WO2019220595A1 - User terminal and wireless base station - Google Patents

User terminal and wireless base station Download PDF

Info

Publication number
WO2019220595A1
WO2019220595A1 PCT/JP2018/019132 JP2018019132W WO2019220595A1 WO 2019220595 A1 WO2019220595 A1 WO 2019220595A1 JP 2018019132 W JP2018019132 W JP 2018019132W WO 2019220595 A1 WO2019220595 A1 WO 2019220595A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
ack
pusch
signal
transmission
Prior art date
Application number
PCT/JP2018/019132
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 武田
聡 永田
リフェ ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2018/019132 priority Critical patent/WO2019220595A1/en
Publication of WO2019220595A1 publication Critical patent/WO2019220595A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to a user terminal and a radio base station in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-patent Document 1 LTE Advanced, LTE Rel. 10, 11, 12, 13
  • LTE Rel. 8, 9 LTE Advanced, LTE Rel. 10, 11, 12, 13
  • LTE successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Also referred to as Rel.
  • a user terminal In an existing LTE system (for example, LTE Rel. 8-13), a user terminal (UE: User Equipment) has an UL data channel (for example, PUSCH: Physical Uplink Shared Channel) and an UL control channel (for example, PUCCH: Physical Uplink).
  • UL data channel for example, PUSCH: Physical Uplink Shared Channel
  • PUCCH Physical Uplink
  • Uplink control information is transmitted using at least one of the control channels.
  • UCI is, for example, retransmission control information (HARQ-ACK (Hybrid Automatic Repeat reQuest Acknowledgement), ACK / NACK, A / N, etc.), scheduling request (SR: Scheduling) for downlink shared channel (PDSCH). Request), channel state information (CSI: Channel State Information), and the like.
  • HARQ-ACK Hybrid Automatic Repeat reQuest Acknowledgement
  • ACK / NACK ACK / NACK
  • a / N etc.
  • SR Scheduling for downlink shared channel (PDSCH). Request
  • CSI Channel State Information
  • a neurology for example, subcarrier interval
  • CC component carrier
  • a user terminal includes a transmission / reception unit that performs transmission and reception using a first CC (Component Carrier) and a second CC that uses a different neurology from that of the first CC; Sending HARQ-ACK (Hybrid Automatic Repeat reQuest-Acknowledgement) for the downlink signal of the first CC using the uplink control channel or uplink shared channel of the first CC, and using the uplink shared channel of the second CC, And a control unit that controls at least one of transmitting HARQ-ACK for the downlink signal of the second CC.
  • HARQ-ACK Hybrid Automatic Repeat reQuest-Acknowledgement
  • HARQ-ACK can be appropriately transmitted in a plurality of cells having different neurology.
  • FIG. 1 is a conceptual explanatory diagram of a HARQ-ACK bundling window.
  • FIG. 2 is a diagram illustrating an example of feedback based on a quasi-static HARQ-ACK codebook when a mixed neurology CA using FR1 and FR2 is set.
  • FIG. 3 is a diagram illustrating an example of feeding back a quasi-static HARQ-ACK codebook using FR1 PUCCH / PUSCH in a mixed neurology CA.
  • FIG. 4 is a diagram illustrating an example of feeding back a quasi-static HARQ-ACK codebook using FRSCH PUSCH in a mixed neurology CA.
  • FIG. 1 is a conceptual explanatory diagram of a HARQ-ACK bundling window.
  • FIG. 2 is a diagram illustrating an example of feedback based on a quasi-static HARQ-ACK codebook when a mixed neurology CA using FR1 and FR2 is set.
  • FIG. 3 is a diagram illustrating an example of feeding back
  • FIG. 5 is a diagram illustrating another example of feeding back a quasi-static HARQ-ACK codebook using the FRSCH PUSCH in the mixed neurology CA.
  • FIG. 6 is a diagram illustrating an example in which HARQ-ACK codebooks are fed back simultaneously in FR1 and FR2 in the mixed neurology CA.
  • FIG. 7 is a diagram illustrating an example in which HARQ-ACK codebook is fed back in FR1 and FR2 in the mixed neurology CA.
  • FIG. 8 is a diagram showing another example of feeding back the HARQ-ACK codebook in FR1 and FR2 in the mixed neurology CA.
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 10 is a diagram illustrating an example of an overall configuration of a radio base station according to an embodiment.
  • FIG. 11 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment.
  • FIG. 12 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment.
  • FIG. 13 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment.
  • FIG. 14 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment.
  • the UE schedules the PDSCH for the timing from the reception of the PDSCH to the transmission of the HARQ-ACK corresponding to the PDSCH (may be referred to as PDSCH-to-ACK timing, “K 1 ”, etc.). It is determined based on DCI (may be called DL DCI, DL assignment, DCI format 1_0, DCI format 1_1, etc.).
  • the UE when the UE detects the DCI format 1_0, the UE includes the final symbol of the PDSCH based on the “PDSCH-to-HARQ-timing-indicator field” included in the DCI.
  • HARQ-ACK corresponding to the PDSCH is transmitted in slot n + k (for example, k is an integer from 1 to 8) with slot n as a reference.
  • the UE When detecting the DCI format 1_1, the UE corresponds to the PDSCH in the slot n + k based on the slot n including the final symbol of the PDSCH based on the “timing indication field from PDSCH to HARQ” included in the DCI.
  • Send HARQ-ACK the correspondence between k and the timing indication field may be set in the UE for each PUCCH (or PUCCH group or cell group) by higher layer signaling.
  • the upper layer signaling may be, for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • Broadcast information includes, for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), minimum system information (RMSI: Remaining Minimum System Information), and other system information (OSI: Other). System Information).
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI Other system information
  • the correspondence relationship is set by a parameter (may be called dl-DataToUL-ACK, Slot-timing-value-K1, etc.) included in a PUCCH configuration information element (PUCCH Config information element) of RRC signaling.
  • a parameter may be called dl-DataToUL-ACK, Slot-timing-value-K1, etc.
  • PUCCH Configur information element PUCCH Config information element
  • a plurality of candidate values for PDSCH-to-ACK timing indication may be set by higher layer signaling by K1, and one of the plurality of candidate values may be indicated by DCI for PDSCH scheduling.
  • CA Component Carrier (CC) in which different pneumatics are set (or used) in the PUCCH group is mixed (CA)
  • CA Even when mixed numerology CA (which may be referred to as “mixed numerology CA”) is set, a common PDSCH-to-ACK timing is set between CCs having different numerologies.
  • K 1 may be a time determined based on the topology (eg, SCS) of a channel (eg, PUCCH or PUSCH) that transmits HARQ-ACK.
  • the topology eg, SCS
  • a channel eg, PUCCH or PUSCH
  • the UE performs timing (UL grant-to-to--) from reception of DCI for scheduling PUSCH (may be called UL DCI, UL grant, DCI format 0_0, DCI format 0_1, etc.) to transmission of the PUSCH.
  • PUSCH timing, “K 2 ”, a timing difference between a slot that receives PDCCH and a slot that performs PUSCH transmission, and the like may be determined based on the DCI.
  • the UE detects the DCI format 0_0 or 0_1, the UE (RA: Resource Allocation) candidate (K) based on the “Time domain resource assignment field” included in the DCI (K Parameter set such as 2 ) is determined, and the time domain resource RA of the corresponding PUSCH is specified with reference to the slot n in which the DCI is detected.
  • RA Resource Allocation
  • the correspondence between the value (index) of the time domain RA field and the candidate of the time domain RA (which may be referred to as a PUSCH time domain RA list, a set of K 2 , etc.) is a cell that transmits PUSCH by higher layer signaling ( It may be set in the UE every time it may be called PUSCH-Cell).
  • the PUSCH time domain RA list may correspond to a “pusch-AllocationList” information element (IE: Information Element) of RRC signaling. It is considered that the PUSCH time domain RA list includes a predetermined number (for example, a maximum of 16) of PUSCH time domain RA candidates (which may be called sequence elements, entries, etc.).
  • IE Information Element
  • Each candidate corresponds to an IE (“PUSCH-TimeDomainResourceAllocation” IE) for setting a time domain relationship between PDCCH and PUSCH.
  • the IE includes, for example, a parameter K2, a mapping type indicating a mapping configuration of a demodulation reference signal (DMRS: DeModulation Reference Signal), a PUSCH start symbol, and a value (SLIV (Start / Length Indication Value)) indicating the length of a symbol unit. May be called).
  • DMRS DeModulation Reference Signal
  • PUSCH start symbol a mapping configuration of a demodulation reference signal
  • SLIV Start / Length Indication Value
  • K 2 is to be set for each UL serving cell, even when the new melody biology mixed CA is set, may not use the same values between the CC New Mello biology is different.
  • K 2 may be a time determined based on the PUSCH neurology (for example, SCS).
  • processing time In NR, the PDSCH processing time in the UE, the PUSCH processing time in the UE, and the like are being studied.
  • the processing time may be read as a preparation time, a preparation procedure time, a processing procedure time, or the like.
  • the PDSCH processing time may be a period from the end of the last symbol of the PDSCH that transmits the transport block to the UL symbol.
  • the UE may provide a valid HARQ-ACK with the same or later symbols as the UL symbol.
  • the PUSCH processing time may be a period from the end of the last symbol of the PDCCH transmitting DCI for scheduling the PUSCH to the UL symbol.
  • the UE may transmit the PUSCH using the same symbol as or later than the UL symbol.
  • the PDSCH processing time may be determined based on parameter N 1 (which may be referred to as PDSCH decoding time), and the PUSCH processing time may be determined according to parameter N 2 (which may be referred to as PUSCH preparation time). It may be determined based on.
  • N 1 may be determined based on the downlink SCS in which the PDSCH is transmitted and the SCS of the UL channel (for example, PUCCH or PUSCH) in which the HARQ-ACK is transmitted. For example, N 1 may be determined based on the minimum SCS among these SCSs, and may be determined to be 8-20 symbols, such as 8 symbols when the minimum SCS is 15 kHz. N 1 may be determined to be 13-24 symbols if additional PDSCH DMRS is configured.
  • N 2 may be determined based on the downlink SCS to which the PDCCH that transmits the DCI for scheduling the PUSCH is transmitted and the SCS of the UL channel to which the PUSCH is transmitted. For example, N 2 may be determined based on the minimum SCS among these SCSs, and may be determined to be 10-36 symbols, such as 10 symbols when the minimum SCS is 15 kHz.
  • the processing time (and parameters related to the processing time (N 1 , N 2, etc.)) are in accordance with a value defined by the neurology corresponding to the smallest SCS among PDCCH / PDSCH and PUCCH / PUSCH. Also good.
  • the processing time may be based on the maximum time (symbol length, slot length) in different neurology of DL and UL. That is, N 1 , N 2, and the like are defined as common values between CCs having different numerologies even when a neumerology mixed CA is set.
  • the UE When transmitting the HARQ-ACK corresponding to PDSCH using PUSCH, the UE uses UL symbols after the time (sum time) of the PDSCH processing time and the PUSCH processing time, or after this The PUSCH may be transmitted using the symbols.
  • the UE determines the HARQ-ACK codebook (which may be referred to as HARQ-ACK size) to be semi-static or dynamic.
  • the base station notifies the UE of information indicating how to determine the HARQ-ACK codebook (for example, information indicating whether the HARQ-ACK codebook is quasi-static or dynamic) using higher layer signaling. May be.
  • the HARQ-ACK codebook may be referred to as a PDSCH HARQ-ACK codebook.
  • the UE determines (generates) HARQ-ACK information bits based on the determined HARQ-ACK codebook, and transmits the generated HARQ-ACK to the uplink control channel (PUCCH: Physical Uplink Control Channel) and the uplink shared channel (PUSCH). : Physical Uplink Shared Channel) may be used for transmission.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the determination of the HARQ-ACK codebook is type 1 HARQ-ACK codebook determination. May be called. If the UE is configured to dynamically determine the HARQ-ACK codebook (or dynamic HARQ-ACK codebook), the determination of the HARQ-ACK codebook is called type 2 HARQ-ACK codebook determination May be.
  • the UE may determine the number of HARQ-ACK bits based on the configuration set in higher layer signaling.
  • the configured configuration may include, for example, the number (eg, maximum number, minimum number, etc.) of DL transmissions (eg, PDSCH) scheduled over a range associated with HARQ-ACK feedback timing.
  • This range is also called HARQ-ACK bundling window, HARQ-ACK feedback window, bundling window, feedback window, etc.
  • the bundling window may correspond to at least one range of space, time, and frequency.
  • FIG. 1 is a conceptual explanatory diagram of a HARQ-ACK bundling window.
  • the size of the bundling window is 6 (for 6 slots).
  • the above-mentioned K 1 ⁇ 2, 3, 4, 5, 6, 7 ⁇ is used (notified to the UE).
  • the UE performs HARQ- for all DL data candidates (PDSCH candidates) within the UL bundling window (that is, PDSCH candidates 2-7 slots before the UL slot). Send ACK.
  • the bundling window will slide as time progresses.
  • the order of A / N included in the code book may be slid in accordance with the sliding of the bundling window.
  • a duplicated HARQ-ACK may be transmitted for a certain slot (PDSCH candidate).
  • the UE may collectively transmit HARQ-ACK for a plurality of CCs to be CA within the bundling window at a certain UL transmission timing.
  • the UE determines the HARQ-ACK based on the bit string of the DL assignment index (DAI: Downlink Assignment Indicator (Index)) field included in the downlink control information (eg, DL assignment).
  • DAI Downlink Assignment Indicator
  • the number of bits may be determined.
  • UE communicates (transmits / receives signals) using at least one frequency band (carrier frequency) of a first frequency band (FR1: Frequency Range 1) and a second frequency band (FR2: Frequency Range 2). Measurement etc.) are being considered.
  • carrier frequency carrier frequency
  • FR1 may be a frequency band of 6 GHz or less (sub-6 GHz (sub-6 GHz)), and FR2 may be a frequency band higher than 24 GHz (above-24 GHz).
  • FR1 may be defined as a frequency range in which at least one of 15, 30 and 60 kHz is used as a sub-carrier spacing (SCS).
  • SCS sub-carrier spacing
  • FR2 may be defined as a frequency range in which at least one of 60 and 120 kHz is used as the SCS.
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may be a frequency band higher than FR2.
  • FR2 may be used only for a time division duplex (TDD) band. Since FR2 corresponds to a millimeter wave (mmW) having a wavelength of about 1 mm to 10 mm, it may be called an mmW band.
  • the mmW band may be called EHF (Extremely High Frequency).
  • FR1 and FR2 of the present disclosure are replaced with the first frequency band (second frequency range) and the second frequency band (second frequency range), which are more general expressions that are not limited to specific frequency bands, respectively. May be.
  • FIG. 2 is a diagram illustrating an example of feedback based on a quasi-static HARQ-ACK codebook when a mixed neurology CA using FR1 and FR2 is set.
  • the CC of FR1 and the CC of FR2 are set to the same PUCCH group. Further, it is assumed that the PUCCH is set in the CC of FR1 (the CC of FR1 is a PUCCH cell).
  • the neurology and synchronization environment to which the present disclosure is applied are not limited to this.
  • a network for example, a base station
  • a network wants the UE to feed back the HARQ-ACK codebook using the FR1 PUCCH
  • it can be realized by not scheduling the PUSCH at a timing overlapping with the PUCCH. This is because HARQ-ACK is piggybacked (transmitted) to PUSCH in the case of simultaneous transmission of PUCCH and PUSCH.
  • the network may grant the PUSCH to the FR1 CC.
  • the network When the network wants the UE to feed back the HARQ-ACK codebook using the FRSCH PUSCH, it may grant the PUSCH to the FR2 CC. In this case, the PUSCH transmission of the CC of FR1 may not be scheduled at the same timing as the PUSCH transmission of FR2.
  • the UE may generate HARQ-ACK of FR2 within the bundling window and transmit it using the CC of FR1.
  • the UE may generate HARQ-ACK of FR1 within the bundling window and transmit it using the CC of FR2.
  • HARQ-ACK for two slots of FR1 and HARQ-ACK for eight slots corresponding to FR2 may be transmitted in at least one of the UL slots of FR1 and FR2.
  • the UE can appropriately grasp the number of HARQ-ACK bits generated for each CC.
  • the base station can individually extract the HARQ-ACK for each CC. For example, the base station may extract HARQ-ACK related to FR1 from HARQ-ACK received by FR1, and discard HARQ-ACK related to FR2. Further, the base station may extract the HARQ-ACK related to FR2 from the HARQ-ACK received by FR2, and discard the HARQ-ACK related to FR1.
  • the base station may extract and use the HARQ-ACK of another CC from the HARQ-ACK received in a certain CC slot.
  • PUCCH may not be set for these CCs (in these CCs, at least HARQ-ACK uses PUCCH) May not be transmitted).
  • the UE is not expected to transmit HARQ-ACK set in a time shorter than the processing time. Specifically, the UE expects to send a HARQ-ACK multiplexed with UL data if the network sets K 1 and / or K 2 values that do not leave enough processing time for the UE. (UE is not expected transmit the HARQ-ACK multiplexed with uplink data if the network set the values of K1 and / or K2 without leaving sufficient time for UE processing).
  • the processing time of HARQ-ACK codebook feedback in the case of a mixed CA of FR1 and FR2 will be described more specifically.
  • the processing time is specified based on the pneumatics corresponding to the smallest SCS among PDCCH / PDSCH and PUCCH / PUSCH.
  • FIG. 3 is a diagram showing an example of feeding back a quasi-static HARQ-ACK codebook with FR1 PUCCH / PUSCH in a mixed neurology CA.
  • the CC of FR1 and the CC of FR2 are set to the same PUCCH group. Further, it is assumed that the PUCCH is set in the CC of FR1 (the CC of FR1 is a PUCCH cell). “Semi-static HARQ-ACK codebook transmission (transmission based on the codebook)” may be read as “transmission of quasi-static HARQ-ACK”.
  • the TDD UL-DL cycle may be different between FR1 and FR2.
  • slots #n to # n + 6 are configured with only DL symbols
  • slot # n + 7 is configured to include DL symbols and UL symbols
  • slots # n + 8 to # n + 9 are configured with only UL symbols.
  • FR2 the range from slot # 4m to # 4 (m + 9) +3 is illustrated, and DL / UL is as illustrated.
  • K 1 ⁇ 2,3,4,5,6,7 ⁇
  • K 2,1 K 2 of FR1
  • K 2,1 ⁇ 2,3,4 ⁇
  • HARQ-ACK for PDSCH corresponding to six slots from slot #n to # n + 5 of FR1 may be multiplexed. Further, when quasi-static HARQ-ACK is transmitted on PUCCH in slot # n + 7, HARQ-ACK for PDSCH corresponding to 24 slots from slot # 4m to # 4 (m + 5) +3 of FR2 may be multiplexed.
  • the transmitted quasi-static HARQ-ACK codebook may include HARQ-ACK for 6 slots of FR1 and 24 slots of FR2 described above.
  • K 1 and / or K 2 and 1 are set so as to be transmitted at a timing corresponding to the PDSCH processing time of FR1, the HARQ-ACK transmitted on the PUCCH / PUSCH of FR1 is longer than the processing time. It can be said that it is set in.
  • HARQ-ACK exceeding the maximum number of HARQ processes may not be transmitted, or may be transmitted or not used. For example, if there are 20 FR2 DL slots and 20 slots including DL symbols in the bundling window of FIG. 3 and the maximum number of HARQ processes is 16, it may be assumed that 4 HARQ cannot be used.
  • FIG. 4 is a diagram illustrating an example of feeding back a quasi-static HARQ-ACK codebook using FRSCH PUSCH in a mixed neurology CA.
  • the predetermined value as K 2, 2 a K 2 of FR2 (e.g., 8, 16, 32) it is assumed that larger value is set.
  • the processing time of the FRSCH PDSCH can be secured.
  • a semi-static HARQ-ACK may be transmitted on the PUSCH.
  • HARQ-ACK transmitted on the PUSCH in FR2 is set at a time longer than the processing time It can be said that.
  • FIG. 5 is a diagram illustrating another example of feeding back a quasi-static HARQ-ACK codebook using the FRSCH PUSCH in the mixed neurology CA.
  • a value smaller than a predetermined value for example, 8 is set as K 2 or 2 that is K 2 of FR2.
  • a semi-static HARQ-ACK may be transmitted on the PUSCH.
  • K 1 and / or K 2, 2 are not set to be transmitted at a timing that can correspond to the PDSCH processing time of FR1.
  • HARQ-ACK transmission designed for CAs that use the same neurology across multiple CCs is not efficient for mixed neurology CAs.
  • HARQ-ACK feedback becomes complicated when multiple CCs having different nuemologies are configured in the PUCCH group or cell group. If HARQ-ACK transmission cannot be performed properly, communication throughput, frequency utilization efficiency, and the like may be degraded.
  • the present inventors have conceived a setting and related operation for appropriately transmitting HARQ-ACK to a mixed neurology CA.
  • FR1 and FR2 may be in any frequency band.
  • FR1 may be replaced with a CC that uses the first SCS.
  • FR2 may be read as a CC that uses a second SCS different from the first SCS, or a CC that uses a second SCS that is larger than the first SCS.
  • the UE when the UE is configured with the mixed neurology CA, the UE sets the value of K 1 set for the PUCCH cell to be CA set and the K 2 set for each UL cell to be CA set. All of the values do not violate a processing time based on at least one of N 1 and N 2 (eg, PDSCH processing time, PUCCH processing time, the sum of these processing times, etc.) (processing time constraint (request)) It may be set to satisfy.
  • N 1 and N 2 eg, PDSCH processing time, PUCCH processing time, the sum of these processing times, etc.
  • the base station when the base station sets up the neurology mixed CA in the UE, the base station sets the value of K 1 set for the PUCCH cell to be CA set and the UL cell to be CA set.
  • the value of K 2 all may be set so as not to violate the N 1 and N at least one processing based on time of 2. This setting may depend on the implementation of gNB.
  • the UE has a processing time based on at least one of N 1 and N 2 (for example, PDSCH processing time, PUCCH processing), and the value of K 1 and the value of K 2 set for each UL cell to be CA It may be assumed that the setting is made so as not to violate (the time, the sum of these processing times, etc.) (the processing time constraint (request) is satisfied), and no setting that violates is made.
  • N 1 and N 2 for example, PDSCH processing time, PUCCH processing
  • the UE may report the value of at least one of N 1 and N 2 (or information related (identifiable) to the value) to the base station as terminal capability information.
  • the base station considers the reported terminal capability information, and all of the value of K 1 set for the CA PUCCH cell and the value of K 2 set for each UL cell to be CA Is set so as not to violate the processing time based on at least one of N 1 and N 2 (for example, PDSCH processing time, PUCCH processing time, the sum of these processing times, etc.) (satisfy processing time constraint (request)) To do.
  • PDSCH processing time, PUSCH processing time, and greater than at least one value of these sums can be set to the UE as K 2 of FR2 .
  • each processing time requirement can be satisfied.
  • the UE when the UE is configured with the mixed neurology CA, the UE sets the value of K 1 set for the PUCCH cell to be CA set and the K 2 set for each UL cell to be CA set. And at least part of the value may be set to violate a processing time based on at least one of N 1 and N 2 .
  • K 1 and / or which does not satisfy the UE processing time requirement HARQ-ACK corresponding to the value of K 2 may be deleted. That is, the UE may transmit a HARQ-ACK corresponding to a value of K 1 and / or K 2 that does not satisfy the UE processing time requirement without being included in the quasi-static HARQ-ACK (without feedback). Good).
  • the UE if the UE does not have enough processing time for HARQ-ACK transmission for the candidate PDSCH (PDSCH that can be included in the bundling window) and the candidate PDSCH, at least one of the HARQ-ACKs multiplexed with UL data. The part may not be transmitted.
  • the UE responds if the network sets (indicates) at least one value of K 1 and K 2 that does not leave enough time between candidate PDSCH and HARQ-ACK codebook transmissions. In the HARQ-ACK codebook, HARQ-ACK corresponding to the candidate PDSCH may not be fed back.
  • the UE may identify a HARQ-ACK deleting (for example, specifying a bit position or the corresponding K 1 of HARQ-ACK) information, it may be transmitted to the base station. Note that the UE may delete HARQ-ACK bits that do not satisfy the processing time requirement and pad with zeros.
  • the quasi-static is not included without including the HARQ-ACK.
  • HARQ-ACK can be transmitted.
  • the UE when the UE is configured with the neurology mixed CA, the UE sets the value of K 1 that is set for the PUCCH cell that is CA, and each CA that is CA the value of K 2 is set for the UL cell, at least in part, may be set to violate the processing time based on at least one of N 1 and N 2.
  • the UE processing time requirement does not have to be considered for the HARQ-ACK related set determination for the mixed neurology CA. That is, the UE may generate (transmit) a HARQ-ACK corresponding to a value of K 1 and / or K 2 that does not satisfy the UE processing time requirement as a fixed value (ACK or NACK).
  • the UE may transmit at least a part of the HARQ-ACK multiplexed with the UL data as a fixed value when there is not enough processing time remaining for the candidate PDSCH and HARQ-ACK transmission for the candidate PDSCH. .
  • the corresponding HARQ -In the ACK codebook, HARQ-ACK corresponding to the candidate PDSCH may be a fixed value.
  • the ACK or NACK transmitted for the candidate PDSCH may not be related to whether or not the decoding of the candidate PDSCH is successful (may be fixedly determined).
  • the ACK or NACK transmitted for the candidate PDSCH may be used as a virtual CRC bit for HARQ-ACK detection.
  • the virtual CRC bit is a known bit value included in the transmitted payload, and may be referred to as a pruning bit or the like. In general, the effect of error correction can be improved as the known bit value increases.
  • the HARQ-ACK is used as a fixed value and is quasi-static HARQ-ACK can be transmitted.
  • PUCCH-PUSCH transmission (simultaneous PUCCH-PUSCH transmission) over multiple CCs in a PUCCH group or a cell group may be supported.
  • PUCCH-PUSCH simultaneous transmission across multiple CCs in a PUCCH group or cell group (simultaneous PUCCH-PUSCH transmission) is superior to a user terminal that reports terminal capability information (UE capability signaling) supporting the function to the network. Set by layer signaling.
  • CC1 is a PUCCH cell
  • CC1 may be called a primary cell (PCell), a primary secondary cell (PSCell), a special cell (SpCell), a PUCCH cell (PUCCH-SCell), or the like.
  • CC2 may be referred to as a secondary cell (SCell), or may be referred to as a cell in which no PUCCH is set.
  • the HARQ-ACK for the CC1 DL signal may be transmitted at least in CC1.
  • the HARQ-ACK for the CC2 DL signal (eg, PDSCH) may be transmitted at least in CC2.
  • a UE configured to simultaneously transmit PUCCH-PUSCH over CC1 and CC2 transmits a UCI (eg, HARQ-ACK) using the PUCCH of CC1 when the PUSCH of CC1 is not scheduled, and the PUSCH of CC1 is scheduled UCI may be transmitted using the PUSCH of CC1.
  • a UCI eg, HARQ-ACK
  • one of the following transmission methods 1 and 2 may be used.
  • Transmission method 1 When HARQ-ACK transmission for the DL signal of CC1 and HARQ-ACK transmission for the DL signal of CC2 occur at the same time, the HARQ-ACK for the DL signal of CC1 and the DL signal of CC2 in the PUCCH or PUSCH of CC1 HARQ-ACK may be multiplexed.
  • the HARQ-ACK for the DL signal of CC2 may be transmitted on the PUSCH of CC2.
  • the HARQ-ACK for the DL signal of CC2 may be transmitted only in CC1 (PUCCH or PUSCH).
  • the UE transmits HARQ-ACK for the DL signal of CC1 only in CC1, and transmits HARQ-ACK for the DL signal of CC2 in at least one of CC1 and CC2.
  • the PUCCH or PUSCH of CC1 and the PUSCH of CC2 may occur at one time point.
  • the time resource (for example, slot and symbol) of PUCCH or PUSCH of CC1 and the time resource of PUSCH of CC2 may overlap.
  • FIG. 6 shows an example of HARQ-ACK feedback when the frequency of CC1 is FR1, the frequency of CC2 is FR2, and the SCS of CC2 is four times the SCS of CC1, as in FIG.
  • the UE may transmit HARQ-ACK for the PDSCH of FR1 by PUCCH or PUSCH in the slot # n + 7 of FR1, or may transmit HARQ-ACK for the PDSCH of FR1 and HARQ-ACK for the PDSCH of FR2. May be.
  • the UE has slots # 4 (m + 2) +1, # 4 (m + 2) +3, # 4 (m + 3) +2, # 4 (m + 4), # 4 (m + 4) +3, # 4 (m + 5) +1, # 4 (in FR2) m + 6), # 4 (m + 6) +2, # 4 (m + 7) +1, # 4 (m + 7) +3, # 4 (m + 8) +2, and # 4 (m + 9) in the PUSCH, HARQ-ACK for the PDSCH of FR2 May be sent.
  • the UE transmits HARQ-ACK for the PDSCH of FR1 and HARQ-ACK for the PDSCH of FR2 by PUCCH or PUSCH in the slot # n + 7 of FR1, and at the same time, slot # 4 (FR2 of FR2
  • the HARQ-ACK for the PDSCH of FR2 may be transmitted by the PUSCH at m + 7) +3.
  • HARQ-ACK for the DL signal of CC1 may be transmitted on the PUCCH or PUSCH of CC1. Note that HARQ-ACK for the DL signal of CC1 may be transmitted in at least one of PUCCH or PUSCH of CC1.
  • HARQ-ACK for the DL signal of CC2 may be transmitted in PUSCH of CC2.
  • PUSCH in CC2 is not scheduled by UL grant (DCI)
  • HARQ-ACK for the DL signal of CC2 may not be transmitted (may be dropped).
  • the UE transmits HARQ-ACK for the DL signal of CC1 only in CC1, and transmits HARQ-ACK for the DL signal of CC2 only in CC2.
  • the PUCCH or PUSCH of CC1 and the PUSCH of CC2 may occur at one time point.
  • the time resource (for example, slot and symbol) of PUCCH or PUSCH of CC1 and the time resource of PUSCH of CC2 may overlap.
  • the UE transmits HARQ-ACK for the PDSCH of FR1 by PUCCH or PUSCH in the slot # n + 7 of FR1, and at the same time, by the PUSCH in slot # 4 (m + 7) +3 of FR2 HARQ-ACK for the PDSCH may be transmitted.
  • the UE may determine a HARQ-ACK codebook based on at least one of K 1 , K 2 , N 1 , N 2 using any of the first to third embodiments.
  • HARQ-ACK feedback in a plurality of CCs having different numerologies can be simplified, and the processing load on the UE and the base station can be reduced. Can be suppressed.
  • the UE may not expect to perform HARQ-ACK transmission on the PUSCH across multiple numerologies. In addition, the UE may not expect to transmit HARQ-ACK for one DL signal of two CCs having different numerologies in the PUCCH group or cell group on the other PUSCH.
  • the HARQ-ACK for the DL signal of CC1 may be transmitted by PUCCH on CC1.
  • the HARQ-ACK for the DL signal of CC2 may be transmitted by the PUSCH on CC2.
  • HARQ-ACK for at least one DL signal of CC1 and CC2 may be multiplexed on the PUCCH on CC1.
  • PUSCH may be scheduled to one or both of CC1 and CC2.
  • the base station may perform control so that HARQ-ACK piggybacks across the neurology do not occur.
  • the user terminal may control HARQ-ACK for the DL signal of CC2 so as not to piggyback on the PUSCH on CC1.
  • the user terminal may piggyback the HARQ-ACK for the DL signal of CC2 to the PUSCH transmitted by CC2, or if the PUSCH cannot be transmitted by CC2 (unscheduled), the HARQ-ACK May not be transmitted (dropped).
  • the user terminal may control HARQ-ACK for the DL signal of CC1 so as not to piggyback on the PUSCH on CC2.
  • the user terminal transmits the HARQ-ACK on CC1's PUCCH, or piggybacks on CC1's PUSCH and transmits it.
  • the assignment of PUSCH may not be permitted in the slot of CC1 that overlaps with this PUSCH (slot or symbol including PUSCH).
  • the base station may perform control so that the PUSCH is not allocated to the slot of CC1 overlapping with the PUSCH of CC2.
  • slots # 4 (m + 2) +1, # 4 (m + 2) +3, # 4 (m + 3) +2, # 4 (m + 4), # 4 (m + 4) of FR2 +3, # 4 (m + 5) +1, # 4 (m + 6), # 4 (m + 6) +2, # 4 (m + 7) +1, # 4 (m + 7) +3, # 4 (m + 8) +2, PUSCH at # 4 (m + 9) May be assigned.
  • the UE may transmit HARQ-ACK for the PDSCH of FR2 using these PUSCHs.
  • PUSCH allocation may not be permitted in slots # n + 7, # n + 8, and # n + 9 of FR1 that overlap with PUSCH of FR2.
  • the HARQ-ACK for the DL signal of FR2 is not piggybacked to the PUSCH of FR1.
  • assignment of PUSCH may not be permitted in a slot of CC2 that overlaps with this PUCCH or PUSCH (slot or symbol including PUCCH or PUSCH).
  • the base station may perform control so that the PUSCH is not allocated to the slot of CC2 that overlaps with the PUCCH or PUSCH of CC1.
  • the HARQ-ACK for the DL signal of the FR1 is not piggybacked to the PUSCH of the FR2.
  • the UE may determine a HARQ-ACK codebook based on at least one of K 1 , K 2 , N 1 , N 2 using any of the first to third embodiments.
  • HARQ-ACK for CCSCH PDSCH is piggybacked to CC1 PUSCH
  • HARQ-ACK for CC1 PDSCH is piggybacked to CC2 PUSCH
  • HARQ-ACK The generation of HARQ-ACK, transmission of HARQ-ACK, determination of HARQ-ACK, and identification of HARQ-ACK in the present disclosure may be interchanged with each other. Also, HARQ-ACK in the present disclosure may be expressed as ACK, NACK, A / N, and the like. Further, the HARQ-ACK bit and the HARQ-ACK in the present disclosure may be read each other.
  • the base station may perform HARQ-ACK reception processing (decoding, etc.) assuming the UE operation of each embodiment described above.
  • wireless communication system Wireless communication system
  • communication is performed using any one or a combination of the wireless communication methods according to the above-described embodiments of the present disclosure.
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 at least one of carrier aggregation (CA) and dual connectivity (DC) in which a plurality of fundamental frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit is integrated. Can be applied.
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
  • the radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 at the same time using CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC).
  • CC a plurality of cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • the user terminal 20 can perform communication in each cell using at least one of time division duplex (TDD) and frequency division duplex (FDD).
  • TDD time division duplex
  • FDD frequency division duplex
  • a single neurology may be applied, or a plurality of different neurology may be applied.
  • Numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length, At least one of a TTI length, the number of symbols per TTI, a radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, and a specific windowing process performed by the transceiver in the time domain may be indicated.
  • a communication parameter applied to at least one of transmission and reception of a certain signal or channel for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length, At least one of a TTI length, the number of symbols per TTI, a radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, and a specific windowing process performed by the transceiver in the time domain may be indicated.
  • the subcarrier interval and the number of OFDM symbols of a configured OFDM symbol may be referred to as having a different neurology.
  • the wireless base station 11 and the wireless base station 12 are connected by wire (for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly. May be.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
  • SC-FDMA single carrier-frequency division multiple access
  • Frequency Division (Multiple Access) and / or OFDMA are applied.
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single carrier transmission in which the system bandwidth is divided into bands each composed of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between terminals. It is a method.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink control channel, and the like are used as downlink channels.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including at least one of scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • DCI for scheduling DL data reception may be referred to as DL assignment
  • DCI for scheduling UL data transmission may be referred to as UL grant.
  • the number of OFDM symbols used for PDCCH may be transmitted by PCFICH.
  • the PHICH may transmit HARQ (Hybrid Automatic Repeat reQuest) delivery confirmation information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) for the PUSCH.
  • HARQ Hybrid Automatic Repeat reQuest
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • an uplink shared channel (PUSCH) shared by each user terminal 20
  • an uplink control channel (PUCCH: Physical Uplink Control Channel)
  • a random access channel (PRACH: Physical Random Access Channel)
  • User data, higher layer control information, etc. are transmitted by PUSCH.
  • downlink radio quality information CQI: Channel Quality Indicator
  • delivery confirmation information SR
  • scheduling request etc.
  • a random access preamble for establishing connection with the cell is transmitted by the PRACH.
  • a cell-specific reference signal CRS
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • a measurement reference signal SRS: Sounding Reference Signal
  • a demodulation reference signal DMRS
  • the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
  • FIG. 10 is a diagram illustrating an example of an overall configuration of a radio base station according to an embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ transmission processing
  • scheduling transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing
  • IFFT Inverse Fast Fourier Transform
  • precoding processing precoding processing, and other transmission processing
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • FIG. 11 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present disclosure.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations may be included in the radio base station 10, and some or all of the configurations may not be included in the baseband signal processing unit 104.
  • the control unit (scheduler) 301 controls the entire radio base station 10.
  • the control unit 301 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal allocation in the mapping unit 303, and the like.
  • the control unit 301 also controls signal reception processing in the reception signal processing unit 304, signal measurement in the measurement unit 305, and the like.
  • the control unit 301 schedules system information, downlink data signals (for example, signals transmitted using a downlink shared channel), and downlink control signals (for example, signals transmitted using a downlink control channel) (for example, resource allocation). ) To control. In addition, the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal.
  • the control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
  • synchronization signals for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)
  • downlink reference signals for example, CRS, CSI-RS, DMRS
  • the control unit 301 includes an uplink data signal (for example, a signal transmitted using an uplink shared channel), an uplink control signal (for example, a signal transmitted using an uplink control channel), a random access preamble, an uplink reference signal, and the like. Control scheduling.
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 302 generates, for example, at least one of a DL assignment for notifying downlink data allocation information and a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301.
  • the DL assignment and UL grant are both DCI and follow the DCI format.
  • the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
  • CSI Channel State Information
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301.
  • the reception signal processing unit 304 outputs at least one of the reception signal and the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal.
  • the measurement unit 305 includes received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
  • Signal strength for example, RSSI (Received Signal Strength Indicator)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 301.
  • the transceiver 103 uses a first component carrier (CC: Component Carrier) that uses a first subcarrier spacing (SCS) and a second SCS that is larger than the first SCS. You may communicate with the user terminal 20 using at least one of 2 CC.
  • CC Component Carrier
  • SCS subcarrier spacing
  • the control unit 301 Timing from reception of downlink shared channel to transmission of HARQ-ACK (PDSCH-to-ACK timing, “K 1 ”, etc.) so that the HARQ-ACK bit corresponding to the data satisfies the processing time requirement
  • the timing from reception of downlink control information for scheduling the uplink shared channel to transmission of the uplink shared channel may be referred to as UL grant-to-PUSCH timing, “K 2 ”, etc. It may be set to 20.
  • the control unit 301 controls the HARQ-ACK bit received from the user terminal 20 to perform HARQ-ACK reception processing (decoding and the like) assuming at least one UE operation of the above-described embodiment. May be.
  • the transmission / reception unit 103 may perform transmission and reception using the first CC and the second CC that uses a different numerology from that of the first CC.
  • control unit 301 receives HARQ-ACK for the downlink signal of the first CC using the uplink control channel or uplink shared channel of the first CC, and uses the uplink shared channel of the second CC, You may control at least any one of receiving HARQ-ACK with respect to the downlink signal of 2nd CC.
  • FIG. 12 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception units for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • FIG. 13 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal allocation in the mapping unit 403, and the like.
  • the control unit 401 also controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal, the downlink data signal, and the like transmitted from the radio base station 10 from the received signal processing unit 404. As a result of determining whether or not retransmission control is required for the downlink data signal, the control unit 401 controls generation of an uplink control signal, an uplink data signal, and the like based on the downlink control signal and the like.
  • control unit 401 When the control unit 401 acquires various types of information notified from the radio base station 10 from the reception signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • CSI channel state information
  • the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure. Further, the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401.
  • the reception signal processing unit 404 outputs at least one of the reception signal and the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 401.
  • the transmitting / receiving unit 203 uses a first component carrier (CC: Component Carrier) that uses a first subcarrier spacing (SCS) and a second SCS that is larger than the first SCS. 2 may be used for transmission and reception.
  • CC Component Carrier
  • SCS subcarrier spacing
  • control unit 401 uses a quasi-static HARQ-ACK codebook (semi-) regarding one or both of the first CC and the second CC in the uplink shared channel (PUSCH) of the second CC.
  • a quasi-static HARQ-ACK codebook (semi-) regarding one or both of the first CC and the second CC in the uplink shared channel (PUSCH) of the second CC.
  • the HARQ-ACK bit corresponding to data that does not satisfy the processing time requirement may be a PDSCH candidate
  • zero padding may be performed.
  • control unit 401 transmits a quasi-static HARQ-ACK codebook related to one or both of the first CC and the second CC in the uplink shared channel (PUSCH) of the second CC.
  • the HARQ-ACK bit corresponding to data (which may be a PDSCH candidate) that does not satisfy the processing time requirement may be determined (generated) as either ACK or NACK.
  • the transmission / reception unit 203 may perform transmission and reception using the first CC and the second CC that uses a different neurology from that of the first CC.
  • control unit 401 transmits an HARQ-ACK for the downlink signal (for example, PDSCH) of the first CC using the uplink control channel (PUCCH) or the uplink shared channel (PUSCH) of the first CC, and
  • the HARQ-ACK for the downlink signal of the second CC may be controlled using the uplink shared channel (PUSCH) of the second CC.
  • control unit 401 may control to transmit HARQ-ACK for the downlink signal of the first CC and HARQ-ACK for the downlink signal of the second CC at the same time.
  • the control unit 401 transmits HARQ-ACK for the downlink signal of the first CC in the uplink control channel of the first CC at the time point, or In the uplink control channel of the first CC at the time point, HARQ-ACK for the downlink signal of the first CC and HARQ-ACK for the downlink signal of the second CC may be controlled.
  • the control unit 401 transmits HARQ-ACK for the downlink signal of the first CC on the scheduled uplink shared channel, or the schedule In the configured uplink shared channel, HARQ-ACK for the downlink signal of the first CC and HARQ-ACK for the downlink signal of the second CC may be controlled.
  • control unit 401 may control that HARQ-ACK for one downlink signal of the first CC and the second CC is not transmitted on the other uplink shared channel of the first CC and the second CC.
  • each functional block is realized using one device physically or logically coupled, or two or more devices physically or logically separated may be directly or indirectly (for example, (Using wired, wireless, etc.) and may be implemented using these multiple devices.
  • a wireless base station, a user terminal, and the like may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 14 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication or controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be constituted by.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured by one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
  • the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on the numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots.
  • Each minislot may be configured with one or more symbols in the time domain.
  • the minislot may also be called a subslot.
  • a mini-slot may be composed of fewer symbols than slots.
  • PDSCH and PUSCH transmitted in units of time larger than the minislot may be referred to as PDSCH / PUSCH mapping type A.
  • the PDSCH and PUSCH transmitted using the minislot may be referred to as PDSCH / PUSCH mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be called a TTI
  • TTI slot or one minislot
  • a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • a time interval for example, the number of symbols
  • a transport block, a code block, a code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
  • a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
  • the resource block may be configured by one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • information, parameters, and the like described in the present disclosure may be expressed using absolute values, may be expressed using relative values from predetermined values, or may be expressed using other corresponding information. May be represented.
  • the radio resource may be indicated by a predetermined index.
  • the names used for parameters and the like in this disclosure are not limited names in any way.
  • various channels PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.
  • information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
  • the name is not limited in any way.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
  • information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • the software uses websites using at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • system and “network” as used in this disclosure may be used interchangeably.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • BWP Bandwidth Part
  • a base station may also be called terms such as a macro cell, a small cell, a femto cell, and a pico cell.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: Remote Radio Head)) can also provide communication services.
  • a base station subsystem eg, an indoor small base station (RRH: Remote Radio Head)
  • RRH Remote Radio Head
  • the terms “cell” or “sector” refer to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • Mobile station subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be referred to as a transmission device, a reception device, or the like.
  • the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unattended moving body (for example, a drone, an autonomous driving vehicle, etc.), or a robot (manned or unmanned).
  • at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
  • the radio base station in the present disclosure may be replaced with a user terminal.
  • the communication between the radio base station and the user terminal is replaced with communication between a plurality of user terminals (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc. may be called))
  • a plurality of user terminals for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc. may be called)
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”).
  • the uplink channel may be read as a side channel.
  • the user terminal in the present disclosure may be replaced with a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the operation performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched according to execution.
  • the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction.
  • the methods described in this disclosure present elements of the various steps in an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication). system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (Registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.
  • the present invention may be applied to a system using other appropriate wireless communication methods, a next-generation system extended based on these, and the like.
  • a plurality of systems may be combined and applied (for example, a combination of LTE or LTE-A and 5G).
  • the phrase“ based on ”does not mean“ based only on, ”unless expressly specified otherwise.
  • the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations can be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination (decision)” includes determination, calculation, calculation, processing, derivation, investigating, looking up (eg, table, (Searching in a database or another data structure), ascertaining, etc. may be considered to be “determining”.
  • determination (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”.
  • determination is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • connection is any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • radio frequency domain microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) region, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This user terminal comprises: a transmitting/receiving unit which transmits and receives using a first Component Carrier (CC) and a second CC that uses a numerology different from the numerology of the first CC; and a control unit which controls transmission of a Hybrid Automatic Repeat reQuest-Acknowledgement (HARQ-ACK) in response to a downlink signal of the first CC by using an uplink control channel or an uplink shared channel of the first CC, and/or controls transmission of a HARQ-ACK in response to the downlink signal of the second CC using the uplink shared channel of the second CC.

Description

ユーザ端末及び無線基地局User terminal and radio base station
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線基地局に関する。 The present disclosure relates to a user terminal and a radio base station in a next-generation mobile communication system.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。 In the UMTS (Universal Mobile Telecommunications System) network, Long Term Evolution (LTE) has been specified for the purpose of further high data rate, low delay, etc. (Non-patent Document 1). In addition, LTE-A (LTE Advanced, LTE Rel. 10, 11, 12, 13) was specified for the purpose of further increasing the capacity and sophistication of LTE (LTE Rel. 8, 9).
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。 LTE successor systems (for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Also referred to as Rel.
 既存のLTEシステム(例えば、LTE Rel.8-13)では、ユーザ端末(UE:User Equipment)は、ULデータチャネル(例えば、PUSCH:Physical Uplink Shared Channel)及びUL制御チャネル(例えば、PUCCH:Physical Uplink Control Channel)の少なくとも一方を用いて、上りリンク制御情報(UCI:Uplink Control Information)を送信する。 In an existing LTE system (for example, LTE Rel. 8-13), a user terminal (UE: User Equipment) has an UL data channel (for example, PUSCH: Physical Uplink Shared Channel) and an UL control channel (for example, PUCCH: Physical Uplink). Uplink control information (UCI) is transmitted using at least one of the control channels.
 UCIは、例えば、下り共有チャネル(PDSCH:Physical Downlink Shared Channel)に対する再送制御情報(HARQ-ACK(Hybrid Automatic Repeat reQuest Acknowledgement)、ACK/NACK、A/Nなどともいう)、スケジューリングリクエスト(SR:Scheduling Request)、チャネル状態情報(CSI:Channel State Information)などを含んでもよい。 UCI is, for example, retransmission control information (HARQ-ACK (Hybrid Automatic Repeat reQuest Acknowledgement), ACK / NACK, A / N, etc.), scheduling request (SR: Scheduling) for downlink shared channel (PDSCH). Request), channel state information (CSI: Channel State Information), and the like.
 NRでは、セル(コンポーネントキャリア:CC)毎にニューメロロジー(例えば、サブキャリア間隔)が設定されることが検討されている。しかしながら、異なるニューメロロジーを有する複数のセルにおいてHARQ-ACKフィードバックをどのように構成するかが明らかでない。この点を明らかにしなければ、適切にHARQ-ACK送信を行うことができず、通信スループット、周波数利用効率などの劣化が生じるおそれがある。 In NR, it is considered that a neurology (for example, subcarrier interval) is set for each cell (component carrier: CC). However, it is not clear how to configure HARQ-ACK feedback in multiple cells with different neurology. If this point is not clarified, HARQ-ACK transmission cannot be performed properly, and there is a risk that communication throughput, frequency utilization efficiency, and the like will deteriorate.
 そこで、本開示は、異なるニューメロロジーを有する複数のセルにおいて、HARQ-ACKを適切に送信できるユーザ端末及び無線基地局を提供することを目的の1つとする。 Therefore, it is an object of the present disclosure to provide a user terminal and a radio base station that can appropriately transmit HARQ-ACK in a plurality of cells having different neurology.
 本開示の一態様に係るユーザ端末は、第1CC(Component Carrier)と、前記第1CCのニューメロロジーと異なるニューメロロジーを用いる第2CCと、を用いて送信及び受信を行う送受信部と、前記第1CCの上り制御チャネル又は上り共有チャネルを用いて、前記第1CCの下り信号に対するHARQ-ACK(Hybrid Automatic Repeat reQuest-Acknowledgement)を送信すること、及び、前記第2CCの上り共有チャネルを用いて、前記第2CCの下り信号に対するHARQ-ACKを送信すること、の少なくともいずれか一方を制御する制御部と、を有することを特徴とする。 A user terminal according to an aspect of the present disclosure includes a transmission / reception unit that performs transmission and reception using a first CC (Component Carrier) and a second CC that uses a different neurology from that of the first CC; Sending HARQ-ACK (Hybrid Automatic Repeat reQuest-Acknowledgement) for the downlink signal of the first CC using the uplink control channel or uplink shared channel of the first CC, and using the uplink shared channel of the second CC, And a control unit that controls at least one of transmitting HARQ-ACK for the downlink signal of the second CC.
 本開示の一態様によれば、異なるニューメロロジーを有する複数のセルにおいて、HARQ-ACKを適切に送信できる。 According to one aspect of the present disclosure, HARQ-ACK can be appropriately transmitted in a plurality of cells having different neurology.
図1は、HARQ-ACKバンドリングウィンドウの概念説明図である。FIG. 1 is a conceptual explanatory diagram of a HARQ-ACK bundling window. 図2は、FR1及びFR2を用いたニューメロロジー混在CAが設定される場合の、準静的HARQ-ACKコードブックに基づくフィードバックの一例を示す図である。FIG. 2 is a diagram illustrating an example of feedback based on a quasi-static HARQ-ACK codebook when a mixed neurology CA using FR1 and FR2 is set. 図3は、ニューメロロジー混在CAにおいて、FR1のPUCCH/PUSCHで準静的HARQ-ACKコードブックをフィードバックする一例を示す図である。FIG. 3 is a diagram illustrating an example of feeding back a quasi-static HARQ-ACK codebook using FR1 PUCCH / PUSCH in a mixed neurology CA. 図4は、ニューメロロジー混在CAにおいて、FR2のPUSCHで準静的HARQ-ACKコードブックをフィードバックする一例を示す図である。FIG. 4 is a diagram illustrating an example of feeding back a quasi-static HARQ-ACK codebook using FRSCH PUSCH in a mixed neurology CA. 図5は、ニューメロロジー混在CAにおいて、FR2のPUSCHで準静的HARQ-ACKコードブックをフィードバックする別の一例を示す図である。FIG. 5 is a diagram illustrating another example of feeding back a quasi-static HARQ-ACK codebook using the FRSCH PUSCH in the mixed neurology CA. 図6は、ニューメロロジー混在CAにおいて、FR1及びFR2において同時にHARQ-ACKコードブックをフィードバックする一例を示す図である。FIG. 6 is a diagram illustrating an example in which HARQ-ACK codebooks are fed back simultaneously in FR1 and FR2 in the mixed neurology CA. 図7は、ニューメロロジー混在CAにおいて、FR1及びFR2においてHARQ-ACKコードブックをフィードバックする一例を示す図である。FIG. 7 is a diagram illustrating an example in which HARQ-ACK codebook is fed back in FR1 and FR2 in the mixed neurology CA. 図8は、ニューメロロジー混在CAにおいて、FR1及びFR2においてHARQ-ACKコードブックをフィードバックする別の一例を示す図である。FIG. 8 is a diagram showing another example of feeding back the HARQ-ACK codebook in FR1 and FR2 in the mixed neurology CA. 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. 図10は、一実施形態に係る無線基地局の全体構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of an overall configuration of a radio base station according to an embodiment. 図11は、一実施形態に係る無線基地局の機能構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment. 図12は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment. 図13は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。FIG. 13 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment. 図14は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 14 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment.
(PDSCH-to-ACKタイミング)
 NRにおいて、UEは、PDSCHの受信から当該PDSCHに対応するHARQ-ACKの送信までのタイミング(PDSCH-to-ACKタイミング、「K」などと呼ばれてもよい)を、当該PDSCHをスケジューリングするDCI(DL DCI、DLアサインメント、DCIフォーマット1_0、DCIフォーマット1_1などと呼ばれてもよい)に基づいて決定する。
(PDSCH-to-ACK timing)
In the NR, the UE schedules the PDSCH for the timing from the reception of the PDSCH to the transmission of the HARQ-ACK corresponding to the PDSCH (may be referred to as PDSCH-to-ACK timing, “K 1 ”, etc.). It is determined based on DCI (may be called DL DCI, DL assignment, DCI format 1_0, DCI format 1_1, etc.).
 例えば、UEは、DCIフォーマット1_0を検出すると、当該DCIに含まれる「PDSCHからHARQへのタイミング指示フィールド(PDSCH-to-HARQ-timing-indicator field)」に基づいて、当該PDSCHの最終シンボルが含まれるスロットnを基準としてスロットn+k(例えば、kは1から8までの整数)において当該PDSCHに対応するHARQ-ACKを送信する。 For example, when the UE detects the DCI format 1_0, the UE includes the final symbol of the PDSCH based on the “PDSCH-to-HARQ-timing-indicator field” included in the DCI. HARQ-ACK corresponding to the PDSCH is transmitted in slot n + k (for example, k is an integer from 1 to 8) with slot n as a reference.
 UEは、DCIフォーマット1_1を検出すると、当該DCIに含まれる「PDSCHからHARQへのタイミング指示フィールド」に基づいて、当該PDSCHの最終シンボルが含まれるスロットnを基準としてスロットn+kにおいて当該PDSCHに対応するHARQ-ACKを送信する。ここでのkと上記タイミング指示フィールドとの対応関係は、上位レイヤシグナリングによってPUCCH(又はPUCCHグループ、セルグループ)ごとに、UEに設定されてもよい。 When detecting the DCI format 1_1, the UE corresponds to the PDSCH in the slot n + k based on the slot n including the final symbol of the PDSCH based on the “timing indication field from PDSCH to HARQ” included in the DCI. Send HARQ-ACK. Here, the correspondence between k and the timing indication field may be set in the UE for each PUCCH (or PUCCH group or cell group) by higher layer signaling.
 ここで、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 Here, the upper layer signaling may be, for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, or a combination thereof.
 MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)、最低限のシステム情報(RMSI:Remaining Minimum System Information)、その他のシステム情報(OSI:Other System Information)などであってもよい。 For MAC signaling, for example, a MAC control element (MAC CE (Control Element)), a MAC PDU (Protocol Data Unit), or the like may be used. Broadcast information includes, for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), minimum system information (RMSI: Remaining Minimum System Information), and other system information (OSI: Other). System Information).
 例えば、上記対応関係は、RRCシグナリングのPUCCH設定情報要素(PUCCH Config information element)に含まれるパラメータ(dl-DataToUL-ACK、Slot-timing-value-K1などと呼ばれてもよい)によって設定されてもよい。例えば、Kによって、PDSCH-to-ACKタイミング指示の複数の候補値が上位レイヤシグナリングによって設定され、PDSCHのスケジューリングのためのDCIによって、複数の候補値の1つが指示されてもよい。 For example, the correspondence relationship is set by a parameter (may be called dl-DataToUL-ACK, Slot-timing-value-K1, etc.) included in a PUCCH configuration information element (PUCCH Config information element) of RRC signaling. Also good. For example, a plurality of candidate values for PDSCH-to-ACK timing indication may be set by higher layer signaling by K1, and one of the plurality of candidate values may be indicated by DCI for PDSCH scheduling.
 Kは、PUCCHグループ(又はセルグループ)ごとに設定されるため、当該PUCCHグループの中で、異なるニューメロロジーが設定(又は利用)されるコンポーネントキャリア(CC:Component Carrier)が混じったCA(mixed numerology CA)(ニューメロロジー混在CAなどと呼ばれてもよい)が設定される場合であっても、ニューメロロジーが異なるCC間で共通のPDSCH-to-ACKタイミングが設定されることになる。 Since K 1 is set for each PUCCH group (or cell group), CA (Component Carrier (CC)) in which different pneumatics are set (or used) in the PUCCH group is mixed (CA ( Even when mixed numerology CA (which may be referred to as “mixed numerology CA”) is set, a common PDSCH-to-ACK timing is set between CCs having different numerologies. Become.
 なお、Kは、HARQ-ACKを送信するチャネル(例えば、PUCCH又はPUSCH)のニューメロロジー(例えば、SCS)に基づいて判断される時間であってもよい。 K 1 may be a time determined based on the topology (eg, SCS) of a channel (eg, PUCCH or PUSCH) that transmits HARQ-ACK.
(ULgrant-to-PUSCHタイミング)
 また、NRにおいて、UEは、PUSCHをスケジューリングするDCI(UL DCI、ULグラント、DCIフォーマット0_0、DCIフォーマット0_1などと呼ばれてもよい)の受信から当該PUSCHの送信までのタイミング(ULgrant-to-PUSCHタイミング、「K」、PDCCHを受信したスロット及びPUSCH送信を行うスロットのタイミングの差分などと呼ばれてもよい)を、当該DCIに基づいて決定する。
(UL grant-to-PUSCH timing)
Also, in the NR, the UE performs timing (UL grant-to-to--) from reception of DCI for scheduling PUSCH (may be called UL DCI, UL grant, DCI format 0_0, DCI format 0_1, etc.) to transmission of the PUSCH. PUSCH timing, “K 2 ”, a timing difference between a slot that receives PDCCH and a slot that performs PUSCH transmission, and the like may be determined based on the DCI.
 例えば、UEは、DCIフォーマット0_0又は0_1を検出すると、当該DCIに含まれる「時間ドメインリソース割り当てフィールド(Time domain resource assignment field)」に基づいて時間ドメインリソース割り当て(RA:Resource Allocation)の候補(Kなどのパラメータセット)を決定し、当該DCIを検出したスロットnを基準として、対応するPUSCHの時間ドメインリソースRAを特定する。 For example, when the UE detects the DCI format 0_0 or 0_1, the UE (RA: Resource Allocation) candidate (K) based on the “Time domain resource assignment field” included in the DCI (K Parameter set such as 2 ) is determined, and the time domain resource RA of the corresponding PUSCH is specified with reference to the slot n in which the DCI is detected.
 時間ドメインRAフィールドの値(インデックス)と時間ドメインRAの候補との対応関係(PUSCH時間ドメインRAリスト、Kのセットなどと呼ばれてもよい)は、上位レイヤシグナリングによってPUSCHを送信するセル(PUSCH-Cellと呼ばれてもよい)ごとに、UEに設定されてもよい。 The correspondence between the value (index) of the time domain RA field and the candidate of the time domain RA (which may be referred to as a PUSCH time domain RA list, a set of K 2 , etc.) is a cell that transmits PUSCH by higher layer signaling ( It may be set in the UE every time it may be called PUSCH-Cell).
 PUSCH時間ドメインRAリストは、RRCシグナリングの「pusch-AllocationList」情報要素(IE:Information Element)に該当してもよい。PUSCH時間ドメインRAリストは、PUSCH時間ドメインRAの候補(シーケンスの要素、エントリなどと呼ばれてもよい)を所定の数(例えば、最大16個)含むことが検討されている。 The PUSCH time domain RA list may correspond to a “pusch-AllocationList” information element (IE: Information Element) of RRC signaling. It is considered that the PUSCH time domain RA list includes a predetermined number (for example, a maximum of 16) of PUSCH time domain RA candidates (which may be called sequence elements, entries, etc.).
 各候補は、PDCCH及びPUSCHの時間ドメインの関係を設定するためのIE(「PUSCH-TimeDomainResourceAllocation」IE)に該当する。当該IEは、例えば、パラメータK2、復調用参照信号(DMRS:DeModulation Reference Signal)のマッピング構成を示すマッピングタイプ、PUSCH開始シンボル及びシンボル単位の長さを示す値(SLIV(Start/Length Indication Value)と呼ばれてもよい)などを含んでもよい。例えば、Kによって、ULgrant-to-PUSCHタイミング指示の複数の候補値が上位レイヤシグナリングによって設定され、PUSCHのスケジューリングのためのDCIによって、複数の候補値の1つが指示されてもよい。 Each candidate corresponds to an IE (“PUSCH-TimeDomainResourceAllocation” IE) for setting a time domain relationship between PDCCH and PUSCH. The IE includes, for example, a parameter K2, a mapping type indicating a mapping configuration of a demodulation reference signal (DMRS: DeModulation Reference Signal), a PUSCH start symbol, and a value (SLIV (Start / Length Indication Value)) indicating the length of a symbol unit. May be called). For example, the K 2, a plurality of candidate values of ULgrant-to-PUSCH timing indication is configured by upper layer signaling, the DCI for the scheduling of PUSCH, one of a plurality of candidate values may be indicated.
 Kは、ULサービングセルごとに設定されるため、ニューメロロジー混在CAが設定される場合であっても、ニューメロロジーが異なるCC間で同じ値を用いなくてもよい。 K 2 is to be set for each UL serving cell, even when the new melody biology mixed CA is set, may not use the same values between the CC New Mello biology is different.
 なお、Kは、PUSCHのニューメロロジー(例えば、SCS)に基づいて判断される時間であってもよい。 K 2 may be a time determined based on the PUSCH neurology (for example, SCS).
(処理時間)
 また、NRでは、UEにおけるPDSCHの処理時間、UEにおけるPUSCHの処理時間などが検討されている。なお、処理時間(processing time)は、準備時間(preparation time)、準備手順時間(preparation procedure time)、処理手順時間(processing procedure time)などで読み替えられてもよい。
(processing time)
In NR, the PDSCH processing time in the UE, the PUSCH processing time in the UE, and the like are being studied. The processing time may be read as a preparation time, a preparation procedure time, a processing procedure time, or the like.
 PDSCHの処理時間は、トランスポートブロックを伝送する当該PDSCHの最終シンボルの終わり以降のULシンボルまでの期間であってもよい。UEは、当該ULシンボルと同じ又はこれ以降のシンボルで有効なHARQ-ACKを提供してもよい。 The PDSCH processing time may be a period from the end of the last symbol of the PDSCH that transmits the transport block to the UL symbol. The UE may provide a valid HARQ-ACK with the same or later symbols as the UL symbol.
 PUSCHの処理時間は、当該PUSCHをスケジューリングするDCIを伝送するPDCCHの最終シンボルの終わり以降のULシンボルまでの期間であってもよい。UEは、当該ULシンボルと同じ又はこれ以降のシンボルでPUSCHを送信してもよい。 The PUSCH processing time may be a period from the end of the last symbol of the PDCCH transmitting DCI for scheduling the PUSCH to the UL symbol. The UE may transmit the PUSCH using the same symbol as or later than the UL symbol.
 PDSCHの処理時間は、パラメータN(PDSCH復号時間と呼ばれてもよい)に基づいて決定されてもよく、PUSCHの処理時間は、パラメータN(PUSCH準備時間と呼ばれてもよい)に基づいて決定されてもよい。 The PDSCH processing time may be determined based on parameter N 1 (which may be referred to as PDSCH decoding time), and the PUSCH processing time may be determined according to parameter N 2 (which may be referred to as PUSCH preparation time). It may be determined based on.
 Nは、当該PDSCHが送信された下りリンクのSCSと、上記HARQ-ACKが送信されるULチャネル(例えば、PUCCH、PUSCH)のSCSと、に基づいて決定されてもよい。例えば、Nは、これらのSCSのうち最小のSCSに基づいて決定されてもよく、例えば当該最小のSCSが15kHzの場合は8シンボルなど、8-20シンボルであると判断されてもよい。Nは、追加のPDSCH DMRSが設定される場合には、13-24シンボルであると判断されてもよい。 N 1 may be determined based on the downlink SCS in which the PDSCH is transmitted and the SCS of the UL channel (for example, PUCCH or PUSCH) in which the HARQ-ACK is transmitted. For example, N 1 may be determined based on the minimum SCS among these SCSs, and may be determined to be 8-20 symbols, such as 8 symbols when the minimum SCS is 15 kHz. N 1 may be determined to be 13-24 symbols if additional PDSCH DMRS is configured.
 Nは、当該PUSCHをスケジューリングするDCIを伝送するPDCCHが送信された下りリンクのSCSと、当該PUSCHが送信されるULチャネルのSCSと、に基づいて決定されてもよい。例えば、Nは、これらのSCSのうち最小のSCSに基づいて決定されてもよく、例えば当該最小のSCSが15kHzの場合は10シンボルなど、10-36シンボルであると判断されてもよい。 N 2 may be determined based on the downlink SCS to which the PDCCH that transmits the DCI for scheduling the PUSCH is transmitted and the SCS of the UL channel to which the PUSCH is transmitted. For example, N 2 may be determined based on the minimum SCS among these SCSs, and may be determined to be 10-36 symbols, such as 10 symbols when the minimum SCS is 15 kHz.
 つまり、上記処理時間(及び処理時間に関するパラメータ(N、Nなど))は、PDCCH/PDSCHと、PUCCH/PUSCHと、のうち、最小のSCSに対応するニューメロロジーによって規定される値に従ってもよい。言い換えれば、処理時間は、DL及びULの異なるニューメロロジーにおける最大時間(シンボル長、スロット長)に基づいてもよい。つまり、N、Nなどは、ニューメロロジー混在CAが設定される場合であっても、ニューメロロジーが異なるCC間で共通の値が定義される。 That is, the processing time (and parameters related to the processing time (N 1 , N 2, etc.)) are in accordance with a value defined by the neurology corresponding to the smallest SCS among PDCCH / PDSCH and PUCCH / PUSCH. Also good. In other words, the processing time may be based on the maximum time (symbol length, slot length) in different neurology of DL and UL. That is, N 1 , N 2, and the like are defined as common values between CCs having different numerologies even when a neumerology mixed CA is set.
 PDSCHに対応するHARQ-ACKを、PUSCHを用いて送信する場合には、UEは、上記PDSCHの処理時間及び上記PUSCHの処理時間を合わせた時間(和の時間)以降のULシンボル、又はこれ以降のシンボルでPUSCHを送信してもよい。 When transmitting the HARQ-ACK corresponding to PDSCH using PUSCH, the UE uses UL symbols after the time (sum time) of the PDSCH processing time and the PUSCH processing time, or after this The PUSCH may be transmitted using the symbols.
(準静的HARQ-ACKコードブック)
 また、NRでは、UEが、HARQ-ACKコードブック(HARQ-ACKサイズと呼ばれてもよい)を準静的(semi-static)又は動的(dynamic)に決定することが検討されている。基地局がUEに対して、HARQ-ACKコードブックの決定方法を示す情報(例えば、HARQ-ACKコードブックが準静的か、動的かを示す情報)を、上位レイヤシグナリングを用いて通知してもよい。HARQ-ACKコードブックは、PDSCHのHARQ-ACKコードブックと呼ばれてもよい。
(Quasi-static HARQ-ACK codebook)
Also, in NR, it is considered that the UE determines the HARQ-ACK codebook (which may be referred to as HARQ-ACK size) to be semi-static or dynamic. The base station notifies the UE of information indicating how to determine the HARQ-ACK codebook (for example, information indicating whether the HARQ-ACK codebook is quasi-static or dynamic) using higher layer signaling. May be. The HARQ-ACK codebook may be referred to as a PDSCH HARQ-ACK codebook.
 UEは、決定したHARQ-ACKコードブックに基づいて、HARQ-ACK情報ビットを決定(生成)し、生成したHARQ-ACKを、上り制御チャネル(PUCCH:Physical Uplink Control Channel)及び上り共有チャネル(PUSCH:Physical Uplink Shared Channel)の少なくとも一方を用いて送信してもよい。 The UE determines (generates) HARQ-ACK information bits based on the determined HARQ-ACK codebook, and transmits the generated HARQ-ACK to the uplink control channel (PUCCH: Physical Uplink Control Channel) and the uplink shared channel (PUSCH). : Physical Uplink Shared Channel) may be used for transmission.
 UEがHARQ-ACKコードブックを準静的に決定すること(又は準静的なHARQ-ACKコードブック)を設定される場合、当該HARQ-ACKコードブックの決定は、タイプ1HARQ-ACKコードブック決定と呼ばれてもよい。UEがHARQ-ACKコードブックを動的に決定すること(又は動的なHARQ-ACKコードブック)を設定される場合、当該HARQ-ACKコードブックの決定は、タイプ2HARQ-ACKコードブック決定と呼ばれてもよい。 If the UE is configured to determine the HARQ-ACK codebook semi-statically (or semi-static HARQ-ACK codebook), the determination of the HARQ-ACK codebook is type 1 HARQ-ACK codebook determination. May be called. If the UE is configured to dynamically determine the HARQ-ACK codebook (or dynamic HARQ-ACK codebook), the determination of the HARQ-ACK codebook is called type 2 HARQ-ACK codebook determination May be.
 UEは、タイプ1HARQ-ACKコードブック決定においては、上位レイヤシグナリングで設定される構成に基づいてHARQ-ACKのビット数などを決定してもよい。当該設定される構成は、例えば、HARQ-ACKのフィードバックタイミングに関連付けられる範囲にわたってスケジューリングされるDL送信(例えば、PDSCH)の数(例えば、最大数、最小数など)を含んでもよい。 In the type 1 HARQ-ACK codebook determination, the UE may determine the number of HARQ-ACK bits based on the configuration set in higher layer signaling. The configured configuration may include, for example, the number (eg, maximum number, minimum number, etc.) of DL transmissions (eg, PDSCH) scheduled over a range associated with HARQ-ACK feedback timing.
 当該範囲は、HARQ-ACKバンドリングウィンドウ、HARQ-ACKフィードバックウィンドウ、バンドリングウィンドウ、フィードバックウィンドウなどとも呼ばれる。バンドリングウィンドウは、空間(space)、時間(time)及び周波数(frequency)の少なくとも1つの範囲に該当してもよい。 This range is also called HARQ-ACK bundling window, HARQ-ACK feedback window, bundling window, feedback window, etc. The bundling window may correspond to at least one range of space, time, and frequency.
 図1は、HARQ-ACKバンドリングウィンドウの概念説明図である。図1では、バンドリングウィンドウのサイズは6(6スロット分)である。また、上述のK={2、3、4、5、6、7}が用いられる(UEに通知される)。 FIG. 1 is a conceptual explanatory diagram of a HARQ-ACK bundling window. In FIG. 1, the size of the bundling window is 6 (for 6 slots). Also, the above-mentioned K 1 = {2, 3, 4, 5, 6, 7} is used (notified to the UE).
 UEは、各UL送信タイミング(ULスロット)において、当該ULのバンドリングウィンドウ内の全DLデータ候補(PDSCH候補)(つまり、当該ULスロットから2-7スロット前のPDSCH候補)のためのHARQ-ACKを送信する。 At each UL transmission timing (UL slot), the UE performs HARQ- for all DL data candidates (PDSCH candidates) within the UL bundling window (that is, PDSCH candidates 2-7 slots before the UL slot). Send ACK.
 図1に示すように、時間が進むにつれて、バンドリングウィンドウがスライドしていくことになる。コードブックに含まれるA/Nの順番(order)は、バンドリングウィンドウのスライドに合わせてスライドしてもよい。 As shown in FIG. 1, the bundling window will slide as time progresses. The order of A / N included in the code book may be slid in accordance with the sliding of the bundling window.
 この例からわかるように、あるスロット(PDSCH候補)について重複する(duplicated)HARQ-ACKが送信されることがある。 As can be seen from this example, a duplicated HARQ-ACK may be transmitted for a certain slot (PDSCH candidate).
 UEは、CAを設定されている場合には、バンドリングウィンドウ内のCAされる複数のCCについてのHARQ-ACKを、あるUL送信タイミングでまとめて送信してもよい。 When the CA is set, the UE may collectively transmit HARQ-ACK for a plurality of CCs to be CA within the bundling window at a certain UL transmission timing.
 一方で、UEは、タイプ2HARQ-ACKコードブック決定においては、下り制御情報(例えば、DL assignment)に含まれるDL割当てインデックス(DAI:Downlink Assignment Indicator(Index))フィールドのビット列に基づいてHARQ-ACKビット数などを決定してもよい。 On the other hand, in determining the type 2 HARQ-ACK codebook, the UE determines the HARQ-ACK based on the bit string of the DL assignment index (DAI: Downlink Assignment Indicator (Index)) field included in the downlink control information (eg, DL assignment). The number of bits may be determined.
(FR1/FR2)
 NRにおいて、UEは、第1の周波数帯(FR1:Frequency Range 1)及び第2の周波数帯(FR2:Frequency Range 2)の少なくとも1つの周波数帯(キャリア周波数)を用いて通信(信号の送受信、測定など)することが検討されている。
(FR1 / FR2)
In NR, UE communicates (transmits / receives signals) using at least one frequency band (carrier frequency) of a first frequency band (FR1: Frequency Range 1) and a second frequency band (FR2: Frequency Range 2). Measurement etc.) are being considered.
 例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。 For example, FR1 may be a frequency band of 6 GHz or less (sub-6 GHz (sub-6 GHz)), and FR2 may be a frequency band higher than 24 GHz (above-24 GHz).
 FR1は、サブキャリア間隔(SCS:Sub-Carrier Spacing)として15、30及び60kHzのうちから少なくとも1つが用いられる周波数レンジと定義されてもよい。 FR1 may be defined as a frequency range in which at least one of 15, 30 and 60 kHz is used as a sub-carrier spacing (SCS).
 FR2は、SCSとして60及び120kHzのうちから少なくとも1つが用いられる周波数レンジと定義されてもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯であってもよい。 FR2 may be defined as a frequency range in which at least one of 60 and 120 kHz is used as the SCS. The frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may be a frequency band higher than FR2.
 FR2は、時分割複信(TDD:Time Division Duplex)バンドのみに用いられてもよい。FR2は、波長が1mmから10mm程度のミリ波(mmW:millimeter Wave)に対応するため、mmWバンドと呼ばれてもよい。mmWバンドは、EHF(Extremely High Frequency)と呼ばれてもよい。 FR2 may be used only for a time division duplex (TDD) band. Since FR2 corresponds to a millimeter wave (mmW) having a wavelength of about 1 mm to 10 mm, it may be called an mmW band. The mmW band may be called EHF (Extremely High Frequency).
 なお、本開示のFR1及びFR2は、それぞれ、具体的な周波数帯に限定されないより一般的な表現である第1の周波数帯(first frequency range)及び第2の周波数帯(second frequency range)で読み替えられてもよい。 Note that FR1 and FR2 of the present disclosure are replaced with the first frequency band (second frequency range) and the second frequency band (second frequency range), which are more general expressions that are not limited to specific frequency bands, respectively. May be.
 図2は、FR1及びFR2を用いたニューメロロジー混在CAが設定される場合の、準静的HARQ-ACKコードブックに基づくフィードバックの一例を示す図である。本例では、FR1のCC及びFR2のCCが、同じPUCCHグループに設定される。また、FR1のCCにPUCCHが設定されている(FR1のCCがPUCCHセルである)と想定する。 FIG. 2 is a diagram illustrating an example of feedback based on a quasi-static HARQ-ACK codebook when a mixed neurology CA using FR1 and FR2 is set. In this example, the CC of FR1 and the CC of FR2 are set to the same PUCCH group. Further, it is assumed that the PUCCH is set in the CC of FR1 (the CC of FR1 is a PUCCH cell).
 なお、本例では、簡単のため、FR2のSCSがFR1のSCSの4倍(例えば、FR1のSCS=30kHzかつFR2のSCS=120kHzかつ)であり、FR2のスロット長がFR1のスロット長の4分の1であり、FR1及びFR2のCCが同期していると想定する。本開示が適用されるニューメロロジー、同期環境などは、これに限られない。 In this example, for simplicity, the SCS of FR2 is four times the SCS of FR1 (for example, SCS of FR1 = 30 kHz and SCS of FR2 = 120 kHz), and the slot length of FR2 is 4 times the slot length of FR1. It is assumed that the CCs of FR1 and FR2 are synchronized. The neurology and synchronization environment to which the present disclosure is applied are not limited to this.
 ネットワーク(例えば、基地局)は、UEにFR1のPUCCHを用いてHARQ-ACKコードブックをフィードバックさせたい場合、当該PUCCHと重複するタイミングでPUSCHをスケジューリングしないことで実現できる。PUCCH及びPUSCHの同時送信の場合、HARQ-ACKがPUSCHにピギーバック(伝送)されるからである。 When a network (for example, a base station) wants the UE to feed back the HARQ-ACK codebook using the FR1 PUCCH, it can be realized by not scheduling the PUSCH at a timing overlapping with the PUCCH. This is because HARQ-ACK is piggybacked (transmitted) to PUSCH in the case of simultaneous transmission of PUCCH and PUSCH.
 ネットワークは、UEにFR1のPUSCHを用いてHARQ-ACKコードブックをフィードバックさせたい場合、FR1のCCにPUSCHをグラントすればよい。 If the network wants the UE to feed back the HARQ-ACK codebook using the FRSCH PUSCH, it may grant the PUSCH to the FR1 CC.
 ネットワークは、UEにFR2のPUSCHを用いてHARQ-ACKコードブックをフィードバックさせたい場合、FR2のCCにPUSCHをグラントすればよい。この場合、FR2のPUSCH送信と同じタイミングでFR1のCCのPUSCH送信がスケジューリングされないようにしてもよい。 When the network wants the UE to feed back the HARQ-ACK codebook using the FRSCH PUSCH, it may grant the PUSCH to the FR2 CC. In this case, the PUSCH transmission of the CC of FR1 may not be scheduled at the same timing as the PUSCH transmission of FR2.
 UEは、HARQ-ACKコードブックをFR1で送信する場合に、バンドリングウィンドウ内のFR2のHARQ-ACKを生成して、FR1のCCを用いて送信してもよい。UEは、HARQ-ACKコードブックをFR2で送信する場合に、バンドリングウィンドウ内のFR1のHARQ-ACKを生成して、FR2のCCを用いて送信してもよい。 When transmitting the HARQ-ACK codebook with FR1, the UE may generate HARQ-ACK of FR2 within the bundling window and transmit it using the CC of FR1. When transmitting the HARQ-ACK codebook by FR2, the UE may generate HARQ-ACK of FR1 within the bundling window and transmit it using the CC of FR2.
 本例の場合、FR1の2スロット分のHARQ-ACKと、FR2の対応する8スロット分のHARQ-ACKと、がFR1及びFR2のULスロットの少なくとも一方で送信されてもよい。準静的なコードブックであれば、UEは、各CCのために生成するHARQ-ACKビット数を適切に把握できる。 In the case of this example, HARQ-ACK for two slots of FR1 and HARQ-ACK for eight slots corresponding to FR2 may be transmitted in at least one of the UL slots of FR1 and FR2. In the case of a quasi-static codebook, the UE can appropriately grasp the number of HARQ-ACK bits generated for each CC.
 基地局は、複数CCに関するHARQ-ACKをあるCCのスロットで受信した場合、各CCのHARQ-ACKを個別に取り出すことができる。例えば、基地局は、FR1で受信したHARQ-ACKからFR1に関するHARQ-ACKを抽出し、FR2に関するHARQ-ACKは破棄してもよい。また、基地局は、FR2で受信したHARQ-ACKからFR2に関するHARQ-ACKを抽出し、FR1に関するHARQ-ACKは破棄してもよい。 When the base station receives HARQ-ACK for a plurality of CCs in a certain CC slot, the base station can individually extract the HARQ-ACK for each CC. For example, the base station may extract HARQ-ACK related to FR1 from HARQ-ACK received by FR1, and discard HARQ-ACK related to FR2. Further, the base station may extract the HARQ-ACK related to FR2 from the HARQ-ACK received by FR2, and discard the HARQ-ACK related to FR1.
 もちろん、基地局は、あるCCのスロットで受信したHARQ-ACKから、別のCCのHARQ-ACKを抽出して利用してもよい。 Of course, the base station may extract and use the HARQ-ACK of another CC from the HARQ-ACK received in a certain CC slot.
 上述のように、複数CCに関するHARQ-ACKが各CCのPUSCHを用いて送信できる場合、これらのCCにはPUCCHは設定されなくてもよい(これらのCCにおいて、少なくともHARQ-ACKがPUCCHを用いて送信されない、と想定されてもよい)。 As described above, when HARQ-ACK for multiple CCs can be transmitted using the PUSCH of each CC, PUCCH may not be set for these CCs (in these CCs, at least HARQ-ACK uses PUCCH) May not be transmitted).
 現状、NRにおいて、UEは、処理時間よりも短い時間で設定されたHARQ-ACKを送信することを期待されないことが検討されている。具体的には、UEは、UEに十分な処理時間が残されていないK及び/又はKの値をネットワークが設定する場合、ULデータと多重されるHARQ-ACKを送信することを期待しない(UE is not expected transmit the HARQ-ACK multiplexed with uplink data if the network set the values of K1 and/or K2 without leaving sufficient time for UE processing)ことが検討されている。 Currently, in NR, it is considered that the UE is not expected to transmit HARQ-ACK set in a time shorter than the processing time. Specifically, the UE expects to send a HARQ-ACK multiplexed with UL data if the network sets K 1 and / or K 2 values that do not leave enough processing time for the UE. (UE is not expected transmit the HARQ-ACK multiplexed with uplink data if the network set the values of K1 and / or K2 without leaving sufficient time for UE processing).
 しかしながら、この検討は、明確でない点がある。例えば、SCSが異なるCCのCAが設定され、大きい方のSCSのCCでHARQ-ACKコードブックフィードバックを行う場合に、問題が発生すると想定される。 However, this study is not clear. For example, it is assumed that a problem occurs when CAs of CCs having different SCSs are set and HARQ-ACK codebook feedback is performed in CCs of larger SCSs.
 以下で、FR1及びFR2の混在CAの場合のHARQ-ACKコードブックフィードバックについて、処理時間についてより具体的に説明する。上述のように、処理時間は、PDCCH/PDSCHと、PUCCH/PUSCHと、のうち、最小のSCSに対応するニューメロロジーに基づいて特定される。 Hereinafter, the processing time of HARQ-ACK codebook feedback in the case of a mixed CA of FR1 and FR2 will be described more specifically. As described above, the processing time is specified based on the pneumatics corresponding to the smallest SCS among PDCCH / PDSCH and PUCCH / PUSCH.
 図3は、ニューメロロジー混在CAにおいて、FR1のPUCCH/PUSCHで準静的HARQ-ACKコードブックをフィードバックする一例を示す図である。本例では、FR1のCC及びFR2のCCが、同じPUCCHグループに設定される。また、FR1のCCにPUCCHが設定されている(FR1のCCがPUCCHセルである)と想定する。なお、「準静的HARQ-ACKコードブックを送信(当該コードブックに基づく送信)」は、「準静的HARQ-ACKを送信」と互いに読み替えられてもよい。 FIG. 3 is a diagram showing an example of feeding back a quasi-static HARQ-ACK codebook with FR1 PUCCH / PUSCH in a mixed neurology CA. In this example, the CC of FR1 and the CC of FR2 are set to the same PUCCH group. Further, it is assumed that the PUCCH is set in the CC of FR1 (the CC of FR1 is a PUCCH cell). “Semi-static HARQ-ACK codebook transmission (transmission based on the codebook)” may be read as “transmission of quasi-static HARQ-ACK”.
 また、図2と同様の条件(FR2のSCSがFR1のSCSの4倍など)を想定する。図3以降のHARQ-ACKフィードバックに関連する図については、同様である。 Also, assume the same conditions as in FIG. 2 (FR2 SCS is four times FR1 SCS, etc.). The same applies to the diagrams related to HARQ-ACK feedback from FIG.
 また、図3のように、FR1及びFR2の間においてTDD UL-DLサイクルが異なっていてもよい。 Also, as shown in FIG. 3, the TDD UL-DL cycle may be different between FR1 and FR2.
 図3のFR1は、スロット#nから#n+6がDLシンボルのみで構成され、スロット#n+7がDLシンボル及びULシンボルを含んで構成され、スロット#n+8から#n+9がULシンボルのみで構成されている。FR2はスロット#4mから#4(m+9)+3の範囲が図示され、DL/ULについては図示されるとおりである。 In FR1 of FIG. 3, slots #n to # n + 6 are configured with only DL symbols, slot # n + 7 is configured to include DL symbols and UL symbols, and slots # n + 8 to # n + 9 are configured with only UL symbols. . In FR2, the range from slot # 4m to # 4 (m + 9) +3 is illustrated, and DL / UL is as illustrated.
 上述した各種パラメータについては、K={2、3、4、5、6、7}が用いられ、FR1のKであるK2,1はK2,1={2、3、4}であると想定する。 For various parameters described above, K 1 = {2,3,4,5,6,7} is used, the K 2,1 is K 2 of FR1 K 2,1 = {2,3,4} Assuming that
 スロット#n+7のPUCCHで準静的HARQ-ACKを送信する場合、FR1のスロット#nから#n+5の6スロット分のPDSCHに対するHARQ-ACKが多重されてもよい。また、スロット#n+7のPUCCHで準静的HARQ-ACKを送信する場合、FR2のスロット#4mから#4(m+5)+3の24スロット分のPDSCHに対するHARQ-ACKが多重されてもよい。 When transmitting the quasi-static HARQ-ACK on the PUCCH in slot # n + 7, HARQ-ACK for PDSCH corresponding to six slots from slot #n to # n + 5 of FR1 may be multiplexed. Further, when quasi-static HARQ-ACK is transmitted on PUCCH in slot # n + 7, HARQ-ACK for PDSCH corresponding to 24 slots from slot # 4m to # 4 (m + 5) +3 of FR2 may be multiplexed.
 また、FR1のスロット#n+7のPUCCHで準静的HARQ-ACKを送信することが想定されている場合に、FR1のスロット#n+5(又はFR2のスロット#4(m+5)から#4(m+5)+3)において、K2,1=2を指定するFR1のPUSCHのためのULグラントを受信した場合、UEは、FR1のスロット#n+7のPUSCHで準静的HARQ-ACKを送信してもよい。送信される準静的HARQ-ACKコードブックは、上述のFR1の6スロット及びFR2の24スロットに対するHARQ-ACKを含んでもよい。 Also, when it is assumed that the quasi-static HARQ-ACK is transmitted on the PUCCH in slot # n + 7 of FR1, slot # n + 5 of FR1 (or slots # 4 (m + 5) to # 4 (m + 5) +3 of FR2) ), The UE may send a quasi-static HARQ-ACK on the PUSCH in FR1 slot # n + 7 if it receives the UL grant for the FR1 PUSCH specifying K 2,1 = 2. The transmitted quasi-static HARQ-ACK codebook may include HARQ-ACK for 6 slots of FR1 and 24 slots of FR2 described above.
 FR1のPDSCH処理時間に対応できるタイミングで送信されるようにK及び/又はK2,1が設定されていれば、FR1のPUCCH/PUSCHで送信されるHARQ-ACKは処理時間よりも長い時間で設定されると言える。 If K 1 and / or K 2 and 1 are set so as to be transmitted at a timing corresponding to the PDSCH processing time of FR1, the HARQ-ACK transmitted on the PUCCH / PUSCH of FR1 is longer than the processing time. It can be said that it is set in.
 なお、最大のHARQプロセス数を超えるHARQ-ACKについては送信しなくてもよいし、送信されても利用されなくてもよい。例えば、図3のバンドリングウィンドウ内において、FR2のDLスロット及びDLシンボルを含むスロットは20あり、仮に最大HARQプロセス数が16とすると、4つのHARQは利用できないと想定されてもよい。 Note that HARQ-ACK exceeding the maximum number of HARQ processes may not be transmitted, or may be transmitted or not used. For example, if there are 20 FR2 DL slots and 20 slots including DL symbols in the bundling window of FIG. 3 and the maximum number of HARQ processes is 16, it may be assumed that 4 HARQ cannot be used.
 図4は、ニューメロロジー混在CAにおいて、FR2のPUSCHで準静的HARQ-ACKコードブックをフィードバックする一例を示す図である。本例では、FR2のKであるK2,2として所定の値(例えば、8、16、32など)より大きい値が設定されている場合を想定する。この場合、FR2のPUSCHで準静的HARQ-ACKを送信する際でも、FR1のPDSCHの処理時間を確保できる。 FIG. 4 is a diagram illustrating an example of feeding back a quasi-static HARQ-ACK codebook using FRSCH PUSCH in a mixed neurology CA. In this example, the predetermined value as K 2, 2 a K 2 of FR2 (e.g., 8, 16, 32) it is assumed that larger value is set. In this case, even when the quasi-static HARQ-ACK is transmitted on the FRSCH PUSCH, the processing time of the FRSCH PDSCH can be secured.
 図4の例では、UEは、FR2のスロット#4(m+5)+3において、K2,2=11を指定するFR2のPUSCHのためのULグラントを受信し、FR2のスロット#4(m+8)+2のPUSCHで準静的HARQ-ACKを送信してもよい。 In the example of FIG. 4, the UE receives the UL grant for the PUSCH of FR2 specifying K 2,2 = 11 in the slot # 4 (m + 5) +3 of FR2, and the slot # 4 (m + 8) +2 of FR2 A semi-static HARQ-ACK may be transmitted on the PUSCH.
 FR1のPDSCH処理時間に対応できるタイミングで送信されるようにK及び/又はK2,1が設定されていれば、FR2のPUSCHで送信されるHARQ-ACKは処理時間よりも長い時間で設定されると言える。 If K 1 and / or K 2,1 to be transmitted at a timing to accommodate FR1 PDSCH processing time that are configured, HARQ-ACK transmitted on the PUSCH in FR2 is set at a time longer than the processing time It can be said that.
 図5は、ニューメロロジー混在CAにおいて、FR2のPUSCHで準静的HARQ-ACKコードブックをフィードバックする別の一例を示す図である。本例では、FR2のKであるK2,2として所定の値(例えば、8)より小さい値が設定されている場合を想定する。K2,2はK2,2={3、4、6、7}であると想定する。 FIG. 5 is a diagram illustrating another example of feeding back a quasi-static HARQ-ACK codebook using the FRSCH PUSCH in the mixed neurology CA. In this example, it is assumed that a value smaller than a predetermined value (for example, 8) is set as K 2 or 2 that is K 2 of FR2. Assume that K 2,2 is K 2,2 = {3, 4, 6, 7}.
 図5の例では、UEは、FR2のスロット#4(m+5)+1において、K2,2=3を指定するFR2のPUSCHのためのULグラントを受信し、FR2のスロット#4(m+6)のPUSCHで準静的HARQ-ACKを送信してもよい。 In the example of FIG. 5, the UE receives the UL grant for the PUSCH of FR2 specifying K 2,2 = 3 in the slot # 4 (m + 5) +1 of FR2, and the UE of slot # 4 (m + 6) of FR2 A semi-static HARQ-ACK may be transmitted on the PUSCH.
 図5に示す例では、FR1のPDSCH処理時間に対応できるタイミングで送信されるようにK及び/又はK2,2が設定されていない。 In the example shown in FIG. 5, K 1 and / or K 2, 2 are not set to be transmitted at a timing that can correspond to the PDSCH processing time of FR1.
 これまでの検討では、PUSCHの送信に処理が間に合わないHARQ-ACKがある場合に、当該PUSCHで送信する準静的HARQ-ACKをどのように構成すべきかが明らかでない。 In the examination so far, when there is a HARQ-ACK that cannot be processed in time for the PUSCH transmission, it is not clear how to configure the quasi-static HARQ-ACK transmitted on the PUSCH.
 また、複数のCCにわたって同一のニューメロロジーを用いるCA用に設計されたHARQ-ACK送信は、ニューメロロジー混在CAに対して効率的でない。PUCCHグループ又はセルグループ内に異なるニューメロロジーを有する複数のCCが設定される場合、HARQ-ACKフィードバックは複雑になる。適切にHARQ-ACK送信を行うことができなければ、通信スループット、周波数利用効率などの劣化が生じるおそれがある。 Also, HARQ-ACK transmission designed for CAs that use the same neurology across multiple CCs is not efficient for mixed neurology CAs. HARQ-ACK feedback becomes complicated when multiple CCs having different nuemologies are configured in the PUCCH group or cell group. If HARQ-ACK transmission cannot be performed properly, communication throughput, frequency utilization efficiency, and the like may be degraded.
 そこで、本発明者らは、ニューメロロジー混在CAに対して適切にHARQ-ACKを送信するための設定及び関連動作を着想した。 Therefore, the present inventors have conceived a setting and related operation for appropriately transmitting HARQ-ACK to a mixed neurology CA.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication method according to each embodiment may be applied independently or in combination.
 本開示において、FR1のCC及びFR2のCCを用いたニューメロロジー混在CAを想定して説明するが、FR1及びFR2は任意の周波数帯であってもよい。例えば、FR1は、第1のSCSを用いるCCで読み替えられてもよい。FR2は、上記第1のSCSと異なる第2のSCSを用いるCC、又は上記第1のSCSより大きい第2のSCSを用いるCCで読み替えられてもよい。 In the present disclosure, description will be made assuming a mixed neurology CA using the CC of FR1 and the CC of FR2, but FR1 and FR2 may be in any frequency band. For example, FR1 may be replaced with a CC that uses the first SCS. FR2 may be read as a CC that uses a second SCS different from the first SCS, or a CC that uses a second SCS that is larger than the first SCS.
 なお、以下の実施形態ではニューメロロジー混在CAを想定して説明するが、同じニューメロロジーのCCのCAが設定される場合であっても、本開示の内容が適用されてもよい。ニューメロロジー混在CAは、単にCA、DCなどで読み替えられてもよい。 In addition, although the following embodiments will be described assuming a neurology-mixed CA, the contents of the present disclosure may be applied even when a CC of a CC with the same neurology is set. Numerology mixed CA may be read simply as CA, DC, or the like.
(無線通信方法)
<第1の実施形態>
 第1の実施形態では、UEは、ニューメロロジー混在CAを設定される場合に、CAされるPUCCHセルについて設定されるKの値と、CAされる各ULセルについて設定されるKの値と、の全てが、N及びNの少なくとも一方に基づく処理時間(例えば、PDSCH処理時間、PUCCH処理時間、これらの処理時間の和など)に違反しない(処理時間の制約(要求)を満たす)ように設定されてもよい。
(Wireless communication method)
<First Embodiment>
In the first embodiment, when the UE is configured with the mixed neurology CA, the UE sets the value of K 1 set for the PUCCH cell to be CA set and the K 2 set for each UL cell to be CA set. All of the values do not violate a processing time based on at least one of N 1 and N 2 (eg, PDSCH processing time, PUCCH processing time, the sum of these processing times, etc.) (processing time constraint (request)) It may be set to satisfy.
 言い換えると、第1の実施形態では、基地局が、UEにニューメロロジー混在CAを設定する場合に、CAされるPUCCHセルについて設定するKの値と、CAされる各ULセルについて設定するKの値と、の全てが、N及びNの少なくとも一方に基づく処理時間に違反しないように設定してもよい。この設定は、gNBの実装(implementation)に依存してもよい。 In other words, in the first embodiment, when the base station sets up the neurology mixed CA in the UE, the base station sets the value of K 1 set for the PUCCH cell to be CA set and the UL cell to be CA set. the value of K 2, all may be set so as not to violate the N 1 and N at least one processing based on time of 2. This setting may depend on the implementation of gNB.
 UEは、Kの値と、CAされる各ULセルについて設定されるKの値と、の全てが、N及びNの少なくとも一方に基づく処理時間(例えば、PDSCH処理時間、PUCCH処理時間、これらの処理時間の和など)に違反しない(処理時間の制約(要求)を満たす)ように設定されると想定し、違反する設定はなされないと想定してもよい。 The UE has a processing time based on at least one of N 1 and N 2 (for example, PDSCH processing time, PUCCH processing), and the value of K 1 and the value of K 2 set for each UL cell to be CA It may be assumed that the setting is made so as not to violate (the time, the sum of these processing times, etc.) (the processing time constraint (request) is satisfied), and no setting that violates is made.
 UEは、N及びNの少なくとも一方の値(又は当該値に関連する(特定できる)情報)を、端末能力情報として基地局に報告してもよい。この場合、基地局は、報告された端末能力情報を考慮し、CAされるPUCCHセルについて設定されるKの値と、CAされる各ULセルについて設定されるKの値と、の全てが、N及びNの少なくとも一方に基づく処理時間(例えば、PDSCH処理時間、PUCCH処理時間、これらの処理時間の和など)に違反しない(処理時間の制約(要求)を満たす)ように設定する。 The UE may report the value of at least one of N 1 and N 2 (or information related (identifiable) to the value) to the base station as terminal capability information. In this case, the base station considers the reported terminal capability information, and all of the value of K 1 set for the CA PUCCH cell and the value of K 2 set for each UL cell to be CA Is set so as not to violate the processing time based on at least one of N 1 and N 2 (for example, PDSCH processing time, PUCCH processing time, the sum of these processing times, etc.) (satisfy processing time constraint (request)) To do.
 以上説明した第1の実施形態によれば、上述の図4のように、PDSCH処理時間、PUSCH処理時間、及びこれらの和の少なくとも1つより大きい値を、FR2のKとしてUEに設定できる。また、いずれのCCのPUSCHで準静的HARQ-ACKを送信する場合であっても、各処理時間の要求を満たすことができる。 According to the first embodiment described above, as shown in Figure 4 above, PDSCH processing time, PUSCH processing time, and greater than at least one value of these sums can be set to the UE as K 2 of FR2 . In addition, even when a quasi-static HARQ-ACK is transmitted on any CC PUSCH, each processing time requirement can be satisfied.
<第2の実施形態>
 第2の実施形態では、UEは、ニューメロロジー混在CAを設定される場合に、CAされるPUCCHセルについて設定されるKの値と、CAされる各ULセルについて設定されるKの値と、の少なくとも一部が、N及びNの少なくとも一方に基づく処理時間に違反するように設定されてもよい。
<Second Embodiment>
In the second embodiment, when the UE is configured with the mixed neurology CA, the UE sets the value of K 1 set for the PUCCH cell to be CA set and the K 2 set for each UL cell to be CA set. And at least part of the value may be set to violate a processing time based on at least one of N 1 and N 2 .
 第2の実施形態では、ニューメロロジー混在CAのためのHARQ-ACKコードブック決定(HARQ-ACK関連セット決定と呼ばれてもよい)について、UE処理時間の要求を満たさないK及び/又はKの値に対応するHARQ-ACKが削除されてもよい。つまり、UEは、UE処理時間の要求を満たさないK及び/又はKの値に対応するHARQ-ACKを準静的HARQ-ACKには含めず送信してもよい(フィードバックしなくてもよい)。 In the second embodiment, for HARQ-ACK codebook determination (also referred to as HARQ-ACK related set determination) for mixed neurology CA, K 1 and / or which does not satisfy the UE processing time requirement HARQ-ACK corresponding to the value of K 2 may be deleted. That is, the UE may transmit a HARQ-ACK corresponding to a value of K 1 and / or K 2 that does not satisfy the UE processing time requirement without being included in the quasi-static HARQ-ACK (without feedback). Good).
 つまり、UEは、候補PDSCH(バンドリングウィンドウに含まれ得るPDSCH)と当該候補PDSCHに対するHARQ-ACK送信に十分な処理時間が残されていない場合、ULデータと多重されるHARQ-ACKの少なくとも一部を送信しなくてもよい。言い換えると、UEは、候補PDSCH及びHARQ-ACKコードブック送信の間に十分な時間を残すことがないK及びKの少なくとも1つの値をネットワークがUEに設定(指示)する場合、対応するHARQ-ACKコードブックにおいて、当該候補PDSCHに対応するHARQ-ACKをフィードバックしなくてもよい。 In other words, if the UE does not have enough processing time for HARQ-ACK transmission for the candidate PDSCH (PDSCH that can be included in the bundling window) and the candidate PDSCH, at least one of the HARQ-ACKs multiplexed with UL data. The part may not be transmitted. In other words, the UE responds if the network sets (indicates) at least one value of K 1 and K 2 that does not leave enough time between candidate PDSCH and HARQ-ACK codebook transmissions. In the HARQ-ACK codebook, HARQ-ACK corresponding to the candidate PDSCH may not be fed back.
 UEは、削除したHARQ-ACKを特定できる(例えば、HARQ-ACKのビット位置又は対応するKを特定できる)情報を、基地局に送信してもよい。なお、UEは、処理時間の要求を満たさないHARQ-ACKビットを削除し、ゼロでパディングしてもよい。 The UE may identify a HARQ-ACK deleting (for example, specifying a bit position or the corresponding K 1 of HARQ-ACK) information, it may be transmitted to the base station. Note that the UE may delete HARQ-ACK bits that do not satisfy the processing time requirement and pad with zeros.
 以上説明した第2の実施形態によれば、上述の図5のように、PUSCHの送信に処理が間に合わないHARQ-ACKがある場合であっても、当該HARQ-ACKを含めずに準静的HARQ-ACKを送信できる。 According to the second embodiment described above, even if there is a HARQ-ACK that cannot be processed in time for PUSCH transmission as shown in FIG. 5 described above, the quasi-static is not included without including the HARQ-ACK. HARQ-ACK can be transmitted.
<第3の実施形態>
 第3の実施形態では、第2の実施形態と同様に、UEは、ニューメロロジー混在CAを設定される場合に、CAされるPUCCHセルについて設定されるKの値と、CAされる各ULセルについて設定されるKの値と、の少なくとも一部が、N及びNの少なくとも一方に基づく処理時間に違反するように設定されてもよい。
<Third Embodiment>
In the third embodiment, as in the second embodiment, when the UE is configured with the neurology mixed CA, the UE sets the value of K 1 that is set for the PUCCH cell that is CA, and each CA that is CA the value of K 2 is set for the UL cell, at least in part, may be set to violate the processing time based on at least one of N 1 and N 2.
 第3の実施形態では、ニューメロロジー混在CAのためのHARQ-ACK関連セット決定について、UE処理時間の要求は考慮されなくてもよい。つまり、UEは、UE処理時間の要求を満たさないK及び/又はKの値に対応するHARQ-ACKを固定的な値(ACK又はNACK)として生成(送信)してもよい。 In the third embodiment, the UE processing time requirement does not have to be considered for the HARQ-ACK related set determination for the mixed neurology CA. That is, the UE may generate (transmit) a HARQ-ACK corresponding to a value of K 1 and / or K 2 that does not satisfy the UE processing time requirement as a fixed value (ACK or NACK).
 つまり、UEは、候補PDSCHと当該候補PDSCHに対するHARQ-ACK送信に十分な処理時間が残されていない場合、ULデータと多重されるHARQ-ACKの少なくとも一部を固定値として送信してもよい。言い換えると、UEは、候補PDSCH及びHARQ-ACKコードブック送信の間に十分な時間を残すことがないK及び/又はKの値をネットワークがUEに設定(指示)する場合、対応するHARQ-ACKコードブックにおいて、当該候補PDSCHに対応するHARQ-ACKを固定値としてもよい。 That is, the UE may transmit at least a part of the HARQ-ACK multiplexed with the UL data as a fixed value when there is not enough processing time remaining for the candidate PDSCH and HARQ-ACK transmission for the candidate PDSCH. . In other words, if a UE sets (indicates) a value of K 1 and / or K 2 that does not leave enough time between candidate PDSCH and HARQ-ACK codebook transmissions, the corresponding HARQ -In the ACK codebook, HARQ-ACK corresponding to the candidate PDSCH may be a fixed value.
 ここで、当該候補PDSCHのために送信されるACK又はNACKは、当該候補PDSCHの復号が成功するか否かに関わらなくてもよい(固定的に決定されてもよい)。当該候補PDSCHのために送信されるACK又はNACKは、HARQ-ACK検出のための仮想(virtual)CRCビットとして利用されてもよい。仮想CRCビットは、送信されるペイロード内に含まれる既知のビット値であり、プルーニング(pruning)用のビットなどと呼ばれてもよい。一般に、既知のビット値が増加するほど誤り訂正の効果を向上できる。 Here, the ACK or NACK transmitted for the candidate PDSCH may not be related to whether or not the decoding of the candidate PDSCH is successful (may be fixedly determined). The ACK or NACK transmitted for the candidate PDSCH may be used as a virtual CRC bit for HARQ-ACK detection. The virtual CRC bit is a known bit value included in the transmitted payload, and may be referred to as a pruning bit or the like. In general, the effect of error correction can be improved as the known bit value increases.
 以上説明した第3の実施形態によれば、上述の図5のように、PUSCHの送信に処理が間に合わないHARQ-ACKがある場合であっても、当該HARQ-ACKを固定値として準静的HARQ-ACKを送信できる。 According to the third embodiment described above, even if there is a HARQ-ACK whose processing is not in time for PUSCH transmission as shown in FIG. 5 described above, the HARQ-ACK is used as a fixed value and is quasi-static HARQ-ACK can be transmitted.
<第4の実施形態>
 第4の実施形態では、PUCCHグループ又はセルグループ内の複数のCCにわたるPUCCH-PUSCH同時送信(simultaneous PUCCH-PUSCH transmission)がサポートされてもよい。PUCCHグループ又はセルグループ内の複数のCCにわたるPUCCH-PUSCH同時送信(simultaneous PUCCH-PUSCH transmission)は、当該機能をサポートする端末能力情報(UE capability signalling)をネットワークに報告したユーザ端末に対して、上位レイヤシグナリングによって設定される。
<Fourth Embodiment>
In the fourth embodiment, PUCCH-PUSCH transmission (simultaneous PUCCH-PUSCH transmission) over multiple CCs in a PUCCH group or a cell group may be supported. PUCCH-PUSCH simultaneous transmission across multiple CCs in a PUCCH group or cell group (simultaneous PUCCH-PUSCH transmission) is superior to a user terminal that reports terminal capability information (UE capability signaling) supporting the function to the network. Set by layer signaling.
 ここで、異なるニューメロロジーを有するCC1及びCC2を用いるCAが設定され、CC1にPUCCHが設定される(CC1がPUCCHセルである)とする。CC1は、プライマリセル(PCell)、プライマリセカンダリセル(PSCell)、特別セル(SpCell)、PUCCHセル(PUCCH-SCell)などと呼ばれてもよい。CC2は、セカンダリセル(SCell)と呼ばれてもよいし、PUCCHが設定されないセルと呼ばれてもよい。 Here, it is assumed that CA using CC1 and CC2 having different neurology is set, and PUCCH is set in CC1 (CC1 is a PUCCH cell). CC1 may be called a primary cell (PCell), a primary secondary cell (PSCell), a special cell (SpCell), a PUCCH cell (PUCCH-SCell), or the like. CC2 may be referred to as a secondary cell (SCell), or may be referred to as a cell in which no PUCCH is set.
 CC1のDL信号(例えば、PDSCH)に対するHARQ-ACKは、少なくともCC1において送信されてもよい。CC2のDL信号(例えば、PDSCH)に対するHARQ-ACKは、少なくともCC2において送信されてもよい。 The HARQ-ACK for the CC1 DL signal (for example, PDSCH) may be transmitted at least in CC1. The HARQ-ACK for the CC2 DL signal (eg, PDSCH) may be transmitted at least in CC2.
 CC1及びCC2にわたるPUCCH-PUSCH同時送信を設定されたUEは、CC1のPUSCHがスケジュールされない場合、CC1のPUCCHを用いてUCI(例えば、HARQ-ACK)を送信し、CC1のPUSCHがスケジュールされた場合、CC1のPUSCHを用いてUCIを送信してもよい。 A UE configured to simultaneously transmit PUCCH-PUSCH over CC1 and CC2 transmits a UCI (eg, HARQ-ACK) using the PUCCH of CC1 when the PUSCH of CC1 is not scheduled, and the PUSCH of CC1 is scheduled UCI may be transmitted using the PUSCH of CC1.
 PUCCH-PUSCH同時送信に関し、次の送信方法1、2の1つが用いられてもよい。 Regarding PUCCH-PUSCH simultaneous transmission, one of the following transmission methods 1 and 2 may be used.
(送信方法1)
 CC1のDL信号に対するHARQ-ACK送信と、CC2のDL信号に対するHARQ-ACK送信と、が同時に発生した場合、CC1のPUCCH又はPUSCHにおいて、CC1のDL信号に対するHARQ-ACKと、CC2のDL信号に対するHARQ-ACKと、が多重されてもよい。
(Transmission method 1)
When HARQ-ACK transmission for the DL signal of CC1 and HARQ-ACK transmission for the DL signal of CC2 occur at the same time, the HARQ-ACK for the DL signal of CC1 and the DL signal of CC2 in the PUCCH or PUSCH of CC1 HARQ-ACK may be multiplexed.
 ULグラント(DCI)によってCC2のPUSCHがスケジュールされた場合、CC2のPUSCHにおいて、CC2のDL信号に対するHARQ-ACKが送信されてもよい。ULグラント(DCI)によってCC2のPUSCHがスケジュールされない場合、CC1のみ(PUCCH又はPUSCH)において、CC2のDL信号に対するHARQ-ACKが送信されてもよい。 When the PUSCH of CC2 is scheduled by UL grant (DCI), the HARQ-ACK for the DL signal of CC2 may be transmitted on the PUSCH of CC2. When the PUSCH of CC2 is not scheduled by UL grant (DCI), the HARQ-ACK for the DL signal of CC2 may be transmitted only in CC1 (PUCCH or PUSCH).
 言い換えれば、UEは、CC1のDL信号に対するHARQ-ACKを、CC1のみにおいて送信し、CC2のDL信号に対するHARQ-ACKを、CC1及びCC2の少なくとも1つにおいて送信する。 In other words, the UE transmits HARQ-ACK for the DL signal of CC1 only in CC1, and transmits HARQ-ACK for the DL signal of CC2 in at least one of CC1 and CC2.
 ここで、CC1のPUCCH又はPUSCHと、CC2のPUSCHとが、1つの時点に発生してもよい。CC1のPUCCH又はPUSCHの時間リソース(例えば、スロット、シンボル)と、CC2のPUSCHの時間リソースとが、重複してもよい。 Here, the PUCCH or PUSCH of CC1 and the PUSCH of CC2 may occur at one time point. The time resource (for example, slot and symbol) of PUCCH or PUSCH of CC1 and the time resource of PUSCH of CC2 may overlap.
 図6は、図5と同様、CC1の周波数がFR1であり、CC2の周波数がFR2であり、CC2のSCSがCC1のSCSの4倍である場合の、HARQ-ACKフィードバックの一例を示す。 FIG. 6 shows an example of HARQ-ACK feedback when the frequency of CC1 is FR1, the frequency of CC2 is FR2, and the SCS of CC2 is four times the SCS of CC1, as in FIG.
 例えば、UEは、FR1のスロット#n+7におけるPUCCH又はPUSCHによって、FR1のPDSCHに対するHARQ-ACKを送信してもよいし、FR1のPDSCHに対するHARQ-ACKとFR2のPDSCHに対するHARQ-ACKとを送信してもよい。 For example, the UE may transmit HARQ-ACK for the PDSCH of FR1 by PUCCH or PUSCH in the slot # n + 7 of FR1, or may transmit HARQ-ACK for the PDSCH of FR1 and HARQ-ACK for the PDSCH of FR2. May be.
 UEは、FR2のスロット#4(m+2)+1、#4(m+2)+3、#4(m+3)+2、#4(m+4)、#4(m+4)+3、#4(m+5)+1、#4(m+6)、#4(m+6)+2、#4(m+7)+1、#4(m+7)+3、#4(m+8)+2、#4(m+9)のいずれかのPUSCHにおいて、FR2のPDSCHに対するHARQ-ACKを送信してもよい。 The UE has slots # 4 (m + 2) +1, # 4 (m + 2) +3, # 4 (m + 3) +2, # 4 (m + 4), # 4 (m + 4) +3, # 4 (m + 5) +1, # 4 (in FR2) m + 6), # 4 (m + 6) +2, # 4 (m + 7) +1, # 4 (m + 7) +3, # 4 (m + 8) +2, and # 4 (m + 9) in the PUSCH, HARQ-ACK for the PDSCH of FR2 May be sent.
 UEは、これらのタイミングのうち、FR1のスロット#n+7におけるPUCCH又はPUSCHによって、FR1のPDSCHに対するHARQ-ACKと、FR2のPDSCHに対するHARQ-ACKと、を送信し、同時に、FR2のスロット#4(m+7)+3におけるPUSCHによって、FR2のPDSCHに対するHARQ-ACKを送信してもよい。 Among these timings, the UE transmits HARQ-ACK for the PDSCH of FR1 and HARQ-ACK for the PDSCH of FR2 by PUCCH or PUSCH in the slot # n + 7 of FR1, and at the same time, slot # 4 (FR2 of FR2 The HARQ-ACK for the PDSCH of FR2 may be transmitted by the PUSCH at m + 7) +3.
(送信方法2)
 CC1のDL信号に対するHARQ-ACK送信と、CC2のDL信号に対するHARQ-ACK送信と、が同時に発生した場合、CC1のPUCCH又はPUSCHにおいて、CC1のDL信号に対するHARQ-ACKが送信されてもよい。なお、CC1のPUCCH又はPUSCHの少なくとも1つにおいて、CC1のDL信号に対するHARQ-ACKが送信されてもよい。
(Transmission method 2)
When HARQ-ACK transmission for the DL signal of CC1 and HARQ-ACK transmission for the DL signal of CC2 occur at the same time, HARQ-ACK for the DL signal of CC1 may be transmitted on the PUCCH or PUSCH of CC1. Note that HARQ-ACK for the DL signal of CC1 may be transmitted in at least one of PUCCH or PUSCH of CC1.
 ULグラント(DCI)によってCC2におけるPUSCHがスケジュールされた場合、CC2のPUSCHにおいて、CC2のDL信号に対するHARQ-ACKが送信されてもよい。ULグラント(DCI)によってCC2におけるPUSCHがスケジュールされない場合、CC2のDL信号に対するHARQ-ACKが送信されなくてもよい(ドロップされてもよい)。 When PUSCH in CC2 is scheduled by UL grant (DCI), HARQ-ACK for the DL signal of CC2 may be transmitted in PUSCH of CC2. When PUSCH in CC2 is not scheduled by UL grant (DCI), HARQ-ACK for the DL signal of CC2 may not be transmitted (may be dropped).
 言い換えれば、UEは、CC1のDL信号に対するHARQ-ACKを、CC1のみにおいて送信し、CC2のDL信号に対するHARQ-ACKを、CC2のみにおいて送信する。 In other words, the UE transmits HARQ-ACK for the DL signal of CC1 only in CC1, and transmits HARQ-ACK for the DL signal of CC2 only in CC2.
 ここで、CC1のPUCCH又はPUSCHと、CC2のPUSCHとが、1つの時点に発生してもよい。CC1のPUCCH又はPUSCHの時間リソース(例えば、スロット、シンボル)と、CC2のPUSCHの時間リソースとが、重複してもよい。 Here, the PUCCH or PUSCH of CC1 and the PUSCH of CC2 may occur at one time point. The time resource (for example, slot and symbol) of PUCCH or PUSCH of CC1 and the time resource of PUSCH of CC2 may overlap.
 例えば、図6に示すように、UEは、FR1のスロット#n+7におけるPUCCH又はPUSCHによって、FR1のPDSCHに対するHARQ-ACKを送信し、同時に、FR2のスロット#4(m+7)+3におけるPUSCHによって、FR2のPDSCHに対するHARQ-ACKを送信してもよい。 For example, as shown in FIG. 6, the UE transmits HARQ-ACK for the PDSCH of FR1 by PUCCH or PUSCH in the slot # n + 7 of FR1, and at the same time, by the PUSCH in slot # 4 (m + 7) +3 of FR2 HARQ-ACK for the PDSCH may be transmitted.
 UEは、第1~第3の実施形態のいずれかを用いて、K、K、N、Nの少なくとも1つに基づくHARQ-ACKコードブックを決定してもよい。 The UE may determine a HARQ-ACK codebook based on at least one of K 1 , K 2 , N 1 , N 2 using any of the first to third embodiments.
 なお、同一CCにおけるPUCCH-PUSCH同時送信はサポートされなくてもよい。 Note that the simultaneous transmission of PUCCH-PUSCH in the same CC may not be supported.
 以上説明した第4の実施形態によれば、PUCCH-PUSCH同時送信をサポートすることによって、異なるニューメロロジーを有する複数のCCにおけるHARQ-ACKフィードバックを簡単化でき、UE及び基地局の処理負荷を抑えることができる。 According to the fourth embodiment described above, by supporting the simultaneous transmission of PUCCH-PUSCH, HARQ-ACK feedback in a plurality of CCs having different numerologies can be simplified, and the processing load on the UE and the base station can be reduced. Can be suppressed.
<第5の実施形態>
 第5の実施形態では、PUCCHグループ又はセルグループ内の異なるニューメロロジーを有するCAに対し、UEは、複数のニューメロロジーにわたってHARQ-ACK送信をPUSCHにおいて行うことを期待しなくてもよい。また、UEは、PUCCHグループ又はセルグループ内の異なるニューメロロジーを有する2つのCCの一方のDL信号に対するHARQ-ACKを、他方のPUSCHにおいて送信することを期待しなくてもよい。
<Fifth Embodiment>
In the fifth embodiment, for CAs having different numerologies within a PUCCH group or cell group, the UE may not expect to perform HARQ-ACK transmission on the PUSCH across multiple numerologies. In addition, the UE may not expect to transmit HARQ-ACK for one DL signal of two CCs having different numerologies in the PUCCH group or cell group on the other PUSCH.
 CC1のDL信号に対するHARQ-ACKは、CC1上のPUCCHによって送信されてもよい。CC2のDL信号に対するHARQ-ACKは、CC2上のPUSCHによって送信されてもよい。CC1及びCC2の少なくとも1つのDL信号に対するHARQ-ACKは、CC1上のPUCCHに多重されてもよい。 The HARQ-ACK for the DL signal of CC1 may be transmitted by PUCCH on CC1. The HARQ-ACK for the DL signal of CC2 may be transmitted by the PUSCH on CC2. HARQ-ACK for at least one DL signal of CC1 and CC2 may be multiplexed on the PUCCH on CC1.
 PUSCHは、CC1及びCC2の一方又は両方にスケジュールされてもよい。基地局(スケジューラ)は、ニューメロロジーをまたぐHARQ-ACKピギーバックが発生しないように、制御してもよい。ユーザ端末は、CC2のDL信号に対するHARQ-ACKを、CC1上のPUSCHにピギーバックしないよう制御するものとしてもよい。この場合、ユーザ端末は、CC2のDL信号に対するHARQ―ACKを、CC2で送信するPUSCHにピギーバックしてもよいし、CC2でPUSCHが送信できなければ(スケジュールされなければ)、当該HARQ-ACKを送信しない(ドロップする)ものとしてもよい。また、ユーザ端末は、CC1のDL信号に対するHARQ-ACKを、CC2上のPUSCHにピギーバックしないよう制御するものとしてもよい。ユーザ端末は、CC1では、当該HARQ-ACKを、CC1のPUCCHで送信するか、またはCC1のPUSCHにピギーバックして送信する。 PUSCH may be scheduled to one or both of CC1 and CC2. The base station (scheduler) may perform control so that HARQ-ACK piggybacks across the neurology do not occur. The user terminal may control HARQ-ACK for the DL signal of CC2 so as not to piggyback on the PUSCH on CC1. In this case, the user terminal may piggyback the HARQ-ACK for the DL signal of CC2 to the PUSCH transmitted by CC2, or if the PUSCH cannot be transmitted by CC2 (unscheduled), the HARQ-ACK May not be transmitted (dropped). Further, the user terminal may control HARQ-ACK for the DL signal of CC1 so as not to piggyback on the PUSCH on CC2. In CC1, the user terminal transmits the HARQ-ACK on CC1's PUCCH, or piggybacks on CC1's PUSCH and transmits it.
 例えば、CC2にPUSCHが割り当てられた場合、このPUSCH(PUSCHを含むスロット又はシンボル)と重複するCC1のスロットにおいてPUSCHの割り当てが許可されなくてもよい。この場合、基地局は、CC2のPUSCHと重複するCC1のスロットにPUSCHを割り当てないように制御してもよい。 For example, when a PUSCH is assigned to CC2, the assignment of PUSCH may not be permitted in the slot of CC1 that overlaps with this PUSCH (slot or symbol including PUSCH). In this case, the base station may perform control so that the PUSCH is not allocated to the slot of CC1 overlapping with the PUSCH of CC2.
 図6と同様のCAにおいて、図7に示すように、FR2のスロット#4(m+2)+1、#4(m+2)+3、#4(m+3)+2、#4(m+4)、#4(m+4)+3、#4(m+5)+1、#4(m+6)、#4(m+6)+2、#4(m+7)+1、#4(m+7)+3、#4(m+8)+2、#4(m+9)においてPUSCHが割り当てられてもよい。UEは、これらのPUSCHによって、FR2のPDSCHに対するHARQ-ACKを送信してもよい。 In the same CA as in FIG. 6, as shown in FIG. 7, slots # 4 (m + 2) +1, # 4 (m + 2) +3, # 4 (m + 3) +2, # 4 (m + 4), # 4 (m + 4) of FR2 +3, # 4 (m + 5) +1, # 4 (m + 6), # 4 (m + 6) +2, # 4 (m + 7) +1, # 4 (m + 7) +3, # 4 (m + 8) +2, PUSCH at # 4 (m + 9) May be assigned. The UE may transmit HARQ-ACK for the PDSCH of FR2 using these PUSCHs.
 ここで、FR2のPUSCHと重複するFR1のスロット#n+7、#n+8、#n+9において、PUSCHの割り当てが許可されなくてもよい。 Here, PUSCH allocation may not be permitted in slots # n + 7, # n + 8, and # n + 9 of FR1 that overlap with PUSCH of FR2.
 この場合、FR2のDL信号に対するHARQ-ACKフィードバックタイミングにおいてFR1のPUSCHがスケジュールされないため、FR2のDL信号に対するHARQ-ACKは、FR1のPUSCHにピギーバックされない。 In this case, since the PUSCH of FR1 is not scheduled at the HARQ-ACK feedback timing for the DL signal of FR2, the HARQ-ACK for the DL signal of FR2 is not piggybacked to the PUSCH of FR1.
 また、例えば、CC1にPUCCH又はPUSCHが割り当てられた場合、このPUCCH又はPUSCH(PUCCH又はPUSCHを含むスロット又はシンボル)と重複するCC2のスロットにおいてPUSCHの割り当てが許可されなくてもよい。この場合、基地局は、CC1のPUCCH又はPUSCHと重複するCC2のスロットにPUSCHを割り当てないように制御してもよい。 Also, for example, when PUCCH or PUSCH is assigned to CC1, assignment of PUSCH may not be permitted in a slot of CC2 that overlaps with this PUCCH or PUSCH (slot or symbol including PUCCH or PUSCH). In this case, the base station may perform control so that the PUSCH is not allocated to the slot of CC2 that overlaps with the PUCCH or PUSCH of CC1.
 図6と同様のCAにおいて、図8に示すように、FR1のスロット#n+7、#n+8、#n+9にPUCCH又はPUSCHが割り当てられた場合、このスロットに重複するFR2のスロット#4(m+7)+1、#4(m+7)+3、#4(m+8)+2、#4(m+9)においてPUSCHの割り当てが許可されなくてもよい。なお、UEは、FR1のPUCCHにおいて、FR2のPDSCHに対するHARQ-ACKを送信してもよい。 In the same CA as in FIG. 6, when PUCCH or PUSCH is assigned to slots # n + 7, # n + 8, # n + 9 of FR1, as shown in FIG. 8, slot # 4 (m + 7) +1 of FR2 overlapping with this slot , # 4 (m + 7) +3, # 4 (m + 8) +2, and # 4 (m + 9) may not be permitted to allocate PUSCH. Note that the UE may transmit HARQ-ACK for the PDSCH of FR2 on the PUCCH of FR1.
 この場合、FR1のDL信号に対するHARQ-ACKフィードバックタイミングにおいてFR2のPUSCHがスケジュールされないため、FR1のDL信号に対するHARQ-ACKは、FR2のPUSCHにピギーバックされない。 In this case, since the PUSCH of the FR2 is not scheduled at the HARQ-ACK feedback timing for the DL signal of the FR1, the HARQ-ACK for the DL signal of the FR1 is not piggybacked to the PUSCH of the FR2.
 UEは、第1~第3の実施形態のいずれかを用いて、K、K、N、Nの少なくとも1つに基づくHARQ-ACKコードブックを決定してもよい。 The UE may determine a HARQ-ACK codebook based on at least one of K 1 , K 2 , N 1 , N 2 using any of the first to third embodiments.
 以上説明した第5の実施形態によれば、CC2のPDSCHに対するHARQ-ACKが、CC1のPUSCHにピギーバックされること、CC1のPDSCHに対するHARQ-ACKが、CC2のPUSCHにピギーバックされること、の少なくとも1つを防ぐことができる。 According to the fifth embodiment described above, HARQ-ACK for CCSCH PDSCH is piggybacked to CC1 PUSCH, HARQ-ACK for CC1 PDSCH is piggybacked to CC2 PUSCH, At least one of the above can be prevented.
<その他>
 本開示におけるHARQ-ACKの生成、HARQ-ACKの送信、HARQ-ACKの決定及びHARQ-ACKの特定は、互いに読み替えられてもよい。また、本開示におけるHARQ-ACKは、ACK、NACK、A/Nなどと表現されてもよい。また、本開示におけるHARQ-ACKビット及びHARQ-ACKは、互いに読み替えられてもよい。
<Others>
The generation of HARQ-ACK, transmission of HARQ-ACK, determination of HARQ-ACK, and identification of HARQ-ACK in the present disclosure may be interchanged with each other. Also, HARQ-ACK in the present disclosure may be expressed as ACK, NACK, A / N, and the like. Further, the HARQ-ACK bit and the HARQ-ACK in the present disclosure may be read each other.
 基地局は、以上述べた各実施形態のUE動作を想定して、HARQ-ACKの受信処理(復号など)を行ってもよい。 The base station may perform HARQ-ACK reception processing (decoding, etc.) assuming the UE operation of each embodiment described above.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to an embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one or a combination of the wireless communication methods according to the above-described embodiments of the present disclosure.
 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及びデュアルコネクティビティ(DC)の少なくとも一方を適用することができる。 FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. In the wireless communication system 1, at least one of carrier aggregation (CA) and dual connectivity (DC) in which a plurality of fundamental frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit is integrated. Can be applied.
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。 The wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。 The radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange | positioned at the macrocell C1 and each small cell C2. The arrangement, the number, and the like of each cell and user terminal 20 are not limited to the mode shown in the figure.
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)を用いてCA又はDCを適用してもよい。 The user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 at the same time using CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC).
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。 Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier). On the other hand, a carrier having a relatively high frequency band (for example, 3.5 GHz, 5 GHz, etc.) and a wide bandwidth may be used between the user terminal 20 and the radio base station 12, or The same carrier may be used. The configuration of the frequency band used by each radio base station is not limited to this.
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び周波数分割複信(FDD:Frequency Division Duplex)の少なくとも1つを用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。 Also, the user terminal 20 can perform communication in each cell using at least one of time division duplex (TDD) and frequency division duplex (FDD). In each cell (carrier), a single neurology may be applied, or a plurality of different neurology may be applied.
 ニューメロロジーとは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域で行う特定のフィルタリング処理、送受信機が時間領域で行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length, At least one of a TTI length, the number of symbols per TTI, a radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, and a specific windowing process performed by the transceiver in the time domain may be indicated.
 例えば、ある物理チャネルについて、構成するOFDMシンボルのサブキャリア間隔及びOFDMシンボル数の少なくとも一方が異なる場合には、ニューメロロジーが異なると称されてもよい。 For example, when at least one of the subcarrier interval and the number of OFDM symbols of a configured OFDM symbol is different for a certain physical channel, it may be referred to as having a different neurology.
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。 The wireless base station 11 and the wireless base station 12 (or between the two wireless base stations 12) are connected by wire (for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly. May be.
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。 The radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30. The upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。 The radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like. The radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point. Hereinafter, when the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。 Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及びOFDMAの少なくとも一方が適用される。 In the radio communication system 1, as a radio access method, orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink. Frequency Division (Multiple Access) and / or OFDMA are applied.
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末ごとに1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。 OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier. SC-FDMA is a single carrier transmission in which the system bandwidth is divided into bands each composed of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between terminals. It is a method. The uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下り制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。 In the wireless communication system 1, a downlink shared channel (PDSCH: Physical Downlink Shared Channel) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink control channel, and the like are used as downlink channels. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Moreover, MIB (Master Information Block) is transmitted by PBCH.
 下り制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。 Downlink control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like. Downlink control information (DCI: Downlink Control Information) including at least one of scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
 なお、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。 Note that DCI for scheduling DL data reception may be referred to as DL assignment, and DCI for scheduling UL data transmission may be referred to as UL grant.
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送されてもよい。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送されてもよい。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。 The number of OFDM symbols used for PDCCH may be transmitted by PCFICH. The PHICH may transmit HARQ (Hybrid Automatic Repeat reQuest) delivery confirmation information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) for the PUSCH. EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。 In the wireless communication system 1, as an uplink channel, an uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) is used. User data, higher layer control information, etc. are transmitted by PUSCH. Also, downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information, scheduling request (SR), etc. are transmitted by PUCCH. A random access preamble for establishing connection with the cell is transmitted by the PRACH.
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。 In the wireless communication system 1, as downlink reference signals, a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DMRS: DeModulation Reference Signal), Positioning Reference Signal (PRS), etc. are transmitted. In the wireless communication system 1, a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS), and the like are transmitted as uplink reference signals. The DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
(無線基地局)
 図10は、一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
(Radio base station)
FIG. 10 is a diagram illustrating an example of an overall configuration of a radio base station according to an embodiment. The radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. The transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may be configured to include one or more.
 下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。 User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。 In the baseband signal processing unit 104, with respect to user data, PDCP (Packet Data Convergence Protocol) layer processing, user data division / combination, RLC (Radio Link Control) retransmission control and other RLC layer transmission processing, MAC (Medium Access) Control) Retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing are performed and the transmission / reception unit 103. The downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
 送受信部103は、ベースバンド信号処理部104からアンテナごとにプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal. The radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101. The transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. In addition, the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。 On the other hand, for the upstream signal, the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102. The transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102. The transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。 The baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106. The call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。 The transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. The transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
 図11は、本開示の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 11 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present disclosure. In addition, in this example, the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the wireless base station 10 also has other functional blocks necessary for wireless communication.
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。 The baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations may be included in the radio base station 10, and some or all of the configurations may not be included in the baseband signal processing unit 104.
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit (scheduler) 301 controls the entire radio base station 10. The control unit 301 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。 The control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal allocation in the mapping unit 303, and the like. The control unit 301 also controls signal reception processing in the reception signal processing unit 304, signal measurement in the measurement unit 305, and the like.
 制御部301は、システム情報、下りデータ信号(例えば、下り共有チャネルを用いて送信される信号)、下り制御信号(例えば、下り制御チャネルを用いて送信される信号)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。 The control unit 301 schedules system information, downlink data signals (for example, signals transmitted using a downlink shared channel), and downlink control signals (for example, signals transmitted using a downlink control channel) (for example, resource allocation). ) To control. In addition, the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal.
 制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。 The control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
 制御部301は、上りデータ信号(例えば、上り共有チャネルを用いて送信される信号)、上り制御信号(例えば、上り制御チャネルを用いて送信される信号)、ランダムアクセスプリアンブル、上り参照信号などのスケジューリングを制御する。 The control unit 301 includes an uplink data signal (for example, a signal transmitted using an uplink shared channel), an uplink control signal (for example, a signal transmitted using an uplink control channel), a random access preamble, an uplink reference signal, and the like. Control scheduling.
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 The transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303. The transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び上りデータの割り当て情報を通知するULグラントの少なくとも一方を生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。 The transmission signal generation unit 302 generates, for example, at least one of a DL assignment for notifying downlink data allocation information and a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301. The DL assignment and UL grant are both DCI and follow the DCI format. In addition, the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 The mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103. The mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。 The reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103. Here, the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20. The reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び受信処理後の信号の少なくとも一方を、測定部305に出力する。 The reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301. The reception signal processing unit 304 outputs at least one of the reception signal and the signal after reception processing to the measurement unit 305.
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 305 performs measurement on the received signal. The measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。 For example, the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal. The measurement unit 305 includes received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)). Signal strength (for example, RSSI (Received Signal Strength Indicator)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 301.
 なお、送受信部103は、第1のサブキャリア間隔(SCS:Sub-Carrier Spacing)を用いる第1のコンポーネントキャリア(CC:Component Carrier)と、当該第1のSCSより大きい第2のSCSを用いる第2のCCと、の少なくとも一方を用いてユーザ端末20と通信してもよい。 The transceiver 103 uses a first component carrier (CC: Component Carrier) that uses a first subcarrier spacing (SCS) and a second SCS that is larger than the first SCS. You may communicate with the user terminal 20 using at least one of 2 CC.
 制御部301は、ユーザ端末20が上記第2のCCの上り共有チャネルにおいて上記第1のCC及び上記第2のCCの両方に関する準静的なHARQ-ACKコードブックを送信する場合に、全てのデータに対応するHARQ-ACKビットが処理時間の要求を満たすように、下り共有チャネルの受信からHARQ-ACKの送信までのタイミング(PDSCH-to-ACKタイミング、「K」などと呼ばれてもよい)及び前記上り共有チャネルをスケジューリングする下り制御情報の受信から前記上り共有チャネルの送信までのタイミング(ULgrant-to-PUSCHタイミング、「K」などと呼ばれてもよい)を、上記ユーザ端末20に設定してもよい。 When the user terminal 20 transmits a quasi-static HARQ-ACK codebook for both the first CC and the second CC in the uplink shared channel of the second CC, the control unit 301 Timing from reception of downlink shared channel to transmission of HARQ-ACK (PDSCH-to-ACK timing, “K 1 ”, etc.) so that the HARQ-ACK bit corresponding to the data satisfies the processing time requirement And the timing from reception of downlink control information for scheduling the uplink shared channel to transmission of the uplink shared channel (may be referred to as UL grant-to-PUSCH timing, “K 2 ”, etc.) It may be set to 20.
 制御部301は、ユーザ端末20から受信したHARQ-ACKビットについて、先に述べた実施形態の少なくとも1つのUE動作を想定して、HARQ-ACKの受信処理(復号など)を行うように制御してもよい。 The control unit 301 controls the HARQ-ACK bit received from the user terminal 20 to perform HARQ-ACK reception processing (decoding and the like) assuming at least one UE operation of the above-described embodiment. May be.
 なお、送受信部103は、第1CCと、前記第1CCのニューメロロジーと異なるニューメロロジーを用いる第2CCと、を用いて送信及び受信を行ってもよい。 In addition, the transmission / reception unit 103 may perform transmission and reception using the first CC and the second CC that uses a different numerology from that of the first CC.
 また、制御部301は、前記第1CCの上り制御チャネル又は上り共有チャネルを用いて、前記第1CCの下り信号に対するHARQ-ACKを受信することと、前記第2CCの上り共有チャネルを用いて、前記第2CCの下り信号に対するHARQ-ACKを受信することと、の少なくともいずれか一方を制御してもよい。 Also, the control unit 301 receives HARQ-ACK for the downlink signal of the first CC using the uplink control channel or uplink shared channel of the first CC, and uses the uplink shared channel of the second CC, You may control at least any one of receiving HARQ-ACK with respect to the downlink signal of 2nd CC.
(ユーザ端末)
 図12は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
(User terminal)
FIG. 12 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment. The user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205. The transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may be configured to include one or more.
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202. The transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202. The transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204. The transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. The transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。 The baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal. The downlink user data is transferred to the application unit 205. The application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。 On the other hand, uplink user data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processing unit 204 performs transmission / reception units for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. 203.
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。 The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it. The radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
 図13は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 13 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment. In addition, in this example, the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。 The baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 401 controls the entire user terminal 20. The control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。 The control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal allocation in the mapping unit 403, and the like. The control unit 401 also controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
 制御部401は、無線基地局10から送信された下り制御信号、下りデータ信号などを、受信信号処理部404から取得する。制御部401は、下りデータ信号に対する再送制御の要否を判定した結果、下り制御信号などに基づいて、上り制御信号、上りデータ信号などの生成を制御する。 The control unit 401 acquires the downlink control signal, the downlink data signal, and the like transmitted from the radio base station 10 from the received signal processing unit 404. As a result of determining whether or not retransmission control is required for the downlink data signal, the control unit 401 controls generation of an uplink control signal, an uplink data signal, and the like based on the downlink control signal and the like.
 制御部401は、無線基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。 When the control unit 401 acquires various types of information notified from the radio base station 10 from the reception signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 The transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403. The transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。 The transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 The mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203. The mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。 The reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203. Here, the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10. The reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure. Further, the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び受信処理後の信号の少なくとも一方を、測定部405に出力する。 The reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401. The reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. The reception signal processing unit 404 outputs at least one of the reception signal and the signal after reception processing to the measurement unit 405.
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 405 performs measurement on the received signal. The measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。 For example, the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal. The measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 401.
 なお、送受信部203は、第1のサブキャリア間隔(SCS:Sub-Carrier Spacing)を用いる第1のコンポーネントキャリア(CC:Component Carrier)と、前記第1のSCSより大きい第2のSCSを用いる第2のCCと、を用いて送受信してもよい。 The transmitting / receiving unit 203 uses a first component carrier (CC: Component Carrier) that uses a first subcarrier spacing (SCS) and a second SCS that is larger than the first SCS. 2 may be used for transmission and reception.
 また、制御部401は、上記第2のCCの上り共有チャネル(PUSCH)において上記第1のCC及び上記第2のCCのいずれか一方又は両方に関する準静的なHARQ-ACKコードブック(semi-static HARQ-ACK codebook)を送信する場合に、処理時間の要求を満たさないデータ(PDSCH候補であってもよい)に対応するHARQ-ACKビットを削除してもよいし、ゼロパディングしてもよい。 In addition, the control unit 401 uses a quasi-static HARQ-ACK codebook (semi-) regarding one or both of the first CC and the second CC in the uplink shared channel (PUSCH) of the second CC. When transmitting a static HARQ-ACK codebook), the HARQ-ACK bit corresponding to data that does not satisfy the processing time requirement (may be a PDSCH candidate) may be deleted, or zero padding may be performed. .
 また、制御部401は、上記第2のCCの上り共有チャネル(PUSCH)において上記第1のCC及び上記第2のCCのいずれか一方又は両方に関する準静的なHARQ-ACKコードブックを送信する場合に、処理時間の要求を満たさないデータ(PDSCH候補であってもよい)に対応するHARQ-ACKビットをACK及びNACKのいずれかであると決定(して生成)してもよい。 Further, the control unit 401 transmits a quasi-static HARQ-ACK codebook related to one or both of the first CC and the second CC in the uplink shared channel (PUSCH) of the second CC. In this case, the HARQ-ACK bit corresponding to data (which may be a PDSCH candidate) that does not satisfy the processing time requirement may be determined (generated) as either ACK or NACK.
 また、送受信部203は、第1CCと、前記第1CCのニューメロロジーと異なるニューメロロジーを用いる第2CCと、を用いて送信及び受信を行ってもよい。 Further, the transmission / reception unit 203 may perform transmission and reception using the first CC and the second CC that uses a different neurology from that of the first CC.
 また、制御部401は、前記第1CCの上り制御チャネル(PUCCH)又は上り共有チャネル(PUSCH)を用いて、前記第1CCの下り信号(例えば、PDSCH)に対するHARQ-ACKを送信すること、及び、前記第2CCの上り共有チャネル(PUSCH)を用いて、前記第2CCの下り信号に対するHARQ-ACKを送信すること、の少なくともいずれか一方を制御してもよい。 Further, the control unit 401 transmits an HARQ-ACK for the downlink signal (for example, PDSCH) of the first CC using the uplink control channel (PUCCH) or the uplink shared channel (PUSCH) of the first CC, and The HARQ-ACK for the downlink signal of the second CC may be controlled using the uplink shared channel (PUSCH) of the second CC.
 また、制御部401は、前記第1CCの下り信号に対するHARQ-ACKと、前記第2CCの下り信号に対するHARQ-ACKと、を同じ時点において送信することを制御してもよい。 Further, the control unit 401 may control to transmit HARQ-ACK for the downlink signal of the first CC and HARQ-ACK for the downlink signal of the second CC at the same time.
 また、前記時点の前記第1CCの上り共有チャネルがスケジュールされない場合、制御部401は、前記時点の前記第1CCの上り制御チャネルにおいて、前記第1CCの下り信号に対するHARQ-ACKを送信すること、又は前記時点の前記第1CCの上り制御チャネルにおいて、前記第1CCの下り信号に対するHARQ-ACK及び前記第2CCの下り信号に対するHARQ-ACKを送信すること、を制御してもよい。 In addition, when the uplink shared channel of the first CC at the time point is not scheduled, the control unit 401 transmits HARQ-ACK for the downlink signal of the first CC in the uplink control channel of the first CC at the time point, or In the uplink control channel of the first CC at the time point, HARQ-ACK for the downlink signal of the first CC and HARQ-ACK for the downlink signal of the second CC may be controlled.
 また、前記時点において前記第1CCの上り共有チャネルがスケジュールされる場合、制御部401は、前記スケジュールされた上り共有チャネルにおいて、前記第1CCの下り信号に対するHARQ-ACKを送信すること、又は前記スケジュールされた上り共有チャネルにおいて、前記第1CCの下り信号に対するHARQ-ACK及び前記第2CCの下り信号に対するHARQ-ACKを送信すること、を制御してもよい。 Further, when the uplink shared channel of the first CC is scheduled at the time point, the control unit 401 transmits HARQ-ACK for the downlink signal of the first CC on the scheduled uplink shared channel, or the schedule In the configured uplink shared channel, HARQ-ACK for the downlink signal of the first CC and HARQ-ACK for the downlink signal of the second CC may be controlled.
 また、制御部401は、前記第1CC及び前記第2CCの一方の下り信号に対するHARQ-ACKを、前記第1CC及び前記第2CCの他方の上り共有チャネルにおいて送信しないことを制御してもよい。 Also, the control unit 401 may control that HARQ-ACK for one downlink signal of the first CC and the second CC is not transmitted on the other uplink shared channel of the first CC and the second CC.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。
(Hardware configuration)
In addition, the block diagram used for description of the said embodiment has shown the block of the functional unit. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically coupled, or two or more devices physically or logically separated may be directly or indirectly (for example, (Using wired, wireless, etc.) and may be implemented using these multiple devices.
 例えば、本開示の一実施形態における無線基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a wireless base station, a user terminal, and the like according to an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 14 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment. The wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed by one or more processors simultaneously, sequentially, or using other methods. Note that the processor 1001 may be implemented by one or more chips.
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication or controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like. For example, the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 In addition, the processor 1001 reads a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by. The storage 1003 may be referred to as an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be constituted by. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Also, the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
Note that the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning. For example, at least one of the channel and the symbol may be a signal (signaling). The signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard. Moreover, a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, etc.
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。 Further, the radio frame may be configured by one or a plurality of periods (frames) in the time domain. Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe. Further, a subframe may be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 Furthermore, the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on the numerology.
 また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルで構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH及びPUSCHは、PDSCH/PUSCHマッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH及びPUSCHは、PDSCH/PUSCHマッピングタイプBと呼ばれてもよい。 Also, the slot may include a plurality of mini slots. Each minislot may be configured with one or more symbols in the time domain. The minislot may also be called a subslot. A mini-slot may be composed of fewer symbols than slots. PDSCH and PUSCH transmitted in units of time larger than the minislot may be referred to as PDSCH / PUSCH mapping type A. The PDSCH and PUSCH transmitted using the minislot may be referred to as PDSCH / PUSCH mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol. For example, one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called a TTI, and one slot or one minislot is called a TTI. May be. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1-13 symbols), or a period longer than 1 ms. It may be. Note that a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI means, for example, a minimum time unit for scheduling in wireless communication. For example, in the LTE system, a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, a time interval (for example, the number of symbols) in which a transport block, a code block, a code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one minislot is referred to as a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe. A TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 A resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks. One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be configured by one or a plurality of resource elements (RE: Resource Element). For example, 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 Note that the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 Further, information, parameters, and the like described in the present disclosure may be expressed using absolute values, may be expressed using relative values from predetermined values, or may be expressed using other corresponding information. May be represented. For example, the radio resource may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not limited names in any way. For example, various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various channels and information elements assigned to them. The name is not limited in any way.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer. Information, signals, and the like may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 The input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using other methods. For example, information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。 The physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. Further, the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like. The MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, notification of predetermined information (for example, notification of “being X”) is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false. The comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether it is called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, code, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be interpreted broadly.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Also, software, instructions, information, etc. may be transmitted / received via a transmission medium. For example, the software uses websites using at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。 The terms “system” and “network” as used in this disclosure may be used interchangeably.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」、「部分帯域幅(BWP:Bandwidth Part)」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, “base station (BS)”, “radio base station”, “fixed station”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “ "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", Terms such as “carrier”, “component carrier”, “Bandwidth Part (BWP)” may be used interchangeably. A base station may also be called terms such as a macro cell, a small cell, a femto cell, and a pico cell.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: Remote Radio Head)) can also provide communication services. The terms “cell” or “sector” refer to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as “mobile station (MS)”, “user terminal”, “user equipment (UE)”, and “terminal” may be used interchangeably. .
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal , Handset, user agent, mobile client, client or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。 At least one of the base station and the mobile station may be referred to as a transmission device, a reception device, or the like. Note that at least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (for example, a car, an airplane, etc.), an unattended moving body (for example, a drone, an autonomous driving vehicle, etc.), or a robot (manned or unmanned). ). Note that at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
 また、本開示における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネルは、サイドチャネルで読み替えられてもよい。 Further, the radio base station in the present disclosure may be replaced with a user terminal. For example, the communication between the radio base station and the user terminal is replaced with communication between a plurality of user terminals (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc. may be called)) For each configuration, each aspect / embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have a function that the wireless base station 10 has. In addition, words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”). For example, the uplink channel may be read as a side channel.
 同様に、本開示におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a radio base station. In this case, the wireless base station 10 may have a function that the user terminal 20 has.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, the operation performed by the base station may be performed by the upper node in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched according to execution. In addition, the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps in an exemplary order and are not limited to the specific order presented.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication). system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (Registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802. 20, UWB (Ultra-WideBand), Bluetooth (registered trademark) The present invention may be applied to a system using other appropriate wireless communication methods, a next-generation system extended based on these, and the like. A plurality of systems may be combined and applied (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 «As used in this disclosure, the phrase“ based on ”does not mean“ based only on, ”unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations can be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term “determining” as used in this disclosure may encompass a wide variety of actions. For example, “determination (decision)” includes determination, calculation, calculation, processing, derivation, investigating, looking up (eg, table, (Searching in a database or another data structure), ascertaining, etc. may be considered to be “determining”.
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be "determining".
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Also, “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, and the like.
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms “connected”, “coupled”, or any variation thereof, is any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In the present disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., as well as some non-limiting and non-inclusive examples, radio frequency domain, microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) region, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。 In the present disclosure, the term “A and B are different” may mean “A and B are different from each other”. Terms such as “leave” and “coupled” may be interpreted in a similar manner.
 本開示又は請求の範囲において、「含む(include)」、「含んでいる(including)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where the term “include”, “including”, and variations thereof are used in this disclosure or in the claims, these terms are similar to the term “comprising”. Intended to be comprehensive. Further, the term “or” as used in the present disclosure or the claims is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, for example, when articles are added by translation such as a, an, and the in English, the present disclosure may include plural nouns that follow these articles.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is obvious for those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and changes without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for illustrative purposes and does not give any restrictive meaning to the invention according to the present disclosure.

Claims (6)

  1.  第1CC(Component Carrier)と、前記第1CCのニューメロロジーと異なるニューメロロジーを用いる第2CCと、を用いて送信及び受信を行う送受信部と、
     前記第1CCの上り制御チャネル又は上り共有チャネルを用いて、前記第1CCの下り信号に対するHARQ-ACK(Hybrid Automatic Repeat reQuest-Acknowledgement)を送信すること、及び、前記第2CCの上り共有チャネルを用いて、前記第2CCの下り信号に対するHARQ-ACKを送信すること、の少なくともいずれか一方を制御する制御部と、を有することを特徴とするユーザ端末。
    A transmission / reception unit that performs transmission and reception using a first CC (Component Carrier) and a second CC that uses a different neurology from the first CC;
    Using the uplink control channel or uplink shared channel of the first CC, transmitting HARQ-ACK (Hybrid Automatic Repeat reQuest-Acknowledgement) for the downlink signal of the first CC, and using the uplink shared channel of the second CC And a control unit that controls at least one of transmitting HARQ-ACK for the downlink signal of the second CC.
  2.  前記制御部は、前記第1CCの下り信号に対するHARQ-ACKと、前記第2CCの下り信号に対するHARQ-ACKと、を同じ時点において送信することを制御することを特徴とする請求項1に記載のユーザ端末。 The control unit according to claim 1, wherein the control unit controls transmission of HARQ-ACK for the downlink signal of the first CC and HARQ-ACK for the downlink signal of the second CC at the same time. User terminal.
  3.  前記時点の前記第1CCの上り共有チャネルがスケジュールされない場合、前記制御部は、前記時点の前記第1CCの上り制御チャネルにおいて、前記第1CCの下り信号に対するHARQ-ACKを送信すること、又は前記時点の前記第1CCの上り制御チャネルにおいて、前記第1CCの下り信号に対するHARQ-ACK及び前記第2CCの下り信号に対するHARQ-ACKを送信すること、を制御することを特徴とする請求項2に記載のユーザ端末。 When the uplink shared channel of the first CC at the time is not scheduled, the control unit transmits a HARQ-ACK for the downlink signal of the first CC on the uplink control channel of the first CC at the time, or the time 3. The HA control apparatus according to claim 2, further comprising: controlling HARQ-ACK for the downlink signal of the first CC and HARQ-ACK for the downlink signal of the second CC in the uplink control channel of the first CC. User terminal.
  4.  前記時点において前記第1CCの上り共有チャネルがスケジュールされる場合、前記制御部は、前記スケジュールされた上り共有チャネルにおいて、前記第1CCの下り信号に対するHARQ-ACKを送信すること、又は前記スケジュールされた上り共有チャネルにおいて、前記第1CCの下り信号に対するHARQ-ACK及び前記第2CCの下り信号に対するHARQ-ACKを送信すること、を制御することを特徴とする請求項2又は請求項3に記載のユーザ端末。 When the uplink shared channel of the first CC is scheduled at the time point, the control unit transmits a HARQ-ACK for the downlink signal of the first CC on the scheduled uplink shared channel, or the scheduled The user according to claim 2 or 3, wherein HARQ-ACK for the downlink signal of the first CC and HARQ-ACK for the downlink signal of the second CC are transmitted in an uplink shared channel. Terminal.
  5.  前記制御部は、前記第1CC及び前記第2CCの一方の下り信号に対するHARQ-ACKを、前記第1CC及び前記第2CCの他方の上り共有チャネルにおいて送信しないことを制御することを特徴とする請求項1又は請求項2に記載のユーザ端末。 The said control part controls not transmitting HARQ-ACK with respect to one downlink signal of the said 1st CC and the said 2nd CC in the other uplink shared channel of the said 1st CC and the said 2nd CC. The user terminal according to claim 1 or 2.
  6.  第1CC(Component Carrier)と、前記第1CCのニューメロロジーと異なるニューメロロジーを用いる第2CCと、を用いて送信及び受信を行う送受信部と、
     前記第1CCの上り制御チャネル又は上り共有チャネルを用いて、前記第1CCの下り信号に対するHARQ-ACK(Hybrid Automatic Repeat reQuest-Acknowledgement)を受信することと、前記第2CCの上り共有チャネルを用いて、前記第2CCの下り信号に対するHARQ-ACKを受信することと、の少なくともいずれか一方を制御する制御部と、を有することを特徴とする無線基地局。
    A transmission / reception unit that performs transmission and reception using a first CC (Component Carrier) and a second CC that uses a different neurology from the first CC;
    Receiving HARQ-ACK (Hybrid Automatic Repeat reQuest-Acknowledgement) for the downlink signal of the first CC using the uplink control channel or uplink shared channel of the first CC, using the uplink shared channel of the second CC, A radio base station comprising: a control unit that controls HARQ-ACK for the downlink signal of the second CC; and at least one of them.
PCT/JP2018/019132 2018-05-17 2018-05-17 User terminal and wireless base station WO2019220595A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/019132 WO2019220595A1 (en) 2018-05-17 2018-05-17 User terminal and wireless base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/019132 WO2019220595A1 (en) 2018-05-17 2018-05-17 User terminal and wireless base station

Publications (1)

Publication Number Publication Date
WO2019220595A1 true WO2019220595A1 (en) 2019-11-21

Family

ID=68539698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019132 WO2019220595A1 (en) 2018-05-17 2018-05-17 User terminal and wireless base station

Country Status (1)

Country Link
WO (1) WO2019220595A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161487A1 (en) * 2020-02-13 2021-08-19 株式会社Nttドコモ Terminal and base station
WO2021192063A1 (en) * 2020-03-24 2021-09-30 株式会社Nttドコモ Terminal
WO2022074842A1 (en) * 2020-10-09 2022-04-14 株式会社Nttドコモ Terminal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197876A (en) * 2012-03-19 2013-09-30 Ntt Docomo Inc Communications system, base station device, mobile terminal device, and communications method
JP2015523825A (en) * 2012-08-03 2015-08-13 ノキア ソリューションズ アンド ネットワークス オサケユキチュア Method and apparatus
US20180139773A1 (en) * 2016-11-17 2018-05-17 Huawei Technologies Co., Ltd. System and method for uplink communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197876A (en) * 2012-03-19 2013-09-30 Ntt Docomo Inc Communications system, base station device, mobile terminal device, and communications method
JP2015523825A (en) * 2012-08-03 2015-08-13 ノキア ソリューションズ アンド ネットワークス オサケユキチュア Method and apparatus
US20180139773A1 (en) * 2016-11-17 2018-05-17 Huawei Technologies Co., Ltd. System and method for uplink communications

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO INC: "On HARQ-ACK feedback", 3GPP TSG RAN WG1 MEETING #93 R1-1807067, vol. RAN WG1, 12 May 2018 (2018-05-12), XP051462888 *
NTT DOCOMO INC: "Remaining issues CA and type 1 HARQ-ACK codebook", 3GPP TSG RAN WG1 MEETING #93 RL-1807415, vol. RAN WG1, 24 May 2018 (2018-05-24), XP051463128 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161487A1 (en) * 2020-02-13 2021-08-19 株式会社Nttドコモ Terminal and base station
WO2021192063A1 (en) * 2020-03-24 2021-09-30 株式会社Nttドコモ Terminal
WO2022074842A1 (en) * 2020-10-09 2022-04-14 株式会社Nttドコモ Terminal

Similar Documents

Publication Publication Date Title
JP7160912B2 (en) Terminal, wireless communication method, base station and system
JP7371211B2 (en) Terminals, wireless communication methods and systems
WO2019193732A1 (en) Transmission device and reception device
WO2019193700A1 (en) User terminal and wireless base station
JPWO2020026296A1 (en) User terminal and wireless communication method
WO2019171518A1 (en) User terminal and wireless communication method
WO2019215934A1 (en) User terminal and wireless communication method
WO2020035947A1 (en) Radio communication device and radio communication method
WO2019203324A1 (en) User terminal and radio communication method
CN112514448B (en) Terminal, base station, system and wireless communication method
WO2019193731A1 (en) User terminal and wireless base station
CN110366866B (en) User terminal and wireless communication method
WO2019215895A1 (en) User terminal
WO2019225689A1 (en) User terminal and wireless communication method
CN111801960A (en) User terminal and wireless communication method
WO2019193736A1 (en) User terminal and wireless communications method
WO2019225685A1 (en) User equipment and wireless communication method
WO2019220595A1 (en) User terminal and wireless base station
JP7431159B2 (en) Terminals, wireless communication methods, base stations and systems
CN112272962B (en) User terminal
WO2019234929A1 (en) User terminal and wireless communication method
WO2019193733A1 (en) User terminal and wireless base station
WO2019215935A1 (en) User terminal and wireless communication method
WO2019225655A1 (en) User terminal
WO2019225654A1 (en) User terminal and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP