WO2019191885A1 - 传输配置信息、接收配置信息的方法和设备 - Google Patents

传输配置信息、接收配置信息的方法和设备 Download PDF

Info

Publication number
WO2019191885A1
WO2019191885A1 PCT/CN2018/081647 CN2018081647W WO2019191885A1 WO 2019191885 A1 WO2019191885 A1 WO 2019191885A1 CN 2018081647 W CN2018081647 W CN 2018081647W WO 2019191885 A1 WO2019191885 A1 WO 2019191885A1
Authority
WO
WIPO (PCT)
Prior art keywords
cqi
value range
mcs
configuration information
terminal device
Prior art date
Application number
PCT/CN2018/081647
Other languages
English (en)
French (fr)
Inventor
林亚男
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201880003177.3A priority Critical patent/CN109644118B/zh
Priority to EP18913418.2A priority patent/EP3633893A4/en
Priority to CN202010399349.2A priority patent/CN111555853B/zh
Priority to PCT/CN2018/081647 priority patent/WO2019191885A1/zh
Publication of WO2019191885A1 publication Critical patent/WO2019191885A1/zh
Priority to US16/733,085 priority patent/US11489615B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/203Details of error rate determination, e.g. BER, FER or WER
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0005Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to payload information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0011Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to payload information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication

Definitions

  • Embodiments of the present invention relate to the field of communications, and more particularly, to a method and apparatus for transmitting configuration information, receiving configuration information.
  • the fifth-generation mobile communication technology (5-Generation, 5G) New Radio (NR) system introduces the Ultra-Reliable and Low Latency Communication (URLLC) service, which is characterized by extremes. Ultra-reliable (eg, 99.999%) transmission is achieved within the time delay (eg, 1 ms).
  • a technical scheme of channel quality indicator (CQI) feedback under the block error rate (BLER) is proposed, and the corresponding data transmission can also be adopted.
  • CQI channel quality indicator
  • BLER block error rate
  • MCS Modulation and Coding Scheme
  • a method and apparatus for transmitting configuration information and receiving configuration information are provided.
  • the terminal device is enabled to feed back the CQI to the network device for different BLERs.
  • a method of transmitting configuration information including:
  • the network device determines configuration information, where the configuration information is used to indicate, to the terminal device, a first channel quality indicator CQI value range in the first target block error rate BLER;
  • the network device sends the configuration information to the terminal device.
  • the network device indicates, by using the configuration information, the first CQI value range of the first BLER to the terminal device, and the manner of configuring the CQI table is relatively effective to save the overhead of the high layer signaling.
  • the network device can configure a continuous CQI value range for the terminal device according to the continuous change of the user channel quality, so that the configured CQI value range can greatly match the user.
  • the change characteristics of the channel improves the reliability of the CQI feedback.
  • the network device can adjust the length of the value range according to the application scenario, thereby reducing the number of bits when the terminal device feeds back the CQI, thereby avoiding resource waste and further improving.
  • the reliability of CQI feedback can be configured for different target BLERs, so that the configured CQI value range matches the user channel environment and the transmission requirement, and the indication efficiency and reliability of the CQI can be improved.
  • the first CQI value range includes a part or all of the CQI index in the CQI table except the first CQI index, where the first CQI index is used to reflect that the terminal device reaches the The modulation coding mode required by the first target BLER is not in the range of the CQI table, or the first CQI value range includes some or all of the CQI indexes in the CQI table.
  • the configuration information includes:
  • the first indication information is used to indicate a location of a starting position of the first CQI value range in a CQI table.
  • the length of the first CQI value range in the CQI table is pre-configured.
  • the configuration information includes:
  • the second indication information is used to indicate the length of the first CQI value range in the CQI table.
  • the starting position of the CQI value range under different target BLERs is different in the CQI table.
  • the CQI value ranges in different target BLERs are the same in the CQI table, or the CQI value ranges in different target BLERs are different in the CQI table.
  • the configuration information is further used to indicate, to the terminal device, a first modulation and coding policy MCS value range corresponding to the first type of the multiple types.
  • the multiple types are distinguished by at least one of a downlink control information DCI format, a search space, and a target BLER.
  • the first MCS value range includes some or all of the MCS indexes in the MCS table.
  • the configuration information includes:
  • a third indication information where the third indication information is used to indicate a location of a starting position of the first MCS value range in the MCS table.
  • the length of the first MCS value range in the MCS table is pre-configured.
  • the configuration information further includes:
  • the fourth indication information is used to indicate the length of the first MCS value range in the MCS table.
  • the starting positions of the MCS value ranges corresponding to different types are different in the MCS table.
  • the MCS value ranges corresponding to different types are the same in the MCS table, or the MCS value ranges corresponding to different types are different in the MCS table.
  • a method for receiving configuration information including:
  • the terminal device selects a CQI index and reports the CQI index to the network device in the second CQI value range.
  • the first CQI value range includes a part or all of the CQI index in the CQI table except the first CQI index, where the first CQI index is used to reflect that the terminal device reaches the The modulation coding mode required by the first target BLER is not in the range of the CQI table, or the first CQI value range includes some or all CQI indexes in the CQI table;
  • the determining, by the terminal device, the second CQI value range according to the configuration information including:
  • the terminal device determines the range of the first CQI value range and the first CQI index to be the second CQI value range.
  • a network device including:
  • a determining unit configured to determine configuration information, where the configuration information is used to indicate, by the terminal device, a first channel quality indication CQI value range in the first target block error rate BLER;
  • a sending unit configured to send the configuration information to the terminal device.
  • a terminal device including:
  • a receiving unit configured to receive configuration information sent by the network device, where the configuration information is used to indicate, to the terminal device, a first channel quality indicator CQI value range in the first target block error rate BLER;
  • the processing unit is configured to determine a second CQI value range according to the configuration information, and select a CQI index and report the CQI index to the network device in the second CQI value range.
  • a network device including:
  • a processor configured to determine configuration information, where the configuration information is used to indicate, by the terminal device, a first channel quality indication CQI value range in the first target block error rate BLER;
  • a transmitter configured to send the configuration information to the terminal device.
  • a terminal device including:
  • a receiver configured to receive configuration information sent by the network device, where the configuration information is used to indicate, to the terminal device, a first channel quality indication CQI value range in the first target block error rate BLER;
  • a processor configured to determine a second CQI value range according to the configuration information, and select a CQI index and report the CQI index to the network device in the second CQI value range.
  • a computer readable medium for storing a computer program comprising instructions for performing the method embodiment of the first aspect or the second aspect described above.
  • a computer chip comprising: an input interface, an output interface, at least one processor, a memory, the processor is configured to execute code in the memory, and when the code is executed, the processing.
  • a computer chip comprising: an input interface, an output interface, at least one processor, and a memory, wherein the processor is configured to execute code in the memory, when the code is executed, the processing.
  • a communication system comprising the network device as described above, and the terminal device described above.
  • FIG. 1 is an example of an application scenario of the present invention.
  • FIG. 2 is a schematic flowchart of a method for sending configuration information according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for receiving configuration information according to an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a network device according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of another network device according to an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of another terminal device according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a 5G application scenario according to an embodiment of the present invention.
  • the communication system 100 can include a terminal device 110 and a network device 120.
  • Network device 120 can communicate with terminal device 110 over an air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120.
  • the embodiment of the present invention is only exemplified by the 5G communication system 100, but the embodiment of the present invention is not limited thereto. That is to say, the technical solution of the embodiment of the present invention can be applied to various scenarios including a 5G communication system.
  • a hybrid deployment scenario composed of a 5G communication system and a first communication system, and the like.
  • the first communication system can be any communication system.
  • LTE Long Term Evolution
  • TDD LTE Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the present invention describes various embodiments in connection with network devices and terminal devices.
  • the network device 120 may refer to any entity on the network side that is used to send or receive signals.
  • a base station device or the like in a 5G network may refer to any entity on the network side that is used to send or receive signals.
  • the terminal device 110 can be any terminal device. Specifically, the terminal device 110 can communicate with one or more core networks (Core Network) via a radio access network (RAN), and can also be referred to as an access terminal, a user equipment (User Equipment, UE), Subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • RAN radio access network
  • UE user equipment
  • Subscriber unit Subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • it can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), and a wireless communication function.
  • one device transmits data to another device (such as a terminal device) in blocks.
  • the sender calculates a Cyclic Redundancy Check (CRC) using the data in the block and sends it along with the block to the receiver.
  • CRC Cyclic Redundancy Check
  • the receiving end can calculate a CRC according to the received data, and compare with the received CRC. If the two are equal, the receiving end can consider that the correct data is successfully received, and reply an acknowledgement (ACK) to the transmitting end; If the two are not equal, the receiving end can consider that the erroneous data is received and reply a non-acknowledgement (NACK) to the transmitting end to request the transmitting end to retransmit the block to the receiving end.
  • ACK acknowledgement
  • NACK non-acknowledgement
  • the sender If, in a certain period of time, the sender does not receive a reply from the receiver, the sender assumes that the previously transmitted block does not reach the receiver, and the sender automatically retransmits the block.
  • the block error rate can be understood as the percentage of blocks that are erroneous in all transmitted blocks (only the initial blocks are calculated), and the target BLER can be understood as an erroneous block. The percentage of all transmitted blocks is guaranteed to be within a certain value. For example, in practical applications, as an example, the target BLER of the control channel may be 1%, and the target BLER of the data channel may be 10%.
  • the ACK/NACK of the retransmitted block may not be calculated when calculating the BLER. That is to say, the BLER is 10% in the case of Hybrid Automatic Repeat Request (HARQ) retransmission, and the BLER is about 1% after the HARQ retransmission.
  • the radio link layer control protocol Radio
  • the downlink scheduling can be performed by the network device, and the network device acts as the transmitting end, and the specific channel condition of the terminal device is not known.
  • the measurement of the channel quality may be performed by the terminal device.
  • the terminal device may quantize the channel quality into a sequence of 0 to 15 (for example, may be carried by a 4-bit number), and is defined as a CQI, and the network device may determine the coding mode according to the reported CQI.
  • the CQI selection criterion may be that the error rate of the transport block received by the terminal device does not exceed a certain value (for example, 10%).
  • the CQI reported by the terminal device is related not only to the signal to interference plus noise ratio (SINR) of the downlink reference signal but also to the sensitivity of the UE receiver.
  • SINR signal to interference plus noise ratio
  • the CQI value used for the decoding error rate (ie, BLER) of the PDSCH is less than 10%. It can be understood that the UE needs to evaluate the downlink according to the measurement result (such as SINR). The characteristics of the road are evaluated, and the BLER value obtained by the result is evaluated, and then the corresponding CQI value is reported according to the limit of BLER ⁇ 10%.
  • the different values of CQI determine the difference between the downlink modulation mode and the transport block size. The larger the CQI value is, the higher the modulation coding mode is adopted, the higher the efficiency, and the larger the corresponding transmission block, so the higher the downlink peak throughput is.
  • the reporting period of the CQI in the time domain and the CQI granularity in the frequency domain may be configured by the network device.
  • the embodiment of the present invention does not specifically limit the reporting form of the CQI.
  • it may be periodically reported and carried by a Physical Uplink Control Channel (PUCCH), and its period is configured by Radio Resource Control (RRC).
  • RRC Radio Resource Control
  • it may be aperiodic reporting, and may be carried by a Physical Uplink Shared Channel (PUSCH), and may be transmitted in any Transmission Time Interval (TTI), and is determined by uplink scheduling of the network device.
  • the full-band CQI is reported, that is, the CQI in the entire system bandwidth is reported.
  • the sub-band CQI reports that the terminal device reports the CQI index in multiple sub-bands, and the sub-band bandwidth is related to the system bandwidth, and is configured by the RRC.
  • the URLLC service may also be introduced in the communication system shown in FIG. 1 to achieve ultra-high reliability (for example, 99.999%) transmission in an extreme delay (for example, 1 ms).
  • the terminal device when transmitting a service with lower reliability requirements, can be enabled to feed back the CQI index based on the values of the multiple BLERs, for example, the corresponding BLER can be reported based on the BLER less than 10% limit. CQI index.
  • the CQI index may be fed back based on the lower BLER, for example, the corresponding CQI index is reported based on the BLER less than 1% limit.
  • the terminal device may feed back a Channel Quality Indicator (CQI) index based on one of a plurality of target block error rates (BLERs).
  • CQI Channel Quality Indicator
  • BLERs target block error rates
  • MCS Modulation and Coding Scheme
  • the terminal device feeds back the CQI index based on the target BLER
  • the range of its CQI index is determined by the CQI table.
  • the CQI table in the embodiment of the present invention is exemplarily described below.
  • the CQI index has a certain correspondence with the modulation mode, the code rate, and the spectrum utilization efficiency.
  • the CQI table may be a suitable variant of Table 1 below.
  • the spectrum utilization efficiency can be determined by usually simulation or experiment.
  • the out of range corresponds to the CQI index 0. It can be understood that the downlink signal quality of the terminal device is very poor, and the difference is that the target BLER cannot be satisfied in any modulation mode and code rate in the CQI table.
  • the terminal device may feed back the CQI based on the multiple target BLERs, that is, the terminal device feeds back the CQI index based on the target BLERs of the multiple target BLERs.
  • the terminal device is enabled to adapt to different target BLERs for services with different reliability requirements.
  • one CQI table may be configured for each of the plurality of target BLERs, or one CQI table may be shared by other display indications. For example, a target BLER for a service with high reliability requirements (for example, a URLLC service) and a target BLER for a service with a lower reliability requirement may respectively configure one CQI table, or may share different values in a CQI table.
  • the terminal device feeds back the CQI based on the multiple target BLERs, and the CQI feedback of the multiple target BLERs is based on multiple CQI tables, the CQI indication overhead is excessive, thereby reducing the user experience.
  • the implementation manner of the terminal device based on multiple target BLER feedback CQIs is exemplarily described below with reference to FIG. 2 .
  • FIG. 2 is a schematic flowchart of a method for feeding back channel quality according to an embodiment of the present invention. As shown in FIG. 2, the method may include the following steps:
  • the network device determines configuration information, where the configuration information is used to indicate, to the terminal device, a first channel quality indication CQI value range in the first target BLER.
  • the network device sends the configuration information to the terminal device.
  • the network device indicates, by using the configuration information, the first CQI value range of the first BLER to the terminal device, and the manner of configuring the CQI table is relatively effective to save the overhead of the high layer signaling.
  • the network device can configure a continuous CQI value range for the terminal device according to the continuous change of the user channel quality, so that the configured CQI value range can greatly match the user.
  • the change characteristics of the channel improves the reliability of the CQI feedback.
  • the network device can adjust the length of the value range according to the application scenario, thereby reducing the number of bits when the terminal device feeds back the CQI, thereby avoiding resource waste and further improving.
  • the reliability of CQI feedback can be configured for different target BLERs, so that the configured CQI value range matches the user channel environment and the transmission requirement, and the indication efficiency and reliability of the CQI can be improved.
  • the first CQI value range may include some or all CQI indexes in the CQI table except the first CQI index, where the first CQI index is used to reflect the modulation code required by the terminal device to reach the first target BLER.
  • the mode is not within the scope of the CQI table, or the first CQI value range includes some or all of the CQI indexes in the CQI table.
  • the first CQI index is index 0 in Table 1.
  • multiple target BLERs may be corresponding to different value ranges in the same CQI table.
  • the same CQI table may be a pre-configured table, for example, a static configuration or a semi-static configuration. The following takes the determination method of the first CQI value range of the first target BLER as an example:
  • the configuration information may include: first indication information, where the first indication information is used to indicate a location of a starting position of the first CQI value range in a CQI table.
  • the length of the first CQI value range in the CQI table may be pre-configured. In other alternative embodiments, the length of the first CQI value range in the CQI table may also be dynamically indicated.
  • the configuration information may further include: second indication information, where the second indication information is used to indicate The first CQI value ranges from the length in the CQI table.
  • the positions of the starting point positions of the CQI value ranges in different target BLERs in the CQI table may be different from each other, or may be partially the same, or may be completely the same, which is not specifically limited.
  • the CQI value ranges under different target BLERs are the same in the CQI table, or the CQI value ranges under different target BLERs are different in the CQI table. That is, the lengths of the CQI values in the CQI table of the different target BLERs may be different from each other, or may be partially the same, or may be identical, and are not specifically limited.
  • the configuration information includes the first indication information
  • the terminal device may be based on the location of the start position of the first CQI value range indicated by the first indication information in the CQI table, and the first CQI value range is in the CQI.
  • the pre-configured length in the table determines a first CQI value range under the first target BLER (ie, the CQI table used by the first terminal device).
  • the configuration information includes the first indication information and the second indication information
  • the terminal device may be based on the location of the starting position of the first CQI value range indicated by the first indication information in the CQI table, and the second The length of the first CQI value range indicated by the indication information in the CQI table determines a first CQI value range under the first target BLER (ie, the CQI table used by the first terminal device).
  • one feedback can be selected from the third element to the 18th element.
  • one feedback may be selected from the first element to the eighth element.
  • the configuration information includes the first indication information, or the configuration information includes the first indication information and the second indication information as an example. In other alternative embodiments, the configuration information may also be used. Only the second indication information is included.
  • the embodiment of the invention is not specifically limited. For example, before configuring the CQI table, the CQI value range corresponding to the specific target BLER is agreed. For example, the first CQI corresponding to the first target BLER is in the range of the third element to the 18th element in the CQI table.
  • the corresponding data transmission may also adopt a lower Modulation and Coding Scheme (MCS).
  • MCS Modulation and Coding Scheme
  • a method for indicating a value range of a terminal device MCS is also provided.
  • the foregoing configuration information is further used to indicate, to the terminal device, a first MCS value range corresponding to the first type of the multiple types.
  • the multiple types may be distinguished by at least one of a Downlink Control Information (DCI) format, a search space, and a target BLER.
  • DCI Downlink Control Information
  • the first MCS value range may include some or all of the MCS indexes in the MCS table.
  • the configuration information may include: third indication information, where the third indication information is used to indicate a location of a starting position of the first MCS value range in the MCS table. Further, the length of the first MCS value range in the MCS table is pre-configured. In other alternative embodiments, the length of the first MCS value range in the MCS table may also be dynamically indicated.
  • the configuration information may further include: fourth indication information, where the fourth indication information is used to indicate The first MCS takes a range of values in the MCS table.
  • the positions of the starting point positions of the MCS value ranges in different target BLERs in the MCS table may be different from each other, or may be partially the same, or may be completely the same, which is not specifically limited.
  • the MCS value range under different target BLERs is the same in the MCS table, or the MCS value range under different target BLERs is different in the MCS table. That is, the lengths of the MCS values in the different target BLERs may not be different from each other in the MCS table, or may be partially the same, or may be completely the same, which is not specifically limited.
  • the configuration information includes the third indication information
  • the terminal device may be based on the location of the start position of the first MCS value range indicated by the third indication information in the MCS table, and the first MCS value range is in the MCS.
  • the pre-configured length in the table determines a first MCS value range under the first target BLER (ie, the MCS table used by the first terminal device).
  • the first indication information is used to indicate that the starting position of the MCS value range is the third element of the MCS index column in the MCS table shown in Table 1, and the MCS is taken.
  • the length of the value range in the MCS table is 16, and the MCSCH of the PDSCH Type 1 scheduling ranges from the third element to the 18th element.
  • the third indication information is used to indicate that the starting position of the MCS value range is the first element of the MCS index column in the MCS table shown in Table 1, and the MCS value range is The length of the MCS table is 16, and the MCSCH of the PDSCH type 2 scheduling ranges from the first element to the 16th element. That is, when the PDSCH type 1 is scheduled, the terminal device can select one MCS demodulated data from the third element to the 18th element. When PDSCH Type 2 is scheduled, the terminal device can select one MCS demodulated data from the 1st element to the 16th element.
  • the terminal device may be based on the location of the starting position of the first MCS value range indicated by the third indication information in the MCS table, and the fourth The length of the first MCS value range indicated by the indication information in the MCS table determines a first MCS value range under the first target BLER (ie, the MCS table used by the first terminal device).
  • the third indication information is used to indicate that the starting position of the MCS value range is the third element of the MCS index column in the MCS table shown in Table 1, the The four indication information is used to indicate that the MCS value range is 16 in the MCS table, and the MCSCH of the PDSCH Type 1 scheduling ranges from the third element to the 18th element.
  • the third indication information is used to indicate that the starting position of the MCS value range is the first element of the MCS index column in the MCS table shown in Table 1, and the fourth indication information is used.
  • the length of the MCS in the MCS table is 8 and the MCS of the PDSCH type 2 is in the range of the first element to the eighth element.
  • the terminal device can select one MCS demodulated data from the third element to the 18th element.
  • the terminal device can select one MCS demodulated data from the 1st element to the 8th element.
  • the configuration information includes the third indication information and the fourth indication information.
  • the configuration information may also be used. Only the fourth indication information is included.
  • the embodiment of the invention is not specifically limited. For example, before configuring the MCS table, the MCS value range corresponding to the specific type is agreed. For example, it is agreed that the first MCS corresponding to the first type ranges from the third element to the 18th element in the MCS table.
  • FIG. 3 is a schematic flowchart of a method for reporting a CQI index after receiving the configuration information by the terminal device side. Specifically, as shown in FIG. 2, the method includes:
  • the terminal device receives the configuration information sent by the network device, where the configuration information is used to indicate, by the terminal device, a first channel quality indication CQI value range in the first target BLER in the multiple target block error rate BLERs;
  • the terminal device determines a second CQI value range according to the configuration information.
  • the terminal device selects a CQI index and reports the CQI index to the network device in the second CQI value range.
  • the first CQI value range includes a part or all of the CQI index in the CQI table except the first CQI index, where the first CQI index is used to reflect the modulation code required by the terminal device to reach the first target BLER.
  • the mode is not in the range of the CQI table, or the first CQI value range includes some or all of the CQI indexes in the CQI table; thus, in S320, the terminal device takes the first CQI value range and the first CQI The range formed by the index is determined as the range of the second CQI value. It should be understood that, in S320, when the first CQI value range includes some or all CQI indexes in the CQI table, the terminal device may directly determine the first CQI value range as the second CQI value range.
  • FIG. 4 is a schematic block diagram of a network device according to an embodiment of the present invention.
  • the network device may include:
  • the determining unit 410 is configured to determine configuration information, where the configuration information is used to indicate, by the terminal device, a first channel quality indication CQI value range in the first target BLER, and the sending unit 420 is configured to send the configuration information to the terminal device.
  • the first CQI value range includes a part or all of the CQI index in the CQI table except the first CQI index, where the first CQI index is used to reflect the modulation required by the terminal device to reach the first target BLER.
  • the encoding mode is not within the scope of the CQI table, or the first CQI value range includes some or all of the CQI indexes in the CQI table.
  • the configuration information includes: first indication information, where the first indication information is used to indicate a location of a starting position of the first CQI value range in a CQI table.
  • the length of the first CQI value range in the CQI table is pre-configured.
  • the configuration information includes: second indication information, where the second indication information is used to indicate a length of the first CQI value range in the CQI table.
  • the starting position of the CQI value range under different target BLERs is different in the CQI table.
  • the CQI value ranges in different target BLERs are the same in the CQI table, or the CQI value ranges in different target BLERs are different in the CQI table.
  • the configuration information is further used to indicate, to the terminal device, a first modulation and coding policy MCS value range corresponding to the first type of the multiple types.
  • the multiple types are distinguished by at least one of a downlink control information DCI format, a search space, and a target BLER.
  • the first MCS value range includes some or all MCS indexes in the MCS table.
  • the configuration information includes: third indication information, where the third indication information is used to indicate a location of a starting position of the first MCS value range in the MCS table.
  • the length of the first MCS value range in the MCS table is pre-configured.
  • the configuration information further includes: fourth indication information, where the fourth indication information is used to indicate a length of the first MCS value range in the MCS table.
  • the starting positions of the MCS value ranges corresponding to different types are different in the MCS table.
  • the MCS value ranges of the different types are the same in the MCS table, or the MCS value ranges of the different types are different in the MCS table.
  • the determining unit 410 may be implemented by a processor, and the transmitting single eye 420 may be implemented by a transceiver.
  • network device 500 can include a processor 510, a transceiver 520, and a memory 530.
  • the network device 500 can implement the various processes implemented by the network device in the foregoing method embodiments of FIG. 2 and FIG. 3. To avoid repetition, details are not described herein again. That is, the method embodiment in the embodiment of the present invention may be implemented by a processor and a transceiver.
  • FIG. 6 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device may include:
  • the receiving unit 610 is configured to receive configuration information that is sent by the network device, where the configuration information is used to indicate, by the terminal device, a first channel quality indicator CQI value range in the first target BLER, and the processing unit 620 is configured to determine, according to the configuration information, The second CQI value ranges, and within the second CQI value range, selects a CQI index and reports the CQI index to the network device.
  • the first CQI value range includes a part or all of the CQI index in the CQI table except the first CQI index, where the first CQI index is used to reflect the modulation required by the terminal device to reach the first target BLER.
  • the encoding mode is not in the range of the CQI table, or the first CQI value range includes some or all of the CQI indexes in the CQI table; wherein the processing unit 620 is specifically configured to:
  • the configuration information includes: first indication information, where the first indication information is used to indicate a location of a starting position of the first CQI value range in a CQI table.
  • the length of the first CQI value range in the CQI table is pre-configured.
  • the configuration information includes: second indication information, where the second indication information is used to indicate a length of the first CQI value range in the CQI table.
  • the starting position of the CQI value range under different target BLERs is different in the CQI table.
  • the CQI value ranges in different target BLERs are the same in the CQI table, or the CQI value ranges in different target BLERs are different in the CQI table.
  • the configuration information is further used to indicate, to the terminal device, a first modulation and coding policy MCS value range corresponding to the first type of the multiple types.
  • the multiple types are distinguished by at least one of a downlink control information DCI format, a search space, and a target BLER.
  • the first MCS value range includes some or all MCS indexes in the MCS table.
  • the configuration information includes: third indication information, where the third indication information is used to indicate a location of a starting position of the first MCS value range in the MCS table.
  • the length of the first MCS value range in the MCS table is pre-configured.
  • the configuration information further includes: fourth indication information, where the fourth indication information is used to indicate a length of the first MCS value range in the MCS table.
  • the starting positions of the MCS value ranges corresponding to different types are different in the MCS table.
  • the MCS value ranges of the different types are the same in the MCS table, or the MCS value ranges of the different types are different in the MCS table.
  • the receiving unit 610 can be implemented by a transceiver
  • the processing unit 620 can be implemented by a processor.
  • the terminal device 700 can include a processor 710, a transceiver 720, and a memory 730.
  • the terminal device 700 can implement the various processes implemented by the terminal device in the foregoing method embodiments of FIG. 3 and FIG. 4, and details are not described herein again to avoid repetition. That is, the method embodiment in the embodiment of the present invention may be implemented by a processor and a transceiver.
  • each step of the method embodiment in the embodiment of the present invention may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software. More specifically, the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like. The storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the processor mentioned in the embodiment of the present invention may be an integrated circuit chip, which has signal processing capability, and may implement or execute the disclosed methods, steps, and logic blocks in the embodiments of the present invention.
  • the above processor may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or Other programmable logic devices, transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory referred to in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • the memory in the embodiment of the present invention may also be a static random access memory (SRAM), a dynamic random access memory (DRAM), or a dynamic random access memory (DRAM).
  • SDRAM Synchronous dynamic random access memory
  • DDR double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection Synchro link DRAM
  • DR RAM direct memory bus
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in the embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product stored in a storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method of the embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种传输配置信息、接收配置信息的方法和设备。该方法包括:网络设备确定配置信息,该配置信息用于为终端设备指示第一目标块差错率BLER下的第一信道质量指示CQI取值范围;该网络设备向该终端设备发送该配置信息。在本发明实施例中,本发明实施例中,网络设备通过该配置信息向终端设备指示第一BLER下的第一CQI取值范围,相对配置CQI表格的方式,能够有效节省高层信令的开销。此外,由于CQI取值范围大小可配置,不仅提高了CQI反馈的可靠性,还能够提高CQI的指示效率。

Description

传输配置信息、接收配置信息的方法和设备 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及传输配置信息、接收配置信息的方法和设备。
背景技术
第五代移动通信技术(5-Generation,5G)新空口(New Radio,NR)***引入了低时延高可靠通信(Ultra-Reliable and Low Latency Communication,URLLC)业务,该业务的特征是在极端的时延内(例如,1ms)实现超高可靠性(例如,99.999%)的传输。为了实现这个目标,提出了更低目标(target)块差错率(block error rate,BLER)下的信道质量指示(Channel Quality Indicator,CQI)反馈的技术方案,相应的数据传输也可以采用更低的调制与编码策略(Modulation and Coding Scheme,MCS)。但是,针对配置两个target BLER的CQI表格设计,现有技术中没有具体解决方案。
发明内容
提供了一种传输配置信息、接收配置信息的方法和设备。使得终端设备能够针对不同的BLER向网络设备反馈CQI。
第一方面,提供了一种传输配置信息的方法,包括:
网络设备确定配置信息,所述配置信息用于为终端设备指示第一目标块差错率BLER下的第一信道质量指示CQI取值范围;
所述网络设备向所述终端设备发送所述配置信息。
在本发明实施例中,网络设备通过该配置信息向终端设备指示第一BLER下的第一CQI取值范围,相对配置CQI表格的方式,能够有效节省高层信令的开销。此外,由于CQI取值范围大小可配置,首先,网络设备可以根据用户信道质量连续变化的特点,为终端设备配置连续的CQI取值范围,使得配置的CQI取值范围能够极大程度的符合用户信道的变化特征,提高了CQI反馈的可靠性,进一步地,因此网络设备还可以根据应用场景,调整取值范围长度,进而减少终端设备反馈CQI时的比特数,能够避免发生资源浪费并进一步提高了CQI反馈的可靠性。另外,在本发明实施例中,可以为不同target BLER配置不同的CQI取值范围,使得配置的CQI取值范围与用户信道环境和传输需求匹配,能够提高CQI的指示效率以及可靠性。
在一些可能的实现方式中,所述第一CQI取值范围包括CQI表格中除第一CQI索引之外的部分或全部CQI索引,所述第一CQI索引用于反映所述终端设备达到所述第一目标BLER所需要的调制编码方式不在所述CQI表格范围内,或者,所述第一CQI取值范围包括CQI表格中部分或全部CQI索引。
在一些可能的实现方式中,所述配置信息包括:
第一指示信息,所述第一指示信息用于指示所述第一CQI取值范围的起点位置在CQI表格中的位置。
在一些可能的实现方式中,所述第一CQI取值范围在CQI表格中的长度是预配置的。
在一些可能的实现方式中,所述配置信息包括:
第二指示信息,所述第二指示信息用于指示所述第一CQI取值范围在CQI表格中的长度。
在一些可能的实现方式中,不同目标BLER下的CQI取值范围的起点位置在CQI表格中的位置不同。
在一些可能的实现方式中,不同目标BLER下的CQI取值范围在CQI表格中的长度相同,或者,不同目标BLER下的CQI取值范围在CQI表格中的长度不同。
在一些可能的实现方式中,所述配置信息还用于为所述终端设备指示多种类型中的第一类型对应的第一调制与编码策略MCS取值范围。
在一些可能的实现方式中,所述多种类型通过下行控制信息DCI格式、搜索空间以及目标BLER中的至少一项区分。
在一些可能的实现方式中,所述第一MCS取值范围包括MCS表格中的部分或全部MCS索引。
在一些可能的实现方式中,所述配置信息包括:
第三指示信息,所述第三指示信息用于指示所述第一MCS取值范围的起点位置在MCS表格中的位置。
在一些可能的实现方式中,所述第一MCS取值范围在MCS表格中的长度是预配置的。
在一些可能的实现方式中,所述配置信息还包括:
第四指示信息,所述第四指示信息用于指示所述第一MCS取值范围在MCS表格中的长度。
在一些可能的实现方式中,不同类型对应的MCS取值范围的起点位置在MCS表格中的位置不同。
在一些可能的实现方式中,不同类型对应的MCS取值范围在MCS表格中的长度相同,或者,不同类型对应的MCS取值范围在MCS表格中的长度不同。
第二方面,提供了一种接收配置信息的方法,包括:
终端设备接收网络设备发送的配置信息,所述配置信息用于为终端设备指示第一目标块差错率BLER下的第一信道质量指示CQI取值范围;
所述终端设备根据所述配置信息确定第二CQI取值范围;
所述终端设备在所述第二CQI取值范围内,选择CQI索引并向所述网络设备上报所述CQI索引。
在一些可能的实现方式中,所述第一CQI取值范围包括CQI表格中除第一CQI索引之外的部分或全部CQI索引,所述第一CQI索引用于反映所 述终端设备达到所述第一目标BLER所需要的调制编码方式不在所述CQI表格范围内,或者,所述第一CQI取值范围包括CQI表格中部分或全部CQI索引;
其中,所述终端设备根据所述配置信息确定第二CQI取值范围,包括:
所述终端设备将所述第一CQI取值范围和所述第一CQI索引形成的范围,确定为所述第二CQI取值范围。
第三方面,提供了一种网络设备,包括:
确定单元,用于确定配置信息,所述配置信息用于为终端设备指示第一目标块差错率BLER下的第一信道质量指示CQI取值范围;
发送单元,用于向所述终端设备发送所述配置信息。
第四方面,提供了一种终端设备,包括:
接收单元,用于接收网络设备发送的配置信息,所述配置信息用于为终端设备指示第一目标块差错率BLER下的第一信道质量指示CQI取值范围;
处理单元,用于根据所述配置信息确定第二CQI取值范围,并在所述第二CQI取值范围内,选择CQI索引并向所述网络设备上报所述CQI索引。
第五方面,提供了一种网络设备,包括:
处理器,用于确定配置信息,所述配置信息用于为终端设备指示第一目标块差错率BLER下的第一信道质量指示CQI取值范围;
发送器,用于向所述终端设备发送所述配置信息。
第六方面,提供了一种终端设备,包括:
接收器,用于接收网络设备发送的配置信息,所述配置信息用于为终端设备指示第一目标块差错率BLER下的第一信道质量指示CQI取值范围;
处理器,用于根据所述配置信息确定第二CQI取值范围,并在所述第二CQI取值范围内,选择CQI索引并向所述网络设备上报所述CQI索引。
第七方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行上述第一方面或第二方面的方法实施例的指令。
第八方面,提供了一种计算机芯片,包括:输入接口、输出接口、至少一个处理器、存储器,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器可以实现上述第一方面及各种实现方式中的发送配置信息的方法中由终端设备执行的各个过程。
第九方面,提供了一种计算机芯片,包括:输入接口、输出接口、至少一个处理器、存储器,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器可以实现前述第二方面及各种实现方式中的接收配置信息的方法中由网络设备执行的各个过程。
第十方面,提供了一种通信***,包括前述所述的网络设备,以及前述所述的终端设备。
附图说明
图1是本发明应用场景的示例。
图2是本发明实施例的发送配置信息的方法的示意性流程图。
图3是本发明实施例的接收配置信息的方法的示意性流程图。
图4是本发明实施例的网络设备的示意性框图。
图5是本发明实施例的另一网络设备的示意性框图。
图6是本发明实施例的终端设备的示意性框图。
图7是本发明实施例的另一终端设备的示意性框图。
具体实施方式
图1是本发明实施例的5G应用场景的示意图。
如图2所示,通信***100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本发明实施例仅以5G通信***100进行示例性说明,但本发明实施例不限定于此。也就是说,本发明实施例的技术方案可以应用于包括5G通信***的各种场景。例如,5G通信***和第一通信***构成的混合部署场景等等。其中,该第一通信***可以是任一种通信***。例如:长期演进(Long Term Evolution,LTE)***、LTE时分双工(Time Division Duplex,TDD)、通用移动通信***(Universal Mobile Telecommunication System,UMTS)等。
此外,本发明结合网络设备和终端设备描述了各个实施例。
其中,网络设备120可以指网络侧的任一种用来发送或接收信号的实体。例如,5G网络中的基站设备等。
终端设备110可以是任意终端设备。具体地,终端设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network)进行通信,也可称为接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。例如,可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备等。
在无线网络中,一个设备(如网络设备)是按块(block)向另一个设备(如终端设备)发送数据的。发送端使用块中的数据计算出一个循环冗余校验(Cyclic Redundancy Check,CRC),并随着该块一起发送到接收端。接收端可以根据收到的数据计算出一个CRC,并与接收到的CRC进行比较,如果二者相等,接收端可以认为成功地收到了正确的数据,并向发送端回复一个确认(ACK);如果二者不相等,接收端可以认为收到了错误的数据,并向发送端回复一个非确认(NACK),以要求发送端向接收端重新传输该块。如果在某个特定的期间内,发送端在一直没有收到接收端的回复的情况下, 则发送端假定之前发送的块没有到达接收端,发送端自动重发该块。在上述的描述中,块差错率(block error rate,BLER)可以理解为出错的块在所有发送的块中所占的百分比(只计算初传的block),而目标BLER可以理解为出错的块在所有发送的块中所占的百分比保证在某一数值内。例如,在实际应用中,作为示例,控制信道的目标BLER可以为1%,数据信道的目标BLER为可以10%。
应当理解,本发明实施例中,计算BLER时可以不把重传的block的ACK/NACK计算在内的。也就是说,在无混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)重传情况下BLER为10%,加入HARQ重传后BLER大概为1%,再加上无线链路层控制协议(Radio Link Control,RLC)层的ARQ后性能可以提升到10^-5数量级。例如,假设发送了500个block的数据,其中499个block回复ACK,1个block回复NACK,则BLER为1/500=0.002*100%=0.2%。
此外,在图1所示的通信***中,可以通过网络设备进行下行调度,而网络设备作为发射端,并不清楚终端设备的具体信道条件。本发明实施例中,该信道质量的衡量可以由终端设备来完成。具体地,终端设备可以把信道质量量化成0~15的序列(例如可以用4bit数来承载),并定义为CQI,网络设备可以根据上报的CQI来决定编码方式。在实际应用中,CQI的选取准则可以是终端设备接收到的传输块的误码率不超过一定数值(例如10%)。具体地,如果BLER大于一定数值(例如10%),则测试失败,反之,则测试成功。因此,终端设备上报的CQI不仅与下行参考信号的信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)有关,还与UE接收机的灵敏度有关。由此对于那些采用了先进信号处理算法(例如干扰消除技术)的UE而言,可以上报一个更高更精准的信道质量指示。
例如,以物理下行共享信道(Physical Downlink Shared Channel,PDSCH)为例,PDSCH的解码错误率(即BLER)小于10%所使用的CQI值可以理解为UE需要根据测量结果(如SINR)评估下行链路特性,并评估结果获取的BLER值,然后根据BLER<10%的限制,上报对应的CQI值。CQI的不同取值决定了下行调制方式以及传输块大小之间的差异。CQI值越大,所采用的调制编码方式越高,效率越大,所对应的传输块也越大,因此所提供的下行峰值吞吐量越高。应当理解,本发明实施例中,可以通过网络设备配置时域上CQI的上报周期和频域上的CQI颗粒度。此外,本发明实施例对CQI的上报形式不做具体限定。例如,可以周期性上报,由物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)承载,其周期由无线资源控制(Radio Resource Control,RRC)进行配置。又例如,也可以是非周期性上报,由物理上行共享信道(Physical Uplink Shared Channel,PUSCH)承载,可以在任何传输时间间隔(Transmission Time Interval,TTI)进行发送,由网络设备的上行调度决定。又例如,全带CQI上报,即上报整个***带宽内的CQI。又例如,子带CQI上报,即终端设备上报多个子带内的CQI 索引,子带带宽和***带宽有关,由RRC进行配置。
本发明实施例中,还可以在图1所示的通信***中引入URLLC业务,为了实现该业务在极端的时延内(例如,1ms)实现超高可靠性(例如,99.999%)的传输。在一个可选地实施例中,在传输对于可靠性要求较低的业务时,可以使得终端设备能够基于多个BLER的值反馈CQI索引,例如,可以基于BLER小于10%的限制,上报对应的CQI索引。而在该终端需要保证数据的传输可靠度时(例如,URLLC业务),可以基于较低的BLER反馈CQI索引,例如,基于BLER小于1%的限制,上报对应的CQI索引。换句话说,终端设备可以基于多个目标(target)块差错率(block error rate,BLER)中的一个BLER,反馈信道质量指示(Channel Quality Indicator,CQI)索引。更进一步地,相应的数据传输也可以采用更低的调制与编码策略(Modulation and Coding Scheme,MCS)。
在实际应用中,终端设备基于目标BLER反馈CQI索引时,其CQI索引的范围是通过CQI表格确定的。下面对本发明实施例中的CQI表格进行示例性说明,在该示例中,CQI索引与调制方式、码率以及频谱利用效率具有一定的对应关系。在其它可替代实施例中,CQI表格可以是下面表1的适当变形。
表1 CQI表格
Figure PCTCN2018081647-appb-000001
Figure PCTCN2018081647-appb-000002
其中,在表1中,频谱利用效率(efficiency)可以通过通常是仿真或试验确定。比如一个资源元素(Resource Element,RE)能承载的信息为5.554,其余为冗余比特(使用64QAM,每个RE的信道比特或者说物理比特为6),这样就是efficiency=5.554。out of range与CQI索引0对应,可以理解为该终端设备的下行信号质量非常差,差到在该CQI表格中任意调制方式和码率下均不能满足目标BLER。
进一步地,在本发明实施例中,终端设备可以基于多个目标BLER反馈CQI,即终端设备基于多个目标BLER一个目标BLER反馈CQI索引。使得终端设备能够针对可靠性要求不同的业务适应不同的目标BLER。更进一步地,可以为该多个目标BLER中的每个目标BLER配置一个CQI表格,也可以通过其它显示指示的方式共用一个CQI表格。例如,针对可靠性要求高的业务的目标BLER(例如URLLC业务)和可靠性要求较低的业务的目标BLER可以分别配置一个CQI表格,也可以共用一个CQI表格中不同的取值范围。但是,如果终端设备基于多个目标BLER反馈CQI,且这多个目标BLER的CQI反馈是基于多个CQI表格时,会导致CQI指示开销过大,进而降低用户体验。下面结合图2对终端设备基于多个目标BLER反馈CQI的实现方式进行示例性说明。
图2是本发明实施例的用于反馈信道质量的方法的示意性流程图。如图2所示,该方法可以包括以下步骤:
S210,网络设备确定配置信息,该配置信息用于为终端设备指示第一目标BLER下的第一信道质量指示CQI取值范围。
S220,该网络设备向该终端设备发送该配置信息。
本发明实施例中,网络设备通过该配置信息向终端设备指示第一BLER下的第一CQI取值范围,相对配置CQI表格的方式,能够有效节省高层信令的开销。此外,由于CQI取值范围大小可配置,首先,网络设备可以根据用户信道质量连续变化的特点,为终端设备配置连续的CQI取值范围,使得配置的CQI取值范围能够极大程度的符合用户信道的变化特征,提高了CQI反馈的可靠性,进一步地,因此网络设备还可以根据应用场景,调整取值范围长度,进而减少终端设备反馈CQI时的比特数,能够避免发生资源浪费并进一步提高了CQI反馈的可靠性。另外,在本发明实施例中,可以为不同target BLER配置不同的CQI取值范围,使得配置的CQI取值范围与用户信道环境和传输需求匹配,能够提高CQI的指示效率以及可靠性。
其中,该第一CQI取值范围可以包括CQI表格中除第一CQI索引之外的部分或全部CQI索引,该第一CQI索引用于反映该终端设备达到该第一目标BLER所需要的调制编码方式不在该CQI表格范围内,或者,该第一CQI取值范围包括CQI表格中部分或全部CQI索引。换句话说,该第一CQI索引为表1中的索引0。
在S210中,可以是多个目标BLER对应同一个CQI表格中不同的取值范围。其中,该同一个CQI表格可以是预配置的表格,例如,静态配置或者半静态配置。下面以第一目标BLER的第一CQI取值范围的确定方式为例进行说明:
在一个实施例中,该配置信息可以包括:第一指示信息,该第一指示信息用于指示该第一CQI取值范围的起点位置在CQI表格中的位置。进一步地,该第一CQI取值范围在CQI表格中的长度可以是预配置的。在其他可替代实施例中,该第一CQI取值范围在CQI表格中的长度也可以是动态指示的,例如,该配置信息还可以包括:第二指示信息,该第二指示信息用于指示该第一CQI取值范围在CQI表格中的长度。应当理解,本发明实施例中,不同目标BLER下的CQI取值范围的起点位置在CQI表格中的位置可以互不不同,也可以部分相同,甚至还可以完全相同,对此不做具体限定。类似地,不同目标BLER下的CQI取值范围在CQI表格中的长度相同,或者,不同目标BLER下的CQI取值范围在CQI表格中的长度不同。即,不同目标BLER下的CQI取值范围在CQI表格中的长度可以互不不同,也可以部分相同,甚至还可以完全相同,对此不做具体限定。
以该配置信息包括该第一指示信息为例,终端设备可以基于该第一指示信息指示的第一CQI取值范围的起点位置在CQI表格中的位置,以及该第一CQI取值范围在CQI表格中的预配置的长度确定第一目标BLER下的第一CQI取值范围(即该第一该终端设备使用的CQI表格)。作为示例,结合表1所示,该第一指示信用于指示target BLER=10^-1下CQI取值范围的起点位置为表1所示的CQI表格中CQI索引列的第3个元素,其CQI取值范围在CQI表格中的长度为16,则target BLER=10^-1对应的CQI取值范围为第3个元素到第18个元素。作为另一示例,该第一指示信息用于指示target BLER=10^-4下CQI取值范围的起点位置为表1所示的CQI表格中CQI索引列的第1个元素,其CQI取值范围在CQI表格中的长度为16,则target BLER=10^-4对应的CQI取值范围为第1个元素到第16个元素。也就是说,当终端设备针对target BLER=10^-1的CQI反馈时可以从第3个元素到第18个元素中选择一个反馈。当终端设备针对target BLER=10^-4的CQI反馈时可以从第1个元素到第16个元素中选择一个反馈。
以该配置信息包括该第一指示信息和该第二指示信息为例,终端设备可以基于该第一指示信息指示的第一CQI取值范围的起点位置在CQI表格中的位置,以及该第二指示信息指示的该第一CQI取值范围在CQI表格中的长度确定第一目标BLER下的第一CQI取值范围(即该第一该终端设备使用的CQI表格)。作为示例,结合表1所示,该第一指示信息用于指示target BLER=10^-1下CQI取值范围的起点位置为表1所示的CQI表格中CQI索引列的第3个元素,该第二指示信息用于指示target BLER=10^-1下CQI取值范围在CQI表格中的长度为16,则target BLER=10^-1对应的CQI取值范围为第3个元素到第18个元素。作为另一示例,该第一指示信息用于指示 target BLER=10^-4下CQI取值范围的起点位置为表1所示的CQI表格中CQI索引列的第1个元素,该第二指示信息用于指示target BLER=10^-4下CQI取值范围在CQI表格中的长度为8,则target BLER=10^-4对应的CQI取值范围为第1个元素到第8个元素。换句话说,当终端设备针对target BLER=10^-1的CQI反馈时可以从第3个元素到第18个元素中选择一个反馈。当终端设备针对target BLER=10^-4的CQI反馈时可以从第1个元素到第8个元素中选择一个反馈。
应理解,上述实施例中仅以该配置信息包括第一指示信息,或者该配置信息包括该第一指示信息和该第二指示信息为例,在其他可替代实施例中,该配置信息也可以只包括该第二指示信息。本发明实施例不做具体限定。例如,在配置CQI表格之前,约定特定目标BLER对应的CQI取值范围。例如,约定第一目标BLER对应的第一CQI取值范围为CQI表格中的第3个元素到第18个元素。
此外,本发明实施例中,针对高可靠性要求的业务,相应的数据传输也可以采用更低的调制与编码策略(Modulation and Coding Scheme,MCS)。为例实现上述目的,本发明实施例中,还提供了一种指示终端设备MCS取值范围的方法。在一个可选地实现方式中,上述涉及的配置信息还用于为该终端设备指示多种类型中的第一类型对应的第一MCS取值范围。应理解,该多种类型可以通过下行控制信息(Downlink Control Information,DCI)格式、搜索空间以及目标BLER中的至少一项区分。其中,该第一MCS取值范围可以包括MCS表格中的部分或全部MCS索引。
在一个实施例中,该配置信息可以包括:第三指示信息,该第三指示信息用于指示该第一MCS取值范围的起点位置在MCS表格中的位置。进一步地,该第一MCS取值范围在MCS表格中的长度是预配置的。在其他可替代实施例中,该第一MCS取值范围在MCS表格中的长度也可以是动态指示的,例如,该配置信息还可以包括:第四指示信息,该第四指示信息用于指示该第一MCS取值范围在MCS表格中的长度。应当理解,本发明实施例中,不同目标BLER下的MCS取值范围的起点位置在MCS表格中的位置可以互不不同,也可以部分相同,甚至还可以完全相同,对此不做具体限定。类似地,不同目标BLER下的MCS取值范围在MCS表格中的长度相同,或者,不同目标BLER下的MCS取值范围在MCS表格中的长度不同。即,不同目标BLER下的MCS取值范围在MCS表格中的长度可以互不不同,也可以部分相同,甚至还可以完全相同,对此不做具体限定。
以该配置信息包括该第三指示信息为例,终端设备可以基于该第三指示信息指示的第一MCS取值范围的起点位置在MCS表格中的位置,以及该第一MCS取值范围在MCS表格中的预配置的长度确定第一目标BLER下的第一MCS取值范围(即该第一该终端设备使用的MCS表格)。作为示例,结合表1所示,针对PDSCH类型1调度,该第一指示信用于指示MCS取值范围的起点位置为表1所示的MCS表格中MCS索引列的第3个元素,其 MCS取值范围在MCS表格中的长度为16,则PDSCH类型1调度的MCS取值范围为第3个元素到第18个元素。作为另一示例,针对PDSCH类型2调度,该第三指示信息用于指示MCS取值范围的起点位置为表1所示的MCS表格中MCS索引列的第1个元素,其MCS取值范围在MCS表格中的长度为16,则PDSCH类型2调度的MCS取值范围为第1个元素到第16个元素。也就是说,当调度PDSCH类型1时,终端设备可以从第3个元素到第18个元素中选择一个MCS解调数据。当调度PDSCH类型2时,终端设备可以从第1个元素到第16个元素中选择一个MCS解调数据。
以该配置信息包括该第三指示信息和该第四指示信息为例,终端设备可以基于该第三指示信息指示的第一MCS取值范围的起点位置在MCS表格中的位置,以及该第四指示信息指示的该第一MCS取值范围在MCS表格中的长度确定第一目标BLER下的第一MCS取值范围(即该第一该终端设备使用的MCS表格)。作为示例,结合表1所示,针对PDSCH类型1调度,该第三指示信息用于指示MCS取值范围的起点位置为表1所示的MCS表格中MCS索引列的第3个元素,该第四指示信息用于指示MCS取值范围在MCS表格中的长度为16,则PDSCH类型1调度的MCS取值范围为第3个元素到第18个元素。作为另一示例,针对PDSCH类型2调度,该第三指示信息用于指示MCS取值范围的起点位置为表1所示的MCS表格中MCS索引列的第1个元素,该第四指示信息用于指示MCS取值范围在MCS表格中的长度为8,则PDSCH类型2调度的MCS取值范围为第1个元素到第8个元素。换句话说,当调度PDSCH类型1时,终端设备可以从第3个元素到第18个元素中选择一个MCS解调数据。当调度PDSCH类型2时,终端设备可以从第1个元素到第8个元素中选择一个MCS解调数据。
应理解,上述实施例中仅以该配置信息包括第三指示信息,或者该配置信息包括该第三指示信息和该第四指示信息为例,在其他可替代实施例中,该配置信息也可以只包括该第四指示信息。本发明实施例不做具体限定。例如,在配置MCS表格之前,约定特定类型对应的MCS取值范围。例如,约定第一类型对应的第一MCS取值范围为MCS表格中的第3个元素到第18个元素。
图3是终端设备侧接收到该配置信息后的上报CQI索引的方法的示意性流程图。具体而言,如图2所示,该方法包括:
S310,终端设备接收网络设备发送的配置信息,该配置信息用于为终端设备指示多个目标块差错率BLER中的第一目标BLER下的第一信道质量指示CQI取值范围;
S320,该终端设备根据该配置信息确定第二CQI取值范围;
S330,该终端设备在该第二CQI取值范围内,选择CQI索引并向该网络设备上报该CQI索引。
进一步地,该第一CQI取值范围包括CQI表格中除第一CQI索引之外的部分或全部CQI索引,该第一CQI索引用于反映该终端设备达到该第一 目标BLER所需要的调制编码方式不在该CQI表格范围内,或者,该第一CQI取值范围包括CQI表格中部分或全部CQI索引;由此,在S320中,该终端设备将该第一CQI取值范围和该第一CQI索引形成的范围,确定为该第二CQI取值范围。应理解,在S320中,该第一CQI取值范围包括CQI表格中部分或全部CQI索引时,该终端设备可以直接将该第一CQI取值范围确定为该第二CQI取值范围。
应当理解,终端设备侧和网络设备侧的技术方案对应,为避免重复,此处不再赘述。
图4是本发明实施例的网络设备的示意性框图。
具体而言,如图4所示,该网络设备可以包括:
确定单元410,用于确定配置信息,该配置信息用于为终端设备指示第一目标BLER下的第一信道质量指示CQI取值范围;发送单元420,用于向该终端设备发送该配置信息。
可选地,该第一CQI取值范围包括CQI表格中除第一CQI索引之外的部分或全部CQI索引,该第一CQI索引用于反映该终端设备达到该第一目标BLER所需要的调制编码方式不在该CQI表格范围内,或者,该第一CQI取值范围包括CQI表格中部分或全部CQI索引。
可选地,该配置信息包括:第一指示信息,该第一指示信息用于指示该第一CQI取值范围的起点位置在CQI表格中的位置。
可选地,该第一CQI取值范围在CQI表格中的长度是预配置的。
可选地,该配置信息包括:第二指示信息,该第二指示信息用于指示该第一CQI取值范围在CQI表格中的长度。
可选地,不同目标BLER下的CQI取值范围的起点位置在CQI表格中的位置不同。
可选地,不同目标BLER下的CQI取值范围在CQI表格中的长度相同,或者,不同目标BLER下的CQI取值范围在CQI表格中的长度不同。
可选地,该配置信息还用于为该终端设备指示多种类型中的第一类型对应的第一调制与编码策略MCS取值范围。
可选地,该多种类型通过下行控制信息DCI格式、搜索空间以及目标BLER中的至少一项区分。
可选地,该第一MCS取值范围包括MCS表格中的部分或全部MCS索引。
可选地,该配置信息包括:第三指示信息,该第三指示信息用于指示该第一MCS取值范围的起点位置在MCS表格中的位置。
可选地,该第一MCS取值范围在MCS表格中的长度是预配置的。
可选地,该配置信息还包括:第四指示信息,该第四指示信息用于指示该第一MCS取值范围在MCS表格中的长度。
可选地,不同类型对应的MCS取值范围的起点位置在MCS表格中的位置不同。
可选地,不同类型对应的MCS取值范围在MCS表格中的长度相同,或者,不同类型对应的MCS取值范围在MCS表格中的长度不同。
本发明实施例中,确定单元410可有处理器实现,发送单眼420可由收发器实现。如图5所示,网络设备500可以包括处理器510、收发器520和存储器530。网络设备500能够实现前述图2和图3的方法实施例中由网络设备所实现的各个过程,为避免重复,这里不再赘述。也就是说,本发明实施例中的方法实施例可以由处理器和收发器实现。
图6是本发明实施例的终端设备的示意性框图。
具体而言,如图6所述,该终端设备可以包括:
接收单元610,用于接收网络设备发送的配置信息,该配置信息用于为终端设备指示第一目标BLER下的第一信道质量指示CQI取值范围;处理单元620,用于根据该配置信息确定第二CQI取值范围,并在该第二CQI取值范围内,选择CQI索引并向该网络设备上报该CQI索引。
可选地,该第一CQI取值范围包括CQI表格中除第一CQI索引之外的部分或全部CQI索引,该第一CQI索引用于反映该终端设备达到该第一目标BLER所需要的调制编码方式不在该CQI表格范围内,或者,该第一CQI取值范围包括CQI表格中部分或全部CQI索引;其中,该处理单元620具体用于:
将该第一CQI取值范围和该第一CQI索引形成的范围,确定为该第二CQI取值范围。
可选地,该配置信息包括:第一指示信息,该第一指示信息用于指示该第一CQI取值范围的起点位置在CQI表格中的位置。
可选地,该第一CQI取值范围在CQI表格中的长度是预配置的。
可选地,该配置信息包括:第二指示信息,该第二指示信息用于指示该第一CQI取值范围在CQI表格中的长度。
可选地,不同目标BLER下的CQI取值范围的起点位置在CQI表格中的位置不同。
可选地,不同目标BLER下的CQI取值范围在CQI表格中的长度相同,或者,不同目标BLER下的CQI取值范围在CQI表格中的长度不同。
可选地,该配置信息还用于为该终端设备指示多种类型中的第一类型对应的第一调制与编码策略MCS取值范围。
可选地,该多种类型通过下行控制信息DCI格式、搜索空间以及目标BLER中的至少一项区分。
可选地,该第一MCS取值范围包括MCS表格中的部分或全部MCS索引。
可选地,该配置信息包括:第三指示信息,该第三指示信息用于指示该第一MCS取值范围的起点位置在MCS表格中的位置。
可选地,该第一MCS取值范围在MCS表格中的长度是预配置的。
可选地,该配置信息还包括:第四指示信息,该第四指示信息用于指示 该第一MCS取值范围在MCS表格中的长度。
可选地,不同类型对应的MCS取值范围的起点位置在MCS表格中的位置不同。
可选地,不同类型对应的MCS取值范围在MCS表格中的长度相同,或者,不同类型对应的MCS取值范围在MCS表格中的长度不同。
本发明实施例中,接收单元610可由收发器实现,处理单元620可有处理器实现。如图7所示,终端设备700可以包括处理器710、收发器720和存储器730。终端设备700能够实现前述图3和图4的方法实施例中由终端设备所实现的各个过程,为避免重复,这里不再赘述。也就是说,本发明实施例中的方法实施例可以由处理器和收发器实现。
在实现过程中,本发明实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。更具体地,结合本发明实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
应理解,本发明实施例中提及的处理器可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。例如,上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等等。此外,通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
此外,本发明实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。应理解,上述存储器为示例性但不是限制性说明,例如,本发明实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
最后,需要注意的是,在本发明实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明实施例。
例如,在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例的目的。
另外,在本发明实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上内容,仅为本发明实施例的具体实施方式,但本发明实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明实施例的保护范围之内。因此,本发明实施例的保护范围应以权利要求的保护范围为准。

Claims (60)

  1. 一种传输配置信息的方法,其特征在于,包括:
    网络设备确定配置信息,所述配置信息用于为终端设备指示第一目标块差错率BLER下的第一信道质量指示CQI取值范围;
    所述网络设备向所述终端设备发送所述配置信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一CQI取值范围包括CQI表格中除第一CQI索引之外的部分或全部CQI索引,所述第一CQI索引用于反映所述终端设备达到所述第一目标BLER所需要的调制编码方式不在所述CQI表格范围内,或者,所述第一CQI取值范围包括CQI表格中部分或全部CQI索引。
  3. 根据权利要求1或2所述的方法,其特征在于,所述配置信息包括:
    第一指示信息,所述第一指示信息用于指示所述第一CQI取值范围的起点位置在CQI表格中的位置。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一CQI取值范围在CQI表格中的长度是预配置的。
  5. 根据权利要求1至3中任一项所述的方法,其特征在于,所述配置信息包括:
    第二指示信息,所述第二指示信息用于指示所述第一CQI取值范围在CQI表格中的长度。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,不同目标BLER下的CQI取值范围的起点位置在CQI表格中的位置不同。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,不同目标BLER下的CQI取值范围在CQI表格中的长度相同,或者,不同目标BLER下的CQI取值范围在CQI表格中的长度不同。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述配置信息还用于为所述终端设备指示第一类型对应的第一调制与编码策略MCS取值范围。
  9. 根据权利要求8所述的方法,其特征在于,所述第一类型通过下行控制信息DCI格式、搜索空间以及目标BLER中的至少一项区分。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一MCS取值范围包括MCS表格中的部分或全部MCS索引。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述配置信息包括:
    第三指示信息,所述第三指示信息用于指示所述第一MCS取值范围的起点位置在MCS表格中的位置。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,所述第一MCS取值范围在MCS表格中的长度是预配置的。
  13. 根据权利要求8至11中任一项所述的方法,其特征在于,所述配置 信息还包括:
    第四指示信息,所述第四指示信息用于指示所述第一MCS取值范围在MCS表格中的长度。
  14. 根据权利要求8至13中任一项所述的方法,其特征在于,不同类型对应的MCS取值范围的起点位置在MCS表格中的位置不同。
  15. 根据权利要求8至14中任一项所述的方法,其特征在于,不同类型对应的MCS取值范围在MCS表格中的长度相同,或者,不同类型对应的MCS取值范围在MCS表格中的长度不同。
  16. 一种接收配置信息的方法,其特征在于,包括:
    终端设备接收网络设备发送的配置信息,所述配置信息用于为终端设备指示第一目标块差错率BLER下的第二信道质量指示CQI取值范围;
    所述终端设备根据所述配置信息确定第二CQI取值范围;
    所述终端设备在所述第二CQI取值范围内,选择CQI索引并向所述网络设备上报所述CQI索引。
  17. 根据权利要求16所述的方法,其特征在于,所述第一CQI取值范围包括CQI表格中除第一CQI索引之外的部分或全部CQI索引,所述第一CQI索引用于反映所述终端设备达到所述第一目标BLER所需要的调制编码方式不在所述CQI表格范围内,或者,所述第一CQI取值范围包括CQI表格中部分或全部CQI索引;
    其中,所述终端设备根据所述配置信息确定第二CQI取值范围,包括:
    所述终端设备将所述第一CQI取值范围和所述第一CQI索引形成的范围,确定为所述第二CQI取值范围。
  18. 根据权利要求16或17所述的方法,其特征在于,所述配置信息包括:
    第一指示信息,所述第一指示信息用于指示所述第一CQI取值范围的起点位置在CQI表格中的位置。
  19. 根据权利要求16至18中任一项所述的方法,其特征在于,所述第一CQI取值范围在CQI表格中的长度是预配置的。
  20. 根据权利要求16至18中任一项所述的方法,其特征在于,所述配置信息包括:
    第二指示信息,所述第二指示信息用于指示所述第一CQI取值范围在CQI表格中的长度。
  21. 根据权利要求16至20中任一项所述的方法,其特征在于,不同目标BLER下的CQI取值范围的起点位置在CQI表格中的位置不同。
  22. 根据权利要求16至21中任一项所述的方法,其特征在于,不同目标BLER下的CQI取值范围在CQI表格中的长度相同,或者,不同目标BLER下的CQI取值范围在CQI表格中的长度不同。
  23. 根据权利要求16至22中任一项所述的方法,其特征在于,所述配置信息还用于为所述终端设备指示多种类型中的第一类型对应的第一调制 与编码策略MCS取值范围。
  24. 根据权利要求23所述的方法,其特征在于,所述多种类型通过下行控制信息DCI格式、搜索空间以及目标BLER中的至少一项区分。
  25. 根据权利要求23或24所述的方法,其特征在于,所述第一MCS取值范围包括MCS表格中的部分或全部MCS索引。
  26. 根据权利要求23至25中任一项所述的方法,其特征在于,所述配置信息包括:
    第三指示信息,所述第三指示信息用于指示所述第一MCS取值范围的起点位置在MCS表格中的位置。
  27. 根据权利要求23至26中任一项所述的方法,其特征在于,所述第一MCS取值范围在MCS表格中的长度是预配置的。
  28. 根据权利要求23至26中任一项所述的方法,其特征在于,所述配置信息还包括:
    第四指示信息,所述第四指示信息用于指示所述第一MCS取值范围在MCS表格中的长度。
  29. 根据权利要求23至28中任一项所述的方法,其特征在于,不同类型对应的MCS取值范围的起点位置在MCS表格中的位置不同。
  30. 根据权利要求23至29中任一项所述的方法,其特征在于,不同类型对应的MCS取值范围在MCS表格中的长度相同,或者,不同类型对应的MCS取值范围在MCS表格中的长度不同。
  31. 一种网络设备,其特征在于,包括:
    确定单元,用于确定配置信息,所述配置信息用于为终端设备指示第一目标块差错率BLER下的第一信道质量指示CQI取值范围;
    发送单元,用于向所述终端设备发送所述配置信息。
  32. 根据权利要求31所述的网络设备,其特征在于,所述第一CQI取值范围包括CQI表格中除第一CQI索引之外的部分或全部CQI索引,所述第一CQI索引用于反映所述终端设备达到所述第一目标BLER所需要的调制编码方式不在所述CQI表格范围内,或者,所述第一CQI取值范围包括CQI表格中部分或全部CQI索引。
  33. 根据权利要求31或32所述的网络设备,其特征在于,所述配置信息包括:
    第一指示信息,所述第一指示信息用于指示所述第一CQI取值范围的起点位置在CQI表格中的位置。
  34. 根据权利要求31至33中任一项所述的网络设备,其特征在于,所述第一CQI取值范围在CQI表格中的长度是预配置的。
  35. 根据权利要求31至33中任一项所述的网络设备,其特征在于,所述配置信息包括:
    第二指示信息,所述第二指示信息用于指示所述第一CQI取值范围在CQI表格中的长度。
  36. 根据权利要求31至35中任一项所述的网络设备,其特征在于,不同目标BLER下的CQI取值范围的起点位置在CQI表格中的位置不同。
  37. 根据权利要求31至36中任一项所述的网络设备,其特征在于,不同目标BLER下的CQI取值范围在CQI表格中的长度相同,或者,不同目标BLER下的CQI取值范围在CQI表格中的长度不同。
  38. 根据权利要求31至37中任一项所述的网络设备,其特征在于,所述配置信息还用于为所述终端设备指示多种类型中的第一类型对应的第一调制与编码策略MCS取值范围。
  39. 根据权利要求38所述的网络设备,其特征在于,所述多种类型通过下行控制信息DCI格式、搜索空间以及目标BLER中的至少一项区分。
  40. 根据权利要求38或39所述的网络设备,其特征在于,所述第一MCS取值范围包括MCS表格中的部分或全部MCS索引。
  41. 根据权利要求38至40中任一项所述的网络设备,其特征在于,所述配置信息包括:
    第三指示信息,所述第三指示信息用于指示所述第一MCS取值范围的起点位置在MCS表格中的位置。
  42. 根据权利要求38至41中任一项所述的网络设备,其特征在于,所述第一MCS取值范围在MCS表格中的长度是预配置的。
  43. 根据权利要求38至41中任一项所述的网络设备,其特征在于,所述配置信息还包括:
    第四指示信息,所述第四指示信息用于指示所述第一MCS取值范围在MCS表格中的长度。
  44. 根据权利要求38至43中任一项所述的网络设备,其特征在于,不同类型对应的MCS取值范围的起点位置在MCS表格中的位置不同。
  45. 根据权利要求38至44中任一项所述的网络设备,其特征在于,不同类型对应的MCS取值范围在MCS表格中的长度相同,或者,不同类型对应的MCS取值范围在MCS表格中的长度不同。
  46. 一种终端设备,其特征在于,包括:
    接收单元,用于接收网络设备发送的配置信息,所述配置信息用于为终端设备指示第一目标块差错率BLER下的第一信道质量指示CQI取值范围;
    处理单元,用于根据所述配置信息确定第二CQI取值范围,并在所述第二CQI取值范围内,选择CQI索引并向所述网络设备上报所述CQI索引。
  47. 根据权利要求46所述的终端设备,其特征在于,所述第一CQI取值范围包括CQI表格中除第一CQI索引之外的部分或全部CQI索引,所述第一CQI索引用于反映所述终端设备达到所述第一目标BLER所需要的调制编码方式不在所述CQI表格范围内,或者,所述第一CQI取值范围包括CQI表格中部分或全部CQI索引;
    其中,所述处理单元具体用于:
    将所述第一CQI取值范围和所述第一CQI索引形成的范围,确定为所 述第二CQI取值范围。
  48. 根据权利要求46或47所述的终端设备,其特征在于,所述配置信息包括:
    第一指示信息,所述第一指示信息用于指示所述第一CQI取值范围的起点位置在CQI表格中的位置。
  49. 根据权利要求46至48中任一项所述的终端设备,其特征在于,所述第一CQI取值范围在CQI表格中的长度是预配置的。
  50. 根据权利要求46至48中任一项所述的终端设备,其特征在于,所述配置信息包括:
    第二指示信息,所述第二指示信息用于指示所述第一CQI取值范围在CQI表格中的长度。
  51. 根据权利要求46至50中任一项所述的终端设备,其特征在于,不同目标BLER下的CQI取值范围的起点位置在CQI表格中的位置不同。
  52. 根据权利要求46至51中任一项所述的终端设备,其特征在于,不同目标BLER下的CQI取值范围在CQI表格中的长度相同,或者,不同目标BLER下的CQI取值范围在CQI表格中的长度不同。
  53. 根据权利要求46至52中任一项所述的终端设备,其特征在于,所述配置信息还用于为所述终端设备指示多种类型中的第一类型对应的第一调制与编码策略MCS取值范围。
  54. 根据权利要求53所述的终端设备,其特征在于,所述多种类型通过下行控制信息DCI格式、搜索空间以及目标BLER中的至少一项区分。
  55. 根据权利要求53或54所述的终端设备,其特征在于,所述第一MCS取值范围包括MCS表格中的部分或全部MCS索引。
  56. 根据权利要求53至55中任一项所述的终端设备,其特征在于,所述配置信息包括:
    第三指示信息,所述第三指示信息用于指示所述第一MCS取值范围的起点位置在MCS表格中的位置。
  57. 根据权利要求53至56中任一项所述的终端设备,其特征在于,所述第一MCS取值范围在MCS表格中的长度是预配置的。
  58. 根据权利要求53至56中任一项所述的终端设备,其特征在于,所述配置信息还包括:
    第四指示信息,所述第四指示信息用于指示所述第一MCS取值范围在MCS表格中的长度。
  59. 根据权利要求53至58中任一项所述的终端设备,其特征在于,不同类型对应的MCS取值范围的起点位置在MCS表格中的位置不同。
  60. 根据权利要求53至59中任一项所述的终端设备,其特征在于,不同类型对应的MCS取值范围在MCS表格中的长度相同,或者,不同类型对应的MCS取值范围在MCS表格中的长度不同。
PCT/CN2018/081647 2018-04-02 2018-04-02 传输配置信息、接收配置信息的方法和设备 WO2019191885A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880003177.3A CN109644118B (zh) 2018-04-02 2018-04-02 传输配置信息、接收配置信息的方法和设备
EP18913418.2A EP3633893A4 (en) 2018-04-02 2018-04-02 CONFIGURATION INFORMATION TRANSMISSION PROCESS AND DEVICE, AND CONFIGURATION INFORMATION RECEIVING DEVICE AND METHOD
CN202010399349.2A CN111555853B (zh) 2018-04-02 2018-04-02 传输配置信息、接收配置信息的方法和设备
PCT/CN2018/081647 WO2019191885A1 (zh) 2018-04-02 2018-04-02 传输配置信息、接收配置信息的方法和设备
US16/733,085 US11489615B2 (en) 2018-04-02 2020-01-02 Method and device for transmitting and receiving configuration information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/081647 WO2019191885A1 (zh) 2018-04-02 2018-04-02 传输配置信息、接收配置信息的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/733,085 Continuation US11489615B2 (en) 2018-04-02 2020-01-02 Method and device for transmitting and receiving configuration information

Publications (1)

Publication Number Publication Date
WO2019191885A1 true WO2019191885A1 (zh) 2019-10-10

Family

ID=66060268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081647 WO2019191885A1 (zh) 2018-04-02 2018-04-02 传输配置信息、接收配置信息的方法和设备

Country Status (4)

Country Link
US (1) US11489615B2 (zh)
EP (1) EP3633893A4 (zh)
CN (2) CN109644118B (zh)
WO (1) WO2019191885A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115715005A (zh) * 2021-08-05 2023-02-24 华为技术有限公司 一种通信方法及通信装置
US20230308251A1 (en) * 2022-03-25 2023-09-28 Dish Wireless L.L.C. Selective location-based activation of channel quality indication reporting for user equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105991233A (zh) * 2015-03-03 2016-10-05 索尼公司 无线通信设备和无线通信方法
CN106559171A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 Cqi信息接收方法、发送方法、接收装置及发送装置
WO2017169829A1 (ja) * 2016-03-31 2017-10-05 株式会社Nttドコモ ユーザ装置及び報告方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621359A (zh) * 2008-07-04 2010-01-06 华为技术有限公司 一种发送信道质量指示的方法、装置及***
CN101594639B (zh) * 2009-06-29 2011-05-25 中兴通讯股份有限公司 一种高速分组接入***的调度方法及设备
WO2011023254A1 (en) 2009-08-25 2011-03-03 Telefonaktiebolaget L M Ericsson (Publ) Multicast channel control information
CN102438312B (zh) * 2010-09-29 2015-06-03 中兴通讯股份有限公司 一种移动通信***及其信道状态指示参考信号的配置方法
WO2012075387A1 (en) 2010-12-02 2012-06-07 Interdigital Patent Holdings, Inc. Systems and methods for improving channel quality indication feedback accuracy in wireless communication using interference prediction
CN103037520A (zh) * 2011-03-25 2013-04-10 北京新岸线无线技术有限公司 一种资源调度方法和设备
CN103378896B (zh) * 2012-04-23 2018-01-19 马维尔国际有限公司 用于确定信道状态信息的方法和设备
CN103580788A (zh) * 2012-07-27 2014-02-12 电信科学技术研究院 一种传输mcs指示信息的方法及装置
CN104429010B (zh) * 2013-06-08 2017-11-24 华为技术有限公司 一种信道质量指示及调制编码方案的通知方法、装置
US9667362B2 (en) * 2014-09-19 2017-05-30 Samsung Electronics Co., Ltd. Apparatus and method for selecting channel quality indicator in communication system
US10264593B2 (en) * 2014-12-30 2019-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Channel quality reporting in dependency of communication conditions
CN105991235B (zh) * 2015-03-04 2020-10-30 株式会社Ntt都科摩 一种调整编码调制方案的方法、用户设备及基站
CN106549726B (zh) * 2015-09-18 2021-02-23 华为技术有限公司 传输数据的方法、基站和终端设备
CN106888068B (zh) 2015-12-15 2019-11-19 大唐移动通信设备有限公司 一种基于周期性cqi的信道译码方法及装置
CN106211337B (zh) * 2016-06-21 2019-03-29 浙江大学 免授权频段基于有效帧号的资源定位方法
WO2018230967A1 (ko) * 2017-06-15 2018-12-20 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 이를 위한 장치
CN112039647B (zh) * 2017-06-16 2024-05-24 华为技术有限公司 信道质量反馈方法及装置
CN107800514B (zh) * 2017-11-16 2019-05-14 中国联合网络通信集团有限公司 一种下行数据的传输方法及回传基站
KR102484328B1 (ko) * 2017-11-17 2023-01-03 삼성전자주식회사 통신 시스템에서 제어 정보를 송신하기 위한 장치 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105991233A (zh) * 2015-03-03 2016-10-05 索尼公司 无线通信设备和无线通信方法
CN106559171A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 Cqi信息接收方法、发送方法、接收装置及发送装置
WO2017169829A1 (ja) * 2016-03-31 2017-10-05 株式会社Nttドコモ ユーザ装置及び報告方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633893A4 *

Also Published As

Publication number Publication date
US20200136749A1 (en) 2020-04-30
EP3633893A4 (en) 2020-08-05
US11489615B2 (en) 2022-11-01
EP3633893A1 (en) 2020-04-08
CN111555853B (zh) 2022-11-18
CN109644118B (zh) 2020-04-21
CN109644118A (zh) 2019-04-16
CN111555853A (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
US10440696B2 (en) Method for transmitting feedback information, terminal equipment and base station
WO2018228176A1 (zh) 通信方法、终端设备和网络设备
CN110798296B (zh) 下行信号指示、接收方法和设备
US11405159B2 (en) Method for transmitting feedback information, terminal device and network device
WO2019028771A1 (zh) 传输数据的方法和终端设备
WO2020029199A1 (zh) 传输信息的方法、终端设备和网络设备
US20220053533A1 (en) Feedback information determining method and apparatus, and terminal
US11375525B2 (en) Method for transmitting information, method for receiving information, terminal device, and network device
US11863493B2 (en) Method for transmitting feedback information, terminal device, and network device
US11489615B2 (en) Method and device for transmitting and receiving configuration information
WO2021168709A1 (zh) Csi上报及接收方法、装置、终端设备、网络设备
WO2020000422A1 (zh) 传输下行控制信息的方法和设备
WO2019109239A1 (zh) 数据传输的方法、发射端设备和接收端设备
US20200221501A1 (en) Data Transmission Method and Apparatus
WO2020029558A1 (zh) 反馈信息的方法、终端、芯片和存储介质
WO2022236752A1 (zh) 无线通信方法、第一设备和第二设备
EP4270839A1 (en) Control information sending method, receiving method, apparatus, and storage medium
WO2021092949A1 (zh) 无线通信的方法和终端设备
WO2020031278A1 (ja) 送信装置、受信装置、無線通信システム、及び通信方法
WO2019153212A1 (zh) 无线通信方法、终端和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018913418

Country of ref document: EP

Effective date: 20200102

NENP Non-entry into the national phase

Ref country code: DE