WO2019189077A1 - ドローン、その制御方法、および、プログラム - Google Patents

ドローン、その制御方法、および、プログラム Download PDF

Info

Publication number
WO2019189077A1
WO2019189077A1 PCT/JP2019/012686 JP2019012686W WO2019189077A1 WO 2019189077 A1 WO2019189077 A1 WO 2019189077A1 JP 2019012686 W JP2019012686 W JP 2019012686W WO 2019189077 A1 WO2019189077 A1 WO 2019189077A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
caught
foreign object
landing
flight
Prior art date
Application number
PCT/JP2019/012686
Other languages
English (en)
French (fr)
Inventor
千大 和氣
洋 柳下
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to JP2020510856A priority Critical patent/JP6795244B2/ja
Priority to CN201980010980.4A priority patent/CN111670418B/zh
Publication of WO2019189077A1 publication Critical patent/WO2019189077A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D25/00Emergency apparatus or devices, not otherwise provided for
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/40UAVs specially adapted for particular uses or applications for agriculture or forestry operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/45UAVs specially adapted for particular uses or applications for releasing liquids or powders in-flight, e.g. crop-dusting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/299Rotor guards

Definitions

  • the present invention relates to a flying object (drone), in particular, a drone with improved safety, a control method therefor, and a program.
  • the drone can know the absolute position of its own aircraft accurately in centimeters during flight. Even in farmland with a narrow and complex terrain typical in Japan, it is possible to fly autonomously with a minimum of manual maneuvering, and to disperse medicines efficiently and accurately.
  • a drone that can maintain high safety that is, an unmanned air vehicle can be provided.
  • a drone includes a flying unit, a flight control unit that operates the flying unit, and a hook that determines whether or not a foreign object is caught and generates a detection signal.
  • the operation of shaking the drone may be an action of repeatedly moving the drone forward and backward with respect to the traveling direction.
  • the landing operation may be an operation in which landing is performed at a lower speed than normal landing.
  • the catch detection unit determines whether or not the foreign object is still caught, and if it is determined that the foreign object is caught, the second A detection signal may be generated, and the flight control unit may repeat the drone based on the second detection signal.
  • the catch detection unit determines whether a foreign object is still caught, and if it is determined that the foreign object is caught, generates a third detection signal, The flight control unit may land the drone based on the third detection signal.
  • the hook detection unit may generate a detection signal by detecting whether or not a foreign object is caught based on one or more information of acceleration, angular velocity, moving speed, absolute position, and thrust. .
  • the drone can safely perform the normal landing based on one or more information of acceleration, angular velocity, moving speed, absolute position, and thrust during normal landing operation. If it is determined that the safe normal landing cannot be performed, a landing operation different from the normal landing may be performed.
  • the hook detection unit may determine that a foreign object is caught on the drone when the acceleration is decelerated more than a predetermined time within a predetermined time.
  • the hook detection unit compares the difference between the absolute position and the planned flight path, and the difference between the absolute position and the planned flight path starts the flight operation to the planned flight path. It may be determined that a foreign object is caught on the drone when the predetermined time is exceeded after a predetermined time has elapsed.
  • the hook detection unit compares a difference between the measured thrust and a command value of the thrust, and determines that a foreign object is caught on the drone when the difference between the thrust and the command value is greater than or equal to a predetermined value. It is good.
  • a medicine control unit that controls whether or not medicine is discharged from the drone to the outside may be further provided, and the medicine control unit may stop discharging the medicine based on the detection signal.
  • the catch detection unit determines whether or not a foreign object is caught on the drone in a state where the drone is landing. If it is determined that a foreign matter is caught, the flight control unit does not fly the drone. It may be a thing.
  • the hook detection unit determines whether or not a foreign object is caught on the drone until the drone has taken off and is in a hovering state, and when it is determined that a foreign object is caught,
  • the flight control unit may land the drone.
  • a drone control method includes a flight unit, a flight control unit that operates the flight unit, and whether or not a foreign object is caught and outputs a detection signal.
  • a method for controlling a drone comprising: a detection unit for generating a detection signal based on a determination step for determining whether a foreign object is caught and a determination that the foreign object is caught in the determination step; And a step of causing the drone to take an evacuation action based on the detection signal, wherein the evacuation action includes hovering, an operation of repeatedly driving the drone, an action of moving the drone backward, and the drone Including at least one action of landing to land.
  • the operation of shaking the drone may be an action of repeatedly moving the drone forward and backward with respect to the traveling direction.
  • the landing operation may be an operation in which landing is performed at a lower speed than normal landing.
  • the hook detection unit may generate a detection signal by detecting whether or not a foreign object is caught based on one or more information of acceleration, angular velocity, moving speed, absolute position, and thrust. .
  • the drone performs the normal landing safely based on one or more information of acceleration, angular velocity, moving speed, absolute position, and thrust.
  • the determination step may determine that a foreign object is caught on the drone when the acceleration is decelerated more than a predetermined value within a predetermined time.
  • the determination step compares the difference between the absolute position and the planned flight path, and the difference between the absolute position and the planned flight path is predetermined after the flight operation to the planned flight path is started. When there is a predetermined value or more after the elapse of time, it may be determined that a foreign object is caught on the drone.
  • the difference between the measured thrust and the command value of the thrust is compared, and when the difference between the thrust and the command value is greater than or equal to a predetermined value, it is determined that a foreign object is caught on the drone. Also good.
  • the apparatus may further include a medicine control unit that controls whether or not medicine is ejected from the drone to the outside, and further includes a step of stopping ejection of the medicine based on the detection signal.
  • a drone control program detects a flight signal, a flight control unit that operates the flight mechanism, and whether or not a foreign object is caught and outputs a detection signal.
  • a control program for a drone comprising a detection unit for generating a detection signal based on a determination command for determining whether or not a foreign object is caught and a determination that the foreign object is caught in the determination step
  • a command to generate and a command to cause the drone to take an evacuation action based on the detection signal, and the evacuation action includes hovering, an action of repeatedly driving the drone, an action of moving the drone backward, And at least one action of landing the drone.
  • the operation of shaking the drone may be an action of repeatedly moving the drone forward and backward with respect to the traveling direction.
  • the landing operation may be an operation in which landing is performed at a lower speed than normal landing.
  • An instruction to repeat the drone an instruction to determine whether a foreign object is still caught following the instruction to repeat, an instruction to land the drone when it is determined that a foreign object is caught, May be further executed by a computer.
  • the determination command may generate a detection signal by detecting whether or not a foreign object is caught based on one or more information of acceleration, angular velocity, moving velocity, absolute position, and thrust.
  • the drone can safely perform the normal landing based on one or more information of acceleration, angular velocity, moving speed, absolute position, and thrust during the normal landing operation and the normal landing operation. If it is determined that the safe normal landing cannot be performed, the computer may execute a command for performing a landing operation different from the normal landing.
  • the determination command may determine that a foreign object is caught on the drone when the acceleration is decelerated more than a predetermined value within a predetermined time.
  • the determination command compares the difference between the absolute position and the planned flight path, and the difference between the absolute position and the planned flight path is predetermined after the flight operation to the planned flight path is started. When there is a predetermined value or more after the elapse of time, it may be determined that a foreign object is caught on the drone.
  • the determination command is to compare the difference between the measured thrust and the command value of the thrust, and to determine that a foreign object is caught on the drone when the difference between the thrust and the command value is greater than or equal to a predetermined value. Also good.
  • the medicine control unit for controlling whether or not the medicine is discharged from the drone to the outside may be further provided, and the computer may further execute an instruction to stop the medicine discharge based on the detection signal.
  • An instruction for determining whether or not a foreign object is caught on the drone during the period from the time when the drone takes off to the state where it is hovering, and if it is determined that a foreign object is caught, the drone is landed The instructions may be further executed by a computer.
  • the computer program can be provided by downloading through a network such as the Internet, or can be provided by being recorded on various computer-readable recording media such as a CD-ROM.
  • a drone unmanned aerial vehicle that can maintain high safety even during autonomous flight.
  • Example of the drone It is a top view of the Example of the drone concerning this invention. It is a front view of the Example of the drone concerning this invention. It is a right view of the Example of the drone which concerns on this invention. It is an example of the whole conceptual diagram of the medicine distribution system using the example of the drone concerning the present invention. It is the schematic diagram showing the control function of the Example of the drone which concerns on this invention. It is a functional block diagram regarding the structure which detects the catch of the foreign material to the said drone which the said drone has. It is a flowchart which detects the catch of a foreign material by the catch detection part which the said drone has, when it takes off from the state where the said drone lands and it reaches a hovering state. It is a flowchart which detects the catch of a foreign material by the said catch detection part while the said drone is normal flight or hovering.
  • FIG. 1 is a plan view of an embodiment of the drone 100 according to the present invention
  • FIG. 2 is a front view thereof (viewed from the traveling direction side)
  • FIG. 3 is a right side view thereof.
  • drone refers to power means (electric power, prime mover, etc.) and control method (whether wireless or wired, autonomous flight type or manual control type).
  • power means electric power, prime mover, etc.
  • control method whether wireless or wired, autonomous flight type or manual control type.
  • the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are means for flying the drone 100
  • the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are connected to the rotor blades 101-1a, 101-1b, 101-2a, 101- 2b, 101-3a, 101-3b, 101-4a, 101-4b
  • Rotating means typically an electric motor, but it may be a motor
  • the upper and lower rotors for example, 101-1a and 101-1b
  • their corresponding motors for example, 102-1a and 102-1b
  • the axes are collinear and rotate in opposite directions.
  • the radial member for supporting the propeller guard provided so that the rotor does not interfere with the foreign object is desirably a horizontal structure rather than horizontal. This is to prevent the member from buckling to the outside of the rotor blade and to interfere with the rotor at the time of collision.
  • medical agent generally refers to the liquid or powder disperse
  • the medicine tank 104 is a tank for storing medicine to be sprayed, and is preferably provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance.
  • the chemical hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the chemical tank 104 and the chemical nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. And may also serve as a support for the drug nozzle.
  • the pump 106 is a means for discharging the medicine from the nozzle.
  • FIG. 4 shows an overall conceptual diagram of a system using an embodiment of the drug spraying application of the drone 100 according to the present invention.
  • the controller 401 is a means for transmitting a command to the drone 100 by an operation of the user 402 and displaying information received from the drone 100 (for example, position, amount of medicine, remaining battery level, camera image, etc.). Yes, it may be realized by a portable information device such as a general tablet terminal that operates a computer program.
  • the drone 100 according to the present invention is desirably controlled so as to perform autonomous flight, but it is desirable that a manual operation can be performed at the time of basic operations such as takeoff and return, and in an emergency.
  • an emergency operating device with a dedicated emergency stop function may be used (the emergency operating device is a dedicated device equipped with a large emergency stop button, etc., so that it can respond quickly in an emergency.
  • the controller 401 and the drone 100 perform wireless communication using Wi-Fi or the like.
  • the field 403 is a rice field, a field, or the like that is a target of drug spraying by the drone 100.
  • the topography of the field 403 is complicated, and a topographic map cannot be obtained in advance, or the topographic map and the situation at the site may be different.
  • the farm 403 is adjacent to houses, hospitals, schools, other crop farms, roads, railways, and the like. Further, there may be an obstacle such as a building or an electric wire in the field 403.
  • the base station 404 is a device that provides a base unit function of Wi-Fi communication, etc., and preferably functions as an RTK-GPS base station so that the exact position of the drone 100 can be provided (Wi-Fi
  • the communication master unit and the RTK-GPS base station may be independent devices).
  • the farming cloud 405 is typically a computer group operated on a cloud service and related software, and is desirably wirelessly connected to the controller 401 via a mobile phone line or the like.
  • the farming cloud 405 may analyze the image of the field 403 taken by the drone 100, grasp the growth status of the crop, and perform processing for determining the flight route.
  • the drone 100 may be provided with the topographic information and the like of the stored farm 403.
  • the history of the flight of the drone 100 and the captured video may be accumulated and various analysis processes may be performed.
  • the drone 100 takes off from the landing point 406 outside the field 403 and returns to the landing point 406 after spraying the medicine on the field 403 or when it is necessary to refill or charge the medicine.
  • the flight route (intrusion route) from the landing point 406 to the target field 403 may be stored in advance in the farming cloud 405 or the like, or may be input by the user 402 before the takeoff starts.
  • the flight controller 501 is a component that controls the entire drone. Specifically, the flight controller 501 may be an embedded computer including a CPU, a memory, related software, and the like.
  • the flight controller 501 receives motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on input information received from the pilot 401 and input information obtained from various sensors described below.
  • 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b are controlled to control the flight of the drone 100.
  • the actual rotational speed of motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b is fed back to the flight controller 501, and normal rotation is performed. It is desirable to have a configuration that can monitor whether Alternatively, a configuration in which an optical sensor or the like is provided on the rotor blade 101 and the rotation of the rotor blade 101 is fed back to the flight controller 501 may be employed.
  • the software used by the flight controller 501 is desirably rewritable through a storage medium or the like for function expansion / change, problem correction, or through communication means such as Wi-Fi communication or USB. In this case, it is desirable to protect by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by illegal software is not performed. Further, a part of calculation processing used for control by the flight controller 501 may be executed by another computer that exists on the pilot 401, the farming cloud 405, or in another place. Since the flight controller 501 is highly important, some or all of the components may be duplicated.
  • the battery 502 is a means for supplying power to the flight controller 501 and other components of the drone, and is preferably rechargeable.
  • the battery 502 is preferably connected to the flight controller 501 via a power supply unit including a fuse or a circuit breaker.
  • the battery 502 is desirably a smart battery having a function of transmitting the internal state (amount of stored electricity, accumulated usage time, etc.) to the flight controller 501 in addition to the power supply function.
  • the flight controller 501 communicates with the pilot 401 via the Wi-Fi slave function 503 and further via the base station 404, receives necessary commands from the pilot 401, and sends necessary information to the pilot. It is desirable to be able to send to 401. In this case, it is desirable to encrypt the communication so that it is possible to prevent illegal acts such as interception, spoofing, and takeover of the device.
  • the base station 404 preferably has an RTK-GPS base station function in addition to a Wi-Fi communication function. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the GPS module 504 is highly important, it is desirable to duplicate or multiplex, and each redundant GPS module 504 should use a different satellite in order to cope with the failure of a specific GPS satellite. It is desirable to control.
  • the 6-axis gyro sensor 505 is means for measuring the acceleration of the drone body (and means for calculating the speed by integrating the acceleration).
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring geomagnetism.
  • the atmospheric pressure sensor 507 is a means for measuring atmospheric pressure, and can indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface using the reflection of laser light, and it is preferable to use an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone body and the ground surface using reflection of sound waves such as ultrasonic waves. These sensors may be selected according to drone cost targets and performance requirements.
  • a gyro sensor for measuring the inclination of the aircraft
  • a wind sensor for measuring wind force
  • these sensors are preferably duplexed or multiplexed.
  • the flight controller 501 may use only one of them, and when a failure occurs, it may be switched to an alternative sensor.
  • a plurality of sensors may be used at the same time, and when each measurement result does not match, it may be considered that a failure has occurred.
  • the flow sensor 510 is a means for measuring the flow rate of the medicine, and is preferably provided at a plurality of locations in the path from the medicine tank 104 to the medicine nozzle 103.
  • the liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become a predetermined amount or less.
  • the multispectral camera 512 is a means for capturing the field 403 and acquiring data for image analysis.
  • the obstacle detection camera 513 is a camera for detecting a drone obstacle. Since the image characteristics and the lens orientation are different from those of the multispectral camera 512, the obstacle detection camera 513 is preferably a device different from the multispectral camera 512.
  • the switch 514 is a means for the user 402 of the drone 100 to perform various settings.
  • Obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone.
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the internal maintenance cover are open.
  • the medicine inlet sensor 517 is a sensor that detects that the inlet of the medicine tank 104 is open. These sensors may be selected according to drone cost targets and performance requirements, and may be duplicated or multiplexed.
  • a sensor may be provided in the base station 404, the controller 401, or other place outside the drone 100, and the read information may be transmitted to the drone.
  • a wind sensor may be provided in the base station 404, and information regarding wind power and wind direction may be transmitted to the drone 100 via Wi-Fi communication.
  • the flight controller 501 transmits a control signal to the pump 106 to adjust the medicine discharge amount and stop the medicine discharge. It is desirable that the current situation (for example, the rotational speed) of the pump 106 is fed back to the flight controller 501.
  • the LED 107 is a display means for informing the drone operator of the drone status.
  • Display means such as a liquid crystal display may be used instead of or in addition to the LED.
  • the buzzer 518 is an output means for notifying a drone state (particularly an error state) by an audio signal.
  • the Wi-Fi handset function 519 is an optional component for communicating with an external computer or the like for software transfer or the like, separately from the controller 401. In place of or in addition to the Wi-Fi handset function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used.
  • the speaker 520 is an output means for notifying a drone state (particularly an error state) by a recorded human voice or synthesized voice. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 during the flight, and in such a case, the situation transmission by voice is effective.
  • the warning light 521 is a display unit such as a strobe light that notifies the drone state (particularly an error state).
  • a foreign object may be caught by the drone, and the drone may not be allowed to fly along the intended route. Therefore, it is desirable to have a function of detecting foreign matter caught on the drone and removing the foreign matter by the operation of the drone itself. Moreover, when a foreign material cannot be excluded, it is desirable to have a function of safely retracting the drone. In addition, when the drone is landing or when the drone is landing and taking off and hovering, it detects the catch of the foreign object. It is desirable to have a function that does not.
  • the foreign object means a predetermined drone usage such as flying in the flight and caught on the drone, garbage such as paper and vinyl bags, and the user hooking an unspecified baggage on the drone. Includes deposits when used beyond.
  • the drone 100 includes rotating blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b, Motor 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b, flight control unit 23, catch detection unit 24, and discharge from the drone A drug control unit 30 that controls the amount of the drug.
  • reference numerals for the rotor blades and the motor may be omitted.
  • the flight control unit 23 is a functional unit that controls the rotation speed and rotation direction of the rotor blades by controlling the motor, and causes the drone 100 to fly within the section intended by the user.
  • the flight control unit 23 is a CPU implemented by a microcomputer or the like, and is realized by the flight controller together with the medicine control unit 30.
  • the flight control unit 23 transmits a command value for the rotational speed of each motor for each motor.
  • the command value for the number of rotations of each motor is calculated from the planned flight path based on the input section information.
  • the flight path plan and command value calculation are performed on the farming cloud 405 shown in FIG. 4 and transmitted to the flight control unit 23 via the controller 401.
  • the flight control unit 23 controls take-off and landing of the drone 100.
  • the flight control unit 23 controls the evacuation behavior.
  • the evacuation behavior includes, for example, an air stop using hovering as an example, and “emergency return” that moves immediately to a predetermined return point by the shortest route.
  • the predetermined return point is a point that is previously stored in the flight control unit 23, for example, a point that has taken off.
  • the predetermined return point is a land point where the user 402 can approach the drone 100, for example, and the user 402 can check the drone 100 that has reached the return point or manually carry it to another location. can do.
  • the evacuation action includes an operation of repeatedly drone 100.
  • the operation of repeatedly moving the drone 100 is an operation of repeatedly moving the drone 100 forward and backward with respect to the traveling direction.
  • the shaking operation may be an operation of repeatedly moving the drone 100 to the left and right with respect to the traveling direction.
  • the swaying motion may be a motion that swings back and forth or from side to side about the center of the drone 100.
  • the evacuation action includes landing action.
  • “Landing operation” means “normal landing” that performs normal landing operation, “emergency landing” that descends and landers faster than normal landing, and all drones are stopped and the drone 100 is moved downward from the spot Including "Emergency stop” to drop.
  • the posture control in the normal state cannot be performed at the time of catching and the accuracy of the posture control is poor. Therefore, in “Emergency Landing”, not only landing at the same point as when performing normal landing while descending faster than normal landing and performing the same posture control as normal, but also the accuracy of posture control This includes the action to establish landing while the posture is slightly broken. As one specific example, by slowly and evenly reducing the rotational speed of all the motors, it is possible to reach the landing while descending, but not precisely below.
  • the landing operation may be performed at a lower speed than normal landing.
  • the flight control unit 23 may operate to control the flight of the drone 100 in the normal operation of the drone 100, or may be configured separately from the flight control means in the normal operation.
  • the flight control unit 23 may be a functional unit that operates only when a retreat action is taken when a catch is detected.
  • the drug control unit 30 is a control unit that controls the amount or timing of spraying the drug solution from the drug tank 104.
  • an opening / closing means for opening and closing the drug solution path is provided somewhere in the path from the drug tank 104 to each drug nozzle 103-1, 103-2, 103-3, 103-4.
  • Various emergency operations may be executed after the release of the chemical solution is blocked by the opening / closing means.
  • the medicine control unit 30 may stop the pump 106 before executing the retreat action. This is because spraying the medicine on a flight route different from the normal time causes an adverse effect such as an excessive spraying amount or spraying the medicine on a place where the medicine should not be sprayed.
  • the catch detection unit 24 is a functional unit that detects whether or not a foreign object is caught on the drone 100 so that stable flight is difficult.
  • the catch detection unit 24 detects whether or not a foreign object is caught in the state where the drone 100 is hovering, in flight, landing, and from landing to take off and hovering. Can do.
  • the hook detection unit 24 includes a state measurement unit 240 and a determination unit 241.
  • the state measuring unit 240 is a functional unit that measures a value indicating the state of the drone 100.
  • the value indicating the state of the drone is a value indicating the acceleration, absolute position, thrust of the propeller, the angular velocity, and the moving speed of the drone 100.
  • the state measuring unit 240 includes an acceleration measuring unit 242, a position measuring unit 243, a thrust measuring unit 244, an angular velocity measuring unit 245, and a moving velocity measuring unit 246.
  • the acceleration measuring unit 242 is a measuring unit that measures the acceleration of the drone 100. Specifically, it is a 6-axis gyro sensor 505. The acceleration measurement unit 242 may measure acceleration using a plurality of different types of sensors. The acceleration measuring unit 242 is configured to measure the acceleration finely at a continuous or higher sampling frequency than a predetermined value, and to measure sudden deceleration of acceleration that occurs when a foreign object is caught during the flight of the drone 100. .
  • the position measurement unit 243 is a measurement unit that measures the absolute position of the drone 100, and includes, for example, an RTK antenna and GPS modules RTK504-1 and 504-2. Further, the position measuring unit 252 may calculate the relative position from the predetermined position by integrating the acceleration value measured by the 6-axis gyro sensor 505 twice, and calculate the absolute position by converting the relative position. Good.
  • the position measuring unit 243 can measure the absolute position of the drone 100 with an accuracy capable of detecting a state where the drone 100 cannot move as planned when the drone 100 is caught by a foreign object during the flight.
  • the thrust measuring unit 244 is a functional unit that measures the number of revolutions of the motor to measure the thrust.
  • the thrust measurement unit 244 refers to a rotation measurement function arranged inside the motor itself, for example. That is, the thrust measuring unit 244 measures the thrust generated by the rotor blades controlled by the motor by measuring the rotational speed of the motor.
  • the thrust measuring unit 244 can measure the rotational speed with an accuracy capable of detecting a state in which the rotor blade cannot be rotated at the rotational speed according to the command value due to a foreign object.
  • the thrust measuring unit 244 may be a functional unit that measures the operating state of the propulsion device when the thrust of the drone is realized by a configuration other than the rotor blades.
  • the thrust measurement unit 244 may be a functional unit that measures the pressure of jet injection.
  • the angular velocity measuring unit 245 is a functional unit that measures the angular velocity of the drone 100.
  • the angular velocity measuring unit 245 measures the triaxial angular velocity using, for example, a six-axis gyro sensor 505.
  • the moving speed measuring unit 246 is a functional unit that measures the moving speed of the drone 100.
  • the moving speed measurement unit 246 estimates the body speed by integrating the acceleration value measured by the 6-axis gyro sensor 505.
  • the moving speed may be estimated by processing, with software, phase differences of radio waves from a plurality of GPS base stations that can be acquired by the GPS module Doppler 504-3. Further, the moving speed at a predetermined time may be calculated using the sonar 509 to estimate the moving speed.
  • the determination unit 241 is a functional unit that detects that a foreign object is caught on the drone based on a value indicating the state of the drone 100 measured by the state measurement unit 240.
  • the determining unit 241 determines that the drone 100 is caught by a foreign object when the acceleration measuring unit 242 measures acceleration that suddenly decelerates rapidly in a short time. The deceleration of the acceleration is assumed when a foreign object comes into contact with the drone 100 in a normal flight state.
  • the determination unit 241 may determine whether or not the drone 100 is caught by a foreign object based on the fact that the measured value of acceleration from a predetermined time before to the present has decreased by a predetermined value or more. Since the deceleration of acceleration occurs for a short time of about several hundred ms, for example, the determination unit 241 may use a measured value of acceleration from several hundred ms before to the present for determination.
  • the determination unit 241 compares the absolute position of the drone 100 measured by the position measurement unit 243 with the difference between the planned flight path. If the difference between the absolute position and the planned flight path is greater than or equal to a predetermined value, it is determined that a foreign object is caught on the drone 100.
  • the determination unit 241 may determine that a foreign object is caught on the drone 100 when the difference between the absolute position and the planned flight path is not less than a predetermined value even after a predetermined time has elapsed. Normally, after the target position is set, the drone 100 gradually approaches the target position and reaches the target position, but if the drone 100 is caught by a foreign object, the drone 100 cannot approach the target position and the target position is reached. This is because the difference between the position and the absolute position does not shrink.
  • the determination unit 241 compares the absolute position measured by the position measurement unit 243 a predetermined time before the current absolute position on the route planned to fly at a constant speed, and the position has not changed. In this case, it may be determined that a foreign object is caught on the drone 100.
  • the determination unit 241 compares the actual rotation number of the motor measured by the thrust measurement unit 244 with the command value of the rotation number that the flight control unit 23 transmits to the motor. If the difference between the actual rotational speed and the command value is greater than or equal to a predetermined value, the determination unit 241 determines that a foreign object is caught on the drone 100. In particular, the determination unit 241 determines that a foreign object is caught on the drone 100 when the actual rotational speed is lower than the command value and the difference between the actual rotational speed and the command value is greater than or equal to a predetermined value. This is because an event in which the rotational speed increases due to foreign matter caught on the drone 100 cannot occur.
  • the determination unit 241 may determine that a foreign object is caught on the drone 100 when the difference between the actual rotational speed and the command value is equal to or greater than a predetermined value even after a predetermined time has elapsed. Normally, after the command value is set, the motor speed gradually approaches the command value and reaches the command value, but if the drone 100, especially the rotor blade is caught by a foreign object, the motor speed is the command value. This is because the difference between the actual rotational speed and the command value cannot be reduced.
  • the determining unit 241 determines that a foreign object is caught on the drone 100.
  • the determination unit 241 determines that a foreign object is caught on the drone 100 when the angular velocity in at least one direction among the three-axis angular velocities changes abruptly. This is because the airframe may rotate suddenly when a foreign object is caught on the drone 100.
  • the determining unit 241 determines that a foreign object is caught on the drone 100 when the difference between the actual moving speed measured by the moving speed measuring unit 246 and the command value of the moving speed is greater than or equal to a predetermined value. In particular, the determination unit 241 determines that a foreign object is caught on the drone 100 when the actual moving speed is lower than the command value and the difference between the actual rotational speed and the command value is greater than or equal to a predetermined value. This is because an event in which the rotational speed increases due to foreign matter caught on the drone 100 cannot occur.
  • the determination unit 241 determines that a foreign object is caught on the drone 100 when the difference between the actual movement speed and the command value is equal to or greater than a predetermined value even after a predetermined time has elapsed. Also good.
  • the determination unit 241 may determine that a foreign object is caught when the moving speed becomes equal to or less than a predetermined value during the flight of the drone 100.
  • This predetermined value is a value in the vicinity of 0 km per hour. This is because if the drone 100 is caught by a foreign object, the movement of the drone 100 is hindered, and the drone 100 hardly moves from the point where the foreign object is caught.
  • the hook detection unit 24 performs a first determination during normal flight, and generates a first detection signal when a foreign object is detected in the first determination.
  • the hook detection unit 24 performs the second determination after the generation of the first detection signal, and generates a second detection signal when the foreign object is still detected in the second determination.
  • the hook detection unit 24 performs the third determination after the generation of the second detection signal, and generates a third detection signal when the foreign object is still detected in the third determination.
  • the catch detection unit 24 determines whether or not a foreign object is caught on the drone in a situation where the drone 100 takes off from the landing state based on each value measured by the state measurement unit 240. When a foreign object is detected, the hook detection unit 24 generates a take-off prohibition signal. The flight control unit 23 to which the takeoff prohibition signal is transmitted stops the operation for takeoff.
  • the motor stops rotating.
  • the operator is notified that the drone 100 is in a state where the take-off cannot be permitted through appropriate display means provided in the controller 401 or the drone 100.
  • the catch detection unit 24 determines whether or not a foreign object is caught on the drone 100 from the state where the drone 100 is landed to the state where the drone 100 is taking off and hovering. When it is determined that a foreign object is caught, the catch detection unit 24 generates a flight prohibition signal. The flight control unit 23 causes the drone 100 to land based on the flight prohibition signal. In addition, the operator is notified that the drone 100 is not allowed to start normal flight through appropriate display means provided in the controller 401 or the drone 100.
  • a foreign object may be caught on the foot of the drone 100 and may be locked to the ground.
  • the drone 100 cannot take off, or cannot rise to a predetermined height after takeoff, even though the rotor blades are rotating at a high rotation speed. If the predetermined speed expected for the acceleration, position change, and moving speed of the drone 100 does not occur even though the actual rotational speed of the rotor blade is greater than or equal to the predetermined value, the determination unit 241 has a foreign object caught on the drone 100. Is detected.
  • Whether the catch detection unit 24 generates a take-off prohibition signal or a flight prohibition signal is determined by measuring whether the drone 100 has landed by an appropriate mechanism incorporated in the feet of the drone 100 or the like. When the drone 100 is landing, a take-off prohibition signal is generated, and when the drone 100 is away from the ground, a flight prohibition signal may be generated.
  • the drone 100 will not rise even if you increase the number of rotations of the motor, so feedback will be applied to the motor, the motor may overrotate, and the motor may be damaged is there.
  • the drone 100 may be suddenly released, causing unintended runaway. According to the configuration for detecting a foreign object in a situation from landing to take-off and hovering, it is possible to prevent the motor from being damaged or the drone 100 from running away.
  • the threshold value that the determination unit 241 determines that a foreign object is caught on the drone 100 may be a fixed threshold value that is stored in advance in the drone 100, or a variable threshold value that is changed according to the situation. There may be. In the case of a drone that flies while holding a medicine tank and spraying medicine, the weight of the aircraft becomes lighter as the amount of medicine to be held decreases, so the risk to foreign objects also varies. In the case of the fluctuating threshold value, it may be automatically changed by an appropriate configuration connected to the drone 100 wirelessly or by wire, or may be manually changed by the user.
  • the threshold value determined by the determination unit 241 may be an independent value for each of acceleration, absolute position, thrust, moving speed, and angular velocity, or may be determined comprehensively using functions that are linked to each other. . In this case, the determination unit 241 determines that a foreign object is caught on the drone 100 when the relationship between the acceleration, the absolute position, the rotation speed, the moving speed, and the angular speed falls below the normal range.
  • the determination unit 241 may determine whether or not the foreign object is caught based on a value indicating the state of the drone at a certain time point measured, or whether or not the foreign object is caught based on a plurality of past measurement results It may be determined whether or not. In this case, for example, the latest measurement results may be averaged and used for determination.
  • the determination threshold values held by the determination unit 241 may be the same or different from each other.
  • the hook detection unit 24 transmits a first detection signal to the medicine control unit 30.
  • the medicine control unit 30 stops the medicine spraying.
  • the threshold at which the determination unit 241 transmits the first detection signal to the flight control unit 23 and the threshold at which the first detection signal is transmitted to the drug control unit 30 may be the same or different from each other.
  • the threshold value at which the drug control unit 30 stops the drug spraying may be set lower than the threshold values for the initial determination, landing determination, and stop determination.
  • the hook detection unit 24 displays on the tablet monitored by the user that a foreign object has been detected by appropriate communication means of the drone 100.
  • the catch detection unit 24 may be configured to display that a foreign object is caught on the drone 100 by display means of the drone 100, for example, an LED. Also, an appropriate sound may be emitted from the speaker of the drone 100.
  • the user when the user acquires the information of the drone 100 with the eyewear type wearable terminal, it may be displayed or projected on the eyewear screen. In addition, when the user acquires information on the drone 100 using an earphone-type wearable terminal, the user may be notified by sound.
  • the state measuring unit 240 of the drone 100 measures a value indicating the state of the drone 100 (step S1). To S5).
  • the acceleration measuring unit 242 measures acceleration (step S1)
  • the position measuring unit 243 of the drone 100 measures the absolute position of the drone 100 (step S2).
  • the thrust measuring unit 244 of the drone 100 measures the rotational speed of the motor (step S3).
  • the angular velocity measuring unit 245 of the drone 100 measures the angular velocity of the drone 100 (step S4).
  • the moving speed measuring unit 246 of the drone 100 measures the moving speed of the drone 100 (step S5).
  • Steps S1 to S5 are in no particular order. Steps S1 to S5 may be performed simultaneously.
  • the determination unit 241 performs initial determination to determine whether or not a foreign object is caught on the drone 100 based on the information measured by the hook detection unit 24 (step S6).
  • step S7 it is determined whether the drone 100 has reached a predetermined height after taking off, that is, whether the drone 100 is in a hovering state. If it has not reached the predetermined height, the process returns to step S0 and continues to rise. When the drone 100 is in a hovering state, it shifts to a normal flight operation.
  • the determination unit 241 determines that “foreign matter is caught”, it is determined whether the drone 100 is taking off, that is, whether the foot of the drone 100 is away from the ground (step S8). If the drone 100 has not taken off, the determination unit 241 generates a takeoff prohibition signal and transmits it to the flight control unit 23 (step S32). The flight control unit 23 to which the takeoff prohibition signal has been transmitted stops the operation for takeoff, for example, the rotation of the motor (step S33).
  • the drone 100 If a foreign object is detected, the drone 100 generates a landing signal (step S30), and the flight control unit 23 performs a normal landing operation (step S31). At this time, the catch detection unit 24 may notify the user that the drone 100 is detecting a foreign object through an appropriate display unit provided in the tablet, eyewear, or the drone 100 itself.
  • step S10 the state measuring unit 240 of the drone 100 measures a value indicating the state of the drone 100 in the same manner as steps S1 to S5.
  • Steps S11 to S15 are in no particular order. Steps S11 to S15 may be performed simultaneously.
  • the determination unit 241 performs a first determination to determine whether or not a foreign object is caught on the drone 100 based on the acceleration, the absolute position, the rotation speed, the angular velocity, or the moving speed (step S16).
  • step S12 the process of step S11 thru
  • step S12 is omitted.
  • the catch detection unit 24 transmits the first detection signal to the flight control unit 23, and the flight control unit 23 moves the drone 100 backward (step S13).
  • the determination unit 241 After the retreat, the determination unit 241 performs hovering and performs a second determination for determining whether or not a foreign object is still caught (step S14).
  • step S10 This flow is a flow that is assumed when the trapping of the foreign matter has been resolved by the retreat of the drone 100.
  • the catch detection unit 24 When the determination unit 241 still detects the catch of a foreign object, the catch detection unit 24 generates a second detection signal and transmits the second detection signal to the flight control unit 23.
  • the flight control unit 23 to which the second detection signal is transmitted shakes the drone 100 (step S15). Note that the shaking operation may be shaken any number of times and may be performed for any number of seconds. Further, the different types of operations described above may be combined.
  • the catch detection unit 24 notifies the user that the drone 100 is detecting a foreign object through an appropriate display unit included in the tablet, eyewear, or the drone 100 itself.
  • the determination unit 241 performs a third determination to determine whether or not a foreign object is still caught after performing a hovering operation (step S16).
  • step S10 If the determination unit 241 does not detect the catch of a foreign object, the process returns to step S10.
  • This flow is a flow that is assumed in the case where the catching of the foreign matter has been eliminated by the swaying operation.
  • the catch detection unit 24 When the determination unit 241 still detects the catch of a foreign object, the catch detection unit 24 generates a third detection signal and transmits it to the flight control unit 23.
  • the flight control unit 23 to which the third detection signal has been transmitted performs normal landing (step S17). At this time, the catch detection unit 24 notifies the user that the drone 100 starts normal landing through an appropriate display means provided in the tablet, eyewear, or the drone 100 itself.
  • the determination unit 241 determines whether the normal landing operation can be performed safely (step S18), and performs landing if it can be performed safely. If it is determined that the normal landing operation cannot be performed safely, an emergency landing operation is performed (step S19). If it is determined that the emergency landing operation cannot be performed safely, an “emergency stop” may be performed. That is, the drone 100 motor stops, and the drone 100 falls downward on the spot.
  • hovering, retreating, swinging, hovering, and normal landing are performed in this order.
  • the order of retreating action is not limited to this. Specifically, it may be retracted after performing the first motion. Further, the hovering, retreating, and swinging operations may be combined a plurality of times before the normal landing.
  • the agricultural chemical spraying drone has been described as an example, but the technical idea of the present invention is not limited to this and can be applied to all drones. This is particularly useful for drones that perform autonomous flight.
  • the drone according to the present invention can provide a drone that can maintain high safety even during autonomous flight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Emergency Management (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Insects & Arthropods (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Catching Or Destruction (AREA)

Abstract

【課題】安全性が高いドローンを提供する。 【解決策】 飛行手段101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bと、前記飛行手段を稼働させる飛行制御部23と、異物が引っ掛かっているか否かを判定して検知信号を生成する引っ掛かり検知部と、を備えるドローン100であって、前記飛行制御部は、前記検知信号に基づいて前記ドローンに退避行動を取らせ、前記退避行動は、ホバリング、前記ドローンを繰り返しゆする動作、前記ドローンを後退させる行動、および前記ドローンを着陸させる着陸のうち少なくとも1つの行動を含む。

Description

ドローン、その制御方法、および、プログラム
本願発明は、飛行体(ドローン)、特に、安全性を高めたドローン、その制御方法、および、プログラムに関する。
一般にドローンと呼ばれる小型無人ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1。欧米と比較して農地が狭い日本においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。
準天頂衛星システムやRTK-GPS(Real Time Kinematic-Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。
その一方で、農業用の薬剤散布向け自律飛行型ドローンについては安全性に対する考慮が十分とは言いがたいケースがあった。薬剤を搭載したドローンの重量は数10キログラムになるため、人の上に落下する等の事故が起きた場合に重大な結果を招きかねない。また、通常、ドローンの操作者は専門家ではないためフールプルーフの仕組みが必要であるが、これに対する考慮も不十分であった。今までに、人間による操縦を前提としたドローンの安全性技術は存在していたが(たとえば、特許文献2、特に農業用の薬剤散布向けの自律飛行型ドローンに特有の安全性課題に対応するための技術は存在していなかった。
特許公開公報 特開2001-120151 特許公開公報 特開2017-163265
自律飛行時であっても、高い安全性を維持できるドローン、すなわち無人飛行体を提供することができる。
 上記目的を達成するため、本発明の一の観点に係るドローンは、飛行手段と、前記飛行手段を稼働させる飛行制御部と、異物が引っ掛かっているか否かを判定して検知信号を生成する引っ掛かり検知部と、を備えるドローンであって、前記飛行制御部は、前記検知信号に基づいて前記ドローンに退避行動を取らせ、前記退避行動は、ホバリング、前記ドローンを繰り返しゆする動作、前記ドローンを後退させる行動、および前記ドローンを着陸させる着陸のうち少なくとも1つの行動を含む。
 前記ドローンをゆする動作は、前記ドローンを進行方向に対して前後に繰り返し進退させる行動であるものとしてもよい。
 前記着陸動作は、通常の着陸よりも低速で着陸を実施する動作であるものとしてもよい。
 前記飛行制御部が前記検知信号に基づいて前記ドローンを後退させた後、前記引っ掛かり検知部は、依然として異物が引っ掛かっているか否かを判定し、異物が引っ掛かっていると判定された場合、第2検知信号を生成し、前記飛行制御部は、前記第2検知信号に基づいて前記ドローン繰り返しゆするものとしてもよい。
 前記飛行制御部が前記ドローンを繰り返しゆすった後、前記引っ掛かり検知部は、依然として異物が引っ掛かっているか否かを判定し、異物が引っ掛かっていると判定された場合、第3検知信号を生成し、前記飛行制御部は、前記第3検知信号に基づいて、前記ドローンを着陸させるものとしてもよい。
 前記引っ掛かり検知部は、加速度、角速度、移動速度、絶対位置、および推力のいずれか1つ以上の情報に基づいて、異物が引っ掛かっているか否かを検知して検知信号を生成するものとしてもよい。
 前記引っ掛かり検知部は、通常着陸の動作中において、加速度、角速度、移動速度、絶対位置、および推力のいずれか1つ以上の情報に基づいて、前記ドローンが前記通常着陸を安全に遂行できるか否かを判定し、安全な前記通常着陸が行えないと判定される場合、前記通常着陸とは異なる着陸動作を行うものとしてもよい。
 前記引っ掛かり検知部は、所定時間内に前記加速度が所定以上減速するとき、前記ドローンに異物が引っ掛かっていると判定するものとしてもよい。
 前記引っ掛かり検知部は、前記絶対位置と計画される飛行経路との差を比較し、前記絶対位置と計画される飛行経路との差が、計画される飛行経路への飛行動作を開始してから所定時間経過後において所定以上あるとき、前記ドローンに異物が引っ掛かっていると判定するものとしてもよい。
 前記引っ掛かり検知部は、計測される前記推力と推力の指令値との差を比較し、前記推力と前記指令値との差が所定以上あるとき、前記ドローンに異物が引っ掛かっていると判定するものとしてもよい。
 前記ドローンから外部に薬剤を吐出するか否かを制御する薬剤制御部をさらに備え、前記薬剤制御部は、前記検知信号に基づいて前記薬剤の吐出を停止するものとしてもよい。
 前記引っ掛かり検知部は、前記ドローンが着地している状態において前記ドローンに異物が引っ掛かっているか否かを判定し、異物が引っ掛かっていると判定される場合、前記飛行制御部は前記ドローンを飛行させないものとしてもよい。
 前記引っ掛かり検知部は、前記ドローンが離陸してからホバリングしている状態に至るまでの間において前記ドローンに異物が引っ掛かっているか否かを判定し、異物が引っ掛かっていると判定される場合、前記飛行制御部は前記ドローンを着陸させるものとしてもよい。
 上記目的を達成するため、本発明の別の観点に係るドローンの制御方法は、飛行手段と、前記飛行手段を稼働させる飛行制御部と、異物が引っ掛かっているか否かを判定して検知信号を生成する引っ掛かり検知部と、を備えるドローンの制御方法であって、異物が引っ掛かっているか否かを判定する判定ステップと、前記判定ステップにおける異物が引っ掛かっているとの判定に基づいて、検知信号を生成するステップと、前記検知信号に基づいて前記ドローンに退避行動を取らせるステップと、を含み、前記退避行動は、ホバリング、前記ドローンを繰り返しゆする動作、前記ドローンを後退させる行動、および前記ドローンを着陸させる着陸のうち少なくとも1つの行動を含む。
 前記ドローンをゆする動作は、前記ドローンを進行方向に対して前後に繰り返し進退させる行動であるものとしてもよい。
 前記着陸動作は、通常の着陸よりも低速で着陸を実施する動作であるものとしてもよい。
 前記検知信号に基づいて前記ドローンを後退させるステップと、前記後退させるステップに次いで、依然として異物が引っ掛かっているか否かを判定するステップと、異物が引っ掛かっていると判定された場合、前記ドローン繰り返しゆするステップと、をさらに含む、ものとしてもよい。
 前記ドローンを繰り返しゆするステップと、前記繰り返しゆするステップに次いで、依然として異物が引っ掛かっているか否かを判定するステップと、異物が引っ掛かっていると判定される場合、前記ドローンを着陸させるステップと、をさらに含むものとしてもよい。
 前記引っ掛かり検知部は、加速度、角速度、移動速度、絶対位置、および推力のいずれか1つ以上の情報に基づいて、異物が引っ掛かっているか否かを検知して検知信号を生成するものとしてもよい。
 通常着陸をするステップと、前記通常着陸をするステップ中において、加速度、角速度、移動速度、絶対位置、および推力のいずれか1つ以上の情報に基づいて、前記ドローンが前記通常着陸を安全に遂行できるか否かを判定するステップと、安全な前記通常着陸が行えないと判断された場合、前記通常着陸とは異なる着陸動作を行うステップと、を含むものとしてもよい。
 前記判定ステップは、所定時間内に前記加速度が所定以上減速するとき、前記ドローンに異物が引っ掛かっていると判定するものとしてもよい。
 前記判定ステップは、前記絶対位置と計画される飛行経路との差を比較し、前記絶対位置と計画される飛行経路との差が、計画される飛行経路への飛行動作を開始してから所定時間経過後において所定以上あるとき、前記ドローンに異物が引っ掛かっていると判定するものとしてもよい。
 前記判定ステップは、計測される前記推力と推力の指令値との差を比較し、前記推力と前記指令値との差が所定以上あるとき、前記ドローンに異物が引っ掛かっていると判定するものとしてもよい。
 前記ドローンから外部に薬剤を吐出するか否かを制御する薬剤制御部をさらに備え、前記検知信号に基づいて前記薬剤の吐出を停止するステップをさらに含むものとしてもよい。
 前記ドローンが着地している状態において前記ドローンに異物が引っ掛かっているか否かを判定するステップと、異物が引っ掛かっていると判定される場合、前記ドローンの飛行を禁止するステップと、をさらに含むものとしてもよい。
 前記ドローンが離陸してからホバリングしている状態に至るまでの間において前記ドローンに異物が引っ掛かっているか否かを判定するステップと、異物が引っ掛かっていると判定される場合、前記ドローンを着陸させるステップと、をさらに含むものとしてもよい。
 上記目的を達成するため、本発明の別の観点に係るドローンの制御プログラムは、飛行手段と、前記飛行手段を稼働させる飛行制御部と、異物が引っ掛かっているか否かを検知して検知信号を生成する引っ掛かり検知部と、を備えるドローンの制御プログラムであって、異物が引っ掛かっているか否かを判定する判定命令と、前記判定ステップにおける異物が引っ掛かっているとの判定に基づいて、検知信号を生成する命令と、前記検知信号に基づいて前記ドローンに退避行動を取らせる命令と、をコンピューターに実行させ、前記退避行動は、ホバリング、前記ドローンを繰り返しゆする動作、前記ドローンを後退させる行動、および前記ドローンを着陸させる着陸のうち少なくとも1つの行動を含む。
 前記ドローンをゆする動作は、前記ドローンを進行方向に対して前後に繰り返し進退させる行動であるものとしてもよい。
 前記着陸動作は、通常の着陸よりも低速で着陸を実施する動作であるものとしてもよい。
 前記検知信号に基づいて前記ドローンを後退させる命令と、前記後退させる命令に次いで、依然として異物が引っ掛かっているか否かを判定する命令と、異物が引っ掛かっていると判定された場合、前記ドローン繰り返しゆする命令と、をさらにコンピューターに実行させるものとしてもよい。
 前記ドローンを繰り返しゆする命令と、前記繰り返しゆする命令に次いで、依然として異物が引っ掛かっているか否かを判定する命令と、異物が引っ掛かっていると判定された場合、前記ドローンを着陸させる命令と、をさらにコンピューターに実行させるものとしてもよい。
 前記判定命令は、加速度、角速度、移動速度、絶対位置、および推力のいずれか1つ以上の情報に基づいて、異物が引っ掛かっているか否かを検知して検知信号を生成するものとしてもよい。
 通常着陸をする命令と、前記通常着陸の動作中において、加速度、角速度、移動速度、絶対位置、および推力のいずれか1つ以上の情報に基づいて、前記ドローンが前記通常着陸を安全に遂行できるか否かを判定する命令と、安全な前記通常着陸が行えないと判定される場合、前記通常着陸とは異なる着陸動作を行う命令と、をコンピューターに実行させるものとしてもよい。
 前記判定命令は、所定時間内に前記加速度が所定以上減速するとき、前記ドローンに異物が引っ掛かっていると判定するものとしてもよい。
 前記判定命令は、前記絶対位置と計画される飛行経路との差を比較し、前記絶対位置と計画される飛行経路との差が、計画される飛行経路への飛行動作を開始してから所定時間経過後において所定以上あるとき、前記ドローンに異物が引っ掛かっていると判定するものとしてもよい。
 前記判定命令は、計測される前記推力と推力の指令値との差を比較し、前記推力と前記指令値との差が所定以上あるとき、前記ドローンに異物が引っ掛かっていると判定するものとしてもよい。
 前記ドローンから外部に薬剤を吐出するか否かを制御する薬剤制御部をさらに備え、前記検知信号に基づいて前記薬剤の吐出を停止する命令をさらにコンピューターに実行させるものとしてもよい。
 前記ドローンが着地している状態において前記ドローンに異物が引っ掛かっているか否かを判定する命令と、異物が引っ掛かっていると判定される場合、前記ドローンの飛行を禁止する命令と、をさらにコンピューターに実行させるものとしてもよい。
 前記ドローンが離陸してからホバリングしている状態に至るまでの間において前記ドローンに異物が引っ掛かっているか否かを判定する命令と、異物が引っ掛かっていると判定される場合、前記ドローンを着陸させる命令と、をさらにコンピューターに実行させるものとしてもよい。
 なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、CD-ROMなどのコンピュータ読取可能な各種の記録媒体に記録して提供したりすることができる。
自律飛行時であっても、高い安全性を維持できるドローン(無人飛行体)を提供する。
本願発明に係るドローンの実施例の平面図である。 本願発明に係るドローンの実施例の正面図である。 本願発明に係るドローンの実施例の右側面図である。 本願発明に係るドローンの実施例を使用した薬剤散布システムの全体概念図の例である。 本願発明に係るドローンの実施例の制御機能を表した模式図である。 上記ドローンが有する、上記ドローンへの異物の引っ掛かりを検知する構成に関する機能ブロック図である。 上記ドローンが着地している状態から離陸してホバリング状態に至る場合において、上記ドローンが有する引っ掛かり検知部により異物の引っ掛かりを検知するフローチャートである。 上記ドローンが通常飛行又はホバリング中において、上記引っ掛かり検知部により異物の引っ掛かりを検知するフローチャートである。
以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。
図1に本願発明に係るドローン100の実施例の平面図を、図2にその(進行方向側から見た)正面図を、図3にその右側面図を示す。なお、本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼または飛行手段を有する飛行体全般を指すこととする。
回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、バッテリー消費量のバランスを考慮し、8機2段構成の回転翼が4セット)備えられていることが望ましい。
モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられていることが望ましい。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転することが望ましい。なお、一部の回転翼101-3b、および、モーター102-3bが図示されていないが、その位置は自明であり、もし左側面図があったならば示される位置にある。図2、および、図3に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら上の構造であることが望ましい。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。
薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられていることが望ましい。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。
薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられていることが望ましい。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。
図4に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。操縦器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御されることが望ましいが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていることが望ましい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作機を使用してもよい(非常用操作機は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であることが望ましい)。操縦器401とドローン100はWi-Fi等による無線通信を行なうことが望ましい。
圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の障害物が存在する場合もある。
基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようにすることが望ましい(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。営農クラウド405は、典型的にはクラウドサービス上で運営されているコンピューター群と関連ソフトウェアであり、操縦器401と携帯電話回線等で無線接続されていることが望ましい。営農クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行なってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行なってもよい。
通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。
図5に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表した模式図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピューターであってよい。フライトコントローラー501は、操縦器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっていることが望ましい。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。
フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっていることが望ましい。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護を行なうことが望ましい。また、フライトコントローラー501が制御に使用する計算処理の一部が、操縦器401上、または、営農クラウド405上や他の場所に存在する別のコンピューターによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。
バッテリー502は、フライトコントローラー501、および、ドローンのその他の構成要素に電力を供給する手段であり、充電式であることが望ましい。バッテリー502はヒューズ、または、サーキットブレーカー等を含む電源ユニットを介してフライトコントローラー501に接続されていることが望ましい。バッテリー502は電力供給機能に加えて、その内部状態(蓄電量、積算使用時間等)をフライトコントローラー501に伝達する機能を有するスマートバッテリーであることが望ましい。
フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操縦器401とやり取りを行ない、必要な指令を操縦器401から受信すると共に、必要な情報を操縦器401に送信できることが望ましい。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておくことが望ましい。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えていることが望ましい。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、GPSモジュール504により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。GPSモジュール504は重要性が高いため、二重化・多重化しておくことが望ましく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのGPSモジュール504は別の衛星を使用するよう制御することが望ましい。
6軸ジャイロセンサー505はドローン機体の加速度を測定する手段(さらに、加速度の積分により速度を計算する手段)である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーを使用することが望ましい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていることが望ましい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。
流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられていることが望ましい。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。障害物検知カメラ513はドローン障害物を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器であることが望ましい。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の障害物に接触したことを検知するためのセンサーである。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操縦器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。
フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっていることが望ましい。
LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能519は操縦器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。
上空を飛行するドローンにおいては、ドローンに異物が引っ掛かり、ドローンを意図する経路で飛行させることができない場合がある。そこで、ドローンに異物が引っ掛かっていることを検知して、ドローン自体の動作により異物を排除する機能を有することが望ましい。また、異物を排除することができない場合は、ドローンを安全に退避させる機能を有することが望ましい。また、ドローンが着陸している状態、又はドローンが着陸している状態から離陸してホバリングしている状態に至るまでの間において異物の引っ掛かりを検知し、異物が検知される場合はドローンを飛行させない機能を有することが望ましい。
 ここで、異物とは、飛行中に飛来してドローンに引っ掛かる、紙やビニル袋のようなゴミ、および、ユーザがドローンに規定外の荷物を引っ掛ける、といった、予め定められているドローンの用法を越えて使用された場合の付着物を含む。
 図6に示すように、本願発明に係るドローン100は、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bと、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bと、飛行制御部23と、引っ掛かり検知部24と、ドローンから吐出する薬剤の量を制御する薬剤制御部30と、を備える。なお、以降の説明で回転翼およびモーターの参照符号は省略することがある。
 飛行制御部23は、モーターを制御することで回転翼の回転数および回転方向を制御して、ドローン100をユーザが意図する区画内で飛行させる機能部である。具体的には、飛行制御部23はマイコン等で実装されるCPUであり、薬剤制御部30と共にフライトコントローラーにより実現される。飛行制御部23は、各モーターの回転数の指令値を、モーターごとに送信する。各モーターの回転数の指令値は、入力される区画の情報に基づいて計画される飛行経路から算出される。飛行経路の計画および指令値の計算は、図4に示す営農クラウド405上で行われ、操縦器401を介して飛行制御部23に伝達される。
 また、飛行制御部23は、ドローン100の離陸および着陸の制御を行う。
 さらに、飛行制御部23は、退避行動の制御を行う。退避行動とは、例えば、ホバリングを例とする空中停止や、最短のルートで直ちに所定の帰還地点まで移動する、「緊急帰還」を含む。所定の帰還地点とは、あらかじめ飛行制御部23に記憶させた地点であり、例えば離陸した地点である。所定の帰還地点とは、例えば使用者402がドローン100に近づくことが可能な陸上の地点であり、使用者402は帰還地点に到達したドローン100を点検したり、手動で別の場所に運んだりすることができる。
 また、退避行動は、ドローン100を繰り返しゆする動作を含む。ドローン100を繰り返しゆする動作とは、ドローン100を進行方向に対して前後に繰り返し進退させる動作である。また、ゆする動作は、ドローン100を進行方向に対して左右に繰り返し移動させる動作であってもよい。さらに、ゆする動作は、ドローン100の中心を軸に、前後又は左右に揺動する動作であってもよい。
 さらに、退避行動は、着陸動作を含む。「着陸動作」とは、通常の着陸動作をする「通常着陸」、通常の着陸より速く下降して着陸する「緊急着陸」、および、すべての回転翼を停止させてドローン100をその場から下方に落下させる「緊急停止」を含む。なお、引っ掛かり時には 通常時の姿勢制御が実施できず、姿勢制御の精度が悪い状態になるケースがある。従って「緊急着陸」には、通常の着陸より速く下降して、通常時と同様の姿勢制御を行いながら、通常の着陸を行う場合と同様の地点に着陸する動作だけでなく、姿勢制御の精度が悪く、姿勢を多少崩しながらも着陸を成立させる動作も含める。具体例の一つとして全モーターの回転数をゆっくり均等に減少させることで、精度よく真下にではないが下降しながら着陸にいたることができる。
 また、着陸動作は、通常の着陸よりも低速で着陸を実施してもよい。
 なお、飛行制御部23は、ドローン100の正常動作においてドローン100の飛行を制御するために動作してもよいし、正常動作における飛行制御手段とは別に構成されていてもよい。飛行制御部23は、引っ掛かり検知時に退避行動を取る場合にのみ動作する機能部であってもよい。
 薬剤制御部30は、薬剤タンク104から薬液を散布する量又はタイミングを制御する制御部である。例えば、薬剤タンク104から各薬剤ノズル103-1、103-2、103-3、103-4までの経路のどこかに、薬液経路を開閉する開閉手段が設けられていて、薬剤制御部30は、開閉手段により薬液の放出を遮断した後に各種の緊急動作を実行してもよい。また、薬剤制御部30は、退避行動を実行する前にポンプ106を停止してもよい。通常時とは異なる飛行経路で薬剤を散布すると散布量が過大になる、あるいは、散布すべきでない場所に薬剤を散布するなどの弊害が生じるからである。
 引っ掛かり検知部24は、安定した飛行が困難なほど異物がドローン100に引っ掛かっているか否かを検知する機能部である。引っ掛かり検知部24は、ドローン100のホバリング中、飛行中、着陸している状態、および着陸している状態から離陸してホバリングに至るまでの状態において、異物が引っ掛かっているか否かを検知することができる。引っ掛かり検知部24は、状態測定部240と、判定部241と、を備える。
 状態測定部240は、ドローン100の状態を示す値を計測する機能部である。ドローンの状態を示す値とは、ドローン100の加速度、絶対位置、ドローン100が有する推進器の推力、角速度、および移動速度を示す値である。状態測定部240は、加速度測定部242、位置測定部243、および推力測定部244、角速度測定部245、および移動速度測定部246を備える。
 加速度測定部242は、ドローン100の加速度を測定する測定部である。具体的には、6軸ジャイロセンサー505である。加速度測定部242は、異なる種類の複数のセンサーを使用して加速度を測定してもよい。加速度測定部242は、連続的、又は所定以上の高いサンプリング周波数で加速度を細かく計測し、ドローン100の飛行中に異物が引っ掛かったときに生じる加速度の突発的な減速を測定可能に構成されている。
 位置測定部243は、ドローン100の絶対位置を計測する測定部であり、例えばRTKアンテナおよびGPSモジュールRTK504-1、504-2により構成されている。また、位置測定部252は、6軸ジャイロセンサー505が測定する加速度の値を2回積分することにより、所定位置からの相対位置を算出して、相対位置を換算して絶対位置を求めてもよい。位置測定部243は、ドローン100が飛行中に異物に引っ掛かったときに、計画通り移動できない状態を検知可能な精度でドローン100の絶対位置を測定可能である。
 推力測定部244は、モーターの回転数を測定して推力を測定する機能部である。推力測定部244は、例えばモーター自身の内部に配置されている回転測定機能を指す。すなわち、推力測定部244は、モーターの回転数を測定することにより、モーターに制御される回転翼により発生する推力を測定する。推力測定部244は、異物の引っ掛かりにより回転翼が指令値通りの回転数で回転できない状態を検知可能な精度で回転数を測定可能である。
 なお、推力測定部244は、ドローンの推力が回転翼以外の構成により実現される場合は、その推進器の稼働状態を測定する機能部であってもよい。例えば、ドローンがジェット噴射により推進される場合、推力測定部244は、ジェット噴射の圧力を測定する機能部であってもよい。
 角速度測定部245は、ドローン100の角速度を測定する機能部である。角速度測定部245は、例えば6軸ジャイロセンサー505により、3軸の角速度を測定する。
 移動速度測定部246は、ドローン100の移動速度を測定する機能部である。移動速度測定部246は、例えば、6軸ジャイロセンサー505が測定する加速度の値を積分することで機体速度を推定する。また、GPSモジュールドップラー504-3により取得可能な、複数のGPS基地局からの電波の位相差をソフトウェアで処理することで移動速度を推定してもよい。さらに、ソナー509を用いて所定時間における移動距離を算出し、移動速度を推定してもよい。
 判定部241は、状態測定部240が測定するドローン100の状態を示す値に基づいて、ドローンに異物が引っ掛かっていることを検知する機能部である。
 判定部241は、加速度測定部242が、突発的に短時間で急速に減速する加速度を測定するとき、ドローン100が異物に引っ掛かっていると判定する。この加速度の減速は、通常の飛行状態においてドローン100に異物が接触したときを想定している。判定部241は所定時間前から現在までの加速度の計測値が所定以上低下したことに基づいて、ドローン100が異物に引っ掛かっているか否かを判定してもよい。加速度の減速は、例えば数百ms程度の短時間発生するため、判定部241は、数百ms以前から現在までの加速度の計測値を、判定に使用してもよい。
 判定部241は、位置測定部243が測定するドローン100の絶対位置と、計画されている飛行経路との差と、を比較する。絶対位置と計画されている飛行経路との差が所定以上であった場合、ドローン100に異物が引っ掛かっていると判断する。判定部241は、絶対位置と計画されている飛行経路との差が、所定時間経過後においても所定以上であった場合に、ドローン100に異物が引っ掛かっていると判断してもよい。通常、目標位置が設定された後、ドローン100は目標位置に次第に近づき、目標位置に到達するが、ドローン100が異物に引っ掛かっている場合は、ドローン100が目標位置に近づくことができず、目標位置と絶対位置との差が縮まらないためである。
 また、判定部241は、等速での飛行が計画されている経路において、位置測定部243が所定時間前に測定した絶対位置と、現在の絶対位置とを比較し、位置が変化していない場合に、ドローン100に異物が引っ掛かっていると判断してもよい。
 さらに、判定部241は、推力測定部244により測定されるモーターの実回転数と、飛行制御部23がモーターに送信する回転数の指令値と、を比較する。実回転数と指令値との差が所定以上であった場合、判定部241はドローン100に異物が引っ掛かっていると判断する。特に、判定部241は、実回転数が指令値よりも低い場合であって、実回転数と指令値の差が所定以上であった場合、ドローン100に異物が引っ掛かっていると判断する。ドローン100に異物が引っ掛かることで回転数が上昇する事象は起こり得ないためである。
 判定部241は、実回転数と指令値との差が、所定時間経過後においても所定以上であった場合に、ドローン100に異物が引っ掛かっていると判断してもよい。通常、指令値が設定された後、モーターの回転数は指令値に次第に近づき、指令値に到達するが、ドローン100、特に回転翼が異物に引っ掛かっている場合は、モーターの回転数が指令値に近づくことができず、実回転数と指令値との差が縮まらないためである。
 判定部241は、角速度測定部245により測定されるドローン100の角速度の変化が所定以上だった場合、判定部241はドローン100に異物が引っ掛かっていると判断する。特に、判定部241は、3軸の角速度のうち少なくとも1方向の角速度が急激に変化した場合、ドローン100に異物が引っ掛かっていると判断する。ドローン100に異物が引っ掛かることで、機体が急激に回転する場合があるためである。
 判定部241は、移動速度測定部246により測定される実際の移動速度と、移動速度の指令値との差が所定以上のとき、ドローン100に異物が引っ掛かっていると判定する。特に、判定部241は、実際の移動速度が指令値よりも低い場合であって、実回転数と指令値の差が所定以上であった場合、ドローン100に異物が引っ掛かっていると判断する。ドローン100に異物が引っ掛かることで回転数が上昇する事象は起こり得ないためである。
 判定部241は、移動速度に関しても同様に、実際の移動速度と指令値との差が、所定時間経過後においても所定以上であった場合に、ドローン100に異物が引っ掛かっていると判定してもよい。
 また、判定部241は、ドローン100の飛行中において、移動速度があらかじめ定められた所定値以下になったとき、異物に引っ掛かっていると判定してもよい。この所定値は、毎時0km近傍の値である。ドローン100が異物に引っ掛かるとドローン100の移動が妨げられ、異物に引っ掛かった地点からほとんど移動しない状態になるためである。
 引っ掛かり検知部24は、通常飛行中において第1判定を行い、第1判定において異物の引っ掛かりが検知された場合、第1検知信号を生成する。引っ掛かり検知部24は、第1検知信号の生成後に第2判定を行い、第2判定において依然として異物の引っ掛かりが検知される場合、第2検知信号を生成する。引っ掛かり検知部24は、第2検知信号の生成後に第3判定を行い、第3判定において依然として異物の引っ掛かりが検知される場合、第3検知信号を生成する。
 また、引っ掛かり検知部24は、状態測定部240が測定する各値に基づいて、ドローン100が着地している状態から離陸する状況において前記ドローンに異物が引っ掛かっているか否かを判定する。異物の引っ掛かりが検知された場合、引っ掛かり検知部24は、離陸禁止信号を生成する。離陸禁止信号が伝達された飛行制御部23は、離陸のための動作を停止する。
 この場合、例えばモーターが回転を停止する。また、操縦器401やドローン100が備える適宜の表示手段を通じて、ドローン100が離陸を許可できない状態にあることを操作者に通知する。
 さらに、引っ掛かり検知部24は、ドローン100が着地している状態から離陸してホバリングしている状態に至るまでの間において、ドローン100に異物が引っ掛かっているか否かを判定する。異物が引っ掛かっていると判断される場合、引っ掛かり検知部24は飛行禁止信号を生成する。飛行制御部23は、飛行禁止信号に基づいて、ドローン100を着陸させる。また、操縦器401やドローン100が備える適宜の表示手段を通じて、ドローン100が通常の飛行の開始を許可できない状態にあることを操作者に通知する。
 着地している状態から離陸してホバリングに至るまでの間において、例えば、ドローン100の足に異物が引っ掛かっており、地面に繋ぎ止められている場合がある。この場合、回転翼が大きな回転数で回転しているにも関わらず、ドローン100は離陸できない、又は離陸後所定高さまで上昇することができない。回転翼の実回転数が所定以上にも関わらず、ドローン100の加速度、位置変化、移動速度に期待される所定の変化が生じていない場合、判定部241は、ドローン100に異物が引っ掛かっていると検知する。
 なお、引っ掛かり検知部24が離陸禁止信号を生成するか、飛行禁止信号を生成するかは、ドローン100の足等に組み込まれた適宜の機構により、ドローン100が着地しているか否かを測定し、ドローン100が着地している場合は離陸禁止信号を生成し、ドローン100の足が地面から離れている場合は、飛行禁止信号を生成すればよい。
 着地している状態から離陸する状況において引っ掛かり検知を行わない場合、モーターの回転数を上げてもドローン100が上昇しないため、モーターにフィードバックがかかり、モーターが過回転し、モーターが破損するおそれがある。また、モーターの過回転により突如異物が外れた場合、ドローン100が急激に解放されて意図しない暴走を起こす恐れがある。着地している状態から離陸してホバリングに至る状況において異物を検知する構成によれば、モーターの破損やドローン100の暴走を防止することができる。
 判定部241が、ドローン100に異物が引っ掛かっていることを判定する閾値は、予めドローン100に記憶されている固定された閾値であってもよいし、状況に応じて変更される変動する閾値であってもよい。薬剤タンクを保持して薬剤を散布しながら飛行するドローンの場合、保持する薬剤量が少なくなるほど機体重量が軽くなるため、異物へのリスクも変動する。変動する閾値の場合は、ドローン100に無線又は有線接続される適宜の構成により自動で変動されてもよいし、ユーザにより手動で変更可能であってもよい。
 判定部241が判定する閾値は、加速度、絶対位置、推力、移動速度、および角速度のそれぞれについて各々独立した値であってもよいし、相互に連動する関数により総合して判定を行ってもよい。この場合、判定部241は、加速度、絶対位置、回転数、移動速度、および角速度の関係が正常の範囲を下回った場合、ドローン100に異物が引っ掛かっていると判定する。
 判定部241は、計測されるある時点でのドローンの状態を示す値に基づいて異物が引っ掛かっているか否かを判定してもよいし、過去複数回の計測結果に基づいて異物が引っ掛かっているか否かを判定してもよい。この場合、例えば直近の計測結果を平均して判定に使用してもよい。
 判定部241が保持する判定の閾値は、同一であってもよいし、互いに異なっていてもよい。
 判定部241が、ドローン100に異物が引っ掛かっていると判定する場合、引っ掛かり検知部24は、薬剤制御部30に第1検知信号を伝達する。薬剤制御部30は、第1検知信号が伝達されると、薬剤の散布を停止する。
 判定部241が飛行制御部23に第1検知信号を伝達する閾値と、薬剤制御部30に第1検知信号を伝達する閾値とは、同一であっても互いに異なっていてもよい。薬剤制御部30が薬剤散布を停止する閾値は、初期判定、着陸判定および停止判定の閾値よりも低く設定されていてもよい。
 引っ掛かり検知部24は、ドローン100が有する適宜の通信手段により、ユーザが監視するタブレットに、異物の引っ掛かりを検知した旨を表示する。また、引っ掛かり検知部24は、ドローン100が有する表示手段、例えばLEDにより、ドローン100に異物が引っ掛かっている旨が表示されるように構成してもよい。また、ドローン100のスピーカから適宜の音を出してもよい。
 また、ユーザがドローン100の情報をアイウェア型ウェアラブル端末機により取得する場合には、アイウェアの画面上に表示または投影してもよい。また、ユーザがドローン100の情報をイヤホン型ウェアラブル端末機により取得する場合に、音により通知してもよい。
 図7に示すように、ドローン100が着地している状態において離陸の試みをしているとき(ステップ0)、ドローン100の状態測定部240がドローン100の状態を示す値を測定する(ステップS1乃至S5)。
 具体的には、加速度測定部242が加速度を測定し(ステップS1)、ドローン100の位置測定部243がドローン100の絶対位置を測定する(ステップS2)。また、ドローン100の推力測定部244がモーターの回転数を測定する(ステップS3)。さらに、ドローン100の角速度測定部245がドローン100の角速度を測定する(ステップS4)。さらにまた、ドローン100の移動速度測定部246がドローン100の移動速度を測定する(ステップS5)。なお、ステップS1乃至S5は順不同である。また、ステップS1乃至S5は、同時に実行されてもよい。
 判定部241は、引っ掛かり検知部24が測定する情報に基づいて、ドローン100に異物が引っ掛かっているか否かを判定する初期判定を行う(ステップS6)。
 判定部241が「異物が引っ掛かっている」と判定しない場合、離陸後上昇して所定の高さに達しているか、すなわちドローン100がホバリング状態になっているか否かを判定する(ステップS7)。所定高さまで達していない場合はステップS0に戻り、上昇を継続する。ドローン100が、すなわちホバリングの状態になっている場合は、通常の飛行動作へ移行する。
 判定部241が「異物が引っ掛かっている」と判定する場合、ドローン100が離陸しているか、すなわちドローン100の足が地面から離れているかを判断する(ステップS8)。ドローン100が離陸していない場合、判定部241は離陸禁止信号を生成し、飛行制御部23に伝達する(ステップS32)。離陸禁止信号が伝達された飛行制御部23は、離陸のための動作、例えばモーターの回転を停止する(ステップS33)。
 異物が検知される場合、ドローン100は着陸信号を生成し(ステップS30)、飛行制御部23は通常着陸動作を行う(ステップS31)。このとき、引っ掛かり検知部24は、ドローン100が異物を検知していることをタブレットやアイウェア、ドローン100自体が備える適宜の表示手段を通じてユーザに通知してもよい。
 図8に示すように、ドローン100の飛行中又はホバリング中において(ステップS10)、ドローン100の状態測定部240が、ステップS1乃至S5と同様にドローン100の状態を示す値を測定する。なお、ステップS11乃至S15は順不同である。また、ステップS11乃至S15は、同時に実行されてもよい。
 判定部241は、加速度、絶対位置、回転数、角速度、又は移動速度に基づいて、ドローン100に異物が引っ掛かっているか否かを判定する第1判定を行う(ステップS16)。
 判定部241が「異物が引っ掛かっている」と判定しない場合、ステップS10の動作に戻り、通常の飛行を継続する。判定部241が「異物が引っ掛かっている」と判定する場合、引っ掛かり検知部24は薬剤制御部30に第1検知信号を送信し、薬剤制御部30は、薬剤の散布を行っている場合には薬剤の散布を停止する(ステップS12)。なお、ステップS11乃至S16の工程は、例えば飛行開始直後のホバリング中など薬剤の散布が行われていないときに実行される場合もあり得る。薬剤の散布を行っていない場合は、ステップS12は省略される。
 次いで、引っ掛かり検知部24は、飛行制御部23に第1検知信号を伝達し、飛行制御部23は、ドローン100を後退させる(ステップS13)。
 判定部241は、後退した後、ホバリングを行い、依然として異物が引っ掛かっているか否かを判定する第2判定を行う(ステップS14)。
 判定部241が異物の引っ掛かりを検知しない場合、ステップS10の動作に戻る。このフローは、ドローン100の後退により異物の引っ掛かりが解消されている場合に想定されるフローである。判定部241が依然として異物の引っ掛かりを検知する場合、引っ掛かり検知部24は第2検知信号を生成し、飛行制御部23に伝達する。第2検知信号が伝達された飛行制御部23は、ドローン100をゆする(ステップS15)。なお、ゆする動作は、何回ゆすってもよいし、何秒間行ってもよい。また、前述した異なる種類のゆする動作を組み合わせて行ってもよい。このとき、引っ掛かり検知部24は、ドローン100が異物を検知していることをタブレットやアイウェア、ドローン100自体が備える適宜の表示手段を通じてユーザに通知する。
 判定部241は、ゆする動作の後ホバリングを行い、依然として異物が引っ掛かっているか否かを判定する第3判定を行う(ステップS16)。
 判定部241が異物の引っ掛かりを検知しない場合、ステップS10に戻る。このフローは、ゆする動作により異物の引っ掛かりが解消されている場合に想定されるフローである。判定部241が依然として異物の引っ掛かりを検知する場合、引っ掛かり検知部24は第3検知信号を生成し、飛行制御部23に伝達する。第3検知信号が伝達された飛行制御部23は、通常着陸を行う(ステップS17)。このとき、引っ掛かり検知部24は、ドローン100が通常着陸を開始することをタブレットやアイウェア、ドローン100自体が備える適宜の表示手段を通じてユーザに通知する。
 判定部241は、通常着陸動作が安全に遂行できるかどうかを判定し(ステップS18)、安全に遂行できる場合は着陸を行う。通常着陸動作が安全に遂行できないと判断された場合、緊急着陸動作を行う(ステップS19)。なお、緊急着陸動作が安全に遂行できないと判断された場合は、「緊急停止」を行ってもよい。すなわち、ドローン100のモーターが停止し、ドローン100はその場で下方に落下する。
 なお、本実施形態においては、異物を検知した場合、ホバリング、後退、ゆする動作、ホバリング、通常着陸をこの順で行うものとしたが、退避行動の順番はこれに限られない。具体的には、第一にゆする動作を行った後に後退してもよい。また、通常着陸に至るまでに、ホバリング、後退およびゆする動作を複数回組み合わせて実施してもよい。
 本構成によれば、ドローン100に異物が引っ掛かることによりドローン100を正常飛行させることができない状況を検知して、ドローン100自らの動作により異物の除去を試みることができる。また、異物を除去できない場合にも、ドローン100を安全に退避させることができる。
 なお、本説明においては、農業用薬剤散布ドローンを例に説明したが、本発明の技術的思想はこれに限られるものではなく、ドローン全般に適用可能である。特に、自律飛行を行うドローンに有用である。
(本願発明による技術的に顕著な効果)
 本発明にかかるドローンにおいては、自律飛行時であっても、高い安全性を維持できるドローンを提供することができる。

Claims (39)

  1.  飛行手段と、
     前記飛行手段を稼働させる飛行制御部と、
     異物が引っ掛かっているか否かを判定して検知信号を生成する引っ掛かり検知部と、
    を備えるドローンであって、
     前記飛行制御部は、前記検知信号に基づいて前記ドローンに退避行動を取らせ、
     前記退避行動は、ホバリング、前記ドローンを繰り返しゆする動作、前記ドローンを後退させる行動、および前記ドローンを着陸させる着陸動作のうち少なくとも1つの行動を含む、
    ドローン。
  2.  前記ドローンを繰り返しゆする動作は、前記ドローンを進行方向に対して前後に繰り返し進退させる行動である、請求項1記載のドローン。
  3.  前記着陸動作は、通常の着陸よりも低速で着陸を実施する動作である、
    請求項1又は2記載のドローン。
  4.  前記飛行制御部が前記検知信号に基づいて前記ドローンを後退させた後、前記引っ掛かり検知部は、依然として異物が引っ掛かっているか否かを判定し、異物が引っ掛かっていると判定された場合、第2検知信号を生成し、前記飛行制御部は、前記第2検知信号に基づいて前記ドローン繰り返しゆする、請求項1乃至3のいずれかに記載のドローン。
  5.  前記飛行制御部が前記ドローンを繰り返しゆすった後、前記引っ掛かり検知部は、依然として異物が引っ掛かっているか否かを判定し、異物が引っ掛かっていると判定された場合、第3検知信号を生成し、前記飛行制御部は、前記第3検知信号に基づいて、前記ドローンを着陸させる、請求項1乃至4のいずれかに記載のドローン。
  6.  前記引っ掛かり検知部は、加速度、角速度、移動速度、絶対位置、および推力のいずれか1つ以上の情報に基づいて、異物が引っ掛かっているか否かを検知して検知信号を生成する、請求項1乃至5のいずれかに記載のドローン。
  7.  前記引っ掛かり検知部は、通常着陸の動作中において、加速度、角速度、移動速度、絶対位置、および推力のいずれか1つ以上の情報に基づいて、前記ドローンが前記通常着陸を安全に遂行できるか否かを判定し、安全な前記通常着陸が行えないと判定される場合、前記通常着陸とは異なる着陸動作を行う、請求項1乃至6のいずれかに記載のドローン。
  8.  前記引っ掛かり検知部は、所定時間内に前記加速度が所定以上減速するとき、前記ドローンに異物が引っ掛かっていると判定する、請求項1乃至7のいずれかに記載のドローン。
  9.  前記引っ掛かり検知部は、前記絶対位置と計画される飛行経路との差を比較し、前記絶対位置と計画される飛行経路との差が、計画される飛行経路への飛行動作を開始してから所定時間経過後において所定以上あるとき、前記ドローンに異物が引っ掛かっていると判定する、請求項1乃至8のいずれかに記載のドローン。
  10.  前記引っ掛かり検知部は、計測される前記推力と推力の指令値との差を比較し、前記推力と前記指令値との差が所定以上あるとき、前記ドローンに異物が引っ掛かっていると判定する、請求項1乃至9のいずれかに記載のドローン。
  11.  前記ドローンから外部に薬剤を吐出するか否かを制御する薬剤制御部をさらに備え、前記薬剤制御部は、前記検知信号に基づいて前記薬剤の吐出を停止する、請求項1乃至10のいずれかに記載のドローン。
  12.  前記引っ掛かり検知部は、前記ドローンが着地している状態において前記ドローンに異物が引っ掛かっているか否かを判定し、異物が引っ掛かっていると判定される場合、前記飛行制御部は前記ドローンを飛行させない、請求項1乃至11のいずれかに記載のドローン。
  13.  前記引っ掛かり検知部は、前記ドローンが離陸してからホバリングしている状態に至るまでの間において前記ドローンに異物が引っ掛かっているか否かを判定し、異物が引っ掛かっていると判定される場合、前記飛行制御部は前記ドローンを着陸させる、請求項1乃至12のいずれかに記載のドローン。
  14.  飛行手段と、
     前記飛行手段を稼働させる飛行制御部と、
     異物が引っ掛かっているか否かを判定して検知信号を生成する引っ掛かり検知部と、
    を備えるドローンの制御方法であって、
     異物が引っ掛かっているか否かを判定する判定ステップと、
     前記判定ステップにおける異物が引っ掛かっているとの判定に基づいて、検知信号を生成するステップと、
     前記検知信号に基づいて前記ドローンに退避行動を取らせるステップと、を含み、
     前記退避行動は、ホバリング、前記ドローンを繰り返しゆする動作、前記ドローンを後退させる行動、および前記ドローンを着陸させる着陸のうち少なくとも1つの行動を含む、
    ドローンの制御方法。
  15.  前記ドローンをゆする動作は、前記ドローンを進行方向に対して前後に繰り返し進退させる行動である、請求項14記載のドローンの制御方法。
  16.  前記着陸動作は、通常の着陸よりも低速で着陸を実施する動作である、
    請求項14又は15記載のドローンの制御方法。
  17.  前記検知信号に基づいて前記ドローンを後退させるステップと、前記後退させるステップに次いで、依然として異物が引っ掛かっているか否かを判定するステップと、異物が引っ掛かっていると判定された場合、前記ドローン繰り返しゆするステップと、をさらに含む、請求項14乃至16のいずれかに記載のドローンの制御方法。
  18.  前記ドローンを繰り返しゆするステップと、前記繰り返しゆするステップに次いで、依然として異物が引っ掛かっているか否かを判定するステップと、異物が引っ掛かっていると判定される場合、前記ドローンを着陸させるステップと、をさらに含む、請求項14乃至17のいずれかに記載のドローンの制御方法。
  19.  前記引っ掛かり検知部は、加速度、角速度、移動速度、絶対位置、および推力のいずれか1つ以上の情報に基づいて、異物が引っ掛かっているか否かを検知して検知信号を生成する、請求項14乃至18のいずれかに記載のドローンの制御方法。
  20.  通常着陸をするステップと、前記通常着陸をするステップ中において、加速度、角速度、移動速度、絶対位置、および推力のいずれか1つ以上の情報に基づいて、前記ドローンが前記通常着陸を安全に遂行できるか否かを判定するステップと、安全な前記通常着陸が行えないと判断された場合、前記通常着陸とは異なる着陸動作を行うステップと、を含む、請求項14乃至19のいずれかに記載のドローンの制御方法。
  21.  前記判定ステップは、所定時間内に前記加速度が所定以上減速するとき、前記ドローンに異物が引っ掛かっていると判定する、請求項14乃至20のいずれかに記載のドローンの制御方法。
  22.  前記判定ステップは、前記絶対位置と計画される飛行経路との差を比較し、前記絶対位置と計画される飛行経路との差が、計画される飛行経路への飛行動作を開始してから所定時間経過後において所定以上あるとき、前記ドローンに異物が引っ掛かっていると判定する、請求項14乃至21のいずれかに記載のドローンの制御方法。
  23.  前記判定ステップは、計測される前記推力と推力の指令値との差を比較し、前記推力と前記指令値との差が所定以上あるとき、前記ドローンに異物が引っ掛かっていると判定する、請求項14乃至22のいずれかに記載のドローンの制御方法。
  24.  前記ドローンから外部に薬剤を吐出するか否かを制御する薬剤制御部をさらに備え、前記検知信号に基づいて前記薬剤の吐出を停止するステップをさらに含む、請求項14乃至23のいずれかに記載のドローンの制御方法。
  25.  前記ドローンが着地している状態において前記ドローンに異物が引っ掛かっているか否かを判定するステップと、異物が引っ掛かっていると判定される場合、前記ドローンの飛行を禁止するステップと、をさらに含む、請求項14乃至24のいずれかに記載のドローンの制御方法。
  26.  前記ドローンが離陸してからホバリングしている状態に至るまでの間において前記ドローンに異物が引っ掛かっているか否かを判定するステップと、異物が引っ掛かっていると判定される場合、前記ドローンを着陸させるステップと、をさらに含む、請求項14乃至25のいずれかに記載のドローンの制御方法。
  27.  飛行手段と、
     前記飛行手段を稼働させる飛行制御部と、
     異物が引っ掛かっているか否かを検知して検知信号を生成する引っ掛かり検知部と、
    を備えるドローンの制御プログラムであって、
     異物が引っ掛かっているか否かを判定する判定命令と、
     前記判定ステップにおける異物が引っ掛かっているとの判定に基づいて、検知信号を生成する命令と、
     前記検知信号に基づいて前記ドローンに退避行動を取らせる命令と、をコンピューターに実行させ、
     前記退避行動は、ホバリング、前記ドローンを繰り返しゆする動作、前記ドローンを後退させる行動、および前記ドローンを着陸させる着陸のうち少なくとも1つの行動を含む、
    ドローンの制御プログラム。
  28.  前記ドローンをゆする動作は、前記ドローンを進行方向に対して前後に繰り返し進退させる行動である、請求項27記載のドローンの制御プログラム。
  29.  前記着陸動作は、通常の着陸よりも低速で着陸を実施する動作である、
    請求項27又は28記載のドローンの制御プログラム。
  30.  前記検知信号に基づいて前記ドローンを後退させる命令と、前記後退させる命令に次いで、依然として異物が引っ掛かっているか否かを判定する命令と、異物が引っ掛かっていると判定された場合、前記ドローン繰り返しゆする命令と、をさらにコンピューターに実行させる、請求項27乃至29のいずれかに記載のドローンの制御プログラム。
  31.  前記ドローンを繰り返しゆする命令と、前記繰り返しゆする命令に次いで、依然として異物が引っ掛かっているか否かを判定する命令と、異物が引っ掛かっていると判定された場合、前記ドローンを着陸させる命令と、をさらにコンピューターに実行させる、請求項27乃至30のいずれかに記載のドローンの制御プログラム。
  32.  前記判定命令は、加速度、角速度、移動速度、絶対位置、および推力のいずれか1つ以上の情報に基づいて、異物が引っ掛かっているか否かを検知して検知信号を生成する、請求項27乃至31のいずれかに記載のドローンの制御プログラム。
  33.  通常着陸をする命令と、前記通常着陸の動作中において、加速度、角速度、移動速度、絶対位置、および推力のいずれか1つ以上の情報に基づいて、前記ドローンが前記通常着陸を安全に遂行できるか否かを判定する命令と、安全な前記通常着陸が行えないと判定される場合、前記通常着陸とは異なる着陸動作を行う命令と、をコンピューターに実行させる、請求項27乃至32のいずれかに記載のドローンの制御プログラム。
  34.  前記判定命令は、所定時間内に前記加速度が所定以上減速するとき、前記ドローンに異物が引っ掛かっていると判定する、請求項27乃至33のいずれかに記載のドローンの制御プログラム。
  35.  前記判定命令は、前記絶対位置と計画される飛行経路との差を比較し、前記絶対位置と計画される飛行経路との差が、計画される飛行経路への飛行動作を開始してから所定時間経過後において所定以上あるとき、前記ドローンに異物が引っ掛かっていると判定する、請求項27乃至34のいずれかに記載のドローンの制御プログラム。
  36.  前記判定命令は、計測される前記推力と推力の指令値との差を比較し、前記推力と前記指令値との差が所定以上あるとき、前記ドローンに異物が引っ掛かっていると判定する、請求項27乃至35のいずれかに記載のドローンの制御プログラム。
  37.  前記ドローンから外部に薬剤を吐出するか否かを制御する薬剤制御部をさらに備え、前記検知信号に基づいて前記薬剤の吐出を停止する命令をさらにコンピューターに実行させる、請求項27乃至36のいずれかに記載のドローンの制御プログラム。
  38.  前記ドローンが着地している状態において前記ドローンに異物が引っ掛かっているか否かを判定する命令と、異物が引っ掛かっていると判定される場合、前記ドローンの飛行を禁止する命令と、をさらにコンピューターに実行させる、請求項27乃至37のいずれかに記載のドローンの制御プログラム。
  39.  前記ドローンが離陸してからホバリングしている状態に至るまでの間において前記ドローンに異物が引っ掛かっているか否かを判定する命令と、異物が引っ掛かっていると判定される場合、前記ドローンを着陸させる命令と、をさらにコンピューターに実行させる、請求項27乃至38のいずれかに記載のドローンの制御プログラム。
PCT/JP2019/012686 2018-03-27 2019-03-26 ドローン、その制御方法、および、プログラム WO2019189077A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020510856A JP6795244B2 (ja) 2018-03-27 2019-03-26 ドローン、その制御方法、および、プログラム
CN201980010980.4A CN111670418B (zh) 2018-03-27 2019-03-26 无人机及其控制方法以及计算机可读取记录介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-059642 2018-03-27
JP2018059642 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019189077A1 true WO2019189077A1 (ja) 2019-10-03

Family

ID=68058976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012686 WO2019189077A1 (ja) 2018-03-27 2019-03-26 ドローン、その制御方法、および、プログラム

Country Status (3)

Country Link
JP (1) JP6795244B2 (ja)
CN (1) CN111670418B (ja)
WO (1) WO2019189077A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115586798A (zh) * 2022-12-12 2023-01-10 广东电网有限责任公司湛江供电局 一种无人机防坠毁方法和***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016088111A (ja) * 2014-10-29 2016-05-23 ヤンマー株式会社 ヘリコプター
CN105867181A (zh) * 2016-04-01 2016-08-17 腾讯科技(深圳)有限公司 无人机的控制方法和装置
US20160318607A1 (en) * 2015-04-29 2016-11-03 Pinakin Desai Tethered drone assembly
JP2017010450A (ja) * 2015-06-25 2017-01-12 三菱自動車工業株式会社 運転支援制御装置
JP2017144811A (ja) * 2016-02-16 2017-08-24 株式会社ナイルワークス 無人飛行体による薬剤散布方法、および、プログラム
JP2018012477A (ja) * 2016-07-23 2018-01-25 光俊 秋谷 ドローンの安全飛行を実現するドローン運用システム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9776715B2 (en) * 2002-10-01 2017-10-03 Andrew H B Zhou Amphibious vertical takeoff and landing unmanned device
JP4479268B2 (ja) * 2004-02-19 2010-06-09 三菱電機株式会社 飛行体検出装置
CA2484422A1 (en) * 2004-10-08 2006-04-08 Furgro Airborne Surveys Unmanned airborne vehicle for geophysical surveying
EP2816434A3 (en) * 2005-12-02 2015-01-28 iRobot Corporation Autonomous coverage robot
WO2014068982A1 (ja) * 2012-10-31 2014-05-08 国立大学法人徳島大学 搬送装置および飛行体の制御方法
JP2015112929A (ja) * 2013-12-10 2015-06-22 須知 晃一 個人空中作業飛行物体の製造方法と構成材料
RU2550909C1 (ru) * 2014-03-26 2015-05-20 Дмитрий Сергеевич Дуров Многовинтовой преобразуемый беспилотный вертолет
JP6551824B2 (ja) * 2015-01-23 2019-07-31 みこらった株式会社 浮揚移動台
JP2016148950A (ja) * 2015-02-10 2016-08-18 シャープ株式会社 自律移動装置及びプログラム
US9540121B2 (en) * 2015-02-25 2017-01-10 Cisco Technology, Inc. Pre-flight self test for unmanned aerial vehicles (UAVs)
CN104682267B (zh) * 2015-03-26 2017-02-22 国家电网公司 基于多轴飞行器的输电线除障器
JP6436049B2 (ja) * 2015-10-14 2018-12-12 東京電力ホールディングス株式会社 状態検出装置及び状態検出プログラム
CN105235895B (zh) * 2015-11-10 2017-09-26 杨珊珊 带有紧急制动装置的多旋翼无人飞行器及其紧急制动方法
CN107226206B (zh) * 2016-03-24 2023-08-04 广东泰一高新技术发展有限公司 多旋翼无人机安全降落***及方法
JP6340384B2 (ja) * 2016-05-25 2018-06-06 ヤマハ発動機株式会社 無人飛行体
CN107479568A (zh) * 2016-06-08 2017-12-15 松下电器(美国)知识产权公司 无人飞行器、控制方法以及控制程序
CN106123941B (zh) * 2016-06-13 2024-01-09 零度智控(北京)智能科技有限公司 无人机旋翼检测方法与装置
CN106253139B (zh) * 2016-09-05 2018-06-15 国网山东省电力公司电力科学研究院 一种清除输电线路飘挂物的设备以及***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016088111A (ja) * 2014-10-29 2016-05-23 ヤンマー株式会社 ヘリコプター
US20160318607A1 (en) * 2015-04-29 2016-11-03 Pinakin Desai Tethered drone assembly
JP2017010450A (ja) * 2015-06-25 2017-01-12 三菱自動車工業株式会社 運転支援制御装置
JP2017144811A (ja) * 2016-02-16 2017-08-24 株式会社ナイルワークス 無人飛行体による薬剤散布方法、および、プログラム
CN105867181A (zh) * 2016-04-01 2016-08-17 腾讯科技(深圳)有限公司 无人机的控制方法和装置
JP2018012477A (ja) * 2016-07-23 2018-01-25 光俊 秋谷 ドローンの安全飛行を実現するドローン運用システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115586798A (zh) * 2022-12-12 2023-01-10 广东电网有限责任公司湛江供电局 一种无人机防坠毁方法和***
CN115586798B (zh) * 2022-12-12 2023-03-24 广东电网有限责任公司湛江供电局 一种无人机防坠毁方法和***

Also Published As

Publication number Publication date
CN111670418A (zh) 2020-09-15
JP6795244B2 (ja) 2020-12-02
CN111670418B (zh) 2024-03-26
JPWO2019189077A1 (ja) 2020-10-22

Similar Documents

Publication Publication Date Title
JP6727525B2 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
JP6752481B2 (ja) ドローン、その制御方法、および、プログラム
JP6733948B2 (ja) ドローン、その制御方法、および、制御プログラム
JP6745519B2 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
CN111556842B (zh) 提高安全性的农业用无人机
CN111566010B (zh) 无人机、无人机控制方法和计算机可读取记录介质
JP6913979B2 (ja) ドローン
CN111655581A (zh) 无人飞行器及其控制***以及控制程序
JPWO2020111096A1 (ja) 作業計画装置、作業計画装置の制御方法、および、その制御プログラム、ならびにドローン
JP6994798B2 (ja) ドローンシステム、ドローン、管制装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
WO2019168052A1 (ja) ドローン、その制御方法、および、プログラム
WO2019189077A1 (ja) ドローン、その制御方法、および、プログラム
JP6996791B2 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
JP6806403B2 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
JP7333947B2 (ja) ドローン、ドローンの制御方法、および、ドローンの制御プログラム
WO2020116494A1 (ja) ドローンシステム
JP6996792B2 (ja) 薬剤の吐出制御システム、その制御方法、および、制御プログラム
JP2021082134A (ja) ドローンシステム、ドローン、管制装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510856

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19778035

Country of ref document: EP

Kind code of ref document: A1