WO2019189291A1 - Method for managing seal formation, device for managing seal formation, program for managing seal formation, and system for managing seal formation - Google Patents

Method for managing seal formation, device for managing seal formation, program for managing seal formation, and system for managing seal formation Download PDF

Info

Publication number
WO2019189291A1
WO2019189291A1 PCT/JP2019/013067 JP2019013067W WO2019189291A1 WO 2019189291 A1 WO2019189291 A1 WO 2019189291A1 JP 2019013067 W JP2019013067 W JP 2019013067W WO 2019189291 A1 WO2019189291 A1 WO 2019189291A1
Authority
WO
WIPO (PCT)
Prior art keywords
tightening
axial force
bolt
torque
construction management
Prior art date
Application number
PCT/JP2019/013067
Other languages
French (fr)
Japanese (ja)
Inventor
雅之 山邊
Original Assignee
株式会社バルカー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社バルカー filed Critical 株式会社バルカー
Priority to CN201980021775.8A priority Critical patent/CN111902243B/en
Priority to JP2020510982A priority patent/JP7354093B2/en
Priority to KR1020207023307A priority patent/KR102641050B1/en
Priority to SG11202007932PA priority patent/SG11202007932PA/en
Publication of WO2019189291A1 publication Critical patent/WO2019189291A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • B23P19/06Screw or nut setting or loosening machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P21/00Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers

Definitions

  • the present invention relates to a seal construction management technique used for tightening a flange for connecting piping, valves, pumps, and the like.
  • a flange sandwiching a gasket is used for pipe connection and connection of a pump to the pipe.
  • This flange is fastened by tightening bolts and nuts at tightening points set at a plurality of locations on the peripheral side.
  • a manual tightening tool such as a torque wrench or an electric screw tightening tool is used.
  • tightening bolts and nuts to such flanges it is necessary to perform tightening processing at a predetermined torque value at all tightening locations and tighten without causing variations in the axial force acting on the bolts. Therefore, it is important to manage the tightening state of the bolt and nut by the tightening tool.
  • Tightening management methods include, for example, a torque method for managing the tightening torque applied to the bolt, a method for managing the axial force by measuring the elongation of the bolt with an ultrasonic axial force meter, pulling the bolt to the target axial force, and a nut
  • a torque method for managing the tightening torque applied to the bolt a method for managing the axial force by measuring the elongation of the bolt with an ultrasonic axial force meter, pulling the bolt to the target axial force, and a nut
  • a method such as a bolt tensioner (tensile method) that tightens the bolt while controlling the axial force by seating and tightening.
  • the rotational speed and torque of the bolt output shaft are electrically detected by a detector, and the detected values are broken down into momentary rotational speeds and torque values with respect to the elapsed tightening time, and the minute intervals. It is known that the output shaft power for each minute time is approximated to the output torque by calculating the power value of the power wrench and by instantaneously increasing / decreasing the rotational speed equivalent of the power wrench according to the state of the tightening variable load. (For example, Patent Document 1).
  • a predicted axial force is calculated by using a relational expression that expresses a ratio of an axial force at the time of completion of tightening of the screwed member and an axial force after the lapse of a predetermined time as a function of time required for tightening.
  • a relational expression that expresses a ratio of an axial force at the time of completion of tightening of the screwed member and an axial force after the lapse of a predetermined time as a function of time required for tightening.
  • the flange connection which sandwiched the gasket needs to maintain the flanges in parallel by equalizing the tightening axial force of all the bolts and nuts.
  • the flange connection for tightening a plurality of bolts and nuts if the axial force acting on the bolts varies, an inclination occurs between the flanges. This is a so-called single-tightening state.
  • Tightening management by the torque method manages the tightening torque applied by tightening bolts and nuts.
  • the torque coefficient which is the proportional coefficient between the tightening torque and the axial force acting on the bolt, is the friction coefficient against the flange and nut.
  • the torque coefficient is the proportional coefficient between the tightening torque and the axial force acting on the bolt.
  • an object of the present invention is to enable bolts and nuts to be tightened with a small number of man-hours and time, and to realize flange connection with high tightening accuracy.
  • Another object of the present invention is to stabilize the tightened state of the flange and tighten with a necessary axial force by adding a tightening torque according to the state of each bolt and nut.
  • one aspect of the seal construction management method of the present invention is a seal construction management method in which a plurality of tightening points are set on a flange sandwiching a gasket, and a bolt and a nut are provided at each tightening point. Then, a step of tightening the bolt and the nut with a tightening tool for which a first tightening torque value is set, a step of detecting an axial force of the bolt, and a torque coefficient of the bolt using the detected axial force And a step of setting a second tightening torque value calculated or selected using the torque coefficient in the tightening tool for each tightening portion of the bolt.
  • a step of comparing the detected axial force of the bolt with a target axial force, a set axial force, or a predetermined threshold, and calculating or selecting the torque coefficient based on the comparison result. May include.
  • the seal construction management method may further include a step of calculating or selecting the first tightening torque value using a set axial force set for each tightening step and a torque coefficient selected in advance. .
  • one aspect of the seal construction management device of the present invention is a seal construction management device in which a plurality of tightening points are set on a flange sandwiching a gasket, and each tightening point is provided with a bolt and a nut.
  • the axial force of the bolt to be tightened is acquired, the torque coefficient of the bolt is calculated or selected using the axial force, and the torque coefficient is calculated or selected for each tightening portion of the bolt.
  • control unit compares the detected axial force of the bolt with a target axial force, a set axial force, or a predetermined threshold value, and calculates the torque coefficient based on the comparison result. Or may be selected.
  • the seal construction management device further includes a detecting means for detecting either or both of the number of times of the tightening tool or the tightening position, and the control means is stepwise or according to the number of times of the tightening or the tightening position.
  • the set axial force or the tightening torque value set for the tightening tool may be varied continuously.
  • one aspect of the seal construction management program of the present invention is a seal construction management program for realizing by a computer, and tightening a bolt and a nut attached to a tightening portion of a flange sandwiching a gasket
  • one aspect of the seal construction management system of the present invention is a seal construction management system in which a plurality of tightening points are set on a flange sandwiching a gasket, and each tightening point is provided with a bolt and a nut.
  • a tightening tool capable of controlling a torque value applied to the bolt or the nut, a sensor for detecting an axial force of the bolt, a first tightening torque value set in the tightening tool, and the shaft detected by the sensor.
  • a controller that calculates or selects a torque coefficient of the bolt using force, and sets a second tightening torque value calculated or selected using the torque coefficient in the tightening tool for each tightening portion of the bolt; Is provided.
  • A is a figure which shows the structural example of a clamping tool
  • B is a figure which shows an example of an axial force sensor
  • A is a figure which shows the structural example of a controller
  • B is a figure which shows the structural example of a memory
  • It is a figure which shows the internal structural example of a server.
  • FIG. 1 shows a configuration example of a seal construction management apparatus according to the first embodiment.
  • the configuration illustrated in FIG. 1 is an example, and the present invention is not limited to such a configuration.
  • ⁇ Seal construction management device 2> This seal construction management device 2 performs tightening processing and tightening management of a plurality of bolts 6 and nuts 8 of a seal construction section 4 that connects a plurality of pipe lines, pipes and valves, pipes and pumps, and the like.
  • the seal application unit 4 includes a gasket 12 sandwiched between flanges 10-1 and 10-2 as connection means, and the periphery of the flanges 10-1 and 10-2.
  • the gasket 12 is made of a rigid resin material, contacts at least the facing surfaces of the flanges 10-1 and 10-2, and does not overlap a flow path formed in a connected object other than a flange such as a pipe. It is formed into a shape.
  • the gasket 12 is an example of a sealing means that prevents the outflow of fluid or the like from the periphery of the connected portion of the object to be connected by being brought into a crimped state with the flanges 10-1 and 10-2 by tightening the bolt 6 and the nut 8. is there.
  • the seal construction management device 2 manages the tightening of the bolts 6 and nuts 8 as the seal construction management, so that the gasket 12 between the flanges 10-1 and 10-2 is pressed in a uniform or near state. To do.
  • the seal construction management device 2 includes, for example, a tightening tool 14 and a control unit 16.
  • the tightening tool 14 is an example of a means for applying an output torque T to be applied to the bolt 6 or the nut 8 and includes, for example, a nut runner and an electric tool having a function capable of setting and adjusting the output torque (tightening torque T). It is.
  • the tightening tool 14 is carried, for example, by the operation of an operator who performs tightening processing, and can be turned on / off during tightening, or installed or gripped on an arm of a product assembly device (not shown). There is also.
  • the tightening tool 14 includes, for example, a grip 22 that enables the apparatus main body 20 to be held and moved to a predetermined position, a socket 24 that is fitted to the nut 8 to be tightened and applies a tightening torque, and a tightening torque through the socket 24 in the tightening process.
  • a trigger switch 26 for turning T on and off is provided. In the tightening process of the bolt 6 and the nut 8, the trigger switch 26 is switched on / off using the operator's finger, a manipulator (not shown), or a switch circuit.
  • an operator or an assembling apparatus arranges the tightening tools 14 in the set order with respect to the tightening points set in the seal application section 4, that is, the positions where the bolts 6 and the nuts 8 are installed.
  • the trigger switch 26 is turned ON / OFF.
  • the control unit 16 is an example of a unit that outputs an operation instruction of the tightening tool 14 and performs an adjustment process of the tightening torque value T1 set in the tightening tool 14 from the tightening state of the bolt 6 and the nut 8.
  • the control means 16 is configured by, for example, a computer and may be configured integrally with the tightening tool 14 or may be an independent device and connected to the tightening tool 14 by wire or wirelessly. Further, the control means 16 is connected to axial force sensors 18-1, 18-2,..., 18-n (n is a natural number), and the value of the axial force due to tightening or the change in axial force due to tightening, etc. To get.
  • the axial force sensors 18-1, 18-2, 18-3,..., 18-n are examples of means for detecting the axial force acting on the bolt 6 or the nut 8, and are installed at all tightening points.
  • the bolt 6 or the nut 8 is installed.
  • the axial force sensors 18-1, 18-2, 18-3,..., 18-n may be installed at the time of measuring the axial force, for example.
  • the control means 16 of the seal construction management device 2 having such a configuration has the following functions, for example. a. A function for calculating or selecting a tightening torque value T1 to be applied to the bolt 6 or the nut 8 in accordance with the set torque coefficient k1 and the number of times S of tightening points. b. A function of setting a tightening torque value T1 to the tightening tool 14. c. A function of changing the tightening torque value T1 of the tightening tool 14 stepwise or continuously in accordance with the number of times S (STEP). This number S of rounds is the number of units that circulate around the positions P1, P2,. d.
  • the tightening torque value T1 of the function a is a tightening torque value calculated using, for example, a target axial force value.
  • This tightening torque value T1 is calculated as a level value required to reach the target axial force F according to the tightening conditions including the gasket 12.
  • T kFd / n (1)
  • d is the outer diameter of the bolt 6 to be tightened
  • n is the number of bolts 6 or nuts 8 installed in the seal construction part 4.
  • K is a torque coefficient representing a proportional coefficient between the tightening torque T and the tightening force (axial force F). For example, as shown in FIG.
  • the axial force F of the bolt 6 and the nut 8 corresponds to the flanges 10-1 and 10-2 and the seat surface of the bolt 6 or the nut 8 against the tightening torque T applied from the tightening tool 14.
  • the frictional force N1 and the frictional force N2 of the screw surface are affected.
  • the tightening axial force F is affected by the surface roughness of the screw. That is, the axial force F acting on the bolt 6 and the nut 8 varies depending on the tightening location even if the tightening is performed with the same tightening torque value T1.
  • the torque coefficient k set in consideration of such influences varies depending on the tightening point P for each bolt 6 or nut 8. In the calculation of the tightening torque value T1 at the start of seal construction, for example, the torque coefficient k1 for all tightening points P is set to a constant value of 0.2.
  • the calculated torque value T1 is set in the tightening tool 14 as control information for the tightening tool 14 from the control means 16.
  • control means 16 performs tightening by changing the tightening torque value T1 by the tightening tool 14 stepwise or continuously in accordance with the number of tightening cycles S. Thereby, the axial force of the bolt 6 or the nut 8 at each tightening point P is made to reach the target axial force F.
  • the control means 16 acquires the axial force F detected from the axial force sensors 18-1, 18-2,..., 18-n corresponding to the tightening point P, for example.
  • the detected axial force F may be acquired every time when tightening is performed, or may be acquired when a predetermined number of rounds S is tightened.
  • the control means 16 calculates the correction
  • control means 16 uses the corrected torque coefficient k2 and the target axial force to calculate a tightening torque value T2 corrected based on the equation (1) and set it in the tightening tool 14.
  • FIG. 3 shows an example of the detected axial force during the tightening process.
  • the control means 16 manages, for example, the axial force detected at the tightening point P, and notifies the operator and work manager of the tightening by the display means (not shown) of the management result.
  • this tightening result F ⁇ for example, the detected axial forces at the tightening points [1] to [5] and [8] have the same value, but the tightening result F ⁇ 1 at the tightening point [7] is small.
  • FIG. 3B is an example of an axial force detection result when tightening is performed by setting a correction torque coefficient k2 corresponding to each tightening location.
  • the values of the tightening results F ⁇ 1 and F ⁇ 2 at the tightening locations [7] and [6] are equal to the detected axial force values at the other tightening locations.
  • FIG. 4 shows an example of seal construction management processing.
  • the processing procedures and processing contents shown in FIG. 4 are examples of the seal construction management method or the seal construction management program of the present invention, and the present invention is not limited to such contents.
  • the control means 16 calculates or selects the first tightening torque value T1 using the target axial force or the set axial force and the first torque coefficient k1 as the seal construction management process (S1).
  • a tightening torque value T1 of 1 is set in the tightening tool 14 (S2).
  • the target axial force is a target value of the axial force F acting on the bolt 6 or the nut 8 when the tightening is completed.
  • the set axial force is a value of the axial force F that is set when the tightening torque value T1 is calculated when the tightening torque value T1 for the bolt 6 and the nut 8 is changed in a stepwise manner according to the number of times S. Depending on the number S, x [%] of the target axial force and the like are set.
  • the tightening torque value T1 may be set by selecting a value stored in advance in a database or the like, for example.
  • the control means 16 acquires the detection result of the axial force from the axial force sensors 18-1, 18-2, ..., 18-n (S3), and compares the detection result with the target axial force or the set axial force ( S4). This axial force is compared for each tightening point. If the detected result has a difference from the target axial force or the set axial force (YES in S5), a corrected torque value k2 that is a second torque coefficient is calculated using the value of the detected axial force F (S6). .
  • the control means 16 calculates the tightening torque values T1 and T2 using the respective torque coefficients for each tightening location, sets them in the tightening tool 14 (S8), and proceeds to the next tightening sequence.
  • the detected axial force is compared with the target axial force or the set axial force, and the case where the torque coefficient is corrected when there is a difference is shown.
  • the second torque coefficient k2 may be calculated based on the axial force detected at all tightening locations.
  • the detected axial force comparison process is not limited to the target axial force or the set axial force, for example, and may be compared with a predetermined threshold value set in advance.
  • the flanges 10-1, 10 can be used regardless of the operator's experience and intuition. -It is possible to manage the sealing work according to the condition of the gasket 12, the bolt 6 and the nut 8.
  • FIG. 5 shows a configuration example of a seal construction management device according to the second embodiment.
  • the configuration shown in FIG. 5 is an example, and the present invention is not limited to such a configuration.
  • the seal construction management device 30 includes a tightening tool 14, a control unit 16, and a tightening condition setting unit 32.
  • the control means 16 includes an acquisition means 34 for taking in the detection results of axial force sensors 18-1, 18-2,..., 18-n installed on either one or both of the bolt 6 and the nut 8, for example.
  • This acquisition means 34 includes, for example, communication means for wirelessly connecting to the axial force sensors 18-1, 18-2,..., 18-n, a connection interface for connecting by wire, etc.
  • the tightening condition setting unit 32 grasps the tightening position and the number of rotations in tightening work in addition to the function of setting the tightening torque values T1 and T2 set by the control means 16 to the tightening tool 14, for example. By doing so, it has a function of managing the seal construction for the worker.
  • the tightening condition setting unit 32 may be configured integrally with the control unit 16, for example, or may be a separate body connected by wire or wireless. Further, the tightening condition setting unit 32 may include a function for calculating tightening torque values T1 and T2, for example.
  • the tightening tool 14 and the seal construction unit 4 only need to have the same configuration as that of the first embodiment, and the description thereof is omitted.
  • FIG. 6 shows an example of a bolt and nut tightening procedure.
  • the positions P1, P2,..., Pn may be circulated by a so-called “diagonal tightening” tightening procedure that changes the tightening location in the diameter direction of the flanges 10-1, 10-2. That is, the positions P1, P2,..., Pn may be tightened continuously in numerical order, or a predetermined number of the tightening points may be skipped regularly for circulation.
  • the number of times S is not limited to the count value of the cycle in which the positions P1, P2,..., Pn are sequentially continued, and may be a count value counted in units of cycles where a predetermined position is skipped.
  • a tightening procedure based on a Japanese Industrial Standard (JIS) flange joint tightening method JIS B 2251 is employed.
  • JIS B 2251 Japanese Industrial Standard
  • the positions P1, P2,..., Pn are set in the diameter direction of the flanges 10-1, 10-2 at the so-called “temporary tightening” stage from the beginning of tightening to the predetermined number of rounds (S). Tightening is performed by so-called “diagonal tightening” (B in FIG. 6) that changes the tightening location. Further, in the tightening process, after the number of times of “temporary tightening” (S) is completed, as a so-called “main tightening” stage, P2 to Pn are sequentially cycled (A in FIG. 6) to perform tightening. It should be noted that the number of times (STEP) of the “temporary tightening” and “main tightening” and the tightening procedure may be set differently depending on the number of bolts 6 installed on the flanges 10-1 and 10-2.
  • FIG. 7 shows an example of the tightening instruction information table.
  • the tightening instruction information table 40 is an example of a table in which processing details of seal construction management are stored, and is stored in the control unit 16, for example.
  • the tightening instruction information table 40 stores, for example, information on “execution contents” for each “STEP” representing the number of times of travel, information on a “procedure” for tightening, and the like.
  • a torque coefficient is calculated in STEP 3 and STEP 7, and the torque coefficient is corrected in accordance with the state of the tightening portion.
  • the information of “implementation content” includes, for example, a tightening torque value and a torque coefficient value, and also includes a detected axial force take-in instruction and a torque coefficient calculation instruction.
  • a method of tightening the bolt 6 and the nut 8 is stored.
  • FIG. 8 shows an example of the detection result of the axial force.
  • the control means 16 is provided with an information table including the value of the axial force F of each tightening location acquired from the axial force sensors 18-1, 18-2,.
  • the information table shown in FIG. 8 shows, for example, axial force detection and tightening torque values and torque coefficient calculation results in the number of cycles (S) for calculating the correction value of the torque coefficient k, and the tightening torque value set for the tightening tool 14.
  • T1 set axial force Fx applied to the bolt 6 or nut 8
  • the tightening torque value T1 is a value calculated based on the above-described equation (1) using the set axial force Fx and the torque coefficient k1 set by the number of cycles. For example, as a seal construction management process, the control means 16 compares the set axial force Fx with the axial force F when tightened with the tightening torque value T1, and these values match or are equal to the set axial force Fx. If it is not within the predetermined range, a correction torque coefficient k2 is calculated. Then, the control means 16 sets a correction torque value T ′ to be set in the tightening tool 14 in the next number of rounds for the comparison result of the axial force. Note that the information table may be created, for example, for each number of tightening rounds, or may be created only for the number of rounds (S) for correcting the torque coefficient.
  • FIG. 9 shows an example of the calculation result of the torque coefficient.
  • the control means 16 generates a torque coefficient display screen associated with the tightening location in response to the torque coefficient calculation process.
  • This torque coefficient display screen may be displayed, for example, on a display unit of the control means 16 (not shown), or may be displayed on a terminal device for an administrator using communication or an external memory.
  • FIG. 10 shows an example of seal construction management processing.
  • the processing procedure and processing content shown in FIG. 10 are examples of the seal construction management method or seal construction management program of the present invention, and the present invention is not limited to such content.
  • initial setting of the control means 16 is performed (S11), and the tightening tool 14 is set (S12).
  • These setting steps include calculation of the tightening torque value T1 for each number of rotations based on the set torque coefficient k1 and the set axial force Fx, input processing to the tightening tool 14 through the tightening condition setting unit 32, and the like.
  • the control means 16 acquires the detection result F of the axial force detected by each axial force sensor 18-1, 18-2,..., 18-n (S13), and determines the tightening point P and the number of cycles (S). Confirm (S14).
  • each tightening point P is specified by the number of eight bolts 6 at eight tightening points P1 to P8 and the change of the detected axial force.
  • the number of cycles (S) is specified by the number of times that the same bolt 6 is tightened once, for example, by tightening eight bolts 6.
  • the control means 16 determines whether or not the number of rounds (S) has become the torque coefficient calculation step (S15), and in the case of the calculation step (YES in S15), the comparison between the detected axial force F and the set axial force Fx, and The correction torque coefficient k2 for each bolt 6 is calculated (S16).
  • the control means 16 associates the calculated correction torque coefficient k2 with each bolt 6 (S17), and uses the associated bolt coefficient k2 in the next calculation of the tightening torque value T.
  • the control unit 16 determines that the number of rounds (S) is not the torque coefficient calculation step (NO in S15)
  • the control unit 16 returns to S12, counts up the number of rounds (S), and the axis corresponding to the number of rounds (S). Tightening processing is performed by setting the force F or the tightening torque value.
  • FIG. 11 shows a configuration example of a seal construction management system according to the third embodiment.
  • the configuration shown in FIG. 11 is an example, and the present invention is not limited to such a configuration.
  • the seal construction management system 50 includes a tightening tool 14, a controller 52, and a server 54. Since the tightening tool 14 is the same as the structure described above, its description is omitted.
  • the controller 52 is connected to the tightening tool 14 with a cable 55.
  • the controller 52 and the tightening tool 14 may be connected by, for example, Wi-Fi or infrared communication.
  • the controller 52 is, for example, a computer that sets a tightening torque value T for the tightening tool 14 and has a function of a control means for managing a tightening state and a tightening condition setting unit. Operate.
  • the controller 52 includes, for example, a plurality of input operation units 58 and a display unit 60 on the front panel unit 56.
  • the controller 52 realizes the following functions and effects by computer processing. a. Calculate or select the torque value T to be applied to the bolt 6 or nut 8 according to the number of times (S) of tightening points or the tightening point P. b. Setting the torque value T to the tightening tool c. Change of the output torque T of the tightening tool 14 stepwise or continuously in accordance with the number of cycles (S) or the tightening point P. d. Acquisition of tightening management information from server 54 e. Acquisition of flange information of flanges 10-1 and 10-2 f. Acquisition of gasket information for gasket 12 g. Check gasket information h. Selection of tightening conditions from tightening condition information and input to the tightening tool 14 i.
  • the controller 52 is linked to the server 54 in a wired or wireless manner as a communication medium 62 indicated by a broken line.
  • the server 54 is a computer that supports the information processing of the controller 52 or manages the information processing. For example, a personal computer may be used.
  • the server 54 includes, for example, a processing unit 64, an input operation unit 66, and a monitor 68.
  • FIG. 12A shows a configuration example of the tightening tool 14.
  • the tightening tool 14 includes, for example, a control unit 70, a motor 72, and a torque sensor 74.
  • the control unit 70 includes a computer and a motor drive unit, and control information such as tightening torque values T1 and T2 is provided from the controller 52.
  • the motor 72 is driven in accordance with control information such as the tightening torque values T1, T2, and the drive current is supplied to the motor 72 when the trigger switch 26 is turned on.
  • the rotation of the motor 72 is transmitted to the socket 24 attached to the rotary shaft 76, and a tightening torque value T is applied to the nut 8 fitted in the socket 24.
  • the rotary shaft 76 may be provided with a gear mechanism, and the rotational force of the motor 72 may be transmitted to the socket 24 at a desired gear ratio.
  • the torque sensor 74 detects the tightening torque value T from the motor 72 or the rotating shaft 76, and the detected torque value is taken into the control unit 70.
  • the torque sensor 74 only has to detect the tightening torque of the bolt 6 and the nut 8 and may be provided outside the tightening tool 14.
  • FIG. 12B shows an example of the bolt 6 provided with the axial force sensor 18. If each bolt 6 is provided with an axial force sensor 18 and the axial force F applied to each bolt 6 is detected, the tightening torque value of the tightening tool 14 and its increase or decrease can be measured.
  • a strain sensor may be used as the axial force sensor 18.
  • FIG. 13A shows a configuration example of the controller 52.
  • the controller 52 is a control means for the tightening tool 14 and is an example of a seal tightening management apparatus for seal tightening.
  • the controller 52 is configured by a computer, for example, and includes a processor 80, a storage unit 82, an input / output unit (I / O) 84, an input operation unit 58, a communication unit 86, and a display unit 60.
  • the processor 80 is an example of processing means, and performs information processing such as an OS (Operating System) and a seal construction management program stored in the storage unit 82.
  • OS Operating System
  • the storage unit 82 is used to store an OS, a seal construction management program, tightening condition information, detection information, and the like, and includes a ROM (Read Only Memory) and a RAM (Random Access Memory). A storage element capable of holding stored contents may be used for the storage unit 82.
  • the I / O 84 is controlled by the processor 80 and used for input / output of control information.
  • a barcode reader 88 or a removable external memory 90 may be connected to the I / O 84 as an external device.
  • the barcode reader 88 is an example of an information acquisition unit.
  • the external memory 90 is a log information extraction memory, and for example, a USB (Universal Serial Bus) memory may be used.
  • the input operation unit 58 includes a key switch, a touch sensor, and the like, and is used for input information input trigger, output information extraction trigger, mode switching, and the like.
  • the communication unit 86 is controlled by the processor 80 and is used for wireless connection with the external device such as the server 54 and Internet connection.
  • the display unit 60 is controlled by the processor 80 and is an example of a means for presenting input information and output information.
  • the display unit 60 may include, for example, a green lamp 92-1 and a red lamp 92-2 as status information display means.
  • the green lamp 92-1 is lit when normal and the red lamp 92-2 is abnormal. Can be turned on.
  • FIG. 13B shows an example of the stored contents of the storage unit 82.
  • the storage unit 82 has a temporary storage area 94-1 and a storage area 94-2.
  • the temporary storage area 94-1 for example, flange information 100, gasket information 102, worker information 104, tightening result information 106 acquired from the tightening tool 14, and the like are temporarily stored.
  • the storage area 94-2 for example, a database such as the tightening instruction information table 40 is constructed.
  • FIG. 14 shows a configuration example of the server 54.
  • the server 54 is an example of a log information presentation unit as well as a support device for the controller 52.
  • the server 54 includes, for example, a processor 112, a storage unit 114, an input / output unit (I / O) 116, and a communication unit 118 as the processing unit 110, and the input operation unit 66 and the monitor 68 described above are connected thereto.
  • the processor 112 performs information processing such as an OS and a seal construction management program stored in the storage unit 114. This information processing includes processing such as provision of tightening condition information to the controller 52, acquisition of information representing the tightening result from the controller 52, presentation of the tightening result information, and the like.
  • the storage unit 114 is used for storing an OS, a seal construction management program, tightening condition information, log information, and the like, and includes a ROM and a RAM.
  • the storage unit 114 may be a storage device such as a hard disk or semiconductor memory capable of holding stored contents.
  • the I / O 116 is controlled by the processor 112 and used for input / output of control information.
  • an external memory 122 is connected to the I / O 116 as an external device.
  • the communication unit 118 is used, for example, for connection with a wireless controller 52 or the like.
  • the communication unit 118 is controlled by the processor 112, and is used for wireless connection between the server 54 and external devices such as the tightening tool 14 and the controller 52, and Internet connection.
  • the input operation unit 66 is used for an input operation of input information, and is also used for an output information take-out trigger and a mode switching operation by the input operation.
  • the monitor 68 is an example of an information presentation unit and a display unit, and is used to display, for example, the tightening instruction information table 40 and the tightening result.
  • the screen display unit of the monitor 68 may include a touch panel 120, and input information corresponding to display information may be performed instead of the input operation unit 66.
  • FIG. 15 shows an example of the tightening result.
  • a tightening result screen simulating the tightening points P1, P2,.
  • the This tightening result screen shows information on detection results (B in FIG. 15) acquired from the axial force sensors 18-1, 18-2,. And the information of the tightening location by the tightening tool 14 and the number of rounds (S) is generated in combination.
  • the target axial force of tightening and the tightening force for each number of cycles (S) are displayed for each tightening point.
  • FIG. 16 shows a processing sequence of seal construction management by the seal construction management system 50.
  • the tightening tool 14 performs initial setting (S31), and the controller 52 performs initial setting (S32).
  • the controller 52 and the server 54 are linked together, and the controller 52 takes in the tightening condition information including the torque coefficient k1 and the like provided from the server 54 (S33).
  • the controller 52 takes in the tightening condition information by acquiring the tightening instruction information table 40.
  • the controller 52 that has acquired the tightening condition information selects tightening conditions corresponding to the flanges 10-1 and 10-2 and the gasket 12 selected in advance (S34).
  • the controller 52 also sets the number of times S and the tightening position P (S35), and calculates the tightening torque value T1 using the torque coefficient k1 and the set axial force Fx (S36). If a candidate for the tightening torque value T1 is stored in advance, one of the stored tightening torque values T1 may be selected. After the tightening preparation process, the controller 52 sets a tightening torque value T1 for the tightening tool 14 (S37).
  • each of the axial force sensors 18-1, 18-2,..., 18-n detects the axial force of the bolt 6 at each tightening point P (S39), and the detected axial force F is taken into the controller 52. (S40).
  • the controller 52 determines whether it is a step for calculating the torque coefficient k (the number of cycles) (S42). When it is a calculation step (YES in S42), the controller 52 determines whether the detected axial force is different from the set axial force (S43). If it is not the step of calculating the torque coefficient k (NO in S42), if there is no difference between the detected axial force and the set axial force (NO in S43), the process returns to S35 and the tightening operation is continued. At this time, the controller 52 counts up, for example, the number of tours (S) and calculates a tightening torque value T corresponding to the next number of tours. As a result, the output torque T is changed or set stepwise or continuously in accordance with the tightening point P or the number of rounds S.
  • the controller 52 calculates a correction torque coefficient k2 using the detection result of the axial force as a correction process of the tightening torque value (S44). Then, the controller 52 sets a new tightening condition including the correction torque coefficient k2 (S45), returns to S35, and continues the tightening process.
  • the controller 52 determines that the tightening is completed based on the count value of the number of times S (YES in S41), the tightening is completed (S46), and a tightening completion instruction is input to the tightening tool 14 to complete the tightening.
  • This tightening completion may be presented using the monitor 68, for example.
  • the controller 52 notifies the server 54 of the tightening result information. Then, the tightening result information is displayed on the server 54 (S47).
  • the controller 52 determines the number of rounds (S) as a determination as to whether or not the tightening is complete, but is not limited thereto. For example, the controller 52 detects variations obtained from the axial force sensors 18-1, 18-2,..., 18-n. If it is determined, the tightening process may be further repeated.
  • FIG. 17 shows an example of a seal construction management device according to the fourth embodiment.
  • This seal construction management device 130 has a tightening tool 132 and a control means 134.
  • the tightening tool 132 is, for example, a torque wrench or a hand nut runner, and includes a gear unit 136 that generates a set tightening torque value.
  • a socket 138 coupled to the nut 8 is installed in this gear unit 136.
  • the gear unit 136 includes an information acquisition unit 140 that acquires identification information and tightening point information of the bolt 6 and the nut 8.
  • the information acquisition unit 140 includes, for example, a reception antenna, a reception unit, a signal conversion unit, a transmission unit, and a transmission antenna.
  • the information acquisition unit 140 receives tag information (not shown) installed on the bolt 6 or the nut 8 and acquires identification information such as ID (Identification) from the tag information.
  • the identification information is converted into a transmission signal by the signal conversion unit, and transmitted to the control means 134 side through the transmission unit. For example, near field communication is used for transmitting the transmission signal.
  • the control unit 134 includes, for example, a communication unit 142, a processing unit 144, a storage unit 146, and an information presentation unit 148.
  • the communication unit 142 communicates with the information acquisition unit 140 installed in the tightening tool 132 and receives the identification information of the bolt 6 and the nut 8.
  • the processing unit 144 performs transmission / reception of identification information and the like with the information acquisition unit 140 through the communication unit 142, and also performs tightening torque value setting processing, torque coefficient calculation processing, and the like.
  • the storage unit 146 stores, for example, identification information of bolts 6 and nuts 8 and tightening position information, as well as tightening procedures, tightening torque value calculation information, torque coefficient calculation information, and other tightening locations not shown.
  • the axial force information received from the axial force sensors 18-1, 18-2,... 18-n (FIG. 1) is stored.
  • the information presentation unit 148 displays tightening torque value information and torque coefficient information set to the tightening tool 132, corrected torque coefficient information, detected axial force information, and the like, and also displays tightening position instruction information in the tightening process. It is an example of the means to do.
  • the axial force detection process, torque coefficient calculation process, and tightening torque value correction process in the tightening process are as described in the above-described embodiment, and the description thereof is omitted.
  • FIG. 18 shows a comparative example of flange seal construction processing.
  • the seal construction management process shown in FIG. 18, for example, as in the second and third embodiments, eight bolts 6 and nuts 8 are fastened to the flanges 10-1 and 10-2. Processing is in progress.
  • This tightening process is a case where a value of 0.2 is maintained as a preset torque coefficient k in the calculation process of the tightening torque value T set for the tightening tool 14. Then, the tightening torque value T is increased stepwise according to the number of cycles.
  • FIG. 18A it can be seen that the axial force F is always acting at the tightening position P6 greater than the other tightening positions.
  • the tightening tool 14 is shown, but the present invention is not limited thereto.
  • a torque wrench capable of manually setting a tightening torque may be used as the tightening tool 14.
  • the tightening tool 14 may be a large assembly device that has a tightening arm for tightening bolts and can detect the tightening position on the product and detect the axial force due to tightening.
  • the means for detecting the axial force acting on the tightening point is shown as the means in which the axial force sensor is installed on the bolt itself, but is not limited thereto.
  • the axial force may be detected using a detection device such as an ultrasonic sensor with respect to the tightened bolt 6, and the torque coefficient may be calculated using the detection result.
  • controller 52 for example, a portable information terminal such as a smartphone may be used.
  • controller 52 and the server 54 are linked to one tightening tool 14
  • the present invention is not limited to this.
  • the controller 52 and the server 54 may be linked to the plurality of tightening tools 14, and the single server 54 may be provided to the plurality of controllers 52.
  • the seal construction management method, the seal construction management device, the seal construction management program, and the seal construction management system of the present invention use the tightening tool capable of tightening management to determine the axial force detected in the tightening process by information processing using a computer.
  • the correction processing of the torque coefficient by using it is possible to set a tightening torque value according to the state of the tightening portion, and to stabilize the tightening state with respect to the flange and to perform the tightening process with a necessary axial force.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)
  • Automatic Assembly (AREA)

Abstract

A method for managing seal formation in which a plurality of tightening locations are set on flanges (10-1, 10-2) that sandwich a gasket (12) and a bolt (6) and a nut (8) are provided in each tightening location and tightened, wherein flange connection with highly precise tightening is achieved by way of: a step of tightening the bolt and the nut with a tightening tool (14) for which a first tightening torque value (T1) is set; a step of detecting the axial force on the bolt; a step of calculating or selecting a torque coefficient (k2) for the bolt by using the detected axial force; and a step of setting, for the tightening tool, a second tightening torque value (T2) that is calculated or selected by using the torque coefficient, for each tightening location of the bolts.

Description

シール施工管理方法、シール施工管理装置、シール施工管理プログラム、シール施工管理システムSeal construction management method, seal construction management device, seal construction management program, seal construction management system
 本発明は、配管、弁、ポンプなどを連結するフランジ締付けに用いられるシール施工の管理技術に関する。 The present invention relates to a seal construction management technique used for tightening a flange for connecting piping, valves, pumps, and the like.
 配管連結や配管に対するポンプなどの接続には、ガスケットを挟み込んだフランジが用いられる。このフランジは、周縁側の複数箇所に設定された締付箇所でボルトとナットの締付けにより締結される。ボルトとナットの締付けには、トルクレンチなどの手動の締付け工具や、電動式のネジ締付け工具などが用いられる。
 このようなフランジに対するボルトおよびナットの締付けでは、全ての締付け箇所において所定のトルク値で締付け処理を行い、ボルトに作用する軸力にばらつきを生じさせずに締付けることが必要である。そのため、締付け工具によるボルトおよびナットの締付け状態の管理が重要となる。
A flange sandwiching a gasket is used for pipe connection and connection of a pump to the pipe. This flange is fastened by tightening bolts and nuts at tightening points set at a plurality of locations on the peripheral side. For tightening the bolt and nut, a manual tightening tool such as a torque wrench or an electric screw tightening tool is used.
In tightening bolts and nuts to such flanges, it is necessary to perform tightening processing at a predetermined torque value at all tightening locations and tighten without causing variations in the axial force acting on the bolts. Therefore, it is important to manage the tightening state of the bolt and nut by the tightening tool.
 締付け管理方法には、たとえばボルトに付加する締付けトルクを管理するトルク法、ボルトの伸びを超音波軸力計で測定して軸力を管理する方法、目標とする軸力までボルトを引張り、ナットを着座させて締付けを行うことで、軸力を管理しながらボルトの締付けを行うボルトテンショナー(引張法)などの方法がある。 Tightening management methods include, for example, a torque method for managing the tightening torque applied to the bolt, a method for managing the axial force by measuring the elongation of the bolt with an ultrasonic axial force meter, pulling the bolt to the target axial force, and a nut There is a method such as a bolt tensioner (tensile method) that tightens the bolt while controlling the axial force by seating and tightening.
 このようなフランジの締付け管理に関し、ボルトの出力軸の回転速度やトルクを検出器で電気的に検出し、この検出値を締付け経過時間に対する刻々の回転速度とトルク値に分解して微小時間毎の動力値を算出することや、動力レンチの回転速度相当量を締付け変動負荷の状態に応じて瞬間的に増減制御することで、微小時間毎の出力軸動力を出力トルクに近似させるものが知られている(たとえば、特許文献1)。また、螺合部材の締め付け完了時の軸力と完了時から所定時間経過後の軸力の比を、締め付けに要した時間の関数として表した関係式を利用して、予測軸力を算出するものが知られている(たとえば、特許文献2)。フランジを締付けるボルトの軸力検出センサーを備え、ボルトの軸力が設定値よりも小さい場合に、締め付け動作を実行させるものが知られている(たとえば、特許文献3)。 With regard to such flange tightening management, the rotational speed and torque of the bolt output shaft are electrically detected by a detector, and the detected values are broken down into momentary rotational speeds and torque values with respect to the elapsed tightening time, and the minute intervals. It is known that the output shaft power for each minute time is approximated to the output torque by calculating the power value of the power wrench and by instantaneously increasing / decreasing the rotational speed equivalent of the power wrench according to the state of the tightening variable load. (For example, Patent Document 1). Further, a predicted axial force is calculated by using a relational expression that expresses a ratio of an axial force at the time of completion of tightening of the screwed member and an axial force after the lapse of a predetermined time as a function of time required for tightening. The thing is known (for example, patent document 2). It is known that a sensor for detecting an axial force of a bolt for tightening a flange is provided and a tightening operation is executed when the axial force of the bolt is smaller than a set value (for example, Patent Document 3).
特公昭53-047959号公報Japanese Patent Publication No.53-047959 特許第5724595号公報Japanese Patent No. 5724595 特開昭61-142082号公報JP-A-61-142082
 ところで、ガスケットを挟み込んだフランジ接続は、全てのボルトおよびナットの締め付け軸力を均等化することでフランジ同士を平行に維持させることが必要である。複数のボルトおよびナットを締付けるフランジ接続では、ボルトに作用する軸力にばらつきが生じると、フランジ間に傾きが生じる。いわゆる片締めの状態となる。このような片締めの状態では、フランジによって連結される管路に隙間の発生や、フランジ間のガスケットによる封止機能の低下などを招くという課題がある。
 また、トルク法による締付け管理は、ボルトおよびナットの締付けで付与する締付けトルクを管理するものであるが、締付けトルクとボルトに作用する軸力との比例係数であるトルク係数がフランジやナットに対する摩擦などの影響を受け、ボルト毎の軸力にばらつきがある。そのため、締付けに必要な締付け力に基づいて算出した締付けトルクで締付けを行っても、トルク係数の違いによりフランジの締付け位置毎にボルトに作用する軸力のばらつきが生じるという課題がある。
By the way, the flange connection which sandwiched the gasket needs to maintain the flanges in parallel by equalizing the tightening axial force of all the bolts and nuts. In the flange connection for tightening a plurality of bolts and nuts, if the axial force acting on the bolts varies, an inclination occurs between the flanges. This is a so-called single-tightening state. In such a single-clamped state, there is a problem that a gap is generated in the pipe line connected by the flange, and a sealing function is lowered by a gasket between the flanges.
Tightening management by the torque method manages the tightening torque applied by tightening bolts and nuts. The torque coefficient, which is the proportional coefficient between the tightening torque and the axial force acting on the bolt, is the friction coefficient against the flange and nut. As a result, the axial force of each bolt varies. Therefore, even when tightening is performed with the tightening torque calculated based on the tightening force necessary for tightening, there is a problem that variations in the axial force acting on the bolt occur at each flange tightening position due to the difference in torque coefficient.
 超音波軸力計を用いた締付け管理では、ボルトの締付けを行った後に軸力を測定し、軸力を均一化するように増し締めまたは締め直しを行うため作業工数や作業時間の増加を招くという課題がある。フランジに対するボルトの締付け作業では1つのボルトに対して締付けトルクの値を変えながら複数回で締付けるため、毎回目標軸力となるように締付けトルク値を調整するのでは作業工数が膨大となる。また、ボルトの増し締めまたは締め直しは、弾性相互作用の影響で、他のボルトの締付けに緩みが生じるなどの影響を受けるため、締付け後の軸力調整は作業負荷の増大を招く。
 ボルトテンショナーによる締付け管理では、専用の工具が必要となり費用や作業時間がかかることやボルトを引っ張るためボルトの余長が必要となるという課題がある。さらに、油圧にてボルトに軸力を与え、ナットをボルトなどの被締結体に着座させ、油圧を取り除いて締付けが完了するが、油圧を取り除いた際にナット座面が被締結体表面に沈み込むように変形することで油圧にて与えた軸力より低下する。これを補うため、初期軸力を高く設定するが、締結体の強度が不足する場合、破損の危険が生じることや、低下する軸力の推定が難しいといった課題もある。
In tightening management using an ultrasonic axial force meter, the axial force is measured after tightening the bolts, and tightening or retightening is performed to equalize the axial force, resulting in an increase in work man-hours and working time. There is a problem. In the bolt tightening operation on the flange, since the tightening torque is tightened a plurality of times while changing the value of the tightening torque for one bolt, adjusting the tightening torque value so as to obtain the target axial force every time requires a large number of work steps. Further, additional tightening or retightening of bolts is affected by the influence of elastic interaction, such as loosening of the tightening of other bolts, so that adjustment of the axial force after tightening causes an increase in work load.
In the tightening management by the bolt tensioner, there is a problem that a dedicated tool is required, which requires cost and work time, and an extra length of the bolt is required to pull the bolt. In addition, an axial force is applied to the bolt by hydraulic pressure, the nut is seated on the tightened body such as a bolt, and the hydraulic pressure is removed to complete the tightening, but when the hydraulic pressure is removed, the nut seat surface sinks to the surface of the tightened body. It is lower than the axial force given by hydraulic pressure. In order to compensate for this, the initial axial force is set high. However, if the strength of the fastening body is insufficient, there is a problem that the risk of breakage occurs and it is difficult to estimate the decreasing axial force.
 ガスケットを挟んだフランジのシール施工では、このような締付け管理のいずれかを採用し、締付け工具に設定したトルク値による締付けまたは締付け後の調整などを行っているが、締付けられたボルトの軸力を均一化させるためには、多大な時間や作業労力またはコストを要している。本出願の発明者は、これらの締付け管理の手法による軸力のばらつきは、ボルト毎の状態の相違が影響するとの知見に基づき、締付けトルク値の算出に利用するトルク係数を調整して締付け管理を行う点を発明の課題とした。
 斯かる課題について、特許文献1~3には開示も示唆もなく、これらの文献に開示された構成では斯かる課題を解決することができない。
For sealing flanges with gaskets in place, either of these tightening controls is adopted and tightening or adjustment after tightening is performed using the torque value set for the tightening tool. In order to make uniform, it takes a lot of time, work labor or cost. The inventor of the present application adjusts the torque coefficient used to calculate the tightening torque value based on the knowledge that the variation in the axial force due to these tightening management methods is affected by the state of each bolt. The point which performs is made into the subject of invention.
Such problems are not disclosed or suggested in Patent Documents 1 to 3, and the structures disclosed in these documents cannot solve such problems.
 そこで、本発明の目的は上記課題に鑑み、少ない作業工数および作業時間でボルトおよびナットの締付けを可能にするとともに、締付け精度の高いフランジ接続を実現することにある。
 また、本発明の他の目的は、ボルトおよびナット毎の状態に応じた締付けトルクを付加することで、フランジに対する締付け状態の安定化および必要な軸力での締付けを実現することにある。
 斯かる課題の開示や示唆はなく、特許文献1ないし特許文献3に開示された構成では斯かる課題を解決することができない。
In view of the above problems, an object of the present invention is to enable bolts and nuts to be tightened with a small number of man-hours and time, and to realize flange connection with high tightening accuracy.
Another object of the present invention is to stabilize the tightened state of the flange and tighten with a necessary axial force by adding a tightening torque according to the state of each bolt and nut.
There is no disclosure or suggestion of such a problem, and the configuration disclosed in Patent Documents 1 to 3 cannot solve such a problem.
 上記目的を達成するため、本発明のシール施工管理方法の一側面は、ガスケットを挟んだフランジに複数の締付け箇所が設定され、各締付け箇所にボルトおよびナットを備えて締付けるシール施工管理方法であって、第1の締付けトルク値が設定された締付け工具で前記ボルトおよび前記ナットを締付ける工程と、前記ボルトの軸力を検出する工程と、検出した前記軸力を利用して前記ボルトのトルク係数の算出または選定を行う工程と、前記ボルトの締付け箇所毎に、前記トルク係数を利用して算出しまたは選定した第2の締付けトルク値を前記締付け工具に設定する工程とを含む。 In order to achieve the above object, one aspect of the seal construction management method of the present invention is a seal construction management method in which a plurality of tightening points are set on a flange sandwiching a gasket, and a bolt and a nut are provided at each tightening point. Then, a step of tightening the bolt and the nut with a tightening tool for which a first tightening torque value is set, a step of detecting an axial force of the bolt, and a torque coefficient of the bolt using the detected axial force And a step of setting a second tightening torque value calculated or selected using the torque coefficient in the tightening tool for each tightening portion of the bolt.
 上記シール施工管理方法において、検出した前記ボルトの前記軸力と、目標軸力、設定軸力または所定の閾値とを対比し、この対比結果に基づいて前記トルク係数の算出または選定を行う工程を含んでよい。 In the seal construction management method, a step of comparing the detected axial force of the bolt with a target axial force, a set axial force, or a predetermined threshold, and calculating or selecting the torque coefficient based on the comparison result. May include.
 上記シール施工管理方法において、さらに、前記締付け工具の巡回数または前記締付け箇所のいずれか、または両方を検出する工程と、巡回数または締付け箇所に応じて段階的または連続的に前記締付け工具に設定する設定軸力または締付けトルク値を変動させる工程とを含んでよい。 In the above-mentioned seal construction management method, further, a step of detecting either or both of the number of times of the tightening tool and / or the tightening location, and a stepwise or continuous setting to the tightening tool depending on the number of times or the tightening location. Varying the set axial force or the tightening torque value.
 上記シール施工管理方法において、さらに、締付け工程毎に設定される設定軸力と、予め選定されたトルク係数を利用して、前記第1の締付けトルク値の算出または選定を行う工程を含んでよい。 The seal construction management method may further include a step of calculating or selecting the first tightening torque value using a set axial force set for each tightening step and a torque coefficient selected in advance. .
 上記目的を達成するため、本発明のシール施工管理装置の一側面は、ガスケットを挟んだフランジに複数の締付け箇所が設定され、各締付け箇所にボルトおよびナットを備えて締付けるシール施工管理装置であって、前記締付け箇所や締付けの巡回数、締付けトルク値を締付け工具に設定する設定手段と、前記ボルトの軸力を取得する取得手段と、第1の締付けトルク値が設定された前記締付け工具によって締付けられる前記ボルトの軸力を取得し、該軸力を利用して前記ボルトのトルク係数を算出または選定し、前記ボルトの前記締付け箇所毎に、前記トルク係数を利用して算出または選定した第2の締付けトルク値を前記締付け工具に設定させる制御手段とを備える。 In order to achieve the above object, one aspect of the seal construction management device of the present invention is a seal construction management device in which a plurality of tightening points are set on a flange sandwiching a gasket, and each tightening point is provided with a bolt and a nut. A setting means for setting the tightening location, the number of times of tightening and a tightening torque value in the tightening tool, an acquiring means for acquiring the axial force of the bolt, and the tightening tool in which the first tightening torque value is set. The axial force of the bolt to be tightened is acquired, the torque coefficient of the bolt is calculated or selected using the axial force, and the torque coefficient is calculated or selected for each tightening portion of the bolt. Control means for causing the tightening tool to set a tightening torque value of 2.
 上記シール施工管理装置において、前記制御手段は、検出した前記ボルトの前記軸力と、目標軸力、設定軸力または所定の閾値とを対比し、この対比結果に基づいて、前記トルク係数を算出し、または選定してよい。 In the seal construction management apparatus, the control unit compares the detected axial force of the bolt with a target axial force, a set axial force, or a predetermined threshold value, and calculates the torque coefficient based on the comparison result. Or may be selected.
 上記シール施工管理装置において、さらに、前記締付け工具の巡回数または前記締付け箇所のいずれか、または両方を検出する検出手段を備え、前記制御手段は、巡回数または前記締付け箇所に応じて段階的または連続的に前記締付け工具に設定する設定軸力または締付けトルク値を変動させてよい。 The seal construction management device further includes a detecting means for detecting either or both of the number of times of the tightening tool or the tightening position, and the control means is stepwise or according to the number of times of the tightening or the tightening position. The set axial force or the tightening torque value set for the tightening tool may be varied continuously.
 上記目的を達成するため、本発明のシール施工管理プログラムの一側面は、コンピュータで実現させるためのシール施工管理プログラムであって、ガスケットを挟んだフランジの締付け箇所に取付けられるボルトおよびナットを締付ける締付け工具に第1の締付けトルク値を設定する機能と、前記締付け工具で締付けられる前記ボルトの軸力の検出結果を取得する機能と、検出された前記軸力を利用して前記ボルトのトルク係数の算出または選定を行う機能と、前記ボルトの前記締付け箇所毎に、前記トルク係数を利用して算出し、または選定した第2の締付けトルク値を前記締付け工具に設定する機能とを前記コンピュータで実現させる。 In order to achieve the above object, one aspect of the seal construction management program of the present invention is a seal construction management program for realizing by a computer, and tightening a bolt and a nut attached to a tightening portion of a flange sandwiching a gasket A function of setting a first tightening torque value for the tool, a function of acquiring a detection result of an axial force of the bolt tightened by the tightening tool, and a torque coefficient of the bolt using the detected axial force. A function for performing calculation or selection and a function for calculating or selecting a selected second tightening torque value for the tightening tool for each tightening point of the bolt by the computer Let
 上記目的を達成するため、本発明のシール施工管理システムの一側面は、ガスケットを挟んだフランジに複数の締付け箇所が設定され、各締付け箇所にボルトおよびナットを備えて締付けるシール施工管理システムであって、前記ボルトまたは前記ナットに加えるトルク値を制御可能な締付け工具と、前記ボルトの軸力を検出するセンサーと、第1の締付けトルク値を締付け工具に設定し、前記センサーで検出した前記軸力を利用して前記ボルトのトルク係数を算出または選定し、前記ボルトの締付け箇所毎に、前記トルク係数を利用して算出または選定した第2の締付けトルク値を前記締付け工具に設定するコントローラーとを備える。
In order to achieve the above object, one aspect of the seal construction management system of the present invention is a seal construction management system in which a plurality of tightening points are set on a flange sandwiching a gasket, and each tightening point is provided with a bolt and a nut. A tightening tool capable of controlling a torque value applied to the bolt or the nut, a sensor for detecting an axial force of the bolt, a first tightening torque value set in the tightening tool, and the shaft detected by the sensor. A controller that calculates or selects a torque coefficient of the bolt using force, and sets a second tightening torque value calculated or selected using the torque coefficient in the tightening tool for each tightening portion of the bolt; Is provided.
 本発明によれば、次のいずれかの効果が得られる。 According to the present invention, any of the following effects can be obtained.
 (1) 締付け工程においてボルト毎のトルク係数を算出し、補正した締付けトルクでの締付けを行うことで、締付け後の締め直しなどの軸力調整による作業負荷を無くし、または軽減できる。
 (2) ボルト毎のトルク係数を補正しながらナットの締付けを行うことで、段階的な締付け処理において、締付け力が不足または過剰なボルトによる他のボルトへの影響が抑えられる。
 (3) ボルト毎のトルク係数を割り出し、締付け箇所の状態に応じた締付けトルク値で締付けを行うことで、ボルト間の軸力のばらつきが抑えられる。
(1) By calculating the torque coefficient for each bolt in the tightening process and tightening with the corrected tightening torque, the work load due to axial force adjustment such as retightening after tightening can be eliminated or reduced.
(2) By tightening the nut while correcting the torque coefficient for each bolt, the effect of other bolts due to insufficient or excessive tightening force can be suppressed in the stepwise tightening process.
(3) By calculating the torque coefficient for each bolt and tightening with the tightening torque value according to the condition of the tightening location, variations in the axial force between the bolts can be suppressed.
 そして、本発明の他の目的、特徴および利点は、添付図面および各実施の形態を参照することにより、一層明確になるであろう。
Other objects, features, and advantages of the present invention will become clearer with reference to the accompanying drawings and each embodiment.
第1の実施の形態に係るシール施工管理装置の構成例を示す図である。It is a figure which shows the structural example of the seal construction management apparatus which concerns on 1st Embodiment. フランジ締付け時にボルトに作用する力の状態例を示す図である。It is a figure which shows the example of a state of the force which acts on a volt | bolt at the time of flange fastening. Aはトルク係数補正前の締付け工程中の検出軸力の一例を示す図であり、Bはトルク係数補正後の締付け工程中の検出軸力の一例を示す図である。A is a diagram showing an example of a detected axial force during a tightening step before torque coefficient correction, and B is a diagram showing an example of a detected axial force during a tightening step after torque coefficient correction. シール施工管理処理の一例を示すフローチャートである。It is a flowchart which shows an example of a seal construction management process. 第2の実施の形態に係るシール施工管理装置の構成例を示す図である。It is a figure which shows the structural example of the seal construction management apparatus which concerns on 2nd Embodiment. 締付け手順の一例を示す図である。It is a figure which shows an example of a clamping procedure. 締付け指示情報テーブルの一例を示す図である。It is a figure which shows an example of a clamping instruction information table. 軸力検出結果の一例を示す図である。It is a figure which shows an example of an axial force detection result. トルク係数の算出結果の一例を示す図である。It is a figure which shows an example of the calculation result of a torque coefficient. シール施工管理処理の一例を示すフローチャートである。It is a flowchart which shows an example of a seal construction management process. 第3の実施の形態に係るシール施工管理システムの構成例を示す図である。It is a figure which shows the structural example of the seal construction management system which concerns on 3rd Embodiment. Aは締付け工具の構成例を示す図、Bは軸力センサーの一例を示す図である。A is a figure which shows the structural example of a clamping tool, B is a figure which shows an example of an axial force sensor. Aはコントローラーの構成例を示す図であり、Bは記憶部の構成例を示す図である。A is a figure which shows the structural example of a controller, B is a figure which shows the structural example of a memory | storage part. サーバーの内部構成例を示す図である。It is a figure which shows the internal structural example of a server. 締付け結果の表示例を表す図である。It is a figure showing the example of a display of a fastening result. シール施工管理の一例を表すシーケンス図である。It is a sequence diagram showing an example of seal construction management. 第4の実施の形態に係るシール施工管理装置の構成例を示す図である。It is a figure which shows the structural example of the seal construction management apparatus which concerns on 4th Embodiment. 比較例を示す図である。It is a figure which shows a comparative example.
 〔第1の実施の形態〕
 図1は、第1の実施の形態に係るシール施工管理装置の構成例を示している。図1に示す構成は一例であり、本発明が斯かる構成に限定されない。
 <シール施工管理装置2>
 このシール施工管理装置2は、複数の管路同士や配管と弁、配管とポンプなどを連結するシール施工部4の複数のボルト6およびナット8の締め付け処理およびその締め付け管理を行う。シール施工部4は、たとえば図1に示すように、締付け対象の一例として、連結手段であるフランジ10-1、10-2間にガスケット12が挟み込まれ、フランジ10-1、10-2の周縁側に設定された複数の締付け箇所にそれぞれボルト6およびナット8が配置される。このフランジ10-1、10-2には、たとえば締付け箇所が8箇所設定されている。つまり、このフランジ10-1、10-2には、たとえば等間隔に角度θ=45〔°〕の間隔で8本のボルト6とナット8が締付けられる。ガスケット12は、剛性のある樹脂材料で構成されており、少なくともフランジ10-1、10-2の対向面に接触するとともに、配管などのフランジ以外の被連結物に形成される流路に重ならない形状に形成されている。そしてガスケット12は、ボルト6およびナット8の締付けによりフランジ10-1、10-2に圧着状態となることで、被連結物の連結部分の周囲から流体などの流出を阻止するシール手段の一例である。
 シール施工管理装置2は、シール施工管理として、ボルト6およびナット8の締付けを管理することで、フランジ10-1、10-2との間にあるガスケット12を均一またはそれに近い状態で押圧状態にする。
[First Embodiment]
FIG. 1 shows a configuration example of a seal construction management apparatus according to the first embodiment. The configuration illustrated in FIG. 1 is an example, and the present invention is not limited to such a configuration.
<Seal construction management device 2>
This seal construction management device 2 performs tightening processing and tightening management of a plurality of bolts 6 and nuts 8 of a seal construction section 4 that connects a plurality of pipe lines, pipes and valves, pipes and pumps, and the like. As shown in FIG. 1, for example, as shown in FIG. 1, the seal application unit 4 includes a gasket 12 sandwiched between flanges 10-1 and 10-2 as connection means, and the periphery of the flanges 10-1 and 10-2. Bolts 6 and nuts 8 are respectively arranged at a plurality of tightening points set on the edge side. For example, eight tightening points are set on the flanges 10-1 and 10-2. That is, eight bolts 6 and nuts 8 are fastened to the flanges 10-1 and 10-2, for example, at equal intervals of an angle θ = 45 [°]. The gasket 12 is made of a rigid resin material, contacts at least the facing surfaces of the flanges 10-1 and 10-2, and does not overlap a flow path formed in a connected object other than a flange such as a pipe. It is formed into a shape. The gasket 12 is an example of a sealing means that prevents the outflow of fluid or the like from the periphery of the connected portion of the object to be connected by being brought into a crimped state with the flanges 10-1 and 10-2 by tightening the bolt 6 and the nut 8. is there.
The seal construction management device 2 manages the tightening of the bolts 6 and nuts 8 as the seal construction management, so that the gasket 12 between the flanges 10-1 and 10-2 is pressed in a uniform or near state. To do.
 シール施工管理装置2は、たとえば締付け工具14および制御手段16を有する。締付け工具14は、ボルト6またはナット8に付与する出力トルクTの付与手段の一例であり、たとえば出力トルク(締付けトルクT)の設定や調整が可能な機能を備える、ナットランナーや電動工具が含まれる。この締付け工具14は、たとえば締付け処理を行う作業者の操作によって持ち運ばれ、また締付け時のON/OFF操作などが可能なものや、図示しない製品組立て装置のアームなどに設置または把持されるものもある。
 締付け工具14は、たとえば装置本体20の保持および所定位置へ移動を可能にするグリップ22、締付け対象であるナット8に嵌合させて締付けトルクを付加するソケット24、締付け工程においてソケット24を通じて締付けトルクTをON/OFFさせるトリガースイッチ26を有する。ボルト6およびナット8の締付け工程では、作業者の指または図示しないマニピュレータ、その他、スイッチ回路などを利用してトリガースイッチ26のON/OFFを切替える。
 また、締付け工程では、たとえば作業者や組立て装置などが、シール施工部4に設定された締付け箇所、すなわちボルト6およびナット8が設置された位置に対し、設定された順序で締付け工具14を配置させ、トリガースイッチ26のON/OFF操作を行う。
The seal construction management device 2 includes, for example, a tightening tool 14 and a control unit 16. The tightening tool 14 is an example of a means for applying an output torque T to be applied to the bolt 6 or the nut 8 and includes, for example, a nut runner and an electric tool having a function capable of setting and adjusting the output torque (tightening torque T). It is. The tightening tool 14 is carried, for example, by the operation of an operator who performs tightening processing, and can be turned on / off during tightening, or installed or gripped on an arm of a product assembly device (not shown). There is also.
The tightening tool 14 includes, for example, a grip 22 that enables the apparatus main body 20 to be held and moved to a predetermined position, a socket 24 that is fitted to the nut 8 to be tightened and applies a tightening torque, and a tightening torque through the socket 24 in the tightening process. A trigger switch 26 for turning T on and off is provided. In the tightening process of the bolt 6 and the nut 8, the trigger switch 26 is switched on / off using the operator's finger, a manipulator (not shown), or a switch circuit.
Further, in the tightening process, for example, an operator or an assembling apparatus arranges the tightening tools 14 in the set order with respect to the tightening points set in the seal application section 4, that is, the positions where the bolts 6 and the nuts 8 are installed. The trigger switch 26 is turned ON / OFF.
 制御手段16は、締付け工具14の動作指示を出力するとともに、ボルト6およびナット8の締付け状態から締付け工具14に設定する締付けトルク値T1の調整処理を行う手段の一例である。この制御手段16は、たとえばコンピュータで構成されており、締付け工具14と一体に構成されてもよく、または独立した機器であって、締付け工具14と有線または無線によって接続されてもよい。また、制御手段16は、軸力センサー18-1、18-2、・・・、18-n(nは自然数)と接続されており、締付けによる軸力の値または締付けによる軸力の変化などを取得する。 The control unit 16 is an example of a unit that outputs an operation instruction of the tightening tool 14 and performs an adjustment process of the tightening torque value T1 set in the tightening tool 14 from the tightening state of the bolt 6 and the nut 8. The control means 16 is configured by, for example, a computer and may be configured integrally with the tightening tool 14 or may be an independent device and connected to the tightening tool 14 by wire or wirelessly. Further, the control means 16 is connected to axial force sensors 18-1, 18-2,..., 18-n (n is a natural number), and the value of the axial force due to tightening or the change in axial force due to tightening, etc. To get.
 軸力センサー18-1、18-2、18-3、・・・・、18-nは、ボルト6またはナット8に作用する軸力を検出する手段の一例であり、全ての締付け箇所に設置されたボルト6またはナット8のいずれかに設置される。また、軸力センサー18-1、18-2、18-3、・・・、18-nは、たとえば軸力測定時に設置されてもよい。 The axial force sensors 18-1, 18-2, 18-3,..., 18-n are examples of means for detecting the axial force acting on the bolt 6 or the nut 8, and are installed at all tightening points. The bolt 6 or the nut 8 is installed. Further, the axial force sensors 18-1, 18-2, 18-3,..., 18-n may be installed at the time of measuring the axial force, for example.
<制御手段16の機能>
 このような構成を備えたシール施工管理装置2の制御手段16は、たとえば、以下のような機能を有する。
 a.設定されたトルク係数k1および締付け箇所の巡回数Sに応じて、ボルト6またはナット8に付与する締付けトルク値T1を算出または選定する機能。
 b.締付け工具14に締付けトルク値T1を設定する機能。
 c.巡回数S(STEP)に応じて段階的または連続的に締付け工具14の締付けトルク値T1を変更する機能。この巡回数Sは、ボルト6およびナット8の締付け箇所である位置P1、P2、・・・、Pnを周回する単位数である。
 d.締付けによりボルト6またはナット8に作用する軸力の検出結果を取得して、締付け箇所Pに応じた補正トルク係数k2を算出する機能。
 e.算出した補正トルク係数k2を利用して、補正した締付けトルク値T2を算出または選定する機能。
<Function of the control means 16>
The control means 16 of the seal construction management device 2 having such a configuration has the following functions, for example.
a. A function for calculating or selecting a tightening torque value T1 to be applied to the bolt 6 or the nut 8 in accordance with the set torque coefficient k1 and the number of times S of tightening points.
b. A function of setting a tightening torque value T1 to the tightening tool 14.
c. A function of changing the tightening torque value T1 of the tightening tool 14 stepwise or continuously in accordance with the number of times S (STEP). This number S of rounds is the number of units that circulate around the positions P1, P2,.
d. A function of acquiring a detection result of an axial force acting on the bolt 6 or the nut 8 by tightening and calculating a correction torque coefficient k2 corresponding to the tightening point P.
e. A function of calculating or selecting a corrected tightening torque value T2 using the calculated corrected torque coefficient k2.
 機能aの締付けトルク値T1は、たとえば目標軸力の値を利用して算出した締付けトルク値である。この締付けトルク値T1は、ガスケット12を含む締付け条件により、目標とする軸力Fに到達させるのに必要なレベル値として算出される。締付けトルク値Tの算出では、以下の式が用いられる。
       T=kFd/n               ・・・(1)
 ここで、dは締付けられるボルト6の外径であり、nはシール施工部4に設置されるボルト6またはナット8の数である。また、kは、締付けトルクTと締付け力(軸力F)の比例係数を表すトルク係数である。
 ボルト6およびナット8の軸力Fは、たとえば図2に示すように、締付け工具14から付加される締付けトルクTに対し、フランジ10-1や10-2とボルト6またはナット8の座面との摩擦力N1、ねじ面の摩擦力N2などの影響を受ける。また、この締付けの軸力Fは、ねじの表面粗さなどの影響を受ける。つまり、締付け箇所により、同じ締付けトルク値T1で締付けてもボルト6およびナット8に作用する軸力Fが異なってくる。このような影響を考慮して設定されるトルク係数kは、ボルト6やナット8毎の締付け箇所Pに応じて異なる値となる。シール施工開始時の締付けトルク値T1の算出では、たとえば全ての締付け箇所Pに対するトルク係数k1を一定の値として、0.2に設定する。
The tightening torque value T1 of the function a is a tightening torque value calculated using, for example, a target axial force value. This tightening torque value T1 is calculated as a level value required to reach the target axial force F according to the tightening conditions including the gasket 12. In calculating the tightening torque value T, the following equation is used.
T = kFd / n (1)
Here, d is the outer diameter of the bolt 6 to be tightened, and n is the number of bolts 6 or nuts 8 installed in the seal construction part 4. K is a torque coefficient representing a proportional coefficient between the tightening torque T and the tightening force (axial force F).
For example, as shown in FIG. 2, the axial force F of the bolt 6 and the nut 8 corresponds to the flanges 10-1 and 10-2 and the seat surface of the bolt 6 or the nut 8 against the tightening torque T applied from the tightening tool 14. The frictional force N1 and the frictional force N2 of the screw surface are affected. The tightening axial force F is affected by the surface roughness of the screw. That is, the axial force F acting on the bolt 6 and the nut 8 varies depending on the tightening location even if the tightening is performed with the same tightening torque value T1. The torque coefficient k set in consideration of such influences varies depending on the tightening point P for each bolt 6 or nut 8. In the calculation of the tightening torque value T1 at the start of seal construction, for example, the torque coefficient k1 for all tightening points P is set to a constant value of 0.2.
 機能bでは、制御手段16から締付け工具14に対する制御情報として、算出したトルク値T1が締付け工具14に設定される。 In function b, the calculated torque value T1 is set in the tightening tool 14 as control information for the tightening tool 14 from the control means 16.
 機能cでは、制御手段16は、締付けの巡回数Sに応じて、締付け工具14による締付けトルク値T1を段階的または連続的に変更させて、締付けを行う。これにより、各締付け箇所Pのボルト6またはナット8の軸力を目標軸力Fに到達させていく。 In function c, the control means 16 performs tightening by changing the tightening torque value T1 by the tightening tool 14 stepwise or continuously in accordance with the number of tightening cycles S. Thereby, the axial force of the bolt 6 or the nut 8 at each tightening point P is made to reach the target axial force F.
 機能dでは、制御手段16は、たとえば締付け箇所Pに対応する軸力センサー18-1、18-2、・・・、18-nから検出した軸力Fを取得する。検出した軸力Fは、締付けを行ったときに毎回取得してもよく、または所定の巡回数Sの締付けを行ったときに取得してもよい。そして、制御手段16は、たとえば式(1)を利用して、ボルト6またはナット8毎の補正トルク係数k2を算出する。補正トルク係数k2の算出では、設定したトルク値T1と検出した軸力Fを利用する。 In function d, the control means 16 acquires the axial force F detected from the axial force sensors 18-1, 18-2,..., 18-n corresponding to the tightening point P, for example. The detected axial force F may be acquired every time when tightening is performed, or may be acquired when a predetermined number of rounds S is tightened. And the control means 16 calculates the correction | amendment torque coefficient k2 for every volt | bolt 6 or the nut 8 using Formula (1), for example. In calculating the correction torque coefficient k2, the set torque value T1 and the detected axial force F are used.
 機能eでは、制御手段16は、補正トルク係数k2と目標軸力とを利用し、式(1)に基づいて補正した締付けトルク値T2を算出し、締付け工具14に設定する。 In function e, the control means 16 uses the corrected torque coefficient k2 and the target axial force to calculate a tightening torque value T2 corrected based on the equation (1) and set it in the tightening tool 14.
<シール施工管理の結果>
 図3は、締付け工程中の検出軸力の一例を示している。
 制御手段16は、たとえば締付け箇所Pで検出した軸力を管理するとともに、図示しない表示手段により、締付けを行う作業者や作業管理者に対して管理結果を通知する。
 図3のAは、たとえばトルク係数を一定の値k1=0.2に設定して締付けを行った場合の軸力検出結果の一例である。この締付け結果Fαは、たとえば締付け箇所[1]~[5]、[8]の検出軸力が同等な値となっているのに対し、締付け箇所[7]における締付け結果Fα1の値が小さくなり、また締付け箇所[6]における締付結果Fα2の値が他の締付け箇所よりも大きな値となっている。つまり同じ締付けトルク値T1で締付けを行っても、締付け箇所[7]と[6]の状態に対してトルク係数k1が適当な値でないことが明確である。
 また、図3のBは、締付け箇所毎に対応した補正トルク係数k2を設定して締付けを行った場合の軸力検出結果の一例である。この締付け結果Fβでは、締付け箇所[7]、[6]の締付け結果Fβ1、Fβ2の値が他の締付け箇所の検出軸力の値と同等になっている。これによりフランジ10-1、10-2の全体に作用する軸力のばらつきが抑えられる。
<Results of seal construction management>
FIG. 3 shows an example of the detected axial force during the tightening process.
The control means 16 manages, for example, the axial force detected at the tightening point P, and notifies the operator and work manager of the tightening by the display means (not shown) of the management result.
FIG. 3A is an example of the axial force detection result when tightening is performed with the torque coefficient set to a constant value k1 = 0.2, for example. In this tightening result Fα, for example, the detected axial forces at the tightening points [1] to [5] and [8] have the same value, but the tightening result Fα1 at the tightening point [7] is small. In addition, the value of the tightening result Fα2 at the tightening point [6] is larger than that of the other tightening points. In other words, it is clear that even if tightening is performed with the same tightening torque value T1, the torque coefficient k1 is not an appropriate value for the states of the tightening points [7] and [6].
FIG. 3B is an example of an axial force detection result when tightening is performed by setting a correction torque coefficient k2 corresponding to each tightening location. In this tightening result Fβ, the values of the tightening results Fβ1 and Fβ2 at the tightening locations [7] and [6] are equal to the detected axial force values at the other tightening locations. As a result, variations in the axial force acting on the entire flanges 10-1 and 10-2 can be suppressed.
 <シール施工管理処理>
 図4は、シール施工管理処理例を示している。図4に示す処理手順、処理内容は、本発明のシール施工管理方法またはシール施工管理プログラムの一例であり、本発明が斯かる内容に限定されない。
<Seal construction management processing>
FIG. 4 shows an example of seal construction management processing. The processing procedures and processing contents shown in FIG. 4 are examples of the seal construction management method or the seal construction management program of the present invention, and the present invention is not limited to such contents.
 制御手段16は、シール施工管理処理として、目標軸力または設定軸力と第1のトルク係数k1とを利用して、第1の締付けトルク値T1の算出または選定を行い(S1)、この第1の締付けトルク値T1を締付け工具14に設定する(S2)。目標軸力は、締付け完了時にボルト6またはナット8に作用する軸力Fの目標値である。設定軸力は、巡回数Sに応じてボルト6およびナット8に対する締付けトルク値T1を段階的に変化させる場合に、締付けトルク値T1の算出時に設定される軸力Fの値であり、たとえば巡回数Sに応じて目標軸力のx[%]などが設定される。また、締付けトルク値T1は、たとえば予めデータベースなどに記憶された値を選定して設定してもよい。
 制御手段16は、軸力センサー18-1、18-2、・・・、18-nから軸力の検出結果を取得し(S3)、検出結果を目標軸力または設定軸力と比較する(S4)。この軸力の比較は、締付け箇所毎に行う。そして検出結果が目標軸力または設定軸力と差分がある場合(S5のYES)、検出した軸力Fの値を利用して第2のトルク係数である補正トルク値k2を算出する(S6)。また、検出結果が目標軸力または設定軸力と差分がない場合(S5のNO)、締付け箇所の状態に対応したトルク係数k1が設定されていると判断して、第1のトルク係数k1を維持する(S7)。
 制御手段16は、締付け箇所毎にそれぞれのトルク係数を利用して締付けトルク値T1、T2を算出して締付け工具14に設定し(S8)、次の締付け順序に移行する。
The control means 16 calculates or selects the first tightening torque value T1 using the target axial force or the set axial force and the first torque coefficient k1 as the seal construction management process (S1). A tightening torque value T1 of 1 is set in the tightening tool 14 (S2). The target axial force is a target value of the axial force F acting on the bolt 6 or the nut 8 when the tightening is completed. The set axial force is a value of the axial force F that is set when the tightening torque value T1 is calculated when the tightening torque value T1 for the bolt 6 and the nut 8 is changed in a stepwise manner according to the number of times S. Depending on the number S, x [%] of the target axial force and the like are set. The tightening torque value T1 may be set by selecting a value stored in advance in a database or the like, for example.
The control means 16 acquires the detection result of the axial force from the axial force sensors 18-1, 18-2, ..., 18-n (S3), and compares the detection result with the target axial force or the set axial force ( S4). This axial force is compared for each tightening point. If the detected result has a difference from the target axial force or the set axial force (YES in S5), a corrected torque value k2 that is a second torque coefficient is calculated using the value of the detected axial force F (S6). . If the detected result is not different from the target axial force or the set axial force (NO in S5), it is determined that the torque coefficient k1 corresponding to the state of the tightening portion is set, and the first torque coefficient k1 is set. Maintain (S7).
The control means 16 calculates the tightening torque values T1 and T2 using the respective torque coefficients for each tightening location, sets them in the tightening tool 14 (S8), and proceeds to the next tightening sequence.
 なお、このシール施工管理処理では、検出した軸力と目標軸力または設定軸力とを対比し、その値に差分がある場合にトルク係数の補正を行う場合を示したがこれに限らない。全ての締付け箇所で検出した軸力に基づいて、第2のトルク係数k2を算出してもよい。
 また、検出した軸力の対比処理では、たとえば目標軸力や設定軸力に限られず、予め設定された所定の閾値と比較してもよい。
In this seal construction management process, the detected axial force is compared with the target axial force or the set axial force, and the case where the torque coefficient is corrected when there is a difference is shown. However, the present invention is not limited to this. The second torque coefficient k2 may be calculated based on the axial force detected at all tightening locations.
Further, the detected axial force comparison process is not limited to the target axial force or the set axial force, for example, and may be compared with a predetermined threshold value set in advance.
 <第1の実施の形態の効果>
 斯かる構成によれば、次の効果が得られる。
 (1) ボルト6およびナット8の締付けによる検出結果と、締付け工具14に設定した締付けトルク値との関係から、締付け箇所毎の状態に応じたトルク係数を割り出すことで、シール施工中に締付けトルク値の補正処理を容易に行うことができる。
 (2) トルク係数の割り出しによる締付けトルク値の補正により、目標軸力または設定軸力に対してボルト6またはナット8に作用する軸力Fのずれが抑えられ、締め直しなどの作業負荷の軽減および作業時間の短縮化が図れる。
<Effect of the first embodiment>
According to such a configuration, the following effects can be obtained.
(1) From the relationship between the detection result of tightening the bolt 6 and nut 8 and the tightening torque value set for the tightening tool 14, the torque coefficient according to the state of each tightening point is determined to determine the tightening torque during seal construction. Value correction processing can be easily performed.
(2) By correcting the tightening torque value by calculating the torque coefficient, the deviation of the axial force F acting on the bolt 6 or nut 8 with respect to the target axial force or the set axial force is suppressed, and the work load such as retightening is reduced. In addition, the working time can be shortened.
 (3) 締付け工程中にトルク係数を割り出して締付けトルク値の修正を行うことで、フランジ10-1、10-2およびガスケット12の接触面に作用する軸力のばらつきが無くなり、これらの接触面の一部に皺や歪みなどが発生する可能性が低減され、ガスケットの密着性や接続される配管などの密閉性が高められる。
 (4) フランジ10-1、10-2を固定支持する複数のボルト6およびナット8間で締付けの軸力のばらつきが抑えられることで、締付けの緩みの発生の可能性を低減でき、フランジ10-1、10-2の接続性やガスケット12の封止性の信頼性が高められる。
 (5) 締付けの結果に基づいて締付け箇所毎の状態を自動で判断し、その状態に合せた締付けトルク値を算出することで、作業者の経験や勘によらずにフランジ10-1、10-2、ガスケット12、ボルト6、ナット8の状態に合せたシール施工管理が行える。
(3) By calculating the torque coefficient during the tightening process and correcting the tightening torque value, variations in the axial force acting on the contact surfaces of the flanges 10-1, 10-2 and the gasket 12 can be eliminated. The possibility of wrinkles and distortion occurring in a part of the gasket is reduced, and the adhesion of the gasket and the sealing performance of the pipes to be connected are improved.
(4) By suppressing variations in the tightening axial force between the plurality of bolts 6 and nuts 8 that fix and support the flanges 10-1 and 10-2, the possibility of loosening of the tightening can be reduced. -1 and 10-2 and the reliability of the gasket 12 can be improved.
(5) By automatically determining the state of each tightening point based on the tightening result and calculating the tightening torque value according to the state, the flanges 10-1, 10 can be used regardless of the operator's experience and intuition. -It is possible to manage the sealing work according to the condition of the gasket 12, the bolt 6 and the nut 8.
 〔第2の実施の形態〕 [Second Embodiment]
 図5は、第2の実施の形態に係るシール施工管理装置の構成例を示している。図5に示す構成は一例であり、本発明が斯かる構成に限定されない。
 <シール施工管理装置30>
 このシール施工管理装置30は、たとえば図5に示すように、締付け工具14、制御手段16および締付け条件設定部32を備える。制御手段16は、たとえばボルト6またはナット8のいずれか一方または両方に設置された軸力センサー18-1、18-2、・・・、18-nの検出結果を取り込む取得手段34を備える。この取得手段34は、たとえば軸力センサー18-1、18-2、・・・、18-nと無線で接続する通信手段や有線で接続する接続インターフェースなどを含むとともに、検出結果の算出処理や表示処理を可能にする処理機能を有してもよい。
 締付け条件設定部32は、たとえば制御手段16で設定した締付けトルク値T1、T2を締付け工具14に設定する機能のほか、たとえば締付け作業において締付け箇所や巡回数を把握し、その指示表示や報知をすることで作業者に対するシール施工管理機能を有する。
 この締付け条件設定部32は、たとえば制御手段16と一体で構成されてもよく、または有線または無線などで接続された別体であってもよい。
 また、締付け条件設定部32は、たとえば締付けトルク値T1、T2の算出処理機能を備えてもよい。
 締付け工具14やシール施工部4は、第1の実施の形態と同様の構成を有していればよく、その説明を省略する。
FIG. 5 shows a configuration example of a seal construction management device according to the second embodiment. The configuration shown in FIG. 5 is an example, and the present invention is not limited to such a configuration.
<Seal construction management device 30>
For example, as shown in FIG. 5, the seal construction management device 30 includes a tightening tool 14, a control unit 16, and a tightening condition setting unit 32. The control means 16 includes an acquisition means 34 for taking in the detection results of axial force sensors 18-1, 18-2,..., 18-n installed on either one or both of the bolt 6 and the nut 8, for example. This acquisition means 34 includes, for example, communication means for wirelessly connecting to the axial force sensors 18-1, 18-2,..., 18-n, a connection interface for connecting by wire, etc. You may have a processing function which enables a display process.
For example, the tightening condition setting unit 32 grasps the tightening position and the number of rotations in tightening work in addition to the function of setting the tightening torque values T1 and T2 set by the control means 16 to the tightening tool 14, for example. By doing so, it has a function of managing the seal construction for the worker.
The tightening condition setting unit 32 may be configured integrally with the control unit 16, for example, or may be a separate body connected by wire or wireless.
Further, the tightening condition setting unit 32 may include a function for calculating tightening torque values T1 and T2, for example.
The tightening tool 14 and the seal construction unit 4 only need to have the same configuration as that of the first embodiment, and the description thereof is omitted.
 <締付け手順および巡回数>
 図6は、ボルトおよびナットの締付け手順の一例を示している。
 ボルト6およびナット8の締付け作業では、たとえば図6のAの矢印aに示すように、位置P1、P2・・・、Pnを順番に巡回してもよいし、図6のBの矢印bに示すように、位置P1、P2・・・、Pnをフランジ10-1、10-2の直径方向に締付け箇所を変更する、いわゆる「対角締め」締付け手順で巡回させて締め付けを行えばよい。つまり、位置P1、P2・・・、Pnを番号順に連続して締付けてもよいし、締付け箇所を所定数だけ規則的にスキップして巡回してもよい。したがって、巡回数Sは、位置P1、P2・・・、Pnを順番に連続した巡回の計数値に限定されず、所定位置をスキップした巡回を単位として計数した計数値でもよい。
 この実施の形態のシール施工管理では、たとえば日本工業規格(JIS)のフランジ継手締付け方法(JIS B 2251)に準拠した締付け手順を採用している。また、この実施の形態では、たとえばフランジ10-1、10-2に設置されるボルト6の数がn=8〔本〕の場合を示している。そこで、この締付け処理では、締め初めから所定の巡回数(S)になるまでのいわゆる「仮締め」段階では位置P1、P2・・・、Pnをフランジ10-1、10-2の直径方向に締付け箇所を変更する、いわゆる、「対角締め」(図6のB)による締め付けを行う。さらに締付け処理では、「仮締め」の巡回数(S)が完了した後にいわゆる「本締め」の段階として、P2~Pnを順番に巡回して(図6のA)締付けを行う。
 なお、「仮締め」や「本締め」の巡回数(STEP)や締付けの手順は、フランジ10-1、10-2に設置するボルト6の本数に応じて異なる値が設定されてもよい。
<Tightening procedure and number of tours>
FIG. 6 shows an example of a bolt and nut tightening procedure.
In the tightening operation of the bolt 6 and the nut 8, for example, as shown by an arrow a in FIG. 6A, the positions P1, P2,. As shown in the figure, the positions P1, P2,..., Pn may be circulated by a so-called “diagonal tightening” tightening procedure that changes the tightening location in the diameter direction of the flanges 10-1, 10-2. That is, the positions P1, P2,..., Pn may be tightened continuously in numerical order, or a predetermined number of the tightening points may be skipped regularly for circulation. Therefore, the number of times S is not limited to the count value of the cycle in which the positions P1, P2,..., Pn are sequentially continued, and may be a count value counted in units of cycles where a predetermined position is skipped.
In the seal construction management according to this embodiment, for example, a tightening procedure based on a Japanese Industrial Standard (JIS) flange joint tightening method (JIS B 2251) is employed. In this embodiment, for example, the number of bolts 6 installed on the flanges 10-1 and 10-2 is n = 8 [pieces]. Therefore, in this tightening process, the positions P1, P2,..., Pn are set in the diameter direction of the flanges 10-1, 10-2 at the so-called “temporary tightening” stage from the beginning of tightening to the predetermined number of rounds (S). Tightening is performed by so-called “diagonal tightening” (B in FIG. 6) that changes the tightening location. Further, in the tightening process, after the number of times of “temporary tightening” (S) is completed, as a so-called “main tightening” stage, P2 to Pn are sequentially cycled (A in FIG. 6) to perform tightening.
It should be noted that the number of times (STEP) of the “temporary tightening” and “main tightening” and the tightening procedure may be set differently depending on the number of bolts 6 installed on the flanges 10-1 and 10-2.
 <締付け指示情報テーブル40>
 図7は、締付け指示情報テーブルの一例を示している。
 この締付け指示情報テーブル40は、シール施工管理の処理内容が記憶されたテーブルの一例であり、たとえば制御手段16に記憶される。この締付け指示情報テーブル40には、たとえば巡回数を表す「STEP」毎の「実施内容」の情報や締付けの「手順」の情報などが格納されている。図7に示す締付け指示情報テーブル40の「STEP」は、締付けを行うボルト6の数によって決まり、たとえば巡回数S=10〔回〕、すなわち、8〔本〕のボルト6およびナット8に対して所定の手順で10〔回〕に分けて締付けていく。この締付け指示では、たとえば、STEP3とSTEP7においてトルク係数を算出して、締付け箇所の状態に応じたトルク係数の補正を行う。
 「実施内容」の情報には、たとえば締付けトルク値やトルク係数の値が記憶されるほか、検出された軸力の取込み指示およびトルク係数の算出指示などが含まれる。
 「手順」の情報には、ボルト6およびナット8を締付ける手法が格納されている。
<Tightening instruction information table 40>
FIG. 7 shows an example of the tightening instruction information table.
The tightening instruction information table 40 is an example of a table in which processing details of seal construction management are stored, and is stored in the control unit 16, for example. The tightening instruction information table 40 stores, for example, information on “execution contents” for each “STEP” representing the number of times of travel, information on a “procedure” for tightening, and the like. “STEP” in the tightening instruction information table 40 shown in FIG. 7 is determined by the number of bolts 6 to be tightened. For example, the number of rounds S = 10 [times], that is, for 8 bolts 6 and nuts 8. Tighten in 10 [times] according to a predetermined procedure. In this tightening instruction, for example, a torque coefficient is calculated in STEP 3 and STEP 7, and the torque coefficient is corrected in accordance with the state of the tightening portion.
The information of “implementation content” includes, for example, a tightening torque value and a torque coefficient value, and also includes a detected axial force take-in instruction and a torque coefficient calculation instruction.
In the “procedure” information, a method of tightening the bolt 6 and the nut 8 is stored.
 <軸力の検出結果>
 図8は、軸力の検出結果の一例を示している。
 制御手段16には、軸力センサー18-1、18-2、・・・、18-nから取得した各締付け箇所の軸力Fの値を含む情報テーブルを備える。図8に示す情報テーブルは、たとえばトルク係数kの補正値を算出する巡回数(S)における軸力の検出および締付けトルク値やトルク係数の算出結果であり、締付け工具14に設定した締付けトルク値T1、ボルト6またはナット8に作用させる設定軸力Fx、検出軸力F、補正前のトルク係数k1、補正トルク係数k2、補正トルク値T’などが記憶される。
 締付けトルク値T1は、この巡回数で設定される設定軸力Fx、トルク係数k1を利用し、既述の式(1)に基づいて算出された値である。制御手段16は、たとえばシール施工管理処理として、設定軸力Fxと、締付けトルク値T1で締付けられたときの軸力Fとを比較して、これらの値が一致もしくは設定軸力Fxに対して所定の範囲にない場合には、補正トルク係数k2を算出する。
 そして、制御手段16は、軸力の比較結果に対し、次の巡回数において締付け工具14に設定する補正トルク値T’を設定する。
 なお、情報テーブルは、たとえば締付け巡回数毎に作成されてもよく、またはトルク係数の補正を行う巡回数(S)のときにのみ作成されてもよい。
<Axial force detection result>
FIG. 8 shows an example of the detection result of the axial force.
The control means 16 is provided with an information table including the value of the axial force F of each tightening location acquired from the axial force sensors 18-1, 18-2,. The information table shown in FIG. 8 shows, for example, axial force detection and tightening torque values and torque coefficient calculation results in the number of cycles (S) for calculating the correction value of the torque coefficient k, and the tightening torque value set for the tightening tool 14. T1, set axial force Fx applied to the bolt 6 or nut 8, detected axial force F, uncorrected torque coefficient k1, corrected torque coefficient k2, corrected torque value T ′, and the like are stored.
The tightening torque value T1 is a value calculated based on the above-described equation (1) using the set axial force Fx and the torque coefficient k1 set by the number of cycles. For example, as a seal construction management process, the control means 16 compares the set axial force Fx with the axial force F when tightened with the tightening torque value T1, and these values match or are equal to the set axial force Fx. If it is not within the predetermined range, a correction torque coefficient k2 is calculated.
Then, the control means 16 sets a correction torque value T ′ to be set in the tightening tool 14 in the next number of rounds for the comparison result of the axial force.
Note that the information table may be created, for example, for each number of tightening rounds, or may be created only for the number of rounds (S) for correcting the torque coefficient.
 <トルク係数の算出結果>
 図9は、トルク係数の算出結果の一例を示している。
 制御手段16は、たとえば図9に示すように、トルク係数の算出処理を契機に締付け箇所に関連付けたトルク係数表示画面を生成する。このトルク係数表示画面は、たとえば図示しない制御手段16の表示部に表示してもよく、または通信または外部メモリなどを利用して、管理者用の端末装置に表示してもよい。
 斯かるトルク係数表示画面を生成することで、作業者や作業管理者が締付け箇所毎のトルク係数のばらつき状態を容易に把握することができる。
<Torque coefficient calculation result>
FIG. 9 shows an example of the calculation result of the torque coefficient.
For example, as shown in FIG. 9, the control means 16 generates a torque coefficient display screen associated with the tightening location in response to the torque coefficient calculation process. This torque coefficient display screen may be displayed, for example, on a display unit of the control means 16 (not shown), or may be displayed on a terminal device for an administrator using communication or an external memory.
By generating such a torque coefficient display screen, an operator or a work manager can easily grasp the variation state of the torque coefficient for each tightening location.
 <シール施工管理処理>
 図10は、シール施工管理処理例を示している。図10に示す処理手順、処理内容は、本発明のシール施工管理方法またはシール施工管理プログラムの一例であり、本発明が斯かる内容に限定されない。
 シール施工管理処理では、制御手段16の初期設定を行い(S11)、締付け工具14の設定を行う(S12)。これら設定ステップでは、設定されたトルク係数k1や設定軸力Fxによって巡回数毎の締付けトルク値T1の算出や締付け条件設定部32を通じて締付け工具14への入力処理などを含む。
 制御手段16は、各軸力センサー18-1、18-2、・・・、18-nが検出した軸力の検出結果Fを取得し(S13)、締付け箇所Pおよび巡回数(S)を確認する(S14)。確認処理では、たとえば締付け箇所P1~P8の8箇所にある8本のボルト6の番号と検出軸力の変化で各締付け箇所Pを特定する。巡回数(S)は、たとえば8箇所のボルト6の締付けを単位とし、同一のボルト6の締付けが一巡する回数で特定される。
<Seal construction management processing>
FIG. 10 shows an example of seal construction management processing. The processing procedure and processing content shown in FIG. 10 are examples of the seal construction management method or seal construction management program of the present invention, and the present invention is not limited to such content.
In the seal construction management process, initial setting of the control means 16 is performed (S11), and the tightening tool 14 is set (S12). These setting steps include calculation of the tightening torque value T1 for each number of rotations based on the set torque coefficient k1 and the set axial force Fx, input processing to the tightening tool 14 through the tightening condition setting unit 32, and the like.
The control means 16 acquires the detection result F of the axial force detected by each axial force sensor 18-1, 18-2,..., 18-n (S13), and determines the tightening point P and the number of cycles (S). Confirm (S14). In the confirmation process, for example, each tightening point P is specified by the number of eight bolts 6 at eight tightening points P1 to P8 and the change of the detected axial force. The number of cycles (S) is specified by the number of times that the same bolt 6 is tightened once, for example, by tightening eight bolts 6.
 制御手段16は、巡回数(S)がトルク係数の算出ステップになったかを判断し(S15)、算出ステップの場合(S15のYES)、検出軸力Fと設定軸力Fxとの対比、およびボルト6毎の補正トルク係数k2の算出を行う(S16)。また、制御手段16は、算出した補正トルク係数k2をボルト6毎に関連づけして(S17)、次回の締付けトルク値Tの算出において、関連付けたボルト係数k2を利用する。
 制御手段16は、巡回数(S)がトルク係数の算出ステップでないと判断した場合(S15のNO)、S12に戻り、巡回数(S)をカウントアップして巡回数(S)に応じた軸力Fまたは締付けトルク値を設定して締付け処理を行う。
The control means 16 determines whether or not the number of rounds (S) has become the torque coefficient calculation step (S15), and in the case of the calculation step (YES in S15), the comparison between the detected axial force F and the set axial force Fx, and The correction torque coefficient k2 for each bolt 6 is calculated (S16). The control means 16 associates the calculated correction torque coefficient k2 with each bolt 6 (S17), and uses the associated bolt coefficient k2 in the next calculation of the tightening torque value T.
When the control means 16 determines that the number of rounds (S) is not the torque coefficient calculation step (NO in S15), the control unit 16 returns to S12, counts up the number of rounds (S), and the axis corresponding to the number of rounds (S). Tightening processing is performed by setting the force F or the tightening torque value.
 <第2の実施の形態の効果>
 斯かる構成によれば、次の効果が得られる。
 (1) 巡回数(S)に応じた締付けトルク値を設定し、検出した軸力Fによって締付け状態を監視し、締付けトルク値を補正することで、締付け箇所毎の締付け状態のばらつきを防止できる。
 (2) 巡回数(S)や締付け箇所に応じて連続的または段階的に変更する締付けトルクに対し、トルク係数kを補正することでボルト6の軸力Fを目標軸力Fxに合せることが可能となり、信頼性のあるシール施工を実現できる。
 (3) 締付け箇所の巡回はボルト番号順だけでなくボルト番号をスキップした種々の形態での締付けを行うことができ、いずれの締付け巡回を用いても適正なシール施工を迅速に行うことができる。
<Effects of Second Embodiment>
According to such a configuration, the following effects can be obtained.
(1) By setting the tightening torque value according to the number of cycles (S), monitoring the tightening state with the detected axial force F, and correcting the tightening torque value, variations in the tightening state at each tightening point can be prevented. .
(2) It is possible to adjust the axial force F of the bolt 6 to the target axial force Fx by correcting the torque coefficient k for the tightening torque that changes continuously or stepwise according to the number of cycles (S) and the tightening location. It becomes possible and a reliable seal construction can be realized.
(3) The tightening locations can be tightened not only in the bolt number order but also in various forms with the bolt numbers skipped, and proper tightening can be performed promptly using any tightening cycle. .
 〔第3の実施の形態〕 [Third embodiment]
 図11は、第3の実施の形態に係るシール施工管理システムの構成例を示している。図11に示す構成は一例であり、本発明が斯かる構成に限定されない。図11において、図1および図5と同一の構成には、同一符号を付している。
 このシール施工管理システム50は、締付け工具14、コントローラー52、サーバー54を有する。締付け工具14は既述した構成と同様であるので、その説明を割愛する。
 コントローラー52は、締付け工具14とケーブル55を以て接続されている。またコントローラー52と締付け工具14はたとえばWi-Fiや赤外線通信などで接続されてもよい。コントローラー52は、たとえば締付け工具14に対して締付けトルク値Tなどを設定するとともに、締付け状態を管理する制御手段や締付け条件設定部の機能を備えたコンピュータであり、単独またはサーバー54と連係して動作する。このコントローラー52には、たとえば前面パネル部56に複数の入力操作部58や表示部60を有する。
FIG. 11 shows a configuration example of a seal construction management system according to the third embodiment. The configuration shown in FIG. 11 is an example, and the present invention is not limited to such a configuration. 11, the same components as those in FIGS. 1 and 5 are denoted by the same reference numerals.
The seal construction management system 50 includes a tightening tool 14, a controller 52, and a server 54. Since the tightening tool 14 is the same as the structure described above, its description is omitted.
The controller 52 is connected to the tightening tool 14 with a cable 55. The controller 52 and the tightening tool 14 may be connected by, for example, Wi-Fi or infrared communication. The controller 52 is, for example, a computer that sets a tightening torque value T for the tightening tool 14 and has a function of a control means for managing a tightening state and a tightening condition setting unit. Operate. The controller 52 includes, for example, a plurality of input operation units 58 and a display unit 60 on the front panel unit 56.
 このコントローラー52は、コンピュータ処理により、以下のような機能や効果を実現する。
 a.締付け箇所の巡回数(S)または締付け箇所Pに応じてボルト6またはナット8に付与するトルク値Tを算出または選定
 b.締付け工具14にトルク値Tの設定
 c.巡回数(S)または締付け箇所Pに応じて段階的または連続的に締付け工具14の出力トルクTの変更
 d.サーバー54から締付け管理情報の取得
 e.フランジ10-1、10-2のフランジ情報の取得
 f.ガスケット12のガスケット情報の取得
 g.ガスケット情報の照合
 h.締付け条件情報から締付け条件の選定、締付け工具14への入力
 i.軸力センサー18-1、18-2、・・・、18-nから締付け結果の取得
 j.締付け結果情報の提示
 k.締付け結果に基づいてトルク係数および締付けトルク値の補正
 l.締付け結果の評価情報の提示
The controller 52 realizes the following functions and effects by computer processing.
a. Calculate or select the torque value T to be applied to the bolt 6 or nut 8 according to the number of times (S) of tightening points or the tightening point P. b. Setting the torque value T to the tightening tool c. Change of the output torque T of the tightening tool 14 stepwise or continuously in accordance with the number of cycles (S) or the tightening point P. d. Acquisition of tightening management information from server 54 e. Acquisition of flange information of flanges 10-1 and 10-2 f. Acquisition of gasket information for gasket 12 g. Check gasket information h. Selection of tightening conditions from tightening condition information and input to the tightening tool 14 i. Acquisition of tightening results from the axial force sensors 18-1, 18-2, ..., 18-n j. Presentation of tightening result information k. Correction of torque coefficient and tightening torque value based on tightening result l. Presentation of evaluation information of tightening results
 このコントローラー52は破線で示す通信媒体62として有線または無線でサーバー54と連係する。サーバー54は、コントローラー52の情報処理を支援し、またはその情報処理を管理するコンピュータであり、たとえば、パーソナルコンピューターを用いればよい。このサーバー54は、たとえば処理部64、入力操作部66およびモニター68を有する。 The controller 52 is linked to the server 54 in a wired or wireless manner as a communication medium 62 indicated by a broken line. The server 54 is a computer that supports the information processing of the controller 52 or manages the information processing. For example, a personal computer may be used. The server 54 includes, for example, a processing unit 64, an input operation unit 66, and a monitor 68.
  <締付け工具14>
 図12のAは、締付け工具14の構成例を示している。
 この締付け工具14は、たとえば制御部70、モーター72、トルクセンサー74を有する。
 制御部70にはコンピュータおよびモーター駆動部が備えられ、コントローラー52から締付けトルク値T1、T2などの制御情報が提供される。モーター72は、締付けトルク値T1、T2などの制御情報に応じて駆動し、トリガースイッチ26の導通時、駆動電流がモーター72に供給される。モーター72の回転が回転軸76に取り付けられたソケット24に伝達され、このソケット24に嵌合させたナット8に締付けトルク値Tが加えられる。回転軸76にギア機構を備え、モーター72の回転力を所望のギア比でソケット24に伝達させてよい。
 トルクセンサー74は、モーター72または回転軸76から締付けトルク値Tを検出し、その検出したトルク値が制御部70に取り込まれる。このトルクセンサー74は、ボルト6およびナット8の締付けトルクを検出すればよく、締付け工具14の外部に有しても良い。
<Tightening tool 14>
FIG. 12A shows a configuration example of the tightening tool 14.
The tightening tool 14 includes, for example, a control unit 70, a motor 72, and a torque sensor 74.
The control unit 70 includes a computer and a motor drive unit, and control information such as tightening torque values T1 and T2 is provided from the controller 52. The motor 72 is driven in accordance with control information such as the tightening torque values T1, T2, and the drive current is supplied to the motor 72 when the trigger switch 26 is turned on. The rotation of the motor 72 is transmitted to the socket 24 attached to the rotary shaft 76, and a tightening torque value T is applied to the nut 8 fitted in the socket 24. The rotary shaft 76 may be provided with a gear mechanism, and the rotational force of the motor 72 may be transmitted to the socket 24 at a desired gear ratio.
The torque sensor 74 detects the tightening torque value T from the motor 72 or the rotating shaft 76, and the detected torque value is taken into the control unit 70. The torque sensor 74 only has to detect the tightening torque of the bolt 6 and the nut 8 and may be provided outside the tightening tool 14.
 図12のBは、軸力センサー18を備えたボルト6の一例を示している。各ボルト6に軸力センサー18を備え、各ボルト6に加えられる軸力Fを検出すれば、締付け工具14の締付けトルク値、その増加または減少を測定することができる。軸力センサー18は、たとえば、歪みセンサーを用いればよい。 FIG. 12B shows an example of the bolt 6 provided with the axial force sensor 18. If each bolt 6 is provided with an axial force sensor 18 and the axial force F applied to each bolt 6 is detected, the tightening torque value of the tightening tool 14 and its increase or decrease can be measured. For example, a strain sensor may be used as the axial force sensor 18.
 <コントローラー52>
 図13のAは、コントローラー52の構成例を示している。
 コントローラー52は、締付け工具14の制御手段であるとともに、シール締付けのシール施工管理装置の一例である。
 このコントローラー52は、たとえばコンピュータで構成されており、プロセッサ80、記憶部82、入出力部(I/O)84、入力操作部58、通信部86および表示部60を有する。
 プロセッサ80は処理手段の一例であって、記憶部82にあるOS(Operating System)やシール施工管理プログラムなどの情報処理を行う。この情報処理には、サーバー54から締付け条件情報の取得、締付け工具14への締付けトルク値Tを含む締付け条件の入力、締付け工具14から締付けトルク値の検出結果の取得、締付け状態の監視および評価、評価結果の表示、締付け結果情報の出力などの制御が含まれる。
 記憶部82はOS、シール施工管理プログラム、締付け条件情報、検出情報などの記憶に用いられ、ROM(Read Only Memory)およびRAM(Random Access Memory)が備えられる。この記憶部82には記憶内容を保持可能な記憶素子を用いればよい。
<Controller 52>
FIG. 13A shows a configuration example of the controller 52.
The controller 52 is a control means for the tightening tool 14 and is an example of a seal tightening management apparatus for seal tightening.
The controller 52 is configured by a computer, for example, and includes a processor 80, a storage unit 82, an input / output unit (I / O) 84, an input operation unit 58, a communication unit 86, and a display unit 60.
The processor 80 is an example of processing means, and performs information processing such as an OS (Operating System) and a seal construction management program stored in the storage unit 82. For this information processing, acquisition of tightening condition information from the server 54, input of tightening conditions including a tightening torque value T to the tightening tool 14, acquisition of a tightening torque value detection result from the tightening tool 14, monitoring and evaluation of the tightening state Control of display of evaluation results and output of tightening result information is included.
The storage unit 82 is used to store an OS, a seal construction management program, tightening condition information, detection information, and the like, and includes a ROM (Read Only Memory) and a RAM (Random Access Memory). A storage element capable of holding stored contents may be used for the storage unit 82.
 I/O84はプロセッサ80により制御されて制御情報の入出力に用いられる。このI/O84には外部機器としてたとえば、バーコードリーダー88や着脱可能な外部メモリ90が接続されてもよい。バーコードリーダー88は情報取得部の一例である。外部メモリ90はログ情報の取出しメモリであり、たとえば、USB(Universal Serial Bus)メモリを用いればよい。
 入力操作部58はキースイッチやタッチセンサーなどを備え、入力情報の入力契機、出力情報の取出し契機、モード切替えなどに用いられる。
 通信部86はプロセッサ80により制御され、サーバー54などの外部機器との無線接続やインターネット接続に用いられる。
 表示部60は、プロセッサ80により制御され、入力情報や出力情報の提示手段の一例である。この表示部60には状態情報の表示手段としてたとえば、グリーンランプ92-1、レッドランプ92-2などを備えてもよく、正常時にグリーンランプ92-1を点灯させ、異常時にレッドランプ92-2を点灯させればよい。
The I / O 84 is controlled by the processor 80 and used for input / output of control information. For example, a barcode reader 88 or a removable external memory 90 may be connected to the I / O 84 as an external device. The barcode reader 88 is an example of an information acquisition unit. The external memory 90 is a log information extraction memory, and for example, a USB (Universal Serial Bus) memory may be used.
The input operation unit 58 includes a key switch, a touch sensor, and the like, and is used for input information input trigger, output information extraction trigger, mode switching, and the like.
The communication unit 86 is controlled by the processor 80 and is used for wireless connection with the external device such as the server 54 and Internet connection.
The display unit 60 is controlled by the processor 80 and is an example of a means for presenting input information and output information. The display unit 60 may include, for example, a green lamp 92-1 and a red lamp 92-2 as status information display means. The green lamp 92-1 is lit when normal and the red lamp 92-2 is abnormal. Can be turned on.
 図13のBは、記憶部82の記憶内容の一例を示している。
 この記憶部82には一時記憶領域94-1、記憶領域94-2を有する。一時記憶領域94-1には、たとえば施工対象であるフランジ情報100、ガスケット情報102、作業者情報104、締付け工具14から取得した締付け結果情報106などが一時的に格納される。
 記憶領域94-2には、たとえば締付け指示情報テーブル40などのデータベースが構築される。
FIG. 13B shows an example of the stored contents of the storage unit 82.
The storage unit 82 has a temporary storage area 94-1 and a storage area 94-2. In the temporary storage area 94-1, for example, flange information 100, gasket information 102, worker information 104, tightening result information 106 acquired from the tightening tool 14, and the like are temporarily stored.
In the storage area 94-2, for example, a database such as the tightening instruction information table 40 is constructed.
 <サーバー54>
 図14は、サーバー54の構成例を示している。
 サーバー54は、コントローラー52の支援装置であるとともに、ログ情報の提示手段の一例である。サーバー54には、たとえば処理部110として、プロセッサ112、記憶部114、入出力部(I/O)116、通信部118を備えており、既述の入力操作部66およびモニター68が接続される。
 プロセッサ112は、記憶部114にあるOSやシール施工管理プログラムなどの情報処理を行う。この情報処理には、コントローラー52に対して締付け条件情報の提供、コントローラー52から締付け結果を表す情報の取得、その締付け結果情報の提示などの処理が含まれる。
<Server 54>
FIG. 14 shows a configuration example of the server 54.
The server 54 is an example of a log information presentation unit as well as a support device for the controller 52. The server 54 includes, for example, a processor 112, a storage unit 114, an input / output unit (I / O) 116, and a communication unit 118 as the processing unit 110, and the input operation unit 66 and the monitor 68 described above are connected thereto. .
The processor 112 performs information processing such as an OS and a seal construction management program stored in the storage unit 114. This information processing includes processing such as provision of tightening condition information to the controller 52, acquisition of information representing the tightening result from the controller 52, presentation of the tightening result information, and the like.
 記憶部114はOS、シール施工管理プログラム、締付け条件情報、ログ情報などの記憶に用いられ、ROMおよびRAMを有する。この記憶部114には記憶内容を保持可能なハードディスクや半導体メモリなどの記憶装置を用いればよい。
 I/O116はプロセッサ112により制御されて制御情報の入出力に用いられる。このI/O116には外部機器としてたとえば、外部メモリ122が接続される。通信部118はたとえば、無線によるコントローラー52などとの接続に用いられる。
 通信部118はプロセッサ112により制御されており、サーバー54と締付け工具14、コントローラー52などの外部機器との無線接続や、インターネット接続に用いられる。
 入力操作部66は入力情報の入力操作に用いられるほか、入力操作により出力情報の取出し契機、モード切替え操作などに用いられる。
 モニター68は情報提示部、表示部の一例であり、たとえば、締付け指示情報テーブル40や締付け結果などの表示に用いられる。このモニター68の画面表示部にはタッチパネル120を備え、入力操作部66に代え、表示情報に対応した入力情報を行うようにしてもよい。
The storage unit 114 is used for storing an OS, a seal construction management program, tightening condition information, log information, and the like, and includes a ROM and a RAM. The storage unit 114 may be a storage device such as a hard disk or semiconductor memory capable of holding stored contents.
The I / O 116 is controlled by the processor 112 and used for input / output of control information. For example, an external memory 122 is connected to the I / O 116 as an external device. The communication unit 118 is used, for example, for connection with a wireless controller 52 or the like.
The communication unit 118 is controlled by the processor 112, and is used for wireless connection between the server 54 and external devices such as the tightening tool 14 and the controller 52, and Internet connection.
The input operation unit 66 is used for an input operation of input information, and is also used for an output information take-out trigger and a mode switching operation by the input operation.
The monitor 68 is an example of an information presentation unit and a display unit, and is used to display, for example, the tightening instruction information table 40 and the tightening result. The screen display unit of the monitor 68 may include a touch panel 120, and input information corresponding to display information may be performed instead of the input operation unit 66.
 <締付け結果>
 図15は、締付け結果の一例を示している。
 コントローラー52の表示部60やサーバー54のモニター68には、たとえば図15のAに示すように、シール施工部4の締付け箇所P1、P2・・・、Pnを模した締付け結果の画面が表示される。この締付け結果の画面は、コントローラー52やサーバー54のいずれかまたは両方が軸力センサー18-1、18-2、・・・、18-nから取得した検出結果(図15のB)の情報、および締付け工具14による締付け箇所や巡回数(S)の情報などが組み合せて生成されている。
 締付け結果の画面には、たとえばそれぞれの締付け箇所に対し、締付けの目標軸力と巡回数(S)毎の締付け力が表示されている。つまりこの締付け結果の画面には、締付け箇所同士の軸力のばらつきとともに、巡回数(S)毎の締付け力の推移が表される。
 また、コントローラー52の一時記憶部94-1やサーバー54の記憶部114には、たとえば図15のBに示すように、検出結果としてSTEP毎、すなわち巡回数(S)毎のボルト6の軸力Fを含む検出データが格納される。
 この検出結果は、たとえばSTEP1~6までの締付け結果を示しており、さらに締付けの工程が進むことで検出データが増加していく。また、このシール施工管理では、たとえば第2の実施の形態と同様に、STEP3の検出結果に基づいてトルク係数の補正処理を実行する。そして、このトルク係数の補正後に、締付けの巡回数(S)が進むとSTEP6の段階における各ボルトの軸力の検出結果がほぼ同等な値となる。これによりフランジ10-1、10-2面に対してばらつきのない軸力によるシール施工が行われていることが示されている。
<Tightening result>
FIG. 15 shows an example of the tightening result.
On the display unit 60 of the controller 52 and the monitor 68 of the server 54, as shown in FIG. 15A, for example, a tightening result screen simulating the tightening points P1, P2,. The This tightening result screen shows information on detection results (B in FIG. 15) acquired from the axial force sensors 18-1, 18-2,. And the information of the tightening location by the tightening tool 14 and the number of rounds (S) is generated in combination.
On the screen of the tightening result, for example, the target axial force of tightening and the tightening force for each number of cycles (S) are displayed for each tightening point. That is, on this tightening result screen, the transition of the tightening force for each number of rounds (S) is displayed along with the variation in the axial force between the tightening points.
Further, in the temporary storage unit 94-1 of the controller 52 and the storage unit 114 of the server 54, for example, as shown in FIG. Detection data including F is stored.
This detection result indicates, for example, the tightening results from STEP 1 to STEP 6, and the detection data increases as the tightening process further proceeds. In this seal construction management, for example, as in the second embodiment, torque coefficient correction processing is executed based on the detection result of STEP3. Then, when the number of tightening cycles (S) proceeds after the correction of the torque coefficient, the detection results of the axial force of each bolt in the STEP 6 stage are almost equal. As a result, it is shown that the sealing work is performed on the flanges 10-1 and 10-2 by the axial force without variation.
 <シール施工管理の処理シーケンス>
 図16は、シール施工管理システム50によるシール施工管理の処理シーケンスを示している。
 シール施工処理では、締付け工具14が初期設定を行うとともに(S31)、コントローラー52が初期設定を行う(S32)。この初期設定の後、コントローラー52とサーバー54を連係させ、コントローラー52は、サーバー54から提供されるトルク係数k1などを含む締付け条件情報を取り込む(S33)。コントローラー52は、締付け指示情報テーブル40の取得により締付け条件情報を取込む。
 この締付け条件情報を取得したコントローラー52は、予め選定されているフランジ10-1、10-2およびガスケット12に対応する締付け条件を選定する(S34)。また、コントローラー52は、巡回数Sや締付け位置Pの設定(S35)や、トルク係数k1や設定軸力Fxを利用した締付けトルク値T1の算出(S36)を行う。予め締付けトルク値T1の候補が格納されている場合には、この格納された締付けトルク値T1の1つを選定すればよい。
 締付けの準備処理を経て、コントローラー52は、締付け工具14に対して締付けトルク値T1を設定する(S37)。
<Seal construction management processing sequence>
FIG. 16 shows a processing sequence of seal construction management by the seal construction management system 50.
In the seal construction process, the tightening tool 14 performs initial setting (S31), and the controller 52 performs initial setting (S32). After the initial setting, the controller 52 and the server 54 are linked together, and the controller 52 takes in the tightening condition information including the torque coefficient k1 and the like provided from the server 54 (S33). The controller 52 takes in the tightening condition information by acquiring the tightening instruction information table 40.
The controller 52 that has acquired the tightening condition information selects tightening conditions corresponding to the flanges 10-1 and 10-2 and the gasket 12 selected in advance (S34). The controller 52 also sets the number of times S and the tightening position P (S35), and calculates the tightening torque value T1 using the torque coefficient k1 and the set axial force Fx (S36). If a candidate for the tightening torque value T1 is stored in advance, one of the stored tightening torque values T1 may be selected.
After the tightening preparation process, the controller 52 sets a tightening torque value T1 for the tightening tool 14 (S37).
 そして、施工者が締付け工具14により、締付け箇所のボルト6またはナット8に締付けトルクを付与し、締付けを行う(S38)。各軸力センサー18-1、18-2、・・・、18-nは各締付け箇所Pのボルト6の軸力の検出を行い(S39)、それらの検出軸力Fがコントローラー52に取り込まれる(S40)。 Then, the installer applies the tightening torque to the bolt 6 or the nut 8 at the tightening position by the tightening tool 14 and performs tightening (S38). Each of the axial force sensors 18-1, 18-2,..., 18-n detects the axial force of the bolt 6 at each tightening point P (S39), and the detected axial force F is taken into the controller 52. (S40).
 コントローラー52は、各検出軸力を用いて締付け箇所Pの巡回数Sまたは締付け箇所Pの情報から締付け作業が完了したかを判断する(S41)。つまり、コントローラー52は、たとえば、締付け箇所P=8の場合、8本のボルト6の番号と軸力の変化から締付け箇所P1~P8のいずれであるかを特定する。コントローラー52は、締付け箇所P1~P8から選択される複数のボルト6の締付けを単位とし、選択されたボルトを一巡する回数を巡回数S=1とする。そして、巡回数Sは、S=0ないしnを特定することができることは既述した通りである。 The controller 52 determines whether the tightening operation has been completed from the number S of the tightening points P or the information on the tightening points P using each detected axial force (S41). That is, for example, when the tightening point P = 8, the controller 52 specifies which of the tightening points P1 to P8 is based on the number of the eight bolts 6 and the change in the axial force. The controller 52 uses the tightening of the plurality of bolts 6 selected from the tightening locations P1 to P8 as a unit, and sets the number of rounds of the selected bolt as the number of rounds S = 1. As described above, the number S of rounds can specify S = 0 to n.
 コントローラー52は、締付け作業が完了していないと判断した場合(S41のNO)、トルク係数kの算出ステップ(巡回数)かを判断する(S42)。算出ステップである場合(S42のYES)、コントローラー52は検出軸力と設定軸力が相違するかを判断する(S43)。
 トルク係数kの算出ステップでない場合(S42のNO)、検出軸力と設定軸力に相違が無い場合(S43のNO)、S35に戻って締付け作業を継続する。
 このとき、コントローラー52では、たとえば巡回数(S)をカウントアップして、次の巡回数に対応した締付けトルク値Tを算出する。これにより締付け箇所Pや巡回数Sに応じて出力トルクTを段階的または連続的に変更、設定する。
If the controller 52 determines that the tightening operation has not been completed (NO in S41), the controller 52 determines whether it is a step for calculating the torque coefficient k (the number of cycles) (S42). When it is a calculation step (YES in S42), the controller 52 determines whether the detected axial force is different from the set axial force (S43).
If it is not the step of calculating the torque coefficient k (NO in S42), if there is no difference between the detected axial force and the set axial force (NO in S43), the process returns to S35 and the tightening operation is continued.
At this time, the controller 52 counts up, for example, the number of tours (S) and calculates a tightening torque value T corresponding to the next number of tours. As a result, the output torque T is changed or set stepwise or continuously in accordance with the tightening point P or the number of rounds S.
 コントローラー52は、検出軸力と設定軸力が相違すると判断した場合(S43のYES)、締付けトルク値の補正処理として、軸力の検出結果を利用した補正トルク係数k2を算出する(S44)。そして、コントローラー52は、補正トルク係数k2を含む新たな締付け条件を設定し(S45)、S35に戻って締付け処理を継続する。 When it is determined that the detected axial force is different from the set axial force (YES in S43), the controller 52 calculates a correction torque coefficient k2 using the detection result of the axial force as a correction process of the tightening torque value (S44). Then, the controller 52 sets a new tightening condition including the correction torque coefficient k2 (S45), returns to S35, and continues the tightening process.
 コントローラー52は、巡回数Sのカウント値に基づいて締付け完了と判断した場合(S41のYES)、締付け終了となり(S46)、締付け工具14に締付け完了指示を入力して締付けを完了する。この締付け完了は、たとえばモニター68を用いて提示すればよい。コントローラー52は締付け結果情報をサーバー54に通知する。そしてサーバー54には、締付け結果情報の表示が行われる(S47)。 When the controller 52 determines that the tightening is completed based on the count value of the number of times S (YES in S41), the tightening is completed (S46), and a tightening completion instruction is input to the tightening tool 14 to complete the tightening. This tightening completion may be presented using the monitor 68, for example. The controller 52 notifies the server 54 of the tightening result information. Then, the tightening result information is displayed on the server 54 (S47).
 なお、コントローラー52は、締付け完了か否かの判断として巡回数(S)のカウント数を判断したがこれに限らない。コントローラー52は、たとえば軸力センサー18-1、18-2、・・・、18-nから取得した検出結果に対し、軸力のばらつきや目標軸力に達していないもしくは所定の範囲内にないと判断した場合には、さらに増し締め処理を繰り返してもよい。 The controller 52 determines the number of rounds (S) as a determination as to whether or not the tightening is complete, but is not limited thereto. For example, the controller 52 detects variations obtained from the axial force sensors 18-1, 18-2,..., 18-n. If it is determined, the tightening process may be further repeated.
 <第3の実施の形態の効果>
 斯かる構成によれば、次の効果が得られる。
 (1) トルク係数kや締付けトルク値Tなどの締付け条件が自動的に選択されるので、作業者に締付け条件の管理を強いる必要がなく、締付け条件設定から作業者の負担を軽減できる。作業者の経験や勘に頼る締付け条件の設定を回避して設定ミスや締付けミスを防止できる。
 (2) この締付け条件をサーバー54から個別的具体的にコントローラー52に提供できるので、精緻な締付け結果を実現できる。軸力の検出結果に基づいてトルク係数kの補正や締付けトルク値の設定などの精度の高いシール施工管理を行うことができる。
 (3) 締付け管理が可能な締付け工具と、コンピュータを用いた情報処理によりシール施工の自動化、高精度化、簡略化、高効率化を実現でき、作業者の経験や勘に依存しない信頼性の高いシール施工ができる。
<Effect of the third embodiment>
According to such a configuration, the following effects can be obtained.
(1) Since the tightening conditions such as the torque coefficient k and the tightening torque value T are automatically selected, it is not necessary to force the operator to manage the tightening conditions, and the burden on the operator can be reduced by setting the tightening conditions. By avoiding the setting of tightening conditions depending on the experience and intuition of the operator, setting errors and tightening errors can be prevented.
(2) Since this tightening condition can be provided individually and specifically from the server 54 to the controller 52, a precise tightening result can be realized. Based on the detection result of the axial force, highly accurate seal construction management such as correction of the torque coefficient k and setting of the tightening torque value can be performed.
(3) Tightening tools that can be tightened and information processing using a computer enables automation, high precision, simplification, and high efficiency of seal construction, and reliability that does not depend on operator experience or intuition. High seal construction is possible.
 〔第4の実施の形態〕 [Fourth embodiment]
 図17は、第4の実施の形態に係るシール施工管理装置の一例を示している。
 このシール施工管理装置130は、締付け工具132と制御手段134を有する。締付け工具132は、たとえばトルクレンチやハンドナットランナーなどであり、設定した締付けトルク値を生成するギアユニット136を備える。
 このギアユニット136には、たとえばナット8に結合するソケット138が設置される。また、ギアユニット136は、ボルト6やナット8の識別情報および締付け箇所情報を取得する情報取得ユニット140を有する。この情報取得ユニット140は、たとえば受信アンテナ、受信部、信号変換部、送信部および送信アンテナなどで構成される。そして情報取得ユニット140は、ボルト6やナット8などに設置された図示しないタグ情報を受信し、このタグ情報からID(Identification)などの識別情報を取得する。そしてこの識別情報を信号変換部で送信信号に変換し、送信部を通じて制御手段134側に送信する。この送信信号の送信には、たとえば近距離無線通信が利用される。
FIG. 17 shows an example of a seal construction management device according to the fourth embodiment.
This seal construction management device 130 has a tightening tool 132 and a control means 134. The tightening tool 132 is, for example, a torque wrench or a hand nut runner, and includes a gear unit 136 that generates a set tightening torque value.
In this gear unit 136, for example, a socket 138 coupled to the nut 8 is installed. The gear unit 136 includes an information acquisition unit 140 that acquires identification information and tightening point information of the bolt 6 and the nut 8. The information acquisition unit 140 includes, for example, a reception antenna, a reception unit, a signal conversion unit, a transmission unit, and a transmission antenna. The information acquisition unit 140 receives tag information (not shown) installed on the bolt 6 or the nut 8 and acquires identification information such as ID (Identification) from the tag information. The identification information is converted into a transmission signal by the signal conversion unit, and transmitted to the control means 134 side through the transmission unit. For example, near field communication is used for transmitting the transmission signal.
 制御手段134は、たとえば通信部142、処理部144、記憶部146、情報提示部148を有する。
 通信部142は、締付け工具132に設置された情報取得ユニット140と通信し、ボルト6やナット8の識別情報を受信する。
 処理部144は、通信部142を通じて情報取得ユニット140との間で識別情報などの送受信を行うほか、締付けトルク値の設定処理、トルク係数の算出処理などを行う。
 記憶部146は、たとえばボルト6やナット8の識別情報、締付け位置情報が格納されるほか、締付け手順や締付けトルク値の算出情報、トルク係数の算出情報のほか、図示しない締付け箇所毎に設置された軸力センサー18-1、18-2、・・・18-n(図1)から受信した軸力情報などを格納する。
 情報提示部148は、締付け工具132に設定する締付けトルク値情報やトルク係数情報、補正したトルク係数情報、検出した軸力情報などを表示するほか、締付け工程において、締付け位置の指示情報などを表示する手段の一例である。
The control unit 134 includes, for example, a communication unit 142, a processing unit 144, a storage unit 146, and an information presentation unit 148.
The communication unit 142 communicates with the information acquisition unit 140 installed in the tightening tool 132 and receives the identification information of the bolt 6 and the nut 8.
The processing unit 144 performs transmission / reception of identification information and the like with the information acquisition unit 140 through the communication unit 142, and also performs tightening torque value setting processing, torque coefficient calculation processing, and the like.
The storage unit 146 stores, for example, identification information of bolts 6 and nuts 8 and tightening position information, as well as tightening procedures, tightening torque value calculation information, torque coefficient calculation information, and other tightening locations not shown. The axial force information received from the axial force sensors 18-1, 18-2,... 18-n (FIG. 1) is stored.
The information presentation unit 148 displays tightening torque value information and torque coefficient information set to the tightening tool 132, corrected torque coefficient information, detected axial force information, and the like, and also displays tightening position instruction information in the tightening process. It is an example of the means to do.
 締付け工程における軸力の検出処理、トルク係数の算出処理、締付けトルク値の補正処理については、既述の実施の形態で示した通りであり、説明を省略する。 The axial force detection process, torque coefficient calculation process, and tightening torque value correction process in the tightening process are as described in the above-described embodiment, and the description thereof is omitted.
 <第4の実施の形態の効果>
 斯かる構成によれば、次のような効果が期待できる。
 (1) 締付け箇所毎に対応した締付けトルク値での締付けが行えるとともに、ボルト6やナット8の識別情報を利用して、締付け箇所の管理が容易に行える。
 (2) ボルト6やナット8の識別情報による締付け箇所の管理により、作業手順などのミスが発生した場合でも、情報提示部148を通じてガイド表示を行うことで作業者を適切な作業に誘導することができるので、シール施工管理の信頼性を高めることができる。

〔比較例〕
<Effect of the fourth embodiment>
According to such a configuration, the following effects can be expected.
(1) It is possible to perform tightening with a tightening torque value corresponding to each tightening point, and to easily manage the tightening point using the identification information of the bolt 6 and the nut 8.
(2) Even if errors such as work procedures occur due to the management of the tightening points based on the identification information of the bolts 6 and nuts 8, guides are displayed through the information presentation unit 148 to guide the worker to appropriate work. Therefore, the reliability of seal construction management can be improved.

[Comparative example]
 図18は、フランジのシール施工処理の比較例を示している。
 図18に示すシール施工管理処理では、たとえば上記第2の実施の形態および第3の実施の形態と同様に、フランジ10-1、10-2に対して8本のボルト6とナット8を締付ける処理を行っている。この締付け処理は、締付け工具14に設定する締付けトルク値Tの算出処理において、予め設定されたトルク係数kとして、0.2の値を維持した場合である。そして、締付けトルク値Tは、巡回数に応じて、段階的に増加させている。
 この締付け処理の結果は、図18のAに示すように、締付け位置P6の軸力が他の締付け位置よりも常に大きな軸力Fが作用していることが分る。そして巡回数であるSTEP6において、締付け位置P6のみが目標軸力に達したのに対し、他の締付け箇所は目標軸力に達していない。
 軸力センサー18-1、18-2、・・・18-8で検出した軸力は、図18のBに示すように、STEP6の段階で、各ボルト6間で大きくばらつく結果となった。これらの軸力値を比較すると、ばらつきの最大値は約28〔%〕となり、平均で14〔%〕もの値となった。このようなばらつきが生じた場合、フランジ10-1、10-2間には均等に力が作用していないことから、一部の締付け位置のみが作用するいわゆる片締めが発生したり、他のボルト6およびナット8に緩みが生じるおそれがある。そのため、締付け処理では、たとえば全てのボルト6の軸力を監視しつつ、締め直しや締め増しを行うことになる。フランジ10-1、10-2に対するボルト6およびナット8の締付けでは、発明の課題で述べたように、弾性相互作用の影響で、他のボルトの締付けに緩みが生じるなどの影響を受けるため、締付け後の軸力調整は作業負荷の増大を招くことなる。
FIG. 18 shows a comparative example of flange seal construction processing.
In the seal construction management process shown in FIG. 18, for example, as in the second and third embodiments, eight bolts 6 and nuts 8 are fastened to the flanges 10-1 and 10-2. Processing is in progress. This tightening process is a case where a value of 0.2 is maintained as a preset torque coefficient k in the calculation process of the tightening torque value T set for the tightening tool 14. Then, the tightening torque value T is increased stepwise according to the number of cycles.
As a result of this tightening process, as shown in FIG. 18A, it can be seen that the axial force F is always acting at the tightening position P6 greater than the other tightening positions. In STEP 6, which is the number of laps, only the tightening position P6 has reached the target axial force, while the other tightening points have not reached the target axial force.
As shown in FIG. 18B, the axial force detected by the axial force sensors 18-1, 18-2,... 18-8 varied greatly between the bolts 6 at STEP6. Comparing these axial force values, the maximum value of the variation was about 28%, and the average value was 14%. When such a variation occurs, a force is not applied evenly between the flanges 10-1 and 10-2, so that a so-called one-side tightening in which only a part of the tightening positions acts or other There is a possibility that the bolt 6 and the nut 8 may be loosened. Therefore, in the tightening process, for example, retightening or tightening is performed while monitoring the axial force of all the bolts 6. In the tightening of the bolt 6 and the nut 8 with respect to the flanges 10-1 and 10-2, as described in the subject of the invention, because of the influence of elastic interaction, the tightening of other bolts is affected by loosening, etc. Adjustment of the axial force after tightening causes an increase in work load.
 これに対し、本発明のように、締付け工程中に締付け箇所に対応したトルク係数の補正処理を行うことで、ボルト6間の締付け状態のばらつきによる影響が発生せず、またはその影響が抑えられるので、効率的かつ作業負荷の少なくなるとともに、締付け状態が安定したシール施工管理を行うことが可能となる。 On the other hand, as in the present invention, by performing the torque coefficient correction process corresponding to the tightening portion during the tightening process, the influence due to the variation in the tightening state between the bolts 6 does not occur or the influence is suppressed. As a result, it is possible to efficiently and reduce the work load, and to perform seal construction management with a stable tightening state.
 〔他の実施の形態〕 [Other embodiments]
 (1) 上記実施の形態では、締付け工具14として、プロセッサなどを備えたハンドナットランナーを用いる場合を示したがこれに限らない。締付け工具14は、たとえば手動で締付けトルクを設定可能なトルクレンチを用いてもよい。また、締付け工具14は、大型の組立て装置であり、かつボルトの締付けを行う締付けアームを有し、製品に対する締付け箇所の把握や締付けによる軸力を検出可能なものであればよい。 (1) In the above embodiment, the case where a hand nut runner equipped with a processor or the like is used as the tightening tool 14 is shown, but the present invention is not limited thereto. For example, a torque wrench capable of manually setting a tightening torque may be used as the tightening tool 14. Further, the tightening tool 14 may be a large assembly device that has a tightening arm for tightening bolts and can detect the tightening position on the product and detect the axial force due to tightening.
 (2) 上記実施の形態では、締付け箇所に作用する軸力を検出する手段として、ボルト自体に軸力センサーが設置されたものを示したがこれに限らない。シール施工管理処理では、たとえば締付けたボルト6に対して超音波センサーなどの検出機器を利用して軸力を検出し、この検出結果を利用してトルク係数を算出してもよい。 (2) In the above embodiment, the means for detecting the axial force acting on the tightening point is shown as the means in which the axial force sensor is installed on the bolt itself, but is not limited thereto. In the seal construction management process, for example, the axial force may be detected using a detection device such as an ultrasonic sensor with respect to the tightened bolt 6, and the torque coefficient may be calculated using the detection result.
 (3) コントローラー52は、たとえばスマートフォンなどの携帯情報端末を用いてもよい。 (3) As the controller 52, for example, a portable information terminal such as a smartphone may be used.
 (4) 上記実施の形態では、ひとつの締付け工具14にコントローラー52およびサーバー54を連係した例を示したが、これに限らない。複数の締付け工具14にコントローラー52およびサーバー54を連係してもよく、複数のコントローラー52に単一のサーバー54を備えてもよい。 (4) In the above embodiment, the example in which the controller 52 and the server 54 are linked to one tightening tool 14 is shown, but the present invention is not limited to this. The controller 52 and the server 54 may be linked to the plurality of tightening tools 14, and the single server 54 may be provided to the plurality of controllers 52.
 以上説明したように、本発明の最も好ましい実施の形態や実施例について説明した。本発明は上記記載に限定されるものではない。特許請求の範囲に記載され、または発明を実施するための形態または実施例に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能である。斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。
As described above, the most preferred embodiments and examples of the present invention have been described. The present invention is not limited to the above description. Various modifications and changes can be made by those skilled in the art based on the gist of the invention described in the claims or in the embodiments or examples for carrying out the invention. It goes without saying that such modifications and changes are included in the scope of the present invention.
 本発明のシール施工管理方法、シール施工管理装置、シール施工管理プログラム、シール施工管理システムは、締付け管理が可能な締付け工具を用いてコンピュータを用いた情報処理により、締付け工程で検出した軸力を利用してトルク係数の補正処理を行うことで、締付け箇所の状態に応じた締付けトルク値が設定でき、フランジに対する締付け状態の安定化および必要な軸力での締付け処理が行え、有益である。
The seal construction management method, the seal construction management device, the seal construction management program, and the seal construction management system of the present invention use the tightening tool capable of tightening management to determine the axial force detected in the tightening process by information processing using a computer. By using the correction processing of the torque coefficient by using, it is possible to set a tightening torque value according to the state of the tightening portion, and to stabilize the tightening state with respect to the flange and to perform the tightening process with a necessary axial force.
 2、30、130 シール施工管理装置
 4 シール施工部
 6 ボルト
 8 ナット
 10-1、10-2 フランジ
 12 ガスケット
 14、132 締付け工具
 16、134 制御手段
 18、18-1、18-2、・・・、18-n 軸力センサー
 20 装置本体
 22 グリップ
 24 ソケット
 26 トリガースイッチ
 32 締付け条件設定部
 34 取得手段
 40 締付け指示情報テーブル
 50 シール施工管理システム
 52 コントローラー
 54 サーバー
 55 ケーブル
 56 前面パネル部
 58 入力操作部
 60 表示部
 62 通信媒体
 64、110 処理部
 66 入力操作部
 68 モニター
 70 制御部
 72 モーター
 74 トルクセンサー
 76 回転軸
 80、112 プロセッサ
 82、114 記憶部
 84、116 入出力部(I/O)
 86、118 通信部
 88 バーコードリーダー
 90 外部メモリ
 92-1 グリーンランプ
 92-2 レッドランプ
 94-1 一時記憶領域
 94-2 記憶領域
 100 フランジ情報
 102 ガスケット情報
 104 作業者情報
 106 締付け結果情報
 120 タッチパネル
 122 外部メモリ
 136 ギアユニット
 138 ソケット
 140 情報取得ユニット
 142 通信部
 144 処理部
 146 記憶部
 148 情報提示部
                                                                                
2, 30, 130 Seal construction management device 4 Seal construction section 6 Bolt 8 Nut 10-1, 10-2 Flange 12 Gasket 14, 132 Tightening tool 16, 134 Control means 18, 18-1, 18-2, ... , 18-n Axial force sensor 20 Device body 22 Grip 24 Socket 26 Trigger switch 32 Tightening condition setting section 34 Acquisition means 40 Tightening instruction information table 50 Sealing management system 52 Controller 54 Server 55 Cable 56 Front panel section 58 Input operation section 60 Display unit 62 Communication medium 64, 110 Processing unit 66 Input operation unit 68 Monitor 70 Control unit 72 Motor 74 Torque sensor 76 Rotating shaft 80, 112 Processor 82, 114 Storage unit 84, 116 Input / output unit (I / O)
86, 118 Communication unit 88 Bar code reader 90 External memory 92-1 Green lamp 92-2 Red lamp 94-1 Temporary storage area 94-2 Storage area 100 Flange information 102 Gasket information 104 Worker information 106 Tightening result information 120 Touch panel 122 External memory 136 Gear unit 138 Socket 140 Information acquisition unit 142 Communication unit 144 Processing unit 146 Storage unit 148 Information presentation unit

Claims (9)

  1.  ガスケットを挟んだフランジに複数の締付け箇所が設定され、各締付け箇所にボルトおよびナットを備えて締付けるシール施工管理方法であって、
     第1の締付けトルク値が設定された締付け工具で前記ボルトおよび前記ナットを締付ける工程と、
     前記ボルトの軸力を検出する工程と、
     検出した前記軸力を利用して前記ボルトのトルク係数の算出または選定を行う工程と、
     前記ボルトの締付け箇所毎に、前記トルク係数を利用して算出しまたは選定した第2の締付けトルク値を前記締付け工具に設定する工程と、
     を含むことを特徴とするシール施工管理方法。
    A seal construction management method in which a plurality of tightening points are set on a flange sandwiching a gasket, and each tightening point is provided with a bolt and a nut,
    Tightening the bolt and the nut with a tightening tool having a first tightening torque value;
    Detecting the axial force of the bolt;
    Calculating or selecting a torque coefficient of the bolt using the detected axial force;
    Setting a second tightening torque value calculated or selected using the torque coefficient for each tightening point of the bolt, in the tightening tool;
    The seal construction management method characterized by including.
  2.  検出した前記ボルトの前記軸力と、目標軸力、設定軸力または所定の閾値とを対比し、この対比結果に基づいて前記トルク係数の算出または選定を行う工程を含むことを特徴とする請求項1に記載のシール施工管理方法。 The method includes a step of comparing the detected axial force of the bolt with a target axial force, a set axial force, or a predetermined threshold value, and calculating or selecting the torque coefficient based on the comparison result. Item 2. The seal construction management method according to Item 1.
  3.  さらに、前記締付け工具の巡回数または前記締付け箇所のいずれか、または両方を検出する工程と、
     巡回数または締付け箇所に応じて段階的または連続的に前記締付け工具に設定する設定軸力または締付けトルク値を変動させる工程と、
     を含むことを特徴とする請求項1または2に記載のシール施工管理方法。
    And detecting either the number of times of tightening tool or the tightening location, or both;
    A step of changing a set axial force or a tightening torque value to be set in the tightening tool stepwise or continuously in accordance with the number of rotations or the tightening location;
    The seal construction management method according to claim 1 or 2, characterized by including.
  4.  さらに、締付け工程毎に設定される設定軸力と、予め選定されたトルク係数を利用して、前記第1の締付けトルク値の算出または選定を行う工程を含むことを特徴とする請求項1ないし請求項3のいずれかに記載のシール施工管理方法。 2. The method according to claim 1, further comprising a step of calculating or selecting the first tightening torque value using a set axial force set for each tightening step and a torque coefficient selected in advance. The seal construction management method according to claim 3.
  5.  ガスケットを挟んだフランジに複数の締付け箇所が設定され、各締付け箇所にボルトおよびナットを備えて締付けるシール施工管理装置であって、
     前記締付け箇所や締付けの巡回数、締付けトルク値を締付け工具に設定する設定手段と、
     前記ボルトの軸力を取得する取得手段と、
     第1の締付けトルク値が設定された前記締付け工具によって締付けられる前記ボルトの軸力を取得し、該軸力を利用して前記ボルトのトルク係数を算出または選定し、前記ボルトの前記締付け箇所毎に、前記トルク係数を利用して算出または選定した第2の締付けトルク値を前記締付け工具に設定させる制御手段と、
     を備えることを特徴とするシール施工管理装置。
    A seal construction management device in which a plurality of tightening points are set on a flange sandwiching a gasket, and each tightening point is provided with a bolt and a nut, and is tightened.
    Setting means for setting the tightening location, the number of tightening cycles, and the tightening torque value in the tightening tool;
    Obtaining means for obtaining the axial force of the bolt;
    An axial force of the bolt to be tightened by the tightening tool for which a first tightening torque value is set is obtained, a torque coefficient of the bolt is calculated or selected using the axial force, and each bolt is tightened Control means for causing the tightening tool to set a second tightening torque value calculated or selected using the torque coefficient;
    A seal construction management device comprising:
  6.  前記制御手段は、検出した前記ボルトの前記軸力と、目標軸力、設定軸力または所定の閾値とを対比し、この対比結果に基づいて、前記トルク係数を算出し、または選定することを特徴とする請求項5に記載のシール施工管理装置。 The control means compares the detected axial force of the bolt with a target axial force, a set axial force, or a predetermined threshold value, and calculates or selects the torque coefficient based on the comparison result. The seal construction management device according to claim 5, wherein
  7.  さらに、前記締付け工具の巡回数または前記締付け箇所のいずれか、または両方を検出する検出手段を備え、
     前記制御手段は、巡回数または前記締付け箇所に応じて段階的または連続的に前記締付け工具に設定する設定軸力または締付けトルク値を変動させることを特徴とする請求項5または6に記載のシール施工管理装置。
    Furthermore, a detection means for detecting either or both of the number of rotations of the tightening tool or the tightening location,
    7. The seal according to claim 5, wherein the control unit varies a set axial force or a tightening torque value set in the tightening tool stepwise or continuously in accordance with the number of cycles or the tightening position. Construction management device.
  8.  コンピュータで実現させるためのシール施工管理プログラムであって、
     ガスケットを挟んだフランジの締付け箇所に取付けられるボルトおよびナットを締付ける締付け工具に第1の締付けトルク値を設定する機能と、
     前記締付け工具で締付けられる前記ボルトの軸力の検出結果を取得する機能と、
     検出された前記軸力を利用して前記ボルトのトルク係数の算出または選定を行う機能と、
     前記ボルトの前記締付け箇所毎に、前記トルク係数を利用して算出し、または選定した第2の締付けトルク値を前記締付け工具に設定する機能と、
     を前記コンピュータで実現させることを特徴とするシール施工管理プログラム。
    A seal construction management program to be realized by a computer,
    A function for setting a first tightening torque value in a tightening tool for tightening a bolt and a nut attached to a tightening portion of a flange sandwiching a gasket;
    A function of acquiring a detection result of an axial force of the bolt to be tightened by the tightening tool;
    A function of calculating or selecting a torque coefficient of the bolt using the detected axial force;
    A function for calculating or selecting a selected second tightening torque value for the tightening tool for each tightening portion of the bolt; and
    Is realized by the computer.
  9.  ガスケットを挟んだフランジに複数の締付け箇所が設定され、各締付け箇所にボルトおよびナットを備えて締付けるシール施工管理システムであって、
     前記ボルトまたは前記ナットに加えるトルク値を制御可能な締付け工具と、
     前記ボルトの軸力を検出するセンサーと、
     第1の締付けトルク値を締付け工具に設定し、前記センサーで検出した前記軸力を利用して前記ボルトのトルク係数を算出または選定し、前記ボルトの締付け箇所毎に、前記トルク係数を利用して算出または選定した第2の締付けトルク値を前記締付け工具に設定するコントローラーと、
     を備えることを特徴とするシール施工管理システム。
                                                                                    
    A seal construction management system in which a plurality of tightening points are set on a flange sandwiching a gasket, and each tightening point is provided with a bolt and a nut, and is tightened.
    A tightening tool capable of controlling a torque value applied to the bolt or the nut;
    A sensor for detecting the axial force of the bolt;
    A first tightening torque value is set in the tightening tool, and the torque coefficient of the bolt is calculated or selected using the axial force detected by the sensor, and the torque coefficient is used for each tightening point of the bolt. A controller for setting the second tightening torque value calculated or selected in the tightening tool;
    A seal construction management system characterized by comprising:
PCT/JP2019/013067 2018-03-28 2019-03-27 Method for managing seal formation, device for managing seal formation, program for managing seal formation, and system for managing seal formation WO2019189291A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980021775.8A CN111902243B (en) 2018-03-28 2019-03-27 Sealing construction management method and device, storage medium and system thereof
JP2020510982A JP7354093B2 (en) 2018-03-28 2019-03-27 Seal construction management method, seal construction management device, seal construction management program, seal construction management system
KR1020207023307A KR102641050B1 (en) 2018-03-28 2019-03-27 Seal construction management method, seal construction management device, seal construction management program, seal construction management system
SG11202007932PA SG11202007932PA (en) 2018-03-28 2019-03-27 Method for managing seal handling, device for managing seal handling, program for managing seal handling, and system for managing seal handling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-062039 2018-03-28
JP2018062039 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019189291A1 true WO2019189291A1 (en) 2019-10-03

Family

ID=68060154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013067 WO2019189291A1 (en) 2018-03-28 2019-03-27 Method for managing seal formation, device for managing seal formation, program for managing seal formation, and system for managing seal formation

Country Status (6)

Country Link
JP (1) JP7354093B2 (en)
KR (1) KR102641050B1 (en)
CN (1) CN111902243B (en)
SG (1) SG11202007932PA (en)
TW (1) TWI796460B (en)
WO (1) WO2019189291A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021081578A (en) * 2019-11-19 2021-05-27 ニチアス株式会社 Learning method of fastening process of flange joint and learning system of fastening process of flange joint
CN113048014A (en) * 2019-12-27 2021-06-29 新疆金风科技股份有限公司 Blade root bolt fastening control system and control method of wind generating set
JP2022074032A (en) * 2020-10-30 2022-05-17 ニチアス株式会社 Method of discriminating bolt during fastening operation from a plurality of bolts, recording medium capable of computer reading which record program, device having recording medium capable of computer reading which record program and method of discriminating bolt during loosening operation from a plurality of bolt
WO2023133612A1 (en) * 2022-01-14 2023-07-20 Integrity Engineering Solutions Pty Ltd System for assembly of flanged joints

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060525A (en) * 1983-09-14 1985-04-08 Nhk Spring Co Ltd Measuring device for torque coefficient
JPH05107130A (en) * 1991-10-16 1993-04-27 Honda Motor Co Ltd Method for measuring clamping force
CN105606289A (en) * 2016-03-17 2016-05-25 西北工业大学 Bolt tightening torque coefficient measuring device
JP2017161388A (en) * 2016-03-10 2017-09-14 日本バルカー工業株式会社 Construction monitoring device of seal material, construction monitoring program, construction monitoring method, construction monitoring system and construction training system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347959A (en) 1976-10-14 1978-04-28 Nippon Electric Co Foil capacitor
JPS5724595Y2 (en) 1978-03-10 1982-05-28
JPS61142082A (en) 1984-12-12 1986-06-28 三菱重工業株式会社 Clamping device for flange
JPH05107310A (en) * 1991-10-15 1993-04-27 Mitsubishi Electric Corp Electronic circuit measuring device
TW330169B (en) * 1995-11-24 1998-04-21 Fujikin Kk A method of tightening threaded members
CN200947081Y (en) * 2006-08-14 2007-09-12 上海斯巴洛克精密紧固件有限公司 Portable digital display torque coefficient tester
TWI454346B (en) * 2011-01-20 2014-10-01 China Pneumatic Corp Apparatus for being capable of controlling, tracing,measuring and calibrating tightening torque and clamping force and method for controlling,tracing,measuring and calibrating thereof
CN102581804B (en) * 2012-02-07 2014-06-18 胡井湖 Special high-precision intelligent pump for hydraulic torque wrench and method for controlling hydraulic torque wrench

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060525A (en) * 1983-09-14 1985-04-08 Nhk Spring Co Ltd Measuring device for torque coefficient
JPH05107130A (en) * 1991-10-16 1993-04-27 Honda Motor Co Ltd Method for measuring clamping force
JP2017161388A (en) * 2016-03-10 2017-09-14 日本バルカー工業株式会社 Construction monitoring device of seal material, construction monitoring program, construction monitoring method, construction monitoring system and construction training system
CN105606289A (en) * 2016-03-17 2016-05-25 西北工业大学 Bolt tightening torque coefficient measuring device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021081578A (en) * 2019-11-19 2021-05-27 ニチアス株式会社 Learning method of fastening process of flange joint and learning system of fastening process of flange joint
JP7113807B2 (en) 2019-11-19 2022-08-05 ニチアス株式会社 Flange joint fastening process learning method and flange joint fastening process learning system
CN113048014A (en) * 2019-12-27 2021-06-29 新疆金风科技股份有限公司 Blade root bolt fastening control system and control method of wind generating set
JP2022074032A (en) * 2020-10-30 2022-05-17 ニチアス株式会社 Method of discriminating bolt during fastening operation from a plurality of bolts, recording medium capable of computer reading which record program, device having recording medium capable of computer reading which record program and method of discriminating bolt during loosening operation from a plurality of bolt
JP7295197B2 (en) 2020-10-30 2023-06-20 ニチアス株式会社 Flange bolt tightening training method, flange bolt tightening training program, and device having a computer-readable recording medium recording the same
WO2023133612A1 (en) * 2022-01-14 2023-07-20 Integrity Engineering Solutions Pty Ltd System for assembly of flanged joints

Also Published As

Publication number Publication date
JP7354093B2 (en) 2023-10-02
CN111902243A (en) 2020-11-06
TWI796460B (en) 2023-03-21
JPWO2019189291A1 (en) 2021-04-22
CN111902243B (en) 2023-05-05
KR102641050B1 (en) 2024-02-27
SG11202007932PA (en) 2020-09-29
TW201942507A (en) 2019-11-01
KR20200135306A (en) 2020-12-02

Similar Documents

Publication Publication Date Title
WO2019189291A1 (en) Method for managing seal formation, device for managing seal formation, program for managing seal formation, and system for managing seal formation
US11311974B2 (en) Method of torque control and apparatus thereof
EP3147080B1 (en) Flange-fastening skill determination device and flange-fastening skill determination program
JP6837061B2 (en) Pulse tool
KR102198659B1 (en) Fastening practice device, fastening practice method, fastening practice program and fastening practice system
US10639770B2 (en) Method for determining the magnitude of the output torque and a power wrench
TWI619582B (en) Torque control system of electric impact type torque tool and torque control method thereof
CN110520250A (en) Method and apparatus for tightening threaded connection
JP5717545B2 (en) Oil pump torque measurement method and flow rate measurement method
JP6528232B2 (en) Device for detecting screwed state of electric rotary tool, method for adjusting torque thereof, and method for controlling screwed screw using the same
JP7273853B2 (en) Power tools for tightening threaded joints
JP7108332B1 (en) Bolt clamp force sensor for bolt lock operation
JP6452399B2 (en) Control device for electric drive equipment
JP3835023B2 (en) Screw tightening axial force measuring method, screw tightening method using the measuring method, and apparatus thereof
JP7071960B2 (en) Seal construction management method, seal construction management device, seal construction management program and seal construction management system
Bjorlingson et al. Advanced Battery Tools for Ergonomics and Quality Assurance in Aircraft Assembly
KR20150058849A (en) Detection system for error in tightening screw
JP2007015719A (en) Cap tightening apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510982

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776116

Country of ref document: EP

Kind code of ref document: A1