WO2019188963A1 - Ultrapure-water production system and operation method for ultrapure-water production system - Google Patents

Ultrapure-water production system and operation method for ultrapure-water production system Download PDF

Info

Publication number
WO2019188963A1
WO2019188963A1 PCT/JP2019/012460 JP2019012460W WO2019188963A1 WO 2019188963 A1 WO2019188963 A1 WO 2019188963A1 JP 2019012460 W JP2019012460 W JP 2019012460W WO 2019188963 A1 WO2019188963 A1 WO 2019188963A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrafiltration membrane
water
membrane module
pipe
flow path
Prior art date
Application number
PCT/JP2019/012460
Other languages
French (fr)
Japanese (ja)
Inventor
野口 幸男
しおり 永田
輝 丹治
Original Assignee
野村マイクロ・サイエンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 野村マイクロ・サイエンス株式会社 filed Critical 野村マイクロ・サイエンス株式会社
Priority to JP2020510063A priority Critical patent/JP7267258B2/en
Priority to KR1020207024834A priority patent/KR20200134217A/en
Publication of WO2019188963A1 publication Critical patent/WO2019188963A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • B01D61/146Ultrafiltration comprising multiple ultrafiltration steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/20Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/08Specific process operations in the concentrate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/08Flow guidance means within the module or the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/18Specific valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to an ultrapure water production system and an operation method of the ultrapure water production system.
  • ultrapure water used in a semiconductor manufacturing process is manufactured using an ultrapure water manufacturing system.
  • the ultrapure water production system includes, for example, a pretreatment unit that removes suspended substances in raw water to obtain pretreatment water, total organic carbon (TOC) components and ion components in pretreatment water, reverse osmosis membrane devices and ions It consists of a primary pure water production section that produces primary pure water by removing using an exchange device, and a secondary pure water production section that produces ultrapure water by removing trace amounts of impurities in the primary pure water. .
  • TOC total organic carbon
  • secondary pure water production section that produces ultrapure water by removing trace amounts of impurities in the primary pure water.
  • primary pure water is highly processed by an ultraviolet oxidation device, an ion exchange pure water device, an ultrafiltration membrane (UF) device, or the like to generate ultrapure water.
  • the ultrafiltration membrane device is disposed in the vicinity of the last stage of the secondary pure water production unit, and removes fine particles generated from an ion exchange resin or the like.
  • the ultrapure water in the vicinity of the point of use is removed by removing impurities mixed in and generated in the ultrapure water production system.
  • Cleaning trial operation is performed until the water reaches the desired water quality.
  • shortening of start-up operation time has been strongly demanded for the purpose of saving resources and improving the operation efficiency of factories.
  • the start-up operation time tends to be longer as the fine particles are removed more highly.
  • a cleaning ultrafiltration membrane (second particulate removal membrane device) is installed after the ultrafiltration membrane (first particulate removal membrane device) used during normal operation.
  • the washing is performed only on the water supply side without allowing the washing water to pass through the membrane, or the first fine particles are passed through the ultrafiltration membrane at the time of washing.
  • the removal membrane apparatus a method of replacing the particulate removal membrane that has been sterilized in advance without passing washing water is disclosed.
  • the second particulate removal membrane device since the second particulate removal membrane device is not operated for a long time during normal operation, there are problems such as generation of bacteria at this place and accumulation of impurities in the dead space of the pipe. Therefore, it is difficult to start up in such a device in a short time.
  • JP 2016-0664342 A International Publication No. 2015/050125 International Publication No. 2015/012248 JP 2016-083646 A
  • the present invention has been made to solve the above-described problems, and an ultrapure water production system and ultrapure water that can shorten the start-up operation time of an ultrapure water production system having an ultrafiltration membrane device.
  • An object is to provide a method of operating a manufacturing system.
  • the ultrapure water production system of the present invention is an ultrapure water production system having a plurality of ultrafiltration membrane modules connected in series, wherein the plurality of ultrafiltration membrane modules introduces water to be treated inside.
  • a first permeate outlet for allowing the permeate to flow out, and a first concentrate outlet for allowing the concentrated water to flow out, and the first ultrafiltration membrane is accommodated therein.
  • a second ultrafiltration membrane module containing a second ultrafiltration membrane therein, and the shape and size of the first ultrafiltration membrane module and the second ultrafiltration membrane module are The first inlet, the second inlet, and the first transmission are common.
  • An outlet, the second permeate outlet, the first concentrated water outlet, and the second concentrated water outlet are respectively disposed in a common position in each module, and the first The ultrafiltration membrane and the second ultrafiltration membrane have a common fractional molecular weight and / or an effective membrane area.
  • the flow path of the water to be treated passes through the first ultrafiltration membrane module to the second ultrafiltration membrane module in order, A second flow path that sequentially flows from the second ultrafiltration membrane module to the first ultrafiltration membrane module, and can be changed by reconnecting pipes connected or switching valves of the pipes. It is preferred that
  • the shapes and sizes of the plurality of ultrafiltration membrane modules are all common, and the plurality of ultrafiltration membrane modules are all provided with an inlet, a permeate outlet, and a concentrated water outlet. It is preferable that they are arranged at a common position.
  • a first permeate outflow pipe connected to the first permeate outflow outlet, and a first transfer pipe branched and connected from the first permeate outflow pipe
  • the first ultrapure water pipe, the first transfer pipe and the first ultrapure water pipe, respectively, and the flow path of the permeate from the first permeate outflow pipe is the first Two open / close valves that can be switched between a transfer pipe and the first ultrapure water pipe, a second permeate outflow pipe connected to the second permeate outflow outlet, and a second permeate outflow pipe
  • the second transfer pipe and the second ultrapure water pipe that are branched and connected, and the second transfer pipe and the second ultrapure water pipe are respectively interposed from the second permeate outflow pipe.
  • Two on-off valves that can switch the flow path of the permeated water between the second transfer pipe and the second ultrapure water pipe;
  • a first treated water supply pipe connected to the first inlet, a second treated water supply pipe connected to the second inlet, and the first treated water supply pipe;
  • Two open / close valves interposed in the second treated water supply pipe and switching the treated water supply flow path between the first treated water supply pipe and the second treated water supply pipe
  • the first transfer pipe is connected to the second treated water supply pipe
  • the second transfer pipe is connected to the first treated water supply pipe
  • the six open / close valves are opened and closed.
  • the switch is configured to be switchable between the module and the second flow path that flows from the module to the first ultrafiltration membrane module. .
  • one three-way valve capable of switching two flow paths is branched and connected.
  • the three-way valve allows the first flow path and the second flow path to pass the flow path of the water to be treated from the first ultrafiltration membrane module to the second ultrafiltration membrane module.
  • the second ultrafiltration membrane module is configured to be switchable between the first ultrafiltration membrane module and the second flow channel that flows to the first ultrafiltration membrane module.
  • a first permeate outflow pipe connected to the first permeate outlet and a first treated water supply pipe connected to the first inlet.
  • a second permeate outflow pipe connected to the second permeate outlet, a second treated water supply pipe connected to the second inlet, and the first treated water supply
  • a treated water pipe for supplying treated water to a pipe or a second treated water supply pipe, and a place where ultrapure water is used as permeated water from the first permeated water outflow pipe or the second permeated water outflow pipe
  • the permeated water of the first ultrafiltration membrane module to the second treated water supply pipe or the permeated water of the second ultrafiltration membrane module to the first treated water pipe.
  • a transfer pipe for transferring to the treated water supply pipe and a flow path of the treated water from the treated water pipe are connected to the first treated water supply pipe and the first treated water supply pipe.
  • a first flow path switching section that is switched between the first permeated water outlet pipe and the second permeated water flow path of the ultrafiltration membrane that flows into the ultrapure water pipe.
  • a second flow path switching unit that is replaced with a permeated water outflow pipe, and a flow path of permeated water from the transfer pipe with the first treated water supply pipe and the second treated water supply pipe
  • a fourth flow path that can be switched between the first permeate outflow pipe and the second permeate outflow pipe.
  • a channel switching unit and by switching the first to fourth channel switching units, the channel of the water to be treated is changed from the first ultrafiltration membrane module to the second ultrafiltration membrane module.
  • a first flow path that flows and a second flow that flows from the second ultrafiltration membrane module to the first ultrafiltration membrane module In it it is preferable that is switchably configured.
  • At least two flow paths are provided inside instead of the respective combinations of the first and third flow path switching sections and the second and fourth flow path switching sections. And two four-way valves capable of switching these connections, and the flow path of the water to be treated is changed from the first ultrafiltration membrane module to the second ultrafiltration membrane module by the four-way valve. It is preferable that the first flow path to flow to and the second flow path to flow from the second ultrafiltration membrane module to the first ultrafiltration membrane module are switchable.
  • the operation method of the ultrapure water production system of the present invention has a plurality of ultrafiltration membrane modules connected in series, and includes an ultrafiltration membrane of the former ultrafiltration membrane module and a subsequent ultrafiltration module.
  • a method for operating an ultrapure water production system having a common molecular weight cut-off and / or effective membrane area of an ultrafiltration membrane Of the plurality of ultrafiltration membrane modules during the production of ultrapure water, the latter ultrafiltration membrane module processes the permeated water of the preceding ultrafiltration membrane module, and at least one of the plurality of ultrafiltration membrane modules
  • replace the latter ultrafiltration membrane module with a new ultrafiltration membrane module When replacing the ultrafiltration membrane module in the ultrapure water production, replace the latter ultrafiltration membrane module with a new ultrafiltration membrane module, and set the new ultrafiltration membrane module as the previous stage, and not replace the ultrafiltration membrane.
  • the ultrapure water production system is started up by switching the flow path with the module as the latter stage and allowing the wash water to flow through the plurality of ultrafiltration membrane modules.
  • the ultrafiltration membrane module is replaced by 1000 pcs of fine particles having a particle size of 20 nm or more contained in the permeated water of the subsequent ultrafiltration membrane module at the time of ultrapure water production. . It is preferable to carry out when it becomes / L or more.
  • a new article does not necessarily have to be a product immediately after manufacture, and means a product that has been used for a shorter period of time and less deteriorated over time than a product before replacement.
  • the ultrapure water production system and the ultrapure water production method of the present invention it is possible to shorten the startup operation time of the ultrapure water production system having the ultrafiltration membrane device.
  • FIG. 1 is a block diagram schematically illustrating an ultrapure water production system according to an embodiment. It is a figure which represents roughly the one aspect
  • FIG. 5 is a diagram schematically illustrating a configuration of a pipe when a flow path switching unit is used and a flow path of water to be treated with respect to the configuration illustrated in FIG. 4.
  • FIG. 7 it is a figure which represents roughly the other flow path of to-be-processed water.
  • FIG. 7 it is a diagram showing an aspect of a configuration in which the flow path switching is performed by switching the pipes.
  • FIG. 5 is a diagram schematically illustrating an aspect of a configuration of a pipe when a six-way valve is used with respect to the configuration illustrated in FIG. 4. It is the schematic showing the structure which connected in parallel two or more ultrafiltration membrane units which consist of two ultrafiltration membrane apparatuses connected in series.
  • the ultrafiltration membrane unit which consists of two ultrafiltration membrane apparatuses connected in series
  • the schematic showing the structure which has the ultrafiltration membrane module in which one stage ultrafiltration membrane apparatus was arranged in parallel.
  • Two or more ultrafiltration membrane units composed of two ultrafiltration membrane devices connected in series are connected in parallel, and a configuration having an ultrafiltration membrane module in which a plurality of one-stage ultrafiltration membrane devices are arranged in parallel is represented.
  • FIG. It is a graph which shows the relationship between the processing time in the starting operation of an Example and a comparative example, and the number of fine particles.
  • an ultrapure water production system impurities that are mixed and generated in the ultrapure water production system are removed at the time of start-up after the new construction, or at the time of re-startup after an outage due to equipment replacement or periodic inspection.
  • the cleaning trial operation (start-up operation) is performed until the ultrapure water at the use point reaches the desired water quality. For example, after the apparatus is stopped due to apparatus replacement or periodic inspection, hydrogen peroxide water is sterilized by passing it through the ultrapure water production system, and then the startup operation is performed.
  • the inventors of the present invention have intensively studied for the purpose of shortening the start-up operation time as described above.
  • the fine particles generated at the time of start-up are particles having a relatively large particle diameter of more than 40 nm and not more than 1 ⁇ m.
  • Patent Document 4 describes that when the hollow fiber of the ultrafiltration membrane is broken, coarse particles of 0.4 to 10 ⁇ m are generated. Even during start-up operation, a mechanism similar to the above-mentioned coarse particles is applied due to chemical damage due to hydrogen peroxide during sterilization, physical exchange due to membrane exchange, or rapid flow rate change when water starts and stops. It was found that the start-up was delayed due to the generation of fine particles.
  • the ultrapure water production system of the present embodiment is a limiter equipped with an ultrafiltration membrane module having a common structure and specifications as an ultrafiltration membrane device disposed near the end of the ultrapure water production system. Two or more outer filtration membrane devices were arranged in series.
  • the ultrapure water production system 1 As shown in FIG. 1, the ultrapure water production system 1 according to the first embodiment includes a pretreatment unit 14, a primary pure water production unit 15, and a secondary pure water production unit 13.
  • the secondary pure water production unit 13 includes two ultrafiltration membrane devices 11 and 12 that remove fine particles in water.
  • the pretreatment unit 14 removes suspended substances in the raw water, generates pretreatment water, and supplies the pretreatment water to the primary pure water production unit 15.
  • the pretreatment unit 14 is configured by appropriately selecting a sand filtration device, a microfiltration device, or the like for removing suspended substances in the raw water, and further includes a heat exchanger that adjusts the temperature of the raw water as necessary. It is prepared for. Note that the pretreatment unit 14 may be omitted depending on the quality of the raw water.
  • the primary pure water production unit 15 includes a reverse osmosis membrane device, a deaeration device (decarbonation tower, vacuum deaeration device, membrane deaeration device, etc.), ion exchange device (cation exchange device, anion exchange device, mixed bed type). An ion exchange device or the like) and an ultraviolet oxidation device are appropriately combined.
  • the primary pure water production unit 15 produces primary pure water by removing ionic and nonionic components and dissolved gas in the pretreatment water, and supplies the primary pure water to the secondary pure water production unit 13.
  • the primary pure water has, for example, a total organic carbon (TOC) concentration of 5 ⁇ g C / L or less, a resistivity of 17 M ⁇ ⁇ cm or more, and a fine particle number of 20 nm or more of 100,000 pcs. / L or less.
  • TOC total organic carbon
  • Each of the ultrafiltration membrane devices 11 and 12 includes one or more ultrafiltration membrane modules each containing therein an ultrafiltration membrane, and the permeated water of the preceding ultrafiltration membrane device is used in the subsequent ultrafiltration. They are connected in series so as to be supplied to the membrane device.
  • the ultrafiltration membrane used here a cellulose triacetate asymmetric membrane, an aromatic polyamide composite membrane, a polyvinyl alcohol composite membrane or the like is generally used. Of the above, it is preferable to use an aromatic polyamide membrane composite membrane having a polysulfone composite material as the ultrafiltration membrane.
  • the membrane shape is a sheet flat membrane, a spiral membrane, a tubular membrane, a hollow fiber membrane or the like, but is not limited thereto.
  • the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 preferably each include two or more ultrafiltration membranes made of a common material and a common shape. It is more preferable that the materials and shapes of the membranes are common to all the ultrafiltration membranes of the filtration membrane device 11 and the second ultrafiltration membrane device 12.
  • the specification of the ultrafiltration membrane module that accommodates such an ultrafiltration membrane is, for example, that the ultrafiltration membrane has a molecular weight cut-off of 4000 to 6000, an effective membrane area of 10 m 2 to 35 m 2 , and the design operation differential pressure is The pressure is preferably 0.1 MPa to 0.4 MPa.
  • the fine particle removal performance is preferably 65% or more in terms of the removal rate of fine particles having a particle diameter of 20 nm or more.
  • the two or more ultrafiltration membranes possessed by the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 have a common molecular weight cut-off or effective membrane area among at least a part of the above specifications. It is preferable that the molecular weight cutoff and the effective membrane area are the same.
  • the outer diameter, the length, the inlet position, the permeate outlet position, the concentrated water outlet position, the corresponding pipe diameter and the corresponding pipe It is preferable that the joints have the same shape. Moreover, it is more preferable that the above-mentioned specifications are common to all the ultrafiltration membrane modules of two or more ultrafiltration membrane modules that the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 have. . If the above specifications are not common to the ultrafiltration membrane module, when the ultrafiltration membrane module is transferred, the replacement cycle is likely to be remarkably shortened, and the water removal quality is likely to deteriorate due to the reduction of the particulate removal performance. Because there is.
  • the fine particle meter 18 measures the number of fine particles having a particle diameter of 50 nm or more in water, more preferably the number of fine particles having a particle diameter of 20 nm or more.
  • the particle meter 18 for example, a particle meter UltraDI-20 manufactured by Particle Measuring Systems can be used. Of these, the particle counter 18 measures the number of particles in the permeated water of the ultrafiltration membrane device on the downstream side (rear stage).
  • the number of fine particles measured by the fine particle meter 18 is, for example, a fine particle of 5000 pcs. / L or more, preferably fine particles having a particle diameter of 20 nm or more 1000 pcs. / L or more, in the ultrafiltration membrane unit, the ultrafiltration membrane module in the previous ultrafiltration membrane device is moved to the ultrafiltration membrane module in the subsequent ultrafiltration membrane device, and the The ultrafiltration membrane module is arranged.
  • the former stage means that it is located on the upstream side when water flows, and the latter stage means that it is located on the downstream side.
  • the ultrapure water production system 1 shown in FIG. 1 has two ultrafiltration membrane devices, the ultrapure water production system 1 has three or more ultrafiltration membranes connected in series. An apparatus may be provided. Moreover, the ultrapure water production system 1 may have a configuration in which two or more ultrafiltration membrane device units connected in series are connected in parallel.
  • FIG. 2A is a diagram schematically illustrating an aspect of a configuration of a pipe connecting the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 of the present embodiment.
  • the first ultrafiltration membrane device 11 has a first ultrafiltration membrane module 110
  • the second ultrafiltration membrane device 12 is a second ultrafiltration membrane module. 120.
  • FIG. 2A shows an example in which one ultrafiltration membrane device includes one ultrafiltration membrane module, but the invention is not limited to this, and two ultrafiltration membrane devices are provided. You may provide the above ultrafiltration membrane module.
  • FIG. 2B is a diagram schematically showing the structure of the ultrafiltration membrane module 110 used in the present embodiment.
  • the ultrafiltration membrane module 110 accommodates an ultrafiltration membrane 11m in an inner hollow cylindrical housing 11h. Both ends of the housing 11h are sealed in a liquid-tight manner, and permeate outlets 11b are opened.
  • the inlet 11a and the concentrated water outlet 11c of the water to be treated are provided on the wall surfaces near both ends from the center in the length direction of the housing 11h.
  • the treated water introduced into the housing 11h from the treated water inlet 11a is transferred from the primary side (water supply side) to the secondary side (permeate water side) of the ultrafiltration membrane 11m.
  • the permeated water is produced by filtration in the process of flowing through the water.
  • the generated permeate flows out from the permeate outlet 11b.
  • the concentrated water flows through the primary side of the ultrafiltration membrane 11m and flows out from the concentrated water outlet 11c.
  • the structure of the second ultrafiltration membrane module 120 is also the same, and has an inlet 12a and a concentrated water outlet 12c on the side wall of the housing, and a permeate outlet 12b at both ends.
  • An ultrafiltration membrane is housed in the ultrafiltration membrane module 120.
  • FIG. 3A is a diagram schematically showing another aspect of the configuration of the pipe connecting the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 in the present embodiment.
  • the 1st ultrafiltration membrane apparatus 11 has the 1st ultrafiltration membrane module 210
  • the 2nd ultrafiltration membrane apparatus 12 is the 2nd ultrafiltration membrane module. 220.
  • FIG. 3A shows an example in which one ultrafiltration membrane device includes one ultrafiltration membrane module, the invention is not limited to this, and there are two or more ultrafiltration membrane devices.
  • the ultrafiltration membrane module may be provided.
  • FIG. 3B is a diagram schematically showing the structure of another ultrafiltration membrane module 210 used in the present embodiment.
  • the ultrafiltration membrane module 210 shown in FIG. 3B is different from the ultrafiltration membrane module 110 shown in FIG. 2B in the arrangement positions of the water to be treated, the permeate outlet, and the concentrated water outlet with respect to the housing. Other configurations are the same.
  • the inlet 21a of the water to be treated is opened at one end of the housing 21h, and the permeate outlet 21b is opened at the other end. Further, a concentrated water outlet 21c is opened on the wall surface of the housing 21h.
  • NTU-3306-K6R manufactured by Nitto Denko Corporation can be used. The same applies to the second ultrafiltration membrane module 220.
  • the permeate outlet 21b of the ultrafiltration membrane module 210 and the inlet 22a of the second ultrafiltration membrane module 220 are connected.
  • piping may be used, or the permeated water outlet 21b of the first ultrafiltration membrane module 210 and the inlet 22a of the second ultrafiltration membrane module 220 may be directly connected.
  • the water to be treated is supplied from the inlet 21a of the first ultrafiltration membrane module into the first ultrafiltration membrane module 210, where it is ultrafiltered.
  • the concentrated water flows out from the concentrated water outlet 21c, and the permeated water is supplied from the permeated water outlet 21b to the inlet 22a of the second ultrafiltration membrane module 220.
  • the permeated water is introduced into the second ultrafiltration membrane module 220, where it is filtered.
  • the concentrated water of the second ultrafiltration membrane module 220 flows out from the concentrated water outlet 22c, and the permeated water flows out from the permeated water outlet 22b. In this way, the permeated water of the second ultrafiltration membrane module 220 is obtained as ultrapure water.
  • Arrangement of the permeate outlet 11b of the ultrafiltration membrane module 110 and the permeate outlet 12b of the second ultrafiltration membrane module 120, the concentrated water outlet 11c of the first ultrafiltration membrane module 110 and the second ultrafiltration are all common. That is, the arrangement positions of the introduction port, the permeate outlet, and the concentrated water outlet in the housings of the first ultrafiltration membrane module 110 and the second ultrafiltration membrane module 120 are common to each other.
  • any ultrafiltration membrane module can be transferred without changing the arrangement and form of the ultrapure water production system pipe connected to the inlet of the ultrafiltration membrane module, the permeate outlet and the concentrated outlet. These can also be exchanged. The same applies to FIGS. 3A and 3B.
  • the first ultrafiltration membrane device 11 includes water to be treated (for example, primary pure water production) in the first ultrafiltration membrane device 11.
  • the primary pure water is obtained through one or more of an ultraviolet oxidizer, a membrane deaerator, a non-regenerative mixed bed ion exchanger, etc.
  • a to-be-treated water supply pipe 111 for supplying (which may be supplied to the outer filtration membrane module 110 (hereinafter the same)) is connected.
  • the treated water supply pipe 111 is connected to the inlet 11 a of the ultrafiltration membrane module 110.
  • a valve V ⁇ b> 1 that can be opened and closed is interposed in the treated water supply pipe 111.
  • a concentrated water outlet pipe 114 is connected to the concentrated water outlet 11c of the ultrafiltration membrane module 110.
  • a permeate outlet pipe 112 is connected to the permeate outlet 11b.
  • a transfer pipe 115 for transferring the permeate to the second ultrafiltration membrane device 12 at the subsequent stage is connected to the permeate outflow pipe 112.
  • a valve V4 is interposed in the transfer pipe 115. The valve V4 is configured to be openable and closable.
  • the transfer pipe 115 is connected to the inlet 12 a of the second ultrafiltration membrane module 120.
  • a concentrated water outlet pipe 124 is connected to the concentrated water outlet 12c of the ultrafiltration membrane module 120.
  • a permeate outlet pipe 122 is connected to the permeate outlet 12b.
  • Connected to the permeate outflow pipe 122 is an ultrapure water pipe 123 that transfers permeate from the second ultrafiltration membrane device 12 to a use point.
  • a valve V6 is interposed in the ultrapure water pipe 123. The valve V6 is configured to be openable and closable.
  • This primary pure water is supplied to the secondary pure water production unit 13. At this time, the valve V1, the valve V4, and the valve V6 are opened.
  • the primary pure water supplied to the secondary pure water production unit 13 is sequentially passed through the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 for processing.
  • the primary pure water is supplied from the treated water supply pipe 111 to the first ultrafiltration membrane module 110 via the introduction port 11a, and is filtered here.
  • the permeated water of the first ultrafiltration membrane module 110 is supplied from the permeated water outlet 11b to the inlet 12a of the second ultrafiltration membrane module 120 through the permeated water outlet pipe 112 and the transfer pipe 115.
  • the concentrated water of the first ultrafiltration membrane module 11 flows out from the concentrated water outflow pipe 114 through the concentrated water outlet 11c.
  • the primary pure water may be supplied to the first ultrafiltration membrane module 110 through one or more of an ultraviolet oxidizer, a membrane deaerator, a non-regenerative mixed bed ion exchanger, and the like. .
  • the permeated water supplied to the inlet 12a of the second ultrafiltration membrane module 120 is introduced into the second ultrafiltration membrane module 120, where it is filtered.
  • the permeated water of the second ultrafiltration membrane module 120 is supplied from the permeated water outlet 12b to the use point through the permeated water outlet pipe 122 and the ultrapure water pipe 123.
  • the concentrated water of the second ultrafiltration membrane module 120 flows out from the concentrated water outlet pipe 124 through the concentrated water outlet 12c. In this way, ultrapure water can be produced for a predetermined period.
  • the ultrafiltration membrane deteriorates and the quality of the ultrapure water decreases.
  • the ultrapure water production system 1 is temporarily stopped and the ultrafiltration membrane module is replaced.
  • a new ultrafiltration membrane module is arranged at the frontmost stage, and the used ultrafiltration membrane module is arranged at the subsequent stage.
  • the ultrafiltration membrane module that has been used for a longer period of time is carried out by a method in which the module is arranged at a later stage.
  • the second ultrafiltration membrane module 120 in the subsequent stage is replaced first.
  • the second ultrafiltration membrane module 120 is removed, and the first ultrafiltration membrane module 110 is transferred here.
  • a new ultrafiltration membrane module is disposed in the first ultrafiltration membrane device 11.
  • the valves V1 and V4 The valve V6 is preferably closed.
  • the first ultrafiltration membrane device 11 having a new ultrafiltration membrane module arranged as the first ultrafiltration membrane module 110 is started up.
  • each valve is in the same state as when the ultrapure water is manufactured, that is, the valve V1, the valve V4, and the valve V6 are opened.
  • primary pure water is passed as cleaning water through the ultrafiltration membrane unit, and a startup operation is performed. Washing water (primary pure water) passes through the treated water supply pipe 111, the first ultrafiltration membrane device 11 in which a new ultrafiltration membrane module is disposed, and then the second ultrafiltration membrane device 12. And flow in order.
  • the washing water may flow through the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12, but the second ultrafiltration membrane device 12 flows through it.
  • the pretreatment unit 14, the primary pure water production unit 15, and the secondary pure water production unit 13 may be passed through devices arbitrarily provided.
  • This start-up operation is performed until the number of fine particles in the permeated water of the second ultrafiltration membrane device 12 falls below a predetermined value.
  • a lot of dust is generated from the new ultrafiltration membrane module provided in the first ultrafiltration membrane device 11, but these are captured by the second ultrafiltration membrane device 12.
  • This start-up operation can be completed earlier than when the first ultrafiltration membrane device 11 replaced with a new module is started up alone.
  • a new ultrafiltration membrane module is disposed in the previous stage, and the ultrafiltration membrane module that has been used over time is disposed in the subsequent stage, whereby the startup operation time can be shortened.
  • the treated water is supplied to the treated water supply pipe 111 in the same manner as described above, and the production of ultrapure water is started.
  • a first water to be treated is passed from the first ultrafiltration membrane module 110 to the second ultrafiltration membrane module 120.
  • a configuration having a flow path and a pipe and a valve that allow switching between a flow path and a second flow path that is passed from the second ultrafiltration membrane module 120 to the first ultrafiltration membrane module. use.
  • the permeate outflow pipe 112 is connected to an ultrapure water pipe 113 that is connected to the use point and can transfer the permeate of the first ultrafiltration membrane device to the use point.
  • the ultrapure water pipe 113 is provided with a valve V3.
  • the valve V3 is configured to be openable and closable like the valve V4, and by opening and closing these, the flow path of the permeated water of the first ultrafiltration membrane module 110 is switched to the ultrapure water pipe 113 or the transfer pipe 115.
  • the ultrapure water piping 113 can cancel
  • the second ultrafiltration membrane device 12 has water to be treated (for example, an ultraviolet oxidation device, a membrane deaeration device, a non-regenerative type mixing device).
  • a treated water supply pipe 121 capable of supplying (primary pure water that has passed through one or more of floor-type ion exchangers or the like) is connected.
  • the treated water is supplied from the treated water supply pipe 121 to the introduction port 12a through the transfer pipe 115.
  • the water supply pipe 121 to be treated is provided with a valve V2 that can be opened and closed.
  • a transfer pipe 125 capable of transferring permeate to the first ultrafiltration membrane device 11 in the previous stage is connected to the permeate outflow pipe 122 of the second ultrafiltration membrane module 120.
  • a valve V5 is interposed in the transfer pipe 125.
  • the valve V5 is configured to be openable and closable. By opening and closing the valve V5 and the valve V6, the flow path of the permeated water of the second ultrafiltration membrane device 12 that has passed through the permeated water outflow pipe 122 becomes the ultrapure water pipe 123 or It is switched to the transfer pipe 125.
  • the transfer pipe 125 is connected to the downstream side of the valve V ⁇ b> 1 of the treated water supply pipe 111, and the permeated water of the second ultrafiltration membrane device 12 passes through the treated water supply pipe 111 from the transfer pipe 125.
  • the first ultrafiltration membrane device 11 can be supplied to the inlet 11a.
  • the valve V1, the valve V4, and the valve V6 are opened, and the valve V2, the valve V3, and the valve V5 are closed, that is, the first ultrafiltration membrane device 11 is the first stage, the second
  • the ultrafiltration membrane device 12 produces ultrapure water in a subsequent arrangement.
  • the flow of the water to be treated at this time is the same as the flow described in FIG. 2A.
  • the ultrapure water production system 1 is temporarily stopped and the ultrafiltration membrane module is replaced. Is called.
  • the replacement of the ultrafiltration membrane module is performed first by replacing the second ultrafiltration membrane module 120 at the subsequent stage.
  • the second ultrafiltration membrane module 120 is removed, and a new ultrafiltration membrane device module is disposed here.
  • the black valve is closed and the white valve is open.
  • the thick line indicates the flow path through which the water to be treated flows.
  • the second ultrafiltration membrane device 12 having the new second ultrafiltration membrane module 120 is started up.
  • the valves V1, V4, and V6 are closed and the valves V2, V3, and V5 are opened.
  • the second ultrafiltration membrane device 12 is changed to the front stage, and the first ultrafiltration membrane device 11 is changed to the rear stage arrangement.
  • pure water is passed as cleaning water through the ultrafiltration membrane module, and a start-up operation is performed.
  • the wash water (primary pure water) flows through the treated water supply pipe 121 through the second ultrafiltration membrane module 120 after replacement and then the first ultrafiltration membrane module 110 in order.
  • the wash water is supplied from the treated water supply pipe 121 to the inlet 12a of the second ultrafiltration membrane module 120 via the transfer pipe 115.
  • the wash water flows through the second ultrafiltration membrane module 120, and then passes through the permeate outlet 12b, the permeate outflow pipe 122, and the transfer pipe 125 to the inlet of the first ultrafiltration membrane module 110. 11a.
  • the wash water supplied to the inlet 11a of the first ultrafiltration membrane module 110 flows through the first ultrafiltration membrane module 110, then flows out from the permeate outlet 11b, and passes through the permeate outlet pipe 112. And it is discharged
  • This start-up operation is performed until the number of fine particles in the permeated water of the first ultrafiltration membrane device 11 as the subsequent stage becomes a predetermined value or less.
  • a lot of dust is generated from the new ultrafiltration membrane module disposed in the second ultrafiltration membrane device 12, but these are captured by the first ultrafiltration membrane device 11. Is done. Therefore, this start-up operation can be completed earlier than when the second ultrafiltration membrane device 12 replaced with a new module is started up alone.
  • the treated water is supplied to the treated water supply pipe 111, and the production of ultra pure water is started.
  • the valves V1, V4, and V6 are closed and the valves V2, V3, and V5 are opened, and the second ultrafiltration membrane device 12 is placed in the previous stage.
  • the 1st ultrafiltration membrane apparatus 11 is arrangement
  • the primary pure water supplied from the primary pure water production unit 5 flows in order through the second ultrafiltration membrane device 12 and then the first ultrafiltration membrane device 11.
  • the first ultrafiltration membrane module 110 that has been used for a long time deteriorates before the second ultrafiltration membrane module 120 that has been replaced with a new one. Come. At this time, the first ultrafiltration membrane module 110 which is the latter stage is replaced. At this time, the first ultrafiltration membrane module 110 is removed, and a new ultrafiltration membrane module is disposed.
  • the first ultrafiltration membrane device 11 having the new first ultrafiltration membrane module 110 is started up.
  • the valves V1, V4, and V6 are opened, and the valves V2, V3, and V5 are closed.
  • the first ultrafiltration membrane device 11 is changed to the front stage, and the second ultrafiltration membrane device 12 is changed to the rear stage arrangement.
  • primary pure water is passed as cleaning water through the ultrafiltration membrane module, and a startup operation is performed.
  • the washing water flows in order through the first ultrafiltration membrane device 11 in which a new ultrafiltration membrane module is disposed, and then the second ultrafiltration membrane device 12.
  • This start-up operation is performed until the number of fine particles in the permeated water of the second ultrafiltration membrane device 12 falls below a predetermined value. During the start-up operation, a lot of dust is generated from the new ultrafiltration membrane module disposed in the first ultrafiltration membrane device 11, but these are captured by the second ultrafiltration membrane device 12. Is done. For this reason, this start-up operation can be completed earlier than when the first ultrafiltration membrane device 11 replaced with a new module is started up alone.
  • the treated water is supplied to the treated water supply pipe 111, and the production of ultra pure water is started.
  • the valves V1, V4, and V6 are opened, the valves V2, V3, and V5 are closed, and the first ultrafiltration membrane device 11 is placed in the previous stage.
  • the second ultrafiltration membrane device 12 maintains the latter stage state.
  • the primary pure water supplied from the primary pure water production unit 5 flows in order through the first ultrafiltration membrane device 11 and then the second ultrafiltration membrane device 12.
  • the first ultrafiltration membrane module 110 and the second ultrafiltration membrane module 120 are sequentially replaced, and ultrapure water can be produced while starting up.
  • the start-up operation time after replacement with a new module is significantly shortened, high-quality ultrapure water can be efficiently produced.
  • the arrangement positions of the introduction port, the permeate outlet and the concentrated water outlet in the housings of the ultrafiltration membrane modules provided in the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 are respectively mutually different. The arrangement is common. Therefore, any ultrafiltration membrane module can be transferred without changing the arrangement and form of the ultrapure water production system pipe connected to the inlet of the ultrafiltration membrane module, the permeate outlet and the concentrated outlet. These can also be exchanged.
  • a valve is provided in the concentrated water outflow pipe (114 or 124), and by closing this valve, only the ultrafiltration membrane device arranged in the latter stage is subjected to total filtration. It is also possible. If this total filtration is used, the water recovery rate of the ultrafiltration membrane device can be improved. This total volume filtration can be performed both at the start-up and after the start-up, but can also be performed only after the start-up is completed. In addition, this whole quantity filtration can be similarly implemented also in other embodiment.
  • FIG. 6 shows the piping configuration of the ultrafiltration membrane unit when a three-way valve is used instead of the opening / closing valve.
  • components having the same functions as those in FIGS. 2 to 5 are denoted by the same reference numerals, and redundant description is omitted.
  • a three-way valve V31 and a three-way valve V32 may be provided instead of the combination of the valve V3 and the valve V4 and the combination of the valve V5 and the valve V6 in FIGS.
  • the three-way valve V31 is provided at a branch point between the ultrapure water pipe 113 and the transfer pipe 115
  • the three-way valve V32 is provided at a branch point between the ultrapure water pipe 123 and the transfer pipe 125.
  • the three-way valve V31 switches the flow path of the permeated water from the permeated water outflow pipe 112 between the ultrapure water pipe 113 and the transfer pipe 115.
  • the three-way valve V ⁇ b> 32 switches the flow path of the permeated water from the permeated water outflow pipe 122 between the ultrapure water pipe 123 and the transfer pipe 125.
  • the water retention portion in the ultrapure water production system 1 can be reduced, so that there is little deterioration of the ultrapure water quality and high purity over a longer period of time. Ultrapure water can be produced.
  • the ultrafiltration membrane unit of the second embodiment switches the flow order of water to the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 without using an on-off valve. This is done by reconnecting.
  • the treated water pipe 40 that supplies the treated water to the ultrafiltration membrane unit and the flow path of the treated water from the treated water pipe 40 are the first.
  • a flow path switching unit R1 that switches between a flow path to the introduction port 11a of the ultrafiltration membrane device 11 and a flow path to the introduction port 12a of the second ultrafiltration membrane device 12 is provided.
  • the flow path switching unit R1 is connected to the water tube 40 to be treated.
  • the flow path switching unit R1 is configured by a switching mechanism that switches piping to the flow path. The same applies to the flow path switching units R2 to R4 described later. For example, in FIG. 7, when the switching mechanism (switching mechanism) R1 to R4 is disconnected from the connected pipe and rotated 180 degrees about the switching center Rp, the switching mechanism (switching mechanism) Mechanism) R1 to R4 are connected to each pipe of the ultrafiltration membrane device to enable switching.
  • the switching mechanism can be assembled using piping parts such as piping and joints. Examples of these commercially available products include those manufactured by Sekisui Chemical. By using a union joint or a valve joint at the end (connecting portion) connected to the piping of the switching mechanism, the switching mechanism can be easily removed without using a tool or the like.
  • a TS type, a flange type, etc. are suitable for the shape of a connection part.
  • the screw-in type and the welding type are not preferable because they are not easy to remove.
  • the switching mechanism is preferably made of a material such as polyvinylidene fluoride (PVDF), chlorinated vinyl chloride resin (CPVC), polytetrafluoroethylene (PTFE), and is particularly preferably made of PVDF.
  • PVDF polyvinylidene fluoride
  • CPVC chlorinated vinyl chloride resin
  • PTFE polytetrafluoroethylene
  • the ultrafiltration membrane unit of the present embodiment allows the permeated water of the ultrafiltration membrane device to flow into the ultrapure water pipe 30 that transfers the ultrapure water to the use point, and the permeation of the first ultrafiltration membrane device 11. It is configured to be able to switch between water and the permeated water of the second ultrafiltration membrane device 12, and the flow path connected to the ultrapure water pipe 30 is the permeated water of the first ultrafiltration membrane device 11.
  • a flow path switching unit R2 that switches between a flow path of permeate flowing through the outflow pipe 112 and a flow path of permeate flowing through the permeate flow out pipe 122 of the second ultrafiltration membrane device 12 is provided. .
  • the flow path switching unit R ⁇ b> 2 is connected to the ultrapure water pipe 30.
  • the ultrafiltration membrane unit of this embodiment passes the permeated water of the first ultrafiltration membrane device 11 through the transfer pipe 115 to the treated water supply pipe 121 of the second ultrafiltration membrane device 12. Or the permeated water of the second ultrafiltration membrane device 12 is supplied to the first ultrafiltration membrane device 11 via the transfer pipe 115 and connected to the transfer pipe 115.
  • a flow path switching unit R3 that switches the flow path between the treated water supply pipe 121 of the second ultrafiltration membrane apparatus 12 and the treated water supply pipe 111 of the first ultrafiltration membrane apparatus 11 is provided. .
  • the flow path switching unit R3 is connected to the transfer pipe 115.
  • the ultrafiltration membrane unit of the present embodiment uses the permeated water of the ultrafiltration membrane device that flows into the transfer pipe 115 as the permeated water of the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12.
  • the flow path connected to the transfer pipe 115 and the flow path of the permeate flowing through the permeate outflow pipe 112 of the first ultrafiltration membrane device 11
  • a flow path switching unit R4 that switches between the flow path of the permeate flowing through the permeate outflow pipe 122 of the second ultrafiltration membrane device 12 is provided.
  • the flow path switching unit R4 is connected to the transfer pipe 115.
  • the transfer pipe 115 also serves as the transfer pipe 115 and the transfer pipe 125 in the first embodiment.
  • the ultrapure water pipe 30 also serves as the ultrapure water pipe 113 and the ultrapure water pipe 123 in the first embodiment.
  • the permeate outflow pipe 122 and the ultrapure water pipe 30 are connected by the flow path switching unit R4.
  • the 1st ultrafiltration membrane apparatus 11 becomes a front
  • the 2nd ultrafiltration membrane apparatus 12 becomes a back
  • the first ultrafiltration membrane is formed by the water outflow pipe 112, the flow path switching unit R4, the transfer pipe 115, the flow path switching unit R3, the treated water supply pipe 121, the inlet 12a, and the second ultrafiltration membrane module 120.
  • a flow path is formed to flow from the module to the second ultrafiltration membrane module.
  • the primary pure water supplied from the primary pure water production unit to the ultrafiltration membrane unit through the water pipe 40 to be treated is sequentially processed by the first ultrafiltration membrane module 110 and the second ultrafiltration membrane module 120. Is done.
  • the ultrapure water generated thereby is supplied to the use point via the ultrapure water pipe 30.
  • the primary pure water is supplied from the treated water supply pipe 111 to the first ultrafiltration membrane module 110 through the introduction port 11a.
  • the permeate flowing through the first ultrafiltration membrane module 110 is supplied to the second ultrafiltration membrane module 120 from the inlet 12a through the permeate outflow pipe 112, the transfer pipe 115, and the treated water supply pipe 121. Is done.
  • the ultrapure water generated through the second ultrafiltration membrane module 120 flows out to the use point through the permeate outflow pipe 122 and the ultrapure water pipe 30.
  • the ultrafiltration membrane deteriorates and the quality of the ultrapure water decreases. Therefore, for example, when a particle measuring device UltraDI-20 manufactured by Particle Measuring Systems is installed in the ultrapure water pipe 30 and the number of particles is monitored, the number of particles gradually increases. At this time, the ultrapure water production system 1 is temporarily stopped, and the second ultrafiltration membrane module 120 at the subsequent stage is replaced in the same manner as in the above embodiment. A new ultrafiltration membrane module is disposed in the second ultrafiltration membrane device 12 to start up the second ultrafiltration membrane device 12. Such replacement and startup of the ultrafiltration membrane may be performed periodically.
  • a particle measuring device UltraDI-20 manufactured by Particle Measuring Systems is installed in the ultrapure water pipe 30 and the number of particles is monitored, the number of particles gradually increases.
  • the ultrapure water production system 1 is temporarily stopped, and the second ultrafiltration membrane module 120 at the subsequent stage is replaced in the same manner as in the above embodiment.
  • a new ultrafiltration membrane module is disposed in the second ultrafiltration membrane device 12 to start
  • the connection of the flow path switching unit is switched as shown in FIG. That is, the to-be-treated water pipe 40 and the to-be-treated water supply pipe 121 are connected by the flow path switching unit R1. Further, the permeate outflow pipe 112 and the ultrapure water pipe 30 are connected by the flow path switching unit R2. Further, the transfer pipe 115 and the treated water supply pipe 111 are connected by the flow path switching unit R3. Further, the permeate outflow pipe 122 and the transfer pipe 115 are connected by the flow path switching unit R4. As a result, the second ultrafiltration membrane device 12 is changed to the front stage, and the first ultrafiltration membrane device 11 is changed to the rear stage arrangement. In the ultrafiltration membrane unit shown in FIG.
  • the second ultrafiltration membrane module includes the outflow pipe 122, the flow path switching unit R4, the transfer pipe 115, the flow path switching unit R3, the treated water supply pipe 111, the inlet 11a, and the first ultrafiltration membrane module 110.
  • a flow path from 120 to the first ultrafiltration membrane module 110 is formed.
  • cleaning water is supplied from the water pipe 40 to be treated to the ultrafiltration membrane unit.
  • the washing water passes through the new second ultrafiltration membrane module 120 and then the first ultrafiltration membrane module 110 in order.
  • the wash water is supplied from the treated water supply pipe 121 to the second ultrafiltration membrane module 120 through the inlet 12a.
  • the wash water flowing through the second ultrafiltration membrane module 120 is supplied to the first ultrafiltration membrane module 110 from the introduction port 11a through the permeate outflow pipe 122, the transfer pipe 115, and the treated water supply pipe 111. Is done.
  • the wash water flows through the first ultrafiltration membrane module 110 and is discharged through the permeate outflow pipe 112 and the ultrapure water pipe 30.
  • the connection between the ultrapure water pipe 30 and the use point is released.
  • This start-up operation is performed until the number of fine particles in the permeated water of the first ultrafiltration membrane device 11 becomes a predetermined value or less. During the start-up operation, a lot of dust is generated from the new second ultrafiltration membrane module 120, but these are captured by the first ultrafiltration membrane device 11. Therefore, this start-up operation can be completed earlier than starting a new second ultrafiltration membrane module 120 alone.
  • the raw water is supplied to the pretreatment unit 14 while the connection of the flow path switching unit is switched as shown in FIG.
  • the primary pure water sent from the primary pure water production unit 15 is passed through the second ultrafiltration membrane module 120 and the first ultrafiltration membrane module 110 in this order as the water to be treated, and the first ultrafiltration membrane is supplied.
  • the permeated water of the membrane module 110 is sent to the use point. Thereby, high purity ultrapure water can be stably supplied to the use point.
  • the ultrafiltration membrane deteriorates and the quality of the ultrapure water decreases.
  • the first ultrafiltration membrane module 110 is replaced.
  • a new ultrafiltration membrane module is disposed in the first ultrafiltration membrane device 11 to start up the first ultrafiltration membrane device 11.
  • the treated water pipe 40 and the treated water supply pipe 111 are connected by the flow path switching unit R1, as shown in FIG. Further, one end of the permeate outflow pipe 112 and the transfer pipe 115 is connected by the flow path switching unit R2. Further, the other end of the transfer pipe 115 and the treated water supply pipe 121 are connected by the flow path switching unit R3. Further, the permeate outflow pipe 112 and the ultrapure water pipe 30 are connected by the flow path switching unit R4. As a result, the first ultrafiltration membrane device 11 is changed to the front stage, and the second ultrafiltration membrane device 12 is changed to the rear stage arrangement. In this state, washing water is supplied from the water tube 40 to be treated to the ultrafiltration membrane unit.
  • the washing water supplied to the ultrafiltration membrane device is supplied from the treated water supply pipe 111 to the first ultrafiltration membrane module 110 through the inlet 11a.
  • the wash water flowing through the first ultrafiltration membrane module 110 is supplied to the second ultrafiltration membrane module 120 from the inlet 12a through the permeate outflow pipe 112, the transfer pipe 115, and the treated water supply pipe 121. Is done.
  • the wash water flowing through the second ultrafiltration membrane module 120 is discharged through the permeate outflow pipe 122 and the ultrapure water pipe 30.
  • the connection between the ultrapure water pipe 30 and the use point is released.
  • This start-up operation is performed until the number of fine particles in the permeated water of the second ultrafiltration membrane device 12 falls below a predetermined value. During the start-up operation, a lot of dust is generated from the new first ultrafiltration membrane module 110, but these are captured by the second ultrafiltration membrane device 12. Therefore, this start-up operation can be completed earlier than starting a new first ultrafiltration membrane module 110 alone.
  • the raw water is supplied to the pretreatment unit 14 and the production of ultra pure water is started while the connection of the flow path switching unit is switched as shown in FIG.
  • the primary pure water sent from the primary pure water production unit 15 is passed through the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 in this order, as in the above, and the second ultrafiltration membrane is passed through.
  • the permeated water of the membrane device 12 is sent to the use point. Thereby, high purity ultrapure water can be stably supplied to the use point.
  • the ultrafiltration water can be produced while the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 are sequentially replaced and started up. At this time, since the startup operation time after replacement with a new module is remarkably shortened, high-quality ultrapure water can be efficiently produced. Further, the arrangement positions of the introduction port, the permeate outlet and the concentrated water outlet in the housing of the ultrafiltration membrane module provided in the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 are common to each other. To do. Therefore, any ultrafiltration membrane module can be transferred without changing the arrangement and form of the ultrapure water production system pipe connected to the inlet of the ultrafiltration membrane module, the permeate outlet and the concentrated outlet. These can also be exchanged.
  • the flow path switching units R1 to R4 are connected to the two opening / closing valves Rpv constituting the switching mechanism Rp and the respective opening / closing valves Rpv to form the flow path switching unit 2
  • the flow path switching unit R1 shown in FIGS. 7 and 8 includes an open / close valve Rpv connected to the treated water pipe 40 and a curved pipe L1 connected to the open / close valve Rpv. Is done.
  • the opposite end of the open / close valve Rpv of the curved pipe L1 is connected to the inlet 11a of the first ultrafiltration membrane module 110, and the flow path shown in FIG. 9B, the end of the curved pipe L1 on the opposite side of the open / close valve Rpv is connected to the inlet 12a of the second ultrafiltration membrane module 120.
  • the flow path switching unit R2 shown in FIGS. 7 and 8 includes an opening / closing valve Rpv connected to the ultrapure water pipe 30 and a curved pipe L2 connected to the opening / closing valve Rpv. Composed.
  • the opposite end of the curved pipe L2 to the open / close valve Rpv is connected to the second ultrafiltration membrane module 120 via the open / close valve V122.
  • the opposite end of the curved pipe L2 to the open / close valve Rpv is connected to the first ultrafiltration membrane module 110 via the open / close valve V121. Connected to the end of the permeate outflow pipe 112.
  • the transfer pipe 115, the flow path switching unit R3, and the flow path switching unit R4 illustrated in FIGS. 7 and 8 are configured by a pipe L115 having a bent portion as a switching mechanism.
  • a pipe L115 having a bent portion As a switching mechanism.
  • one end of the pipe L115 is connected to the permeate pipe 121 of the first ultrafiltration membrane module 110 via the open / close valve V121.
  • the other end is connected to the inlet 12a of the second ultrafiltration membrane module 120.
  • the flow path shown in FIG. 8 is configured, as shown in FIG. 9B, one end of the pipe L115 is connected to the inlet 11a of the first ultrafiltration membrane module 110, and the other end is an open / close valve V122.
  • FIG. 10 shows the piping configuration of the ultrafiltration membrane unit when a four-way valve is used instead of the flow path switching unit.
  • components having the same functions as those in FIGS. 2 to 9 are denoted by the same reference numerals, and redundant description is omitted.
  • a four-way valve V42 may be used instead of the combination of the channel switching unit R1 and the channel switching unit R3 and the combination of the channel switching unit R2 and the channel switching unit R4 in FIGS.
  • a four-way valve V42 may be used instead of the combination of the channel switching unit R1 and the channel switching unit R3 and the combination of the channel switching unit R2 and the channel switching unit R4 in FIGS.
  • a four-way valve V42 may be used.
  • the four-way valve includes four inlets and outlets and two channels inside, and the channel of the water to be treated can be switched by changing the combination of the inlets and outlets connected by the two channels.
  • the four-way valve V41 is provided at a branch point between the treated water pipe 40, the treated water supply pipe 111, one end of the transfer pipe 115 and the treated water supply pipe 121, and the four-way valve V42 is provided between the ultrapure water pipe 30 and the transfer pipe 115. It is provided at a branch point between the other end, the permeate outflow pipe 112 and the permeate outflow pipe 122, and the flow path can be switched in the same manner as described above.
  • the four-way valve V41 includes a flow path from the treated water pipe 40 to the treated water supply pipe 111, a flow path from the transfer pipe 115 to the treated water supply pipe 121, and a treated water pipe 40 from the treated water pipe 40.
  • the flow path to the water supply pipe 121 and the flow path from the transfer pipe 115 to the treated water supply pipe 111 are switched.
  • the four-way valve V42 includes a flow path from the permeate outflow pipe 112 to the ultrapure water pipe 30, a flow path from the permeate outflow pipe 122 to the transfer pipe 115, and a flow path from the permeate outflow pipe 112 to the transfer pipe 115. And the flow path from the permeate outflow pipe 122 to the ultrapure water pipe 30 are switched.
  • the water retention portion in the ultrapure water production system 1 can be reduced, so that there is little deterioration of the ultrapure water quality and high purity over a longer period of time. Ultrapure water can be produced.
  • the secondary pure water production unit 133 performs switching of the water flow order to the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 by a six-way valve.
  • the hexagonal valve has six water inlets and outlets and three flow paths inside. The flow path of water to be treated can be switched by changing the combination of the inlets and outlets connected by the three flow paths. it can.
  • the functions of the transfer pipe 115 and the flow path switching units R1 to R4 are changed to the hexagonal valve V60.
  • This is a collection of devices.
  • the treated water pipe 40 is connected to the treated water supply pipe 111 by the first flow path 61 in the six-way valve V60.
  • the permeated water outflow pipe 112 through which the permeated water of the first ultrafiltration membrane device 11 flows is connected to the treated water supply pipe 121 by the second flow path 62 of the hexagonal valve V60.
  • the permeated water outflow pipe 122 through which the permeated water of the second ultrafiltration membrane device 12 flows is connected to the ultrapure water pipe 30 by the third flow path 63 of the six-way valve V60.
  • to-be-processed water flows the 1st ultrafiltration membrane apparatus 11 and the 2nd ultrafiltration membrane apparatus 12 in order.
  • the hexagonal valve V60 When changing the flow order of the water to be treated in the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 by exchanging the ultrafiltration membrane module or the like, the hexagonal valve V60 is switched. Then, the permeate outflow pipe 122 and the treated water supply pipe 111 are connected by the first flow path 61. Further, the treated water pipe 40 and the treated water supply pipe 121 are connected by the second flow path 62. Further, the permeate outflow pipe 112 and the ultrapure water pipe 30 are connected by the third flow path 63. Thereby, to-be-processed water flows the 2nd ultrafiltration membrane apparatus 12 and the 1st ultrafiltration membrane apparatus 11 in order.
  • the first ultrafiltration membrane device 11 and the second ultrafiltration membrane are operated by operating the six-way valve V60 as described above.
  • the flow order of the to-be-processed water of the apparatus 12 can be changed.
  • the 1st ultrafiltration membrane apparatus 11 and the 2nd ultrafiltration membrane apparatus 12 are replaced
  • the startup operation time after replacement with a new module is remarkably shortened, high-quality ultrapure water can be efficiently produced.
  • the arrangement positions of the introduction port, the permeate outlet and the concentrated water outlet in the housing of the ultrafiltration membrane module provided in the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 are common to each other. To do. Therefore, any ultrafiltration membrane module can be transferred without changing the arrangement and form of the ultrapure water production system pipe connected to the inlet of the ultrafiltration membrane module, the permeate outlet and the concentrated outlet. These can also be exchanged.
  • FIG. 12 is a schematic diagram showing a configuration in which two or more ultrafiltration membrane units including two ultrafiltration membrane devices connected in series are connected in parallel.
  • the secondary pure water production unit 13 shown in FIG. 12 includes an ultrafiltration membrane unit 17x including a first ultrafiltration membrane device 11x and a second ultrafiltration membrane device 12x, and a first ultrafiltration membrane device. 11y and an ultrafiltration membrane unit 17y comprising a second ultrafiltration membrane device 12y, and an ultrafiltration membrane unit 17z comprising a first ultrafiltration membrane device 11z and a second ultrafiltration membrane device 12z In parallel.
  • the ultrafiltration membrane unit 17x, the ultrafiltration membrane unit 17y, and the ultrafiltration membrane unit 17z are treated water pipes 171x, 171y, and 171z through which the treated water flows, respectively, and in the preceding stage of each ultrafiltration membrane unit. Open / close valves V17x, V17y, and V17z interposed in the treated water supply pipes 171x, 171y, and 171z, respectively.
  • a new ultrafiltration membrane module is arranged in the previous stage in the same manner as described above, and the ultrafiltration membrane module used over time is arranged in the subsequent stage, whereby the ultrafiltration membrane module is arranged.
  • the ultrafiltration membrane device can be started up. Further, by combining opening / closing of the open / close valves V17x, V17y, and V17z, one of the three ultrafiltration membrane units can be replaced with an ultrafiltration membrane module in the same manner as in the first to third embodiments. In addition to starting up the ultrafiltration membrane device, the production of ultrapure water can be continued in the other two units.
  • the aspect which connected three ultrafiltration membrane units in parallel was shown in FIG.
  • each ultrafiltration membrane device may have a plurality of ultrafiltration membrane modules as long as it is one or more.
  • the ultrafiltration membrane device has a plurality of ultrafiltration membrane modules, for example, the number of ultrafiltration membrane modules included in the previous ultrafiltration membrane device 11x, and the limit included in the subsequent ultrafiltration membrane device 12x
  • the number of filtration membrane modules is preferably the same. That is, it is preferable that the number of the ultrafiltration membrane modules which ultrafiltration membrane apparatus 11x and 12x have is the same, and ultrafiltration membrane apparatus 11y and 12y and ultrafiltration membrane apparatus 11z and 12z are the same.
  • former stage of each unit has is also the same. That is, it is preferable that the number of ultrafiltration membrane modules included in the ultrafiltration membrane devices 11x, 11y, and 11z is the same. If the number of these ultrafiltration membrane modules is not the same, a single flow or the like in which the flow rate of each unit or apparatus is biased may occur, and the replacement cycle may be significantly shortened or the water quality may be deteriorated.
  • FIG. 13 is a schematic diagram showing a configuration having an ultrafiltration membrane module in which a plurality of one-stage ultrafiltration membrane devices are arranged in parallel.
  • the secondary pure water production unit 13 shown in FIG. 13 includes a first ultrafiltration membrane device 11 and a second ultrafiltration membrane having a configuration in which the first ultrafiltration membrane modules 110p, 110q, and 110r are connected in parallel.
  • a second ultrafiltration membrane device 12 having a configuration in which modules 120p, 120q, and 120r are connected in parallel is provided.
  • the group of ultrafiltration membrane modules connected in parallel in the single-stage ultrafiltration membrane device is grouped together, and the previous ultrafiltration membrane module group (the ultrafiltration membrane of the ultrafiltration membrane device 11 has).
  • FIG. 13 shows a mode in which one ultrafiltration membrane device has three ultrafiltration membrane modules connected in parallel, the number of ultrafiltration membrane modules connected in parallel is two or four. The same applies to more than one.
  • FIG. 14 shows an ultrafiltration membrane module in which two or more ultrafiltration membrane units composed of two ultrafiltration membrane devices connected in series are connected in parallel, and a plurality of one-stage ultrafiltration membrane devices are arranged in parallel. It is the schematic showing the structure which has.
  • the 14 includes an ultrafiltration membrane unit 17x including a first ultrafiltration membrane device 11x and a second ultrafiltration membrane device 12x, and a first ultrafiltration membrane device 11y and a second limit.
  • An ultrafiltration membrane unit 17y including the outer filtration membrane device 12y is provided in parallel.
  • Each of the first ultrafiltration membrane device 11x and the ultrafiltration membrane device 11y has a configuration in which the first ultrafiltration membrane modules 110p, 110q, and 110r are connected in parallel.
  • Each of the filtration membrane device 12x and the ultrafiltration membrane device 12y has a configuration in which the second ultrafiltration membrane modules 120p, 120q, and 120r are connected in parallel.
  • a group of ultrafiltration membrane modules connected in parallel in a single-stage ultrafiltration membrane device are grouped together, and the ultrafiltration membrane module group on the upstream side is collected.
  • a new ultrafiltration membrane module is arranged in the front stage between the ultrafiltration membrane module group on the rear stage side and the ultrafiltration membrane module used over time.
  • the ultrafiltration membrane module can be replaced and the ultrafiltration membrane device can be started up.
  • the startup operation time after replacement with a new module is significantly reduced. Therefore, high-quality ultrapure water can be efficiently produced.
  • the arrangement positions of the introduction port, the permeate outlet and the concentrated water outlet in the housing of the ultrafiltration membrane module provided in the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 are common to each other. To do. Therefore, any ultrafiltration membrane module can be transferred without changing the arrangement and form of the ultrapure water production system pipe connected to the inlet of the ultrafiltration membrane module, the permeate outlet and the concentrated outlet. These can also be exchanged.
  • the same ultrafiltration membrane device made by Asahi Kasei Co., Ltd. with the same specifications (the shape and properties of the ultrafiltration membrane, the shape of the ultrafiltration membrane module, etc.) , OLT-6036).
  • the second ultrafiltration membrane device After processing the raw water for one year continuously, the second ultrafiltration membrane device is replaced with a new one, and the new second ultrafiltration membrane device and the first ultrafiltration membrane device are in this order.
  • the liquid was passed through and started up for 20 hours.
  • the start-up operation was performed by supplying ultrapure water to the heat exchanger.
  • the change with time of the number of fine particles having a particle diameter of 20 nm or more contained in the treated water of the first ultrafiltration membrane device was examined.
  • a particle measuring device UltraDI-20 manufactured by Particle Measuring Systems was used for the measurement of the number of fine particles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Provided are: an ultrapure-water production system that has an ultrafiltration membrane device and makes it possible to shorten the time that it takes for the ultrapure-water production system to be started; and an operation method for the ultrapure-water production system. An ultrapure-water production system that includes: a first ultrafiltration membrane module 110 that houses a first ultrafiltration membrane and has a first introduction port 11a that introduces water to be treated, a first permeate water outflow part 11b, and a first concentrate water outflow port 11c; and a second ultrafiltration membrane module 120 that houses a second ultrafiltration membrane and has a second introduction port 12a that introduces water to be treated, a second permeate water outflow port 12b that discharges permeate water, and a second concentrate water outflow port 12c that discharges concentrate water. The modules have the same size and shape, the introduction ports, permeate water outflow ports, and concentrate water outflow ports of the modules are arranged at the same locations on each module, and the first ultrafiltration membrane and second ultrafiltration membrane have the same molecular weight cutoff and/or effective membrane area.

Description

超純水製造システム及び超純水製造システムの運転方法Ultrapure water production system and method of operating ultrapure water production system
 本発明は、超純水製造システム及び超純水製造システムの運転方法に関する。 The present invention relates to an ultrapure water production system and an operation method of the ultrapure water production system.
 従来、半導体製造工程で使用する超純水は、超純水製造システムを用いて製造されている。超純水製造システムは、例えば、原水中の懸濁物質を除去して前処理水を得る前処理部、前処理水中の全有機炭素(TOC)成分やイオン成分を、逆浸透膜装置やイオン交換装置を用いて除去して一次純水を製造する一次純水製造部及び一次純水中の極微量の不純物を除去して超純水を製造する二次純水製造部で構成されている。原水としては、市水、井水、地下水、工業用水等が用いられる他、超純水の使用場所(ユースポイント:POU)で回収された使用済みの超純水(以下、「回収水」と称する。)が用いられる。 Conventionally, ultrapure water used in a semiconductor manufacturing process is manufactured using an ultrapure water manufacturing system. The ultrapure water production system includes, for example, a pretreatment unit that removes suspended substances in raw water to obtain pretreatment water, total organic carbon (TOC) components and ion components in pretreatment water, reverse osmosis membrane devices and ions It consists of a primary pure water production section that produces primary pure water by removing using an exchange device, and a secondary pure water production section that produces ultrapure water by removing trace amounts of impurities in the primary pure water. . As raw water, city water, well water, groundwater, industrial water, etc. are used, and used ultrapure water (hereinafter referred to as “recovered water”) collected at the place of use of ultrapure water (use point: POU). Is used).
 二次純水製造部では、紫外線酸化装置、イオン交換純水装置及び限外ろ過膜(UF)装置等により一次純水が高度に処理されて超純水が生成する。限外ろ過膜装置は、この二次純水製造部の最後段付近に配置され、イオン交換樹脂などから生じる微粒子を除去する。 In the secondary pure water production department, primary pure water is highly processed by an ultraviolet oxidation device, an ion exchange pure water device, an ultrafiltration membrane (UF) device, or the like to generate ultrapure water. The ultrafiltration membrane device is disposed in the vicinity of the last stage of the secondary pure water production unit, and removes fine particles generated from an ion exchange resin or the like.
 ところで、超純水については、高純度化に対する要求が年々高まってきており、例えば微粒子濃度は、粒子径が50nm以上の微粒子数で、1pcs./mL以下が求められている。さらに、要求水質はより厳しくなる傾向にあり、粒子径が50nm未満、例えば10nm程度の微粒子の低減も求められてきている。そのため、より粒子径の小さな微粒子を高度に除去する方法が提案されている(例えば、特許文献1、2参照。)。 By the way, with respect to ultrapure water, the demand for high purity is increasing year by year. For example, the fine particle concentration is 1 pcs. / ML or less is required. Furthermore, the required water quality tends to be severer, and the reduction of fine particles having a particle diameter of less than 50 nm, for example, about 10 nm has been demanded. Therefore, a method for highly removing fine particles having a smaller particle diameter has been proposed (see, for example, Patent Documents 1 and 2).
 超純水製造システムの新規建設後の立ち上げ時や定期検査などによる休止後の再立ち上げ時には、超純水製造システム系内に混入・発生する不純物を除去してユースポイント近辺における超純水が所望の水質に至るまで洗浄試運転(立ち上げ運転)を行う。近年、省資源や工場の稼動効率の向上を目的として、立ち上げ運転時間の短縮が強く求められている。しかしながら、微細微粒子を高度に除去しようとするほど立ち上げ運転時間は長期化する傾向にある。 When the ultrapure water production system is started up after new construction or when it is restarted after an outage due to periodic inspections, the ultrapure water in the vicinity of the point of use is removed by removing impurities mixed in and generated in the ultrapure water production system. Cleaning trial operation (start-up operation) is performed until the water reaches the desired water quality. In recent years, shortening of start-up operation time has been strongly demanded for the purpose of saving resources and improving the operation efficiency of factories. However, the start-up operation time tends to be longer as the fine particles are removed more highly.
 また、特許文献3には、通常運転時に使用する限外ろ過膜(第1の微粒子除去膜装置)の後段に洗浄用の限外ろ過膜(第2の微粒子除去膜装置)を設置しておいて、洗浄時にこの限外ろ過膜に洗浄水を通水し、第1の微粒子除去膜装置については、洗浄水を膜透過させずに給水側のみの洗浄を行うか、あるいは、第1の微粒子除去膜装置には洗浄水を通水せずに予め殺菌処理した微粒子除去膜と交換する方法が開示されている。しかし、この方法では、通常運転時は第2の微粒子除去膜装置が長期間運転されないため、この場所に菌が発生したり、配管のデッドスペースに不純物の蓄積が起きるなどの問題があった。したがって、このような装置においても短時間での立ち上げを行うことは困難であった。 In Patent Document 3, a cleaning ultrafiltration membrane (second particulate removal membrane device) is installed after the ultrafiltration membrane (first particulate removal membrane device) used during normal operation. In the first fine particle removal membrane device, the washing is performed only on the water supply side without allowing the washing water to pass through the membrane, or the first fine particles are passed through the ultrafiltration membrane at the time of washing. In the removal membrane apparatus, a method of replacing the particulate removal membrane that has been sterilized in advance without passing washing water is disclosed. However, in this method, since the second particulate removal membrane device is not operated for a long time during normal operation, there are problems such as generation of bacteria at this place and accumulation of impurities in the dead space of the pipe. Therefore, it is difficult to start up in such a device in a short time.
 また、上記のような微細微粒子以外にも、限外ろ過膜の劣化又は破断時に特徴的な大きさ、形状の粗大粒子が超純水中に発生することも知られている(例えば、特許文献4参照。)。 In addition to the fine particles as described above, it is also known that coarse particles having a characteristic size and shape are generated in ultrapure water when the ultrafiltration membrane is deteriorated or broken (for example, Patent Documents). 4).
特開2016-064342号公報JP 2016-0664342 A 国際公開2015/050125号International Publication No. 2015/050125 国際公開2015/012248号International Publication No. 2015/012248 特開2016-083646号公報JP 2016-083646 A
 本発明は上記した課題を解決するためになされたものであって、限外ろ過膜装置を有する超純水製造システムの立ち上げ運転時間を短縮することのできる超純水製造システム及び超純水製造システムの運転方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an ultrapure water production system and ultrapure water that can shorten the start-up operation time of an ultrapure water production system having an ultrafiltration membrane device. An object is to provide a method of operating a manufacturing system.
 本発明の超純水製造システムは、直列に接続された複数の限外ろ過膜モジュールを有する超純水製造システムであって、前記複数の限外ろ過膜モジュールは、被処理水を内部に導入する第1の導入口と、透過水を流出させる第1の透過水流出口と、濃縮水を流出させる第1の濃縮水流出口を有し、内部に第1の限外ろ過膜を収容する第1の限外ろ過膜モジュールと、被処理水を内部に導入する第2の導入口と、透過水を流出させる第2の透過水流出口と、濃縮水を流出させる第2の濃縮水流出口を有し、内部に第2の限外ろ過膜を収容する第2の限外ろ過膜モジュールとを含み、前記第1の限外ろ過膜モジュールと前記第2の限外ろ過膜モジュールの形状及び大きさが共通であって、前記第1の導入口と前記第2の導入口、前記第1の透過水流出口と前記第2の透過水流出口、前記第1の濃縮水流出口と前記第2の濃縮水流出口、のそれぞれが各モジュール内で共通する位置に配設されており、かつ、前記第1の限外ろ過膜と前記第2の限外ろ過膜が共通の分画分子量及び/又は有効膜面積を有することを特徴とする。 The ultrapure water production system of the present invention is an ultrapure water production system having a plurality of ultrafiltration membrane modules connected in series, wherein the plurality of ultrafiltration membrane modules introduces water to be treated inside. A first permeate outlet for allowing the permeate to flow out, and a first concentrate outlet for allowing the concentrated water to flow out, and the first ultrafiltration membrane is accommodated therein. An ultrafiltration membrane module, a second inlet for introducing the water to be treated, a second permeate outlet for allowing the permeate to flow out, and a second concentrated water outlet for allowing the concentrate to flow out. And a second ultrafiltration membrane module containing a second ultrafiltration membrane therein, and the shape and size of the first ultrafiltration membrane module and the second ultrafiltration membrane module are The first inlet, the second inlet, and the first transmission are common. An outlet, the second permeate outlet, the first concentrated water outlet, and the second concentrated water outlet are respectively disposed in a common position in each module, and the first The ultrafiltration membrane and the second ultrafiltration membrane have a common fractional molecular weight and / or an effective membrane area.
 本発明の超純水製造システムにおいて、前記被処理水の流路が、前記第1の限外ろ過膜モジュールから前記第2の限外ろ過膜モジュールへ順に通流する第1の流路と、前記第2の限外ろ過膜モジュールから前記第1の限外ろ過膜モジュールへ順に通流する第2の流路と、で接続する配管のつなぎ替え又は前記配管のバルブの切り替えによって変更可能に構成されたことが好ましい。 In the ultrapure water production system of the present invention, the flow path of the water to be treated passes through the first ultrafiltration membrane module to the second ultrafiltration membrane module in order, A second flow path that sequentially flows from the second ultrafiltration membrane module to the first ultrafiltration membrane module, and can be changed by reconnecting pipes connected or switching valves of the pipes. It is preferred that
 本発明の超純水製造システムにおいて、前記複数の限外ろ過膜モジュールの形状及び大きさがすべて共通し、前記複数の限外ろ過膜モジュールは、導入口、透過水流出口及び濃縮水流出口がすべて共通する位置に配設されていることが好ましい。 In the ultrapure water production system of the present invention, the shapes and sizes of the plurality of ultrafiltration membrane modules are all common, and the plurality of ultrafiltration membrane modules are all provided with an inlet, a permeate outlet, and a concentrated water outlet. It is preferable that they are arranged at a common position.
 本発明の超純水製造システムにおいて、前記第1の透過水流出口に接続された第1の透過水流出管と、前記第1の透過水流出管から分岐して接続された第1の移送配管及び第1の超純水配管と、前記第1の移送配管及び第1の超純水配管にそれぞれ介装され、前記第1の透過水流出管からの透過水の流路を前記第1の移送配管と前記第1の超純水配管で切り替えられる、2つの開閉バルブと、前記第2の透過水流出口に接続された第2の透過水流出管と、前記第2の透過水流出管に分岐して接続された第2の移送配管及び第2の超純水配管と、前記第2の移送配管及び第2の超純水配管にそれぞれ介装され、前記第2の透過水流出管からの透過水の流路を前記第2の移送配管と前記第2の超純水配管で切り替えられる、2つの開閉バルブと、前記第1の導入口に接続された第1の被処理水供給管と、前記第2の導入口に接続された第2の被処理水供給管と、前記第1の被処理水供給管と第2の被処理水供給管に介装され、被処理水の供給流路を前記第1の被処理水供給管と前記第2の被処理水供給管で切り替えられる、2つの開閉バルブとを有し、前記第1の移送配管は前記第2の被処理水供給管に接続され、前記第2の移送配管は前記第1の被処理水供給管に接続され、前記6つの開閉バルブの開閉の組み合わせによって、被処理水の流路を、前記第1の限外ろ過膜モジュールから前記第2の限外ろ過膜モジュールへ通流する第1の流路と、前記第2の限外ろ過膜モジュールから前記第1の限外ろ過膜モジュールへ通流する第2の流路と、で切替可能に構成されたことが好ましい。 In the ultrapure water production system of the present invention, a first permeate outflow pipe connected to the first permeate outflow outlet, and a first transfer pipe branched and connected from the first permeate outflow pipe And the first ultrapure water pipe, the first transfer pipe and the first ultrapure water pipe, respectively, and the flow path of the permeate from the first permeate outflow pipe is the first Two open / close valves that can be switched between a transfer pipe and the first ultrapure water pipe, a second permeate outflow pipe connected to the second permeate outflow outlet, and a second permeate outflow pipe The second transfer pipe and the second ultrapure water pipe that are branched and connected, and the second transfer pipe and the second ultrapure water pipe are respectively interposed from the second permeate outflow pipe. Two on-off valves that can switch the flow path of the permeated water between the second transfer pipe and the second ultrapure water pipe; A first treated water supply pipe connected to the first inlet, a second treated water supply pipe connected to the second inlet, and the first treated water supply pipe; Two open / close valves interposed in the second treated water supply pipe and switching the treated water supply flow path between the first treated water supply pipe and the second treated water supply pipe The first transfer pipe is connected to the second treated water supply pipe, the second transfer pipe is connected to the first treated water supply pipe, and the six open / close valves are opened and closed. A first flow path for passing the flow path of the water to be treated from the first ultrafiltration membrane module to the second ultrafiltration membrane module, and the second ultrafiltration membrane. It is preferable that the switch is configured to be switchable between the module and the second flow path that flows from the module to the first ultrafiltration membrane module. .
 本発明の超純水製造システムにおいて、前記流路を繰り替えられる組み合わせの前記2つの開閉バルブに代えて、内部に2つの流路を切替可能な1つの三方バルブを、前記分岐して接続された配管の分岐点に関し前記三方バルブによって、被処理水の流路を、前記第1の限外ろ過膜モジュールから前記第2の限外ろ過膜モジュールへ通流する第1の流路と前記第2の限外ろ過膜モジュールから前記第1の限外ろ過膜モジュールへ通流する第2の流路と、で切替可能に構成されたことが好ましい。 In the ultrapure water production system of the present invention, instead of the two open / close valves in a combination in which the flow paths can be repeated, one three-way valve capable of switching two flow paths is branched and connected. With respect to the branching point of the piping, the three-way valve allows the first flow path and the second flow path to pass the flow path of the water to be treated from the first ultrafiltration membrane module to the second ultrafiltration membrane module. It is preferable that the second ultrafiltration membrane module is configured to be switchable between the first ultrafiltration membrane module and the second flow channel that flows to the first ultrafiltration membrane module.
 また、本発明の超純水製造システムにおいて、前記第1の透過水流出口に接続された第1の透過水流出管と、前記第1の導入口に接続された第1の被処理水供給管と、前記第2の透過水流出口に接続された第2の透過水流出管と、前記第2の導入口に接続された第2の被処理水供給管と、前記第1の被処理水供給管又は第2の被処理水供給管に被処理水を供給する被処理水管と、前記第1の透過水流出管又は前記第2の透過水流出管からの透過水を超純水の使用場所に送る超純水配管と、前記第1の限外ろ過膜モジュールの透過水を前記第2の被処理水供給管へ又は前記第2の限外ろ過膜モジュールの透過水を前記第1の被処理水供給管へ移送する移送配管と、前記被処理水管からの被処理水の流路を、前記第1の被処理水供給管と前記第2の被処理水供給管とで切り替えられる第1の流路切替部と、前記超純水配管に流入させる限外ろ過膜の透過水の流路を前記第1の透過水流出管と前記第2の透過水流出管とで着かえられる第2の流路切替部と、前記移送配管からの透過水の流路を前記第1の被処理水供給管と前記第2の被処理水供給管とで切り替えられる第3の流路切替部と、前記移送配管に流入させる透過水の流路を、前記第1の透過水流出管と前記第2の透過水流出管とで切り替えられる第4の流路切替部を有し、前記第1乃至第4の流路切替部の切替により、被処理水の流路を、前記第1の限外ろ過膜モジュールから前記第2の限外ろ過膜モジュールへ通流する第1の流路と前記第2の限外ろ過膜モジュールから前記第1の限外ろ過膜モジュールへ通流する第2の流路で切替可能に構成されたことが好ましい。 In the ultrapure water production system of the present invention, a first permeate outflow pipe connected to the first permeate outlet and a first treated water supply pipe connected to the first inlet. A second permeate outflow pipe connected to the second permeate outlet, a second treated water supply pipe connected to the second inlet, and the first treated water supply A treated water pipe for supplying treated water to a pipe or a second treated water supply pipe, and a place where ultrapure water is used as permeated water from the first permeated water outflow pipe or the second permeated water outflow pipe And the permeated water of the first ultrafiltration membrane module to the second treated water supply pipe or the permeated water of the second ultrafiltration membrane module to the first treated water pipe. A transfer pipe for transferring to the treated water supply pipe and a flow path of the treated water from the treated water pipe are connected to the first treated water supply pipe and the first treated water supply pipe. A first flow path switching section that is switched between the first permeated water outlet pipe and the second permeated water flow path of the ultrafiltration membrane that flows into the ultrapure water pipe. A second flow path switching unit that is replaced with a permeated water outflow pipe, and a flow path of permeated water from the transfer pipe with the first treated water supply pipe and the second treated water supply pipe A fourth flow path that can be switched between the first permeate outflow pipe and the second permeate outflow pipe. A channel switching unit, and by switching the first to fourth channel switching units, the channel of the water to be treated is changed from the first ultrafiltration membrane module to the second ultrafiltration membrane module. A first flow path that flows and a second flow that flows from the second ultrafiltration membrane module to the first ultrafiltration membrane module In it it is preferable that is switchably configured.
 本発明の超純水製造システムにおいて、前記第1及び第3の流路切替部並びに前記第2及び第4の流路切替部のそれぞれの組み合わせに代えて、内部に少なくとも2つの流路を有してこれらの接続の切替が可能な2つの四方バルブを有し、前記四方バルブによって、被処理水の流路を、前記第1の限外ろ過膜モジュールから前記第2の限外ろ過膜モジュールへ通流する第1の流路と前記第2の限外ろ過膜モジュールから前記第1の限外ろ過膜モジュールへ通流する第2の流路で切替可能に構成されたことが好ましい。 In the ultrapure water production system of the present invention, at least two flow paths are provided inside instead of the respective combinations of the first and third flow path switching sections and the second and fourth flow path switching sections. And two four-way valves capable of switching these connections, and the flow path of the water to be treated is changed from the first ultrafiltration membrane module to the second ultrafiltration membrane module by the four-way valve. It is preferable that the first flow path to flow to and the second flow path to flow from the second ultrafiltration membrane module to the first ultrafiltration membrane module are switchable.
 本発明の超純水製造システムの運転方法は、直列に接続された複数の限外ろ過膜モジュールを有し、前段の限外ろ過膜モジュールの有する限外ろ過膜と後段の限外ろ過モジュールの有する限外ろ過膜の分画分子量及び/又は有効膜面積が共通する超純水製造システムの運転方法であって、
 超純水製造時に前記複数の限外ろ過膜モジュールのうち後段の限外ろ過膜モジュールは前段の限外ろ過膜モジュールの透過水を処理し、前記複数の限外ろ過膜モジュールのうち少なくとも1つを交換する際に、前記超純水製造時における後段の限外ろ過膜モジュールを新品の限外ろ過膜モジュールに交換し、前記新品の限外ろ過膜モジュールを前段とし、交換されない限外ろ過膜モジュールを後段として流路を切り替え、前記複数の限外ろ過膜モジュールに洗浄水を通流させて超純水製造システムの立ち上げを行うことを特徴とする。
The operation method of the ultrapure water production system of the present invention has a plurality of ultrafiltration membrane modules connected in series, and includes an ultrafiltration membrane of the former ultrafiltration membrane module and a subsequent ultrafiltration module. A method for operating an ultrapure water production system having a common molecular weight cut-off and / or effective membrane area of an ultrafiltration membrane,
Of the plurality of ultrafiltration membrane modules during the production of ultrapure water, the latter ultrafiltration membrane module processes the permeated water of the preceding ultrafiltration membrane module, and at least one of the plurality of ultrafiltration membrane modules When replacing the ultrafiltration membrane module in the ultrapure water production, replace the latter ultrafiltration membrane module with a new ultrafiltration membrane module, and set the new ultrafiltration membrane module as the previous stage, and not replace the ultrafiltration membrane. The ultrapure water production system is started up by switching the flow path with the module as the latter stage and allowing the wash water to flow through the plurality of ultrafiltration membrane modules.
 本発明の超純水製造システムの運転方法において、前記限外ろ過膜モジュールの交換は、超純水製造時における後段の限外ろ過膜モジュールの透過水中に含まれる粒子径20nm以上の微粒子が1000pcs./L以上となったときに行うことが好ましい。 In the operation method of the ultrapure water production system of the present invention, the ultrafiltration membrane module is replaced by 1000 pcs of fine particles having a particle size of 20 nm or more contained in the permeated water of the subsequent ultrafiltration membrane module at the time of ultrapure water production. . It is preferable to carry out when it becomes / L or more.
 なお、新品とは、必ずしも製造直後のものでなくてもよく、交換前のものよりも使用された期間が短く、経時劣化の少ないものをいう。 In addition, a new article does not necessarily have to be a product immediately after manufacture, and means a product that has been used for a shorter period of time and less deteriorated over time than a product before replacement.
 本発明の超純水製造システム及び超純水製造方法によれば、限外ろ過膜装置を有する超純水製造システムの立ち上げ運転時間を短縮することができる。 According to the ultrapure water production system and the ultrapure water production method of the present invention, it is possible to shorten the startup operation time of the ultrapure water production system having the ultrafiltration membrane device.
実施形態に係る超純水製造システムを概略的に表すブロック図である。1 is a block diagram schematically illustrating an ultrapure water production system according to an embodiment. 2つの限外ろ過膜装置を接続する配管の構成の一態様を概略的に表す図である。It is a figure which represents roughly the one aspect | mode of the structure of piping which connects two ultrafiltration membrane apparatuses. 図2Aに示される限外ろ過膜モジュールの構造を概略的に表す図である。It is a figure which represents roughly the structure of the ultrafiltration membrane module shown by FIG. 2A. 2つの限外ろ過膜装置を接続する配管の構成の他の一態様を概略的に表す図である。It is a figure which represents roughly another one aspect | mode of the structure of piping which connects two ultrafiltration membrane apparatuses. 図3Aに示される限外ろ過膜モジュールの構造を概略的に表す図である。It is a figure which represents roughly the structure of the ultrafiltration membrane module shown by FIG. 3A. 2つの限外ろ過膜装置を接続する配管の構成と、被処理水の流路を概略的に表す図である。It is a figure which represents roughly the structure of the piping which connects two ultrafiltration membrane apparatuses, and the flow path of to-be-processed water. 図4に示す構成において、被処理水の他の流路を概略的に表す図である。In the structure shown in FIG. 4, it is a figure which represents roughly the other flow path of to-be-processed water. 図4に示す構成に対して、三方バルブを用いた場合の配管の構成の一態様を概略的に表す図である。It is a figure which represents roughly the one aspect | mode of the structure of piping at the time of using a three-way valve with respect to the structure shown in FIG. 図4に示す構成に対して、流路切替部を用いた場合の配管の構成と、被処理水の流路を概略的に表す図である。FIG. 5 is a diagram schematically illustrating a configuration of a pipe when a flow path switching unit is used and a flow path of water to be treated with respect to the configuration illustrated in FIG. 4. 図7に示す構成において、被処理水の他の流路を概略的に表す図である。In the structure shown in FIG. 7, it is a figure which represents roughly the other flow path of to-be-processed water. 図7に示す構成において、流路切替を配管のつなぎ替えにより行う構成の一態様を示す図である。In the configuration shown in FIG. 7, it is a diagram showing an aspect of a configuration in which the flow path switching is performed by switching the pipes. 図9Aに示す構成に対して、配管のつなぎ替えを行い、流路を切り替えた構成の一例を示す図である。It is a figure which shows an example of the structure which changed the connection of piping with respect to the structure shown to FIG. 9A, and switched the flow path. 図4に示す構成に対して、四方バルブを用いた場合の配管の構成の一態様を概略的に表す図である。It is a figure which represents roughly the one aspect | mode of the structure of piping at the time of using a four-way valve with respect to the structure shown in FIG. 図4に示す構成に対して、六方バルブを用いた場合の配管の構成の一態様を概略的に表す図であるFIG. 5 is a diagram schematically illustrating an aspect of a configuration of a pipe when a six-way valve is used with respect to the configuration illustrated in FIG. 4. 直列に接続された2台の限外ろ過膜装置からなる限外ろ過膜ユニットを2つ以上並列に接続した構成を表す概略図である。It is the schematic showing the structure which connected in parallel two or more ultrafiltration membrane units which consist of two ultrafiltration membrane apparatuses connected in series. 直列に接続された2台の限外ろ過膜装置からなる限外ろ過膜ユニットにおいて、1段の限外ろ過膜装置が、複数並列した限外ろ過膜モジュールを有する構成を表す概略図である。In the ultrafiltration membrane unit which consists of two ultrafiltration membrane apparatuses connected in series, it is the schematic showing the structure which has the ultrafiltration membrane module in which one stage ultrafiltration membrane apparatus was arranged in parallel. 直列に接続された2つの限外ろ過膜装置からなる限外ろ過膜ユニットを2つ以上並列に接続し、1段の限外ろ過膜装置が複数並列した限外ろ過膜モジュールを有する構成を表す概略図である。Two or more ultrafiltration membrane units composed of two ultrafiltration membrane devices connected in series are connected in parallel, and a configuration having an ultrafiltration membrane module in which a plurality of one-stage ultrafiltration membrane devices are arranged in parallel is represented. FIG. 実施例及び比較例の立ち上げ運転における処理時間と微粒子数の関係を示すグラフである。It is a graph which shows the relationship between the processing time in the starting operation of an Example and a comparative example, and the number of fine particles.
 以下、図面を参照して、実施形態を詳細に説明する。
 一般に超純水製造システムでは、その新規建設後の立ち上げ時や、装置交換又は定期検査などによる休止後の再立ち上げ時に、超純水製造システム系内に混入・発生する不純物を除去してユースポイントにおける超純水が所望の水質に至るまで洗浄試運転(立ち上げ運転)を行う。例えば、装置交換や定期検査などによる装置の休止後には、超純水製造システム系内に過酸化水素水を通水することで殺菌して、その後に立ち上げ運転を行う。この立ち上げ運転では、超純水製造システム内に純水を連続通水して、超純水製造システム内の水処理装置や配管などの流路内に付着した不純物を洗い流す。立ち上げ運転で除去される不純物は、超純水製造システムの製造時や検査・交換時に外部から混入した不純物や、超純水製造システムに配置された水処理装置の構成部材からの発塵などである。特に、新規に製造された水処理装置では、経年使用された水処理装置に比べて発塵が多く、装置交換等により新品の水処理装置を配設した後の立ち上げ運転には長期間を要する場合があった。
Hereinafter, embodiments will be described in detail with reference to the drawings.
In general, in an ultrapure water production system, impurities that are mixed and generated in the ultrapure water production system are removed at the time of start-up after the new construction, or at the time of re-startup after an outage due to equipment replacement or periodic inspection. The cleaning trial operation (start-up operation) is performed until the ultrapure water at the use point reaches the desired water quality. For example, after the apparatus is stopped due to apparatus replacement or periodic inspection, hydrogen peroxide water is sterilized by passing it through the ultrapure water production system, and then the startup operation is performed. In this start-up operation, pure water is continuously passed through the ultrapure water production system to wash away impurities adhering to the flow paths of water treatment devices and pipes in the ultrapure water production system. Impurities removed during start-up operations include impurities mixed in from the outside during manufacturing, inspection and replacement of ultrapure water production systems, and dust generation from components of water treatment equipment installed in ultrapure water production systems. It is. In particular, a newly manufactured water treatment device generates more dust than a water treatment device that has been used for many years, and it takes a long time to start up after installing a new water treatment device by replacing the device. Sometimes it took.
 本発明者らは、上記のような立ち上げ運転時間の短縮を目的として鋭意検討を行ったところ、立ち上げ時に発生する微粒子は、比較的粒子径が大きく、40nmを超え1μm以下の微粒子であることを見出した。例えば、特許文献4には限外ろ過膜の中空糸が破断した場合には、0.4~10μmの粗大微粒子が発生することが記載されている。立ち上げ運転時にも、殺菌時の過酸化水素による化学的ダメージや、膜交換、あるいは通水開始や停止時の急速な流量の変化による物理的ダメージにより、上記粗大微粒子に似たようなメカニズムで微粒子が発生するため、立ち上がりが遅くなることが分かった。また、このように、立ち上げ時の微粒子は、通常の純水製造時の微粒子よりも粒子径が大きいために、超純水製造に用いられて除去率が多少低下した限外ろ過膜でも、立ち上げ時に発生する粗大微粒子の除去は十分に可能であることを見出した。
 そこで、超純水製造時の通水を経た限外ろ過膜を、立ち上げ時の新品のフィルターの後段に設置することで早期立ち上げが可能であることを見出した。
The inventors of the present invention have intensively studied for the purpose of shortening the start-up operation time as described above. As a result, the fine particles generated at the time of start-up are particles having a relatively large particle diameter of more than 40 nm and not more than 1 μm. I found out. For example, Patent Document 4 describes that when the hollow fiber of the ultrafiltration membrane is broken, coarse particles of 0.4 to 10 μm are generated. Even during start-up operation, a mechanism similar to the above-mentioned coarse particles is applied due to chemical damage due to hydrogen peroxide during sterilization, physical exchange due to membrane exchange, or rapid flow rate change when water starts and stops. It was found that the start-up was delayed due to the generation of fine particles. In addition, in this way, since the fine particles at the time of startup are larger than the fine particles at the time of normal pure water production, even ultrafiltration membranes that have been used for ultra pure water production and have a somewhat reduced removal rate, It was found that coarse particles generated at the start-up can be sufficiently removed.
Therefore, it was found that an ultrafiltration membrane that passed through water during the production of ultrapure water could be set up early by installing it after the new filter at the time of startup.
 上記知見に基づき、本実施形態の超純水製造システムは、超純水製造システムの末端付近に配置される限外ろ過膜装置として、共通の構造及び仕様の限外ろ過膜モジュールを備えた限外ろ過膜装置を2つ以上直列に配置する構成にした。 Based on the above knowledge, the ultrapure water production system of the present embodiment is a limiter equipped with an ultrafiltration membrane module having a common structure and specifications as an ultrafiltration membrane device disposed near the end of the ultrapure water production system. Two or more outer filtration membrane devices were arranged in series.
(第1の実施形態)
 図1に示すように、第1の実施形態に係る超純水製造システム1は、前処理部14と、一次純水製造部15と二次純水製造部13とを有する。二次純水製造部13は、水中の微粒子を除去する2つの限外ろ過膜装置11、12を有する。
(First embodiment)
As shown in FIG. 1, the ultrapure water production system 1 according to the first embodiment includes a pretreatment unit 14, a primary pure water production unit 15, and a secondary pure water production unit 13. The secondary pure water production unit 13 includes two ultrafiltration membrane devices 11 and 12 that remove fine particles in water.
 前処理部14は、原水中の懸濁物質を除去して、前処理水を生成し、この前処理水を一次純水製造部15に供給する。前処理部14は例えば、原水中の懸濁物質を除去するための砂ろ過装置、精密ろ過装置等を適宜選択して構成され、さらに必要に応じて原水の温度調節を行う熱交換器等を備えて構成される。なお、原水の水質によっては、前処理部14は省略してもよい。 The pretreatment unit 14 removes suspended substances in the raw water, generates pretreatment water, and supplies the pretreatment water to the primary pure water production unit 15. For example, the pretreatment unit 14 is configured by appropriately selecting a sand filtration device, a microfiltration device, or the like for removing suspended substances in the raw water, and further includes a heat exchanger that adjusts the temperature of the raw water as necessary. It is prepared for. Note that the pretreatment unit 14 may be omitted depending on the quality of the raw water.
 原水は、例えば、市水、井水、地下水、工業用水、半導体製造工場などで使用され、回収されて処理された水(回収水)である。 Raw water is, for example, city water, well water, ground water, industrial water, water used in semiconductor manufacturing factories, etc., collected and processed (recovered water).
 一次純水製造部15は、逆浸透膜装置、脱気装置(脱炭酸塔、真空脱気装置、膜脱気装置等)、イオン交換装置(陽イオン交換装置、陰イオン交換装置、混床式イオン交換装置等)、紫外線酸化装置のうち1つ以上を適宜組み合わせて構成される。一次純水製造部15は、前処理水中のイオン成分及び非イオン成分、溶存ガスを除去して一次純水を製造し、この一次純水を二次純水製造部13に供給する。一次純水は例えば、全有機炭素(TOC)濃度が5μgC/L以下、抵抗率が17MΩ・cm以上、粒子径20nm以上の微粒子数が100000pcs./L以下である。 The primary pure water production unit 15 includes a reverse osmosis membrane device, a deaeration device (decarbonation tower, vacuum deaeration device, membrane deaeration device, etc.), ion exchange device (cation exchange device, anion exchange device, mixed bed type). An ion exchange device or the like) and an ultraviolet oxidation device are appropriately combined. The primary pure water production unit 15 produces primary pure water by removing ionic and nonionic components and dissolved gas in the pretreatment water, and supplies the primary pure water to the secondary pure water production unit 13. The primary pure water has, for example, a total organic carbon (TOC) concentration of 5 μg C / L or less, a resistivity of 17 MΩ · cm or more, and a fine particle number of 20 nm or more of 100,000 pcs. / L or less.
 二次純水製造部13は、一次純水中の微量不純物を除去して超純水を製造する。二次純水製造部13は、限外ろ過膜ユニット(第1の限外ろ過膜装置11及び第2の限外ろ過膜装置12を総称して限外ろ過膜ユニットと称する。以下同じ。)の上流側に、必要に応じて紫外線酸化装置、膜脱気装置、非再生型混床式イオン交換装置等のうち1つ以上を適宜組み合わせて構成される。 The secondary pure water production unit 13 produces ultrapure water by removing trace impurities in the primary pure water. The secondary pure water production unit 13 is an ultrafiltration membrane unit (the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 are collectively referred to as an ultrafiltration membrane unit; the same applies hereinafter). As necessary, one or more of an ultraviolet oxidizer, a membrane deaerator, a non-regenerative mixed bed ion exchanger, and the like are appropriately combined.
 限外ろ過膜装置11、12は、それぞれ、内部に限外ろ過膜を収容した限外ろ過膜モジュールを1つ以上備えており、前段の限外ろ過膜装置の透過水が後段の限外ろ過膜装置に供給されるように直列に接続されている。 Each of the ultrafiltration membrane devices 11 and 12 includes one or more ultrafiltration membrane modules each containing therein an ultrafiltration membrane, and the permeated water of the preceding ultrafiltration membrane device is used in the subsequent ultrafiltration. They are connected in series so as to be supplied to the membrane device.
 第1の限外ろ過膜装置11及び第2の限外ろ過膜装置12は、水中の例えば粒子径50nm以上の微粒子、好ましくは20nm以上の微粒子を除去する。これにより生成した超純水が使用場所(ユースポイント:POU)16に供給される。超純水は、例えば、全有機炭素(TOC)濃度が1μgC/L以下、抵抗率が18MΩ・cm以上、粒子径20nm以上の微粒子数が1000psc./L以下である。 The first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 remove, for example, fine particles having a particle diameter of 50 nm or more, preferably 20 nm or more in water. The ultrapure water thus generated is supplied to the place of use (use point: POU) 16. Ultrapure water has, for example, a total organic carbon (TOC) concentration of 1 μg C / L or less, a resistivity of 18 MΩ · cm or more, and a fine particle count of 20 ps or more of 1000 psc. / L or less.
 ここで用いられる限外ろ過膜としては、一般的に、三酢酸セルロース系非対称膜や、芳香族ポリアミド系の複合膜、ポリビニルアルコール系の複合膜等が用いられる。限外ろ過膜としては、上記のうち、ポリスルホン製の複合材を有する芳香族ポリアミド系の膜の複合膜を用いることが好ましい。膜形状は、シート平膜、スパイラル膜、管状膜、中空糸膜等であるが、これらに限定されない。第1の限外ろ過膜装置11及び第2の限外ろ過膜装置12は、いずれも共通する材料、共通する形状からなる2以上の限外ろ過膜を備えることが好ましく、第1の限外ろ過膜装置11及び第2の限外ろ過膜装置12の有するすべての限外ろ過膜で上記膜の材料及び形状が共通することがより好ましい。第1の限外ろ過膜装置11及び第2の限外ろ過膜装置12の有する限外ろ過膜で互いに材料及び形状が異なる場合、限外ろ過膜モジュールの移し替えを行った場合に、交換周期が著しく短くなりやすく、また、微粒子の除去性能が下がって水質が悪化しやすくなることがあるためである。 As the ultrafiltration membrane used here, a cellulose triacetate asymmetric membrane, an aromatic polyamide composite membrane, a polyvinyl alcohol composite membrane or the like is generally used. Of the above, it is preferable to use an aromatic polyamide membrane composite membrane having a polysulfone composite material as the ultrafiltration membrane. The membrane shape is a sheet flat membrane, a spiral membrane, a tubular membrane, a hollow fiber membrane or the like, but is not limited thereto. The first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 preferably each include two or more ultrafiltration membranes made of a common material and a common shape. It is more preferable that the materials and shapes of the membranes are common to all the ultrafiltration membranes of the filtration membrane device 11 and the second ultrafiltration membrane device 12. When the materials and shapes of the ultrafiltration membranes of the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 are different from each other, when the ultrafiltration membrane module is transferred, the replacement period This is because the water quality is likely to be significantly shortened, and the water removal quality is likely to deteriorate due to a decrease in the performance of removing fine particles.
 このような限外ろ過膜を収容する限外ろ過膜モジュールの仕様は、一例として、限外ろ過膜の分画分子量が4000~6000、有効膜面積が10m~35m、設計運転差圧は0.1MPa~0.4MPaであることが好ましい。また微粒子除去性能は、粒子径20nm以上の微粒子の除去率で65%以上であることが好ましい。第1の限外ろ過膜装置11及び第2の限外ろ過膜装置12の有する2以上の限外ろ過膜は、その少なくとも一部において上記仕様のうち、分画分子量又は有効膜面積が共通することが好ましく、分画分子量及び有効膜面積が共通することがより好ましい。また、複数の限外ろ過膜モジュールにおいて、その外径、長さ、導入口の配設位置、透過水流出口の配設位置、濃縮水流出口の配設位置、対応する配管の口径及び対応する配管の継手の形状、が全て共通することが好ましい。また、第1の限外ろ過膜装置11及び第2の限外ろ過膜装置12の有する2以上の限外ろ過膜モジュールの、すべての限外ろ過膜モジュールで上記仕様が共通することがより好ましい。限外ろ過膜モジュールで上記仕様が共通しない場合、限外ろ過膜モジュールの移し替えを行った場合に、交換周期が著しく短くなりやすく、微粒子の除去性能が下がって水質が悪化しやすくなることがあるためである。 The specification of the ultrafiltration membrane module that accommodates such an ultrafiltration membrane is, for example, that the ultrafiltration membrane has a molecular weight cut-off of 4000 to 6000, an effective membrane area of 10 m 2 to 35 m 2 , and the design operation differential pressure is The pressure is preferably 0.1 MPa to 0.4 MPa. The fine particle removal performance is preferably 65% or more in terms of the removal rate of fine particles having a particle diameter of 20 nm or more. The two or more ultrafiltration membranes possessed by the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 have a common molecular weight cut-off or effective membrane area among at least a part of the above specifications. It is preferable that the molecular weight cutoff and the effective membrane area are the same. Further, in a plurality of ultrafiltration membrane modules, the outer diameter, the length, the inlet position, the permeate outlet position, the concentrated water outlet position, the corresponding pipe diameter and the corresponding pipe It is preferable that the joints have the same shape. Moreover, it is more preferable that the above-mentioned specifications are common to all the ultrafiltration membrane modules of two or more ultrafiltration membrane modules that the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 have. . If the above specifications are not common to the ultrafiltration membrane module, when the ultrafiltration membrane module is transferred, the replacement cycle is likely to be remarkably shortened, and the water removal quality is likely to deteriorate due to the reduction of the particulate removal performance. Because there is.
 このような限外ろ過膜モジュールの市販品として、(製品名:OAT-6036、OLT-6036、OLT-5026、製造元:旭化成)等を使用することができる。 (Product names: OAT-6036, OLT-6036, OLT-5026, manufacturer: Asahi Kasei) and the like can be used as commercially available products of such ultrafiltration membrane modules.
 二次純水製造部13の直後には、微粒子計18が配置されている。微粒子計18は、水中の好ましくは粒子径50nm以上の微粒子数、より好ましくは、粒子径20nm以上の微粒子数を計測する。微粒子計18としては、例えば、Particle Measuring Systems社製の微粒子計UltraDI-20を使用することができる。微粒子計18は、これらのうち下流側(後段)の限外ろ過膜装置の透過水中の微粒子数を計測する。 Immediately after the secondary pure water production unit 13, a particle counter 18 is disposed. The fine particle meter 18 measures the number of fine particles having a particle diameter of 50 nm or more in water, more preferably the number of fine particles having a particle diameter of 20 nm or more. As the particle meter 18, for example, a particle meter UltraDI-20 manufactured by Particle Measuring Systems can be used. Of these, the particle counter 18 measures the number of particles in the permeated water of the ultrafiltration membrane device on the downstream side (rear stage).
 本実施形態の超純水製造システム1では、微粒子計18による微粒子計測数が、例えば、粒子径50nm以上の微粒子5000pcs./L以上、好ましくは粒子径20nm以上の微粒子1000pcs./L以上になったときに、限外ろ過膜ユニットにおいて、前段の限外ろ過膜装置における限外ろ過膜モジュールを後段の限外ろ過膜装置における限外ろ過膜モジュールに移設し、前段に新品の限外ろ過膜モジュールが配設されるようにする。なお、ここでの前段は水の通流時に上流側に位置することをいい、後段は下流側に位置することをいう。 In the ultrapure water production system 1 of the present embodiment, the number of fine particles measured by the fine particle meter 18 is, for example, a fine particle of 5000 pcs. / L or more, preferably fine particles having a particle diameter of 20 nm or more 1000 pcs. / L or more, in the ultrafiltration membrane unit, the ultrafiltration membrane module in the previous ultrafiltration membrane device is moved to the ultrafiltration membrane module in the subsequent ultrafiltration membrane device, and the The ultrafiltration membrane module is arranged. Here, the former stage means that it is located on the upstream side when water flows, and the latter stage means that it is located on the downstream side.
 ここで、図1に示す超純水製造システム1は、2つの限外ろ過膜装置を有しているが、超純水製造システム1は、3つ以上の直列に接続された限外ろ過膜装置を備えていてもよい。また、超純水製造システム1は、2つ以上の直列に接続された限外ろ過膜装置ユニットを2つ以上並列に接続した構成を有していてもよい。 Here, although the ultrapure water production system 1 shown in FIG. 1 has two ultrafiltration membrane devices, the ultrapure water production system 1 has three or more ultrafiltration membranes connected in series. An apparatus may be provided. Moreover, the ultrapure water production system 1 may have a configuration in which two or more ultrafiltration membrane device units connected in series are connected in parallel.
 次に、図2A及び図2Bを参照して第1の実施形態に係る限外ろ過膜モジュールの構成及び配管構成について説明する。図2Aは、本実施形態の第1の限外ろ過膜装置11及び第2の限外ろ過膜装置12を接続する配管の構成の一態様を概略的に表す図である。図2Aに示すように、第1の限外ろ過膜装置11は、第1の限外ろ過膜モジュール110を有し、第2の限外ろ過膜装置12は、第2の限外ろ過膜モジュール120を有してなる。 Next, the configuration and piping configuration of the ultrafiltration membrane module according to the first embodiment will be described with reference to FIGS. 2A and 2B. FIG. 2A is a diagram schematically illustrating an aspect of a configuration of a pipe connecting the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 of the present embodiment. As shown in FIG. 2A, the first ultrafiltration membrane device 11 has a first ultrafiltration membrane module 110, and the second ultrafiltration membrane device 12 is a second ultrafiltration membrane module. 120.
 ここで、図2Aには、1つの限外ろ過膜装置が1台の限外ろ過膜モジュールを備えた例を示しているが、これに限定されず、1つの限外ろ過膜装置が2台以上の限外ろ過膜モジュールを備えていてもよい。 Here, FIG. 2A shows an example in which one ultrafiltration membrane device includes one ultrafiltration membrane module, but the invention is not limited to this, and two ultrafiltration membrane devices are provided. You may provide the above ultrafiltration membrane module.
 図2Bは、本実施形態で使用される限外ろ過膜モジュール110の構造を概略的に表す図である。限外ろ過膜モジュール110は内空円筒状のハウジング11h内に、限外ろ過膜11mを収容している。ハウジング11hの両端は液密に封止され、それぞれ透過水流出口11bが開口している。また、ハウジング11hには、被処理水の導入口11aと濃縮水流出口11cが、それぞれ、ハウジング11hの長さ方向中央よりも両端付近の壁面に設けられている。限外ろ過膜モジュール110において、被処理水の導入口11aからハウジング11hの内部に導入された被処理水は、限外ろ過膜11mの一次側(給水側)から二次側(透過水側)に通流する過程でろ過処理され、透過水が生成する。生成した透過水は透過水流出口11bから流出する。濃縮水は限外ろ過膜11mの一次側を通流して、濃縮水流出口11cから流出する。第2の限外ろ過膜モジュール120の構造も同様であり、ハウジングの側壁に処理水の導入口12aと濃縮水流出口12cとを有し、両端に、透過水流出口12bを備えている。限外ろ過膜モジュール120内には、限外ろ過膜が収容されている。 FIG. 2B is a diagram schematically showing the structure of the ultrafiltration membrane module 110 used in the present embodiment. The ultrafiltration membrane module 110 accommodates an ultrafiltration membrane 11m in an inner hollow cylindrical housing 11h. Both ends of the housing 11h are sealed in a liquid-tight manner, and permeate outlets 11b are opened. In addition, in the housing 11h, the inlet 11a and the concentrated water outlet 11c of the water to be treated are provided on the wall surfaces near both ends from the center in the length direction of the housing 11h. In the ultrafiltration membrane module 110, the treated water introduced into the housing 11h from the treated water inlet 11a is transferred from the primary side (water supply side) to the secondary side (permeate water side) of the ultrafiltration membrane 11m. The permeated water is produced by filtration in the process of flowing through the water. The generated permeate flows out from the permeate outlet 11b. The concentrated water flows through the primary side of the ultrafiltration membrane 11m and flows out from the concentrated water outlet 11c. The structure of the second ultrafiltration membrane module 120 is also the same, and has an inlet 12a and a concentrated water outlet 12c on the side wall of the housing, and a permeate outlet 12b at both ends. An ultrafiltration membrane is housed in the ultrafiltration membrane module 120.
 また、図3Aは、本実施形態における第1の限外ろ過膜装置11及び第2の限外ろ過膜装置12を接続する配管の構成の他の一態様を概略的に表す図である。図3Aに示すように、第1の限外ろ過膜装置11は、第1の限外ろ過膜モジュール210を有し、第2の限外ろ過膜装置12は、第2の限外ろ過膜モジュール220を有してなる。 FIG. 3A is a diagram schematically showing another aspect of the configuration of the pipe connecting the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 in the present embodiment. As shown to FIG. 3A, the 1st ultrafiltration membrane apparatus 11 has the 1st ultrafiltration membrane module 210, and the 2nd ultrafiltration membrane apparatus 12 is the 2nd ultrafiltration membrane module. 220.
 ここで、図3Aでは、1つの限外ろ過膜装置が1台の限外ろ過膜モジュールを備えた例を示しているが、これに限定されず、1つの限外ろ過膜装置が2台以上の限外ろ過膜モジュールを備えていてもよい。 Here, although FIG. 3A shows an example in which one ultrafiltration membrane device includes one ultrafiltration membrane module, the invention is not limited to this, and there are two or more ultrafiltration membrane devices. The ultrafiltration membrane module may be provided.
 図3Bは、本実施形態で使用される他の限外ろ過膜モジュール210の構造を概略的に表す図である。図3Bに示す限外ろ過膜モジュール210は、図2Bに示す限外ろ過膜モジュール110とは、被処理水の導入口、透過水流出口及び濃縮水流出口の、ハウジングに対する配設位置が異なるが、その他の構成は同様である。限外ろ過膜モジュール210においては、ハウジング21hの一端に被処理水の導入口21aが開口し、他端に透過水流出口21bが開口している。また、ハウジンング21hの壁面に濃縮水流出口21cが開口している。このような、限外ろ過膜モジュール210の市販品としては、日東電工(株)社製のNTU-3306-K6R等が使用できる。第2の限外ろ過膜モジュール220も同様である。 FIG. 3B is a diagram schematically showing the structure of another ultrafiltration membrane module 210 used in the present embodiment. The ultrafiltration membrane module 210 shown in FIG. 3B is different from the ultrafiltration membrane module 110 shown in FIG. 2B in the arrangement positions of the water to be treated, the permeate outlet, and the concentrated water outlet with respect to the housing. Other configurations are the same. In the ultrafiltration membrane module 210, the inlet 21a of the water to be treated is opened at one end of the housing 21h, and the permeate outlet 21b is opened at the other end. Further, a concentrated water outlet 21c is opened on the wall surface of the housing 21h. As such a commercial product of the ultrafiltration membrane module 210, NTU-3306-K6R manufactured by Nitto Denko Corporation can be used. The same applies to the second ultrafiltration membrane module 220.
 ここで、図3Bに示す構成の限外ろ過膜モジュールを直列に接続する場合には、限外ろ過膜モジュール210の透過水流出口21bと第2の限外ろ過膜モジュール220の導入口22aを接続する。この接続は配管を用いてもよいし、第1の限外ろ過膜モジュール210の透過水流出口21bと第2の限外ろ過膜モジュール220の導入口22aを直接接続してもよい。被処理水は第1の限外ろ過膜モジュールの導入口21aから第1の限外ろ過膜モジュール210内に供給されて、ここで限外ろ過処理される。濃縮水は濃縮水流出口21cから流出し、透過水は透過水流出口21bから第2の限外ろ過膜モジュール220の導入口22aに供給される。透過水は、第2の限外ろ過膜モジュール220内に導入され、ここでろ過処理される。第2の限外ろ過膜モジュール220の濃縮水は濃縮水流出口22cから流出し、透過水が透過水流出口22bから流出する。このようにして、第2の限外ろ過膜モジュール220の透過水が超純水として得られる。 Here, when the ultrafiltration membrane modules having the configuration shown in FIG. 3B are connected in series, the permeate outlet 21b of the ultrafiltration membrane module 210 and the inlet 22a of the second ultrafiltration membrane module 220 are connected. To do. For this connection, piping may be used, or the permeated water outlet 21b of the first ultrafiltration membrane module 210 and the inlet 22a of the second ultrafiltration membrane module 220 may be directly connected. The water to be treated is supplied from the inlet 21a of the first ultrafiltration membrane module into the first ultrafiltration membrane module 210, where it is ultrafiltered. The concentrated water flows out from the concentrated water outlet 21c, and the permeated water is supplied from the permeated water outlet 21b to the inlet 22a of the second ultrafiltration membrane module 220. The permeated water is introduced into the second ultrafiltration membrane module 220, where it is filtered. The concentrated water of the second ultrafiltration membrane module 220 flows out from the concentrated water outlet 22c, and the permeated water flows out from the permeated water outlet 22b. In this way, the permeated water of the second ultrafiltration membrane module 220 is obtained as ultrapure water.
 本実施形態の限外ろ過膜ユニットにおいて、図2A、Bに示す第1の限外ろ過膜モジュール110の導入口11aと第2の限外ろ過膜モジュール120の導入口12aの配置、第1の限外ろ過膜モジュール110の透過水流出口11bと第2の限外ろ過膜モジュール120の透過水流出口12bの配置、第1の限外ろ過膜モジュール110の濃縮水流出口11cと第2の限外ろ過膜モジュール120の濃縮水流出口12cの配置、のそれぞれの配置はすべて共通する。すなわち、第1の限外ろ過膜モジュール110と第2の限外ろ過膜モジュール120のハウジングにおける導入口、透過水流出口及び濃縮水流出口の配設位置がそれぞれ互いに共通する。そのため、限外ろ過膜モジュールの導入口、透過水流出口及び濃縮水流出口に接続される超純水製造システムの配管の配置や形態を変更せずに、任意の限外ろ過膜モジュールを移し替えて、これらを交換することもできる。図3A、Bにおいても同様である。 In the ultrafiltration membrane unit of the present embodiment, the arrangement of the introduction port 11a of the first ultrafiltration membrane module 110 and the introduction port 12a of the second ultrafiltration membrane module 120 shown in FIGS. Arrangement of the permeate outlet 11b of the ultrafiltration membrane module 110 and the permeate outlet 12b of the second ultrafiltration membrane module 120, the concentrated water outlet 11c of the first ultrafiltration membrane module 110 and the second ultrafiltration The arrangements of the concentrated water outlet 12c of the membrane module 120 are all common. That is, the arrangement positions of the introduction port, the permeate outlet, and the concentrated water outlet in the housings of the first ultrafiltration membrane module 110 and the second ultrafiltration membrane module 120 are common to each other. Therefore, any ultrafiltration membrane module can be transferred without changing the arrangement and form of the ultrapure water production system pipe connected to the inlet of the ultrafiltration membrane module, the permeate outlet and the concentrated outlet. These can also be exchanged. The same applies to FIGS. 3A and 3B.
 図2Aに示すように、本実施形態の限外ろ過膜ユニットにおいて、第1の限外ろ過膜装置11には、第1の限外ろ過膜装置11に被処理水(例えば、一次純水製造部15で製造された一次純水である。一次純水は、紫外線酸化装置、膜脱気装置、非再生型混床式イオン交換装置等のうち1つ以上を経て得られ、第1の限外ろ過膜モジュール110に供給されてもよい(以降同様)。)を供給する被処理水供給管111が接続されている。被処理水供給管111は、限外ろ過膜モジュール110の導入口11aに接続されている。被処理水供給管111には、開閉可能なバルブV1が介装されている。 As shown in FIG. 2A, in the ultrafiltration membrane unit of the present embodiment, the first ultrafiltration membrane device 11 includes water to be treated (for example, primary pure water production) in the first ultrafiltration membrane device 11. The primary pure water produced in the section 15. The primary pure water is obtained through one or more of an ultraviolet oxidizer, a membrane deaerator, a non-regenerative mixed bed ion exchanger, etc. A to-be-treated water supply pipe 111 for supplying (which may be supplied to the outer filtration membrane module 110 (hereinafter the same)) is connected. The treated water supply pipe 111 is connected to the inlet 11 a of the ultrafiltration membrane module 110. A valve V <b> 1 that can be opened and closed is interposed in the treated water supply pipe 111.
 第1の限外ろ過膜装置11において、限外ろ過膜モジュール110の濃縮水流出口11cには、濃縮水流出管114が接続されている。透過水流出口11bには、透過水流出管112が接続されている。透過水流出管112には、透過水を後段の第2の限外ろ過膜装置12に移送する移送配管115が接続されている。移送配管115にはバルブV4が介装されている。バルブV4は開閉可能に構成されている。移送配管115は、第2の限外ろ過膜モジュール120の導入口12aに接続されている。 In the first ultrafiltration membrane device 11, a concentrated water outlet pipe 114 is connected to the concentrated water outlet 11c of the ultrafiltration membrane module 110. A permeate outlet pipe 112 is connected to the permeate outlet 11b. A transfer pipe 115 for transferring the permeate to the second ultrafiltration membrane device 12 at the subsequent stage is connected to the permeate outflow pipe 112. A valve V4 is interposed in the transfer pipe 115. The valve V4 is configured to be openable and closable. The transfer pipe 115 is connected to the inlet 12 a of the second ultrafiltration membrane module 120.
 第2の限外ろ過膜装置12において、限外ろ過膜モジュール120の濃縮水流出口12cには、濃縮水流出管124が接続されている。透過水流出口12bには、透過水流出管122が接続されている。透過水流出管122には、第2の限外ろ過膜装置12の透過水をユースポイントに移送する超純水配管123が接続されている。超純水配管123にはバルブV6が介装されている。バルブV6は開閉可能に構成されている。 In the second ultrafiltration membrane device 12, a concentrated water outlet pipe 124 is connected to the concentrated water outlet 12c of the ultrafiltration membrane module 120. A permeate outlet pipe 122 is connected to the permeate outlet 12b. Connected to the permeate outflow pipe 122 is an ultrapure water pipe 123 that transfers permeate from the second ultrafiltration membrane device 12 to a use point. A valve V6 is interposed in the ultrapure water pipe 123. The valve V6 is configured to be openable and closable.
 次に、第1の限外ろ過膜装置11及び第2の限外ろ過膜装置12を用いた水処理方法について説明する。まず、超純水製造システム1における超純水の製造時には、原水が前処理部14に供給されて、前処理部14及び一次純水製造部15の順に処理されて、一次純水を生成する。 Next, a water treatment method using the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 will be described. First, when producing ultrapure water in the ultrapure water production system 1, raw water is supplied to the pretreatment unit 14 and processed in the order of the pretreatment unit 14 and the primary pure water production unit 15 to generate primary pure water. .
 この一次純水が二次純水製造部13に供給される。このとき、バルブV1、バルブV4、バルブV6は開かれている。 This primary pure water is supplied to the secondary pure water production unit 13. At this time, the valve V1, the valve V4, and the valve V6 are opened.
 二次純水製造部13に供給された一次純水は、第1の限外ろ過膜装置11及び第2の限外ろ過膜装置12に順に通水されて処理される。具体的には、一次純水は、被処理水供給管111から、導入口11aを介して第1の限外ろ過膜モジュール110に供給され、ここでろ過処理される。第1の限外ろ過膜モジュール110の透過水は、透過水流出口11bから透過水流出管112及び移送配管115を経て第2の限外ろ過膜モジュール120の導入口12aに供給される。第1の限外ろ過膜モジュール11の濃縮水は、濃縮水流出口11cを経て濃縮水流出管114から流出する。このとき、一次純水は、紫外線酸化装置、膜脱気装置、非再生型混床式イオン交換装置等のうち1つ以上を経て、第1の限外ろ過膜モジュール110に供給されてもよい。 The primary pure water supplied to the secondary pure water production unit 13 is sequentially passed through the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 for processing. Specifically, the primary pure water is supplied from the treated water supply pipe 111 to the first ultrafiltration membrane module 110 via the introduction port 11a, and is filtered here. The permeated water of the first ultrafiltration membrane module 110 is supplied from the permeated water outlet 11b to the inlet 12a of the second ultrafiltration membrane module 120 through the permeated water outlet pipe 112 and the transfer pipe 115. The concentrated water of the first ultrafiltration membrane module 11 flows out from the concentrated water outflow pipe 114 through the concentrated water outlet 11c. At this time, the primary pure water may be supplied to the first ultrafiltration membrane module 110 through one or more of an ultraviolet oxidizer, a membrane deaerator, a non-regenerative mixed bed ion exchanger, and the like. .
 第2の限外ろ過膜モジュール120の導入口12aに供給された上記透過水は、第2の限外ろ過膜モジュール120内に導入され、ここで、ろ過処理される。第2の限外ろ過膜モジュール120の透過水は、透過水流出口12bから透過水流出管122及び超純水配管123を経てユースポイントに供給される。第2の限外ろ過膜モジュール120の濃縮水は、濃縮水流出口12cを経て濃縮水流出管124から流出する。このようにして所定の期間超純水を製造することができる。 The permeated water supplied to the inlet 12a of the second ultrafiltration membrane module 120 is introduced into the second ultrafiltration membrane module 120, where it is filtered. The permeated water of the second ultrafiltration membrane module 120 is supplied from the permeated water outlet 12b to the use point through the permeated water outlet pipe 122 and the ultrapure water pipe 123. The concentrated water of the second ultrafiltration membrane module 120 flows out from the concentrated water outlet pipe 124 through the concentrated water outlet 12c. In this way, ultrapure water can be produced for a predetermined period.
 超純水の製造を続けていると、限外ろ過膜が劣化して、超純水の水質が低下してくる。このときに、超純水製造システム1が一旦停止されて、限外ろ過膜モジュールの交換が行われる。この限外ろ過膜モジュールの交換は次に説明するように、新品の限外ろ過膜モジュールを最も前段に配置するとともに、使用された限外ろ過膜モジュールをその後段に配置する。このとき、より長期間使用された限外ろ過膜モジュールを、より後段に配置する方式で行われる。 If the production of ultrapure water is continued, the ultrafiltration membrane deteriorates and the quality of the ultrapure water decreases. At this time, the ultrapure water production system 1 is temporarily stopped and the ultrafiltration membrane module is replaced. In the replacement of the ultrafiltration membrane module, as will be described below, a new ultrafiltration membrane module is arranged at the frontmost stage, and the used ultrafiltration membrane module is arranged at the subsequent stage. At this time, the ultrafiltration membrane module that has been used for a longer period of time is carried out by a method in which the module is arranged at a later stage.
 図2Aの限外ろ過膜ユニットにおいては、まず、後段の第2の限外ろ過膜モジュール120の交換を先に行う。第2の限外ろ過膜モジュール120を除去し、ここに第1の限外ろ過膜モジュール110を移設する。そして、第1の限外ろ過膜装置11に新品の限外ろ過膜モジュールを配設する。この限外ろ過膜モジュールの交換の際には、被処理水供給管111からの水の流入や、下流側からの水の逆流を防止し、配管内部を清浄に保つため、バルブV1、バルブV4、バルブV6は閉じられることが好ましい。 In the ultrafiltration membrane unit of FIG. 2A, first, the second ultrafiltration membrane module 120 in the subsequent stage is replaced first. The second ultrafiltration membrane module 120 is removed, and the first ultrafiltration membrane module 110 is transferred here. Then, a new ultrafiltration membrane module is disposed in the first ultrafiltration membrane device 11. When the ultrafiltration membrane module is replaced, in order to prevent the inflow of water from the treated water supply pipe 111 and the backflow of water from the downstream side and keep the inside of the pipe clean, the valves V1 and V4 The valve V6 is preferably closed.
 次いで、第1の限外ろ過膜モジュール110として配設された新品の限外ろ過膜モジュールを有する第1の限外ろ過膜装置11の立ち上げを行う。この立ち上げ運転時には、各バルブは上記超純水の製造時の状態と同じ、すなわち、バルブV1、バルブV4、バルブV6が開かれている。この状態で、限外ろ過膜ユニットに、洗浄水として一次純水が通流されて、立ち上げ運転がなされる。洗浄水(一次純水)は、被処理水供給管111を経て、新品の限外ろ過膜モジュールが配設された第1の限外ろ過膜装置11、次いで第2の限外ろ過膜装置12と順に通流する。なお、立ち上げ運転に際しては、洗浄水は第1の限外ろ過膜装置11及び第2の限外ろ過膜装置12を通流すればよいが、第2の限外ろ過膜装置12を通流した後は、前処理部14、一次純水製造部15及び二次純水製造部13に任意に設けられる装置に通流させてもよい。 Next, the first ultrafiltration membrane device 11 having a new ultrafiltration membrane module arranged as the first ultrafiltration membrane module 110 is started up. During this start-up operation, each valve is in the same state as when the ultrapure water is manufactured, that is, the valve V1, the valve V4, and the valve V6 are opened. In this state, primary pure water is passed as cleaning water through the ultrafiltration membrane unit, and a startup operation is performed. Washing water (primary pure water) passes through the treated water supply pipe 111, the first ultrafiltration membrane device 11 in which a new ultrafiltration membrane module is disposed, and then the second ultrafiltration membrane device 12. And flow in order. In the start-up operation, the washing water may flow through the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12, but the second ultrafiltration membrane device 12 flows through it. After that, the pretreatment unit 14, the primary pure water production unit 15, and the secondary pure water production unit 13 may be passed through devices arbitrarily provided.
 この立ち上げ運転は、第2の限外ろ過膜装置12の透過水中の微粒子数が所定の値以下になるまで行われる。立ち上げ運転に際して、第1の限外ろ過膜装置11に備えられた新品の限外ろ過膜モジュールからは、多くの発塵があるが、これらは第2の限外ろ過膜装置12で捕捉される。そのため、この立ち上げ運転は、新品のモジュールに交換された第1の限外ろ過膜装置11を単体で立ち上げるのよりも早期に完了することができる。このように、新品の限外ろ過膜モジュールを前段に配置し、経時使用された限外ろ過膜モジュールを後段に配置することで、立ち上げ運転時間を短縮することができる。また、立ち上げ運転を行うための特別な配管や機器なしで行うことが可能である。 This start-up operation is performed until the number of fine particles in the permeated water of the second ultrafiltration membrane device 12 falls below a predetermined value. During the start-up operation, a lot of dust is generated from the new ultrafiltration membrane module provided in the first ultrafiltration membrane device 11, but these are captured by the second ultrafiltration membrane device 12. The Therefore, this start-up operation can be completed earlier than when the first ultrafiltration membrane device 11 replaced with a new module is started up alone. In this way, a new ultrafiltration membrane module is disposed in the previous stage, and the ultrafiltration membrane module that has been used over time is disposed in the subsequent stage, whereby the startup operation time can be shortened. Moreover, it is possible to carry out without special piping or equipment for starting operation.
 立ち上げ運転が完了した後、上記と同様に、被処理水が被処理水供給管111に供給されて、超純水の製造が開始される。 After the start-up operation is completed, the treated water is supplied to the treated water supply pipe 111 in the same manner as described above, and the production of ultrapure water is started.
 次に、上記の限外ろ過膜モジュールの交換及び立ち上げを、バルブの開閉によって実現する方法について説明する。この方法によれば、限外ろ過膜モジュールの新品交換時に、交換しない限外ろ過膜モジュールの移動を伴わずに、交換及び立ち上げ運転を行うことができるため、作業負荷を低減することができる。 Next, a method for realizing replacement and startup of the ultrafiltration membrane module by opening and closing the valve will be described. According to this method, when the ultrafiltration membrane module is replaced with a new one, the replacement and start-up operation can be performed without the movement of the ultrafiltration membrane module that is not replaced, so that the work load can be reduced. .
 この方法では、図4に示すように、図2Aに示す構成にさらに、被処理水を、第1の限外ろ過膜モジュール110から第2の限外ろ過膜モジュール120へ通流させる第1の流路と第2の限外ろ過膜モジュール120から第1の限外ろ過膜モジュールへ通流させる第2の流路のいずれの流路に流すかを切替可能にする配管及びバルブを有する構成を使用する。 In this method, as shown in FIG. 4, in addition to the configuration shown in FIG. 2A, a first water to be treated is passed from the first ultrafiltration membrane module 110 to the second ultrafiltration membrane module 120. A configuration having a flow path and a pipe and a valve that allow switching between a flow path and a second flow path that is passed from the second ultrafiltration membrane module 120 to the first ultrafiltration membrane module. use.
 図4に示すように、透過水流出管112には、ユースポイントに接続されて第1の限外ろ過膜装置の透過水をユースポイントに移送できる超純水配管113が接続されている。超純水配管113にはバルブV3が、介装されている。バルブV3はバルブV4と同様に開閉可能に構成され、これらの開閉により、第1の限外ろ過膜モジュール110の透過水の流路が、超純水配管113又は移送配管115に切り替えられる。なお、超純水配管113は、ユースポイントとの接続を解除することができ、これにより限外ろ過膜装置11の透過水を外部に排出することもできる。 As shown in FIG. 4, the permeate outflow pipe 112 is connected to an ultrapure water pipe 113 that is connected to the use point and can transfer the permeate of the first ultrafiltration membrane device to the use point. The ultrapure water pipe 113 is provided with a valve V3. The valve V3 is configured to be openable and closable like the valve V4, and by opening and closing these, the flow path of the permeated water of the first ultrafiltration membrane module 110 is switched to the ultrapure water pipe 113 or the transfer pipe 115. In addition, the ultrapure water piping 113 can cancel | release a connection with a use point, and can also discharge | emit the permeated water of the ultrafiltration membrane apparatus 11 outside by this.
 また、移送配管115の経路には、第1の限外ろ過膜装置11ではなく第2の限外ろ過膜装置12に被処理水(例えば、紫外線酸化装置、膜脱気装置、非再生型混床式イオン交換装置等のうち1つ以上を経た一次純水)を供給できる被処理水供給管121が接続されている。被処理水は、被処理水供給管121から移送配管115を介して導入口12aに供給される。被処理水供給管121には、開閉可能なバルブV2が介装されている。 In addition, in the path of the transfer pipe 115, not the first ultrafiltration membrane device 11 but the second ultrafiltration membrane device 12 has water to be treated (for example, an ultraviolet oxidation device, a membrane deaeration device, a non-regenerative type mixing device). A treated water supply pipe 121 capable of supplying (primary pure water that has passed through one or more of floor-type ion exchangers or the like) is connected. The treated water is supplied from the treated water supply pipe 121 to the introduction port 12a through the transfer pipe 115. The water supply pipe 121 to be treated is provided with a valve V2 that can be opened and closed.
 第2の限外ろ過膜モジュール120の透過水流出管122には、透過水を前段の第1の限外ろ過膜装置11に移送できる移送配管125が接続されている。移送配管125にはバルブV5が介装されている。バルブV5は開閉可能に構成され、バルブV5及びバルブV6の開閉により、透過水流出管122を通流した第2の限外ろ過膜装置12の透過水の流路が、超純水配管123又は移送配管125に切り替えられる。 A transfer pipe 125 capable of transferring permeate to the first ultrafiltration membrane device 11 in the previous stage is connected to the permeate outflow pipe 122 of the second ultrafiltration membrane module 120. A valve V5 is interposed in the transfer pipe 125. The valve V5 is configured to be openable and closable. By opening and closing the valve V5 and the valve V6, the flow path of the permeated water of the second ultrafiltration membrane device 12 that has passed through the permeated water outflow pipe 122 becomes the ultrapure water pipe 123 or It is switched to the transfer pipe 125.
 移送配管125は、被処理水供給管111のバルブV1の下流側に接続されており、第2の限外ろ過膜装置12の透過水は、移送配管125から、被処理水供給管111を介して第1の限外ろ過膜装置11の導入口11aに供給できるようになっている。 The transfer pipe 125 is connected to the downstream side of the valve V <b> 1 of the treated water supply pipe 111, and the permeated water of the second ultrafiltration membrane device 12 passes through the treated water supply pipe 111 from the transfer pipe 125. The first ultrafiltration membrane device 11 can be supplied to the inlet 11a.
 まず、図4に示すようにバルブV1、バルブV4、バルブV6が開かれ、バルブV2、バルブV3、バルブV5が閉じられた状態、すなわち、第1の限外ろ過膜装置11が前段、第2の限外ろ過膜装置12が後段の配置で超純水の製造を行う。このときの被処理水の流れは、図2Aで説明した流れと同様である。製造開始から所定の期間経過後、限外ろ過膜が劣化して超純水の水質が低下してきたときに、超純水製造システム1が一旦停止されて、限外ろ過膜モジュールの交換が行われる。限外ろ過膜モジュールの交換は、後段の第2の限外ろ過膜モジュール120の交換を先に行う。第2の限外ろ過膜モジュール120を取り外し、ここに新品の限外ろ過膜装置モジュールを配設する。なお、図4において、黒色のバルブは閉じられていて、白色のバルブは開かれていることを示す。図5も同様である。また、図4、図5において太線は被処理水の通流する流路を示す First, as shown in FIG. 4, the valve V1, the valve V4, and the valve V6 are opened, and the valve V2, the valve V3, and the valve V5 are closed, that is, the first ultrafiltration membrane device 11 is the first stage, the second The ultrafiltration membrane device 12 produces ultrapure water in a subsequent arrangement. The flow of the water to be treated at this time is the same as the flow described in FIG. 2A. When the ultrafiltration membrane deteriorates and the quality of the ultrapure water decreases after a predetermined period from the start of production, the ultrapure water production system 1 is temporarily stopped and the ultrafiltration membrane module is replaced. Is called. The replacement of the ultrafiltration membrane module is performed first by replacing the second ultrafiltration membrane module 120 at the subsequent stage. The second ultrafiltration membrane module 120 is removed, and a new ultrafiltration membrane device module is disposed here. In FIG. 4, the black valve is closed and the white valve is open. The same applies to FIG. In FIGS. 4 and 5, the thick line indicates the flow path through which the water to be treated flows.
 次いで、新品の第2の限外ろ過膜モジュール120を有する第2の限外ろ過膜装置12の立ち上げを行う。この立ち上げ運転時には、各バルブは、図5に示すように、バルブV1、バルブV4、バルブV6が閉じられて、バルブV2、バルブV3、バルブV5が開かれる。これにより、第2の限外ろ過膜装置12が前段、第1の限外ろ過膜装置11が後段の配置に変更される。そして、限外ろ過膜モジュールに、洗浄水として純水が通流されて、立ち上げ運転がなされる。洗浄水(一次純水)は、被処理水供給管121を経て交換後の第2の限外ろ過膜モジュール120、次いで第1の限外ろ過膜モジュール110と順に通流する。 Next, the second ultrafiltration membrane device 12 having the new second ultrafiltration membrane module 120 is started up. During this start-up operation, as shown in FIG. 5, the valves V1, V4, and V6 are closed and the valves V2, V3, and V5 are opened. As a result, the second ultrafiltration membrane device 12 is changed to the front stage, and the first ultrafiltration membrane device 11 is changed to the rear stage arrangement. Then, pure water is passed as cleaning water through the ultrafiltration membrane module, and a start-up operation is performed. The wash water (primary pure water) flows through the treated water supply pipe 121 through the second ultrafiltration membrane module 120 after replacement and then the first ultrafiltration membrane module 110 in order.
 具体的には、洗浄水は、被処理水供給管121から、移送配管115を経て第2の限外ろ過膜モジュール120の導入口12aに供給される。そして、洗浄水は、第2の限外ろ過膜モジュール120内を通流した後、透過水流出口12bから透過水流出管122及び移送配管125を経て第1の限外ろ過膜モジュール110の導入口11aに供給される。 Specifically, the wash water is supplied from the treated water supply pipe 121 to the inlet 12a of the second ultrafiltration membrane module 120 via the transfer pipe 115. The wash water flows through the second ultrafiltration membrane module 120, and then passes through the permeate outlet 12b, the permeate outflow pipe 122, and the transfer pipe 125 to the inlet of the first ultrafiltration membrane module 110. 11a.
 第1の限外ろ過膜モジュール110の導入口11aに供給された洗浄水は、第1の限外ろ過膜モジュール110内を通流した後、透過水流出口11bから流出し、透過水流出管112及び超純水配管113を順に経て排出される。このとき、超純水配管とユースポイントの接続は解除しておく。 The wash water supplied to the inlet 11a of the first ultrafiltration membrane module 110 flows through the first ultrafiltration membrane module 110, then flows out from the permeate outlet 11b, and passes through the permeate outlet pipe 112. And it is discharged | emitted through the ultrapure water piping 113 in order. At this time, the connection between the ultrapure water pipe and the use point is released.
 この立ち上げ運転は、後段となる第1の限外ろ過膜装置11の透過水中の微粒子数が所定の値以下になるまで行われる。立ち上げ運転に際して、第2の限外ろ過膜装置12に配設された新品の限外ろ過膜モジュールからは、多くの発塵があるが、これらは第1の限外ろ過膜装置11で捕捉される。そのため、この立ち上げ運転は、新品のモジュールに交換された第2の限外ろ過膜装置12を単体で立ち上げるよりも早期に完了することができる。 This start-up operation is performed until the number of fine particles in the permeated water of the first ultrafiltration membrane device 11 as the subsequent stage becomes a predetermined value or less. During the start-up operation, a lot of dust is generated from the new ultrafiltration membrane module disposed in the second ultrafiltration membrane device 12, but these are captured by the first ultrafiltration membrane device 11. Is done. Therefore, this start-up operation can be completed earlier than when the second ultrafiltration membrane device 12 replaced with a new module is started up alone.
 立ち上げ運転が完了した後、被処理水が被処理水供給管111に供給されて、超純水の製造が開始される。このときには、各バルブは上記立ち上げ時と同様、バルブV1、バルブV4、バルブV6が閉じられて、バルブV2、バルブV3、バルブV5が開かれて、第2の限外ろ過膜装置12が前段、第1の限外ろ過膜装置11が後段の配置である。一次純水製造部5から供給された一次純水は、第2の限外ろ過膜装置12、次いで第1の限外ろ過膜装置11と順に通流する。 After the start-up operation is completed, the treated water is supplied to the treated water supply pipe 111, and the production of ultra pure water is started. At this time, the valves V1, V4, and V6 are closed and the valves V2, V3, and V5 are opened, and the second ultrafiltration membrane device 12 is placed in the previous stage. The 1st ultrafiltration membrane apparatus 11 is arrangement | positioning of a back | latter stage. The primary pure water supplied from the primary pure water production unit 5 flows in order through the second ultrafiltration membrane device 12 and then the first ultrafiltration membrane device 11.
 この状態で超純水の製造を続けていると、長期間使用された第1の限外ろ過膜モジュール110が、新品に交換された第2の限外ろ過膜モジュール120よりも先に劣化してくる。このときには、後段となる第1の限外ろ過膜モジュール110の交換を行う。このときには、第1の限外ろ過膜モジュール110を取り外し、新品の限外ろ過膜モジュールを配設する。 If the production of ultrapure water is continued in this state, the first ultrafiltration membrane module 110 that has been used for a long time deteriorates before the second ultrafiltration membrane module 120 that has been replaced with a new one. Come. At this time, the first ultrafiltration membrane module 110 which is the latter stage is replaced. At this time, the first ultrafiltration membrane module 110 is removed, and a new ultrafiltration membrane module is disposed.
 そして、新品の第1の限外ろ過膜モジュール110を有する第1の限外ろ過膜装置11の立ち上げを行う。このときは、各バルブは図4に示されるように、バルブV1、バルブV4、バルブV6が開かれ、バルブV2、バルブV3、バルブV5が閉じられている。これにより、第1の限外ろ過膜装置11が前段、第2の限外ろ過膜装置12が後段の配置に変更される。この状態で、限外ろ過膜モジュールに、洗浄水として一次純水が通流されて、立ち上げ運転がなされる。洗浄水は、上記と同様に、新品の限外ろ過膜モジュールが配設された第1の限外ろ過膜装置11、次いで第2の限外ろ過膜装置12と順に通流する。 Then, the first ultrafiltration membrane device 11 having the new first ultrafiltration membrane module 110 is started up. At this time, as shown in FIG. 4, the valves V1, V4, and V6 are opened, and the valves V2, V3, and V5 are closed. As a result, the first ultrafiltration membrane device 11 is changed to the front stage, and the second ultrafiltration membrane device 12 is changed to the rear stage arrangement. In this state, primary pure water is passed as cleaning water through the ultrafiltration membrane module, and a startup operation is performed. In the same manner as described above, the washing water flows in order through the first ultrafiltration membrane device 11 in which a new ultrafiltration membrane module is disposed, and then the second ultrafiltration membrane device 12.
 この立ち上げ運転は、第2の限外ろ過膜装置12の透過水中の微粒子数が所定の値以下になるまで行われる。立ち上げ運転に際して、第1の限外ろ過膜装置11に配設された新品の限外ろ過膜モジュールからは、多くの発塵があるが、これらは第2の限外ろ過膜装置12で捕捉される。そのため、この立ち上げ運転は、新品のモジュールに交換された第1の限外ろ過膜装置11を単体で立ち上げるよりも早期に完了することができる。 This start-up operation is performed until the number of fine particles in the permeated water of the second ultrafiltration membrane device 12 falls below a predetermined value. During the start-up operation, a lot of dust is generated from the new ultrafiltration membrane module disposed in the first ultrafiltration membrane device 11, but these are captured by the second ultrafiltration membrane device 12. Is done. For this reason, this start-up operation can be completed earlier than when the first ultrafiltration membrane device 11 replaced with a new module is started up alone.
 立ち上げ運転が完了した後、被処理水が被処理水供給管111に供給されて、超純水の製造が開始される。このときには、各バルブは上記立ち上げ時と同様、バルブV1、バルブV4、バルブV6が開かれて、バルブV2、バルブV3、バルブV5が閉じられて、第1の限外ろ過膜装置11が前段、第2の限外ろ過膜装置12が後段の状態を維持する。これにより、一次純水製造部5から供給された一次純水は、第1の限外ろ過膜装置11、次いで第2の限外ろ過膜装置12と順に通流する。 After the start-up operation is completed, the treated water is supplied to the treated water supply pipe 111, and the production of ultra pure water is started. At this time, the valves V1, V4, and V6 are opened, the valves V2, V3, and V5 are closed, and the first ultrafiltration membrane device 11 is placed in the previous stage. The second ultrafiltration membrane device 12 maintains the latter stage state. As a result, the primary pure water supplied from the primary pure water production unit 5 flows in order through the first ultrafiltration membrane device 11 and then the second ultrafiltration membrane device 12.
 上記操作を繰り返すことで、第1の限外ろ過膜モジュール110と第2の限外ろ過膜モジュール120を順に交換、立ち上げしながら超純水を製造することができる。このとき、新品のモジュールに交換後の立ち上げ運転時間が著しく短縮されるため、高水質の超純水を効率よく製造することができる。また、第1の限外ろ過膜装置11と第2の限外ろ過膜装置12に備えられる限外ろ過膜モジュールのハウジングにおける導入口、透過水流出口及び濃縮水流出口の配設位置が、それぞれ互いに共通した配置となっている。そのため、限外ろ過膜モジュールの導入口、透過水流出口及び濃縮水流出口に接続される超純水製造システムの配管の配置や形態を変更せずに、任意の限外ろ過膜モジュールを移し替えて、これらを交換することもできる。 By repeating the above operation, the first ultrafiltration membrane module 110 and the second ultrafiltration membrane module 120 are sequentially replaced, and ultrapure water can be produced while starting up. At this time, since the start-up operation time after replacement with a new module is significantly shortened, high-quality ultrapure water can be efficiently produced. Further, the arrangement positions of the introduction port, the permeate outlet and the concentrated water outlet in the housings of the ultrafiltration membrane modules provided in the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 are respectively mutually different. The arrangement is common. Therefore, any ultrafiltration membrane module can be transferred without changing the arrangement and form of the ultrapure water production system pipe connected to the inlet of the ultrafiltration membrane module, the permeate outlet and the concentrated outlet. These can also be exchanged.
 なお、後段に配置される限外ろ過膜装置は、濃縮水流出管(114又は124)にバルブを設け、このバルブを閉じることにより、後段に配置される限外ろ過膜装置のみ全量ろ過とすることも可能である。この全量ろ過を用いると、限外ろ過膜装置の水回収率を向上することができる。この全量ろ過は、立ち上げ時と立ち上げ終了後の両方で行うことも可能であるが、立ち上げ終了後のみ実施することも可能である。なお、この全量ろ過は、他の実施形態においても同様に実施可能である。 In the ultrafiltration membrane device arranged in the latter stage, a valve is provided in the concentrated water outflow pipe (114 or 124), and by closing this valve, only the ultrafiltration membrane device arranged in the latter stage is subjected to total filtration. It is also possible. If this total filtration is used, the water recovery rate of the ultrafiltration membrane device can be improved. This total volume filtration can be performed both at the start-up and after the start-up, but can also be performed only after the start-up is completed. In addition, this whole quantity filtration can be similarly implemented also in other embodiment.
 図6は、上記開閉バルブに代えて三方バルブを用いた場合の限外ろ過膜ユニットの配管構成を表す。図6において、図2~5と同様の機能を有する構成には同一の符号を付して重複する説明を省略する。図6に示すように、図4及び図5におけるバルブV3とバルブV4の組み合わせ、及びバルブV5とバルブV6の組み合わせに代えて、それぞれ三方バルブV31及び三方バルブV32を備えていてもよい。この場合には、三方バルブV31は、超純水配管113と移送配管115の分岐箇所に、三方バルブV32は、超純水配管123と移送配管125の分岐箇所に設けられ、上記同様に流路の切替をすることができる。具体的には上記操作において三方バルブV31は、透過水流出管112からの透過水の流路を超純水配管113と移送配管115とで切り替える。また、上記操作において、三方バルブV32は、透過水流出管122からの透過水の流路を超純水配管123と移送配管125とで切り替える。 FIG. 6 shows the piping configuration of the ultrafiltration membrane unit when a three-way valve is used instead of the opening / closing valve. In FIG. 6, components having the same functions as those in FIGS. 2 to 5 are denoted by the same reference numerals, and redundant description is omitted. As shown in FIG. 6, a three-way valve V31 and a three-way valve V32 may be provided instead of the combination of the valve V3 and the valve V4 and the combination of the valve V5 and the valve V6 in FIGS. In this case, the three-way valve V31 is provided at a branch point between the ultrapure water pipe 113 and the transfer pipe 115, and the three-way valve V32 is provided at a branch point between the ultrapure water pipe 123 and the transfer pipe 125. Can be switched. Specifically, in the above operation, the three-way valve V31 switches the flow path of the permeated water from the permeated water outflow pipe 112 between the ultrapure water pipe 113 and the transfer pipe 115. In the above operation, the three-way valve V <b> 32 switches the flow path of the permeated water from the permeated water outflow pipe 122 between the ultrapure water pipe 123 and the transfer pipe 125.
 開閉バルブに代えて三方バルブを用いた場合には、超純水製造システム1内の水の滞留部を減少させることができるので、超純水水質の劣化が少なく、より長期間にわたって高純度の超純水を製造することができる。 When a three-way valve is used instead of the open / close valve, the water retention portion in the ultrapure water production system 1 can be reduced, so that there is little deterioration of the ultrapure water quality and high purity over a longer period of time. Ultrapure water can be produced.
(第2の実施形態)
 次に、図7及び図8を参照して第1の限外ろ過膜装置11及び第2の限外ろ過膜装置12を接続する配管の構成の他の一態様を説明する。図7及び図8において、図2~6と同様の機能を有する構成には同一の符号を付して重複する説明を省略する。
(Second Embodiment)
Next, another aspect of the configuration of the pipe connecting the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 will be described with reference to FIGS. 7 and 8. 7 and 8, components having the same functions as those in FIGS. 2 to 6 are denoted by the same reference numerals, and redundant description is omitted.
 第2の実施形態の限外ろ過膜ユニットは、第1の限外ろ過膜装置11及び第2の限外ろ過膜装置12への通水順序の切り替えを、開閉バルブを用いずに、配管のつなぎ替えによって行うものである。 The ultrafiltration membrane unit of the second embodiment switches the flow order of water to the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 without using an on-off valve. This is done by reconnecting.
 図7に示す本実施形態の限外ろ過膜ユニットでは、被処理水を限外ろ過膜ユニットに供給する被処理水管40と、被処理水管40からの被処理水の流路を、第1の限外ろ過膜装置11の導入口11aへの流路と、第2の限外ろ過膜装置12の導入口12aへの流路とで切り替える流路切替部R1を有している。流路切替部R1は被処理水管40に接続されている。 In the ultrafiltration membrane unit of the present embodiment shown in FIG. 7, the treated water pipe 40 that supplies the treated water to the ultrafiltration membrane unit and the flow path of the treated water from the treated water pipe 40 are the first. A flow path switching unit R1 that switches between a flow path to the introduction port 11a of the ultrafiltration membrane device 11 and a flow path to the introduction port 12a of the second ultrafiltration membrane device 12 is provided. The flow path switching unit R1 is connected to the water tube 40 to be treated.
 流路切替部R1は、上記流路に配管を切り替える切替機構によって構成される。後述する流路切替部R2~R4も同様である。切替機構は、例えば、図7において、流路切替部(切替機構)R1~R4を接続されている配管から切り離して、切替中心Rpを中心として180度回転移動したところで、流路切替部(切替機構)R1~R4を限外ろ過膜装置の各配管につなぎこむことにより、切り替えを可能にした構造となっている。 The flow path switching unit R1 is configured by a switching mechanism that switches piping to the flow path. The same applies to the flow path switching units R2 to R4 described later. For example, in FIG. 7, when the switching mechanism (switching mechanism) R1 to R4 is disconnected from the connected pipe and rotated 180 degrees about the switching center Rp, the switching mechanism (switching mechanism) Mechanism) R1 to R4 are connected to each pipe of the ultrafiltration membrane device to enable switching.
 切替機構は、配管や継手等の配管部品を用いて組み立てることが可能である。これらの市販品としては、例えば、セキスイ化学製のものがある。切換機構の、配管と接続する末端(接続部)には、ユニオン継手、バルブ継手を用いることで、特に工具等を用いずに容易に取り外しが可能となるので、切り替えが容易に行える。接続部の形状は、TS式、フランジ式等が好適である。ねじ込み式、溶着式は、取り外しが容易でないので、好ましくない。切替機構はポリフッ化ビニリデン(PVDF)、塩素化塩化ビニル樹脂(CPVC)、ポリテトラフルオロエチレン(PTFE)等の素材のものが好ましく、PVDF製が特に好ましい。 The switching mechanism can be assembled using piping parts such as piping and joints. Examples of these commercially available products include those manufactured by Sekisui Chemical. By using a union joint or a valve joint at the end (connecting portion) connected to the piping of the switching mechanism, the switching mechanism can be easily removed without using a tool or the like. A TS type, a flange type, etc. are suitable for the shape of a connection part. The screw-in type and the welding type are not preferable because they are not easy to remove. The switching mechanism is preferably made of a material such as polyvinylidene fluoride (PVDF), chlorinated vinyl chloride resin (CPVC), polytetrafluoroethylene (PTFE), and is particularly preferably made of PVDF.
 また、本実施形態の限外ろ過膜ユニットは、超純水をユースポイントに移送する超純水配管30に流入させる限外ろ過膜装置の透過水を第1の限外ろ過膜装置11の透過水と第2の限外ろ過膜装置12の透過水とで切り替えることができる構成となっており、超純水配管30と接続する流路を、第1の限外ろ過膜装置11の透過水流出管112を通流する透過水の流路と第2の限外ろ過膜装置12の透過水流出管122を通流する透過水の流路とで切り替える流路切替部R2を有している。流路切替部R2は超純水配管30に接続されている。 Further, the ultrafiltration membrane unit of the present embodiment allows the permeated water of the ultrafiltration membrane device to flow into the ultrapure water pipe 30 that transfers the ultrapure water to the use point, and the permeation of the first ultrafiltration membrane device 11. It is configured to be able to switch between water and the permeated water of the second ultrafiltration membrane device 12, and the flow path connected to the ultrapure water pipe 30 is the permeated water of the first ultrafiltration membrane device 11. A flow path switching unit R2 that switches between a flow path of permeate flowing through the outflow pipe 112 and a flow path of permeate flowing through the permeate flow out pipe 122 of the second ultrafiltration membrane device 12 is provided. . The flow path switching unit R <b> 2 is connected to the ultrapure water pipe 30.
 また、本実施形態の限外ろ過膜ユニットは、第1の限外ろ過膜装置11の透過水を移送配管115を経由させて第2の限外ろ過膜装置12の被処理水供給管121に供給するか、又は、第2の限外ろ過膜装置12の透過水を移送配管115を経由させて第1の限外ろ過膜装置11へ供給する構成となっており、移送配管115と接続する流路を、第2の限外ろ過膜装置12の被処理水供給管121と第1の限外ろ過膜装置11の被処理水供給管111とで切り替える流路切替部R3を有している。流路切替部R3は移送配管115に接続されている。 Moreover, the ultrafiltration membrane unit of this embodiment passes the permeated water of the first ultrafiltration membrane device 11 through the transfer pipe 115 to the treated water supply pipe 121 of the second ultrafiltration membrane device 12. Or the permeated water of the second ultrafiltration membrane device 12 is supplied to the first ultrafiltration membrane device 11 via the transfer pipe 115 and connected to the transfer pipe 115. A flow path switching unit R3 that switches the flow path between the treated water supply pipe 121 of the second ultrafiltration membrane apparatus 12 and the treated water supply pipe 111 of the first ultrafiltration membrane apparatus 11 is provided. . The flow path switching unit R3 is connected to the transfer pipe 115.
 また、本実施形態の限外ろ過膜ユニットは、移送配管115に流入させる限外ろ過膜装置の透過水を第1の限外ろ過膜装置11の透過水と第2の限外ろ過膜装置12の透過水とで切り替えることができる構成となっており、移送配管115と接続する流路を、第1の限外ろ過膜装置11の透過水流出管112を通流する透過水の流路と第2の限外ろ過膜装置12の透過水流出管122を通流する透過水の流路とで切り替える流路切替部R4を有している。流路切替部R4は移送配管115に接続されている。 Further, the ultrafiltration membrane unit of the present embodiment uses the permeated water of the ultrafiltration membrane device that flows into the transfer pipe 115 as the permeated water of the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12. The flow path connected to the transfer pipe 115 and the flow path of the permeate flowing through the permeate outflow pipe 112 of the first ultrafiltration membrane device 11 A flow path switching unit R4 that switches between the flow path of the permeate flowing through the permeate outflow pipe 122 of the second ultrafiltration membrane device 12 is provided. The flow path switching unit R4 is connected to the transfer pipe 115.
 移送配管115は第1の実施形態における移送配管115と移送配管125を兼ねている。また、超純水配管30は第1の実施形態における超純水配管113と超純水配管123を兼ねている。 The transfer pipe 115 also serves as the transfer pipe 115 and the transfer pipe 125 in the first embodiment. The ultrapure water pipe 30 also serves as the ultrapure water pipe 113 and the ultrapure water pipe 123 in the first embodiment.
 次に、本実施形態の限外ろ過膜ユニットにおける水処理方法について説明する。まず、超純水製造システム1における超純水の製造時には、原水が前処理部14に供給されて、前処理部14及び一次純水製造部15で順に処理されて、一次純水が生成する。このとき図7に示すように流路切替部R1によって被処理水管40と被処理水供給管111が接続される。また、流路切替部R2によって透過水流出管112と移送配管115の一端が接続される。また、流路切替部R3によって移送配管115の他端と被処理水供給管121が接続される。また、流路切替部R4によって透過水流出管122と超純水配管30が接続される。これにより、第1の限外ろ過膜装置11が前段、第2の限外ろ過膜装置12が後段の配置になる。図7に示す限外ろ過膜ユニットにおいては、被処理水管40、流路切替部R1、被処理水供給管111、導入口11a、第1の限外ろ過膜モジュール110、透過水流出口11b、透過水流出管112、流路切替部R4、移送配管115、流路切替部R3、被処理水供給管121、導入口12a、第2の限外ろ過膜モジュール120によって、第1の限外ろ過膜モジュールから第2の限外ろ過膜モジュールへ通流する流路が形成される。 Next, a water treatment method in the ultrafiltration membrane unit of this embodiment will be described. First, when producing ultrapure water in the ultrapure water production system 1, raw water is supplied to the pretreatment unit 14 and is sequentially processed by the pretreatment unit 14 and the primary pure water production unit 15 to generate primary pure water. . At this time, the to-be-treated water pipe 40 and the to-be-treated water supply pipe 111 are connected by the flow path switching unit R1, as shown in FIG. Further, one end of the permeate outflow pipe 112 and the transfer pipe 115 is connected by the flow path switching unit R2. Further, the other end of the transfer pipe 115 and the treated water supply pipe 121 are connected by the flow path switching unit R3. Further, the permeate outflow pipe 122 and the ultrapure water pipe 30 are connected by the flow path switching unit R4. Thereby, the 1st ultrafiltration membrane apparatus 11 becomes a front | former stage, and the 2nd ultrafiltration membrane apparatus 12 becomes a back | latter stage arrangement | positioning. In the ultrafiltration membrane unit shown in FIG. 7, the to-be-treated water pipe 40, the flow path switching unit R1, the to-be-treated water supply pipe 111, the inlet 11a, the first ultrafiltration membrane module 110, the permeate outlet 11b, the permeate The first ultrafiltration membrane is formed by the water outflow pipe 112, the flow path switching unit R4, the transfer pipe 115, the flow path switching unit R3, the treated water supply pipe 121, the inlet 12a, and the second ultrafiltration membrane module 120. A flow path is formed to flow from the module to the second ultrafiltration membrane module.
 一次純水製造部から、被処理水管40を介して限外ろ過膜ユニットに供給された一次純水は、第1の限外ろ過膜モジュール110及び第2の限外ろ過膜モジュール120で順に処理される。これにより生成した超純水は、超純水配管30を経てユースポイントに供給される。具体的には、一次純水は、被処理水供給管111から導入口11aを経て第1の限外ろ過膜モジュール110に供給される。第1の限外ろ過膜モジュール110を通流した透過水は、透過水流出管112、移送配管115、被処理水供給管121を経て導入口12aから第2の限外ろ過膜モジュール120に供給される。さらに、第2の限外ろ過膜モジュール120を通流して生成した超純水は、透過水流出管122、超純水配管30を経てユースポイントに流出する。 The primary pure water supplied from the primary pure water production unit to the ultrafiltration membrane unit through the water pipe 40 to be treated is sequentially processed by the first ultrafiltration membrane module 110 and the second ultrafiltration membrane module 120. Is done. The ultrapure water generated thereby is supplied to the use point via the ultrapure water pipe 30. Specifically, the primary pure water is supplied from the treated water supply pipe 111 to the first ultrafiltration membrane module 110 through the introduction port 11a. The permeate flowing through the first ultrafiltration membrane module 110 is supplied to the second ultrafiltration membrane module 120 from the inlet 12a through the permeate outflow pipe 112, the transfer pipe 115, and the treated water supply pipe 121. Is done. Further, the ultrapure water generated through the second ultrafiltration membrane module 120 flows out to the use point through the permeate outflow pipe 122 and the ultrapure water pipe 30.
 超純水の製造を続けていると、限外ろ過膜が劣化して、超純水の水質が低下してくる。そのため、超純水配管30に例えば、Particle Measuring Systems社製の微粒子計UltraDI-20を設置して、微粒子数をモニターすると、次第に微粒子数が増加してくる。このときに、超純水製造システム1が一旦停止されて、上記実施形態と同様に後段の第2の限外ろ過膜モジュール120の交換が行われる。第2の限外ろ過膜装置12に新品の限外ろ過膜モジュールを配設し、第2の限外ろ過膜装置12の立ち上げを行う。このような限外ろ過膜の交換、立ち上げは、定期的に行っても良い。 If the production of ultrapure water is continued, the ultrafiltration membrane deteriorates and the quality of the ultrapure water decreases. Therefore, for example, when a particle measuring device UltraDI-20 manufactured by Particle Measuring Systems is installed in the ultrapure water pipe 30 and the number of particles is monitored, the number of particles gradually increases. At this time, the ultrapure water production system 1 is temporarily stopped, and the second ultrafiltration membrane module 120 at the subsequent stage is replaced in the same manner as in the above embodiment. A new ultrafiltration membrane module is disposed in the second ultrafiltration membrane device 12 to start up the second ultrafiltration membrane device 12. Such replacement and startup of the ultrafiltration membrane may be performed periodically.
 第2の限外ろ過膜装置12の立ち上げ運転時には、図8に示すように流路切替部の接続を切り替える。すなわち、流路切替部R1によって被処理水管40と被処理水供給管121が接続される。また、流路切替部R2によって透過水流出管112と超純水配管30が接続される。また、流路切替部R3によって移送配管115と被処理水供給管111が接続される。また、流路切替部R4によって透過水流出管122と移送配管115が接続される。これにより、第2の限外ろ過膜装置12が前段、第1の限外ろ過膜装置11が後段の配置に変更される。図8に示す限外ろ過膜ユニットにおいて、被処理水管40、流路切替部R1、被処理水供給管121、導入口12a、第2の限外ろ過膜モジュール120、透過水流出口12b、透過水流出管122、流路切替部R4、移送配管115、流路切替部R3、被処理水供給管111、導入口11a、第1の限外ろ過膜モジュール110によって、第2の限外ろ過膜モジュール120から第1の限外ろ過膜モジュール110へ通流する流路が形成される。 During the startup operation of the second ultrafiltration membrane device 12, the connection of the flow path switching unit is switched as shown in FIG. That is, the to-be-treated water pipe 40 and the to-be-treated water supply pipe 121 are connected by the flow path switching unit R1. Further, the permeate outflow pipe 112 and the ultrapure water pipe 30 are connected by the flow path switching unit R2. Further, the transfer pipe 115 and the treated water supply pipe 111 are connected by the flow path switching unit R3. Further, the permeate outflow pipe 122 and the transfer pipe 115 are connected by the flow path switching unit R4. As a result, the second ultrafiltration membrane device 12 is changed to the front stage, and the first ultrafiltration membrane device 11 is changed to the rear stage arrangement. In the ultrafiltration membrane unit shown in FIG. 8, the treated water pipe 40, the flow path switching unit R1, the treated water supply pipe 121, the inlet 12a, the second ultrafiltration membrane module 120, the permeated water outlet 12b, and the permeated water. The second ultrafiltration membrane module includes the outflow pipe 122, the flow path switching unit R4, the transfer pipe 115, the flow path switching unit R3, the treated water supply pipe 111, the inlet 11a, and the first ultrafiltration membrane module 110. A flow path from 120 to the first ultrafiltration membrane module 110 is formed.
 この状態で被処理水管40から限外ろ過膜ユニットに洗浄水が供給される。洗浄水は、新品の第2の限外ろ過膜モジュール120、次いで第1の限外ろ過膜装モジュール110と順に通流する。具体的には、洗浄水は、被処理水供給管121から導入口12aを経て第2の限外ろ過膜モジュール120に供給される。第2の限外ろ過膜モジュール120を通流した洗浄水は、透過水流出管122、移送配管115、被処理水供給管111を経て導入口11aから第1の限外ろ過膜モジュール110に供給される。さらに、洗浄水は第1の限外ろ過膜モジュール110を通流して、透過水流出管112、超純水配管30を経て排出される。なお、立ち上げ運転時には、超純水配管30とユースポイントの接続は解除される。 In this state, cleaning water is supplied from the water pipe 40 to be treated to the ultrafiltration membrane unit. The washing water passes through the new second ultrafiltration membrane module 120 and then the first ultrafiltration membrane module 110 in order. Specifically, the wash water is supplied from the treated water supply pipe 121 to the second ultrafiltration membrane module 120 through the inlet 12a. The wash water flowing through the second ultrafiltration membrane module 120 is supplied to the first ultrafiltration membrane module 110 from the introduction port 11a through the permeate outflow pipe 122, the transfer pipe 115, and the treated water supply pipe 111. Is done. Further, the wash water flows through the first ultrafiltration membrane module 110 and is discharged through the permeate outflow pipe 112 and the ultrapure water pipe 30. In addition, at the time of start-up operation, the connection between the ultrapure water pipe 30 and the use point is released.
 この立ち上げ運転は、第1の限外ろ過膜装置11の透過水中の微粒子数が所定の値以下になるまで行われる。立ち上げ運転に際して、新品の第2の限外ろ過膜モジュール120からは、多くの発塵があるが、これらは第1の限外ろ過膜装置11で捕捉される。そのため、この立ち上げ運転は、新品の第2の限外ろ過膜モジュール120を単体で立ち上げるよりも早期に完了することができる。 This start-up operation is performed until the number of fine particles in the permeated water of the first ultrafiltration membrane device 11 becomes a predetermined value or less. During the start-up operation, a lot of dust is generated from the new second ultrafiltration membrane module 120, but these are captured by the first ultrafiltration membrane device 11. Therefore, this start-up operation can be completed earlier than starting a new second ultrafiltration membrane module 120 alone.
 立ち上げ運転が完了した後、流路切替部の接続は図8に示すように切り替えたまま、原水が前処理部14に供給されて超純水の製造が開始される。一次純水製造部15から送られた一次純水は、被処理水として第2の限外ろ過膜モジュール120、第1の限外ろ過膜モジュール110の順に通流して、第1の限外ろ過膜モジュール110の透過水がユースポイントに送水される。これにより高純度の超純水を安定的にユースポイントに供給することができる。 After the start-up operation is completed, the raw water is supplied to the pretreatment unit 14 while the connection of the flow path switching unit is switched as shown in FIG. The primary pure water sent from the primary pure water production unit 15 is passed through the second ultrafiltration membrane module 120 and the first ultrafiltration membrane module 110 in this order as the water to be treated, and the first ultrafiltration membrane is supplied. The permeated water of the membrane module 110 is sent to the use point. Thereby, high purity ultrapure water can be stably supplied to the use point.
 超純水の製造を続けていると、限外ろ過膜が劣化して、超純水の水質が低下してくる。このときには、第1の限外ろ過膜モジュール110の交換が行われる。第1の限外ろ過膜装置11に新品の限外ろ過膜モジュールを配設し、第1の限外ろ過膜装置11の立ち上げを行う。 If the production of ultrapure water is continued, the ultrafiltration membrane deteriorates and the quality of the ultrapure water decreases. At this time, the first ultrafiltration membrane module 110 is replaced. A new ultrafiltration membrane module is disposed in the first ultrafiltration membrane device 11 to start up the first ultrafiltration membrane device 11.
 この第1の限外ろ過膜装置11の立ち上げ時には、図7に示すように流路切替部R1によって被処理水管40と被処理水供給管111が接続される。また、流路切替部R2によって透過水流出管112と移送配管115の一端が接続される。また、流路切替部R3によって移送配管115の他端と被処理水供給管121が接続される。また、流路切替部R4によって透過水流出管112と超純水配管30が接続される。これにより、第1の限外ろ過膜装置11が前段、第2の限外ろ過膜装置12が後段の配置に変更される。この状態で、被処理水管40から限外ろ過膜ユニットに洗浄水が供給される。 When the first ultrafiltration membrane device 11 is started up, the treated water pipe 40 and the treated water supply pipe 111 are connected by the flow path switching unit R1, as shown in FIG. Further, one end of the permeate outflow pipe 112 and the transfer pipe 115 is connected by the flow path switching unit R2. Further, the other end of the transfer pipe 115 and the treated water supply pipe 121 are connected by the flow path switching unit R3. Further, the permeate outflow pipe 112 and the ultrapure water pipe 30 are connected by the flow path switching unit R4. As a result, the first ultrafiltration membrane device 11 is changed to the front stage, and the second ultrafiltration membrane device 12 is changed to the rear stage arrangement. In this state, washing water is supplied from the water tube 40 to be treated to the ultrafiltration membrane unit.
 限外ろ過膜装置に供給された洗浄水は、被処理水供給管111から導入口11aを経て第1の限外ろ過膜モジュール110に供給される。第1の限外ろ過膜モジュール110を通流した洗浄水は、透過水流出管112、移送配管115、被処理水供給管121を経て導入口12aから第2の限外ろ過膜モジュール120に供給される。さらに、第2の限外ろ過膜モジュール120を通流した洗浄水は、透過水流出管122、超純水配管30を経て排出される。なお、立ち上げ運転時には、超純水配管30とユースポイントの接続は解除される。 The washing water supplied to the ultrafiltration membrane device is supplied from the treated water supply pipe 111 to the first ultrafiltration membrane module 110 through the inlet 11a. The wash water flowing through the first ultrafiltration membrane module 110 is supplied to the second ultrafiltration membrane module 120 from the inlet 12a through the permeate outflow pipe 112, the transfer pipe 115, and the treated water supply pipe 121. Is done. Further, the wash water flowing through the second ultrafiltration membrane module 120 is discharged through the permeate outflow pipe 122 and the ultrapure water pipe 30. In addition, at the time of start-up operation, the connection between the ultrapure water pipe 30 and the use point is released.
 この立ち上げ運転は、第2の限外ろ過膜装置12の透過水中の微粒子数が所定の値以下になるまで行われる。立ち上げ運転に際して、新品の第1の限外ろ過膜モジュール110からは、多くの発塵があるが、これらは第2の限外ろ過膜装置12で捕捉される。そのため、この立ち上げ運転は、新品の第1の限外ろ過膜モジュール110を単体で立ち上げるよりも早期に完了することができる。 This start-up operation is performed until the number of fine particles in the permeated water of the second ultrafiltration membrane device 12 falls below a predetermined value. During the start-up operation, a lot of dust is generated from the new first ultrafiltration membrane module 110, but these are captured by the second ultrafiltration membrane device 12. Therefore, this start-up operation can be completed earlier than starting a new first ultrafiltration membrane module 110 alone.
 立ち上げ運転が完了した後、流路切替部の接続は図7に示すように切り替えたまま、原水が前処理部14に供給されて超純水の製造が開始される。一次純水製造部15から送られた一次純水は、上記同様、第1の限外ろ過膜装置11、第2の限外ろ過膜装置12の順に通水して、第2の限外ろ過膜装置12の透過水がユースポイントに送水される。これにより高純度の超純水を安定的にユースポイントに供給することができる。 After the start-up operation is completed, the raw water is supplied to the pretreatment unit 14 and the production of ultra pure water is started while the connection of the flow path switching unit is switched as shown in FIG. The primary pure water sent from the primary pure water production unit 15 is passed through the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 in this order, as in the above, and the second ultrafiltration membrane is passed through. The permeated water of the membrane device 12 is sent to the use point. Thereby, high purity ultrapure water can be stably supplied to the use point.
 上記操作を繰り返すことで、第1の限外ろ過膜装置11と第2の限外ろ過膜装置12を順に交換、立ち上げしながら超純水を製造することができる。このとき、新品のモジュールとの入れ替え後の立ち上げ運転時間が著しく短縮されるため、高水質の超純水を効率よく製造することができる。また、第1の限外ろ過膜装置11と第2の限外ろ過膜装置12に備えられる限外ろ過膜モジュールのハウジングにおける導入口、透過水流出口及び濃縮水流出口の配設位置がそれぞれ互いに共通する。そのため、限外ろ過膜モジュールの導入口、透過水流出口及び濃縮水流出口に接続される超純水製造システムの配管の配置や形態を変更せずに、任意の限外ろ過膜モジュールを移し替えて、これらを交換することもできる。 By repeating the above operation, the ultrafiltration water can be produced while the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 are sequentially replaced and started up. At this time, since the startup operation time after replacement with a new module is remarkably shortened, high-quality ultrapure water can be efficiently produced. Further, the arrangement positions of the introduction port, the permeate outlet and the concentrated water outlet in the housing of the ultrafiltration membrane module provided in the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 are common to each other. To do. Therefore, any ultrafiltration membrane module can be transferred without changing the arrangement and form of the ultrapure water production system pipe connected to the inlet of the ultrafiltration membrane module, the permeate outlet and the concentrated outlet. These can also be exchanged.
 上記流路切替部R1~R4は例えば図9A及び図9Bに示すように、切替機構Rpを構成する2つの開閉バルブRpvと、それぞれの開閉バルブRpvに接続されて流路切替部を構成する2本の曲管L1、L2と、切替機構と流路切替部を一体化した配管L115によって構成される。 For example, as shown in FIGS. 9A and 9B, the flow path switching units R1 to R4 are connected to the two opening / closing valves Rpv constituting the switching mechanism Rp and the respective opening / closing valves Rpv to form the flow path switching unit 2 The curved pipes L1 and L2 and a pipe L115 in which the switching mechanism and the flow path switching unit are integrated.
 図9A及び図9Bに示すように、図7及び図8に示す流路切替部R1は、被処理水管40に接続された開閉バルブRpvと、開閉バルブRpvに接続された曲管L1とで構成される。図7に示す流路を構成するときは、曲管L1の開閉バルブRpvの反対側の端部は、第1の限外ろ過膜モジュール110の導入口11aに接続され、図8に示す流路を構成するときは、図9Bに示すように曲管L1の開閉バルブRpvの反対側の端部は、第2の限外ろ過膜モジュール120の導入口12aに接続される。 As shown in FIGS. 9A and 9B, the flow path switching unit R1 shown in FIGS. 7 and 8 includes an open / close valve Rpv connected to the treated water pipe 40 and a curved pipe L1 connected to the open / close valve Rpv. Is done. When the flow path shown in FIG. 7 is configured, the opposite end of the open / close valve Rpv of the curved pipe L1 is connected to the inlet 11a of the first ultrafiltration membrane module 110, and the flow path shown in FIG. 9B, the end of the curved pipe L1 on the opposite side of the open / close valve Rpv is connected to the inlet 12a of the second ultrafiltration membrane module 120.
 図9A及び図9Bに示すように、図7及び図8に示す流路切替部R2は、超純水配管30に接続された開閉バルブRpvと、開閉バルブRpvに接続された曲管L2とで構成される。図7に示す流路を構成するときは、図9Aに示すように、曲管L2の開閉バルブRpvの反対側の端部は、開閉バルブV122を介して第2の限外ろ過膜モジュール120の透過水配管122に接続される。図8に示す流路を構成するときは、図9Bに示すように、曲管L2の開閉バルブRpvの反対側の端部は、開閉バルブV121を介して第1の限外ろ過膜モジュール110の透過水流出管112の端部に接続される。 As shown in FIGS. 9A and 9B, the flow path switching unit R2 shown in FIGS. 7 and 8 includes an opening / closing valve Rpv connected to the ultrapure water pipe 30 and a curved pipe L2 connected to the opening / closing valve Rpv. Composed. When the flow path shown in FIG. 7 is configured, as shown in FIG. 9A, the opposite end of the curved pipe L2 to the open / close valve Rpv is connected to the second ultrafiltration membrane module 120 via the open / close valve V122. Connected to the permeate pipe 122. When the flow path shown in FIG. 8 is configured, as shown in FIG. 9B, the opposite end of the curved pipe L2 to the open / close valve Rpv is connected to the first ultrafiltration membrane module 110 via the open / close valve V121. Connected to the end of the permeate outflow pipe 112.
 図9A及び図9Bに示すように、図7及び図8に示す移送配管115、流路切替部R3及び流路切替部R4は、切替機構としての曲がり部を有した配管L115によって構成される。図7に示す流路を構成するときは、図9Aに示すように、配管L115の一方の端部が開閉バルブV121を介して第1の限外ろ過膜モジュール110の透過水配管121に接続され、その他端が第2の限外ろ過膜モジュール120の導入口12aに接続される。図8に示す流路を構成するときは、図9Bに示すように、配管L115の一方の端部が第1の限外ろ過膜モジュール110の導入口11aに接続され、その他端が開閉バルブV122を介して第2の限外ろ過膜モジュール120の透過水配管122に接続される。 9A and 9B, the transfer pipe 115, the flow path switching unit R3, and the flow path switching unit R4 illustrated in FIGS. 7 and 8 are configured by a pipe L115 having a bent portion as a switching mechanism. When the flow path shown in FIG. 7 is configured, as shown in FIG. 9A, one end of the pipe L115 is connected to the permeate pipe 121 of the first ultrafiltration membrane module 110 via the open / close valve V121. The other end is connected to the inlet 12a of the second ultrafiltration membrane module 120. When the flow path shown in FIG. 8 is configured, as shown in FIG. 9B, one end of the pipe L115 is connected to the inlet 11a of the first ultrafiltration membrane module 110, and the other end is an open / close valve V122. To the permeate pipe 122 of the second ultrafiltration membrane module 120.
 これらの配管L115、曲管L1、L2のつなぎ替えは、各開閉バルブV121、V122、Rpvを閉じた状態で、配管L115、曲管L1、L2を取り外し、接続箇所を変更して再度接続することで行うことができる。 To connect these pipes L115 and bent pipes L1 and L2, with the open / close valves V121, V122 and Rpv closed, the pipes L115 and bent pipes L1 and L2 are removed, the connection points are changed, and the connections are made again. Can be done.
 図10は上記流路切替部に代えて四方バルブを用いた場合の限外ろ過膜ユニットの配管構成を表す。図10において、図2~9と同様の機能を有する構成には同一の符号を付して重複する説明を省略する。図10に示すように、図7及び図9における流路切替部R1と流路切替部R3の組み合わせ、及び流路切替部R2及び流路切替部R4の組み合わせに代えて、それぞれ四方バルブV41及び四方バルブV42を用いてもよい。四方バルブは4つの出入口と、内部に2本の流路とを備えており、2本の流路によって接続する出入口の組み合わせを変えることで、被処理水の流路を切り替えることができる。 FIG. 10 shows the piping configuration of the ultrafiltration membrane unit when a four-way valve is used instead of the flow path switching unit. 10, components having the same functions as those in FIGS. 2 to 9 are denoted by the same reference numerals, and redundant description is omitted. As shown in FIG. 10, instead of the combination of the channel switching unit R1 and the channel switching unit R3 and the combination of the channel switching unit R2 and the channel switching unit R4 in FIGS. A four-way valve V42 may be used. The four-way valve includes four inlets and outlets and two channels inside, and the channel of the water to be treated can be switched by changing the combination of the inlets and outlets connected by the two channels.
 四方バルブV41は、被処理水管40と被処理水供給管111と移送配管115の一端と被処理水供給管121との分岐箇所に、四方バルブV42は、超純水配管30と移送配管115の他端と透過水流出管112と透過水流出管122との分岐箇所に設けられ、上記同様に流路の切替をすることができる。具体的には、四方バルブV41は、被処理水管40から被処理水供給管111への流路、及び移送配管115から被処理水供給管121への流路と、被処理水管40から被処理水供給管121への流路、及び移送配管115から被処理水供給管111への流路とを切り替える。四方バルブV42は、透過水流出管112から超純水配管30への流路、及び透過水流出管122から移送配管115への流路と、透過水流出管112から移送配管115への流路、及び透過水流出管122から超純水配管30への流路とを切り替える。 The four-way valve V41 is provided at a branch point between the treated water pipe 40, the treated water supply pipe 111, one end of the transfer pipe 115 and the treated water supply pipe 121, and the four-way valve V42 is provided between the ultrapure water pipe 30 and the transfer pipe 115. It is provided at a branch point between the other end, the permeate outflow pipe 112 and the permeate outflow pipe 122, and the flow path can be switched in the same manner as described above. Specifically, the four-way valve V41 includes a flow path from the treated water pipe 40 to the treated water supply pipe 111, a flow path from the transfer pipe 115 to the treated water supply pipe 121, and a treated water pipe 40 from the treated water pipe 40. The flow path to the water supply pipe 121 and the flow path from the transfer pipe 115 to the treated water supply pipe 111 are switched. The four-way valve V42 includes a flow path from the permeate outflow pipe 112 to the ultrapure water pipe 30, a flow path from the permeate outflow pipe 122 to the transfer pipe 115, and a flow path from the permeate outflow pipe 112 to the transfer pipe 115. And the flow path from the permeate outflow pipe 122 to the ultrapure water pipe 30 are switched.
 開閉バルブに代えて四方バルブを用いた場合には、超純水製造システム1内の水の滞留部を減少させることができるので、超純水水質の劣化が少なく、より長期間にわたって高純度の超純水を製造することができる。 When a four-way valve is used in place of the on-off valve, the water retention portion in the ultrapure water production system 1 can be reduced, so that there is little deterioration of the ultrapure water quality and high purity over a longer period of time. Ultrapure water can be produced.
(第3の実施形態)
 次に、図11を参照して第1の限外ろ過膜装置11及び第2の限外ろ過膜装置12を接続する配管の構成の他の一態様を説明する。第3の実施形態の二次純水製造部133は、第1の限外ろ過膜装置11及び第2の限外ろ過膜装置12への通水順序の切り替えを、六方バルブによって行うものである。六方バルブは、6つの水の出入口と、内部に3本の流路とを備えており、3本の流路によって接続する出入口の組み合わせを変えることで、被処理水の流路を切り替えることができる。
(Third embodiment)
Next, another aspect of the configuration of the pipe connecting the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 will be described with reference to FIG. The secondary pure water production unit 133 according to the third embodiment performs switching of the water flow order to the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 by a six-way valve. . The hexagonal valve has six water inlets and outlets and three flow paths inside. The flow path of water to be treated can be switched by changing the combination of the inlets and outlets connected by the three flow paths. it can.
 本実施形態の二次純水製造部133において、図7~8に示す第2の実施形態の限外ろ過膜ユニットにおいて、移送配管115及び流路切替部R1~R4の機能を六方バルブV60に持たせて、装置を集約したものである。本実施形態の二次純水製造部133において、被処理水管40は六方バルブV60内の第1の流路61によって被処理水供給管111に接続される。また、第1の限外ろ過膜装置11の透過水を通流させる透過水流出管112は六方バルブV60の第2の流路62によって、被処理水供給管121に接続される。また、また、第2の限外ろ過膜装置12の透過水を通流させる透過水流出管122は六方バルブV60の第3の流路63によって超純水配管30に接続される。これにより、被処理水は第1の限外ろ過膜装置11、第2の限外ろ過膜装置12を順に通流する。 In the secondary pure water production unit 133 of this embodiment, in the ultrafiltration membrane unit of the second embodiment shown in FIGS. 7 to 8, the functions of the transfer pipe 115 and the flow path switching units R1 to R4 are changed to the hexagonal valve V60. This is a collection of devices. In the secondary pure water production unit 133 of the present embodiment, the treated water pipe 40 is connected to the treated water supply pipe 111 by the first flow path 61 in the six-way valve V60. Further, the permeated water outflow pipe 112 through which the permeated water of the first ultrafiltration membrane device 11 flows is connected to the treated water supply pipe 121 by the second flow path 62 of the hexagonal valve V60. Moreover, the permeated water outflow pipe 122 through which the permeated water of the second ultrafiltration membrane device 12 flows is connected to the ultrapure water pipe 30 by the third flow path 63 of the six-way valve V60. Thereby, to-be-processed water flows the 1st ultrafiltration membrane apparatus 11 and the 2nd ultrafiltration membrane apparatus 12 in order.
 そして、限外ろ過膜モジュールの交換等によって第1の限外ろ過膜装置11、第2の限外ろ過膜装置12の被処理水の通流順序を変更する場合には、六方バルブV60を切り替えて、第1の流路61によって透過水流出管122と被処理水供給管111を接続させる。また、第2の流路62によって、被処理水管40と被処理水供給管121を接続させる。また、第3の流路63によって、透過水流出管112と超純水配管30を接続させる。これにより、被処理水は第2の限外ろ過膜装置12、第1の限外ろ過膜装置11を順に通流する。 When changing the flow order of the water to be treated in the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 by exchanging the ultrafiltration membrane module or the like, the hexagonal valve V60 is switched. Then, the permeate outflow pipe 122 and the treated water supply pipe 111 are connected by the first flow path 61. Further, the treated water pipe 40 and the treated water supply pipe 121 are connected by the second flow path 62. Further, the permeate outflow pipe 112 and the ultrapure water pipe 30 are connected by the third flow path 63. Thereby, to-be-processed water flows the 2nd ultrafiltration membrane apparatus 12 and the 1st ultrafiltration membrane apparatus 11 in order.
 上記超純水の製造と限外ろ過膜装置の立ち上げの各工程において、上記のように六方バルブV60を操作することで、第1の限外ろ過膜装置11、第2の限外ろ過膜装置12の被処理水の通流順序を変更することができる。これにより、第1の限外ろ過膜装置11と第2の限外ろ過膜装置12を順に交換、立ち上げしながら超純水を製造することができる。このとき、新品のモジュールとの入れ替え後の立ち上げ運転時間が著しく短縮されるため、高水質の超純水を効率よく製造することができる。また、第1の限外ろ過膜装置11と第2の限外ろ過膜装置12に備えられる限外ろ過膜モジュールのハウジングにおける導入口、透過水流出口及び濃縮水流出口の配設位置がそれぞれ互いに共通する。そのため、限外ろ過膜モジュールの導入口、透過水流出口及び濃縮水流出口に接続される超純水製造システムの配管の配置や形態を変更せずに、任意の限外ろ過膜モジュールを移し替えて、これらを交換することもできる。 In each step of manufacturing the ultrapure water and starting up the ultrafiltration membrane device, the first ultrafiltration membrane device 11 and the second ultrafiltration membrane are operated by operating the six-way valve V60 as described above. The flow order of the to-be-processed water of the apparatus 12 can be changed. Thereby, the 1st ultrafiltration membrane apparatus 11 and the 2nd ultrafiltration membrane apparatus 12 are replaced | exchanged in order, and ultrapure water can be manufactured, starting up. At this time, since the startup operation time after replacement with a new module is remarkably shortened, high-quality ultrapure water can be efficiently produced. Further, the arrangement positions of the introduction port, the permeate outlet and the concentrated water outlet in the housing of the ultrafiltration membrane module provided in the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 are common to each other. To do. Therefore, any ultrafiltration membrane module can be transferred without changing the arrangement and form of the ultrapure water production system pipe connected to the inlet of the ultrafiltration membrane module, the permeate outlet and the concentrated outlet. These can also be exchanged.
(第4の実施形態)
 図12は、直列に接続された2台の限外ろ過膜装置からなる限外ろ過膜ユニットを2つ以上並列に接続した構成を表す概略図である。図12に示す二次純水製造部13は、第1の限外ろ過膜装置11x及び第2の限外ろ過膜装置12xを備える限外ろ過膜ユニット17xと、第1の限外ろ過膜装置11y及び第2の限外ろ過膜装置12yを備える限外ろ過膜ユニット17yと、第1の限外ろ過膜装置11z及び第2の限外ろ過膜装置12zを備える限外ろ過膜ユニット17zとを並列に備えている。限外ろ過膜ユニット17x、限外ろ過膜ユニット17y、限外ろ過膜ユニット17zはそれぞれ被処理水の通流する被処理水管171x、171y、171zと、各限外ろ過膜ユニットの前段において、被処理水供給管171x、171y、171zにそれぞれ介装された開閉バルブV17x、V17y、V17zを有している。
(Fourth embodiment)
FIG. 12 is a schematic diagram showing a configuration in which two or more ultrafiltration membrane units including two ultrafiltration membrane devices connected in series are connected in parallel. The secondary pure water production unit 13 shown in FIG. 12 includes an ultrafiltration membrane unit 17x including a first ultrafiltration membrane device 11x and a second ultrafiltration membrane device 12x, and a first ultrafiltration membrane device. 11y and an ultrafiltration membrane unit 17y comprising a second ultrafiltration membrane device 12y, and an ultrafiltration membrane unit 17z comprising a first ultrafiltration membrane device 11z and a second ultrafiltration membrane device 12z In parallel. The ultrafiltration membrane unit 17x, the ultrafiltration membrane unit 17y, and the ultrafiltration membrane unit 17z are treated water pipes 171x, 171y, and 171z through which the treated water flows, respectively, and in the preceding stage of each ultrafiltration membrane unit. Open / close valves V17x, V17y, and V17z interposed in the treated water supply pipes 171x, 171y, and 171z, respectively.
 図12に示す構成では、同一ユニット内でそれぞれ上記同様に新品の限外ろ過膜モジュールを前段に配置し、経時使用された限外ろ過膜モジュールを後段に配置する方式によって、限外ろ過膜モジュールの交換、限外ろ過膜装置の立ち上げを行うことができる。また、開閉バルブV17x、V17y、V17zの開閉を組み合わせて、3つの限外ろ過膜ユニットのうち、1つのユニットにおいて上記第1~第3の実施形態と同様の方式による限外ろ過膜モジュールの交換、限外ろ過膜装置の立ち上げを行うとともに、他の2つのユニットにおいて超純水の製造を継続することができる。なお、図12では、限外ろ過膜ユニットを3つ並列に接続した態様を示したが、並列に接続される限外ろ過膜ユニットの数は2つあるいは4つ以上でも同様である。また上述と同様、各限外ろ過膜装置が有する限外ろ過膜モジュールの数は、1以上であれば複数であってもよい。限外ろ過膜装置が複数の限外ろ過膜モジュールを有する場合、例えば、前段の限外ろ過膜装置11xが有する限外ろ過膜モジュールの数と、後段の限外ろ過膜装置12xが有する限外ろ過膜モジュールの数は同じであることが好ましい。すなわち、限外ろ過膜装置11xと12xが有する限外ろ過膜モジュールの数が同じであることが好ましく、限外ろ過膜装置11yと12y、及び限外ろ過膜装置11zと12zも同様である。また、各ユニットの前段に備えられる限外ろ過膜装置が有する限外ろ過膜モジュールの数も同じであることが好ましい。すなわち、限外ろ過膜装置11x、11y、11zが有する限外ろ過膜モジュールの数もすべて同じであることが好ましい。これらの限外ろ過膜モジュールの数が同じでない場合には、各ユニットや装置の流量に偏りが生じる片流れ等が起こることがあり、交換周期が著しく短くなったり、水質が悪化するおそれがある。 In the configuration shown in FIG. 12, in the same unit, a new ultrafiltration membrane module is arranged in the previous stage in the same manner as described above, and the ultrafiltration membrane module used over time is arranged in the subsequent stage, whereby the ultrafiltration membrane module is arranged. The ultrafiltration membrane device can be started up. Further, by combining opening / closing of the open / close valves V17x, V17y, and V17z, one of the three ultrafiltration membrane units can be replaced with an ultrafiltration membrane module in the same manner as in the first to third embodiments. In addition to starting up the ultrafiltration membrane device, the production of ultrapure water can be continued in the other two units. In addition, although the aspect which connected three ultrafiltration membrane units in parallel was shown in FIG. 12, the number of the ultrafiltration membrane units connected in parallel is the same even if it is two or four or more. Similarly to the above, each ultrafiltration membrane device may have a plurality of ultrafiltration membrane modules as long as it is one or more. When the ultrafiltration membrane device has a plurality of ultrafiltration membrane modules, for example, the number of ultrafiltration membrane modules included in the previous ultrafiltration membrane device 11x, and the limit included in the subsequent ultrafiltration membrane device 12x The number of filtration membrane modules is preferably the same. That is, it is preferable that the number of the ultrafiltration membrane modules which ultrafiltration membrane apparatus 11x and 12x have is the same, and ultrafiltration membrane apparatus 11y and 12y and ultrafiltration membrane apparatus 11z and 12z are the same. Moreover, it is preferable that the number of the ultrafiltration membrane modules which the ultrafiltration membrane apparatus provided in the front | former stage of each unit has is also the same. That is, it is preferable that the number of ultrafiltration membrane modules included in the ultrafiltration membrane devices 11x, 11y, and 11z is the same. If the number of these ultrafiltration membrane modules is not the same, a single flow or the like in which the flow rate of each unit or apparatus is biased may occur, and the replacement cycle may be significantly shortened or the water quality may be deteriorated.
(第5の実施形態)
 図13は、1段の限外ろ過膜装置が複数並列した限外ろ過膜モジュールを有する構成を表す概略図である。図13に示す二次純水製造部13は、第1の限外ろ過膜モジュール110p、110q、110rを並列に接続した構成の第1の限外ろ過膜装置11及び第2の限外ろ過膜モジュール120p、120q、120rを並列に接続した構成の第2の限外ろ過膜装置12を備えている。この構成では、1段の限外ろ過膜装置の有する並列接続された限外ろ過膜モジュール群を一まとめとして、前段側の限外ろ過膜モジュール群(限外ろ過膜装置11の有する限外ろ過膜モジュール)と後段側の限外ろ過膜モジュール群(限外ろ過膜装置12の有する限外ろ過膜モジュール)の間において、上記第1~第3の実施形態と同様に、新品の限外ろ過膜モジュールを前段に配置し、経時使用された限外ろ過膜モジュールを後段に配置する方式によって、限外ろ過膜モジュールの交換、限外ろ過膜装置の立ち上げを行うことができる。なお、図13では、1つの限外ろ過膜装置が並列に接続した3つの限外ろ過膜モジュールを有する態様を示したが、並列に接続される限外ろ過膜モジュールの数は2つあるいは4つ以上でも同様である。
(Fifth embodiment)
FIG. 13 is a schematic diagram showing a configuration having an ultrafiltration membrane module in which a plurality of one-stage ultrafiltration membrane devices are arranged in parallel. The secondary pure water production unit 13 shown in FIG. 13 includes a first ultrafiltration membrane device 11 and a second ultrafiltration membrane having a configuration in which the first ultrafiltration membrane modules 110p, 110q, and 110r are connected in parallel. A second ultrafiltration membrane device 12 having a configuration in which modules 120p, 120q, and 120r are connected in parallel is provided. In this configuration, the group of ultrafiltration membrane modules connected in parallel in the single-stage ultrafiltration membrane device is grouped together, and the previous ultrafiltration membrane module group (the ultrafiltration membrane of the ultrafiltration membrane device 11 has). Between the membrane module) and the rear ultrafiltration membrane module group (ultrafiltration membrane module of the ultrafiltration membrane device 12) as in the first to third embodiments. By replacing the ultrafiltration membrane module and starting up the ultrafiltration membrane device by arranging the membrane module in the previous stage and arranging the ultrafiltration membrane module used over time in the subsequent stage. Although FIG. 13 shows a mode in which one ultrafiltration membrane device has three ultrafiltration membrane modules connected in parallel, the number of ultrafiltration membrane modules connected in parallel is two or four. The same applies to more than one.
(第6の実施形態)
 図14は、直列に接続された2つの限外ろ過膜装置からなる限外ろ過膜ユニットを2つ以上並列に接続し、1段の限外ろ過膜装置が複数並列した限外ろ過膜モジュールを有する構成を表す概略図である。
(Sixth embodiment)
FIG. 14 shows an ultrafiltration membrane module in which two or more ultrafiltration membrane units composed of two ultrafiltration membrane devices connected in series are connected in parallel, and a plurality of one-stage ultrafiltration membrane devices are arranged in parallel. It is the schematic showing the structure which has.
 図14に係る構成は、第1の限外ろ過膜装置11x及び第2の限外ろ過膜装置12xを備える限外ろ過膜ユニット17xと、第1の限外ろ過膜装置11y及び第2の限外ろ過膜装置12yを備える限外ろ過膜ユニット17yとを並列に備えている。そして、第1の限外ろ過膜装置11x及び限外ろ過膜装置11yは、いずれも、第1の限外ろ過膜モジュール110p、110q、110rを並列に接続した構成であり、第2の限外ろ過膜装置12x及び限外ろ過膜装置12yは、いずれも、第2の限外ろ過膜モジュール120p、120q、120rを並列に接続した構成である。 14 includes an ultrafiltration membrane unit 17x including a first ultrafiltration membrane device 11x and a second ultrafiltration membrane device 12x, and a first ultrafiltration membrane device 11y and a second limit. An ultrafiltration membrane unit 17y including the outer filtration membrane device 12y is provided in parallel. Each of the first ultrafiltration membrane device 11x and the ultrafiltration membrane device 11y has a configuration in which the first ultrafiltration membrane modules 110p, 110q, and 110r are connected in parallel. Each of the filtration membrane device 12x and the ultrafiltration membrane device 12y has a configuration in which the second ultrafiltration membrane modules 120p, 120q, and 120r are connected in parallel.
 図14に係る構成においては、限外ろ過膜ユニットごとに、1段の限外ろ過膜装置の有する並列接続された限外ろ過膜モジュール群を一まとめとして、前段側の限外ろ過膜モジュール群と後段側の限外ろ過膜モジュール群の間において、上記第1~第3の実施形態と同様に、新品の限外ろ過膜モジュールを前段に配置し、経時使用された限外ろ過膜モジュールを後段に配置する方式によって、限外ろ過膜モジュールの交換、限外ろ過膜装置の立ち上げを行うことができる。 In the configuration according to FIG. 14, for each ultrafiltration membrane unit, a group of ultrafiltration membrane modules connected in parallel in a single-stage ultrafiltration membrane device are grouped together, and the ultrafiltration membrane module group on the upstream side is collected. In the same way as in the first to third embodiments, a new ultrafiltration membrane module is arranged in the front stage between the ultrafiltration membrane module group on the rear stage side and the ultrafiltration membrane module used over time. Depending on the system arranged in the subsequent stage, the ultrafiltration membrane module can be replaced and the ultrafiltration membrane device can be started up.
 上記複数の限外ろ過膜ユニットを、1つの限外ろ過膜装置に複数の限外ろ過膜モジュールを並列接続して有する構成においても、新品のモジュールとの入れ替え後の立ち上げ運転時間が著しく短縮されるため、高水質の超純水を効率よく製造することができる。また、第1の限外ろ過膜装置11と第2の限外ろ過膜装置12に備えられる限外ろ過膜モジュールのハウジングにおける導入口、透過水流出口及び濃縮水流出口の配設位置がそれぞれ互いに共通する。そのため、限外ろ過膜モジュールの導入口、透過水流出口及び濃縮水流出口に接続される超純水製造システムの配管の配置や形態を変更せずに、任意の限外ろ過膜モジュールを移し替えて、これらを交換することもできる。 Even in a configuration in which a plurality of ultrafiltration membrane units are connected in parallel to a single ultrafiltration membrane device, the startup operation time after replacement with a new module is significantly reduced. Therefore, high-quality ultrapure water can be efficiently produced. Further, the arrangement positions of the introduction port, the permeate outlet and the concentrated water outlet in the housing of the ultrafiltration membrane module provided in the first ultrafiltration membrane device 11 and the second ultrafiltration membrane device 12 are common to each other. To do. Therefore, any ultrafiltration membrane module can be transferred without changing the arrangement and form of the ultrapure water production system pipe connected to the inlet of the ultrafiltration membrane module, the permeate outlet and the concentrated outlet. These can also be exchanged.
 以下、実施例を用いて本発明を詳細に説明する。本発明は以下の実施例に限定されない。
(実施例)
 原水を原水タンクから、熱交換器、紫外線酸化装置(日本フォトサイエンス社製、JPW-2)、Pd担持樹脂(LANXESS社製、Lewatit K7333)、膜脱気装置(3M社製X40 G451H)及び非再生型混床式イオン交換装置(野村マイクロ・サイエンス製 N-Lite MBSPを200L充填)に順に通水して処理した。この非再生型混床式イオン交換装置の処理水を第1の限外ろ過膜装置及び第2の限外ろ過膜装置に順に通水した。第1の限外ろ過膜装置及び第2の限外ろ過膜装置としては仕様(限外ろ過膜の形状及び性質、限外ろ過膜モジュールの形状など)の同じ限外ろ過膜装置(旭化成社製、OLT-6036)を用いた。
Hereinafter, the present invention will be described in detail using examples. The present invention is not limited to the following examples.
(Example)
Raw water from raw water tank, heat exchanger, ultraviolet oxidation device (Japan Photoscience, JPW-2), Pd-supported resin (LANXESS, Lewatit K7333), membrane degassing device (3M X40 G451H) and non Water was passed through a regenerative mixed bed ion exchanger (200 ml of N-Lite MBSP manufactured by Nomura Micro Science Co., Ltd.) in order. The treated water of this non-regenerative mixed bed type ion exchange device was passed through the first ultrafiltration membrane device and the second ultrafiltration membrane device in order. As the first ultrafiltration membrane device and the second ultrafiltration membrane device, the same ultrafiltration membrane device (made by Asahi Kasei Co., Ltd.) with the same specifications (the shape and properties of the ultrafiltration membrane, the shape of the ultrafiltration membrane module, etc.) , OLT-6036).
 上記原水の処理を1年連続して行った後、第2の限外ろ過膜装置を新品に交換して、新品の第2の限外ろ過膜装置、第1の限外ろ過膜装置の順に通液して立ち上げ運転を20時間行った。立ち上げ運転は上記熱交換器に超純水を供給して行った。立ち上げ運転における、第1の限外ろ過膜装置の処理水中に含まれる粒子径20nm以上の微粒子数の経時変化を調べた。微粒子数の測定には、Particle Measuring Systems社製の微粒子計UltraDI-20を用いた。結果を図15に示す。 After processing the raw water for one year continuously, the second ultrafiltration membrane device is replaced with a new one, and the new second ultrafiltration membrane device and the first ultrafiltration membrane device are in this order. The liquid was passed through and started up for 20 hours. The start-up operation was performed by supplying ultrapure water to the heat exchanger. In the start-up operation, the change with time of the number of fine particles having a particle diameter of 20 nm or more contained in the treated water of the first ultrafiltration membrane device was examined. For the measurement of the number of fine particles, a particle measuring device UltraDI-20 manufactured by Particle Measuring Systems was used. The results are shown in FIG.
(比較例)
 実施例と同様に、原水の処理を連続して行った後、第2の限外ろ過膜装置を新品に交換して、第1の限外ろ過膜装置、新品の第2の限外ろ過膜装置の順に通液して実施例と同様に立ち上げ運転を20時間行った。実施例と同様に、立ち上げ運転における、第2の限外ろ過膜装置の処理水中に含まれる粒子径20nm以上の微粒子数の経時変化を調べた。結果を実施例とあわせて図15に示す。図15において黒四角が実施例であり白四角が比較例である。
(Comparative example)
As in the example, after the raw water was continuously treated, the second ultrafiltration membrane device was replaced with a new one, and the first ultrafiltration membrane device and the new second ultrafiltration membrane were replaced. The liquid was passed in the order of the apparatus, and the startup operation was performed for 20 hours in the same manner as in the example. Similar to the example, the time-dependent change in the number of fine particles having a particle diameter of 20 nm or more contained in the treated water of the second ultrafiltration membrane device in the start-up operation was examined. The results are shown in FIG. 15 together with the examples. In FIG. 15, black squares are examples, and white squares are comparative examples.
 実施例及び比較例により、新品の限外ろ過膜モジュールを前段に配置し、経時使用された限外ろ過膜モジュールを後段に配置することで、立ち上げ運転時間を短縮することができたことが分かる。 According to the examples and comparative examples, a new ultrafiltration membrane module was placed in the previous stage, and the ultrafiltration membrane module used over time was placed in the latter stage, so that the startup operation time could be shortened. I understand.
 11、12…限外ろ過膜装置、13,131…二次純水製造部、14…前処理部、15…一次純水製造部、16…ユースポイント(POU)、18…微粒子計、110…第1の限外ろ過膜モジュール、120…第2の限外ろ過膜モジュール、11a,12a…導入口、11b,12b…透過水流出口、11c,12c…濃縮水流出口、111,121…被処理水供給管、112,122…透過水流出管、113,123…超純水配管、114,124…濃縮水流出管、115,125…移送配管。 DESCRIPTION OF SYMBOLS 11, 12 ... Ultrafiltration membrane apparatus, 13, 131 ... Secondary pure water manufacturing part, 14 ... Pretreatment part, 15 ... Primary pure water manufacturing part, 16 ... Use point (POU), 18 ... Fine particle meter, 110 ... 1st ultrafiltration membrane module, 120 ... 2nd ultrafiltration membrane module, 11a, 12a ... introduction port, 11b, 12b ... Permeate outflow port, 11c, 12c ... Concentrated water outflow port, 111, 121 ... Untreated water Supply pipe, 112, 122 ... Permeate outflow pipe, 113, 123 ... Ultrapure water pipe, 114, 124 ... Concentrated water outflow pipe, 115, 125 ... Transfer pipe.

Claims (10)

  1.  直列に接続された複数の限外ろ過膜モジュールを有する超純水製造システムであって、
     前記複数の限外ろ過膜モジュールは、
     被処理水を内部に導入する第1の導入口と、透過水を流出させる第1の透過水流出口と、濃縮水を流出させる第1の濃縮水流出口を有し、内部に第1の限外ろ過膜を収容する第1の限外ろ過膜モジュールと、
     被処理水を内部に導入する第2の導入口と、透過水を流出させる第2の透過水流出口と、濃縮水を流出させる第2の濃縮水流出口を有し、内部に第2の限外ろ過膜を収容する第2の限外ろ過膜モジュールと、を含み、
     前記第1の限外ろ過膜モジュールと前記第2の限外ろ過膜モジュールの形状及び大きさが共通であって、前記第1の導入口と前記第2の導入口、前記第1の透過水流出口と前記第2の透過水流出口、前記第1の濃縮水流出口と前記第2の濃縮水流出口、のそれぞれが各モジュール内で共通する位置に配設されており、かつ、前記第1の限外ろ過膜と前記第2の限外ろ過膜が共通の分画分子量及び/又は有効膜面積を有することを特徴とする超純水製造システム。
    An ultrapure water production system having a plurality of ultrafiltration membrane modules connected in series,
    The plurality of ultrafiltration membrane modules are:
    A first inlet for introducing the water to be treated, a first permeate outlet for allowing the permeate to flow out, and a first concentrated water outlet for allowing the concentrate to flow out; A first ultrafiltration membrane module containing a filtration membrane;
    A second inlet for introducing the water to be treated, a second permeate outlet for allowing the permeate to flow out, and a second concentrated water outlet for allowing the concentrate to flow out; A second ultrafiltration membrane module containing the filtration membrane,
    The shape and size of the first ultrafiltration membrane module and the second ultrafiltration membrane module are the same, and the first inlet, the second inlet, and the first permeate flow Each of the outlet, the second permeate outlet, the first concentrated water outlet, and the second concentrated water outlet is disposed at a common position in each module, and the first limit An ultrapure water production system, wherein the outer filtration membrane and the second ultrafiltration membrane have a common molecular weight cut-off and / or effective membrane area.
  2.  前記被処理水の流路が、前記第1の限外ろ過膜モジュールから前記第2の限外ろ過膜モジュールへ順に通流する第1の流路と、前記第2の限外ろ過膜モジュールから前記第1の限外ろ過膜モジュールへ順に通流する第2の流路と、で接続する配管のつなぎ替え又は前記配管のバルブの切り替えによって変更可能に構成されたことを特徴とする請求項1に記載の超純水製造システム。 From the first ultrafiltration membrane module, the first ultrafiltration membrane module and the first ultrafiltration membrane module sequentially flow from the first ultrafiltration membrane module to the second ultrafiltration membrane module. The second flow path that sequentially flows to the first ultrafiltration membrane module is configured to be changeable by changing the connection of pipes connected or switching the valves of the pipes. The ultrapure water production system described in 1.
  3.  前記複数の限外ろ過膜モジュールの形状及び大きさがすべて共通し、前記複数の限外ろ過膜モジュールは、導入口、透過水流出口及び濃縮水流出口がすべて共通する位置に配設されていることを特徴とする請求項1又は2に記載の超純水製造システム。 The shapes and sizes of the plurality of ultrafiltration membrane modules are all common, and the plurality of ultrafiltration membrane modules are arranged at positions where the inlet, the permeate outlet, and the concentrated water outlet are all in common. The ultrapure water production system according to claim 1 or 2.
  4.  前記複数の限外ろ過膜モジュールが有する前記限外ろ過膜の分画分子量及び有効膜面積がすべて共通することを特徴とする請求項1乃至3のいずれか1項に記載の超純水製造システム。 The ultrapure water production system according to any one of claims 1 to 3, wherein the ultrafiltration membranes of the plurality of ultrafiltration membrane modules all share the same molecular weight cut-off and effective membrane area. .
  5.  前記第1の透過水流出口に接続された第1の透過水流出管と、
     前記第1の透過水流出管から分岐して接続された第1の移送配管及び第1の超純水配管と、
     前記第1の移送配管及び第1の超純水配管にそれぞれ介装され、前記第1の透過水流出管からの透過水の流路を前記第1の移送配管と前記第1の超純水配管で切り替えられる、2つの開閉バルブと、
     前記第2の透過水流出口に接続された第2の透過水流出管と、
     前記第2の透過水流出管に分岐して接続された第2の移送配管及び第2の超純水配管と、
     前記第2の移送配管及び第2の超純水配管にそれぞれ介装され、前記第2の透過水流出管からの透過水の流路を前記第2の移送配管と前記第2の超純水配管で切り替えられる、2つの開閉バルブと、
     前記第1の導入口に接続された第1の被処理水供給管と、
     前記第2の導入口に接続された第2の被処理水供給管と、
     前記第1の被処理水供給管と第2の被処理水供給管に介装され、被処理水の供給流路を前記第1の被処理水供給管と前記第2の被処理水供給管で切り替えられる、2つの開閉バルブとを有し、
     前記第1の移送配管は前記第2の被処理水供給管に接続され、
     前記第2の移送配管は前記第1の被処理水供給管に接続され、
     前記6つの開閉バルブの開閉の組み合わせによって、
     被処理水の流路を、前記第1の限外ろ過膜モジュールから前記第2の限外ろ過膜モジュールへ通流する第1の流路と、前記第2の限外ろ過膜モジュールから前記第1の限外ろ過膜モジュールへ通流する第2の流路と、で切替可能に構成されたことを特徴とする請求項1乃至4のいずれか1項に記載の超純水製造システム。
    A first permeate outlet pipe connected to the first permeate outlet;
    A first transfer pipe and a first ultrapure water pipe branched and connected from the first permeate outflow pipe;
    The first transfer pipe and the first ultrapure water are respectively interposed in the first transfer pipe and the first ultrapure water pipe, and pass through the flow path of the permeate from the first permeate outflow pipe. Two on-off valves that can be switched by piping,
    A second permeate outlet pipe connected to the second permeate outlet;
    A second transfer pipe and a second ultrapure water pipe branched and connected to the second permeate outflow pipe;
    The second transfer pipe and the second ultrapure water pipe are respectively interposed in the second transfer pipe and the second ultrapure water through the flow path of the permeate from the second permeate outflow pipe. Two on-off valves that can be switched by piping,
    A first treated water supply pipe connected to the first introduction port;
    A second treated water supply pipe connected to the second introduction port;
    The first treated water supply pipe and the second treated water supply pipe are interposed between the first treated water supply pipe and the second treated water supply pipe. Two open / close valves that can be switched with
    The first transfer pipe is connected to the second treated water supply pipe,
    The second transfer pipe is connected to the first treated water supply pipe,
    By the combination of opening and closing of the six opening and closing valves,
    A first flow path for passing a flow path of the water to be treated from the first ultrafiltration membrane module to the second ultrafiltration membrane module, and the second ultrafiltration membrane module from the first ultrafiltration membrane module. 5. The ultrapure water production system according to claim 1, wherein the ultrapure water production system is configured to be switchable between a second flow path that flows to one ultrafiltration membrane module.
  6.  前記流路を切り替えられる組み合わせの前記2つの開閉バルブに代えて、内部に2つの流路を切替可能な1つの三方バルブを、前記分岐して接続された配管の分岐点に有し、
     前記三方バルブによって、
     被処理水の流路を、前記第1の限外ろ過膜モジュールから前記第2の限外ろ過膜モジュールへ通流する第1の流路と、前記第2の限外ろ過膜モジュールから前記第1の限外ろ過膜モジュールへ通流する第2の流路と、で切替可能に構成されたことを特徴とする請求項5に記載の超純水製造システム。
    In place of the two open / close valves in a combination that can switch the flow path, one three-way valve that can switch between two flow paths is provided at a branch point of the branched and connected pipe,
    By the three-way valve,
    A first flow path for passing a flow path of the water to be treated from the first ultrafiltration membrane module to the second ultrafiltration membrane module, and the second ultrafiltration membrane module from the first ultrafiltration membrane module. The ultrapure water production system according to claim 5, wherein the ultrapure water production system is configured to be switchable between a second flow path that flows to one ultrafiltration membrane module.
  7.  前記第1の透過水流出口に接続された第1の透過水流出管と、
     前記第1の導入口に接続された第1の被処理水供給管と、
     前記第2の透過水流出口に接続された第2の透過水流出管と、
     前記第2の導入口に接続された第2の被処理水供給管と
     前記第1の被処理水供給管又は第2の被処理水供給管に被処理水を供給する被処理水管と、
     前記第1の透過水流出管又は前記第2の透過水流出管からの透過水を超純水の使用場所に送る超純水配管と、
     前記第1の限外ろ過膜モジュールの透過水を前記第2の被処理供給管へ又は前記第2の限外ろ過膜モジュールの透過水を前記第1の被処理水供給管へ移送する移送配管と、
     前記被処理水管からの被処理水の流路を、前記第1の被処理水供給管と前記第2の被処理水供給管とで切り替えられる第1の流路切替部と、
     前記超純水配管に流入させる限外ろ過膜の透過水の流路を、前記第1の透過水流出管と前記第2の透過水流出管とで切り替えられる第2の流路切替部と、
     前記移送配管からの透過水の流路を前記第1の被処理水供給管と前記第2の被処理水供給管とで切り替えられる第3の流路切替部と、
     前記移送配管に流入させる透過水の流路を、前記第1の透過水流出管と前記第2の透過水流出管とで切り替えられる第4の流路切替部を有し、
     前記第1乃至第4の流路切替部の切替により、被処理水の流路を、前記第1の限外ろ過膜モジュールから前記第2の限外ろ過膜モジュールへ通流する第1の流路と前記第2の限外ろ過膜モジュールから前記第1の限外ろ過膜モジュールへ通流する第2の流路で切替可能に構成されたことを特徴とする請求項1乃至4のいずれか1項に記載の超純水製造システム。
    A first permeate outlet pipe connected to the first permeate outlet;
    A first treated water supply pipe connected to the first introduction port;
    A second permeate outlet pipe connected to the second permeate outlet;
    A second treated water supply pipe connected to the second introduction port; a treated water pipe for supplying treated water to the first treated water supply pipe or the second treated water supply pipe;
    Ultrapure water piping for sending permeate from the first permeate outflow pipe or the second permeate outflow pipe to a place where ultrapure water is used;
    Transfer piping for transferring the permeated water of the first ultrafiltration membrane module to the second treated supply pipe or the permeated water of the second ultrafiltration membrane module to the first treated water supply pipe When,
    A first flow path switching unit that switches a flow path of the water to be treated from the water pipe to be treated between the first treated water supply pipe and the second treated water supply pipe;
    A second flow path switching unit capable of switching the flow path of the permeated water of the ultrafiltration membrane flowing into the ultrapure water pipe between the first permeated water outflow pipe and the second permeated water outflow pipe;
    A third flow path switching unit capable of switching the flow path of the permeated water from the transfer pipe between the first treated water supply pipe and the second treated water supply pipe;
    Having a fourth flow path switching unit capable of switching the flow path of the permeated water flowing into the transfer pipe between the first permeated water outflow pipe and the second permeated water outflow pipe;
    By switching the first to fourth flow path switching units, the first flow for flowing the flow path of the water to be treated from the first ultrafiltration membrane module to the second ultrafiltration membrane module. 5. The switch according to claim 1, wherein the second ultrafiltration membrane module and the second ultrafiltration membrane module flow from the second ultrafiltration membrane module to the first ultrafiltration membrane module. 2. The ultrapure water production system according to item 1.
  8.  前記第1及び第3の流路切替部並びに前記第2及び第4の流路切替部のそれぞれの組み合わせに代えて、内部に少なくとも2つの流路を有してこれらの接続の切替が可能な2つの四方バルブを有し、
     前記四方バルブによって、
     被処理水の流路を、前記第1の限外ろ過膜モジュールから前記第2の限外ろ過膜モジュールへ通流する第1の流路と前記第2の限外ろ過膜モジュールから前記第1の限外ろ過膜モジュールへ通流する第2の流路で切替可能に構成されたことを特徴とする請求項7に記載の超純水製造システム。
    Instead of the respective combinations of the first and third flow path switching sections and the second and fourth flow path switching sections, at least two flow paths are provided inside, and these connections can be switched. Has two four-way valves,
    By the four-way valve,
    The first flow path through which the flow path of the water to be treated flows from the first ultrafiltration membrane module to the second ultrafiltration membrane module and the first ultrafiltration membrane module from the first ultrafiltration membrane module. The ultrapure water production system according to claim 7, wherein the ultrapure water production system is configured to be switchable in a second flow path that flows to the ultrafiltration membrane module.
  9.  直列に接続された複数の限外ろ過膜モジュールを有し、前段の限外ろ過膜モジュールの有する限外ろ過膜と後段の限外ろ過モジュールの有する限外ろ過膜の分画分子量及び/又は有効膜面積が共通する超純水製造システムの運転方法であって、
     超純水製造時に前記複数の限外ろ過膜モジュールのうち後段の限外ろ過膜モジュールは前段の限外ろ過膜モジュールの透過水を処理し、
     前記複数の限外ろ過膜モジュールのうち少なくとも1つを交換する際に、
     前記超純水製造時における後段の限外ろ過膜モジュールを新品の限外ろ過膜モジュールに交換し、
     前記新品の限外ろ過膜モジュールを前段とし、交換されない限外ろ過膜モジュールを後段として流路を切り替え、前記複数の限外ろ過膜モジュールに洗浄水を通流させて超純水製造システムの立ち上げを行うことを特徴とする超純水製造システムの運転方法。
    It has a plurality of ultrafiltration membrane modules connected in series, and the molecular weight cut off and / or effectiveness of the ultrafiltration membrane of the ultrafiltration membrane of the preceding stage and the ultrafiltration membrane of the ultrafiltration module of the latter stage An operation method of an ultrapure water production system having a common membrane area,
    Of the plurality of ultrafiltration membrane modules during ultrapure water production, the latter ultrafiltration membrane module processes the permeated water of the former ultrafiltration membrane module,
    When replacing at least one of the plurality of ultrafiltration membrane modules,
    Replacing the latter ultrafiltration membrane module at the time of the ultrapure water production with a new ultrafiltration membrane module,
    The new ultrafiltration membrane module is the front stage, the non-replaceable ultrafiltration membrane module is the rear stage, the flow path is switched, and washing water is passed through the plurality of ultrafiltration membrane modules to establish an ultrapure water production system. A method of operating an ultrapure water production system, characterized in that
  10.  前記限外ろ過膜モジュールの交換は、
     超純水製造時における後段の限外ろ過膜モジュールの透過水中に含まれる粒子径20nm以上の微粒子が1000pcs./L以上となったときに行う請求項9に記載の純水製造システムの運転方法。
    Replacement of the ultrafiltration membrane module
    Fine particles having a particle diameter of 20 nm or more contained in the permeated water of the subsequent ultrafiltration membrane module at the time of production of ultrapure water were 1000 pcs. The operation method of the pure water manufacturing system of Claim 9 performed when it becomes more than / L.
PCT/JP2019/012460 2018-03-27 2019-03-25 Ultrapure-water production system and operation method for ultrapure-water production system WO2019188963A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020510063A JP7267258B2 (en) 2018-03-27 2019-03-25 Ultrapure water production system and method of operating ultrapure water production system
KR1020207024834A KR20200134217A (en) 2018-03-27 2019-03-25 Ultrapure water production system and operation method of ultrapure water production system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-060127 2018-03-27
JP2018060127 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019188963A1 true WO2019188963A1 (en) 2019-10-03

Family

ID=68058370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012460 WO2019188963A1 (en) 2018-03-27 2019-03-25 Ultrapure-water production system and operation method for ultrapure-water production system

Country Status (4)

Country Link
JP (1) JP7267258B2 (en)
KR (1) KR20200134217A (en)
TW (1) TW201941817A (en)
WO (1) WO2019188963A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111072107A (en) * 2019-11-27 2020-04-28 天津膜天膜科技股份有限公司 Domestic drinking water feed water treatment process
WO2021241620A1 (en) * 2020-05-28 2021-12-02 東洋紡株式会社 Hollow fiber membrane replacing method
CN113952844A (en) * 2021-11-18 2022-01-21 浙江美亚环境工程有限公司 Membrane switching device for pure water preparation system
JP7079887B1 (en) 2021-11-04 2022-06-02 株式会社クボタ How to use the water purification device set and how to operate the first water purification device
CN115253708A (en) * 2021-04-29 2022-11-01 天津膜天膜科技股份有限公司 Integrated hollow fiber membrane component integrating backwashing function
WO2023190850A1 (en) * 2022-03-31 2023-10-05 東レ株式会社 Reverse osmosis membrane device and method of operating reverse osmosis membrane device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102549174B1 (en) * 2022-05-19 2023-06-30 삼성전자주식회사 Method of washing ultrafiltration membrane module and management method of ultra pure water manufacturing system using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200811A (en) * 1985-03-01 1986-09-05 Kurita Water Ind Ltd Membrane separation apparatus
JP2013086049A (en) * 2011-10-20 2013-05-13 Miura Co Ltd Water treatment system
WO2015050125A1 (en) * 2013-10-04 2015-04-09 栗田工業株式会社 Ultrapure water production apparatus
JP2016064342A (en) * 2014-09-24 2016-04-28 オルガノ株式会社 Ultrapure water system
WO2018037686A1 (en) * 2016-08-24 2018-03-01 オルガノ株式会社 Ultrapure water-producing apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2501489A (en) 2012-04-24 2013-10-30 First Subsea Ltd Rotatable joint for receiving a tubular
KR101546046B1 (en) 2013-10-31 2015-08-20 인우시스템 주식회사 System for preventing battery discharge of electric power cart and method thereof
JP6450563B2 (en) 2014-10-29 2019-01-09 野村マイクロ・サイエンス株式会社 Ultrafiltration membrane diagnostic method, diagnostic device and ultrapure water production system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200811A (en) * 1985-03-01 1986-09-05 Kurita Water Ind Ltd Membrane separation apparatus
JP2013086049A (en) * 2011-10-20 2013-05-13 Miura Co Ltd Water treatment system
WO2015050125A1 (en) * 2013-10-04 2015-04-09 栗田工業株式会社 Ultrapure water production apparatus
JP2016064342A (en) * 2014-09-24 2016-04-28 オルガノ株式会社 Ultrapure water system
WO2018037686A1 (en) * 2016-08-24 2018-03-01 オルガノ株式会社 Ultrapure water-producing apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111072107A (en) * 2019-11-27 2020-04-28 天津膜天膜科技股份有限公司 Domestic drinking water feed water treatment process
WO2021241620A1 (en) * 2020-05-28 2021-12-02 東洋紡株式会社 Hollow fiber membrane replacing method
CN115253708A (en) * 2021-04-29 2022-11-01 天津膜天膜科技股份有限公司 Integrated hollow fiber membrane component integrating backwashing function
JP7079887B1 (en) 2021-11-04 2022-06-02 株式会社クボタ How to use the water purification device set and how to operate the first water purification device
JP2023068688A (en) * 2021-11-04 2023-05-18 株式会社クボタ Method of using water purification system set and method of operating first water purification system
CN113952844A (en) * 2021-11-18 2022-01-21 浙江美亚环境工程有限公司 Membrane switching device for pure water preparation system
CN113952844B (en) * 2021-11-18 2024-02-13 浙江美亚环境工程有限公司 Membrane switching device for pure water preparation system
WO2023190850A1 (en) * 2022-03-31 2023-10-05 東レ株式会社 Reverse osmosis membrane device and method of operating reverse osmosis membrane device

Also Published As

Publication number Publication date
JPWO2019188963A1 (en) 2021-03-18
JP7267258B2 (en) 2023-05-01
KR20200134217A (en) 2020-12-01
TW201941817A (en) 2019-11-01

Similar Documents

Publication Publication Date Title
WO2019188963A1 (en) Ultrapure-water production system and operation method for ultrapure-water production system
AU2005302508B2 (en) EDI concentrate recycle loop with filtration module
JP5923294B2 (en) Reverse osmosis processing equipment
JPH03154620A (en) Membrane separating device
JP2012130840A (en) Reverse osmosis treatment apparatus
US20190217250A1 (en) Ultrapure water production apparatus
JP2017209654A (en) Reverse osmosis membrane device and operation method of reverse osmosis membrane device
US6416669B1 (en) Resin trap device for use in ultrapure water systems and method of purifying water using same
JP5381781B2 (en) Cleaning method of ultrapure water production system
JP2003299937A (en) Performance evaluation method for reverse osmosis membrane element
CN213388163U (en) Full-automatic unattended water system
JP7246399B2 (en) Pure water production system and pure water production method
JP2020116496A (en) Ultrapure water production device
JP2004050056A (en) Ion exchanger and ultrapure water manufacturing apparatus
JP4765874B2 (en) Membrane module cleaning method
CN215517001U (en) Miniature ultrapure water equipment
CN220520321U (en) Ultrapure water production device
US20180369723A1 (en) Method for operating filtration apparatus and filtration apparatus
JP2011212586A (en) Filtration apparatus and operation method thereof
KR102549174B1 (en) Method of washing ultrafiltration membrane module and management method of ultra pure water manufacturing system using same
CN220056458U (en) Water purification device, water purification assembly and water purification system
CN209292088U (en) A kind of full-automatic online backwashing ultrafiltration-nanofiltration combined treatment water purifier
KR101444881B1 (en) Valve for water treatment
CN213924378U (en) Ultrapure water treatment device
JP7163991B1 (en) Water quality measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510063

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19778175

Country of ref document: EP

Kind code of ref document: A1