for example, start symbols) of one symbol PUCCH and two symbols of PUSCH for which application of FH is set overlap. In this case, the UE controls UCI transmission using at least one of the following cases 1-7. Alternatively, at least one operation in the following cases 1-7 may be limited. In this case, the UE may control UCI transmission on the assumption that the UCI transmission method in the restricted configuration is not applied.
[ケース1]
 UEは、PUCCHをドロップし、2シンボルのPUSCHを送信する(PUSCHを2シンボルに割当てる)。また、UEは、FHを適用してPUSCHの送信を行う。つまり、PUSCHにUCIは多重せずULデータの送信を行う。この場合、UEは、図3E及び図4EのPUSCH構成の少なくとも一つを利用してもよい。
[Case 1]
The UE drops the PUCCH and transmits a 2-symbol PUSCH (assigns the PUSCH to 2 symbols). Moreover, UE transmits FSCH by applying PUH. That is, UL data is transmitted without multiplexing UCI on PUSCH. In this case, the UE may use at least one of the PUSCH configurations of FIGS. 3E and 4E.
[ケース2]
 UEは、PUSCHをドロップし、1シンボルのPUCCHを送信する(PUCCHを1シンボルに割当てる)。つまり、UCIはPUCCHを利用して送信し、ULデータの送信は行わない。この場合、UEは、図1A及び図2AのPUCCH構成の少なくとも一つを利用してもよい。
[Case 2]
The UE drops the PUSCH and transmits one symbol PUCCH (assigns PUCCH to one symbol). That is, UCI transmits using PUCCH, and UL data is not transmitted. In this case, the UE may use at least one of the PUCCH configurations of FIGS. 1A and 2A.
[ケース3]
 UEは、FHを適用しない2シンボルのPUSCHを利用してUCIの送信を行う。つまり、PUCCHは利用せずに、UCIをPUSCHに多重(UCI on PUSCH)する。この場合、UEは、UCIを2シンボルのPUSCHのうち一方のシンボル(例えば、2シンボル目)に配置してもよいし、両方に配置してもよい。
[Case 3]
The UE transmits UCI using 2-symbol PUSCH to which FH is not applied. That is, the UCI is multiplexed on the PUSCH (UCI on PUSCH) without using the PUCCH. In this case, the UE may arrange UCI in one symbol (for example, the second symbol) of two symbols of PUSCH or in both.
 また、UEは、基地局から設定されているトランスフォームプリコーディングに基づいてPUSCHの送信を制御してもよい。例えば、トランスフォームプリコーディングの適用が設定されている場合(enabled)、UEはトランスフォームプリコーディングを適用して(例えば、DFT-s-OFDMを利用して)PUSCHの送信を行う。トランスフォームプリコーディングの適用が設定されてない場合(disabled)、UEはトランスフォームプリコーディングを適用せず(例えば、CP-OFDMを利用して)PUSCHの送信を行う。 Also, the UE may control PUSCH transmission based on transform precoding set by the base station. For example, when application of transform precoding is set (enabled), the UE transmits PUSCH by applying transform precoding (for example, using DFT-s-OFDM). When application of transform precoding is not configured (disabled), the UE performs PUSCH transmission without applying transform precoding (for example, using CP-OFDM).
 この場合、UEは、トランスフォームプリコーディングの適用有無に応じて、図3B-D及び図4B-DのPUSCH構成の少なくとも一つを利用してもよい。 In this case, the UE may use at least one of the PUSCH configurations of FIGS. 3B-D and 4B-D depending on whether transform precoding is applied.
 あるいは、UEは、図3C、図4C、及び図4DのPUSCH構成の少なくとも一つを利用してもよい。この場合、UCI on PUSCHにおいてUCIとDMRSを周波数多重(FDM)せずにUCIを送信することが可能となる。そのため、UCI on PUSCHにおけるUCIとDMRSとのFDMが制限される場合であっても、PUSCHを利用したUCIの送信を適切に行うことができる。 Alternatively, the UE may use at least one of the PUSCH configurations of FIGS. 3C, 4C, and 4D. In this case, UCI can be transmitted without frequency multiplexing (FDM) of UCI and DMRS in UCI on PUSCH. Therefore, even when the FDM between UCI and DMRS in UCI on PUSCH is restricted, UCI transmission using PUSCH can be performed appropriately.
[ケース4]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に関わらず、トランスフォームプリコーディングを適用せず、且つFHを適用したPUSCH(例えば、2シンボルPUSCH)を利用してUCIの送信を行う。
[Case 4]
The UE transmits UCI using PUSCH (for example, two-symbol PUSCH) to which FH is applied and transform precoding is not applied regardless of the presence / absence (or setting content) of transform precoding. Do.
 例えば、UEは、トランスフォームプリコーディングの適用が設定されている場合(enabled)であっても、トランスフォームプリコーディングを適用せずにUCI on PUSCHを行う。この場合、UEは、図3EのPUSCH構成を利用してUCIの送信を行ってもよい。 For example, the UE performs UCI on PUSCH without applying transform precoding even when application of transform precoding is set (enabled). In this case, the UE may transmit UCI using the PUSCH configuration of FIG. 3E.
 例えば、PUSCH構成として所定のPUSCH構成(例えば、図4A、B、E)がサポートされない場合、低いPAPRが要求されるトランスフォームプリコーディングを適用しつつFHを適用することは困難となる。そのため、ケース4では、FHを適用してUCI on PUSCHを行う場合には、トランスフォームプリコーディングを適用しない。なお、FHを適用してPUSCHを送信することにより周波数ダイバーシチ効果を得ることができる。 For example, when a predetermined PUSCH configuration (for example, FIGS. 4A, 4B, and 4E) is not supported as a PUSCH configuration, it is difficult to apply FH while applying transform precoding that requires low PAPR. Therefore, in Case 4, when UCI on PUSCH is performed by applying FH, transform precoding is not applied. Note that a frequency diversity effect can be obtained by transmitting PUSCH by applying FH.
[ケース5]
 UEは、PUCCHとPUSCHを送信する。この場合、PUCCHとPUSCHが同じシンボルで重複しないように制御する。例えば、1シンボルPUCCHを送信すると共に、PUSCHの1シンボル目を送信せず(例えば、パンクチャ処理を行い)、2シンボル目のPUSCHを送信する。この場合、UEは、UCIはPUCCHを利用して送信し、ULデータはPUSCHを利用して送信できる。また、UEは、図1A及び図2AのPUCCH構成の少なくとも一つを利用してPUCCHを送信してもよい。
[Case 5]
The UE transmits PUCCH and PUSCH. In this case, control is performed so that PUCCH and PUSCH do not overlap with the same symbol. For example, the first symbol PUCCH is transmitted, and the first PUSCH symbol is not transmitted (for example, puncture processing is performed), and the second symbol PUSCH is transmitted. In this case, the UE can transmit UCI using PUCCH, and can transmit UL data using PUSCH. Also, the UE may transmit the PUCCH using at least one of the PUCCH configurations in FIGS. 1A and 2A.
 さらに、UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に関わらず、トランスフォームプリコーディングを適用せずにPUSCHの送信を行ってもよい。例えば、UEは、トランスフォームプリコーディングの適用が設定されている場合(enabled)であっても、トランスフォームプリコーディングを適用せずにPUSCHを送信する。この場合、UEは、図3AのPUSCH構成を利用してUCIの送信を行ってもよい。 Furthermore, the UE may transmit the PUSCH without applying the transform precoding regardless of whether or not the transform precoding is set (or setting content). For example, the UE transmits the PUSCH without applying the transform precoding even if the application of the transform precoding is set (enabled). In this case, the UE may transmit UCI using the PUSCH configuration of FIG. 3A.
 例えば、PUSCH構成として所定のPUSCH構成(例えば、図4A、B、E)がサポートされない場合、低いPAPRが要求されるトランスフォームプリコーディングを適用しつつ1シンボルPUSCHを送信することは困難となる。そのため、ケース4では、1シンボルPUSCHを行う場合には、トランスフォームプリコーディングを適用しない。 For example, when a predetermined PUSCH configuration (for example, FIGS. 4A, 4B, and 4E) is not supported as a PUSCH configuration, it is difficult to transmit one symbol PUSCH while applying transform precoding that requires a low PAPR. Therefore, in case 4, when 1 symbol PUSCH is performed, transform precoding is not applied.
[ケース6]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に基づいて、PUSCHに対するFHの適用有無を決定し、2シンボルのPUSCHを利用してUCIの送信を行う(PUCCHを送信しない)。例えば、トランスフォームプリコーディングの適用が設定されている場合(enabled)にはFHを適用せず、トランスフォームプリコーディングの適用が設定されていない場合(disabled)にはFHを適用する。
[Case 6]
The UE determines the presence / absence of application of FH to the PUSCH based on the presence / absence (or setting content) of transform precoding, and transmits the UCI using the 2-symbol PUSCH (does not transmit the PUCCH). For example, when application of transform precoding is set (enabled), FH is not applied, and when application of transform precoding is not set (disabled), FH is applied.
 具体的には、UEは、トランスフォームプリコーディングの適用が設定されている場合(enabled)、トランスフォームプリコーディングを適用し、且つFHは適用せずに2シンボルのUCI on PUSCHを行う。この場合、UEは、図4B-Dの少なくとも一つのPUSCH構成を利用してUCIの送信を行ってもよい。これにより、低いPAPRでUCIの送信を行うことができる。 Specifically, when application of transform precoding is set (enabled), the UE performs 2-symbol UCI on PUSCH without applying FH and applying transform precoding. In this case, the UE may transmit UCI using at least one PUSCH configuration of FIGS. 4B-D. Thereby, UCI transmission can be performed with low PAPR.
 一方で、トランスフォームプリコーディングの適用が設定されていない場合(disabled)、トランスフォームプリコーディングを適用せず、且つFHを適用して2シンボルのUCI on PUSCHを行う。この場合、UEは、図3EのPUSCH構成を利用してUCIの送信を行ってもよい。これにより、周波数ダイバーシチ効果を得ることができる。 On the other hand, when application of transform precoding is not set (disabled), UCI on PUSCH of 2 symbols is performed without applying transform precoding and applying FH. In this case, the UE may transmit UCI using the PUSCH configuration of FIG. 3E. As a result, a frequency diversity effect can be obtained.
[ケース7]
 UEは、PUSCH用に設定される条件(又は、パラメータ)に基づいてUCI on PUSCHを行う。UEは、制御例5のケース7として、上記制御例1のケース6で示した内容と同様に制御してもよい。
[Case 7]
The UE performs UCI on PUSCH based on conditions (or parameters) set for PUSCH. The UE may control the case 7 of the control example 5 in the same manner as the case 6 of the control example 1 described above.
<制御例6:1シンボルPUCCH/2シンボルPUSCH_FH無>
 制御例6は、1シンボルPUCCHと、FHの非適用が設定される2シンボルのPUSCHの送信期間(例えば、開始シンボル)が重複する場合に相当する。この場合、UEは、以下のケース1-7の少なくとも一つを利用してUCIの送信を制御する。あるいは、以下のケース1-7の少なくとも一つの動作が制限される構成としてもよい。この場合、UEは、制限された構成におけるUCI送信方法は適用しないと想定してUCIの送信を制御してもよい。
<Control Example 6: 1 symbol PUCCH / 2 symbols PUSCH_FH None>
Control example 6 corresponds to a case where the transmission periods (for example, start symbols) of one symbol PUCCH and two symbols PUSCH for which FH non-application is set overlap. In this case, the UE controls UCI transmission using at least one of the following cases 1-7. Alternatively, at least one operation in the following cases 1-7 may be limited. In this case, the UE may control UCI transmission on the assumption that the UCI transmission method in the restricted configuration is not applied.
[ケース1]
 UEは、PUCCHをドロップし、2シンボルのPUSCHを送信する(PUSCHを2シンボルに割当てる)。また、UEは、FHを適用せずにPUSCHの送信を行う。つまり、PUSCHにUCIは多重せずULデータの送信を行う。この場合、UEは、図3B-D及び図4B-DのPUSCH構成の少なくとも一つを利用してもよい。
[Case 1]
The UE drops the PUCCH and transmits a 2-symbol PUSCH (assigns the PUSCH to 2 symbols). Moreover, UE transmits PUSCH without applying FH. That is, UL data is transmitted without multiplexing UCI on PUSCH. In this case, the UE may use at least one of the PUSCH configurations of FIGS. 3B-D and 4B-D.
[ケース2]
 UEは、PUSCHをドロップし、1シンボルのPUCCHを送信する(PUCCHを1シンボルに割当てる)。つまり、UCIはPUCCHを利用して送信し、ULデータの送信は行わない。UEは、制御例6のケース2として、上記制御例5のケース2で示した内容と同様に制御してもよい。
[Case 2]
The UE drops the PUSCH and transmits one symbol PUCCH (assigns PUCCH to one symbol). That is, UCI transmits using PUCCH, and UL data is not transmitted. The UE may perform the same control as the case 2 of the control example 6 as in the case 2 of the control example 5 described above.
[ケース3]
 UEは、FHを適用しない2シンボルのPUSCHを利用してUCIの送信を行う。つまり、PUCCHは利用せずに、UCIをPUSCHに多重(UCI on PUSCH)する。この場合、PUSCHに設定されたFH非適用をUCI on PUSCHについても適用する。UEは、UCIを2シンボルのPUSCHのうち一方のシンボル(例えば、2シンボル目)に配置してもよいし、両方に配置してもよい。また、UEは、基地局から設定されているトランスフォームプリコーディングに基づいてPUSCHの送信を制御してもよい。
[Case 3]
The UE transmits UCI using 2-symbol PUSCH to which FH is not applied. That is, the UCI is multiplexed on the PUSCH (UCI on PUSCH) without using the PUCCH. In this case, FH non-application set in PUSCH is also applied to UCI on PUSCH. The UE may arrange UCI in one symbol (for example, the second symbol) of two symbols of PUSCH or in both. Moreover, UE may control transmission of PUSCH based on the transform precoding set from the base station.
 UEは、制御例6のケース3として、上記制御例5のケース3で示した内容と同様に制御してもよい。 The UE may perform the same control as the case 3 of the control example 6 in the same manner as the case 3 of the control example 5 described above.
[ケース4]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に関わらず、トランスフォームプリコーディングを適用せず、且つFHを適用したPUSCH(例えば、2シンボルPUSCH)を利用してUCIの送信を行う。
[Case 4]
The UE transmits UCI using PUSCH (for example, two-symbol PUSCH) to which FH is applied and transform precoding is not applied regardless of the presence / absence (or setting content) of transform precoding. Do.
 UEは、制御例6のケース4として、上記制御例5のケース4で示した内容と同様に制御してもよい。 The UE may control the case 4 of the control example 6 in the same manner as the case 4 of the control example 5 described above.
[ケース5]
 UEは、PUCCHとPUSCHを送信する。この場合、PUCCHとPUSCHが同じシンボルで重複しないように制御する。例えば、1シンボルPUCCHを送信すると共に、PUSCHの1シンボル目を送信せず(例えば、パンクチャ処理を行い)、2シンボル目のPUSCHを送信する。この場合、UEは、UCIはPUCCHを利用して送信し、ULデータはPUSCHを利用して送信できる。
[Case 5]
The UE transmits PUCCH and PUSCH. In this case, control is performed so that PUCCH and PUSCH do not overlap with the same symbol. For example, the first symbol PUCCH is transmitted, and the first PUSCH symbol is not transmitted (for example, puncture processing is performed), and the second symbol PUSCH is transmitted. In this case, the UE can transmit UCI using PUCCH, and can transmit UL data using PUSCH.
 UEは、制御例6のケース5として、上記制御例5のケース5で示した内容と同様に制御してもよい。 The UE may perform the same control as the case 5 of the control example 6 in the same manner as the case 5 of the control example 5.
[ケース6]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に基づいて、PUSCHに対するFHの適用有無を決定し、2シンボルのPUSCHを利用してUCIの送信を行う(PUCCHを送信しない)。例えば、トランスフォームプリコーディングの適用が設定されている場合(enabled)にはFHを適用せず、トランスフォームプリコーディングの適用が設定されていない場合(disabled)にはFHを適用する。
[Case 6]
The UE determines the presence / absence of application of FH to the PUSCH based on the presence / absence (or setting content) of transform precoding, and transmits the UCI using the 2-symbol PUSCH (does not transmit the PUCCH). For example, when application of transform precoding is set (enabled), FH is not applied, and when application of transform precoding is not set (disabled), FH is applied.
 UEは、制御例6のケース6として、上記制御例5のケース6で示した内容と同様に制御してもよい。 The UE may control as the case 6 of the control example 6 in the same manner as the case 6 of the control example 5 described above.
[ケース7]
 UEは、PUSCH用に設定される条件(又は、パラメータ)に基づいてUCI on PUSCHを行う。UEは、制御例6のケース7として、上記制御例1のケース6で示した内容と同様に制御してもよい。
[Case 7]
The UE performs UCI on PUSCH based on conditions (or parameters) set for PUSCH. The UE may perform the same control as the case 7 of the control example 6 in the same manner as the case 6 of the control example 1 described above.
<制御例7:2シンボルPUCCH_FH有/1シンボルPUSCH>
 制御例7は、FHの適用が設定される2シンボルのPUCCHと、1シンボルのPUSCHの送信期間(例えば、開始シンボル)が重複する場合に相当する。この場合、UEは、以下のケース1-6の少なくとも一つを利用してUCIの送信を制御する。あるいは、以下のケース1-6の少なくとも一つの動作が制限される構成としてもよい。この場合、UEは、制限された構成におけるUCI送信方法は適用しないと想定してUCIの送信を制御してもよい。
<Control example 7: 2 symbols PUCCH_FH present / 1 symbol PUSCH>
The control example 7 corresponds to a case where the transmission periods (for example, start symbols) of 2 symbols of PUCCH to which FH application is set and 1 symbol of PUSCH overlap. In this case, the UE controls UCI transmission using at least one of the following cases 1-6. Alternatively, at least one operation in the following cases 1-6 may be limited. In this case, the UE may control UCI transmission on the assumption that the UCI transmission method in the restricted configuration is not applied.
[ケース1]
 UEは、PUCCHをドロップし、1シンボルのPUSCHを送信する(PUSCHを1シンボルに割当てる)。つまり、PUSCHにUCIは多重せずULデータの送信を行う。この場合、UEは、図3A及び図4AのPUSCH構成の少なくとも一つを利用してもよい。
[Case 1]
The UE drops the PUCCH and transmits one symbol of PUSCH (assigns PUSCH to one symbol). That is, UL data is transmitted without multiplexing UCI on PUSCH. In this case, the UE may use at least one of the PUSCH configurations of FIGS. 3A and 4A.
[ケース2]
 UEは、PUSCHをドロップし、2シンボルのPUCCHを送信する(PUCCHを2シンボルに割当てる)。また、UEは、FHを適用してPUCCHの送信を行う。つまり、UCIはPUCCHを利用して送信し、ULデータの送信は行わない。この場合、UEは、図1E及び図2EのPUCCH構成の少なくとも一つを利用してもよい。
[Case 2]
The UE drops the PUSCH and transmits a 2-symbol PUCCH (assigns a PUCCH to 2 symbols). Moreover, UE transmits FUCCH by applying FH. That is, UCI transmits using PUCCH, and UL data is not transmitted. In this case, the UE may use at least one of the PUCCH configurations of FIGS. 1E and 2E.
[ケース3]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に基づいて、PUSCHに対するFHの適用有無及びPUSCHのシンボル数の少なくとも一つを決定し、当該PUSCHを利用してUCIの送信を行う。
[Case 3]
The UE determines at least one of the presence / absence of application of FH to the PUSCH and the number of symbols of the PUSCH based on the presence / absence (or setting content) of transform precoding, and transmits the UCI using the PUSCH. .
 例えば、UEは、トランスフォームプリコーディングの適用が設定されている場合(enabled)、FHを適用しない2シンボルのPUSCHを利用してUCIの送信(UCI on PUSCH)を行う。PUSCHに対してトランスフォームプリコーディングを適用してもよい。この場合、PUSCHが設定された所定シンボルの次以降のシンボル(例えば、次シンボル)を2シンボル目として利用してもよい。 For example, when the application of transform precoding is set (enabled), the UE performs UCI transmission (UCI on PUSCH) using 2-symbol PUSCH to which FH is not applied. Transform precoding may be applied to the PUSCH. In this case, a symbol subsequent to a predetermined symbol for which PUSCH is set (for example, the next symbol) may be used as the second symbol.
 例えば、PUSCH構成として所定のPUSCH構成(例えば、図4A、B、E)がサポートされない場合、低いPAPRが要求されるトランスフォームプリコーディングを適用しつつFHを適用することは困難となる。そのため、トランスフォームプリコーディングの適用が設定される場合、FHを適用しない2シンボルPUSCHを利用してUCIの送信を行うことにより低PAPRでUCI送信を行うことができる。この場合、UEは、図4B-DのPUSCH構成の少なくとも一つを利用してもよい。 For example, when a predetermined PUSCH configuration (for example, FIGS. 4A, 4B, and 4E) is not supported as a PUSCH configuration, it is difficult to apply FH while applying transform precoding that requires low PAPR. Therefore, when application of transform precoding is set, UCI transmission can be performed with low PAPR by transmitting UCI using 2-symbol PUSCH to which FH is not applied. In this case, the UE may use at least one of the PUSCH configurations of FIGS. 4B-D.
 あるいは、UEは、トランスフォームプリコーディングの適用が設定されない場合(disabled)、1シンボルのPUSCHを利用してUCIの送信(UCI on PUSCH)を行う。PUSCHに対してトランスフォームプリコーディングは適用しなくてよい。この場合、UEは、図3AのPUSCH構成を利用してもよい。これにより、あらかじめPUSCHに対して設定された1シンボルを利用してUCI on PUSCHを行うことができる。 Alternatively, when the application of transform precoding is not set (disabled), the UE performs UCI transmission (UCI on PUSCH) using one symbol PUSCH. Transform precoding need not be applied to PUSCH. In this case, the UE may use the PUSCH configuration of FIG. 3A. Thereby, UCI on PUSCH can be performed using 1 symbol previously set with respect to PUSCH.
[ケース4]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に関わらず、トランスフォームプリコーディングを適用し、且つFHを適用しない2シンボルのPUSCHを利用してUCIの送信を行う。
[Case 4]
The UE transmits UCI using 2-symbol PUSCH to which transform precoding is applied and FH is not applied, regardless of whether transform precoding is set (or setting content).
 例えば、UEは、トランスフォームプリコーディングの適用が設定されていない場合(disabled)であっても、トランスフォームプリコーディングを適用し、且つFHは適用せずにUCI on PUSCHを行う。この場合、UEは、図4B-DのPUSCH構成の少なくとも一つ(例えば、図4D)を利用してUCIの送信を行ってもよい。 For example, even when the application of transform precoding is not set (disabled), the UE performs UCI on PUSCH without applying FH and applying transform precoding. In this case, the UE may transmit UCI using at least one of the PUSCH configurations of FIGS. 4B-D (eg, FIG. 4D).
 例えば、PUSCH構成として所定のPUSCH構成(例えば、図4A、B、E)がサポートされない場合、低いPAPRが要求されるトランスフォームプリコーディングを適用しつつFHを適用することは困難となる。そのため、ケース4では、FHを適用せず、トランスフォームプリコーディングを適用してUCI on PUSCHを行う。これにより、低いPAPRでUCIを送信することができる。 For example, when a predetermined PUSCH configuration (for example, FIGS. 4A, 4B, and 4E) is not supported as a PUSCH configuration, it is difficult to apply FH while applying transform precoding that requires low PAPR. Therefore, in Case 4, UCI on PUSCH is performed by applying transform precoding without applying FH. Thereby, UCI can be transmitted with low PAPR.
[ケース5]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に関わらず、トランスフォームプリコーディングを適用せず、且つ1シンボルのPUSCHを利用してUCIの送信を行う(PUCCHを送信しない)。この場合、あらかじめPUSCH送信用に設定されたシンボル数(ここでは、1シンボル)を利用してUCI on PUSCHを行うことができる。
[Case 5]
Regardless of whether or not transform precoding is set (or setting contents), the UE does not apply transform precoding and transmits UCI using one symbol PUSCH (does not transmit PUCCH). In this case, UCI on PUSCH can be performed using the number of symbols set in advance for PUSCH transmission (here, one symbol).
 例えば、UEは、トランスフォームプリコーディングの適用が設定されている場合(enabled)であっても、トランスフォームプリコーディングを適用せず、且つ1シンボルでUCI on PUSCHを行う。この場合、UEは、図3AのPUSCH構成を利用してUCIの送信を行ってもよい。 For example, even if the application of transform precoding is set (enabled), the UE does not apply transform precoding and performs UCI on PUSCH with one symbol. In this case, the UE may transmit UCI using the PUSCH configuration of FIG. 3A.
[ケース6]
 UEは、PUSCH用に設定される条件(又は、パラメータ)に基づいてUCI on PUSCHを行う。UEは、制御例7のケース6として、上記制御例1のケース6で示した内容と同様に制御してもよい。
[Case 6]
The UE performs UCI on PUSCH based on conditions (or parameters) set for PUSCH. The UE may control the case 6 of the control example 7 in the same manner as the case 6 of the control example 1 described above.
<制御例8:2シンボルPUCCH_FH無/1シンボルPUSCH>
 制御例8は、FHの非適用が設定される2シンボルのPUCCHと、1シンボルのPUSCHの送信期間(例えば、開始シンボル)が重複する場合に相当する。この場合、UEは、以下のケース1-6の少なくとも一つを利用してUCIの送信を制御する。あるいは、以下のケース1-6の少なくとも一つの動作が制限される構成としてもよい。この場合、UEは、制限された構成におけるUCI送信方法は適用しないと想定してUCIの送信を制御してもよい。
<Control Example 8: 2 Symbol PUCCH_FH None / 1 Symbol PUSCH>
Control example 8 corresponds to a case where the transmission periods (for example, start symbols) of two symbols of PUCCH for which FH non-application is set and one symbol of PUSCH overlap. In this case, the UE controls UCI transmission using at least one of the following cases 1-6. Alternatively, at least one operation in the following cases 1-6 may be limited. In this case, the UE may control UCI transmission on the assumption that the UCI transmission method in the restricted configuration is not applied.
[ケース1]
 UEは、PUCCHをドロップし、1シンボルのPUSCHを送信する(PUSCHを1シンボルに割当てる)。つまり、PUSCHにUCIは多重せずULデータの送信を行う。UEは、制御例8のケース1として、上記制御例7のケース1で示した内容と同様に制御してもよい。
[Case 1]
The UE drops the PUCCH and transmits one symbol of PUSCH (assigns PUSCH to one symbol). That is, UL data is transmitted without multiplexing UCI on PUSCH. The UE may perform the same control as the case 1 of the control example 8 in the same manner as the case 1 of the control example 7.
[ケース2]
 UEは、PUSCHをドロップし、2シンボルのPUCCHを送信する(PUCCHを2シンボルに割当てる)。また、UEは、FHを適用せずにPUCCHの送信を行う。つまり、UCIはPUCCHを利用して送信し、ULデータの送信は行わない。この場合、UEは、図1B-D及び図2B-DのPUCCH構成の少なくとも一つを利用してもよい。
[Case 2]
The UE drops the PUSCH and transmits a 2-symbol PUCCH (assigns a PUCCH to 2 symbols). Moreover, UE transmits PUCCH without applying FH. That is, UCI transmits using PUCCH, and UL data is not transmitted. In this case, the UE may use at least one of the PUCCH configurations of FIGS. 1B-D and 2B-D.
[ケース3]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に基づいて、PUSCHに対するFHの適用有無及びPUSCHのシンボル数の少なくとも一つを決定し、PUSCHを利用してUCIの送信を行う。
[Case 3]
The UE determines at least one of the presence / absence of application of FH to the PUSCH and the number of symbols of the PUSCH based on the presence / absence (or setting content) of transform precoding, and transmits the UCI using the PUSCH.
 UEは、制御例8のケース3として、上記制御例7のケース3で示した内容と同様に制御してもよい。 The UE may control the case 3 of the control example 8 in the same manner as the case 3 of the control example 7 described above.
[ケース4]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に関わらず、トランスフォームプリコーディングを適用し、且つFHを適用しない2シンボルのPUSCHを利用してUCIの送信を行う。
[Case 4]
The UE transmits UCI using 2-symbol PUSCH to which transform precoding is applied and FH is not applied, regardless of whether transform precoding is set (or setting content).
 UEは、制御例8のケース4として、上記制御例7のケース4で示した内容と同様に制御してもよい。 The UE may perform the same control as the case 4 of the control example 8 in the same manner as the case 4 of the control example 7 described above.
[ケース5]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に関わらず、トランスフォームプリコーディングを適用せず、且つ1シンボルのPUSCHを利用してUCIの送信を行う(PUCCHを送信しない)。この場合、あらかじめPUSCH送信用に設定されたシンボル数(ここでは、1シンボル)を利用してUCI on PUSCHを行うことができる。
[Case 5]
Regardless of whether or not transform precoding is set (or setting contents), the UE does not apply transform precoding and transmits UCI using one symbol PUSCH (does not transmit PUCCH). In this case, UCI on PUSCH can be performed using the number of symbols set in advance for PUSCH transmission (here, one symbol).
 UEは、制御例8のケース5として、上記制御例7のケース5で示した内容と同様に制御してもよい。 The UE may perform the same control as the case 5 of the control example 8 in the same manner as the case 5 of the control example 7 described above.
[ケース6]
 UEは、PUSCH用に設定される条件(又は、パラメータ)に基づいてUCI on PUSCHを行う。UEは、制御例8のケース6として、上記制御例1のケース6で示した内容と同様に制御してもよい。
[Case 6]
The UE performs UCI on PUSCH based on conditions (or parameters) set for PUSCH. The UE may perform the same control as the case 6 of the control example 8 in the same manner as the case 6 of the control example 1 described above.
<制御例9:1シンボルPUCCH/1シンボルPUSCH>
 制御例9は、1シンボルのPUCCHと、1シンボルのPUSCHの送信期間が重複する場合に相当する。この場合、UEは、以下のケース1-6の少なくとも一つを利用してUCIの送信を制御する。あるいは、以下のケース1-6の少なくとも一つの動作が制限される構成としてもよい。この場合、UEは、制限された構成におけるUCI送信方法は適用しないと想定してUCIの送信を制御してもよい。
<Control example 9: 1 symbol PUCCH / 1 symbol PUSCH>
Control example 9 corresponds to a case where the transmission periods of one symbol PUCCH and one symbol PUSCH overlap. In this case, the UE controls UCI transmission using at least one of the following cases 1-6. Alternatively, at least one operation in the following cases 1-6 may be limited. In this case, the UE may control UCI transmission on the assumption that the UCI transmission method in the restricted configuration is not applied.
[ケース1]
 UEは、PUCCHをドロップし、1シンボルのPUSCHを送信する(PUSCHを1シンボルに割当てる)。つまり、PUSCHにUCIは多重せずULデータの送信を行う。この場合、UEは、図3A及び図4AのPUSCH構成の少なくとも一つを利用してもよい。
[Case 1]
The UE drops the PUCCH and transmits one symbol of PUSCH (assigns PUSCH to one symbol). That is, UL data is transmitted without multiplexing UCI on PUSCH. In this case, the UE may use at least one of the PUSCH configurations of FIGS. 3A and 4A.
[ケース2]
 UEは、PUSCHをドロップし、1シンボルのPUCCHを送信する(PUCCHを1シンボルに割当てる)。つまり、UCIはPUCCHを利用して送信し、ULデータの送信は行わない。この場合、UEは、図1A及び図2AのPUCCH構成の少なくとも一つを利用してもよい。
[Case 2]
The UE drops the PUSCH and transmits one symbol PUCCH (assigns PUCCH to one symbol). That is, UCI transmits using PUCCH, and UL data is not transmitted. In this case, the UE may use at least one of the PUCCH configurations of FIGS. 1A and 2A.
[ケース3]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に基づいて、PUSCHのシンボル数を決定し、当該PUSCHを利用してUCIの送信を行う。
[Case 3]
The UE determines the number of PUSCH symbols based on the presence / absence (or setting content) of transform precoding, and transmits UCI using the PUSCH.
 例えば、UEは、トランスフォームプリコーディングの適用が設定されている場合(enabled)、FHを適用しない2シンボルのPUSCHを利用してUCIの送信(UCI on PUSCH)を行う。PUSCHに対してトランスフォームプリコーディングを適用してもよい。この場合、PUSCHが設定された所定シンボルの次以降のシンボル(例えば、次シンボル)を2シンボル目として利用してもよい。 For example, when the application of transform precoding is set (enabled), the UE performs UCI transmission (UCI on PUSCH) using 2-symbol PUSCH to which FH is not applied. Transform precoding may be applied to the PUSCH. In this case, a symbol subsequent to a predetermined symbol for which PUSCH is set (for example, the next symbol) may be used as the second symbol.
 例えば、PUSCH構成として所定のPUSCH構成(例えば、図4A、B、E)がサポートされない場合、低いPAPRが要求されるトランスフォームプリコーディングを適用しつつFHを適用することは困難となる。そのため、トランスフォームプリコーディングの適用が設定される場合、FHを適用しない2シンボルPUSCHを利用してUCIの送信を行うことにより低PAPRでUCI送信を行うことができる。この場合、UEは、図4B-DのPUSCH構成の少なくとも一つを利用してもよい。 For example, when a predetermined PUSCH configuration (for example, FIGS. 4A, 4B, and 4E) is not supported as a PUSCH configuration, it is difficult to apply FH while applying transform precoding that requires low PAPR. Therefore, when application of transform precoding is set, UCI transmission can be performed with low PAPR by transmitting UCI using 2-symbol PUSCH to which FH is not applied. In this case, the UE may use at least one of the PUSCH configurations of FIGS. 4B-D.
 あるいは、UEは、トランスフォームプリコーディングの適用が設定されない場合(disabled)、1シンボルのPUSCHを利用してUCIの送信(UCI on PUSCH)を行う。PUSCHに対してトランスフォームプリコーディングは適用しなくてよい。この場合、UEは、図3AのPUSCH構成を利用してもよい。これにより、あらかじめPUSCHに対して設定された1シンボルを利用してUCI on PUSCHを行うことができる。 Alternatively, when the application of transform precoding is not set (disabled), the UE performs UCI transmission (UCI on PUSCH) using one symbol PUSCH. Transform precoding need not be applied to PUSCH. In this case, the UE may use the PUSCH configuration of FIG. 3A. Thereby, UCI on PUSCH can be performed using 1 symbol previously set with respect to PUSCH.
[ケース4]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に関わらず、トランスフォームプリコーディングを適用せず、且つ1シンボルのPUSCHを利用してUCIの送信を行う。この場合、あらかじめPUSCH用に設定された1シンボルを利用してUCIを送信することができる。
[Case 4]
The UE does not apply transform precoding regardless of whether or not transform precoding is set (or setting content), and transmits UCI using one symbol PUSCH. In this case, UCI can be transmitted using one symbol set in advance for PUSCH.
 例えば、UEは、トランスフォームプリコーディングの適用が設定されている場合(enabled)であっても、トランスフォームプリコーディングを適用せずに1シンボルでUCI on PUSCHを行う。この場合、UEは、図3AのPUSCH構成を利用してUCIの送信を行ってもよい。 For example, the UE performs UCI on PUSCH with one symbol without applying transform precoding even when application of transform precoding is set (enabled). In this case, the UE may transmit UCI using the PUSCH configuration of FIG. 3A.
 例えば、PUSCH構成として所定のPUSCH構成(例えば、図4A、B、E)がサポートされない場合、低いPAPRが要求されるトランスフォームプリコーディングを適用しつつ1シンボルPUSCHを送信することは困難となる。そのため、ケース4では、1シンボルPUSCHを行う場合には、トランスフォームプリコーディングを適用しない。 For example, when a predetermined PUSCH configuration (for example, FIGS. 4A, 4B, and 4E) is not supported as a PUSCH configuration, it is difficult to transmit one symbol PUSCH while applying transform precoding that requires a low PAPR. Therefore, in case 4, when 1 symbol PUSCH is performed, transform precoding is not applied.
[ケース5]
 UEは、トランスフォームプリコーディングの設定有無(又は、設定内容)に関わらず、トランスフォームプリコーディングを適用し、且つFHを適用しない2シンボルのPUSCHを利用してUCIの送信を行う。
[Case 5]
The UE transmits UCI using 2-symbol PUSCH to which transform precoding is applied and FH is not applied, regardless of whether transform precoding is set (or setting content).
 例えば、UEは、トランスフォームプリコーディングの適用が設定されていない場合(disabled)であっても、トランスフォームプリコーディングを適用し、且つFHは適用せずにUCI on PUSCHを行う。この場合、UEは、図4B-DのPUSCH構成の少なくとも一つ(例えば、図4D)を利用してUCIの送信を行ってもよい。 For example, even when the application of transform precoding is not set (disabled), the UE performs UCI on PUSCH without applying FH and applying transform precoding. In this case, the UE may transmit UCI using at least one of the PUSCH configurations of FIGS. 4B-D (eg, FIG. 4D).
 例えば、PUSCH構成として所定のPUSCH構成(例えば、図4A、B、E)がサポートされない場合、低いPAPRが要求されるトランスフォームプリコーディングを適用しつつFHを適用することは困難となる。そのため、ケース5では、FHを適用せず、トランスフォームプリコーディングを適用してUCI on PUSCHを行う。これにより、低いPAPRでUCIを送信することができる。 For example, when a predetermined PUSCH configuration (for example, FIGS. 4A, 4B, and 4E) is not supported as a PUSCH configuration, it is difficult to apply FH while applying transform precoding that requires low PAPR. Therefore, in Case 5, UCI on PUSCH is performed by applying transform precoding without applying FH. Thereby, UCI can be transmitted with low PAPR.
[ケース6]
 UEは、PUSCH用に設定される条件(又は、パラメータ)に基づいてUCI on PUSCHを行う。UEは、制御例9のケース6として、上記制御例1のケース6で示した内容と同様に制御してもよい。
[Case 6]
The UE performs UCI on PUSCH based on conditions (or parameters) set for PUSCH. The UE may control the case 6 of the control example 9 in the same manner as the case 6 of the control example 1 described above.
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of a wireless communication system according to an embodiment of the present invention will be described. In this wireless communication system, communication is performed using any one or a combination of the wireless communication methods according to the above embodiments of the present invention.
 図5は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。 FIG. 5 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention. In the radio communication system 1, carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。 The wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。 The radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange | positioned at the macrocell C1 and each small cell C2. The arrangement, the number, and the like of each cell and user terminal 20 are not limited to the mode shown in the figure.
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。 The user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 at the same time using CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC) (for example, 5 or less CCs, 6 or more CCs).
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。 Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier). On the other hand, a carrier having a relatively high frequency band (for example, 3.5 GHz, 5 GHz, etc.) and a wide bandwidth may be used between the user terminal 20 and the radio base station 12, or The same carrier may be used. The configuration of the frequency band used by each radio base station is not limited to this.
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。 Further, the user terminal 20 can perform communication using time division duplex (TDD) and / or frequency division duplex (FDD) in each cell. In each cell (carrier), a single neurology may be applied, or a plurality of different neurology may be applied.
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。 The wireless base station 11 and the wireless base station 12 (or between the two wireless base stations 12) are connected by wire (for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly. May be.
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。 The radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30. The upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。 The radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like. The radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point. Hereinafter, when the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。 Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。 In the radio communication system 1, as a radio access method, orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink. Frequency Division Multiple Access) and / or OFDMA is applied.
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。 OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier. SC-FDMA is a single carrier transmission in which the system bandwidth is divided into bands each composed of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between terminals. It is a method. The uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。 In the wireless communication system 1, downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Moreover, MIB (Master Information Block) is transmitted by PBCH.
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。 Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like. Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
 なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。 Note that scheduling information may be notified by DCI. For example, DCI for scheduling DL data reception may be referred to as DL assignment, and DCI for scheduling UL data transmission may be referred to as UL grant.
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。 The number of OFDM symbols used for PDCCH is transmitted by PCFICH. The PHICH transmits HARQ (Hybrid Automatic Repeat reQuest) delivery confirmation information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) to the PUSCH. EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。 In the wireless communication system 1, as an uplink channel, an uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) is used. User data, higher layer control information, etc. are transmitted by PUSCH. Also, downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information, scheduling request (SR), etc. are transmitted by PUCCH. A random access preamble for establishing connection with the cell is transmitted by the PRACH.
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。 In the wireless communication system 1, as downlink reference signals, a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DMRS: DeModulation Reference Signal), Positioning Reference Signal (PRS), etc. are transmitted. In the wireless communication system 1, a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS), and the like are transmitted as uplink reference signals. The DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
(無線基地局)
 図6は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
(Radio base station)
FIG. 6 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention. The radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
 下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。 User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。 In the baseband signal processing unit 104, with respect to user data, PDCP (Packet Data Convergence Protocol) layer processing, user data division / combination, RLC (Radio Link Control) retransmission control and other RLC layer transmission processing, MAC (Medium Access) Control) Retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing are performed and the transmission / reception unit 103. The downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal. The radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101. The transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device which is described based on common recognition in the technical field according to the present invention. In addition, the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。 On the other hand, for the upstream signal, the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102. The transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102. The transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。 The baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106. The call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。 The transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. The transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
 また、送受信部103は、1又は複数のシンボルに設定される上り制御チャネル及び上り共有チャネルの少なくとも一つを利用して上り制御情報を受信する。また、送受信部103は、トランスフォームプリコーディングの適用有無を設定する信号(例えば、上位レイヤシグナリング)、FHの適用有無を設定する信号(例えば、上位レイヤシグナリング)等を送信してもよい。 Also, the transmission / reception unit 103 receives uplink control information using at least one of an uplink control channel and an uplink shared channel set in one or a plurality of symbols. Further, the transmission / reception unit 103 may transmit a signal (for example, higher layer signaling) that sets whether to apply transform precoding, a signal (for example, higher layer signaling) that sets whether to apply FH, or the like.
 図7は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 7 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present invention. In addition, in this example, the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the wireless base station 10 also has other functional blocks necessary for wireless communication.
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。 The baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit (scheduler) 301 controls the entire radio base station 10. The control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。 The control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal allocation in the mapping unit 303, and the like. The control unit 301 also controls signal reception processing in the reception signal processing unit 304, signal measurement in the measurement unit 305, and the like.
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。また、制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。 The control unit 301 schedules system information, downlink data signals (for example, signals transmitted by PDSCH), downlink control signals (for example, signals transmitted by PDCCH and / or EPDCCH, delivery confirmation information, etc.) (for example, resource Control). In addition, the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal. Further, the control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
 また、制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。 In addition, the control unit 301 includes an uplink data signal (for example, a signal transmitted on PUSCH), an uplink control signal (for example, a signal transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.), a random access preamble (for example, Scheduling of the uplink reference signal and the like.
 また、制御部301は、トランスフォームプリコーディングの設定有無、上り制御チャネルと上り共有チャネルの割当てシンボル数、及びFHの適用有無等を制御する。 Also, the control unit 301 controls the presence / absence of transform precoding setting, the number of symbols assigned to the uplink control channel and the uplink shared channel, the presence / absence of application of FH, and the like.
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 The transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303. The transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。 The transmission signal generation unit 302 generates, for example, a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301. The DL assignment and UL grant are both DCI and follow the DCI format. In addition, the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 The mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103. The mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。 The reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103. Here, the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20. The reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。 The reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301. The reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 305 performs measurement on the received signal. The measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。 For example, the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal. The measurement unit 305 includes received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)). Signal strength (for example, RSSI (Received Signal Strength Indicator)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 301.
(ユーザ端末)
 図8は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
(User terminal)
FIG. 8 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment of the present invention. The user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205. The transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may be configured to include one or more.
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202. The transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202. The transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204. The transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention. The transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。 The baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal. The downlink user data is transferred to the application unit 205. The application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。 On the other hand, uplink user data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processing unit 204 performs transmission processing for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, etc. 203. The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it. The radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
 また、送受信部203は、1又は複数のシンボルに設定される上り制御チャネル及び上り共有チャネルの少なくとも一つを利用して上り制御情報を送信する。また、送受信部203は、トランスフォームプリコーディングの適用有無を設定する信号(例えば、上位レイヤシグナリング)、FHの適用有無を設定する信号(例えば、上位レイヤシグナリング)等を受信してもよい。 Further, the transmission / reception unit 203 transmits uplink control information using at least one of an uplink control channel and an uplink shared channel set in one or a plurality of symbols. Further, the transmission / reception unit 203 may receive a signal (for example, higher layer signaling) that sets whether to apply transform precoding, a signal (for example, higher layer signaling) that sets whether to apply FH, or the like.
 図9は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 9 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention. In addition, in this example, the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。 The baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 401 controls the entire user terminal 20. The control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。 The control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal allocation in the mapping unit 403, and the like. The control unit 401 also controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
 制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。 The control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404. The control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of retransmission control for the downlink control signal and / or the downlink data signal.
 また、制御部401は、トランスフォームプリコーディングの設定有無、上り制御チャネルと上り共有チャネルの割当てシンボル数、及びあらかじめ設定された所定条件の少なくとも一つに基づいて上り制御情報の送信を制御する。 In addition, the control unit 401 controls transmission of uplink control information based on at least one of the presence / absence of transform precoding setting, the number of symbols assigned to the uplink control channel and the uplink shared channel, and a predetermined condition set in advance.
 例えば、制御部401は、周波数ホッピングを適用する上り共有チャネルと、上り制御チャネルとの送信期間が重複する場合、周波数ホッピングを適用しない上り共有チャネルを利用して上り制御情報の送信を制御してもよい。あるいは、制御部401は、上り共有チャネルと、上り制御チャネルとの送信期間が重複する場合、トランスフォームプリコーディングを適用せず、且つ周波数ホッピングを適用するPUSCHを利用して上り制御情報の送信を制御してもよい。 For example, when the transmission period of the uplink shared channel to which frequency hopping is applied and the uplink control channel overlap, the control unit 401 controls transmission of uplink control information using the uplink shared channel to which frequency hopping is not applied. Also good. Alternatively, when the transmission periods of the uplink shared channel and the uplink control channel overlap, the control unit 401 does not apply transform precoding and transmits uplink control information using PUSCH to which frequency hopping is applied. You may control.
 あるいは、制御部401は、上り共有チャネルと、上り制御チャネルとの送信期間が重複する場合、トランスフォームプリコーディングを適用し、且つ周波数ホッピングを適用しないPUSCHを利用して上り制御情報の送信を制御してもよい。あるいは、制御部401は、割当てられるシンボル数が互いに異なる上り共有チャネルと上り制御チャネルの送信期間が重複する場合、上り共有チャネルの割当てシンボル数又は上り制御チャネルの割当てシンボル数の一方を適用して割当てられるPUSCHを利用して上り制御情報の送信を制御してもよい。 Alternatively, when the transmission periods of the uplink shared channel and the uplink control channel overlap, the control unit 401 controls the transmission of uplink control information using PUSCH that applies transform precoding and does not apply frequency hopping. May be. Alternatively, the control unit 401 applies either the number of uplink shared channel allocation symbols or the number of uplink control channel allocation symbols when the transmission periods of the uplink shared channel and the uplink control channel with different numbers of allocated symbols overlap. Transmission of uplink control information may be controlled using the allocated PUSCH.
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 The transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403. The transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。 The transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 The mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203. The mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。 The reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203. Here, the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10. The reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。 The reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401. The reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. In addition, the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 405 performs measurement on the received signal. The measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。 For example, the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal. The measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 401.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。
(Hardware configuration)
In addition, the block diagram used for description of the said embodiment has shown the block of the functional unit. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically coupled, or two or more devices physically or logically separated may be directly or indirectly (for example, (Using wired, wireless, etc.) and may be implemented using these multiple devices.
 例えば、本開示の一実施形態における無線基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図10は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a wireless base station, a user terminal, and the like according to an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 10 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment. The wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed by one or more processors simultaneously, sequentially, or using other methods. Note that the processor 1001 may be implemented by one or more chips.
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication or controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like. For example, the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 In addition, the processor 1001 reads a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by. The storage 1003 may be referred to as an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be constituted by. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Also, the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
Note that the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning. For example, at least one of the channel and the symbol may be a signal (signaling). The signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard. Moreover, a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, etc.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The radio frame may be configured by one or a plurality of periods (frames) in the time domain. Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe. Further, a subframe may be composed of one or more slots in the time domain. The subframe may have a fixed length of time (eg, 1 ms) that does not depend on numerology.
 ここで、ニューメロロジーとは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域で行う特定のフィルタリング処理、送受信機が時間領域で行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the neurology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. For example, subcarrier spacing (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, radio frame configuration, transceiver in frequency domain It may indicate at least one of a specific filtering process to be performed and a specific windowing process to be performed by the transceiver in the time domain.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may be configured with one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on the numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルで構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may be configured with one or more symbols in the time domain. The minislot may also be called a subslot. A mini-slot may be composed of fewer symbols than slots. PDSCH (or PUSCH) transmitted in units of time larger than a minislot may be referred to as PDSCH (PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be referred to as a PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called a TTI, and one slot or one minislot is called a TTI. May be. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1-13 symbols), or a period longer than 1 ms. It may be. Note that a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI means, for example, a minimum time unit for scheduling in wireless communication. For example, in the LTE system, a radio base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, a time interval (for example, the number of symbols) in which a transport block, a code block, a code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one minislot is referred to as a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe. A TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。 A resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Also, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be configured by one or a plurality of resource elements (RE: Resource Element). For example, 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 Note that the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and included in the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 Further, information, parameters, and the like described in the present disclosure may be expressed using absolute values, may be expressed using relative values from predetermined values, or may be expressed using other corresponding information. May be represented. For example, the radio resource may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not limited names in any way. For example, various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various channels and information elements assigned to them. The name is not limited in any way.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer. Information, signals, and the like may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 The input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using other methods. For example, information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (master information block (MIB), system information block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。 The physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. Further, the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like. The MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, notification of predetermined information (for example, notification of “being X”) is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false. The comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether it is called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, code, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be interpreted broadly.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Also, software, instructions, information, etc. may be transmitted / received via a transmission medium. For example, the software uses websites using at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。 The terms “system” and “network” as used in this disclosure may be used interchangeably.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」、「帯域幅部分(BWP:Bandwidth Part)」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, “base station (BS)”, “radio base station”, “fixed station”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “ “Access point”, “transmission point”, “reception point”, “transmission / reception point”, “cell”, “sector”, “cell group”, Terms such as “carrier”, “component carrier”, “BWP (Bandwidth Part)” may be used interchangeably. A base station may also be called terms such as a macro cell, a small cell, a femto cell, and a pico cell.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: Remote Radio Head)) can also provide communication services. The terms “cell” or “sector” refer to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as “mobile station (MS)”, “user terminal”, “user equipment (UE)”, and “terminal” may be used interchangeably. .
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal , Handset, user agent, mobile client, client or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。 At least one of the base station and the mobile station may be referred to as a transmission device, a reception device, or the like. Note that at least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (for example, a car, an airplane, etc.), an unattended moving body (for example, a drone, an autonomous driving vehicle, etc.), or a robot (manned or unmanned). ). Note that at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
 また、本開示における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the radio base station in the present disclosure may be replaced with a user terminal. For example, the communication between the radio base station and the user terminal is replaced with communication between a plurality of user terminals (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc. may be called)) For each configuration, each aspect / embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have a function that the wireless base station 10 has. In addition, words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”). For example, an uplink channel, a downlink channel, etc. may be read as a side channel.
 同様に、本開示におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a radio base station. In this case, the wireless base station 10 may have a function that the user terminal 20 has.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, the operation performed by the base station may be performed by the upper node in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched according to execution. In addition, the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps in an exemplary order and are not limited to the specific order presented.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication). system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (Registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802. 20, UWB (Ultra-WideBand), Bluetooth (registered trademark) The present invention may be applied to a system using other appropriate wireless communication methods, a next-generation system extended based on these, and the like. A plurality of systems may be combined and applied (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 «As used in this disclosure, the phrase“ based on ”does not mean“ based only on, ”unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations can be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term “determining” as used in this disclosure may encompass a wide variety of actions. For example, “determination (decision)” includes determination, calculation, calculation, processing, derivation, investigating, looking up (eg, table, (Searching in a database or another data structure), ascertaining, etc. may be considered to be “determining”.
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be "determining".
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Also, “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, and the like.
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms “connected”, “coupled”, or any variation thereof, is any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In the present disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., as well as some non-limiting and non-inclusive examples, radio frequency domain, microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) region, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。 In the present disclosure, the term “A and B are different” may mean “A and B are different from each other”. Terms such as “leave” and “coupled” may be interpreted in a similar manner.
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 In this disclosure, where “include”, “including” and variations thereof are used, these terms are inclusive, as are the terms “comprising”. Is intended. Further, the term “or” as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, for example, when articles are added by translation such as a, an, and the in English, the present disclosure may include plural nouns that follow these articles.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is obvious for those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and changes without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for illustrative purposes and does not give any restrictive meaning to the invention according to the present disclosure.

Claims (6)

  1.  1又は複数のシンボルに設定される上り制御チャネル及び上り共有チャネルの少なくとも一つを利用して上り制御情報を送信する送信部と、
     トランスフォームプリコーディングの設定有無、前記上り制御チャネルと前記上り共有チャネルの割当てシンボル数、及びあらかじめ設定された所定条件の少なくとも一つに基づいて前記上り制御情報の送信を制御する制御部と、を有することを特徴とするユーザ端末。
    A transmitter that transmits uplink control information using at least one of an uplink control channel and an uplink shared channel set in one or a plurality of symbols;
    A control unit that controls transmission of the uplink control information based on at least one of the presence / absence of setting of transform precoding, the number of assigned symbols of the uplink control channel and the uplink shared channel, and a predetermined condition set in advance. A user terminal characterized by comprising:
  2.  周波数ホッピングを適用する上り共有チャネルと、上り制御チャネルとの送信期間が重複する場合、前記制御部は、周波数ホッピングを適用しない上り共有チャネルを利用して前記上り制御情報の送信を制御することを特徴とする請求項1に記載のユーザ端末。 When transmission periods of an uplink shared channel to which frequency hopping is applied and an uplink control channel overlap, the control unit controls transmission of the uplink control information using an uplink shared channel to which frequency hopping is not applied. The user terminal according to claim 1, wherein:
  3.  前記上り共有チャネルと、前記上り制御チャネルとの送信期間が重複する場合、前記制御部は、トランスフォームプリコーディングを適用せず、且つ周波数ホッピングを適用するPUSCHを利用して前記上り制御情報の送信を制御することを特徴とする請求項1に記載のユーザ端末。 When transmission periods of the uplink shared channel and the uplink control channel overlap, the control unit does not apply transform precoding and transmits the uplink control information using PUSCH to which frequency hopping is applied. The user terminal according to claim 1, wherein the user terminal is controlled.
  4.  前記上り共有チャネルと、前記上り制御チャネルとの送信期間が重複する場合、前記制御部は、トランスフォームプリコーディングを適用し、且つ周波数ホッピングを適用しないPUSCHを利用して前記上り制御情報の送信を制御することを特徴とする請求項1に記載のユーザ端末。 When transmission periods of the uplink shared channel and the uplink control channel overlap, the control unit transmits the uplink control information using PUSCH that applies transform precoding and does not apply frequency hopping. The user terminal according to claim 1, wherein the user terminal is controlled.
  5.  割当てられるシンボル数が互いに異なる上り共有チャネルと上り制御チャネルの送信期間が重複する場合、前記制御部は、上り共有チャネルの割当てシンボル数又は上り制御チャネルの割当てシンボル数の一方を適用して割当てられるPUSCHを利用して前記上り制御情報の送信を制御することを特徴とする請求項1に記載のユーザ端末。 When the transmission periods of the uplink shared channel and the uplink control channel with different numbers of assigned symbols overlap, the control unit is assigned by applying either the number of assigned symbols of the uplink shared channel or the number of assigned symbols of the uplink control channel. The user terminal according to claim 1, wherein transmission of the uplink control information is controlled using a PUSCH.
  6.  1又は複数のシンボルに設定される上り制御チャネル及び上り共有チャネルの少なくとも一つを利用して上り制御情報を送信する工程と、
     トランスフォームプリコーディングの設定有無、前記上り制御チャネルと前記上り共有チャネルの割当てシンボル数、及びあらかじめ設定された所定条件の少なくとも一つに基づいて前記上り制御情報の送信を制御する工程と、を有することを特徴とするユーザ端末の無線通信方法。
    Transmitting uplink control information using at least one of an uplink control channel and an uplink shared channel set in one or a plurality of symbols;
    Controlling transmission of the uplink control information based on at least one of the presence / absence of setting of transform precoding, the number of assigned symbols of the uplink control channel and the uplink shared channel, and a predetermined condition set in advance. A wireless communication method for a user terminal.
PCT/JP2018/014624 2018-04-05 2018-04-05 User terminal and wireless communication method WO2019193721A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880094362.8A CN112243577B (en) 2018-04-05 2018-04-05 Terminal, wireless communication method and system
PCT/JP2018/014624 WO2019193721A1 (en) 2018-04-05 2018-04-05 User terminal and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/014624 WO2019193721A1 (en) 2018-04-05 2018-04-05 User terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2019193721A1 true WO2019193721A1 (en) 2019-10-10

Family

ID=68100260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014624 WO2019193721A1 (en) 2018-04-05 2018-04-05 User terminal and wireless communication method

Country Status (2)

Country Link
CN (1) CN112243577B (en)
WO (1) WO2019193721A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115136552A (en) * 2020-02-21 2022-09-30 松下电器(美国)知识产权公司 Terminal and communication method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195850A1 (en) * 2016-05-12 2017-11-16 株式会社Nttドコモ User terminal and wireless communication method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103024904A (en) * 2011-09-20 2013-04-03 北京三星通信技术研究有限公司 Method for uplink data transmission in wireless communication system
US10314078B2 (en) * 2014-06-05 2019-06-04 Sharp Kabushiki Kaisha Terminal device, base station apparatus, and method
EP3280205A4 (en) * 2015-04-02 2018-11-14 NTT DoCoMo, Inc. User terminal, wireless base station, and wireless communication method
JP2016195413A (en) * 2016-06-20 2016-11-17 株式会社Nttドコモ User terminal, radio base station, and radio communication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195850A1 (en) * 2016-05-12 2017-11-16 株式会社Nttドコモ User terminal and wireless communication method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATR: "Remaining issues on UCI multiplexing on PUSCH", 3GPP TSG RAN WG1 MEETING #92 R1-1801905, 13 February 2018 (2018-02-13), XP051396721 *
PANASONIC: "Discussion on partial overlap between PUCCH and PUSCH", 3GPP TSG RAN WG1 MEETING #92 R1-1802512, 16 February 2018 (2018-02-16), XP051397306, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_92/Docs/R1-1802512.zip> *
QUALCOMM INCORPORATED: "Remaining issues for multiplexing UCI on PUSCH", 3GPP TSG RAN WG1 MEETING #92 R1-1802839, 17 February 2018 (2018-02-17), XP051398252, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_92/Docs/R1-1802839.zip> [retrieved on 20180606] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115136552A (en) * 2020-02-21 2022-09-30 松下电器(美国)知识产权公司 Terminal and communication method

Also Published As

Publication number Publication date
CN112243577A (en) 2021-01-19
CN112243577B (en) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2019193732A1 (en) Transmission device and reception device
WO2018198295A1 (en) User terminal and wireless communication method
WO2018110618A1 (en) User terminal and wireless communication method
JPWO2019193700A1 (en) User terminal and wireless base station
WO2018203409A1 (en) User terminal, and wireless communication method
JP7383481B2 (en) Terminals, wireless communication methods, base stations and systems
WO2017213222A1 (en) User terminal and radio communication method
CN111788806B (en) User terminal and wireless communication method
WO2018128183A1 (en) User terminal and wireless communication method
JP7152477B2 (en) Terminal, wireless communication method and system
JPWO2019203324A1 (en) User terminal and wireless communication method
WO2019198136A1 (en) User terminal and wireless base station
WO2019159298A1 (en) User terminal and wireless communication method
WO2019155641A1 (en) User equipment and radio communication method
WO2018124032A1 (en) User terminal and wireless communications method
WO2019225689A1 (en) User terminal and wireless communication method
WO2019168051A1 (en) User terminal and wireless communication method
WO2019211916A1 (en) User terminal and wireless base station
WO2019220595A1 (en) User terminal and wireless base station
WO2019193730A1 (en) User terminal and wireless base station
WO2019193736A1 (en) User terminal and wireless communications method
WO2019193769A1 (en) User terminal
KR20200061364A (en) User terminal and wireless communication method
WO2019225655A1 (en) User terminal
WO2019203152A1 (en) User terminal and wireless base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP