WO2019191859A1 - 混合动力变速器、混合动力驱动***及车辆 - Google Patents

混合动力变速器、混合动力驱动***及车辆 Download PDF

Info

Publication number
WO2019191859A1
WO2019191859A1 PCT/CN2018/081530 CN2018081530W WO2019191859A1 WO 2019191859 A1 WO2019191859 A1 WO 2019191859A1 CN 2018081530 W CN2018081530 W CN 2018081530W WO 2019191859 A1 WO2019191859 A1 WO 2019191859A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
transmission
output shaft
synchronizer
hybrid
Prior art date
Application number
PCT/CN2018/081530
Other languages
English (en)
French (fr)
Inventor
李至浩
陈振辉
Original Assignee
舍弗勒技术股份两合公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司 filed Critical 舍弗勒技术股份两合公司
Priority to CN201880089595.9A priority Critical patent/CN111742162A/zh
Priority to DE112018007424.2T priority patent/DE112018007424T5/de
Priority to PCT/CN2018/081530 priority patent/WO2019191859A1/zh
Publication of WO2019191859A1 publication Critical patent/WO2019191859A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/091Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4833Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range
    • B60K2006/4841Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range the gear provides shifting between multiple ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0034Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising two forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0052Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising six forward speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to the field of hybrid vehicles.
  • the present invention relates to a hybrid transmission, a hybrid drive system including the hybrid transmission, and a vehicle including the hybrid drive system.
  • a hybrid vehicle is a vehicle that uses two or more sources of power.
  • the most common hybrid electric vehicles use a conventional internal combustion engine (diesel or gasoline engine) and an electric motor as a power source.
  • a commonly used additional arrangement is to additionally add a hybrid module between an internal combustion engine and a transmission of a conventional internal combustion engine drive system, wherein the hybrid module includes a clutch, motor for coupling or shutting off power transmission between the internal combustion engine and the electric machine. , for the housing of the hybrid module, and the like.
  • the hybrid module is additionally increased between the internal combustion engine and the transmission, the axial length of the drive system is increased, which adds difficulty to the layout and packaging of some compact vehicles.
  • the design of the hybrid module is complicated. For example, for a hybrid module used with a dual clutch transmission, it may be necessary to provide three clutches in the rotor space of the motor, which is difficult to integrate.
  • hybrid drive systems in the prior art in which an electric machine is integrated into a transmission to form a hybrid dedicated transmission (DHT).
  • DHT hybrid dedicated transmission
  • existing hybrid-dedicated transmissions typically specifically set the gear set from the motor output shaft to the transmission output shaft and provide a dedicated reverse gear set for the pure internal combustion engine drive mode. This increases the footprint of the transmission and increases manufacturing costs while also detracting from the reliability and efficiency of the overall drive system.
  • One aspect of the present invention provides a hybrid transmission for a hybrid drive system of a vehicle, the hybrid drive system including an internal combustion engine, an electric motor, and a power coupling unit including a transmission input shaft and a transmission output shaft And an intermediate shaft, the transmission input shaft is dynamically coupled or disconnected from an output shaft of the internal combustion engine via the power coupling unit, the hybrid transmission further comprising: a first gear and a second gear, both of which are idled a first synchronizer disposed on the transmission input shaft and between the first gear and the second gear, the first synchronizer being capable of interacting with the first gear or a second gear engagement; a third gear and a fourth gear, both disposed on the transmission output shaft and meshing with the first gear and the second gear, respectively; and a fifth gear and a sixth gear, Arranging on the intermediate shaft and meshing with the first gear and the second gear, respectively, wherein the power of the motor is via the above Any one of the input gear to the transmission.
  • the present invention also provides a hybrid drive system including an internal combustion engine, an electric motor, a power coupling unit, and a hybrid transmission as described above, wherein an output shaft of the internal combustion engine is coupled to the hybrid transmission via the power coupling unit
  • the transmission input shaft is dynamically coupled or disconnected, and power of the electric machine is input to the transmission via any one of the first to sixth gears in the hybrid transmission.
  • the present invention also provides a hybrid vehicle comprising a hybrid drive system as described above.
  • FIG. 1 shows a schematic diagram of a hybrid transmission and a hybrid drive system in accordance with one embodiment of the present invention.
  • FIG. 2 shows a schematic diagram of a hybrid transmission and a hybrid drive system in accordance with another embodiment of the present invention.
  • 3A-3C illustrate a hybrid transmission in accordance with other embodiments of the present invention.
  • 4A-4D illustrate the power transmission path of the pure motor drive mode of the hybrid drive system shown in Fig. 2.
  • 5A-5F show the power transmission path of the pure internal combustion engine driving mode of the hybrid drive system shown in Fig. 2.
  • 6A-6I illustrate the power transmission path of the hybrid drive mode of the hybrid drive system shown in Fig. 2.
  • FIG. 7A-7B show the power transmission path of the internal combustion engine starting mode in the motor-driven running state of the hybrid drive system shown in Fig. 2.
  • FIG. 8 shows a power transmission path of the parking charging mode of the hybrid drive system shown in FIG. 2.
  • 9A-9F illustrate a hybrid transmission and a hybrid drive system in which motor power is input to a transmission from other components, in accordance with an embodiment of the present invention.
  • the hybrid drive system includes an internal combustion engine ICE, an electric motor EM, and a hybrid transmission, wherein the internal combustion engine ICE and the electric motor EM are used as power sources, and the power outputted by both is transmitted to the wheels of the vehicle via the hybrid transmission.
  • the internal combustion engine ICE in the present invention generally refers to a conventional diesel internal combustion engine or a gasoline internal combustion engine, and may of course be an internal combustion engine using other alternative fuels such as compressed natural gas, propane and ethanol fuel. Further, the internal combustion engine ICE may be a four-cylinder engine or an engine of other cylinder numbers.
  • the motor EM can also be used as a generator to convert the power output from the internal combustion engine ICE into electrical energy stored in a battery electrically connected to the motor.
  • the specific implementation of the motor EM to convert the power output from the internal combustion engine ICE into electrical energy will be described in detail below when the operating mode of the hybrid drive system is described.
  • FIG. 1 illustrates a hybrid drive system in accordance with one embodiment of the present invention.
  • the hybrid drive system includes a clutch K0 in addition to the internal combustion engine ICE, the electric motor EM, and the hybrid transmission T.
  • the clutch K0 is used for power coupling or disconnection between the internal combustion engine ICE and the hybrid transmission T.
  • Fig. 1 also shows in particular the arrangement of a hybrid transmission T according to the invention.
  • the transmission T includes a transmission input shaft 1, a transmission output shaft 2, and an intermediate shaft 3.
  • the transmission input shaft 1 is dynamically coupled or disconnected from the internal combustion engine ICE output shaft via a clutch K0.
  • the transmission input shaft 1 can be arranged coaxially with the output shaft of the internal combustion engine ICE and the clutch K0.
  • the transmission input shaft 1 is sleeved with a first gear Z11 and a second gear Z12, and is also provided with a first synchronizer A.
  • the first synchronizer A is disposed between the first gear Z11 and the second gear Z12 and is engageable or disengageable with the first gear Z11 or the second gear Z12. When the first synchronizer A is engaged with the gear Z11 or Z12, the power of the motor EM and the power of the internal combustion engine ICE can be coupled.
  • a third gear Z21 and a fourth gear Z22 are coupled to the transmission output shaft 2 in a rotationally fixed manner, and a second synchronizer B is also disposed.
  • the third gear Z21 and the fourth gear Z22 mesh with the first gear Z11 and the second gear Z12, respectively.
  • the second synchronizer B is located between the third gear Z21 and the fourth gear Z22 and is engageable with the third gear Z21 or the fourth gear Z22.
  • the intermediate shaft 4 is connected to the fifth gear Z31 and the sixth gear Z32 in a rotationally fixed manner, and the two meshes with the first gear Z11 and the second gear Z12, respectively.
  • the power of the motor EM or the internal combustion engine ICE can be transmitted directly to the transmission output shaft 2 via the gear pairs Z11-Z21, Z12-Z22, and also via the gear pair Z11.
  • -Z31, Z12-Z32 are transmitted to the transmission output shaft 2.
  • the power of the electric machine EM is input to the transmission T via the first gear Z11.
  • the first gear Z11 can be arranged coaxially with the output shaft 4 of the electric machine EM and connected in a rotationally fixed manner.
  • the motor EM includes a stator S, a rotor R, and a rotor hub H for supporting the rotor.
  • the rotor hub H is formed integrally with the motor output shaft 4 or is connected in a rotationally fixed manner.
  • the first gear Z11 may be integrally formed or fixedly mounted on the outer peripheral surface of the motor output shaft 4.
  • the rotor hub H can also be used as the output shaft 4 of the electric machine EM, and the first gear Z11 can be connected in a rotationally fixed manner to the rotor hub H.
  • the electric machine (EM) is axially disposed between the internal combustion engine (ICE) and the transmission (T), and the power coupling unit (K0) is disposed in an inner space of the rotor (R), and The transmission input shaft (1) is disposed coaxially with the rotor hub (H).
  • the electric machine EM can be arranged axially between the internal combustion engine ICE and the transmission T, the clutch K0 being integrated in the inner space of the rotor R of the electric machine EM to make full use of the axial space, the transmission input shaft 1 and the output shaft of the electric machine EM 4 (rotor hub H) is coaxially arranged.
  • the output shaft 4 of the motor EM may be formed as a hollow shaft
  • the transmission input shaft 1 may be formed as a solid shaft
  • the transmission input shaft 1 is coaxially sleeved inside the motor output shaft 4
  • the transmission of the shaft 4 is output from the motor EM
  • the end extends a portion for arranging components such as synchronizers and gears.
  • the transmission input shaft 1, the transmission output shaft 2 and the intermediate shaft 3 can be arranged parallel to each other.
  • the power of the motor EM is transmitted from the first gear Z11 to the transmission T.
  • the present invention is not limited thereto, and the power of the motor EM may be transmitted from the arbitrary gears disposed on the transmission input shaft 1, the transmission output shaft 2, and the intermediate shaft 3 to the transmission T (the position of the motor EM is changed correspondingly), and the specific implementation Examples will be described in detail later.
  • the arrangement of the transmission according to the above embodiment can transmit the power of the electric motor and the power of the internal combustion engine to the transmission output shaft through the shared gear set, and therefore, it is not necessary to provide a separate gear set from the motor output shaft to the transmission output shaft, and the transmission can be reduced.
  • the number of parts is beneficial to reduce manufacturing costs and compress space.
  • the intermediate shaft and the gears disposed on the intermediate shaft are provided to transfer the power of the electric machine and the internal combustion engine to the transmission output shaft, which is advantageous in reducing the axial size of the transmission and, in turn, reducing the axial size of the hybrid drive system.
  • the hybrid transmission of the embodiment shown in Figure 1 includes only two synchronizers and four gear pairs. According to other embodiments of the invention, the hybrid transmission may also include more other gear pairs and other synchronizers to increase gear change.
  • the hybrid transmission may additionally include at least one other gear pair disposed between the transmission input shaft 1 and the transmission output shaft 2, and at least one other synchronizer disposed on the transmission input shaft 1 or the transmission output shaft 2, the at least one Other synchronizers are used to select one of the at least one other gear pair to transfer power between the transmission input shaft 1 and the output shaft 2.
  • the two gears of each of the other gear pairs are disposed on the transmission input shaft 1 and the transmission output shaft 2 in a torsionally and idling manner, respectively, and at least one other synchronizer and at least The gears of one of the other gear pairs are cooperatively arranged on the transmission input shaft 1 or the gears on the transmission output shaft 2 such that each of the other synchronizers can be coupled to one of the transmission input shaft 1 or the transmission output shaft 2
  • the two gears are engaged.
  • the hybrid transmission shown in FIG. 2 additionally includes a gear pair Z13-Z23, a ninth gear Z14, and a third gear Z13 and an eighth gear Z23, as compared with the hybrid transmission shown in FIG.
  • the gear Z14-Z24 and the third synchronizer C are composed of ten gears Z24, wherein the seventh gear Z13 and the ninth gear Z14 are connected to the transmission input shaft 1 in a rotationally fixed manner, and the eighth gear Z23 and the tenth gear Z24 are sleeved on the transmission output.
  • a third synchronizer C is arranged on the transmission output shaft 2.
  • the third synchronizer C is located between the eighth gear Z23 and the tenth gear Z24 and is engageable with the eighth gear Z23 or the tenth gear Z24.
  • the eighth gear Z23 is synchronously rotated with the output shaft 2
  • the tenth gear Z24 is synchronously rotated with the output shaft 2
  • FIG. 3A-3C illustrate other embodiments of a hybrid transmission in accordance with the present invention.
  • the hybrid transmission of the embodiment shown in FIG. 3A additionally includes a gear pair Z13-Z23 and a third synchronizer C composed of a seventh gear Z13 and an eighth gear Z23, as compared with the embodiment shown in FIG.
  • the seventh gear Z13 is connected to the transmission input shaft 1 in a rotationally fixed manner
  • the eighth gear Z23 is sleeved on the transmission output shaft 2
  • the third synchronizer C is disposed on the transmission output shaft 2 in the axial direction of the eighth gear Z23.
  • the side is engageable with the gear Z23.
  • the gear pair Z13-Z23 can transmit power between the transmission input shaft 1 and the transmission output shaft 2.
  • the hybrid transmission of the embodiment shown in FIG. 3B additionally includes a gear pair Z13-Z23 composed of a seventh gear Z13 and an eighth gear Z23, and a ninth gear Z14 and a comparison with the embodiment shown in FIG. a gear pair Z14-Z24 composed of a tenth gear Z24, a gear pair Z15-Z25 composed of an eleventh gear Z15 and a twelfth gear Z25, and a third synchronizer C and a fourth synchronizer D, wherein: the seventh gear Z13, the ninth gear Z14 is connected to the transmission input shaft 1 in a rotationally fixed manner, and the eleventh gear Z15 is sleeved on the transmission input shaft 1; the eighth gear Z23 and the tenth gear Z24 are sleeved on the transmission output shaft 2, and the tenth The second gear Z25 is rotationally coupled to the transmission output shaft 2; the third synchronizer C is disposed on the transmission output shaft 2 between the eighth gear Z23 and the tenth Z24 and is engageable with the
  • the hybrid transmission of the embodiment shown in FIG. 3C additionally includes a gear pair Z13-Z23 composed of a seventh gear Z13 and an eighth gear Z23, and a ninth gear Z14 and the embodiment shown in FIG.
  • a gear pair Z14-Z24 composed of the tenth gear Z24, a gear pair Z15-Z25 composed of the eleventh gear Z15 and the twelfth gear Z25, and a gear pair Z16- constituted by the thirteenth gear Z16 and the fourteenth gear Z26 Z26 and the third synchronizer C and the fourth synchronizer D, wherein: the seventh gear Z13 and the ninth gear Z14 are connected to the transmission input shaft 1 in a rotationally fixed manner, and the eleventh gear Z15 and the thirteenth gear Z16 are sleeved in the transmission The input shaft 1; the eighth gear Z23 and the tenth gear Z24 are sleeved on the transmission output shaft 2, and the twelfth gear Z25 and the thirteenth gear Z26 are connected to the transmission output shaft 2 in a
  • the hybrid transmission according to the present invention may also include more other gear pairs and more other synchronizers.
  • the arrangement of the gears and other synchronizers of the other gear pairs on the transmission input shaft and the transmission output shaft is not limited to the above embodiment.
  • the seventh gear Z13 may be disposed to be sleeved on the transmission input shaft 1 and the third synchronizer C may be disposed on the transmission input shaft 1 on the axial side of the seventh gear Z13.
  • Upper, and the eighth gear Z23 can be connected to the transmission output shaft 2 in a rotationally fixed manner.
  • the hybrid drive system of the present invention is capable of switching operations between various operating modes to accommodate the drive of the vehicle under different operating conditions.
  • a plurality of operation modes of the hybrid drive system of the embodiment shown in FIG. 2 will be described below. According to the description of the plurality of operation modes of the hybrid drive system shown in FIG. 2, those skilled in the art can understand the present invention according to the working principle thereof. The operating principles of the hybrid clutch and hybrid drive system of other embodiments.
  • the pure electric drive mode of the hybrid drive system shown in FIG. 2 specifically includes a forward gear mode and a reverse gear mode.
  • the vehicle In the forward gear mode, the vehicle can be advanced at a speed corresponding to a different gear, the motor EM is rotating forward in the motor mode, the internal combustion engine ICE is not operating (ie, the internal combustion engine ICE is not outputting torque), and the clutch K0 is open.
  • the hybrid drive system shown in Fig. 2 includes four forward gears, and the synchronizer operating state and power transmission path (see Figs. 4A-4D) in each forward gear are as follows.
  • the first synchronizer A is in the disengaged state
  • the second synchronizer B is engaged with the third gear Z21
  • the third synchronizer C is in the disengaged state.
  • the power of the motor EM is transmitted to the transmission output shaft 2 via the motor output shaft 4, the first gear Z11, and the gear pair Z11-Z21 in order to drive the wheel to rotate.
  • the first synchronizer A is in the disengaged state
  • the second synchronizer B is engaged with the fourth gear Z22
  • the third synchronizer C is in the disengaged state.
  • the power of the motor EM is transmitted to the transmission output shaft 2 via the motor output shaft 4, the first gear Z11, and the gear pair Z11-Z31-Z32-Z12-Z32 in order to drive the wheel to rotate.
  • the first synchronizer A is engaged with the first gear Z11
  • the second synchronizer B is in the disengaged state
  • the third synchronizer C is engaged with the tenth gear Z24.
  • the power of the motor EM is transmitted to the transmission output shaft 2 via the motor output shaft 4, the first gear Z11, the first synchronizer A, the transmission input shaft 1 and the gear pair Z14-Z24 in order to drive the wheel to rotate.
  • the first synchronizer A is engaged with the first gear Z11
  • the second synchronizer B is in the disengaged state
  • the third synchronizer C is engaged with the eighth gear Z23.
  • the power of the motor EM is transmitted to the transmission output shaft 2 via the motor output shaft 4, the first gear Z11, the first synchronizer A, the transmission input shaft 1 and the gear pair Z13-Z23 in order to drive the wheel to rotate.
  • the operating states of the internal combustion engine ICE and the clutch K0 are the same as the forward gear mode.
  • the motor EM is reversed in the motor mode.
  • the reverse gear mode has four gear positions corresponding to the forward gear mode. Under each reverse gear, the operating state of the synchronizer and the power transmission path are the same as the corresponding forward gear.
  • the EM1 gear is selected for reversing.
  • the power transmission path in the gearbox is short, which reduces energy loss and is highly reliable.
  • the hybrid transmission and the hybrid drive system according to the present embodiment can realize driving of a plurality of gears in the pure motor drive mode.
  • the appropriate gear can be selected according to different loads to drive the vehicle, and the power usage of the vehicle in the pure motor drive mode can be optimized.
  • the internal combustion engine ICE acts as the sole source of power for driving the vehicle.
  • the drive system can be controlled to operate in the pure internal combustion engine drive mode.
  • the pure internal combustion engine drive mode In the pure internal combustion engine drive mode, the internal combustion engine ICE operates, the clutch K0 is engaged, and the output torque of the internal combustion engine ICE is transmitted from the internal combustion engine output shaft to the transmission input shaft 1 via the clutch K0.
  • the pure internal combustion engine drive mode has only the forward gear mode, and the reverse gear mode is not set.
  • the pure internal combustion engine drive mode has six forward gears, and the synchronizer operating state and power transmission path (shown in FIGS. 5A-5F) in each forward gear are as follows.
  • ICE1 The first synchronizer A is engaged with the second gear Z12, the second synchronizer B is engaged with the third gear Z21, and the third synchronizer C is in the disengaged state.
  • the power of the internal combustion engine ICE is transmitted to the transmission output shaft 2 via the transmission input shaft 1, the first synchronizer A, and the gear pair Z12-Z32-Z31-Z11-Z21 in order to drive the wheels to rotate.
  • ICE2 The first synchronizer A is engaged with the first gear Z11, the second synchronizer B is engaged with the third gear Z21, and the third synchronizer C is in the disengaged state.
  • the power of the internal combustion engine ICE is transmitted to the transmission output shaft 2 via the transmission input shaft 1, the first synchronizer A, and the gear pair Z11-Z21 in order to drive the wheels to rotate.
  • ICE3 The first synchronizer A is in the disengaged state, the second synchronizer B is in the disengaged state, and the third synchronizer C is engaged with the tenth gear Z24.
  • the power of the internal combustion engine ICE is transmitted to the transmission output shaft 2 via the transmission input shaft 1 and the gear pair Z14-Z24 in sequence, thereby driving the wheels to rotate.
  • ICE4 The first synchronizer A is engaged with the second gear Z12, the second synchronizer B is engaged with the fourth gear Z22, and the third synchronizer C is in the disengaged state.
  • the power of the internal combustion engine ICE is transmitted to the transmission output shaft 2 via the transmission input shaft 1, the first synchronizer A, and the gear pair Z12-Z22 in order to drive the wheels to rotate.
  • ICE5 The first synchronizer A is engaged with the first gear Z11, the second synchronizer B is engaged with the fourth gear Z22, and the third synchronizer C is in the disengaged state.
  • the power of the internal combustion engine ICE is transmitted to the transmission output shaft 2 via the transmission input shaft 1, the first synchronizer A, and the gear pair Z11-Z31-Z32-Z12-Z22 in order to drive the wheels to rotate.
  • ICE6 The first synchronizer A is in the disengaged state, the second synchronizer B is in the disengaged state, and the third synchronizer C is engaged with the eighth gear Z23.
  • the power of the internal combustion engine ICE is transmitted to the transmission output shaft 2 via the transmission input shaft 1 and the gear pair Z13-Z23 in order to drive the wheel to rotate.
  • the reverse gear set for the reverse mode of the pure internal combustion engine drive mode and the corresponding synchronizer are not provided.
  • the reverse of the vehicle is achieved by controlling the state of the internal combustion engine ICE, the electric motor EM, the clutch K0, and the synchronizers A, B, and C by the pure motor-driven reverse gear mode. Therefore, the hybrid transmission and the hybrid drive system according to the present embodiment can omit the reverse gear set and the synchronizer dedicated to the pure internal combustion engine drive mode, while achieving the same number of gears with fewer gear sets and synchronizers, The complexity and manufacturing cost of the transmission can be reduced, and the space occupied by the transmission can be compressed.
  • the internal combustion engine ICE can intervene, and the electric motor EM acts as a power source for driving the vehicle together, and the hybrid drive system drives the vehicle to travel in the hybrid drive mode.
  • the hybrid drive system shown in Fig. 2 it is possible to operate in the following nine hybrid modes.
  • the internal combustion engine ICE operates, the clutch K0 is engaged, and the power of the internal combustion engine ICE is transmitted from the internal combustion engine output shaft to the transmission input shaft 1 via the clutch K0; the motor EM operates in the motor mode, and the motor EM is output from the motor output.
  • the shaft is transmitted to the first gear Z11.
  • the synchronizer state and power transmission path in the nine hybrid modes (shown in Figures 6A-6I) are as follows.
  • Hybrid drive mode 1 (EM1+ICE1): first synchronizer A is engaged with second gear Z12, second synchronizer B is engaged with third gear Z21, and third synchronizer C is in an unengaged state; power transmission of motor EM To the first gear Z11, the power of the internal combustion engine ICE is transmitted to the first gear Z11 via the transmission input shaft 1, the first synchronizer A and the gear pair Z12-Z32-Z31-Z11, and the power coupling of the electric machine EM and the internal combustion engine ICE is via the gear pair Z11 -Z21 is transmitted to the transmission output shaft 2.
  • Hybrid drive mode 2 (EM1+ICE2): the first synchronizer A is engaged with the first gear Z11, the second synchronizer B is engaged with the third gear Z21, and the third synchronizer C is in the disengaged state; the power of the internal combustion engine ICE is via The transmission input shaft 1 and the first synchronizer A are transmitted to the first gear Z11, and the power coupling of the internal combustion engine ICE and the electric machine EM is transmitted from the first gear Z11 to the transmission output shaft 2 via the gear pair Z11-Z21.
  • Hybrid drive mode 3 (EM1+ICE3): the first synchronizer A is in the disengaged state, the second synchronizer B is engaged with the third gear Z21, and the third synchronizer C is engaged with the tenth gear Z24; the power of the electric motor EM is via The gear pair Z11-Z21 is transmitted to the transmission output shaft 2, and the power of the internal combustion engine ICE is transmitted from the transmission input shaft 1 to the transmission output shaft 2 via the gear pair Z14-Z24, and the power coupling of the motor EM and the internal combustion engine ICE drives the transmission output shaft 2 to rotate.
  • Hybrid drive mode 4 (EM2+ICE3): the first synchronizer A is in the disengaged state, the second synchronizer B is engaged with the fourth gear Z22, and the third synchronizer C is engaged with the tenth gear Z24; the power of the electric motor EM is via The gear pair Z11-Z31-Z32-Z12-Z22 is transmitted to the transmission output shaft 2, and the power of the internal combustion engine ICE is transmitted to the transmission output shaft 2 via the transmission input shaft 1 and the gear pair Z14-Z24, and the power coupling of the motor EM and the internal combustion engine ICE drives the transmission The output shaft 2 rotates.
  • Hybrid drive mode 5 (EM2+ICE4): the first synchronizer A is engaged with the second gear Z12, the second synchronizer B is engaged with the fourth gear Z22, and the third synchronizer C is in the disengaged state; the power of the motor EM is via The gear pair Z11-Z31-Z32-Z12 and the first synchronizer A are transmitted to the transmission input shaft 1, and the power coupling of the motor EM and the internal combustion engine ICE is transmitted from the transmission input shaft 1 to the transmission output shaft 2 via the gear pair Z12-Z22.
  • Hybrid drive mode 6 (EM2+ICE5): the first synchronizer A is engaged with the first gear Z11, the second synchronizer B is engaged with the fourth gear Z22, and the third synchronizer C is in the disengaged state; the power of the internal combustion engine ICE is via The transmission input shaft 1, the first synchronizer A is transmitted to the first gear Z11, and the power coupling of the electric machine EM and the internal combustion engine ICE is transmitted from the first gear Z11 to the transmission output shaft 2 via the gear pair Z11-Z31-Z32-Z12-Z22.
  • Hybrid drive mode 7 (EM2+ICE6): the first synchronizer A is in the disengaged state, the second synchronizer B is engaged with the fourth gear Z22, and the third synchronizer C is engaged with the eighth gear Z23; the power of the electric motor EM is via The gear pair Z11-Z31-Z32-Z12-Z22 is transmitted to the transmission output shaft 2, and the power of the internal combustion engine ICE is transmitted from the transmission input shaft 1 to the transmission output shaft 2 via the gear pair Z13-Z33, and the power coupling of the motor EM and the internal combustion engine ICE drives the transmission The output shaft 2 rotates.
  • Hybrid drive mode 8 (EM3+ICE3): the first synchronizer A is engaged with the first gear Z11, the second synchronizer B is in the disengaged state, and the third synchronizer C is engaged with the tenth gear Z24; the power of the motor EM is from The first gear Z11 is transmitted via the first synchronizer A to the transmission input shaft 1 and the power coupling of the electric machine EM and the internal combustion engine ICE is transmitted from the transmission input shaft 1 via the gear pair Z14-Z24 to the transmission output shaft 2.
  • Hybrid drive mode 9 (EM4 + ICE6): the first synchronizer A is engaged with the first gear Z11, the second synchronizer B is in the disengaged state, and the third synchronizer C is engaged with the eighth gear Z23; The first gear Z11 is transmitted via the first synchronizer A to the transmission input shaft 1 and the power coupling of the electric machine EM and the internal combustion engine ICE is transmitted from the transmission input shaft 1 via the gear pair Z13-Z23 to the transmission output shaft 2.
  • the internal combustion engine ICE and the motor EM can simultaneously output torque to drive the wheel to rotate.
  • a torque compensation function can be provided to provide torque compensation when one of the internal combustion engine ICE and the electric motor EM is shifted, avoiding a sudden change in torque on the output shaft of the transmission when shifting, so that the vehicle is shifting Driving is more stable.
  • the hybrid drive system switches from the ICE1 range to the ICE2 range, the torque transmitted from the internal combustion engine ICE to the transmission output shaft is interrupted due to the need to switch the operating state of the first synchronizer A, resulting in torque on the output shaft of the transmission. A change has occurred.
  • the motor EM drives the vehicle in the EM1 gear at this time, the torque output of the motor EM to the transmission output shaft will not be interrupted, and the output shaft of the transmission can be torque compensated by increasing the output torque of the motor EM; if the motor EM is not In the operating state (for example, shifting in the pure internal combustion engine drive mode), the motor EM can be activated to torque compensate the transmission output shaft. On the contrary, when the hybrid drive system switches the motor drive gear, the output torque of the internal combustion engine ICE can be appropriately increased for torque compensation.
  • the above torque compensation is limited by the gears driven by the motor and the internal combustion engine, that is, the torque compensation can be realized on the premise that when switching the gear of either the motor and the internal combustion engine, the other is to the output shaft of the transmission. Torque transmission will not be affected.
  • the motor EM operates in the motor mode, a part of the power output by the motor EM is used to drive the vehicle, and another part of the power is used to start the internal combustion engine ICE, so that the internal combustion engine ICE is involved in providing the vehicle. Required power.
  • the motor EM When the internal combustion engine ICE is started in the motor-driven running state, the motor EM operates in the motor mode and engages the clutch K0.
  • the motor EM starts the power transmission path of the internal combustion engine ICE (as shown in FIGS. 7A-7B) when the EM1 and EM2 gears drive the vehicle to travel as follows.
  • ICE start mode of the EM1 gear the first synchronizer A is engaged with the first gear Z11, the second synchronizer B is engaged with the third gear Z21, and the third synchronizer C is in the disengaged state.
  • the output torque of the motor EM is partially transmitted to the transmission output shaft 2 via the gear pair Z11-Z21 to drive the wheel to rotate, and the other portion is transmitted to the output shaft of the internal combustion engine via the first gear Z11, the first synchronizer A, the transmission input shaft 1, and the clutch K0.
  • the internal combustion engine ICE is thus started.
  • ICE start mode of the EM2 gear the first synchronizer A is engaged with the second gear Z12, the second synchronizer B is engaged with the fourth gear Z22, and the third synchronizer C is in the disengaged state.
  • the output torque of the motor EM is transmitted to the second gear Z12 via the gear pair Z11-Z31-Z32-Z12, and the torque transmitted to the second gear Z12 is partially transmitted to the internal combustion engine ICE through the first synchronizer A, the transmission input shaft 1, and the clutch K0.
  • the output shaft, thereby starting the internal combustion engine ICE is also partially transmitted through the gear pair Z12-Z22 to the transmission output shaft 2 to drive the wheel to rotate.
  • the motor EM is also capable of starting the internal combustion engine ICE while driving the vehicle in the EM3 and EM4 gears.
  • Those skilled in the art can understand the working state and power of the motor EM, the clutch K0, the synchronizers A, B, and C in the internal combustion engine ICE starting mode of the EM3 and EM4 gears according to the internal combustion engine ICE starting mode of the motor EM1 and EM2 gears. Transmission path.
  • the internal combustion engine ICE can be started on any internal combustion engine ICE gear of the transmission.
  • the internal combustion engine ICE can be started in the ICE1-ICE3 gear.
  • the internal combustion engine ICE is started in the ICE3-ICE6 gear, as long as the internal combustion engine ICE Starting the gear does not interrupt the normal torque transmission of the gear in the motor EM.
  • the vehicle In the parking charging mode, the vehicle is stationary, and the internal combustion engine ICE drives the motor EM to generate electricity to charge the battery.
  • the internal combustion engine ICE operates, the electric motor EM functions as a generator, the first synchronizer A engages with the first gear Z11, the second synchronizer B does not engage, and the third synchronizer C does not engage.
  • the power of the internal combustion engine ICE is transmitted to the output shaft of the motor EM via the transmission input shaft 1, the first synchronizer A, and the first gear Z11, thereby driving the rotor of the motor EM to rotate, so that the motor EM generates electricity to charge the battery (see the power transmission path Figure 8).
  • the motor EM operates in the generator mode, and the kinetic energy in the drive system is converted into electrical energy for energy recovery to improve the energy utilization of the drive system.
  • the vehicle is in the taxiing condition, that is, both the accelerator pedal and the brake pedal are released, and any power source in the drive system does not provide the power required for the vehicle to travel; 2) the vehicle is at Brake condition.
  • the wheel When the vehicle is in the taxiing condition (the vehicle will drive, called the rolling) and the braking condition, the wheel will drive the transmission output shaft 2 to rotate under the action of the drive train, and the rotating output shaft 2 can drive the motor EM to generate electricity.
  • the battery is charged to achieve energy recovery.
  • the clutch K0 In the energy recovery mode, the clutch K0 is in the disengaged state, the motor EM is operating in the generator mode, the internal combustion engine ICE is not working; the first synchronizer A, the third synchronizer C are in the disengaged state, the second synchronizer B and the third The gear Z21 is engaged, and the torque of the transmission output shaft 2 is transmitted to the output shaft 4 of the motor EM via the gear pair Z21-Z11, thereby causing the motor EM to generate electricity.
  • the torque of the transmission output shaft is transmitted to the motor EM via the gear pair Z21-Z11, so that the energy of the wheel is transmitted to the motor EM in the shortest transmission path, which can improve energy recovery efficiency.
  • the power of the motor EM is input to the transmission T from the first gear Z11, but the embodiment of the present invention is not limited thereto.
  • the power of the motor EM can also be input from other components of the transmission T, as shown in Figures 9A-9F.
  • the motor output shaft 4 can be arranged coaxially with the intermediate shaft 3 and connected in a rotationally fixed manner.
  • the power of the electric machine EM is transmitted to the transmission via the intermediate shaft 3 and then transmitted to the transmission output shaft 2 via the gear pair Z31-Z11 or Z32-Z12.
  • the motor output shaft 4 is connected to the motor gear Z51 in a rotationally fixed manner, and the intermediate shaft 3 can be arranged in parallel with the motor output shaft 4 and is mechanically coupled to the motor output shaft 4 via a gear mesh.
  • the motor gear Z51 meshes with any of the fifth gear Z31 and the sixth gear Z32 on the intermediate shaft 3 to transmit power from the motor output shaft 4 to the intermediate shaft 3.
  • an input dedicated gear Z33 may be additionally provided on the intermediate shaft 3, and the power of the motor EM is transmitted to the intermediate shaft 3 via the gear pair Z51-Z33.
  • the motor gear Z51 on the motor output shaft 4 can also mesh with the third gear Z21 or the fourth gear Z22 to drive power from the motor output shaft via the gear pair Z51-Z21 or the gear pair Z51-Z22. 4 is transmitted to the transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

一种用于车辆的混合动力驱动***的混合动力变速器(T)以及包括该混合动力驱动***的车辆,其中所述变速器(T)包括变速器输入轴(1)、变速器输出轴(2)和中间轴(3),变速器输入轴(1)经由动力耦合单元(K0)与内燃机(ICE)的输出轴进行动力耦合或断开,所述变速器(T)还包括第一齿轮(Z11)和第二齿轮(Z12),两者空套在变速器输入轴(1)上;第一同步器(A),其布置在变速器输入轴(1)上并且位于第一齿轮(Z11)和第二齿轮(Z12)之间,第一同步器(A)能够与第一齿轮(Z11)或第二齿轮(Z12)接合;第三齿轮(Z21)和第四齿轮(Z22),两者布置在变速器输出轴(2)上并且分别与第一齿轮(Z11)和第二齿轮(Z12)啮合;以及第五齿轮(Z31)和第六齿轮(Z32),两者布置在中间轴(3)上并且分别与第一齿轮(Z11)和第二齿轮(Z12)啮合,其中,电机(EM)的动力经由上述六个齿轮(Z11,Z12,Z21,Z22,Z31,Z32)中的任一者输入到所述变速器(T)。

Description

混合动力变速器、混合动力驱动***及车辆 技术领域
本发明涉及混合动力车辆领域。具体地,本发明涉及混合动力变速器、包括该混合动力变速器的混合动力驱动***和包括该混合动力驱动***的车辆。
背景技术
混合动力车辆是指使用两种以上动力来源的车辆。最常见的油电混合动力汽车采用传统的内燃机(柴油机或汽油机)和电动机作为动力源。
根据现有技术,已知混合动力车辆中的混合动力驱动***的多种布置。常用的一种附加型布置是将混合动力模块额外地增加在传统内燃机驱动***的内燃机和变速器之间,其中该混合动力模块包括用于耦合或切断内燃机与电机之间的动力传输的离合器、电机、用于该混合动力模块的壳体等。由于混合动力模块额外地增加在内燃机和变速器之间,使得驱动***的轴向长度增加,这给一些紧凑型车辆的布局和封装增加了难度。而为了使得驱动***尽可能紧凑,又会使得混合动力模块的设计变得复杂。例如,对于配合双离合器变速器使用的混合动力模块,可能需要在电机的转子空间内设置三个离合器,集成难度高。
现有技术中还存在如下混合动力驱动***,其中将电机集成在变速器中,形成混合动力专用变速器(DHT)。但是,现有的混合动力专用变速器通常专门地设置从电机输出轴到变速器输出轴的齿轮组,并且为纯内燃机驱动模式设置专门的倒挡齿轮组。这使得变速器的占用空间增大且制造成本增加,同时还不利于整个驱动***的可靠性和效率。
发明内容
本发明的一个目的是提供一种混合动力变速器、混合动力驱动***及 混合动力车辆,其能够缩短驱动***的轴向长度,减少变速器组件,降低变速器制造成本并且减小变速器的占用空间,由此改善车辆的封装。
本发明的一个方面提供了一种用于车辆的混合动力驱动***的混合动力变速器,所述混合动力驱动***包括内燃机、电机和动力耦合单元,所述混合动力变速器包括变速器输入轴、变速器输出轴和中间轴,所述变速器输入轴经由所述动力耦合单元与内燃机的输出轴进行动力耦合或断开,所述混合动力变速器还包括:第一齿轮和第二齿轮,两者空套在所述变速器输入轴上;第一同步器,其布置在所述变速器输入轴上并且位于所述第一齿轮和所述第二齿轮之间,所述第一同步器能够与所述第一齿轮或所述第二齿轮接合;第三齿轮和第四齿轮,两者布置在所述变速器输出轴上,并且分别与所述第一齿轮和所述第二齿轮啮合;以及第五齿轮和第六齿轮,其布置在所述中间轴上,并且分别与所述第一齿轮和所述第二齿轮啮合,其中,所述电机的动力经由上述六个齿轮中的任一者输入到所述变速器。
本发明还提供了一种混合动力驱动***,包括内燃机、电机、动力耦合单元以及如上所述的混合动力变速器,其中,所述内燃机的输出轴经由所述动力耦合单元与所述混合动力变速器的变速器输入轴进行动力耦合或断开,所述电机的动力经由所述混合动力变速器中的第一至第六齿轮中的任一者输入到所述变速器。
本发明还提供了一种混合动力车辆,其包括如上所述的混合动力驱动***。
附图说明
下面,将结合附图对本发明的示例性实施例的特征、优点和技术效果进行描述,附图中相似的附图标记表示相似的元件,其中:
图1示出了根据本发明的一个实施例的混合动力变速器和混合动力驱动***的示意图。
图2示出了根据本发明的另一个实施例的混合动力变速器和混合动力驱动***的示意图。
图3A-3C示出了根据本发明的其他实施例的混合动力变速器。
图4A-4D示出了图2所示的混合动力驱动***的纯电机驱动模式的动力传输路径。
图5A-5F示出了图2所示的混合动力驱动***的纯内燃机驱动模式的动力传输路径。
图6A-6I示出了图2所示的混合动力驱动***的混合驱动模式的动力传输路径。
图7A-7B示出了图2所示的混合动力驱动***的电机驱动行驶状态下的内燃机启动模式的动力传输路径。
图8示出了图2所示的混合动力驱动***的停车充电模式的动力传输路径。
图9A-9F示出了根据本发明的实施例的混合动力变速器和混合动力驱动***,其中电机动力从其他部件输入变速器。
具体实施方式
下文中,参照附图描述本发明的实施例。下面的详细描述和附图用于示例性地说明本发明的原理,本发明不限于所描述的优选实施例,本发明的范围由权利要求书限定。
根据本发明的混合动力驱动***包括内燃机ICE、电机EM和混合动力变速器,其中内燃机ICE和电机EM作为动力源,两者输出的动力经由混合动力变速器传递至车辆的车轮。
本发明中的内燃机ICE通常是指传统的柴油内燃机或汽油内燃机,当然也可以是使用其他替代燃料,例如压缩天然气、丙烷和乙醇燃料等的内燃机。此外,内燃机ICE可以是四缸发动机,也可以是其他缸数的发动机。
电机EM除了作为动力源(以电动机模式工作)以外,还可以作为发电机将内燃机ICE输出的动力转换为电能存储在与电机电连接的电池中。电机EM将内燃机ICE输出的动力转换为电能的具体实现将在下文介绍混合动力驱动***的工作模式时详细描述。
图1示出了根据本发明的一个实施例的混合动力驱动***。如图1所示,混合动力驱动***除了内燃机ICE、电机EM和混合动力变速器T之外,还包括离合器K0。离合器K0用于内燃机ICE与混合动力变速器T之间的动力耦合或断开。
图1还具体地示出了根据本发明的混合动力变速器T的布置。变速器T包括变速器输入轴1、变速器输出轴2和中间轴3。
变速器输入轴1通过离合器K0与内燃机ICE输出轴动力耦合或断开。变速器输入轴1可以与内燃机ICE的输出轴、离合器K0同轴布置。
变速器输入轴1上空套有第一齿轮Z11和第二齿轮Z12,并且还设置有第一同步器A。第一同步器A布置在第一齿轮Z11和第二齿轮Z12之间,且能够与第一齿轮Z11或第二齿轮Z12接合或脱离接合。第一同步器A与齿轮Z11或Z12接合时,可以使电机EM的动力和内燃机ICE的动力耦合。
变速器输出轴2上抗扭连接有第三齿轮Z21和第四齿轮Z22,并且还布置有第二同步器B。第三齿轮Z21和第四齿轮Z22分别与第一齿轮Z11和第二齿轮Z12啮合。第二同步器B位于第三齿轮Z21和第四齿轮Z22之间,并且能够与第三齿轮Z21或第四齿轮Z22接合。第二同步器B与第三齿轮Z21接合时使第三齿轮Z21和变速器输出轴2同步旋转,与第四齿轮Z22接合时使第四齿轮Z22与变速器输出轴2同步旋转,与第三齿轮Z21和第四齿轮Z22均脱离接合时,第三齿轮Z21和第四齿轮Z22与变速器输出轴2之间无动力传递。
中间轴4上抗扭连接有第五齿轮Z31和第六齿轮Z32,两者分别与第一齿轮Z11和第二齿轮Z12啮合。通过中间轴和第五齿轮Z31、第六齿轮Z32的布置,电机EM或内燃机ICE的动力除了可经由齿轮对Z11-Z21、Z12-Z22直接传递到变速器输出轴2外,还可经由齿轮对Z11-Z31、Z12-Z32向变速器输出轴2传递。
在图1所示的实施例中,电机EM的动力经由第一齿轮Z11输入到变速器T中。第一齿轮Z11可以设置成与电机EM的输出轴4同轴布置且抗扭连接。具体地,如图1所示的混合动力***,电机EM包括定子S、转 子R以及用于支撑转子的转子轮毂H。转子轮毂H与电机输出轴4一体地形成或抗扭连接。第一齿轮Z11可以一体地形成或者固定安装在电机输出轴4的外周面上。此外,转子轮毂H也可以用作电机EM的输出轴4,并且第一齿轮Z11可以与转子轮毂H抗扭连接。
所述电机(EM)沿轴向布置在所述内燃机(ICE)和所述变速器(T)之间,所述动力耦合单元(K0)布置在所述转子(R)的内部空间中,并且所述变速器输入轴(1)与所述转子轮毂(H)同轴套设布置。
此外,电机EM可以沿轴向设置在内燃机ICE与变速器T之间,离合器K0集成在电机EM的转子R的内部空间内,以充分利用轴向空间,变速器输入轴1可以与电机EM的输出轴4(转子轮毂H)同轴套设布置。具体地,电机EM的输出轴4可以形成为空心轴,变速器输入轴1可以形成为实心轴,变速器输入轴1同轴套设在电机输出轴4的内部,并且从电机EM输出轴4的变速器端延伸出一部分,用于布置同步器和齿轮等部件。
变速器输入轴1、变速器输出轴2和中间轴3可相互平行布置。
在上述实施例中,电机EM的动力从第一齿轮Z11传递到变速器T中。但是,本发明不限于此,电机EM的动力可以从布置在变速器输入轴1、变速器输出轴2和中间轴3上的任意齿轮传递到变速器T中(电机EM的位置相应地变化),具体实施例将在后文中详细描述。
根据上述实施例的变速器的布置可以使电机的动力和内燃机的动力通过共用的齿轮组传递到变速器输出轴,因此,不需要设置单独的从电机输出轴到变速器输出轴的齿轮组,可以减少变速器的部件数量,有利于降低制造成本,压缩占用空间。此外,设置中间轴及布置在中间轴上的齿轮来将电机和内燃机的动力向变速器输出轴传递,有利于减小变速器的轴向尺寸,继而减小混合动力驱动***的轴向尺寸。
图1所示实施例的混合动力变速器仅包括2个同步器和4个齿轮对。根据本发明的其他实施例,混合动力变速器还可以包括更多的其他齿轮对和其他同步器以增加挡位变化。混合动力变速器可以额外地包括设置在变速器输入轴1和变速器输出轴2之间的至少一个其他齿轮对,以及布置在 变速器输入轴1或变速器输出轴2上的至少一个其他同步器,该至少一个其他同步器用于从至少一个其他齿轮对中选择其中一个在变速器输入轴1与输出轴2之间传递动力。具体地,至少一个其他齿轮对中的每个其他齿轮对的两个齿轮分别以抗扭连接和空转连接的方式布置在变速器输入轴1和变速器输出轴2上,并且至少一个其他同步器与至少一个其他齿轮对中的空套在变速器输入轴1或变速器输出轴2上的齿轮相配合地布置,使得每个其他同步器能够与空套在变速器输入轴1或变速器输出轴2上的一个或两个齿轮接合。
图2示出了根据本发明的一个实施例的混合动力变速器和混合动力驱动***,其中至少一个其他齿轮对的数目为2,至少一个其他同步器的数目为1。具体地,与图1所示的混合动力变速器相比,图2所示的混合动力变速器额外地包括由第七齿轮Z13和第八齿轮Z23构成的齿轮对Z13-Z23、第九齿轮Z14和第十齿轮Z24构成的齿轮Z14-Z24和第三同步器C,其中第七齿轮Z13、第九齿轮Z14抗扭连接在变速器输入轴1上,第八齿轮Z23、第十齿轮Z24空套在变速器输出轴2上,并且第三同步器C布置在变速器输出轴2上。第三同步器C位于第八齿轮Z23和第十齿轮Z24之间并且能够与第八齿轮Z23或第十齿轮Z24接合。第三同步器C与第八齿轮Z23接合时使第八齿轮Z23与输出轴2同步转动,与第十齿轮Z24接合时使第十齿轮Z24与输出轴2同步转动,与第八齿轮Z23和第十齿轮Z24均脱离接合时,齿轮Z23和齿轮Z24与输出轴2之间无动力传输。
图3A-图3C示出了根据本发明的混合动力变速器的其他实施例。图3A所示的实施例的混合动力变速器与图1所示的实施例相比,还额外地包括由第七齿轮Z13和第八齿轮Z23构成的齿轮对Z13-Z23和第三同步器C,其中第七齿轮Z13抗扭连接在变速器输入轴1上,第八齿轮Z23空套在变速器输出轴2上,第三同步器C布置在变速器输出轴2上,位于第八齿轮Z23的轴向一侧且能够与齿轮Z23接合。第三同步器C与第八齿轮Z23接合时,齿轮对Z13-Z23可在变速器输入轴1与变速器输出轴2之间传递动力。
图3B所示的实施例的混合动力变速器与图1所示的实施例相比,还额外地包括由第七齿轮Z13和第八齿轮Z23构成的齿轮对Z13-Z23、由第九齿轮Z14和第十齿轮Z24构成的齿轮对Z14-Z24、由第十一齿轮Z15和第十二齿轮Z25构成的齿轮对Z15-Z25、以及第三同步器C和第四同步器D,其中:第七齿轮Z13、第九齿轮Z14抗扭连接在变速器输入轴1上,第十一齿轮Z15空套在变速器输入轴1上;第八齿轮Z23、第十齿轮Z24空套在变速器输出轴2上,第十二齿轮Z25抗扭连接在变速器输出轴2上;第三同步器C布置在变速器输出轴2上,位于第八齿轮Z23和第十Z24之间且能够与第八齿轮Z23或第十齿轮Z24接合;第四同步器D布置在变速器输入轴1上,位于第十一齿轮Z15的轴向一侧且能够与第十一齿轮Z15接合。通过设置同步器C、D的接合状态,可择一选择齿轮对Z13-Z23、Z14-Z24和Z15-Z25在变速器输入轴1和变速器输出轴2之间传递动力。
图3C所示的实施例的混合动力变速器与图1所示的实施例相比,还额外地包括由第七齿轮Z13和第八齿轮Z23构成的齿轮对Z13-Z23、由第九齿轮Z14和第十齿轮Z24构成的齿轮对Z14-Z24、由第十一齿轮Z15和第十二齿轮Z25构成的齿轮对Z15-Z25、由第十三齿轮Z16和第十四齿轮Z26构成的齿轮对Z16-Z26以及第三同步器C和第四同步器D,其中:第七齿轮Z13、第九齿轮Z14抗扭连接在变速器输入轴1上,第十一齿轮Z15、第十三齿轮Z16空套在变速器输入轴1上;第八齿轮Z23、第十齿轮Z24空套在变速器输出轴2上,第十二齿轮Z25、第十三齿轮Z26抗扭连接在变速器输出轴2上;第三同步器C布置在变速器输出轴2上,位于第八齿轮Z23和第十齿轮Z24之间且能够与第八齿轮Z23或第十齿轮Z24接合;第四同步器D布置在变速器输入轴1上,位于第十一齿轮Z15和第十三齿轮Z16之间且能够与第十一齿轮Z15或第十三齿轮Z16接合。通过设置同步器C和D的接合状态,可择一选择齿轮对Z13-Z23、Z14-Z24、Z15-Z25和Z16-Z26在变速器输入轴1和变速器输出轴2之间传递动力。
根据本发明的混合动力变速器还可以包括更多个其他齿轮对和更多个其他同步器。此外,其他齿轮对中的齿轮和其他同步器在变速器输入轴和 变速器输出轴上的布置也不限于上述实施例。例如,在图3A所示的实施例中,第七齿轮Z13可以设置成空套在变速器输入轴1上且第三同步器C可以在第七齿轮Z13的轴向一侧布置在变速器输入轴1上,而第八齿轮Z23可以抗扭连接在变速器输出轴2上。
通过控制混合动力驱动***中的内燃机ICE、电机EM、离合器K0以及同步器的状态,本发明的混合动力驱动***能够在多种工作模式之间切换操作,以适应车辆在不同工况下对驱动***提出的要求。下面将描述图2所示实施例的混合动力驱动***的多个工作模式,根据图2所示的混合动力驱动***的多个工作模式的描述,本领域技术人员可以根据其工作原理了解本发明的其他实施例的混合动力离合器和混合动力驱动***的工作原理。
一.纯电机驱动模式
在纯电动驱动模式下,电机EM作为驱动车辆行驶的唯一动力源。图2所示的混合动力驱动***的纯电动驱动模式具体地包括前进挡模式和倒挡模式。
在前进挡模式下,可以车辆以不同挡位对应的速度前进,电机EM在电动机模式下正转,内燃机ICE不工作(即,内燃机ICE未输出扭矩),离合器K0打开。图2所示的混合动力驱动***包括四个前进挡位,各前进挡位下的同步器工作状态和动力传输路径(参见图4A-4D)如下。
EM1:第一同步器A处于不接合状态,第二同步器B与第三齿轮Z21接合,第三同步器C处于不接合状态。电机EM的动力依次经由电机输出轴4、第一齿轮Z11和齿轮对Z11-Z21传递到变速器输出轴2,从而驱动车轮转动。
EM2:第一同步器A处于不接合状态,第二同步器B与第四齿轮Z22接合,第三同步器C处于不接合状态。电机EM的动力依次经由电机输出轴4、第一齿轮Z11和齿轮对Z11-Z31-Z32-Z12-Z32传递到变速器输出轴2,从而驱动车轮转动。
EM3:第一同步器A与第一齿轮Z11接合,第二同步器B处于不接合状态,第三同步器C与第十齿轮Z24接合。电机EM的动力依次经由电机 输出轴4、第一齿轮Z11、第一同步器A、变速器输入轴1和齿轮对Z14-Z24传递到变速器输出轴2,从而驱动车轮转动。
EM4:第一同步器A与第一齿轮Z11接合,第二同步器B处于不接合状态,第三同步器C与第八齿轮Z23接合。电机EM的动力依次经由电机输出轴4、第一齿轮Z11、第一同步器A、变速器输入轴1和齿轮对Z13-Z23传递到变速器输出轴2,从而驱动车轮转动。
在倒挡模式下,内燃机ICE、离合器K0的工作状态与前进挡模式相同,与前进挡模式不同的是,在倒挡模式下,电机EM在电动机模式下反转。倒挡模式具有与前进挡模式对应的四个挡位。在各个倒挡位下,同步器的工作状态以及动力传输路径与对应的前进挡位相同。
优选地,选用EM1挡位进行倒车。在EM1挡位下,变速箱内的动力传输路径短,可以减少能量损失,且可靠性高。
可见,根据本实施例的混合动力变速器和混合动力驱动***可以在纯电机驱动模式下可实现多个挡位的驱动。由此,即使在纯电机驱动模式下也可以根据不同的负载选择适合的挡位来驱动车辆,可以优化车辆在纯电机驱动模式下的动力使用。
二.纯内燃机驱动模式
在纯内燃机驱动模式下,内燃机ICE作为驱动车辆行驶的唯一动力源。电池电量不足,无法利用电机EM作为驱动车辆行驶的动力源时,可以控制驱动***在纯内燃机驱动模式下工作。
在纯内燃机驱动模式下,内燃机ICE工作,离合器K0接合,内燃机ICE的输出扭矩从内燃机输出轴经由离合器K0传递到变速器输入轴1。纯内燃机驱动模式仅具有前进挡模式,而未设置倒挡模式。具体地,纯内燃机驱动模式具有6个前进挡位,各个前进挡位下的同步器工作状态和动力传输路径(如图5A-5F所示)如下。
ICE1:第一同步器A与第二齿轮Z12接合,第二同步器B与第三齿轮Z21接合,第三同步器C处于不接合状态。内燃机ICE的动力依次经由变速器输入轴1、第一同步器A和齿轮对Z12-Z32-Z31-Z11-Z21传递到变速器输出轴2,从而驱动车轮转动。
ICE2:第一同步器A与第一齿轮Z11接合,第二同步器B与第三齿轮Z21接合,第三同步器C处于不接合状态。内燃机ICE的动力依次经由变速器输入轴1、第一同步器A和齿轮对Z11-Z21传递到变速器输出轴2,从而驱动车轮转动。
ICE3:第一同步器A处于不接合状态,第二同步器B处于不接合状态,第三同步器C与第十齿轮Z24接合。内燃机ICE的动力依次经由变速器输入轴1和齿轮对Z14-Z24传递到变速器输出轴2,从而驱动车轮转动。
ICE4:第一同步器A与第二齿轮Z12接合,第二同步器B与第四齿轮Z22接合,第三同步器C处于不接合状态。内燃机ICE的动力依次经由变速器输入轴1、第一同步器A和齿轮对Z12-Z22传递到变速器输出轴2,从而驱动车轮转动。
ICE5:第一同步器A与第一齿轮Z11接合,第二同步器B与第四齿轮Z22接合,第三同步器C处于不接合状态。内燃机ICE的动力依次经由变速器输入轴1、第一同步器A和齿轮对Z11-Z31-Z32-Z12-Z22传递到变速器输出轴2,从而驱动车轮转动。
ICE6:第一同步器A处于不接合状态,第二同步器B处于不接合状态,第三同步器C与第八齿轮Z23接合。内燃机ICE的动力依次经由变速器输入轴1和齿轮对Z13-Z23传递到变速器输出轴2,从而驱动车轮转动。
根据本实施例的混合动力变速器和混合动力驱动***,未设置用于纯内燃机驱动模式的倒挡模式的倒车齿轮组及相应的同步器。在纯内燃机驱动模式下,通过控制内燃机ICE、电机EM、离合器K0和同步器A、B、C的状态,通过纯电机驱动的倒挡模式来实现车辆的倒车。因此,根据本实施例的混合动力变速器和混合动力驱动***可以省略专用于纯内燃机驱动模式的倒挡齿轮组和同步器,以更少的齿轮组和同步器实现相同数量的挡位的同时,可以降低变速器的复杂程度和制造成本,压缩变速器的占用空间。
三.混合驱动模式
当电机EM不足以提供车辆行驶所需的动力时,内燃机ICE可介入,和电机EM作为共同驱动车辆行驶的动力源,混合动力驱动***以混合驱动模式驱动车辆行驶。
根据图2所示的混合动力驱动***,可以在以下九种混合动力模式下工作。在这九种混合动力模式下,内燃机ICE工作,离合器K0接合,内燃机ICE的动力从内燃机输出轴经由离合器K0传递到变速器输入轴1;电机EM在电动机模式下工作,电机EM的动力从电机输出轴传递到第一齿轮Z11。九种混合动力模式下的同步器状态和动力传输路径(如图6A-6I所示)如下。
混合驱动模式1(EM1+ICE1):第一同步器A与第二齿轮Z12接合,第二同步器B与第三齿轮Z21接合,并且第三同步器C处于不接合状态;电机EM的动力传递到第一齿轮Z11,内燃机ICE的动力经由变速器输入轴1、第一同步器A和齿轮对Z12-Z32-Z31-Z11传递到第一齿轮Z11,电机EM和内燃机ICE的动力耦合经由齿轮对Z11-Z21传递到变速器输出轴2。
混合驱动模式2(EM1+ICE2):第一同步器A与第一齿轮Z11接合,第二同步器B与第三齿轮Z21接合,并且第三同步器C处于不接合状态;内燃机ICE的动力经由变速器输入轴1和第一同步器A传递到第一齿轮Z11,内燃机ICE和电机EM的动力耦合从第一齿轮Z11经由齿轮对Z11-Z21传递到变速器输出轴2。
混合驱动模式3(EM1+ICE3):第一同步器A处于不接合状态,第二同步器B与第三齿轮Z21接合,并且第三同步器C与第十齿轮Z24接合;电机EM的动力经由齿轮对Z11-Z21传递到变速器输出轴2,内燃机ICE的动力从变速器输入轴1经由齿轮对Z14-Z24传递到变速器输出轴2,电机EM和内燃机ICE的动力耦合带动变速器输出轴2转动。
混合驱动模式4(EM2+ICE3):第一同步器A处于不接合状态,第二同步器B与第四齿轮Z22接合,并且第三同步器C与第十齿轮Z24接合;电机EM的动力经由齿轮对Z11-Z31-Z32-Z12-Z22传递到变速器输出轴2,内燃机ICE的动力经由变速器输入轴1和齿轮对Z14-Z24传递到变 速器输出轴2,电机EM和内燃机ICE的动力耦合带动变速器输出轴2转动。
混合驱动模式5(EM2+ICE4):第一同步器A与第二齿轮Z12接合,第二同步器B与第四齿轮Z22接合,并且第三同步器C处于不接合状态;电机EM的动力经由齿轮对Z11-Z31-Z32-Z12和第一同步器A传递到变速器输入轴1,电机EM和内燃机ICE的动力耦合从变速器输入轴1经由齿轮对Z12-Z22传递到变速器输出轴2。
混合驱动模式6(EM2+ICE5):第一同步器A与第一齿轮Z11接合,第二同步器B与第四齿轮Z22接合,并且第三同步器C处于不接合状态;内燃机ICE的动力经由变速器输入轴1、第一同步器A传递到第一齿轮Z11,电机EM和内燃机ICE的动力耦合从第一齿轮Z11经由齿轮对Z11-Z31-Z32-Z12-Z22传递到变速器输出轴2。
混合驱动模式7(EM2+ICE6):第一同步器A处于不接合状态,第二同步器B与第四齿轮Z22接合,并且第三同步器C与第八齿轮Z23接合;电机EM的动力经由齿轮对Z11-Z31-Z32-Z12-Z22传递到变速器输出轴2,内燃机ICE的动力从变速器输入轴1经由齿轮对Z13-Z33传递到变速器输出轴2,电机EM和内燃机ICE的动力耦合带动变速器输出轴2转动。
混合驱动模式8(EM3+ICE3):第一同步器A与第一齿轮Z11接合,第二同步器B处于不接合状态,并且第三同步器C与第十齿轮Z24接合;电机EM的动力从第一齿轮Z11经由第一同步器A传递到变速器输入轴1,电机EM和内燃机ICE的动力耦合从变速器输入轴1经由齿轮对Z14-Z24传递到变速器输出轴2。
混合驱动模式9(EM4+ICE6):第一同步器A与第一齿轮Z11接合,第二同步器B处于不接合状态,并且第三同步器C与第八齿轮Z23接合;电机EM的动力从第一齿轮Z11经由第一同步器A传递到变速器输入轴1,电机EM和内燃机ICE的动力耦合从变速器输入轴1经由齿轮对Z13-Z23传递到变速器输出轴2。
在混合驱动模式下,内燃机ICE和电机EM可以同时输出扭矩驱动车 轮转动。由此,可设置扭矩补偿功能,以在内燃机ICE和电机EM中的一者进行换挡时,另一者可以提供扭矩补偿,避免换挡时变速器输出轴上的扭矩突变,使换挡时车辆行驶更加平稳。例如,当混合动力驱动***从ICE1挡位切换到ICE2挡位时,由于需要切换第一同步器A的工作状态,从内燃机ICE传递到变速器输出轴的扭矩发生中断,导致变速器输出轴上的扭矩发生变化。如果此时电机EM以EM1挡位驱动车辆行驶,电机EM到变速器输出轴的扭矩输出不会被中断,可通过增大电机EM的输出扭矩,对变速器输出轴进行扭矩补偿;如果电机EM处于非工作状态(例如在纯内燃机驱动模式下的换挡),可以启动电机EM对变速器输出轴进行扭矩补偿。反之,当混合动力驱动***切换电机驱动挡位时,可适当增大内燃机ICE的输出扭矩进行扭矩补偿。需要注意的是,上述扭矩补偿受到电机和内燃机驱动的挡位限制,即,扭矩补偿可实现的前提是,在切换电机和内燃机的任一者的挡位时,另一者到变速器输出轴的扭矩传输不会受到影响。
四.电机驱动行驶状态下的内燃机ICE启动模式
在电机驱动行驶状态下的内燃机ICE启动模式下,电机EM在电动机模式下工作,电机EM输出的一部分动力用来驱动车辆行驶,另一部分动力用来启动内燃机ICE,以使内燃机ICE介入提供车辆行驶所需动力。
在电机驱动行驶状态下启动内燃机ICE时,电机EM在电动机模式下工作,并且使离合器K0接合。电机EM在EM1和EM2挡位驱动车辆行驶时启动内燃机ICE的动力传输路径(如图7A-7B所示)如下。
EM1挡位的ICE启动模式:第一同步器A与第一齿轮Z11接合,第二同步器B与第三齿轮Z21接合,第三同步器C处于不接合状态。电机EM的输出扭矩一部分经由齿轮对Z11-Z21传递到变速器输出轴2以驱动车轮转动,另一部分经由第一齿轮Z11、第一同步器A、变速器输入轴1、离合器K0传递到内燃机输出轴,由此启动内燃机ICE。
EM2挡位的ICE启动模式:第一同步器A与第二齿轮Z12接合,第二同步器B与第四齿轮Z22接合,第三同步器C处于不接合状态。电机EM的输出扭矩经由齿轮对Z11-Z31-Z32-Z12传递到第二齿轮Z12,传递 到第二齿轮Z12的扭矩一部分通过第一同步器A、变速器输入轴1、离合器K0传递到内燃机ICE的输出轴,由此启动内燃机ICE,还有一部分通过齿轮对Z12-Z22传递到变速器输出轴2,以驱动车轮转动。
电机EM还能够在以EM3和EM4挡位驱动车辆行驶时启动内燃机ICE。本领域技术人员可依据在电机EM1和EM2挡位的内燃机ICE启动模式,了解在EM3和EM4挡位的内燃机ICE启动模式下电机EM、离合器K0、同步器A、B、C的工作状态以及动力传输路径。
此外,可以在变速器的任何内燃机ICE挡位上启动内燃机ICE。例如,可以在电机EM以EM1挡位驱动车辆时,以ICE1-ICE3挡位启动内燃机ICE,在电机EM以EM2挡位驱动车辆时,以ICE3-ICE6挡位启动内燃机ICE等,只要内燃机ICE的启动挡位不会中断电机EM所在挡位的正常扭矩传递即可。
五、停车充电模式
停车充电模式下,车辆静止,内燃机ICE驱动电机EM发电,为电池充电。
在停车充电模式下,内燃机ICE工作,电机EM用作发电机,第一同步器A与第一齿轮Z11接合,第二同步器B不接合,并且第三同步器C不接合。内燃机ICE的动力经变速器输入轴1、第一同步器A、第一齿轮Z11传递到电机EM的输出轴,由此驱动电机EM的转子转动,使电机EM发电,为电池充电(动力传输路径参见图8)。
六.能量回收模式
在能量回收模式下,电机EM在发电机模式下工作,经驱动***中的动能转换成电能,以进行能量回收,提高驱动***的能量利用率。
能量回收模式的适用条件包括两种:1)车辆处于滑行工况,即油门踏板和制动踏板均被释放,驱动***中的任一动力源均不提供车辆行驶所需动力;2)车辆处于制动工况。
车辆处于滑行工况(车辆会行驶,称之为溜车)和制动工况时,车轮会在传动系的作用下带动变速器输出轴2旋转,旋转的输出轴2可以驱动电机EM发电,为电池充电,实现能量回收。
在能量回收模式下,离合器K0处于分离状态,电机EM在发电机模式下工作,内燃机ICE不工作;第一同步器A、第三同步器C处于不接合状态,第二同步器B与第三齿轮Z21接合,变速器输出轴2的扭矩经由齿轮对Z21-Z11传递到电机EM的输出轴4,由此使电机EM发电。
经由齿轮对Z21-Z11将变速器输出轴的扭矩传递到电机EM,使得车轮的能量以最短的传输路径传递到电机EM,可提高能量回收效率。
以上描述了根据本发明的混合动力变速器以及混合动力驱动***的实施例。在上述实施例中,电机EM的动力从第一齿轮Z11输入变速器T,但是,本发明的实施例不限于此。电机EM的动力也可以从变速器T的其他部件输入,如图9A-9F所示。
在图9A所示的实施例中,电机输出轴4可以与中间轴3同轴布置且抗扭连接。电机EM的动力经由中间轴3传递到变速器,然后经由齿轮对Z31-Z11或Z32-Z12向变速器输出轴2传递。
如图9B-9D所示,电机输出轴4抗扭连接有电机齿轮Z51,中间轴3可以与电机输出轴4平行布置并且与电机输出轴4通过齿轮啮合动力连接。电机齿轮Z51与中间轴3上的第五齿轮Z31和第六齿轮Z32中的任一个啮合,以将动力从电机输出轴4传递到中间轴3。此外,如图9D所示,中间轴3上还可以额外地设置有输入专用齿轮Z33,电机EM的动力经由齿轮对Z51-Z33传递到中间轴3。
如图9E-9F所示,电机输出轴4上的电机齿轮Z51还可以与第三齿轮Z21或第四齿轮Z22啮合,以经由齿轮对Z51-Z21或齿轮对Z51-Z22将动力从电机输出轴4传递到变速器。
尽管已经参考示例性实施例描述了本发明,但是应理解,本发明并不限于上述实施例的构造和方法。相反,本发明意在覆盖各种修改例和等同配置。另外,尽管在各种示例性结合体和构造中示出了所公开发明的各种元件和方法步骤,但是包括更多、更少的元件或方法的其它组合也落在本发明的范围之内。

Claims (17)

  1. 一种用于车辆的混合动力驱动***的混合动力变速器(T),所述混合动力驱动***包括内燃机(ICE)、电机(EM)和动力耦合单元(K0),所述混合动力变速器(T)包括变速器输入轴(1)、变速器输出轴(2)和中间轴(3),所述变速器输入轴(1)经由所述动力耦合单元(K0)与内燃机(ICE)的输出轴进行动力耦合或断开,所述混合动力变速器(T)还包括:
    第一齿轮(Z11)和第二齿轮(Z12),两者空套在所述变速器输入轴(1)上;
    第一同步器(A),其布置在所述变速器输入轴(1)上并且位于所述第一齿轮(Z11)和所述第二齿轮(Z12)之间,所述第一同步器(A)能够与所述第一齿轮(Z11)或所述第二齿轮(Z12)接合;
    第三齿轮(Z21)和第四齿轮(Z22),两者布置在所述变速器输出轴(2)上,并且分别与所述第一齿轮(Z11)和所述第二齿轮(Z12)啮合;以及
    第五齿轮(Z31)和第六齿轮(Z32),两者布置在所述中间轴(3)上,并且分别与所述第一齿轮(Z11)和所述第二齿轮(Z12)啮合,
    其中,所述电机(EM)的动力经由上述六个齿轮(Z11、Z12、Z21、Z22、Z31、Z32)中的任一者输入到所述变速器(T)。
  2. 根据权利要求1所述的混合动力变速器(T),其中,
    所述第三齿轮(Z21)和所述第四齿轮(Z22)空套在所述变速器输出轴(2)上,并且所述变速器(T)还包括第二同步器(B),所述第二同步器(B)布置在所述变速器输出轴(2)上,位于所述第三齿轮(Z21)和所述第四齿轮(Z22)之间,并且能够与所述第三齿轮(Z21)或所述第四齿轮(Z22)接合。
  3. 根据权利要求2所述的混合动力变速器(T),其中,
    所述第五齿轮(Z31)和所述第六齿轮(Z32)抗扭连接在所述中间轴(3)上。
  4. 根据权利要求1-3中任一项所述的混合动力变速器(T),其中,
    所述第一齿轮(Z11)与电机(EM)的输出轴(4)同轴布置且抗扭连接。
  5. 根据权利要求4所述的混合动力变速器(T),其中,
    所述电机(EM)包括转子(R)和用于支撑所述转子(R)的转子轮毂(H),所述转子轮毂(H)用作所述电机EM的输出轴(4)并且与所述第一齿轮(Z11)抗扭连接,并且
    所述电机(EM)沿轴向布置在所述内燃机(ICE)和所述变速器(T)之间,所述动力耦合单元(K0)布置在所述转子(R)的内部空间中,并且所述变速器输入轴(1)与所述转子轮毂(H)同轴套设布置。
  6. 根据权利要求3所述的混合动力变速器(T),其中,
    所述中间轴(1)与电机(EM)的输出轴(4)同轴布置且抗扭连接。
  7. 根据权利要求3所述的混合动力变速器,其中,
    电机(EM)的输出轴(4)抗扭连接有电机齿轮(Z51),所述中间轴(3)与所述电机(EM)的输出轴(4)平行布置并且与所述电机输出轴(4)通过齿轮啮合动力连接。
  8. 根据权利要求7所述的混合动力变速器(T),其中,
    所述第五齿轮(Z31)或所述第六齿轮(Z32)与所述电机齿轮(Z51)啮合。
  9. 根据权利要求7所述的混合动力变速器,其中,
    所述中间轴(3)抗扭连接有输入专用齿轮(Z33),所述输入专用齿轮(Z33)与所述电机齿轮(Z51)啮合。
  10. 根据权利要求1-9中任一项所述的混合动力变速器(T),还包括:
    至少一个其他齿轮对,其设置在所述变速器输入轴(1)和所述变速器输出轴(2)之间;以及
    至少一个其他同步器,其用于从所述至少一个其他齿轮对中选择一个齿轮对用于所述变速器输入轴(1)和所述变速器输出轴(2)之间的动力 传递。
  11. 根据权利要求10所述的混合动力变速器(T),其中,
    每个所述其他齿轮对的两个齿轮分别以抗扭连接和空转连接的方式布置在所述变速器输入轴(1)和所述变速器输出轴(2)上,并且
    所述至少一个其他同步器与所述至少一个其他齿轮对中的空套在所述变速器输入轴(1)或所述变速器输出轴(2)上的齿轮相配合地布置,使得每个其他同步器能够与空套在所述变速器输入轴(1)或所述变速器输出轴(2)上的一个或两个齿轮接合。
  12. 根据权利要求11所述的混合动力变速器(T),其中,
    所述至少一个其他齿轮对为第七齿轮(Z13)和第八齿轮(Z23)构成的齿轮对(Z13-Z23),所述至少一个其他同步器为第三同步器(C),
    其中,所述第七齿轮(Z13)抗扭连接在所述变速器输入轴(1)上并且所述第八齿轮(Z23)空套在所述变速器输出轴(2)上,所述第三同步器(C)布置在所述变速器输出轴(2)上,位于所述第八齿轮(Z23)的轴向一侧且能够与所述第八齿轮(Z23)接合。
  13. 根据权利要求11所述的混合动力变速器,其中,
    所述至少一个其他齿轮对包括第七齿轮(Z13)和第八齿轮(Z23)构成的齿轮对(Z13-Z23)以及第九齿轮(Z14)和第十齿轮(Z24)构成的齿轮对(Z14-Z24),所述至少一个其他同步器为第三同步器(C),
    其中,所述第七齿轮(Z13)、所述第九齿轮(Z14)抗扭连接在所述变速器输入轴(1)上,所述第八齿轮(Z23)、所述第十齿轮(Z24)空套在所述变速器输出轴(2)上,所述第三同步器(C)布置在所述变速器输出轴(2)上,位于所述第八齿轮(Z23)和所述第十齿轮(Z24)之间并且能够与所述第八齿轮(Z23)或所述第十齿轮(Z24)接合。
  14. 根据权利要求11所述的混合动力变速器(T),其中,
    所述至少一个其他齿轮对包括第七齿轮(Z13)和第八齿轮(Z23)构成的齿轮对(Z13-Z23),第九齿轮(Z14)和第十齿轮(Z24)构成的齿轮对(Z14-Z24)以及第十一齿轮(Z15)和第十二齿轮(Z25)构成的齿轮对(Z15-Z25),所述至少一个其他同步器包括第三同步器(C)和第四 同步器(D),
    其中,所述第七齿轮(Z13)和所述第九齿轮(Z14)抗扭连接在所述变速器输入轴(1)上,并且所述第八齿轮(Z23)和所述第十齿轮(Z24)空套在所述变速器输出轴(2)上,所述第三同步器(C)布置在所述变速器输出轴(2)上,位于所述第八齿轮(Z23)和所述第十齿轮(Z24)之间并且能够与所述第八齿轮(Z23)或所述第十齿轮(Z24)接合,并且
    所述第十一齿轮(Z15)空套在所述变速器输入轴(1)上,所述第十二齿轮(Z25)抗扭连接在所述变速器输出轴(2)上,所述第四同步器(D)布置在所述变速器输入轴(1)上,位于所述第十一齿轮(Z15)的轴向一侧且能够与所述第十一齿轮(Z15)接合。
  15. 根据权利要求11所述的混合动力变速器(T),其中,
    所述至少一个其他齿轮对包括第七齿轮(Z13)和第八齿轮(Z23)构成的齿轮对(Z13-Z23),第九齿轮(Z14)和第十齿轮(Z24)构成的齿轮对(Z14-Z24),第十一齿轮(Z15)和第十二齿轮(Z25)构成的齿轮对(Z15-Z25)以及第十三齿轮(Z16)和第十四齿轮(Z26)构成的齿轮对(Z16-Z26),所述至少一个其他同步器包括第三同步器(C)和第四同步器(D),
    其中,所述第七齿轮(Z13)和所述第九齿轮(Z14)抗扭连接在所述变速器输入轴(1)上,所述第八齿轮(Z23)和所述第十齿轮(Z24)空套在所述变速器输出轴(2)上,所述第三同步器(C)布置在所述变速器输出轴(2)上,位于所述第八齿轮(Z23)和所述第十齿轮(Z24)之间并且能够与所述第八齿轮(Z23)或所述第十齿轮(Z24)接合,并且
    所述第十一齿轮(Z15)和所述第十三齿轮(Z16)空套在所述变速器输入轴(1)上,所述第十二齿轮(Z25)和所述第十四齿轮(Z26)抗扭连接在所述变速器输出轴(2)上,并且所述第四同步器(D)布置在所述变速器输入轴(1)上,位于所述第十一齿轮(Z15)和所述第十三齿轮(Z16)之间且能够与所述第十一齿轮(Z15)或所述第十三齿轮(Z16)接合。
  16. 一种混合动力驱动***,包括内燃机(ICE)、电机(EM)、动力耦合单元(K0)以及如权利要求1-15中任一项所述的混合动力变速器(T),其中,所述内燃机(ICE)的输出轴经由所述动力耦合单元(K0)与所述混合动力变速器(T)的变速器输入轴(1)进行动力耦合或断开,所述电机(EM)的动力经由所述混合动力变速器(T)中的第一至第六齿轮(Z11、Z12、Z21、Z22、Z31、Z32)中的任一者输入到所述变速器(T)。
  17. 一种车辆,其包括如权利要求16所述的混合动力驱动***。
PCT/CN2018/081530 2018-04-02 2018-04-02 混合动力变速器、混合动力驱动***及车辆 WO2019191859A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880089595.9A CN111742162A (zh) 2018-04-02 2018-04-02 混合动力变速器、混合动力驱动***及车辆
DE112018007424.2T DE112018007424T5 (de) 2018-04-02 2018-04-02 Hybridgetriebe, Hybridantriebssystem und Fahrzeug
PCT/CN2018/081530 WO2019191859A1 (zh) 2018-04-02 2018-04-02 混合动力变速器、混合动力驱动***及车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/081530 WO2019191859A1 (zh) 2018-04-02 2018-04-02 混合动力变速器、混合动力驱动***及车辆

Publications (1)

Publication Number Publication Date
WO2019191859A1 true WO2019191859A1 (zh) 2019-10-10

Family

ID=68099860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081530 WO2019191859A1 (zh) 2018-04-02 2018-04-02 混合动力变速器、混合动力驱动***及车辆

Country Status (3)

Country Link
CN (1) CN111742162A (zh)
DE (1) DE112018007424T5 (zh)
WO (1) WO2019191859A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113415149A (zh) * 2021-06-30 2021-09-21 湖南海博瑞德电智控制技术有限公司 一种适用于四驱汽车混合动力***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010022395A1 (de) * 2009-06-02 2010-12-09 Fev Motorentechnik Gmbh Verfahren zum Wechseln der Gangschaltstufen bei einem Hybridantriebssystem
EP2360044A1 (en) * 2008-12-18 2011-08-24 Honda Motor Co., Ltd. Transmission for hybrid vehicle
JP2012056510A (ja) * 2010-09-10 2012-03-22 Aisin Seiki Co Ltd ハイブリッド車両の駆動装置
CN105246730A (zh) * 2013-05-29 2016-01-13 舍弗勒技术股份两合公司 用于切换车辆的传动系的方法以及传动系
CN205836514U (zh) * 2016-06-20 2016-12-28 广州汽车集团股份有限公司 混合动力耦合***及混合动力汽车
CN106801724A (zh) * 2015-11-25 2017-06-06 采埃孚(中国)投资有限公司 一种混合动力变速器
CN206678766U (zh) * 2017-03-06 2017-11-28 精进电动科技股份有限公司 一种纵置双动力源车辆驱动总成
CN107642582A (zh) * 2016-07-22 2018-01-30 现代自动车株式会社 用于混合动力车辆的变速器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10349558A1 (de) * 2003-10-22 2005-06-02 Daimlerchrysler Ag Antriebsstrang
JP6570624B2 (ja) * 2014-06-13 2019-09-04 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG 差し込みモジュールとして形成されるハイブリッドモジュール

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2360044A1 (en) * 2008-12-18 2011-08-24 Honda Motor Co., Ltd. Transmission for hybrid vehicle
DE102010022395A1 (de) * 2009-06-02 2010-12-09 Fev Motorentechnik Gmbh Verfahren zum Wechseln der Gangschaltstufen bei einem Hybridantriebssystem
JP2012056510A (ja) * 2010-09-10 2012-03-22 Aisin Seiki Co Ltd ハイブリッド車両の駆動装置
CN105246730A (zh) * 2013-05-29 2016-01-13 舍弗勒技术股份两合公司 用于切换车辆的传动系的方法以及传动系
CN106801724A (zh) * 2015-11-25 2017-06-06 采埃孚(中国)投资有限公司 一种混合动力变速器
CN205836514U (zh) * 2016-06-20 2016-12-28 广州汽车集团股份有限公司 混合动力耦合***及混合动力汽车
CN107642582A (zh) * 2016-07-22 2018-01-30 现代自动车株式会社 用于混合动力车辆的变速器
CN206678766U (zh) * 2017-03-06 2017-11-28 精进电动科技股份有限公司 一种纵置双动力源车辆驱动总成

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113415149A (zh) * 2021-06-30 2021-09-21 湖南海博瑞德电智控制技术有限公司 一种适用于四驱汽车混合动力***

Also Published As

Publication number Publication date
DE112018007424T5 (de) 2020-12-17
CN111742162A (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
CN109130830B (zh) 用于混合动力车辆的变速器及动力***
EP2444266B1 (en) Hybrid driving system
CN100465014C (zh) 混合动力车的动力传动装置
CN111655524B (zh) 混合动力变速器和车辆
CN101450609B (zh) 混合动力驱动***及其驱动方法
US8597146B2 (en) Powertrain with two planetary gear sets, two motor/generators and multiple power-split operating modes
CN101417606B (zh) 混合动力驱动***及其驱动方法
EP2508378A1 (en) Hybrid electric drive unit, hybrid drive system and control method thereof
US11391348B2 (en) Transmission and power system for use in hybrid vehicle
CN102189921A (zh) 混合动力驱动装置
CN101209667A (zh) 混合动力输出装置
CN102310758B (zh) 单离合器、双行星式混合动力构造
CN112166046B (zh) 混合动力变速器和混合动力车辆
CN101716880A (zh) 基于双离合器自动变速器的混合动力驱动***
CN109878321A (zh) 混合动力装置及混合动力汽车
CN108662094A (zh) 混合动力变速器、混合动力驱动系及混合动力车辆
CN108944412A (zh) 用于车辆的混合动力模块
CN110576730A (zh) 混合动力变速器和车辆
CN202782641U (zh) 混合动力驱动装置
CN101934720A (zh) 一种混合动力驱动***及其驱动方法
CN108839550B (zh) 混合动力***
CN102310760A (zh) 一种混合动力驱动***的驱动方法
WO2019191859A1 (zh) 混合动力变速器、混合动力驱动***及车辆
JP2008174118A (ja) ハイブリッド車両のパワートレイン
CN108644321A (zh) 混合动力变速器、混合动力驱动***和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913829

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18913829

Country of ref document: EP

Kind code of ref document: A1