WO2019188961A1 - ターゲット装置、測量システム - Google Patents

ターゲット装置、測量システム Download PDF

Info

Publication number
WO2019188961A1
WO2019188961A1 PCT/JP2019/012457 JP2019012457W WO2019188961A1 WO 2019188961 A1 WO2019188961 A1 WO 2019188961A1 JP 2019012457 W JP2019012457 W JP 2019012457W WO 2019188961 A1 WO2019188961 A1 WO 2019188961A1
Authority
WO
WIPO (PCT)
Prior art keywords
surveying
unit
target device
prism
target
Prior art date
Application number
PCT/JP2019/012457
Other languages
English (en)
French (fr)
Inventor
陽 佐々木
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Priority to US16/982,837 priority Critical patent/US20210055103A1/en
Publication of WO2019188961A1 publication Critical patent/WO2019188961A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • G01C15/004Reference lines, planes or sectors
    • G01C15/006Detectors therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/02Means for marking measuring points
    • G01C15/06Surveyors' staffs; Movable markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/66Tracking systems using electromagnetic waves other than radio waves

Definitions

  • This disclosure relates to a target device to be surveyed by a surveying device and a survey system technology using the target device.
  • a target device including a rod-shaped member including a reflecting prism is used (for example, see Patent Document 1).
  • the position of the position where the tip of the rod-shaped member is brought into contact with the reflecting prism is measured by TS with the tip of the vertical rod-shaped member in contact with the ground. Get the coordinates.
  • the survey of the said land is performed by performing this work in each place of the land used as surveying object.
  • Detecting horizontal angle with a magnetic sensor is affected by metal structures. For example, near the bridge, it is affected by the reinforcing bars and steel frames in the concrete.
  • there is a technique of driving a corrugated steel material into the ground to reinforce the ground but the accuracy of the magnetic sensor may be reduced due to the influence of the steel material in the ground.
  • the gyro sensor has a problem of output drift. There is a gyro sensor that improves this point, but it is expensive and large. GPS cannot be used in places where navigation satellites are not visible (valleys, under bridges, in tunnels, indoors, underground, forests, etc.).
  • UAV Unmanned Aerial Vehicle
  • Embodiments of the present invention have been made to solve such problems, and an object thereof is to provide a target device and a surveying system that can detect the posture of the target device with an easy configuration. It is.
  • a target device is a target device to be surveyed, and includes a reflecting unit that reflects incident light in the same direction as the incident direction, and the reflecting unit.
  • the direction marking unit may indicate the direction of the reflection unit by being distinguished by appearance display.
  • the reflecting portion may be a polyhedral prism, and the direction marking portion may be formed corresponding to each side surface of the prism.
  • the reflecting portion may be a polyhedral prism, and the direction marking portion may be formed at the apex of the prism.
  • a surveying system is a surveying system that targets a target device, and collimates a reflecting portion of the target device to emit distance measuring light.
  • a surveying unit that measures the position of the reflection unit by transmitting and receiving light, a target imaging unit that captures a target image including the reflection unit, which is directed in the same direction as the collimation direction by the surveying unit, and the target image
  • a posture detecting unit that detects the posture of the target device from the direction marking unit reflected on the screen.
  • the target device may be provided on a moving body, and the posture detection unit may detect the posture of the moving body from the posture of the target device.
  • the moving body is a flying body
  • the camera is mounted on the flying body and captures an image for photogrammetry, and information on the posture of the moving body detected by the posture detecting unit.
  • a surveying control unit that adds to the survey result measured by the surveying unit and associates the survey result with an image captured by the camera to generate photogrammetry data may be provided.
  • the posture of the target device can be detected with an easy configuration.
  • FIG. 1 is an overall configuration diagram of a surveying system including a target device according to an embodiment of the present invention. It is a perspective view of a target device. It is a top view simplified view of the prism in a target device. It is a block diagram of the control system of the surveying system which concerns on one Embodiment of this invention. It is a positional relationship figure in case the collimation direction of a surveying instrument and the advancing direction of UAV are the same. It is an example of a target image in case the collimation direction of a surveying instrument and the advancing direction of UAV are the same. It is a position-related figure in the case of 60 degrees of UAV advance directions with respect to a surveying instrument. It is a related figure of a target image in the case of 60 degree of UAV's advancing direction with respect to a surveying instrument, and a direction marker. (A)-(c) It is explanatory drawing of a UAV azimuth.
  • FIG. 1 is an overall configuration diagram of a surveying system including a target device according to an embodiment of the present invention
  • FIG. 2A is a perspective view of the target device
  • FIG. 2B is a simplified top view of a prism in the target device. Yes.
  • the structure of the target apparatus and surveying system which concern on embodiment of this invention is demonstrated using FIG. 1, FIG. 2A, FIG. 2B.
  • the surveying system 1 is a surveying system that performs photogrammetry, a mobile photographing device 2 that photographs an image for photogrammetry while moving, a surveying device 3 that surveys the position and orientation of the mobile photographing device 2, and a photographing result. And an analysis device 4 for analyzing the survey results and generating data for photogrammetry.
  • the mobile photographing device 2 is configured by mounting a camera 11 for photographing an image for photogrammetry on a UAV 10 that is a moving body.
  • the image captured by the camera 11 may be a still image or a moving image.
  • the UAV 10 is a flying mobile body that can fly on a predetermined flight path or can fly freely by remote control.
  • the UAV 10 is provided with a gimbal mechanism 10b below the flight mechanism 10a for performing flight.
  • the camera 11 is supported by the gimbal mechanism 10b of the UAV 10, the photographing direction can be freely changed by the gimbal mechanism 10b, and the posture can be stabilized so as to photograph a predetermined direction.
  • the camera 11 is always directed downward, and is supported so as to be integrated with the UAV 10 in the horizontal posture.
  • the camera 11 is provided with a GPS unit 12 capable of receiving GPS signals.
  • the camera 11 has a lens portion 11a formed on the front surface of the camera body, and a target device 20 is provided on the lens portion 11a.
  • the target device 20 has a support member 21 (support portion) attached to the tip of the lens portion 11 a of the camera 11, and a prism 22 (reflecting portion) supported by the support member 21. Yes.
  • the support member 21 is formed according to the diameter of the lens portion 11a, and includes an annular portion 21a that is fitted to the tip of the lens portion 11a, and a flat plate-like portion 21b that extends outward from the annular portion 21a.
  • the prism 22 of the present embodiment is a regular quadrangular pyramid having a square bottom surface by combining four corner cube prisms made of tetrahedrons.
  • the prism 22 is a so-called omnidirectional reflector that reflects light incident on the four side surfaces except the bottom surface 22a in the same direction as the incident direction.
  • the prism 22 has a bottom surface 22 a bonded to the surface of the plate-like portion 21 b of the support member 21. Therefore, the prism 22 protrudes from the front end surface of the lens portion 11a, and can receive distance measuring light without being blocked by the lens portion 11a.
  • the four sides of the bottom surface 22a of the prism 22 are formed of different colors corresponding to the respective side surfaces, thereby indicating direction directions of the prisms 23a, 23b, 23c, 23d (collectively referred to as the direction indicator 23) is formed.
  • the color of the direction indicator 23 is indicated by the line type.
  • the red first direction indicator 23a is indicated by a thick line
  • the blue second direction indicator 23b is indicated by a thick dotted line
  • a yellow color is indicated by the third direction indicator 23c is indicated by a double line
  • the green fourth direction indicator 23d is indicated by a thick dashed line.
  • the target apparatus 20 forms the four types of direction marking portions 23 on the prism 22 in this way, so that the posture of the target apparatus 20, that is, the mobile imaging apparatus including the camera 11 and the UAV 10 that are integrated with the target apparatus 20. 2 postures can be identified.
  • the first direction indicator 23a is on the front (traveling direction) of the UAV 10
  • the second direction indicator 23b is on the right side of the UAV 10
  • the third direction indicator 23c is UAV 10.
  • the prisms 22 are arranged on the rear surface of the UAV 10 so that the fourth direction marking portions 23d correspond to the left side of the UAV 10, respectively.
  • the surveying device 3 is a total station that can automatically track a survey target, and a main body 3 a includes a horizontal rotation driving unit 30 that can be rotated in a horizontal direction and a vertical rotation driving unit that can be rotated in a vertical direction.
  • a telescope unit 32 is provided via 31. Further, the telescope unit 32 photographs the target device 20 and an optical distance meter (EDM) 33 (surveying unit) that measures the oblique distance by transmitting and receiving distance measuring light to the target device 20 (strictly, the prism 22).
  • EDM optical distance meter
  • a target imaging unit 34 is provided. Further, the surveying device 3 is placed on the tripod 35. The surveying device 3 is also provided with a GPS unit 36.
  • the surveying device 3 can measure the distance (ranging) from the surveying device 3 to the prism 22 and can measure the horizontal angle and the vertical angle by the prism surveying the prism 22 of the target device 20 as a survey target. It is. Therefore, by installing the surveying device 3 at a known position, leveling the posture and performing the survey of the prism 22, the coordinates of the prism 22, that is, the camera 11 is calculated from the survey result (slope distance, horizontal angle, vertical angle). Can be calculated.
  • the target imaging unit 34 is directed in the same direction as the collimation direction of the surveying instrument 3 through the telescope unit 32, and has a function of capturing an image reflected through the telescope unit 32, which will be described in detail later.
  • the analysis device 4 is an information processing terminal such as a personal computer capable of generating data for photogrammetry by associating a survey result measured by the surveying device 3 with a shooting position of each image shot by the mobile shooting device 2.
  • the surveying system 1 captures a plurality of photogrammetric images P1, P2,... Pn at a predetermined capturing period ⁇ S while moving over the sky by the moving image capturing device 2, and moves by the surveying device 3.
  • Surveying is performed by tracking the photographing apparatus 2 (strictly, the prism 22). After all the photographing is completed, the images P1, P2,... Pn photographed by the mobile photographing device 2 by the analyzing device 4 and the survey results R1, R2,. Generate data.
  • the correspondence between the images P1 to Pn and the surveying results R1 to Rm is performed using the GPS unit 12 and 36 of the mobile photographing device 2 and the surveying device 3, and the GPS (satellite positioning system). This is based on GPS time that can be acquired from the satellite. That is, every time the mobile imaging device 2 captures an image, it adds imaging time information based on the GPS time to the image. On the other hand, every time the surveying device 3 surveys the position of the mobile photographing device 2, surveying time information based on GPS time is given to the surveying result.
  • the analysis device 4 associates the survey results to which the survey times suitable for the shooting times of the respective images are associated with each other so that the precise survey results measured by the surveying device 3 are captured. Associate as a position.
  • the analysis device 4 performs calculation based on photogrammetry from each image (photogrammetry data) including such a photographing position.
  • the surveying device 3 can detect the attitude of the mobile imaging device 2 based on the direction marker 23 attached to the prism 22 as well as the tracking surveying control of the mobile imaging device 2.
  • FIG. 3 a block diagram of the control system related to the surveying system 1 is shown in detail, and the configuration of the control system of the surveying system 1 will be described with reference to FIG.
  • the surveying apparatus 3 includes a horizontal angle detection unit 41 (a surveying unit) in addition to the horizontal rotation driving unit 30, the vertical rotation driving unit 31, the EDM 33, and the target imaging unit 34 described above in the surveying control unit 40.
  • a vertical angle detection unit 42 (surveying unit), a display unit 43, an operation unit 44, a tracking light transmission unit 45, a tracking light reception unit 46, a time acquisition unit 47, and a storage unit 48 are connected.
  • the horizontal angle detection unit 41 can detect the horizontal angle collimated by the telescope unit 32 by detecting the horizontal rotation angle by the horizontal rotation driving unit 30.
  • the vertical angle detection unit 42 can detect the vertical angle that the telescope unit 32 collimates by detecting the vertical rotation angle by the vertical rotation driving unit 31.
  • the horizontal angle detection unit 41 and the vertical angle detection unit 42 detect a horizontal angle and a vertical angle as a survey result.
  • the display unit 43 is a liquid crystal monitor, for example, and displays various information such as survey results (distance, horizontal angle, vertical angle).
  • the operation unit 44 includes, for example, power on / off switching, survey start trigger, survey mode switching, survey cycle setting, etc., and operations for inputting various operation instructions and settings to the survey control unit 40. Means.
  • the tracking light transmitting unit 45 emits tracking light toward the prism 22 of the target device 20 provided in the mobile imaging device 2, and the tracking light receiving unit 46 is a part that receives the tracking light reflected by the prism 22. is there.
  • the surveying control unit 40 controls the horizontal rotation driving unit 30 and the vertical rotation driving unit 31 so that the tracking light receiving unit 46 continues to receive the tracking light from the tracking light transmitting unit 45, whereby the target device 20 A tracking function is realized.
  • the target imaging unit 34 can capture an image through the telescope unit 32, and includes an imaging element such as a CCD or a CMOS element that converts an optical image into an electrical signal, and a shutter.
  • the target imaging unit 34 captures a target image including the collimating prism 22.
  • the captured image data is stored in the storage unit 48 described later. Note that the target image Tp may be a still image or a moving image, but the target imaging unit 34 of the present embodiment captures a still image simultaneously with the surveying timing.
  • the time acquisition unit 47 has a function of receiving a GPS signal including time information (hereinafter referred to as GPS time) from a GPS satellite using the GPS unit 36 and acquiring the GPS time.
  • GPS time time information
  • the storage unit 48 can store various data such as the above tracking program, various programs related to the surveying method, target device type characteristics, surveying data, GPS time, and image data captured by the target imaging unit 34.
  • the surveying control unit 40 acquires surveying data (distance, horizontal angle, vertical angle) and the like to each surveying unit (EDM 33, horizontal angle detection unit 41, vertical angle detection unit 42) while tracking the prism 22 of the target device 20. At the same time, the GPS time (survey time information) acquired by the time acquisition unit 47 is added to the survey result.
  • the surveying control unit 40 performs imaging by the target imaging unit 34 at the same timing as the above-described surveying, and stores the captured target image Tp in the storage unit 48. Note that only the prism 22 is shown in the target image shown in the drawing in order to simplify the description.
  • the surveying control unit 40 detects the attitude of the prism 22, that is, the attitudes (orientations) of the camera 11 and the UAV 10 at the time of surveying, based on how the direction marking unit 23 is reflected in the target image Tp stored in the storage unit 48. It also has a function as a posture detecting unit.
  • FIG. 4A shows a positional relationship diagram when the collimation direction of the surveying instrument and the traveling direction of the UAV are the same
  • FIG. 4B shows the collimation direction of the surveying instrument and the UAV
  • FIG. 5A shows an example of a target image when the traveling direction is the same
  • FIG. 5A is a positional relationship diagram when the UAV traveling direction is 60 ° with respect to the surveying apparatus
  • FIG. 5B is a UAV traveling direction 60 ° with respect to the surveying apparatus.
  • 6A to 6C are explanatory diagrams of the UAV azimuth angles, and based on these figures, the target images Tp to UAV10 are shown below. A mechanism for detecting the direction of the will be described.
  • the prism 22 is shown large and in the center of the UAV 10 for easy understanding.
  • the description will be made with the collimation direction of the surveying instrument 3 in the horizontal plane as a reference, and clockwise (clockwise) from the collimation direction as a positive angle.
  • the surveying control unit 40 detects the rotation angle of the mobile imaging device 2 with respect to the collimation direction of the surveying device 3 (hereinafter referred to as UAV rotation angle) as 0 °.
  • the target image Tp corresponds to the right side of the UAV as shown in FIG. 5B.
  • the second direction indicator 23b and the third direction indicator 23c corresponding to the back of the UAV 10 are reflected.
  • the surveying control unit 40 detects the attitude of the UAV 10 from the ratios reflected in the second direction marking unit 23b and the third direction marking unit 23c.
  • the reflection length A of the second direction indicator 23b and the third direction indicator 23c is expressed by the following equations (1) and (2). That is, as shown in the following formula (3), the UAV rotation angle ⁇ can be calculated from the ratio of the lengths A and B of each reflection.
  • the surveying control unit 40 can detect the UAV rotation angle with respect to the surveying device 3 from the ratio of the lengths of the direction marking units 23 reflected in the target image Tp.
  • the surveying control unit 40 can also detect an azimuth angle in the traveling direction of the UAV 10 (hereinafter referred to as a UAV azimuth angle) by using a survey result (horizontal angle) by the UAV rotation angle and the horizontal angle detection unit 41.
  • the collimating direction azimuth angle (hereinafter referred to as TS azimuth angle) detected by the horizontal angle detector 41 of the surveying instrument 3 is 0 °
  • the UAV rotation angle is In the case of 0 °
  • the surveying control unit 40 can calculate the UAV azimuth by adding the UAV rotation angle to the TS azimuth, and adds the UAV azimuth to the survey result as information on the attitude of the UAV 10.
  • the analyzing device 4 acquires the survey result to which the UAV azimuth is added from the surveying device 3, and the image photographed by the camera 11 of the mobile photographing device 2 based on the GPS time. , The orientation of the image can be determined. Since the orientation of such an image can also be discriminated, the overlap area in photogrammetry can be calculated more accurately, and the accuracy of photogrammetry can be improved. In this embodiment, the association between the image and the survey result is performed after the photographing is finished, but the present invention is not limited to this.
  • posture information such as the UAV azimuth angle calculated by the surveying device 3 may be sequentially notified to the operator of the UAV 10 and the control unit of the UAV 10.
  • the operator or the UAV 10 itself can appropriately correct the posture of the UAV 10 (the mobile photographing device 2) so as to satisfy the overlap condition of the photogrammetry, and the accuracy of the photogrammetry can be further improved.
  • the target device 20 that can determine the orientation of the UAV 10 or the camera 11 has a simple configuration in which only different direction indicator portions 23 are provided on each side of the bottom surface 22 a of the prism 22. Can be detected.
  • the direction indicator 23 can be distinguished by an appearance display such as a color, so that the posture of the target device 20 can be controlled without being affected by the environment, compared to the detection of a horizontal angle by a magnetic sensor, a gyro sensor, GPS, or the like. Can be detected.
  • the ratio of the length of each direction indicator 23 reflected in the target image Tp is obtained.
  • the posture of the target device 20 can be easily detected.
  • the posture of the target device can be detected with an easy configuration.
  • the direction marking portion 23 is formed on each side of the bottom surface 22a of the prism 22.
  • the direction marking portion is not limited to the prism but may be formed on the support portion of the prism.
  • the direction indicator 23 is distinguished by the color, but is not limited to this.
  • the direction marking portions 23 are formed corresponding to all the side surfaces of the prism 22, but the direction marking portions 23 are not necessarily formed corresponding to all the side surfaces.
  • the front-rear direction of the UAV 10 is another direction such as the direction in which the support portion extends with respect to the prism. It is also possible to distinguish from the information. That is, the direction sign part can be reduced from information such as the relative position of the target device viewed from the surveying device.
  • the position where the direction marking portion is formed is not limited to the side of the prism, but may be formed at the apex. Thereby, a direction marker part can be formed more simply.
  • the prism 22 is a quadrangular pyramid.
  • the present invention is not limited to this, and the embodiment of the present invention can be applied to other polyhedral shapes such as a triangular pyramid and a regular octahedron.
  • the mobile imaging device 2 uses the UAV 10 as a moving body, but the moving body is not limited to this, and may be a rod-like member that is moved by a person, such as a car or a heavy machine. That is, the application of the target device according to the embodiment of the present invention is not limited to the photogrammetry survey system, but can be applied to other survey systems.
  • the surveying control unit 40 of the surveying apparatus 3 is provided with a function as an attitude detection unit, but the analysis apparatus may be provided with an attitude detection unit. Further, the surveying device may have the function of an analysis device.
  • the surveying system of the above embodiment synchronizes the survey result and the captured image based on the GPS time, but the method of synchronizing the survey result and the image is not limited to this.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Studio Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

ターゲット装置20は、入射した光を入射方向と同一方向に反射するプリズム22と、当該プリズム22を支持する支持部21と、プリズム22に形成された当該プリズムの方向を示す方向標識部23と、を備えており、測量システム1は当該ターゲット装置20をUAV10のカメラ11に取り付け、測量装置3によりプリズム22を測量対象として測量を行うとともに、プリズム22を含むターゲット画像Tpを撮影して、当該ターゲット画像に写り込んだ方向標識部23からUAV10の姿勢を検出する。

Description

ターゲット装置、測量システム
 本開示は、測量装置により測量対象となるターゲット装置、当該ターゲット装置を用いた測量システムの技術に関する。
 測量装置であるトータルステーション(以下、TSともいう)を用いた測量では、反射プリズムを備えた棒状の部材を備えたターゲット装置が用いられる(例えば、特許文献1を参照)。このターゲット装置を用いた測量では、垂直にした棒状の部材の先端を地上に接触させた状態で、反射プリズムを対象にTSによる測位を行い、それにより棒状の部材の先端を接触させた位置の座標を取得する。そして、測量対象となる土地の各所においてこの作業を行うことで、当該土地の測量が行われる。
 上記の作業では、作業員がターゲット装置を手に持ち、歩いて移動しながら複数の位置における測量が行われる。この際、当該作業員が手にする端末等を用いて、TS側から次の測量位置への誘導が行われる。この際、TSに対するターゲット装置の水平角(水平面における方向)が判ると便利である。通常は、磁気センサやジャイロセンサを用いて上記の水平角の検出が行われている。また、GPSを用いて方位の検出を行う技術も公知である。
特開2009-229192号公報
 磁気センサによる水平角の検出では、金属構造物の影響を受ける。例えば、橋梁の近くでは、コンクリート中の鉄筋や鉄骨の影響を受ける。また、地盤を補強するために波型の鋼材を地中に打ち込む技術があるが、この地中の鋼材の影響を受け、磁気センサの精度が低下する場合がある。また、ジャイロセンサは出力のドリフトの問題がある。この点を改良したジャイロセンサもあるが、高価、且つ、大型となる。GPSは、航法衛星の見えない場所(谷間、橋梁の下、トンネル内、屋内、地下、森林等)では使用できない。
 以上の問題は、TSに対するUAV(Unmanned Aerial Vehicle)の向きを知りたい場合にも生じる。例えば、TSによりUAVの姿勢を知ることで写真測量において効率的なオーバラップ撮影が可能となるが、上記の方位センサ、ジャイロセンサ、GPSを用いた姿勢の検出では、上述したのと同様な問題が生じる。
 本発明の実施形態はこのような問題点を解決するためになされたもので、その目的とするところは容易な構成でターゲット装置の姿勢を検出することのできるターゲット装置及び測量システムを提供することである。
 上記した目的を達成するために、本発明の実施形態に係るターゲット装置は、測量対象となるターゲット装置であって、入射した光を入射方向と同一方向に反射する反射部と、前記反射部を支持する支持部と、前記反射部又は前記支持部に形成され、前記反射部の方向を示す方向標識部と、を備える。
 また、上述の測距用ターゲット装置として、前記方向標識部は、外観表示によって区別されることで前記反射部の方向を示してもよい。
 また、上述の測距用ターゲット装置として、前記反射部は、多面体のプリズムであり、前記方向標識部は前記プリズムの各側面に対応して形成されてもよい。
 また、上述の測距用ターゲット装置として、前記反射部は、多面体のプリズムであり、前記方向標識部は前記プリズムの頂点に形成されてもよい。
 また、上記した目的を達成するために、本発明の実施形態に係る測量システムは、ターゲット装置を測量対象とする測量システムであって、前記ターゲット装置の反射部を視準して測距光を送光及び受光して当該反射部の位置を測量する測量部と、前記測量部による視準方向と同方向に指向し、前記反射部を含むターゲット画像を撮影するターゲット撮像部と、前記ターゲット画像に写り込んだ前記方向標識部から前記ターゲット装置の姿勢を検出する姿勢検出部と、を備えている。
 上述の測量システムにおいて、前記ターゲット装置は移動体に設けられ、前記姿勢検出部は前記ターゲット装置の姿勢から移動体の姿勢を検出してもよい。
 また、上述の測量システムにおいて、前記移動体は飛行体であり、前記飛行体に搭載され、写真測量用の画像を撮影するカメラと、前記姿勢検出部により検出した前記移動体の姿勢に関する情報を前記測量部により測量した測量結果に付加し、当該測量結果と前記カメラにより撮影した画像とを対応付けて写真測量用データを生成する測量制御部と、を備えてもよい。
 上記手段を用いる本発明の実施形態によれば、容易な構成でターゲット装置の姿勢を検出することができる。
本発明の一実施形態に係るターゲット装置を含む測量システムの全体構成図である。 ターゲット装置の斜視図である。 ターゲット装置におけるプリズムの上面視簡略図である。 本発明の一実施形態に係る測量システムの制御系のブロック図である。 測量装置の視準方向とUAVの進行方向が同一の場合の位置関係図である。 測量装置の視準方向とUAVの進行方向が同一の場合のターゲット画像の一例である。 測量装置に対してUAVの進行方向60°の場合の位置関係図である。 測量装置に対してUAVの進行方向60°の場合のターゲット画像及び方向標識部の関係図である。 (a)~(c)UAV方位角の説明図である。
 以下、本発明の実施形態を図面に基づき説明する。
 図1には本発明の一実施形態に係るターゲット装置を含む測量システムの全体構成図、図2Aにはターゲット装置の斜視図、図2Bにはターゲット装置におけるプリズムの上面視簡略図が示されている。本発明の実施形態に係るターゲット装置及び測量システムの構成を図1、図2A、図2Bを用いて説明する。
 測量システム1は、写真測量を行う測量システムであり、移動しつつ写真測量用の画像を撮影する移動撮影装置2と、当該移動撮影装置2の位置及び姿勢を測量する測量装置3と、撮影結果と測量結果を解析して写真測量のためのデータを生成する解析装置4を有している。
 移動撮影装置2は、移動体であるUAV10に、写真測量用の画像を撮影するカメラ11が搭載されて構成されている。なお、カメラ11が撮影する画像は静止画像でも、動画像でもよい。
 詳しくは、UAV10は、予め定められた飛行経路を飛行したり、遠隔操作により自由に飛行したりすることが可能な飛行移動体である。当該UAV10には飛行を行うための飛行機構10aの下部にジンバル機構10bが設けられている。
 カメラ11はUAV10のジンバル機構10bにより支持されており、当該ジンバル機構10bによって撮影方向を自由に変更可能であるとともに、所定の方向を撮影するよう姿勢を安定化させることが可能である。本実施形態では、カメラ11は常に下方向に向けられており、水平方向の姿勢においてはUAV10と一体をなすように支持されている。
 カメラ11には、GPS信号を受信可能なGPSユニット12が設けられている。また、カメラ11は、カメラ本体正面にレンズ部11aが形成されており、当該レンズ部11aにターゲット装置20が設けられている。
 ターゲット装置20は、図2Aに詳しく示すように、カメラ11のレンズ部11aの先端に支持部材21(支持部)が取り付けられており、当該支持部材21にプリズム22(反射部)が支持されている。
 支持部材21は、レンズ部11aの径に合わせて形成され、レンズ部11aの先端に嵌め込まれる環状部21aと、当該環状部21aから外方向に延びた平板状の板状部21bとからなる。
 本実施形態のプリズム22は四面体からなるコーナーキューブプリズムを4つ組み合わせて底面が正方形をなす正四角錐をなしている。当該プリズム22は底面22aを除く四側面に入射した光を入射方向と同一方向に反射する、いわゆる全方向反射体である。プリズム22は、底面22aが支持部材21の板状部21bの表面に接着されている。したがって、プリズム22は、レンズ部11aの先端面よりも突出しており、レンズ部11aに遮られることなく、測距光を受けることが可能である。
 また、図2A、図2Bに示すように、プリズム22の底面22aの四辺には、それぞれ各側面に対応して異なる色からなることで当該プリズムの方向を示す方向標識部23a、23b、23c、23d(まとめて方向標識部23とも記す)が形成されている。なお、図面においては、方向標識部23の色を線種の違いにより示しており、例えば赤色の第1の方向標識部23aを太線、青色の第2の方向標識部23bを太い点線、黄色の第3の方向標識部23cを二重線、緑色の第4の方向標識部23dを太い一点鎖線により示している。
 ターゲット装置20は、このようにプリズム22に4種類の方向標識部23を形成することで、ターゲット装置20の姿勢、つまりはターゲット装置20と一体をなしているカメラ11及びUAV10を含む移動撮影装置2の姿勢を識別可能としている。例えば、本実施形態のターゲット装置20は、第1の方向標識部23aがUAV10の正面(進行方向)に、第2の方向標識部23bがUAV10の右側に、第3の方向標識部23cがUAV10の背面に、第4の方向標識部23dがUAV10の左側に、それぞれ対応するようにプリズム22が配置されている。
 図1に戻り、測量装置3は、測量対象を自動追尾可能なトータルステーションであり、本体部3aに、水平方向に回転駆動可能な水平回転駆動部30と、鉛直方向に回転可能な鉛直回転駆動部31を介して望遠鏡部32が設けられている。また望遠鏡部32には、ターゲット装置20(厳密にはプリズム22)に測距光を送光及び受光して斜距離を測定する光波距離計(EDM)33(測量部)とターゲット装置20を撮影するターゲット撮像部34が設けられている。さらに、測量装置3は三脚35の上に載置されている。また測量装置3にもGPSユニット36が設けられている。
 詳しくは、測量装置3は、ターゲット装置20のプリズム22を測量対象としたプリズム測量により、測量装置3からプリズム22までの距離測定(測距)が可能であると共に水平角、鉛直角が測定可能である。したがって、測量装置3を既知の位置に設置して、姿勢を整準させてプリズム22の測量を行うことで、測量結果(斜距離、水平角、鉛直角)からプリズム22の座標、即ちカメラ11の位置を算出可能である。ターゲット撮像部34は、望遠鏡部32を介することで測量装置3の視準方向と同方向に指向し、当該望遠鏡部32を通して写り込む画像を撮像する機能を有しており、詳しくは後述する。
 解析装置4は、測量装置3により測量した測量結果を、移動撮影装置2により撮影した各画像の撮影位置に対応付けて写真測量用のデータを生成可能なパーソナルコンピュータ等の情報処理端末である。
 測量システム1は、図1に示すように、移動撮影装置2により上空を移動しながら所定の撮影周期ΔSで写真測量用の画像P1、P2、…Pnを複数撮影するとともに、測量装置3により移動撮影装置2(厳密にはプリズム22)を追尾して測量を行う。すべての撮影が終了した後、解析装置4により移動撮影装置2により撮影した画像P1、P2、…Pnと測量装置3により測量した測量結果R1、R2、…Rmとを対応付けることで写真測量用のデータを生成する。
 本実施形態の測量システム1では、この画像P1~Pnと、測量結果R1~Rmとの対応付けを移動撮影装置2及び測量装置3のGPSユニット12、36を用いて、GPS(衛星測位システム)衛星より取得可能なGPS時刻に基づき行う。つまり、移動撮影装置2は画像を撮影するごとに、当該画像にGPS時刻に基づく撮影時刻情報を付与する。一方、測量装置3は移動撮影装置2の位置を測量するごとに、当該測量結果にGPS時刻に基づく測量時刻情報を付与する。そして、すべての撮影を終えた後、解析装置4において、各画像の撮影時刻に適合する測量時刻が付与された測量結果を対応付けることで、測量装置3により測量した精密な測量結果を画像の撮影位置として対応付ける。解析装置4は、このような撮影位置を含む各画像(写真測量用データ)から写真測量に基づく計算を行う。
 さらに本実施形態の測量システム1において、測量装置3は、移動撮影装置2の追尾測量の制御とともに、プリズム22に付された方向標識部23に基づき移動撮影装置2の姿勢を検出可能である。
 このような測量装置3の制御について、詳しくは、図3に測量システム1に係る制御系のブロック図が示されており、同図に基づき測量システム1の制御系の構成について説明する。
 図3に示すように、測量装置3は、測量制御部40に上述の水平回転駆動部30、鉛直回転駆動部31、EDM33、ターゲット撮像部34の他に、水平角検出部41(測量部)、鉛直角検出部42(測量部)、表示部43、操作部44、追尾光送光部45、追尾光受光部46、時刻取得部47、記憶部48が接続されている。
 水平角検出部41は、水平回転駆動部30による水平方向の回転角を検出することで、望遠鏡部32で視準している水平角を検出可能である。鉛直角検出部42は、鉛直回転駆動部31による鉛直方向の回転角を検出することで、望遠鏡部32が視準している鉛直角を検出可能である。これら水平角検出部41及び鉛直角検出部42により、測量結果としての水平角及び鉛直角を検出する。
 表示部43は、例えば液晶モニタであり、測量結果(距離、水平角、鉛直角)等の各種情報を表示するものである。
 操作部44は、例えば、電源のオン・オフの切替、測量開始のトリガ、測量モードの切替、測量周期の設定等があり、測量制御部40に各種の動作指示や設定を入力するための操作手段である。
 追尾光送光部45は、移動撮影装置2に設けられたターゲット装置20のプリズム22に向けて追尾光を照射し、追尾光受光部46はプリズム22により反射された追尾光を受光する部分である。測量制御部40が、この追尾光送光部45からの追尾光を追尾光受光部46が受光し続けるように水平回転駆動部30及び鉛直回転駆動部31を制御することで、ターゲット装置20の追尾機能を実現する。
 ターゲット撮像部34は、望遠鏡部32を介した像を撮影可能であり、光学像を電気信号に変換するCCDやCMOS素子等の撮像素子やシャッターを有する。ターゲット撮像部34は、視準しているプリズム22を含むターゲット画像を撮影する。撮影した画像データは後述する記憶部48に記憶される。なお、ターゲット画像Tpは静止画像でも動画像でもよいが、本実施形態のターゲット撮像部34は測量のタイミングと同時に静止画像を撮影するものとする。
 時刻取得部47は、GPSユニット36を用いてGPS衛星から時刻情報(以下、GPS時刻という)を含むGPS信号を受信し、当該GPS時刻を取得する機能を有している。
 記憶部48は、上記の追尾プログラム、測量方法に関する各種プログラム、ターゲット装置の種類特徴、測量データ、GPS時刻、ターゲット撮像部34が撮影した画像データ等の各種データを記憶可能である。
 測量制御部40は、ターゲット装置20のプリズム22を追尾しつつ、各測量部(EDM33、水平角検出部41、鉛直角検出部42)に測量データ(距離、水平角、鉛直角)等を取得させるとともに、時刻取得部47により取得したGPS時刻(測量時刻情報)を測量結果に付与する。
 さらに、測量制御部40は、上述の測量と同タイミングでターゲット撮像部34による撮影を行い、撮影したターゲット画像Tpを記憶部48に記憶させる。なお、図面に示しているターゲット画像は説明を簡略化するためプリズム22のみを記載している。
 そして、測量制御部40は、記憶部48に記憶されたターゲット画像Tp内の方向標識部23の写り込み具合からプリズム22の姿勢、つまりは測量時におけるカメラ11及びUAV10の姿勢(向き)を検出する姿勢検出部としての機能も有している。
 詳しくは、図4から図6を参照すると、図4Aには測量装置の視準方向とUAVの進行方向が同一の場合の位置関係図が、図4Bには測量装置の視準方向とUAVの進行方向が同一の場合のターゲット画像の一例が、図5Aには測量装置に対してUAVの進行方向60°の場合の位置関係図、図5Bには測量装置に対してUAVの進行方向60°の場合のターゲット画像及び方向標識部の関係図が、図6には(a)~(c)UAV方位角の説明図がそれぞれ示されており、以下これらの図に基づき、ターゲット画像TpからUAV10の向きを検出する仕組みについて説明する。なお、図4Aから図6では、説明をわかりやすくするために、UAV10に対してプリズム22を大きく且つ中央に示している。また本実施形態では、水平面において測量装置3の視準方向を基準とし、視準方向から右回り(時計回り)を正の角度として説明する。
 図4Aに示すように、測量装置3の視準方向とUAV10の進行方向が同じ位置関係にあるときは、図4Bに示すようにターゲット画像Tp内にはUAV10の背面に対応した第3の方向標識部23cのみが写り込む。このような場合、測量制御部40は、測量装置3の視準方向に対する移動撮影装置2の回転角度(以下、UAV回転角という)を0°として検出する。
 また、図5Aに示すように、測量装置3の視準方向に対してUAV10の進行方向が60°右向きであるときは、図5Bに示すようにターゲット画像Tp内にはUAVの右側に対応した第2の方向標識部23b及びUAV10の背面に対応した第3の方向標識部23cが写り込む。このような場合、測量制御部40は、第2の方向標識部23b及び第3の方向標識部23cの写り込んでいる比率からUAV10の姿勢を検出する。
 例えばプリズム22の底面22aの一辺xを10cmとしてUAV回転角θ=60°とすると、図5Bに示すように第2の方向標識部23bの写り込みの長さA及び第3の方向標識部23cの写り込みの長さBは下記式(1)、(2)となる。つまり、下記式(3)に示すようにUAV回転角θは各写り込みの長さA及びBの比率から算出可能である。
A=x×cos(90-θ)=10×cos(30°)=8.66・・・(1)
B=x×cos(θ)=10×cos(60°)=5.00・・・(2)
θ=tan-1(A/B)=tan-1(8.66/5.00)=59.99・・・(3)
 このように測量制御部40は、ターゲット画像Tp内に写り込む方向標識部23の長さの比率から測量装置3に対するUAV回転角を検出可能である。そして、測量制御部40は、UAV回転角と水平角検出部41による測量結果(水平角)を用いることでUAV10の進行方向の方位角(以下、UAV方位角という)も検出可能である。
 例えば、図6(a)に示すように、測量装置3の水平角検出部41により検出される視準方向の方位角(以下、TS方位角という)が0°であって、UAV回転角が0°である場合は、UAV方位角は真北を示す0°(=0°+0°)となる。
 図6(b)の場合は、TS方位角が315°であって、UAV回転角が90°である場合は、UAV方位角は北東を示す45°(=315°+90°)となる。また、図6(c)の場合はTS方位角が270°であって、UAV回転角が60°である場合は、UAV方位角は330°(=270°+60°)となる。
 このように測量制御部40は、TS方位角にUAV回転角を加算することでUAV方位角を算出可能であり、UAV10の姿勢に関する情報として当該UAV方位角を測量結果に付加する。
 移動撮影装置2において全ての撮影を終了した後、解析装置4は測量装置3からUAV方位角が付加された測量結果を取得し、GPS時刻に基づいて移動撮影装置2のカメラ11により撮影した画像との対応付けを行うことで、当該画像の向きが判別可能となる。このような画像の向きも判別可能であることで写真測量におけるオーバラップ領域をより正確に算出することができ、写真測量の精度を向上させることができる。なお、画像と測量結果の対応付けについて、本実施形態では写真撮影終了後に行っているが、これに限定されるものではない。例えば、移動撮影装置2の飛行中において、測量装置3で算出したUAV方位角等の姿勢情報をUAV10の操縦者やUAV10の制御部に逐次通知してもよい。これにより、操縦者又はUAV10自体が、UAV10(移動撮影装置2)の姿勢を写真測量のオーバラップの条件を満たすように適宜修正することができ、より写真測量の精度を向上させることができる。
 このようにUAV10やカメラ11の向きを判別可能とするターゲット装置20は、プリズム22の底面22aの各辺に色違いの方向標識部23を設けるだけの簡単な構成で、当該ターゲット装置20の姿勢を検出することができる。
 特に、方向標識部23は色のような外観表示により区別可能とすることで、磁気センサ、ジャイロセンサ、GPS等による水平角の検出よりも環境の影響を受けることなく、ターゲット装置20の姿勢を検出することができる。
 また、本実施形態のプリズム22のように正四角錐においては、各側面に対応して方向標識部23を形成することで、ターゲット画像Tp内に写り込む各方向標識部23の長さの比から容易にターゲット装置20の姿勢を検出することができる。
 以上のように本発明の実施形態に係るターゲット装置及び測量システムによれば、容易な構成でターゲット装置の姿勢を検出することができる。
 以上で本発明の実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。
 上記実施形態では、プリズム22の底面22aの各辺に方向標識部23を形成しているが、方向標識部を形成するのはプリズムに限られず、プリズムの支持部に形成してもよい。
 また、上記実施形態では、方向標識部23は、色によって区別されているが、これに限られるものではない。例えば、バーコードや特定の模様、文字、LED等の発光体による光の色や発光パターン等の他の外観表示により区別してもよい。
 また上記実施形態では、プリズム22の全ての側面に対応して方向標識部23を形成しているが、必ずしも全ての側面に対応して方向標識部23を形成する必要はない。例えば、上記実施形態における第1の方向標識部23aと第3の方向標識部23cをなくしても、UAV10の前後方向はプリズムに対して支持部が延びている方向等、位置関係等の他の情報から識別することも可能である。つまり、測量装置から視たターゲット装置の相対位置等の情報から方向標識部を減らすことができる。
 また、方向標識部を形成する位置はプリズムの辺に限られず、頂点に形成してもよい。これにより、より単純に方向標識部を形成することができる。
 また、上記実施形態におけるターゲット装置20は、プリズム22が四角錐であるが、これに限らず、三角錐、正八面体等の他の多面体形状にも本発明の実施形態を適用可能である。
 また、上記実施形態では、移動撮影装置2はUAV10を移動体として用いているが、移動体はこれに限られず、例えば、車や重機等、人が移動させる棒状部材であってもよい。つまり、本発明の実施形態に係るターゲット装置の適用は写真測量の測量システムに限られず、他の測量システムにも適用可能である。
 また、上記実施形態では、測量装置3の測量制御部40に姿勢検出部としての機能を持たせているが、解析装置に姿勢検出部を設けてもよい。また、測量装置に解析装置の機能を持たせてもよい。
 また、上記実施形態の測量システムはGPS時刻に基づいて測量結果と撮影した画像との同期を行っているが、測量結果と画像との同期方法はこれに限られるものではない。
  1 測量システム
  2 移動撮影装置
  3 測量装置
  4 解析装置
 10 UVA
 11 カメラ
 11a レンズ部
 20 ターゲット装置
 21 支持部
 22 プリズム(反射部)
 23 方向標識部
 33 EDM
 34 ターゲット撮像部
 41 水平角検出部
 42 鉛直角検出部
 

Claims (7)

  1.  測量対象となるターゲット装置であって、
     入射した光を入射方向と同一方向に反射する反射部と、
     前記反射部を支持する支持部と、
     前記反射部又は前記支持部に形成され、前記反射部の方向を示す方向標識部と、
     を備えたターゲット装置。
  2.  前記方向標識部は、外観表示によって区別されることで前記反射部の方向を示す請求項1記載のターゲット装置。
  3.  前記反射部は、多面体のプリズムであり、前記方向標識部は前記プリズムの各側面に対応して形成される請求項1又は2記載のターゲット装置。
  4.  前記反射部は、多面体のプリズムであり、前記方向標識部は前記プリズムの頂点に形成される請求項1から3のいずれか一項に記載のターゲット装置。
  5.  請求項1から4のいずれか一項に記載のターゲット装置を測量対象とする測量システムであって、
     前記ターゲット装置の反射部を視準して当該反射部の位置を測量する測量部と、
     前記測量部による視準方向と同方向に指向し、前記反射部を含むターゲット画像を撮影するターゲット撮像部と、
     前記ターゲット画像に写り込んだ前記方向標識部から前記ターゲット装置の姿勢を検出する姿勢検出部と、
     を備えた測量システム。
  6.  前記ターゲット装置は移動体に設けられ、前記姿勢検出部は前記ターゲット装置の姿勢から移動体の姿勢を検出する請求項5記載の測量システム。
  7.  前記移動体は飛行体であり、
     前記飛行体に搭載され、写真測量用の画像を撮影するカメラと、
     前記姿勢検出部により検出した前記移動体の姿勢に関する情報を前記測量部により測量した測量結果に付加し、当該測量結果と前記カメラにより撮影した画像とを対応付けて写真測量用データを生成する測量制御部と、を備える請求項6記載の測量システム。
PCT/JP2019/012457 2018-03-26 2019-03-25 ターゲット装置、測量システム WO2019188961A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/982,837 US20210055103A1 (en) 2018-03-26 2019-03-25 Target device and surveying system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-058028 2018-03-26
JP2018058028A JP7161298B2 (ja) 2018-03-26 2018-03-26 ターゲット装置、測量システム

Publications (1)

Publication Number Publication Date
WO2019188961A1 true WO2019188961A1 (ja) 2019-10-03

Family

ID=68060017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012457 WO2019188961A1 (ja) 2018-03-26 2019-03-25 ターゲット装置、測量システム

Country Status (3)

Country Link
US (1) US20210055103A1 (ja)
JP (1) JP7161298B2 (ja)
WO (1) WO2019188961A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021162473A (ja) * 2020-03-31 2021-10-11 西日本電信電話株式会社 位置情報取得システム、位置情報取得方法及びプログラム
JP7451228B2 (ja) 2020-02-28 2024-03-18 株式会社トプコン 全方向プリズム装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3583385B1 (en) 2017-02-14 2021-04-21 Trimble AB Geodetic surveying with time synchronization

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080707A (ja) * 1983-10-07 1985-05-08 Toshihiro Tsumura 傾斜角度計測装置
JP2012071645A (ja) * 2010-09-28 2012-04-12 Topcon Corp 自動離着陸システム
US20140343890A1 (en) * 2013-05-10 2014-11-20 Leica Geosystems Ag Handheld measuring aid for use with a six-degrees-of-freedom laser tracker
JP2016017931A (ja) * 2014-07-11 2016-02-01 株式会社パスコ 測量用標識および測量方法
JP2016205909A (ja) * 2015-04-20 2016-12-08 株式会社日立製作所 鉄道車両の製造方法、計測装置及び計測方法
JP2018119882A (ja) * 2017-01-26 2018-08-02 株式会社トプコン 写真測量用カメラ
JP2019074386A (ja) * 2017-10-13 2019-05-16 株式会社熊谷組 対空標識

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE503983T1 (de) * 2007-05-30 2011-04-15 Trimble Ab Target zur verwendung bei mess- und vermessungsanwendungen
JP5882951B2 (ja) * 2013-06-14 2016-03-09 株式会社トプコン 飛行体誘導システム及び飛行体誘導方法
JP6796975B2 (ja) * 2016-09-16 2020-12-09 株式会社トプコン Uav測定装置及びuav測定システム
JP7037302B2 (ja) * 2017-09-06 2022-03-16 株式会社トプコン 測量データ処理装置、測量データ処理方法および測量データ処理用プログラム
JP7043283B2 (ja) * 2018-02-14 2022-03-29 株式会社トプコン 無人航空機の設置台、測量方法、測量装置、測量システムおよびプログラム
JP2023041316A (ja) * 2021-09-13 2023-03-24 株式会社トプコン 測量データ処理装置、測量データ処理方法および測量データ処理用プログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080707A (ja) * 1983-10-07 1985-05-08 Toshihiro Tsumura 傾斜角度計測装置
JP2012071645A (ja) * 2010-09-28 2012-04-12 Topcon Corp 自動離着陸システム
US20140343890A1 (en) * 2013-05-10 2014-11-20 Leica Geosystems Ag Handheld measuring aid for use with a six-degrees-of-freedom laser tracker
JP2016017931A (ja) * 2014-07-11 2016-02-01 株式会社パスコ 測量用標識および測量方法
JP2016205909A (ja) * 2015-04-20 2016-12-08 株式会社日立製作所 鉄道車両の製造方法、計測装置及び計測方法
JP2018119882A (ja) * 2017-01-26 2018-08-02 株式会社トプコン 写真測量用カメラ
JP2019074386A (ja) * 2017-10-13 2019-05-16 株式会社熊谷組 対空標識

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7451228B2 (ja) 2020-02-28 2024-03-18 株式会社トプコン 全方向プリズム装置
JP2021162473A (ja) * 2020-03-31 2021-10-11 西日本電信電話株式会社 位置情報取得システム、位置情報取得方法及びプログラム

Also Published As

Publication number Publication date
JP2019168406A (ja) 2019-10-03
US20210055103A1 (en) 2021-02-25
JP7161298B2 (ja) 2022-10-26

Similar Documents

Publication Publication Date Title
US7184088B1 (en) Apparatus and method for obtaining 3D images
US9377301B2 (en) Mobile field controller for measurement and remote control
US9958268B2 (en) Three-dimensional measuring method and surveying system
JP6326237B2 (ja) 測定システム
US9341473B2 (en) Geodetic survey system having a camera integrated in a remote control unit
US10187567B2 (en) Method and handheld distance measurement device for indirect distance measurement by means of image-assisted angle determination function
US20070103671A1 (en) Passive-optical locator
JP6823482B2 (ja) 三次元位置計測システム,三次元位置計測方法,および計測モジュール
US11796682B2 (en) Methods for geospatial positioning and portable positioning devices thereof
US20190086206A1 (en) Survey system
CN110737007A (zh) 用于获得地理空间位置的便携式定位设备和方法
JP7378545B2 (ja) ターゲット装置および測量方法
WO2019188961A1 (ja) ターゲット装置、測量システム
JP6930840B2 (ja) 測量システム
JP7097709B2 (ja) 測量システム
JP6058483B2 (ja) 空撮測量方法および装置
JP7050425B2 (ja) 測量システム
JP2019132769A5 (ja)
JP6577083B2 (ja) 測定システム
JP2004317237A (ja) 測量装置
JP2022057277A (ja) 測量システム
JP2018138922A (ja) 測定システム
KR101220232B1 (ko) 표석용 발광기가 부착된 지점에 대한 영상 촬영 및 도화 시스템과 그 방법
JP6954830B2 (ja) ターゲット装置、測量方法、測量装置および測量用プログラム
JP2019219206A (ja) 測定システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775020

Country of ref document: EP

Kind code of ref document: A1