WO2019192295A1 - 一种电机控制器放电控制电路 - Google Patents

一种电机控制器放电控制电路 Download PDF

Info

Publication number
WO2019192295A1
WO2019192295A1 PCT/CN2019/077978 CN2019077978W WO2019192295A1 WO 2019192295 A1 WO2019192295 A1 WO 2019192295A1 CN 2019077978 W CN2019077978 W CN 2019077978W WO 2019192295 A1 WO2019192295 A1 WO 2019192295A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
resistor
circuit
voltage dividing
motor controller
Prior art date
Application number
PCT/CN2019/077978
Other languages
English (en)
French (fr)
Inventor
屈玉霞
张�浩
王颖
Original Assignee
精进电动科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 精进电动科技股份有限公司 filed Critical 精进电动科技股份有限公司
Priority to US17/042,902 priority Critical patent/US11444528B2/en
Priority to EP19781173.0A priority patent/EP3734819A4/en
Priority to JP2020552006A priority patent/JP2021516948A/ja
Publication of WO2019192295A1 publication Critical patent/WO2019192295A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock

Definitions

  • the invention relates to the technical field of electric motor controllers, and in particular to a motor controller discharge control circuit.
  • the motor controller mainly converts the high-voltage direct current of the power battery on the electric vehicle into three-phase alternating current through the three-phase inverter circuit to provide power for the motor, thereby providing power for the operation of the automobile.
  • the use of capacitive components is indispensable, so the operation of the capacitors will also have an impact on the overall performance of the circuit, especially for the use of larger capacitors, if only passive discharge is used, Limited by the internal space of the controller and the power limitation of the discharge resistor, the discharge time is long and there is a danger of high pressure leakage.
  • the invention provides a motor controller discharge control circuit to solve the technical problem that the motor controller has a long discharge time and there is a danger of high pressure leakage.
  • a motor controller discharge control circuit includes: a discharge signal transmission circuit, a switch circuit, and a discharge circuit;
  • a switching circuit is respectively connected to the discharge signal transmission circuit and the discharge circuit;
  • the discharge circuit is also connected to the positive electrode of the bus bar.
  • An input end of the discharge signal transmission circuit is connected to a discharge signal output pin of the motor controller, and an output end of the discharge signal transmission circuit is connected to a negative electrode of the bus bar.
  • the discharge signal transmission circuit outputs a control signal to the switch circuit according to the received discharge signal
  • the switch circuit is connected to the bus positive pole, the bus negative pole and the output end of the discharge signal transmission circuit, and the switch circuit is turned on according to the received control signal and discharged through the discharge circuit.
  • the discharge signal transmission circuit includes: an optical coupler and a filter circuit
  • the filter circuit includes a first filter capacitor, a second filter resistor and a second filter capacitor;
  • An input positive pin of the optical coupler is connected to the discharge signal output pin, and the discharge signal output pin is further connected to the motor controller;
  • the input negative terminal of the optocoupler is grounded.
  • the signal output negative pole of the optocoupler is connected to one end of the first filter capacitor and the negative pole of the bus bar;
  • the signal output positive pole of the optical coupler is connected to the other end of the first filter capacitor, one end of the second filter resistor, and the other end of the second filter resistor is connected to one end of the second filter capacitor and the control end of the switch circuit.
  • the other end of the second filter capacitor is connected to the negative side of the bus bar.
  • the switch circuit comprises: a triode, a MOS tube, and a seventh voltage dividing resistor connected in series, an eighth voltage dividing resistor, a ninth voltage dividing resistor, a tenth voltage resistor, an eleventh voltage dividing resistor, 12-divider resistor, thirteenth voltage divider resistor, fourteenth voltage divider resistor, fifteenth voltage divider resistor, sixteenth voltage divider resistor and seventeenth voltage divider resistor;
  • the base of the triode is connected to the positive output of the optical coupler of the optocoupler
  • An emitter of the triode is connected to one end of the sixteenth voltage dividing resistor, one end of the seventeenth voltage dividing resistor, and a gate of the MOS transistor,
  • a collector of the triode is connected to the other end of the seventeenth voltage dividing resistor and connected to the negative pole of the bus bar;
  • the source of the MOS transistor is connected to the negative electrode of the bus bar, and the drain of the MOS transistor is connected to the discharge circuit.
  • the switch circuit further includes: a third capacitor and a diode;
  • One end of the third capacitor is connected to one end of the seventeenth voltage dividing resistor and an emitter of the triode,
  • the other end of the third capacitor is connected to the other end of the seventeenth voltage dividing resistor and the collector of the transistor,
  • a cathode of the diode is connected to one end of the seventeenth voltage dividing resistor and a gate of the MOS transistor;
  • the positive electrode of the diode is connected to the other end of the seventeenth voltage dividing resistor and the source of the MOS transistor, and is connected to the negative side of the bus bar.
  • the discharge circuit includes: a third discharge resistor connected in parallel, a fourth discharge resistor, a fifth discharge resistor, and a sixth discharge resistor;
  • One end of the fifth discharge resistor is connected to a drain of the MOS transistor
  • the other end of the fifth discharge resistor is connected to the positive electrode of the bus bar.
  • the resistances of the third discharge resistor, the fourth discharge resistor, the fifth discharge resistor, and the sixth discharge resistor are both 110 ohms.
  • the model of the optocoupler is: ACPL-K30T-000E.
  • the utility model has the beneficial effects that the motor controller discharge control circuit of the embodiment of the invention comprises a discharge signal transmission circuit, a switch circuit and a discharge circuit, and a discharge signal transmission circuit, which outputs a control signal to the switch circuit according to the received discharge signal;
  • the circuit discharges the switch circuit according to the received control signal, and discharges through the discharge circuit, thereby avoiding the risk of high-pressure leakage, and obtaining the beneficial effect of discharging the capacitor in a short time in the event of an emergency.
  • the circuit is simple, the cost is low, and it is convenient for large-scale promotion and application.
  • FIG. 1 is a schematic diagram of a discharge control circuit of a motor controller according to an embodiment of the present invention
  • FIG. 2 is a graph showing the relationship between the maximum power of the discharge resistor and the overload time according to an embodiment of the present invention.
  • the design concept of the present invention is to solve the problem that the discharge time of the passive discharge circuit of the motor controller in the prior art is long and there is a danger of high pressure leakage.
  • the embodiment of the invention provides an active discharge control circuit, which is received by the discharge signal transmission circuit.
  • the discharge signal outputted by the motor controller controls the switch circuit to be discharged and discharged through the discharge circuit, thereby avoiding the risk of high-pressure leakage.
  • the capacitor can be discharged in a short time, the circuit is simple, and the degree of intelligence is high. To ensure the safety of the motor controller.
  • the motor controller discharge control circuit of the embodiment includes: a discharge signal transmission circuit, a switch circuit and a discharge circuit;
  • a switching circuit is respectively connected to the discharge signal transmission circuit and the discharge circuit;
  • the discharge circuit is also connected to the positive electrode of the bus bar.
  • An input end of the discharge signal transmission circuit is connected to a discharge signal output pin of the motor controller, and an output end of the discharge signal transmission circuit is connected to a negative electrode of the bus bar.
  • the discharge signal transmission circuit outputs a control signal to the switch circuit according to the received discharge signal
  • the switch circuit is connected to the bus positive pole, the bus negative pole and the output end of the discharge signal transmission circuit, and the switch circuit is turned on according to the received control signal and discharged through the discharge circuit.
  • FIG. 1 is a schematic diagram of a discharge control circuit of a motor controller according to an embodiment of the present invention; a discharge control circuit of a motor controller of the present embodiment will be described with reference to FIG.
  • the discharge signal transmission circuit includes: an optical coupler U1 and a filter circuit;
  • the filter circuit includes a first filter capacitor C1, a second filter resistor R2 and a second filter capacitor C2;
  • An input positive pin (ie, an AN pin) of the photocoupler U1 is connected to the discharge signal output pin PWM_DIS, and the discharge signal output pin PWM_DIS is also connected to the motor controller (not shown in FIG. 1). ;
  • the input negative pin (CA pin) of the optocoupler U1 is grounded.
  • the signal output negative electrode (VO-) of the photocoupler U1 is connected to one end of the first filter capacitor C1 and the bus bar negative electrode HV_NEG;
  • the signal output positive VO+ of the optical coupler U1 is connected to the other end of the first filter capacitor C1, one end of the second filter resistor R2, the other end of the second filter resistor R2 and one end of the second filter capacitor C2 and the control end of the switch circuit (In this embodiment, the base of the transistor Q2) is connected.
  • the GABOT signal line is connected to the base of the triode.
  • the other end of the second filter capacitor C2 is connected to the bus bar negative electrode HV_NEG.
  • the four normally closed pins (NC) of optocoupler U1 are not connected to any point in the circuit.
  • the main function of the optocoupler is to isolate the high voltage and low voltage and protect the circuit.
  • the model of the optical coupler is: ACPL-K30T-000E.
  • the optocoupler eliminates the need for an additional power supply, saving cost and simplifying the circuit.
  • the switching circuit includes: a transistor Q2, a MOS transistor Q1, and a seventh voltage dividing resistor R7 connected in series, an eighth voltage dividing resistor R8, a ninth voltage dividing resistor R9, a tenth voltage resistor R10, and an eleventh point.
  • the base of the transistor Q2 (ie, pin 1) is connected to the positive output VO+ of the photocoupler U1.
  • the emitter of the transistor Q2 (ie, the pin 3) is connected to one end of the sixteenth voltage dividing resistor R16, one end of the seventeenth voltage dividing resistor R17, and the gate of the MOS transistor Q1 (ie, the pin 1).
  • the collector of the transistor Q2 (ie, the pin 2) is connected to the other end of the seventeenth voltage dividing resistor R17 and is connected to the bus negative electrode HV_NEG;
  • the source (i.e., pin 3) of the MOS transistor Q1 is connected to the bus negative electrode HV_NEG, and the drain (i.e., pin 2) of the MOS transistor Q1 is connected to the discharge circuit.
  • the switch circuit of this embodiment further includes: a third capacitor C3 and a diode D1;
  • One end of the third capacitor C3 is connected to one end of the seventeenth voltage dividing resistor R17 and the emitter of the transistor Q2,
  • the other end of the third capacitor C3 is connected to the other end of the seventeenth voltage dividing resistor R17 and the collector of the transistor Q2.
  • a cathode of the diode D1 is connected to one end of the seventeenth voltage dividing resistor R17 and a gate of the MOS transistor Q1;
  • the anode of the diode D1 is connected to the other end of the seventeenth voltage dividing resistor R17 and the source of the MOS transistor Q1, and is connected to the bus bar negative electrode HV_NEG.
  • the busbar here refers to the high voltage busbar of the battery that powers the motor controller.
  • the discharge circuit includes: a third discharge resistor R3, a fourth discharge resistor R4, a fifth discharge resistor 45 and a sixth discharge resistor R6;
  • One end of the fifth discharge resistor R5 is connected to the drain of the MOS transistor Q1;
  • the other end of the fifth discharge resistor R5 is connected to the bus bar positive HV_POS.
  • the resistance values of the third discharge resistor R3, the fourth discharge resistor R4, the fifth discharge resistor R5, and the sixth discharge resistor R6 are both 110 ohms.
  • the LTO100 automotive certification class series discharge resistor is selected in this embodiment, and its withstand voltage is 500V, and the rated power is 100W@25T C. From the standpoint of withstand voltage and heat dissipation safety, at least two LTO100s of the discharge control circuit are used in series.
  • the motor controller When the motor controller is to be discharged from 500V to 60V in 1 second, the DC bus capacitance is 1000uF, and the resistance and heat dissipation formula are as follows:
  • R 471.6 ⁇ , that is, R ⁇ 471.6 ⁇ can ensure that the discharge time is controlled within 1 second.
  • the resistance series standard two 200 ⁇ resistors are selected, and the maximum discharge power of the resistor is:
  • the power is 312.5W, and the overload time is about 100ms.
  • the motor controller detects that the DC bus voltage has not decreased within a certain range within 50ms, it will actively discharge MOS.
  • the tube is turned off, thereby satisfying the LTO100 peak power requirement.
  • the 1000uF DC bus capacitor discharges from 500V to 60V.
  • the actual rated power is:
  • each resistor needs to consume 72.5W of rated power, which does not meet the tolerable range of up to 36W. It needs to be replaced by four resistors in series. Each resistor consumes 36.25W, still more than 36W, so it is necessary to extend the discharge time. Between 0.85 and 1 second, thus, according to the 1% resistor series standard, four 110 ⁇ resistors are selected, and the actual discharge time is:
  • Each resistor consumes a peak power of 142W, which satisfies the requirements, so that it can be selected to detect whether the DC bus voltage is reduced to 60V or a large drop after one discharge cycle. If not, the MOS transistor is turned off.
  • the rated power at this time is:
  • Each resistor consumes 33W and is less than 36W.
  • the present embodiment uses four resistors in series to realize rapid discharge in a short time, thereby ensuring the safety of the motor controller.
  • the motor controller discharge control circuit of the embodiment avoids the occurrence of high-pressure leakage risk, and obtains the beneficial effect that the capacitor can be discharged in a short time in the event of an emergency.
  • the circuit is simple, the cost is low, and it is convenient for large-scale promotion and application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

本发明公开了一种电机控制器放电控制电路,包括放电信号传输电路,开关电路以及放电电路;开关电路分别与放电信号传输电路和放电电路连接,放电电路还与母线正极连接,放电信号传输电路的输入端与电机控制器的放电信号输出引脚连接,放电信号传输电路的输出端与母线负极连接,放电信号传输电路,根据接收的放电信号输出控制信号至开关电路;开关电路,与母线正极,母线负极和放电信号传输电路的输出端连接,根据接收到的控制信号使开关电路导通后经放电电路放电。本实施例的电机控制器放电控制电路,能够实现主动迅速放电,避免了高压泄露危险,保证了电机控制器安全。

Description

一种电机控制器放电控制电路 技术领域
本发明涉及电动汽车电机控制器技术领域,具体涉及一种电机控制器放电控制电路。
发明背景
电机控制器主要是将电动汽车上动力电池的高压直流电通过三相逆变电路转换为三相交流电为电机提供电源,进而为汽车的运行提供动力。在如今的电机控制器中,对电容元件的使用已是不可或缺的,因此电容的动作过程也会对电路的整体性能产生影响,特别是对于较大电容的使用,如果仅采用被动放电,受限于控制器内部空间及放电电阻功率限制,放电时间较长,存在高压泄露危险。
发明内容
本发明提供了一种电机控制器放电控制电路,以解决电机控制器放电时间长,存在高压泄露危险的技术问题。
根据本发明的一个方面提供了一种电机控制器放电控制电路,包括:放电信号传输电路,开关电路以及放电电路;
开关电路分别与所述放电信号传输电路和所述放电电路连接;
所述放电电路还与母线正极连接,
所述放电信号传输电路的输入端与电机控制器的放电信号输出引脚连接,所述放电信号传输电路的输出端与母线负极连接,
所述放电信号传输电路,根据接收的放电信号输出控制信号至所述开关电路;
所述开关电路,与母线正极,母线负极和所述放电信号传输电路的输出端连接,根据接收到的控制信号使开关电路导通后经所述放电电路放电。
可选地,所述放电信号传输电路包括:光耦合器和滤波电路;
滤波电路包括第一滤波电容,第二滤波电阻和第二滤波电容;
光耦合器的输入正极引脚与所述放电信号输出引脚连接,所述放电信号输出引脚还与所述电机控制器连接;
光耦合器的输入负极引脚接地,
光耦合器的信号输出负极与第一滤波电容的一端以及母线负极连接;
光耦合器的信号输出正极与第一滤波电容的另一端,第二滤波电阻的一端连接,所述第二滤波电阻的另一端与第二滤波电容的一端以及开关电路的控制端连接,
所述第二滤波电容的另一端与母线负极连接。
可选地,所述开关电路包括:三极管,MOS管以及依次串联的第七分压电阻,第八分压电阻,第九分压电阻,第十分压电阻,第十一分压电阻,第十二分压电阻,第十三分压电阻,第十四分压电阻,第十五分压电阻,第十六分压电阻和第十七分 压电阻;
三极管的基极与所述光耦合器的信号输出正极连接,
三极管的发射极与所述第十六分压电阻的一端,所述第十七分压电阻的一端以及MOS管的栅极连接,
三极管的集电极与所述第十七分压电阻的另一端连接后与母线负极连接;
所述MOS管的源极与母线负极连接,所述MOS管的漏极与放电电路连接。
可选地,开关电路还包括:第三电容以及二极管;
所述第三电容的一端与所述第十七分压电阻的一端以及所述三极管的发射极连接,
所述第三电容的另一端与所述第十七分压电阻的另一端以及所述三极管的集电极连接,
所述二极管的负极与所述第十七分压电阻的一端以及MOS管的栅极连接;
所述二极管的正极与所述第十七分压电阻的另一端以及所述MOS管的源极连接后与母线负极连接。
可选地,放电电路包括:并联的第三放电电阻,第四放电电阻,第五放电电阻和第六放电电阻;
所述第五放电电阻的一端与所述MOS管的漏极连接;
所述第五放电电阻的另一端与母线正极连接。
可选地,所述第三放电电阻,第四放电电阻,第五放电电阻和第六放电电阻的阻值均为110欧姆。
可选地,光耦合器的型号为:ACPL-K30T-000E。
本发明的有益效果是:本发明实施例的这种电机控制器放电控制电路包括放电信号传输电路,开关电路以及放电电路;放电信号传输电路,根据接收的放电信号输出控制信号至开关电路;开关电路,根据接收到的控制信号使开关电路导通后经放电电路放电,避免了高压泄露风险的发生,取得了一旦出现紧急情况,可以在短时间内对电容进行放电的有益效果。并且电路简单、成本低,方便大规模推广应用。
附图简要说明
图1是本发明一个实施例的电机控制器放电控制电路的示意图;
图2是本发明一个实施例的放电电阻的最大功率与过载时间的关系曲线图。
实施本发明的方式
本发明的设计构思在于:针对现有技术中电机控制器被动放电电路存在的放电时间长,存在高压泄露危险的问题,本发明实施例提供了一种主动放电控制电路,通过放电信号传输电路接收电机控制器输出的放电信号并控制开关电路导通后经放电电路放电,从而可以避免高压泄露风险的发生,一旦出现紧急情况,可以在短时间内对电容进行放电,电路简单,智能化程度高,保证了电机控制器的安全。
本实施例的电机控制器放电控制电路,包括:放电信号传输电路,开关电路以及放电电路;
开关电路分别与所述放电信号传输电路和所述放电电路连接;
所述放电电路还与母线正极连接,
所述放电信号传输电路的输入端与电机控制器的放电信号输出引脚连接,所述放电信号传输电路的输出端与母线负极连接,
所述放电信号传输电路,根据接收的放电信号输出控制信号至所述开关电路;
所述开关电路,与母线正极,母线负极和所述放电信号传输电路的输出端连接,根据接收到的控制信号使开关电路导通后经所述放电电路放电。
图1是本发明一个实施例的电机控制器放电控制电路的示意图;结合图1对本实施例的电机控制器放电控制电路进行说明。
参见图1,放电信号传输电路包括:光耦合器U1和滤波电路;
滤波电路包括第一滤波电容C1,第二滤波电阻R2和第二滤波电容C2;
光耦合器U1的输入正极引脚(即AN引脚)与所述放电信号输出引脚PWM_DIS连接,所述放电信号输出引脚PWM_DIS还与所述电机控制器(图1中未示出)连接;
光耦合器U1的输入负极引脚(CA引脚)接地,
光耦合器U1的信号输出负极(VO-)与第一滤波电容C1的一端以及母线负极HV_NEG连接;
光耦合器U1的信号输出正极VO+与第一滤波电容C1的另一端,第二滤波电阻R2的一端连接,第二滤波电阻R2的另一端与第二滤波电容C2的一端以及开关电路的控制端(本实施例中即为三极管Q2的基极)连接,参见图1中的光耦次极输出引脚GABOT信号线与三极管基极连接。
所述第二滤波电容C2的另一端与母线负极HV_NEG连接。
参见图1,光耦合器U1的四个常闭引脚(NC)不与电路中的任何点连接。光耦的主要作用是隔离高压和低压,起到保护电路的作用。本实施例中,光耦合器的型号为:ACPL-K30T-000E。
光耦无需额外的供电电源,节省了成本,简化了电路。
参见图1,开关电路包括:三极管Q2,MOS管Q1以及依次串联的第七分压电阻R7,第八分压电阻R8,第九分压电阻R9,第十分压电阻R10,第十一分压电阻R11,第十二分压电阻R12,第十三分压电阻R13,第十四分压电阻R14,第十五分压电阻R15,第十六分压电阻R16和第十七分压电阻R17;
三极管Q2的基极(即管脚1)与光耦合器U1的信号输出正极VO+连接,
三极管Q2的发射极(即管脚3)与第十六分压电阻R16的一端,第十七分压电阻R17的一端以及MOS管Q1的栅极(即管脚1)连接,
三极管Q2的集电极(即管脚2)与第十七分压电阻R17的另一端连接后与母线负极HV_NEG连接;
MOS管Q1的源极(即管脚3)与母线负极HV_NEG连接,所述MOS管Q1的漏极(即管脚2)与放电电路连接。
为保护MOS开关管正常工作,本实施例的开关电路还包括:第三电容C3以及二极管D1;
第三电容C3的一端与第十七分压电阻R17的一端以及三极管Q2的发射极连接,
第三电容C3的另一端与第十七分压电阻R17的另一端以及三极管Q2的集电极连接,
二极管D1的负极与第十七分压电阻R17的一端以及MOS管Q1的栅极连接;
二极管D1的正极与第十七分压电阻R17的另一端以及MOS管Q1的源极连接后与母线负极HV_NEG连接。
这里的母线是指为电机控制器供电的电池的高压母线。
参见图1,放电电路包括:并联的第三放电电阻R3,第四放电电阻R4,第五放电电阻45和第六放电电阻R6;
第五放电电阻R5的一端与MOS管Q1的漏极连接;
第五放电电阻R5的另一端与母线正极HV_POS连接。
在本实施例中,第三放电电阻R3,第四放电电阻R4,第五放电电阻R5和第六放电电阻R6的阻值均为110欧姆。
需要说明的是,放电电阻的数量和阻值的设计是放电电路关键,下面重点说明本实施例的电阻的数量和阻值的设计过程。
由于控制器体积限制和安装方式等,本实施例选用LTO100汽车认证级系列放电电阻,其耐压为500V,额定功率为100W@25T C。从耐压和散热安全考虑,放电控制电路至少两个LTO100串联使用。
当要实现电机控制器1秒内从500V放电到60V时,直流母线电容值为1000uF,阻值和散热计算公式如下:
Figure PCTCN2019077978-appb-000001
计算得出:R=471.6Ω,即R<471.6Ω可保证放电时间控制在1秒以内。根据阻值系列标准,选择两个200Ω的电阻,电阻的最大放电功率为:
Figure PCTCN2019077978-appb-000002
可知,每个电阻需消耗的最大功率为312.5W功率或相应的能量。
参见图2,由图2可知,功率为312.5W的电阻,过载时间大约为100ms,为安全起见,电机控制器若在50ms内检测到直流母线电压在一定范围内未下降,则将主动放电MOS管关断,由此,可满足LTO100峰值功率要求。
此时,实际放电时间为:
Figure PCTCN2019077978-appb-000003
下面说明额定功率的计算:假定电机控制器的壳温为85℃(冷却水温为85℃时,无安全余量),LTO100的结温为175℃,热阻为Rth(J-C)=1.5(C/W),LTO100涂上导热硅脂后安装在壳体上,导热硅脂的热阻为Rth(C-H)=1(C/W),则LTO100 可承受的额定功率为:
Figure PCTCN2019077978-appb-000004
1000uF直流母线电容从500V放电到60V的能量为
Figure PCTCN2019077978-appb-000005
实际额定功率为:
Figure PCTCN2019077978-appb-000006
可见,每个电阻需要消耗72.5W的额定功率,不满足最多36W的可承受范围,需更换成四个电阻串联使用方案,每个电阻消耗36.25W,仍然大于36W的要求,所以需要延长放电时间到0.85~1秒之间,由此,根据1%电阻系列标准,选择四个110Ω的电阻,则实际放电时间为:
Figure PCTCN2019077978-appb-000007
每个电阻消耗的峰值功率为142W,满足要求,从而可选择在1个放电周期后检测直流母线电压是否降低到60V或者大幅度降低,若没有,则关闭MOS管。这时的额定功率为:
Figure PCTCN2019077978-appb-000008
每个电阻消耗的额定功率为33W,小于36W。
因此,可确定为四个110Ω的电阻串联使用,作为放电电阻。对应的最大放电电流为:
Figure PCTCN2019077978-appb-000009
由上可知,本实施例通过四个电阻串联使用,实现了在短时间内迅速放电,保证了电机控制器的安全。
综上所述,本实施例的电机控制器放电控制电路避免了高压泄露风险的发生,取得了一旦出现紧急情况,可以在短时间内对电容进行放电的有益效果。并且电路简单、成本低,方便大规模推广应用。
以上所述,仅为本发明的具体实施方式,在本发明的上述教导下,本领域技术人员可以在上述实施例的基础上进行其他的改进或变形。本领域技术人员应该明白,上述的具体描述只是更好的解释本发明的目的,本发明的保护范围以权利要求的保护范围为准。

Claims (7)

  1. 一种电机控制器放电控制电路,其特征在于,包括:放电信号传输电路,开关电路以及放电电路;
    开关电路分别与所述放电信号传输电路和所述放电电路连接;
    所述放电电路还与母线正极连接;
    所述放电信号传输电路的输入端与电机控制器的放电信号输出引脚连接,所述放电信号传输电路的输出端与母线负极连接;
    所述放电信号传输电路,根据接收的放电信号输出控制信号至所述开关电路;
    所述开关电路,与母线正极,母线负极和所述放电信号传输电路的输出端连接,根据接收到的控制信号使开关电路导通后经放电电路放电。
  2. 根据权利要求1所述的电机控制器放电控制电路,其特征在于,所述放电信号传输电路包括:光耦合器和滤波电路;
    滤波电路包括第一滤波电容,第二滤波电阻和第二滤波电容;
    光耦合器的输入正极引脚与所述放电信号输出引脚连接,所述放电信号输出引脚还与所述电机控制器连接;
    光耦合器的输入负极引脚接地,
    光耦合器的信号输出负极与第一滤波电容的一端以及母线负极连接;
    光耦合器的信号输出正极与第一滤波电容的另一端,第二滤波电阻的一端连接,所述第二滤波电阻的另一端与第二滤波电容的一端以及开关电路的控制端连接,
    所述第二滤波电容的另一端与母线负极连接。
  3. 根据权利要求2所述的电机控制器放电控制电路,其特征在于,所述开关电路包括:三极管,MOS管以及依次串联的第七分压电阻,第八分压电阻,第九分压电阻,第十分压电阻,第十一分压电阻,第十二分压电阻,第十三分压电阻,第十四分压电阻,第十五分压电阻,第十六分压电阻和第十七分压电阻;
    三极管的基极与所述光耦合器的信号输出正极连接,
    三极管的发射极与所述第十六分压电阻的一端,所述第十七分压电阻的一端以及MOS管的栅极连接,
    三极管的集电极与所述第十七分压电阻的另一端连接后与母线负极连接;
    所述MOS管的源极与母线负极连接,所述MOS管的漏极与放电电路连接。
  4. 根据权利要求3所述的电机控制器放电控制电路,其特征在于,开关电路还包括:第三电容以及二极管;
    所述第三电容的一端与所述第十七分压电阻的一端以及所述三极管的发射极连接,
    所述第三电容的另一端与所述第十七分压电阻的另一端以及所述三极管的集电极连接,
    所述二极管的负极与所述第十七分压电阻的一端以及MOS管的栅极连接;
    所述二极管的正极与所述第十七分压电阻的另一端以及所述MOS管的源极连接后与母线负极连接。
  5. 根据权利要求4所述的电机控制器放电控制电路,其特征在于,放电电路包括:并联的第三放电电阻,第四放电电阻,第五放电电阻和第六放电电阻;
    所述第五放电电阻的一端与所述MOS管的漏极连接;
    所述第五放电电阻的另一端与母线正极连接。
  6. 根据权利要求5所述的电机控制器放电控制电路,其特征在于,所述第三放电电阻,第四放电电阻,第五放电电阻和第六放电电阻的阻值均为110欧姆。
  7. 根据权利要求2所述的电机控制器放电控制电路,其特征在于,所述光耦合器的型号为:ACPL-K30T-000E。
PCT/CN2019/077978 2018-04-02 2019-03-13 一种电机控制器放电控制电路 WO2019192295A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/042,902 US11444528B2 (en) 2018-04-02 2019-03-13 Motor controller electrical-discharge control circuit
EP19781173.0A EP3734819A4 (en) 2018-04-02 2019-03-13 CONTROL CIRCUIT FOR THE ELECTRICAL DISCHARGE OF A MOTOR CONTROLLER
JP2020552006A JP2021516948A (ja) 2018-04-02 2019-03-13 モータコントローラの放電制御回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810283013.2A CN108429444A (zh) 2018-04-02 2018-04-02 一种电机控制器放电控制电路
CN201810283013.2 2018-04-02

Publications (1)

Publication Number Publication Date
WO2019192295A1 true WO2019192295A1 (zh) 2019-10-10

Family

ID=63159835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077978 WO2019192295A1 (zh) 2018-04-02 2019-03-13 一种电机控制器放电控制电路

Country Status (5)

Country Link
US (1) US11444528B2 (zh)
EP (1) EP3734819A4 (zh)
JP (1) JP2021516948A (zh)
CN (1) CN108429444A (zh)
WO (1) WO2019192295A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108429444A (zh) 2018-04-02 2018-08-21 精进电动科技股份有限公司 一种电机控制器放电控制电路
CN108445870B (zh) * 2018-04-02 2021-06-22 精进电动科技股份有限公司 一种电机控制器绝缘监测电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3295898B2 (ja) * 1994-03-03 2002-06-24 株式会社フォレスト 位相制御式ソリッドステートリレー
CN102025272A (zh) * 2009-09-17 2011-04-20 富士迈半导体精密工业(上海)有限公司 放电电路
CN203056953U (zh) * 2012-12-31 2013-07-10 北京配天大富精密机械有限公司 一种驱动器及其母线电容放电电路
CN105406700A (zh) * 2015-12-21 2016-03-16 中国科学院广州能源研究所 一种光伏逆变器母线电容均压及母线过压保护控制电路及***
CN108429444A (zh) * 2018-04-02 2018-08-21 精进电动科技股份有限公司 一种电机控制器放电控制电路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060835A (ja) * 1999-08-20 2001-03-06 Toko Inc Agc電圧発生回路
JP2005065029A (ja) * 2003-08-18 2005-03-10 Mitsubishi Electric Corp 半導体装置
DE102012100951A1 (de) * 2012-02-06 2013-08-08 Semikron Elektronik Gmbh & Co. Kg Schaltungsanordnung für Stromrichter mit Zwischenkreis, sowie Verfahren zum Betreiben eines Stromrichters
AU2012101414B4 (en) * 2012-09-13 2012-11-29 Gerard Lighting Pty Ltd Opto-coupler speedup circuit
CN104993676A (zh) * 2015-06-26 2015-10-21 徐州上若科技有限公司 一种控制母线直流电容电压放电电路
JP2017118717A (ja) * 2015-12-24 2017-06-29 株式会社安川電機 ゲートドライブ回路、インバータ回路、及びモータ制御装置
CN106787657A (zh) * 2016-12-29 2017-05-31 上海新时达电气股份有限公司 车载驱动控制器电容放电电路
CN206332610U (zh) * 2016-12-29 2017-07-14 上海新时达电气股份有限公司 车载驱动控制器电容放电电路
CN208461688U (zh) * 2018-04-02 2019-02-01 精进电动科技股份有限公司 一种电机控制器放电控制电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3295898B2 (ja) * 1994-03-03 2002-06-24 株式会社フォレスト 位相制御式ソリッドステートリレー
CN102025272A (zh) * 2009-09-17 2011-04-20 富士迈半导体精密工业(上海)有限公司 放电电路
CN203056953U (zh) * 2012-12-31 2013-07-10 北京配天大富精密机械有限公司 一种驱动器及其母线电容放电电路
CN105406700A (zh) * 2015-12-21 2016-03-16 中国科学院广州能源研究所 一种光伏逆变器母线电容均压及母线过压保护控制电路及***
CN108429444A (zh) * 2018-04-02 2018-08-21 精进电动科技股份有限公司 一种电机控制器放电控制电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3734819A4 *

Also Published As

Publication number Publication date
US11444528B2 (en) 2022-09-13
EP3734819A4 (en) 2021-03-17
US20210057985A1 (en) 2021-02-25
EP3734819A1 (en) 2020-11-04
JP2021516948A (ja) 2021-07-08
CN108429444A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
CN109510176B (zh) 一种智能功率模块驱动保护电路
WO2019192295A1 (zh) 一种电机控制器放电控制电路
CN109861518A (zh) 一种限流启动电路和电源转换电路
CN206498237U (zh) 一种直流充电桩电路
CN105322773B (zh) 缓启动电路及其操作方法
CN208461688U (zh) 一种电机控制器放电控制电路
CN108199568A (zh) 一种抑制浪涌电流电路
CN103117652B (zh) 基于热敏电阻的单相整流器软上电电路
CN204334331U (zh) 车载加热器的风扇驱动电源
CN107465173B (zh) 一种空间电源辅助电源保护电路
CN217427985U (zh) 缓启动电路和开关电源
CN216959294U (zh) 过压保护电路及电子设备
CN203278688U (zh) 一种利于提高转换效率和使用效能的正弦波逆变器
CN211859597U (zh) 一种峰值限流充电浪涌电流抑制电路
CN209963755U (zh) 一种直入直出的供电电路及电源
CN203859709U (zh) 直流电机节能软起动控制柜
CN112072903A (zh) 一种反激式变压器开关电源的负载保护装置、方法和电器设备
KR101171739B1 (ko) 스위치 전원 주파 과전압 보호회로
CN201937247U (zh) 异常高电压保护电路
CN219659419U (zh) 一种过温保护电路及开关电源
CN207315714U (zh) 一种电动汽车的冷却风扇控制电路
CN217159558U (zh) 一种大功率收割机调压稳压控制器
CN219351317U (zh) 预充电路及电池***
CN219760629U (zh) 一种电源保护电路
CN215300149U (zh) 一种多种保护的dcdc使能电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019781173

Country of ref document: EP

Effective date: 20200731

ENP Entry into the national phase

Ref document number: 2020552006

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE