WO2019188318A1 - 半導体発光素子 - Google Patents

半導体発光素子 Download PDF

Info

Publication number
WO2019188318A1
WO2019188318A1 PCT/JP2019/010449 JP2019010449W WO2019188318A1 WO 2019188318 A1 WO2019188318 A1 WO 2019188318A1 JP 2019010449 W JP2019010449 W JP 2019010449W WO 2019188318 A1 WO2019188318 A1 WO 2019188318A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
well
light emitting
semiconductor light
film thickness
Prior art date
Application number
PCT/JP2019/010449
Other languages
English (en)
French (fr)
Inventor
狩野 隆司
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2020509882A priority Critical patent/JPWO2019188318A1/ja
Publication of WO2019188318A1 publication Critical patent/WO2019188318A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Definitions

  • the present disclosure relates to a semiconductor light emitting device.
  • semiconductor light-emitting elements such as semiconductor laser elements have been used as light sources for projectors.
  • a semiconductor laser element including an active layer having a single quantum well (SQW) structure as disclosed in Patent Document 1 is known.
  • an active current having a single quantum well structure is provided to effectively use an injection current into a semiconductor laser element.
  • the present disclosure has been made to solve the above-described problem, and is a semiconductor light-emitting device including an active layer having a single quantum well structure, in which the thickness of the active layer can be measured by an X-ray diffraction method. An element is provided.
  • an aspect of a semiconductor light emitting device includes a first cladding layer, a first barrier layer disposed above the first cladding layer, a first barrier layer, and a first barrier layer including In and GaN.
  • the superlattice layer includes a plurality of second well layers including GaN, and a plurality of second barrier layers including GaN and having an In composition ratio different from that of the second well layer. And are alternately stacked.
  • An aspect of the semiconductor light emitting device includes: a first conductivity type first cladding layer; an active layer having a single quantum well structure disposed above the first cladding layer; A second clad layer of a second conductivity type disposed above; and a superlattice layer disposed at least one below the first clad layer and above the second clad layer, the active layer Includes a single first well layer containing In and a first barrier layer, and the superlattice layer includes a plurality of second well layers and a plurality of second barrier layers, and the plurality of second well layers.
  • Each of the well layers and each of the plurality of second barrier layers are alternately arranged, and each of the plurality of second well layers has an In composition ratio equal to that of the first well layer and the first well.
  • Each of the plurality of second barrier layers is made of GaN, and has a thickness that is a natural number times the layer thickness. Natural number times the thickness of the barrier layer, or has a film thickness of 1 times the natural fraction.
  • a semiconductor light emitting device including an active layer having a single quantum well structure, in which the thickness of the active layer can be measured by an X-ray diffraction method.
  • FIG. 1 is a schematic cross-sectional view illustrating a configuration of a semiconductor light emitting element according to a comparative example.
  • FIG. 2 is a schematic cross-sectional view showing a configuration of an active layer according to a comparative example.
  • FIG. 3 is a graph showing a diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device according to the comparative example.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of the semiconductor light emitting device according to the embodiment.
  • FIG. 5 is a schematic cross-sectional view showing the configuration of the superlattice layer according to the embodiment.
  • FIG. 6 is a graph showing a diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device according to the embodiment.
  • FIG. 7 is a flowchart showing a flow of a manufacturing method of the semiconductor light emitting device according to the embodiment.
  • FIG. 8 is a table showing the configuration of the superlattice layer in each example of the semiconductor light emitting device according to the embodiment.
  • FIG. 9 is a table showing the average In composition ratio and the film thickness period of the superlattice layer in each example of the semiconductor light emitting device according to the embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating the configuration of the superlattice layer according to the first embodiment.
  • FIG. 11 is a schematic cross-sectional view illustrating the configuration of the superlattice layer according to the second embodiment.
  • FIG. 12 is a graph showing a diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device according to Example 2.
  • FIG. 13 is a schematic cross-sectional view illustrating the configuration of the superlattice layer according to the third embodiment.
  • FIG. 14 is a graph showing a diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device according to Example 3.
  • FIG. 15 is a schematic cross-sectional view illustrating the configuration of the superlattice layer according to the fourth embodiment.
  • FIG. 12 is a graph showing a diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device according to Example 2.
  • FIG. 13 is a schematic cross-sectional view illustrating the configuration of the superlattice layer according to the third embodiment.
  • FIG. 16 is a graph showing a diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device according to Example 4.
  • FIG. 17 is a schematic cross-sectional view illustrating the configuration of the superlattice layer according to the fifth embodiment.
  • FIG. 18 is a graph showing the diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device according to Example 5.
  • FIG. 19 is a schematic cross-sectional view showing the configuration of the semiconductor light emitting device according to Example 6.
  • FIG. 20 is a schematic cross-sectional view illustrating the configuration of the superlattice layer according to the sixth embodiment.
  • FIG. 21 is a graph showing a diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device according to Example 6.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a semiconductor light emitting device 1010 according to a comparative example.
  • a semiconductor light emitting device 1010 includes a substrate 101, a first cladding layer 102, a first light guide layer 103, an active layer 104, a second light guide layer 105, The overflow suppression layer 106, the second cladding layer 107, the contact layer 108, the insulating layer 109, the second electrode 110, the pad electrode 111, and the first electrode 112 are included.
  • the active layer 104 has a single quantum well structure.
  • the structure of the active layer 104 will be described with reference to FIG.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the active layer 104 according to the comparative example. As shown in FIG. 2, the active layer 104 includes one first well layer 104a and two first barrier layers 104b sandwiching the first well layer 104a from above and below in FIG.
  • FIG. 3 is a graph showing a diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device 1010 according to the comparative example.
  • FIG. 3 shows the X-ray diffraction intensity distribution with respect to the diffraction angle ( ⁇ / 2 ⁇ ).
  • peaks corresponding to the substrate 101 made of GaN and the first cladding layer 102 made of Si-doped AlGaN are detected. Further, the satellite peak of the second cladding layer 107 having a repeating structure of the Mg-doped Al 0.06 Ga 0.94 N layer and the Mg-doped GaN layer is also detected. However, since the active layer 104 has a single quantum well structure as shown in FIG. 2 and does not have a repetitive structure like a multiple quantum well (MQW) structure, it corresponds to the active layer 104. Satellite peak to be detected is not detected.
  • MQW multiple quantum well
  • the active layer 104 has a multiple quantum well structure
  • a plurality of satellite peaks are detected in the “satellite peak generation region of the MQW active layer” shown in FIG.
  • the film thickness of the active layer having a multiple quantum well structure can be measured based on the difference in diffraction angle at which these satellite peaks are detected.
  • the film thickness of the active layer 104 can be measured. Can not. For this reason, the active layer film thickness of the semiconductor light emitting element after the semiconductor layer film formation cannot be measured easily.
  • the present disclosure provides a semiconductor light emitting device including an active layer having a single quantum well structure, and capable of measuring the thickness of the active layer by an X-ray diffraction method.
  • One aspect of the semiconductor light emitting device includes a first conductivity type first cladding layer, an active layer having a single quantum well structure disposed above the first cladding layer, and an upper side of the active layer.
  • a second clad layer of the second conductivity type disposed; and a superlattice layer disposed at least one of the lower side of the first clad layer and the upper side of the second clad layer, the active layer comprising:
  • each of the plurality of second well layers has an In composition ratio equal to that of the first well layer
  • Each of the plurality of second barrier layers has an In composition ratio with that of the first barrier layer.
  • the semiconductor light emitting device since the semiconductor light emitting device includes a superlattice layer having a repetitive structure, a plurality of satellite peaks corresponding to the repetitive structure of the superlattice layer can be detected in the X-ray diffraction method. Based on these satellite peaks, the period of the repetitive structure can be detected.
  • the second well layer and the second barrier layer of the superlattice layer have the same In composition ratio as the first well layer and the first barrier layer of the active layer, respectively.
  • the film thickness of the active layer can be calculated.
  • the film thickness of the active layer can be easily measured after the semiconductor layer is formed without damaging the electrical characteristics and optical properties of the semiconductor light emitting device.
  • An aspect of the semiconductor light emitting device includes: a first conductivity type first cladding layer; an active layer having a single quantum well structure disposed above the first cladding layer; A second conductivity type second clad layer disposed above and a superlattice layer disposed below the first clad layer or above the second clad layer, the active layer comprising an In
  • Each of the plurality of second barrier layers is alternately arranged, each of the plurality of second well layers has the same In composition ratio as that of the first well layer, and the film of the first well layer
  • Each of the plurality of second barrier layers is made of GaN, and has a film thickness of the first barrier layer. Natural with a thickness of several times.
  • the second barrier layer is made of GaN, and the In composition ratio is not necessarily equal to that of the first barrier layer.
  • the second well layer has the same In composition ratio as the first well layer, a plurality of satellite peaks corresponding to the repetitive structure of the superlattice layer can be obtained even in the semiconductor light emitting device having such a configuration. Therefore, also in this aspect, similarly to the above aspect, the period of the repetitive structure can be detected based on these satellite peaks. Therefore, the thickness of the active layer can be calculated in the same manner as in the above embodiment.
  • the number of the plurality of second well layers may be two or three.
  • the number of layers constituting the superlattice layer can be minimized. Therefore, the configuration of the semiconductor light emitting element can be simplified, and the influence of the superlattice layer on the characteristics of the semiconductor light emitting element can be minimized.
  • the thickness of each of the plurality of second well layers is one or twice the thickness of the first well layer, and the plurality of second well layers
  • the thickness of each barrier layer may be 1 or 2 times the thickness of the first barrier layer.
  • the terms “upper” and “lower” do not refer to the upward direction (vertically upward) and the downward direction (vertically downward) in absolute space recognition, but are based on the stacking order in the stacking configuration. Is used as a term defined by the relative positional relationship. The terms “upper” and “lower” are used not only when two components are spaced apart from each other and there is another component between the two components. This is also applied to the case where they are arranged in contact with each other.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of the semiconductor light emitting element 10 according to the present embodiment.
  • the semiconductor light emitting device 10 is, for example, a semiconductor laser device that emits laser light.
  • the semiconductor light emitting element 10 may have a resonator end face (not shown). In FIG. 4, a cross section perpendicular to the resonance direction of the semiconductor light emitting element 10 is shown.
  • the semiconductor light emitting device 10 includes a substrate 101, a first cladding layer 102, a first light guide layer 103, an active layer 104, and the semiconductor light emitting device 1010 according to the comparative example.
  • the second light guide layer 105, the overflow suppression layer 106, the second cladding layer 107, the contact layer 108, the insulating layer 109, the second electrode 110, the pad electrode 111, and the first electrode 112 are included.
  • the semiconductor light emitting device 10 according to the present embodiment further includes a superlattice layer 200.
  • the substrate 101 is a base material of the semiconductor light emitting element 10.
  • the substrate 101 is an n-type GaN substrate.
  • the first cladding layer 102 is a first conductivity type cladding layer disposed above the substrate 101.
  • the cladding layer made of n-type Al 0.03 Ga 0.97 N having a thickness of 3 ⁇ m. It is.
  • the first cladding layer 102 is doped with Si having a concentration of 5 ⁇ 10 17 cm ⁇ 3 .
  • the configuration of the first cladding layer 102 is not limited to this.
  • the first cladding layer 102 may function as a first conductivity type cladding layer.
  • the first light guide layer 103 is a guide layer disposed above the first cladding layer 102.
  • the first light guide layer 103 is a stacked film made of n-type GaN having a thickness of 220 nm and undoped In 0.01 Ga 0.99 N having a thickness of 40 nm.
  • the n-type GaN of the first light guide layer 103 is doped with Si having a concentration of 5 ⁇ 10 17 cm ⁇ 3 .
  • the configuration of the first light guide layer 103 is not limited to this.
  • the first light guide layer 103 may have a single layer structure.
  • the semiconductor light emitting element 10 may not include the first light guide layer 103.
  • the active layer 104 is a light emitting layer disposed above the first cladding layer 102. In the present embodiment, the active layer 104 is disposed on the first light guide layer 103.
  • the active layer 104 has a single quantum well structure like the active layer 104 according to the comparative example shown in FIG. As shown in FIG. 2, the active layer 104 includes a single first well layer 104a containing In, and two first barrier layers 104b sandwiching the first well layer 104a from above and below in FIG. including.
  • the first well layer 104 a is a well layer that forms the single quantum well structure of the active layer 104.
  • the first well layer 104a is made of undoped In 0.07 Ga 0.93 N having a thickness of 7.5 nm.
  • the film thickness and composition of the first well layer 104a are not limited to this.
  • the film thickness of the first well layer 104a may be greater than 7.5 nm, and the composition of the first well layer 104a may be In x Ga 1-x N (0 ⁇ x ⁇ 1). .
  • the first barrier layer 104 b is a barrier layer that forms the single quantum well structure of the active layer 104.
  • the first barrier layer 104b is made of undoped In 0.02 Ga 0.98 N with a thickness of 14 nm.
  • the thickness and composition of the first barrier layer 104b are not limited thereto.
  • the film thickness of the first barrier layer 104b may be greater than 14 nm, and the composition of the first barrier layer 104b may be In x Ga 1-x N (0 ⁇ x ⁇ 1).
  • the second light guide layer 105 is a guide layer disposed above the active layer 104.
  • the second light guide layer 105 is made of undoped In 0.01 Ga 0.99 N having a thickness of 110 nm.
  • the configuration of the second light guide layer 105 is not limited to this.
  • the second light guide layer 105 may have a multilayer structure.
  • the semiconductor light emitting element 10 may not include the second light guide layer 105.
  • the overflow suppression layer 106 is a layer that suppresses carrier leakage from the active layer 104 to the second cladding layer 107.
  • overflow suppression layer 106 is a layer that suppresses leakage of electrons, and is made of p-type Al 0.3 Ga 0.7 N having a thickness of 5 nm.
  • the overflow suppression layer 106 is doped with Mg having a concentration of 2 ⁇ 10 18 cm ⁇ 3 .
  • the configuration of the overflow suppression layer 106 is not limited to this, and any configuration that can realize a function of suppressing leakage of carriers from the active layer 104 to the second cladding layer 107 is acceptable.
  • the second cladding layer 107 is a cladding layer of a second conductivity type different from the first conductivity type disposed above the active layer 104, and in this embodiment, the p-type Al 0.06 Ga 0 having a thickness of 2 nm. .94 N and a superlattice clad layer in which 165 layers of p-type GaN having a thickness of 2 nm are stacked.
  • Each layer of the second cladding layer 107 is doped with Mg having a concentration of 1 ⁇ 10 18 cm ⁇ 3 .
  • the configuration of the second cladding layer 107 is not limited to this.
  • the second cladding layer 107 may function as a second conductivity type cladding layer.
  • the second cladding layer 107 has a ridge portion. Thereby, the current flowing through the semiconductor light emitting element 10 is narrowed and a waveguide is formed.
  • the contact layer 108 is a second conductivity type layer disposed above the second cladding layer 107.
  • the contact layer 108 is made of p-type GaN having a thickness of 60 nm.
  • the region of 50 nm thickness near the cladding layer of the contact layer 108 is doped with Mg having a concentration of 2 ⁇ 10 18 cm ⁇ 3
  • the region of 10 nm thickness near the second electrode 110 has a concentration of 2 ⁇ 10 8. 20 cm ⁇ 3 of Mg is doped.
  • the configuration of the contact layer 108 is not limited to this.
  • the contact layer 108 may be a layer that is in ohmic contact with the second electrode 110.
  • the contact layer 108 is disposed in the ridge portion of the second cladding layer 107.
  • the insulating layer 109 is a layer made of an insulating material and disposed above the second cladding layer 107. In the present embodiment, the insulating layer 109 is disposed in a region other than the upper surface of the ridge portion in the upper surface of the second cladding layer 107.
  • the insulating layer 109 is made of SiO 2 having a thickness of 300 nm. The structure of the insulating layer 109 is not limited to this. The thickness of the insulating layer 109 may be set as appropriate.
  • the insulating layer 109 may be made of an insulating material other than SiO 2 .
  • the second electrode 110 is a layer made of a conductive material disposed above the contact layer 108.
  • the second electrode 110 is in contact with the contact layer 108.
  • the second electrode 110 is a stacked film in which Pd with a thickness of 40 nm and Pt with a thickness of 35 nm are stacked in this order from the contact layer 108 side.
  • the film thickness and film configuration of each metal film of the second electrode 110 are not limited to this.
  • the second electrode 110 may be a single layer film or a multilayer film formed of at least one of Cr, Ti, Ni, Pd, Pt, and Au.
  • the second electrode 110 may also be formed on the insulating layer 109.
  • the pad electrode 111 is a pad-like electrode disposed above the second electrode 110.
  • the pad electrode 111 is made of Au and is disposed above the second electrode 110 and the insulating layer 109.
  • the configuration of the pad electrode 111 is not limited to this.
  • the pad electrode 111 may be, for example, a single layer film or a multilayer film formed of at least one of Cr, Ti, Ni, Pd, Pt, and Au.
  • the film thickness of the pad electrode 111 is not particularly limited.
  • the film thickness of the pad electrode 111 may be, for example, 100 nm or more.
  • the first electrode 112 is an electrode disposed below the substrate 101.
  • the first electrode 112 is a laminated film in which Ti, Pt, and Au are laminated in order from the substrate 101 side.
  • the configuration of the first electrode 112 is not limited to this.
  • the first electrode 112 may be a laminated film of Ti and Au, for example.
  • the film thickness of the first electrode 112 is not particularly limited.
  • the first electrode 112 may be, for example, a stacked film in which Ti with a thickness of 5 nm, Pt with a thickness of 10 nm, and Au with a thickness of 1000 nm are stacked.
  • the superlattice layer 200 is a layer having a superlattice structure disposed at least one below the first cladding layer 102 and above the second cladding layer 107.
  • FIG. 4 shows an example in which the superlattice layer 200 is disposed below the first cladding layer 102.
  • FIG. 5 is a schematic cross-sectional view showing the configuration of the superlattice layer 200 according to the present embodiment.
  • the superlattice layer 200 includes a plurality of second well layers 200a and a plurality of second barrier layers 200b, and each of the plurality of second well layers 200a and the plurality of second barrier layers 200b. Are alternately arranged.
  • Each of the plurality of second well layers 200a has the same In composition ratio as the first well layer 104a of the active layer 104, and has a film thickness that is a natural number multiple of the film thickness of the first well layer 104a.
  • Each of the plurality of second barrier layers 200b has an In composition ratio equal to that of the first barrier layer 104b of the active layer 104, and has a film thickness that is a natural number multiple of the film thickness of the first barrier layer 104b.
  • the description that the In composition ratios are equal means not only the case where the In composition ratios of the two layers completely match, but also the case where they are substantially equal. Specifically, the description that the In composition ratio is equal means, for example, a case where the error of the In composition ratio between the two layers is 5% or less.
  • the description of a film thickness that is a natural number multiple of the film thickness of the first well layer 104a includes not only a case where the film thickness completely matches the film thickness that is a natural number multiple, but also a case where the film thickness is substantially equal. means. Specifically, the description of a film thickness that is a natural number multiple of the film thickness of the first well layer 104a means a film thickness that has an error of 5% or less from the film thickness that is a natural number multiple. The same applies to the description of a film thickness that is a natural number multiple of the film thickness of the first barrier layer 104b.
  • the crystal growth conditions for forming such a superlattice layer 200 will be described.
  • the crystal growth conditions excluding the two conditions of the film thickness and the supply amount of the conductivity type impurities are the same as the crystal of the first well layer 104a of the active layer 104 Match the growth conditions.
  • the In composition ratio of the second well layer 200a and the In composition ratio of the first well layer 104a can be exactly matched.
  • the relationship between the thickness of the second well layer 200a and the thickness of the first well layer 104a can be adjusted accurately.
  • the crystal growth conditions at the time of forming the second barrier layer 200b are the same as those of the active layer 104.
  • the crystal growth conditions of the one barrier layer 104b are matched. Thereby, the relationship between the film thickness of the second barrier layer 200b and the film thickness of the first barrier layer 104b can be accurately adjusted. Further, when the In composition ratio of the second well layer 200a is made equal to the In composition ratio of the first well layer 104a, the supply amount of the In raw material may be matched.
  • each layer of the superlattice layer 200 is doped with a conductive impurity. Thereby, it is possible to suppress an increase in operating voltage caused by inserting the superlattice layer 200 into the semiconductor light emitting element 10.
  • Each of the plurality of second well layers 200a is made of, for example, In 0.07 Ga 0.93 N having a thickness of 7.5 nm
  • each of the plurality of second barrier layers 200b is made of, for example, In 0 having a thickness of 14 nm. .02 Ga 0.98 N.
  • the first conductivity type impurity is doped, and the superlattice layer 200 becomes the second cladding layer 107.
  • the second conductivity type impurity is doped.
  • each layer of the superlattice layer 200 is doped with, for example, Si having a concentration of 5 ⁇ 10 17 cm ⁇ 3 .
  • the second well layer 200a may have an In composition ratio equal to that of the first well layer 104a and a film thickness that is a natural number multiple of the film thickness of the first well layer 104a.
  • the second barrier layer 200b may have an In composition ratio equal to that of the first barrier layer 104b and a thickness that is a natural number multiple of the thickness of the first barrier layer 104b.
  • FIG. 6 is a graph showing a diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device 10 according to the present embodiment.
  • the graph of the diffraction intensity distribution for the semiconductor light emitting device 10 according to the present embodiment shown in FIG. A peak corresponding to is detected. Specifically, one peak corresponding to the average In composition ratio of the superlattice layer 200 and a plurality of satellite peaks corresponding to the repeating structure of the superlattice layer 200 are detected.
  • the period of the repeating structure of the superlattice layer 200 that is, as shown in FIG. 5
  • the sum B of the thickness of the second well layer 200a and the thickness of the second barrier layer 200b can be obtained.
  • the period of the repetitive structure of the superlattice layer 200 is obtained based on the difference in diffraction angle between the peak corresponding to the average In composition ratio and the plurality of satellite peaks corresponding to the repetitive structure of the superlattice layer 200. You can also.
  • each of the plurality of second well layers 200a has a film thickness that is a natural number multiple of the film thickness of the first well layer 104a
  • each of the plurality of second barrier layers 200b includes the first barrier layer 104b. It has a film thickness that is a natural number multiple of the film thickness. Therefore, from the sum B of the thickness of the second well layer 200a and the thickness of the second barrier layer 200b, the thickness of the first well layer 104a of the active layer 104 and the thickness of the first barrier layer 104b You can find the sum.
  • the crystal growth conditions of each layer of the active layer 104 and the crystal growth conditions of each layer of the superlattice layer 200 can be matched exactly, based on the measurement result of the film thickness of the superlattice layer 200.
  • the film thickness of the active layer 104 can be accurately measured.
  • the film thickness of the active layer 104 can be measured.
  • the In composition ratio can be obtained.
  • FIG. 7 is a flowchart showing a flow of a manufacturing method of the semiconductor light emitting device 10 according to the present embodiment.
  • each semiconductor layer is performed on the substrate 101 (S11).
  • a stacked body of semiconductor layers among the components constituting the plurality of semiconductor light emitting elements 10 is only formed on the wafer constituting the substrate 101.
  • the laminated structure formed in step S11 is evaluated by the X-ray diffraction method (S12).
  • the average In composition ratio and the film thickness of the active layer 104 are measured using the X-ray diffraction method, and the measurement results are evaluated.
  • the predetermined standard may be appropriately set according to the quality required for the semiconductor light emitting element 10. For example, the predetermined standard is that an error with respect to a target In composition ratio and film thickness is less than 10%.
  • the process proceeds to the wafer process (S15).
  • the wafer process a laminated structure composed of semiconductor layers and electrodes as shown in FIG. 4 is formed.
  • the crystal growth conditions need to be corrected based on the result of evaluation using the X-ray diffraction method (correction is necessary in S12).
  • the crystal growth conditions are changed (S13), and the changed crystal growth conditions are reflected in the next crystal growth (S11).
  • the crystal growth condition is corrected when at least one of the average In composition ratio and the film thickness does not satisfy a predetermined standard (NG in S12). Further, even when both the average In composition ratio and the film thickness satisfy predetermined standards (OK in S12), the crystal growth conditions may be corrected so as to be closer to the target value.
  • the average In composition ratio and the film thickness of the active layer 104 can be easily measured by the X-ray diffraction method. For this reason, if it is found that at least one of the In composition ratio and the film thickness is out of specification based on the measurement result, the semiconductor light emitting device out of specification can be obtained by stopping the manufacturing process of the semiconductor light emitting device. It is possible to avoid being manufactured continuously. Thereby, it is possible to reduce a loss caused by manufacturing a non-standard semiconductor light emitting device.
  • the film thickness of the active layer 104 can be evaluated immediately after the crystal growth, the average In composition ratio and the film thickness of the active layer 104 are fed back by feeding back the evaluation results in the crystal growth of the semiconductor light emitting device 10 to be manufactured next. It can be closer to the target value.
  • the semiconductor light emitting device 10 it is not necessary to separately perform a confirmation film formation for examining the film thickness of the active layer 104, so that the manufacturing man-hours and costs can be reduced.
  • FIG. 8 is a table showing the configuration of the superlattice layer in each example of the semiconductor light emitting device according to this embodiment.
  • FIG. 9 is a table showing the average In composition ratio and the film thickness period of the superlattice layer in each example of the semiconductor light emitting device 10 according to the present embodiment.
  • the well layer and the barrier layer shown in FIG. 8 indicate the second well layer and the second barrier layer of the superlattice layer, respectively.
  • the average In composition ratio Rave includes the In composition ratio Rw of the second well layer, the In composition ratio Rb of the second barrier layer, the film thickness Tw of the second well layer, and the film of the second barrier layer.
  • the thickness Tb it can be calculated by the following formula.
  • the film thickness cycle shown in FIG. 9 is the sum of the film thickness of the second well layer and the film thickness of the second barrier layer.
  • the acceptable standard shown in FIG. 9 means a range in which an error from a central value that is a target value of an average In composition ratio and a film thickness cycle is 10% or less.
  • FIG. 9 shows the maximum value and the minimum value of the acceptable standard range.
  • FIG. 10 is a schematic cross-sectional view showing the configuration of the superlattice layer 201 according to this example.
  • the superlattice layer 201 is disposed between the substrate 101 and the first cladding layer 102 as in the semiconductor light emitting device 10 shown in FIG.
  • the number of repetition periods of the second well layer 200a and the second barrier layer 200b is 2 (that is, the number of layers of the second well layer 200a is 2).
  • each of the two second well layers 200a is made of In 0.07 Ga 0.93 N having a thickness of 7.5 nm, and includes three second barrier layers.
  • Each of 200b is made of In 0.02 Ga 0.98 N having a film thickness of 14 nm.
  • Each of these layers is doped with Si having a concentration of 5 ⁇ 10 17 cm ⁇ 3 .
  • Each of these layers is crystal-grown at the same growth rate as each layer of the active layer 104.
  • the diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device according to the present embodiment including such a superlattice layer 201 is a diffraction intensity distribution as shown in FIG.
  • the same average In composition ratio as that of the active layer 104 can be measured by the superlattice layer 201 of this embodiment.
  • the superlattice layer 201 having the superlattice structure of InGaN / InGaN does not emit light due to carrier recombination.
  • the superlattice layer 201 is doped with Si, an increase in the operating voltage of the semiconductor light emitting element is suppressed.
  • the number of second well layers is two. For this reason, the number of layers constituting the superlattice layer 201 can be minimized. Therefore, the configuration of the semiconductor light emitting element can be simplified, and the influence of the superlattice layer 201 on the characteristics of the semiconductor light emitting element can be minimized.
  • the thickness of the second well layer 200a is equal to the thickness of the first well layer 104a
  • the thickness of the second barrier layer 200b is equal to the thickness of the first barrier layer 104b.
  • FIG. 11 is a schematic cross-sectional view showing the configuration of the superlattice layer 202 according to this example.
  • the number of repetition periods of the second well layer 200a and the second barrier layer 200b is 3 (that is, the number of the second well layers 200a). 3) is different from the semiconductor light emitting device according to Example 1 in that it is the same in other points.
  • FIG. 12 is a graph showing the diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device according to this example.
  • the diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device according to Example 1 is also indicated by a broken line.
  • the total thickness of the second well layer 200a is 1.5 times as the number of repetition periods of the superlattice layer 202 is increased from that in Example 1. From this, as shown in FIG. 12, the diffraction intensity at the satellite peak is 1.5 times that of Example 1, and the satellite peak is detected more clearly. Other effects are the same as those of the first embodiment.
  • FIG. 13 is a schematic cross-sectional view showing the configuration of the superlattice layer 203 according to this example.
  • the superlattice layer 203 includes a second well layer 200a and a second barrier layer 203b.
  • the semiconductor light emitting device according to this example is different from Example 1 in that the In composition ratio of the second barrier layer 203 b is zero, that is, the second barrier layer 203 b is made of GaN. This is different from the semiconductor light emitting device according to the above, and is identical in other points.
  • FIG. 14 is a graph showing the diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device according to this example.
  • the diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device according to Example 1 is also indicated by a broken line.
  • the peak corresponding to the average In composition ratio and the satellite peak corresponding to the repetitive structure of the superlattice layer 203 are detected.
  • the average In composition ratio between the second well layer 200a and the second barrier layer 203b in the superlattice layer 203 can be known from the peak corresponding to the average In composition ratio.
  • the second barrier layer 203b is changed from In 0.02 Ga 0.98 N in Example 1 to GaN, the average In composition ratio decreases from 0.037 in Example 1 to 0.024. To do.
  • the In composition ratio and the film thickness of the second well layer 200a in the superlattice layer 203 are the same as those of the active layer 104, and the second barrier layer 203b is GaN (that is, the In composition ratio is zero).
  • the In composition ratio of the second well layer 200a of the superlattice layer 203 is derived from the average In composition ratio of the second well layer 200a and the second barrier layer 203b in the superlattice layer 203, which can be derived from the evaluation using the X-ray diffraction method. be able to.
  • the second well layer 200a of the superlattice layer 203 has the same In composition ratio as the first well layer 104a of the active layer 104, the In composition ratio of the first well layer 104a in the active layer 104 can also be obtained. it can. Other effects are the same as those of the first embodiment.
  • FIG. 15 is a schematic cross-sectional view showing the configuration of the superlattice layer 204 according to this example.
  • the superlattice layer 204 includes a second well layer 204a and a second barrier layer 204b.
  • the film thicknesses of the second well layer 204a and the second barrier layer 204b are the film thicknesses of the first well layer 104a and the first barrier layer 104b, respectively. Is different from the semiconductor light emitting device according to Example 1 in that it is twice as much as the above.
  • FIG. 16 is a graph showing a diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device according to this example.
  • the diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device according to Example 1 is also indicated by a broken line.
  • the total film thickness of the second well layer 204a is doubled by doubling the thickness of the second well layer 204a in the superlattice layer 204, so that the diffraction intensity peak is doubled.
  • the satellite peak is detected more clearly than in the first embodiment.
  • the film thickness period of the second well layer 204a and the second barrier layer 204b of the superlattice layer 204 is twice that of the first embodiment, the average In composition ratio peak and the satellite peak, and the adjacent satellite peak The difference in diffraction angle is smaller than that in the first embodiment. From the difference in diffraction angles, the film thickness period between the second well layer 204a and the second barrier layer 204b can be obtained. Therefore, the film thickness cycle between the first well layer 104a and the first barrier layer 104b of the active layer 104 can be measured as 1/2 the film thickness cycle of the superlattice layer 204. Other effects are the same as those of the first embodiment.
  • FIG. 17 is a schematic cross-sectional view showing the configuration of the superlattice layer 205 according to this example.
  • the superlattice layer 205 includes a second well layer 205a and a second barrier layer 205b.
  • the In composition ratio of the second barrier layer 205b is zero, and the film thicknesses of the second well layer 205a and the second barrier layer 205b are respectively
  • the semiconductor light emitting device according to the first embodiment is different from the semiconductor light emitting device according to the first embodiment in that the film thickness is twice the thickness of the first well layer 104a and the first barrier layer 104b and the repetition period number of the superlattice layer 204 is 3. , Otherwise match.
  • FIG. 18 is a graph showing a diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device according to this example.
  • the diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device according to Example 1 is also indicated by a broken line.
  • the average In composition ratio peak between the second well layer 205a and the second barrier layer 205b of the superlattice layer 205 has the same diffraction angle as in Example 3 in which the second barrier layer 205b is made of GaN. appear.
  • the In composition ratio between the second well layer 205a and the second barrier layer 205b is the same as that in the third embodiment, and the film thickness of the second well layer 205a and the second barrier layer 205b is twice that in the third embodiment.
  • the film thickness ratio between the second well layer 205a and the second barrier layer 205b is the same as that of the third embodiment.
  • Example 1 and Example 2 the average In composition ratio is 0.037, but the average In composition ratio in Example 5 is 0.024, and the average In composition ratio peak is higher than that in Examples 1 and 2. Also approaches the peak corresponding to the GaN substrate.
  • the film thickness of each layer in the superlattice layer 205 is double the film thickness of each layer in the first embodiment.
  • the number of repetition periods is increased from 2 to 3 to 1.5 times. Yes.
  • the peak intensity of the average In composition ratio is 3 in Example 1. Double. As a result, the satellite peak by the X-ray diffraction method is detected more clearly than in Example 1.
  • the thicknesses of the second well layer and the second barrier layer are the same as those of Example 4.
  • the difference in diffraction angle between the average In composition ratio peak and the satellite peak and the difference in diffraction angle between adjacent satellite peaks are the same as those in Example 4, respectively. It becomes smaller than Example 3.
  • the film thickness period of the second well layer and the second barrier layer is doubled compared to Example 1 and Example 2, the diffraction angle between the average In composition ratio peak and the satellite peak is The difference and the difference in diffraction angle between adjacent satellite peaks is small. From the difference between these diffraction angles, the film thickness period between the second well layer 205a and the second barrier layer 205b can be obtained as in the fourth embodiment. Therefore, the film thickness cycle of the first well layer 104a and the first barrier layer 104b of the active layer 104 can be measured as 1/2 the film thickness cycle of the superlattice layer 205. Other effects are the same as those of the first embodiment.
  • FIG. 19 is a schematic cross-sectional view showing the configuration of the semiconductor light emitting device 16 according to this example.
  • FIG. 20 is a schematic cross-sectional view showing the configuration of the superlattice layer 206 according to this example.
  • the semiconductor light emitting device 16 according to this example is different from the semiconductor light emitting device according to Example 1 in the arrangement of the superlattice layer 206 and the configuration of the superlattice layer 206, and is identical in other points.
  • the superlattice layer 206 is disposed above the second cladding layer 107. More specifically, the superlattice layer 206 is disposed between the second cladding layer 107 and the contact layer 108.
  • the superlattice layer 206 includes a second well layer 206a and a second barrier layer 206b.
  • the repetition period of the superlattice layer 206 is 2.
  • the configuration of each layer of the superlattice layer 206 is the same as that of the superlattice layer 201 according to the first embodiment except that the impurity is Mg.
  • FIG. 21 is a graph showing a diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device 16 according to this example.
  • the arrangement of the superlattice layer 206 is different from that in the first embodiment. It is equivalent to the In composition ratio and film thickness of each layer. For this reason, as shown in FIG. 21, the diffraction intensity distribution is substantially the same as the diffraction intensity distribution of the first embodiment. Thereby, similarly to Example 1, the average In composition ratio and the film thickness of the active layer 104 can be measured.
  • the superlattice layer 206 having an InGaN / InGaN superlattice structure does not emit light due to carrier recombination.
  • the superlattice layer 206 is doped with Mg, an increase in the operating voltage of the semiconductor light emitting element 16 is suppressed.
  • the second well layer and the second barrier layer have the same In composition ratio as the first well layer and the first barrier layer, respectively, but the second well layer and the second barrier layer are The In composition ratio may not be equal to that of the first well layer and the first barrier layer, respectively.
  • each second well layer has a film thickness that is a natural number multiple of the film thickness of the first well layer, but each second well layer has a natural film thickness of the first well layer. It is not necessary to have several times the film thickness.
  • the film thickness of each second well layer may be a natural number times the film thickness of the first well layer. That is, the thickness of each second well layer may be 1 time, 1/2 time, 1/3 time, 1/4 time, or the like of the first well layer.
  • each second barrier layer has a film thickness that is a natural number multiple of the film thickness of the first barrier layer, but each second barrier layer has a film thickness that is the natural thickness of the first barrier layer. It is not necessary to have several times the film thickness.
  • the film thickness of each second barrier layer may be a natural number one times the film thickness of the first well layer. That is, the thickness of each second barrier layer may be 1 time, 1/2 time, 1/3 time, 1/4 time, or the like of the first well layer.
  • the semiconductor light emitting device has a single quantum well structure including a first cladding layer, a first barrier layer disposed above the first cladding layer, and a first well layer containing In and GaN.
  • the lattice layer may have a structure in which a plurality of second well layers containing GaN and a plurality of second barrier layers containing GaN and having different In composition ratios from the second well layers are alternately stacked. .
  • the period of the repetitive structure of the superlattice layer can be measured from a graph showing the diffraction intensity distribution obtained when the X-ray diffraction method is applied to the semiconductor light emitting device. If the relationship between the period of the repetitive structure of the superlattice layer and the film thickness of the active layer is known, the film thickness of the active layer can be accurately measured.
  • the semiconductor light emitting element is a semiconductor laser element.
  • the semiconductor light emitting element is not limited to the semiconductor laser element.
  • the semiconductor light emitting device may be a super luminescent diode.
  • the semiconductor light emitting device of the present disclosure can be applied to a projector or the like as a high output light source, for example.
  • Second electrode 112 First electrode 200, 201, 202, 203, 204, 205, 206 Superlattice layer 200a, 204a, 205a, 206a Second well layer 200b, 203b, 204b, 205b 206b Second barrier layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Led Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Semiconductor Lasers (AREA)

Abstract

半導体発光素子(10)は、第1クラッド層(102)と、第1クラッド層(102)の上方に配置され、第1障壁層(104b)と、In及びGaNを含む第1井戸層(104a)とを有する単一量子井戸構造の活性層(104)と、活性層(104)の上方に配置された第2クラッド層(107)と、第1クラッド層(102)の下方、及び、第2クラッド層(107)の上方の少なくとも一方に配置された超格子層(200)とを備え、超格子層(200)は、GaNを含む複数の第2井戸層(200a)と、GaNを含み、第2井戸層(200a)とはIn組成比が異なる複数の第2障壁層(200b)とが交互に積層された構造を有する。

Description

半導体発光素子
 本開示は、半導体発光素子に関する。
 従来、半導体レーザ素子などの半導体発光素子がプロジェクタ用の光源として用いられている。プロジェクタ用の高出力かつ高効率なレーザ光源として、特許文献1に開示されたような単一量子井戸(SQW:Single Quantum well)構造の活性層を備える半導体レーザ素子が知られている。特許文献1に記載された発明においては、単一量子井戸構造の活性層を備えることにより、半導体レーザ素子への注入電流を有効利用しようとしている。
特開平11-340580号公報
 半導体レーザ素子においては、半導体層成膜後の出来栄えを評価する必要がある。しかしながら、特許文献1に開示された半導体レーザ素子においては、単一量子井戸構造の活性層の膜厚を、半導体レーザ素子の電気特性及び光学特性を損なうことなく簡易に評価することができない。
 そこで、本開示は上記課題を解決するためになされたものであり、単一量子井戸構造の活性層を備える半導体発光素子であって、活性層の膜厚をX線回折法によって測定できる半導体発光素子を提供する。
 上記課題を解決するために、本開示に係る半導体発光素子の一態様は、第1クラッド層と、前記第1クラッド層の上方に配置され、第1障壁層と、In及びGaNを含む第1井戸層とを有する単一量子井戸構造の活性層と、前記活性層の上方に配置された第2クラッド層と、前記第1クラッド層の下方、及び、前記第2クラッド層の上方の少なくとも一方に配置された超格子層とを備え、前記超格子層は、GaNを含む複数の第2井戸層と、GaNを含み、前記第2井戸層とはIn組成比が異なる複数の第2障壁層とが交互に積層された構造を有する。
 また、本開示に係る半導体発光素子の一態様は、第1導電型の第1クラッド層と、前記第1クラッド層の上方に配置された単一量子井戸構造の活性層と、前記活性層の上方に配置された第2導電型の第2クラッド層と、前記第1クラッド層の下方、及び、前記第2クラッド層の上方の少なくとも一方に配置された超格子層とを備え、前記活性層は、Inを含む単一の第1井戸層と、第1障壁層とを含み、前記超格子層は、複数の第2井戸層と複数の第2障壁層とを含み、前記複数の第2井戸層の各々と前記複数の第2障壁層の各々とが交互に配置され、前記複数の第2井戸層の各々は、前記第1井戸層とIn組成比が等しく、かつ、前記第1井戸層の膜厚の自然数倍の膜厚を有し、前記複数の第2障壁層の各々は、GaNからなり、前記第1障壁層の膜厚の自然数倍、又は、自然数分の1倍の膜厚を有する。
 本開示によれば、単一量子井戸構造の活性層を備える半導体発光素子であって、活性層の膜厚をX線回折法によって測定できる半導体発光素子を提供できる。
図1は、比較例に係る半導体発光素子の構成を示す模式的な断面図である。 図2は、比較例に係る活性層の構成を示す模式的な断面図である。 図3は、比較例に係る半導体発光素子にX線回折法を適用した場合に得られる回折強度分布を示すグラフである。 図4は、実施の形態に係る半導体発光素子の構成を示す模式的な断面図である。 図5は、実施の形態に係る超格子層の構成を示す模式的な断面図である。 図6は、実施の形態に係る半導体発光素子にX線回折法を適用した場合に得られる回折強度分布を示すグラフである。 図7は、実施の形態に係る半導体発光素子の製造方法の流れを示すフローチャートである。 図8は、実施の形態に係る半導体発光素子の各実施例における超格子層の構成を示す表である。 図9は、実施の形態に係る半導体発光素子の各実施例における超格子層の平均In組成比及び膜厚周期を示す表である。 図10は、実施例1に係る超格子層の構成を示す模式的な断面図である。 図11は、実施例2に係る超格子層の構成を示す模式的な断面図である。 図12は、実施例2に係る半導体発光素子にX線回折法を適用した場合に得られる回折強度分布を示すグラフである。 図13は、実施例3に係る超格子層の構成を示す模式的な断面図である。 図14は、実施例3に係る半導体発光素子にX線回折法を適用した場合に得られる回折強度分布を示すグラフである。 図15は、実施例4に係る超格子層の構成を示す模式的な断面図である。 図16は、実施例4に係る半導体発光素子にX線回折法を適用した場合に得られる回折強度分布を示すグラフである。 図17は、実施例5に係る超格子層の構成を示す模式的な断面図である。 図18は、実施例5に係る半導体発光素子にX線回折法を適用した場合に得られる回折強度分布を示すグラフである。 図19は、実施例6に係る半導体発光素子の構成を示す模式的な断面図である。 図20は、実施例6に係る超格子層の構成を示す模式的な断面図である。 図21は、実施例6に係る半導体発光素子にX線回折法を適用した場合に得られる回折強度分布を示すグラフである。
 (本開示の基礎となった知見)
 本開示の実施の形態に先立ち、本開示の基礎となった知見について説明する。
 まず、特許文献1に開示された半導体発光素子と同様の単一量子井戸構造の活性層を備える比較例に係る半導体発光素子について図1を用いて説明する。図1は、比較例に係る半導体発光素子1010の構成を示す模式的な断面図である。
 図1に示されるように、比較例に係る半導体発光素子1010は、基板101と、第1クラッド層102と、第1光ガイド層103と、活性層104と、第2光ガイド層105と、オーバーフロー抑制層106と、第2クラッド層107と、コンタクト層108と、絶縁層109と、第2電極110と、パッド電極111と、第1電極112とを有する。
 活性層104は、単一量子井戸構造を有する。活性層104の構成について、図2を用いて説明する。図2は、比較例に係る活性層104の構成を示す模式的な断面図である。図2に示されるように、活性層104は、一つの第1井戸層104aと、第1井戸層104aを、図2の上方及び下方から挟む二層の第1障壁層104bとを有する。
 ここで、このような構成を有する比較例の半導体発光素子1010の層構造にX線回折法を適用した結果について図3を用いて説明する。図3は、比較例に係る半導体発光素子1010にX線回折法を適用した場合に得られる回折強度分布を示すグラフである。図3においては、回折角(ω/2θ)に対するX線の回折強度分布が示されている。
 図3に示されるように、GaNからなる基板101及びSiドープAlGaNからなる第1クラッド層102に対応するピークが検出される。また、MgドープAl0.06Ga0.94N層及びMgドープGaN層の繰り返し構造を有する第2クラッド層107のサテライトピークも検出される。しかしながら、活性層104は、図2に示されるように単一量子井戸構造を有し、多重量子井戸(MQW:Multiple Quantum well)構造のように繰り返し構造を有さないため、活性層104に対応するサテライトピークが検出されない。なお、活性層104が、多重量子井戸構造を有する場合には、図3に示す「MQW活性層のサテライトピーク発生領域」に複数のサテライトピークが検出される。これらのサテライトピークが検出される回折角の差などに基づいて多重量子井戸構造の活性層の膜厚を計測できる。
 以上のように、比較例に係る半導体発光素子では、X線回折法によって、単一量子井戸構造の活性層104に対応するサテライトピークが検出されないため、活性層104の膜厚を計測することができない。このため、半導体層成膜後の半導体発光素子の活性層膜厚を簡易に計測できない。
 そこで、本開示は、単一量子井戸構造の活性層を備える半導体発光素子であって、活性層の膜厚をX線回折法によって計測できる半導体発光素子を提供する。
 本開示に係る半導体発光素子の一態様は、第1導電型の第1クラッド層と、前記第1クラッド層の上方に配置された単一量子井戸構造の活性層と、前記活性層の上方に配置された第2導電型の第2クラッド層と、前記第1クラッド層の下方、及び、前記第2クラッド層の上方の少なくとも一方に配置された超格子層とを備え、前記活性層は、Inを含む単一の第1井戸層と、第1障壁層とを含み、前記超格子層は、複数の第2井戸層と複数の第2障壁層とを含み、前記複数の第2井戸層の各々と前記複数の第2障壁層の各々とが交互に配置され、前記複数の第2井戸層の各々は、前記第1井戸層とIn組成比が等しく、かつ、前記第1井戸層の膜厚の自然数倍の膜厚を有し、前記複数の第2障壁層の各々は、前記第1障壁層とIn組成比が等しく、かつ、前記第1障壁層の膜厚の自然数倍の膜厚を有する。
 このように、半導体発光素子が繰り返し構造を有する超格子層を備えるため、X線回折法において、超格子層の繰り返し構造に対応する複数のサテライトピークを検出できる。これらのサテライトピークに基づいて、繰り返し構造の周期を検出できる。ここで、超格子層の第2井戸層及び第2障壁層は、それぞれ活性層の第1井戸層及び第1障壁層と、In組成比が等しいことから、それらの膜厚の関係に基づいて、活性層の膜厚を算出できる。このように、本開示の半導体発光素子によれば、半導体層の成膜後に、半導体発光素子の電気特性及び光学特性を損なうことなく簡易に活性層の膜厚を計測できる。
 また、本開示に係る半導体発光素子の一態様は、第1導電型の第1クラッド層と、前記第1クラッド層の上方に配置された単一量子井戸構造の活性層と、前記活性層の上方に配置された第2導電型の第2クラッド層と、前記第1クラッド層の下方、又は、前記第2クラッド層の上方に配置された超格子層とを備え、前記活性層は、Inを含む単一の第1井戸層と、第1障壁層とを含み、前記超格子層は、複数の第2井戸層と複数の第2障壁層とを含み、前記複数の第2井戸層の各々と前記複数の第2障壁層の各々とが交互に配置され、前記複数の第2井戸層の各々は、前記第1井戸層とIn組成比が等しく、かつ、前記第1井戸層の膜厚の自然数倍の膜厚を有し、前記複数の第2障壁層の各々は、GaNからなり、前記第1障壁層の膜厚の自然数倍の膜厚を有する。
 このように、第2障壁層がGaNからなり、必ずしも第1障壁層とIn組成比が等しくならない。しかしながら、第2井戸層が第1井戸層とIn組成比が等しいことから、このような構成の半導体発光素子においても、超格子層の繰り返し構造に対応する複数のサテライトピークを得られる。したがって、本態様においても、上記態様と同様に、これらのサテライトピークに基づいて、繰り返し構造の周期を検出できる。したがって、上記態様と同様に活性層の膜厚を算出できる。
 また、本開示に係る半導体発光素子の一態様において、複数の第2井戸層の層数は、2又は3であってもよい。
 これにより、超格子層を構成する層数を最小限に抑えることができる。したがって、半導体発光素子の構成を簡素化でき、かつ、超格子層が半導体発光素子の特性に与える影響を最小限に抑えることができる。
 また、本開示に係る半導体発光素子の一態様において、前記複数の第2井戸層の各々の膜厚は、前記第1井戸層の膜厚の1倍又は2倍であり、前記複数の第2障壁層の各々の膜厚は、前記第1障壁層の膜厚の1倍又は2倍であってもよい。
 これにより、超格子層の膜厚が大きくなることを抑制できる。したがって、超格子層の厚さを抑制できるため、超格子層が半導体発光素子の特性に与える影響を抑制できる。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、及び、構成要素の配置位置や接続形態などは、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺等は必ずしも一致していない。なお、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 また、本明細書において、「上方」及び「下方」という用語は、絶対的な空間認識における上方向(鉛直上方)及び下方向(鉛直下方)を指すものではなく、積層構成における積層順を基に相対的な位置関係により規定される用語として用いる。また、「上方」及び「下方」という用語は、2つの構成要素が互いに間隔をあけて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに接する状態で配置される場合にも適用される。
 (実施の形態)
 [1.構成]
 実施の形態に係る半導体発光素子について説明する。まず、本実施の形態に係る半導体発光素子の構成について図4を用いて説明する。図4は、本実施の形態に係る半導体発光素子10の構成を示す模式的な断面図である。
 本実施の形態に係る半導体発光素子10は、例えば、レーザ光を出射する半導体レーザ素子である。半導体発光素子10は、図示しない共振器端面を有してもよい。なお、図4においては、半導体発光素子10の共振方向に垂直な断面が示されている。
 図4に示されるように、半導体発光素子10は、比較例に係る半導体発光素子1010と同様に、基板101と、第1クラッド層102と、第1光ガイド層103と、活性層104と、第2光ガイド層105と、オーバーフロー抑制層106と、第2クラッド層107と、コンタクト層108と、絶縁層109と、第2電極110と、パッド電極111と、第1電極112とを有する。本実施の形態に係る半導体発光素子10は、さらに、超格子層200を備える。
 基板101は、半導体発光素子10の基材である。本実施の形態では、基板101は、n型GaN基板である。
 第1クラッド層102は、基板101の上方に配置された第1導電型のクラッド層であり、本実施の形態では、厚さ3μmのn型Al0.03Ga0.97Nからなるクラッド層である。第1クラッド層102には、濃度5×1017cm-3のSiがドープされている。なお、第1クラッド層102の構成はこれに限定されない。第1クラッド層102は、第1導電型のクラッド層として機能すればよい。
 第1光ガイド層103は、第1クラッド層102の上方に配置されたガイド層である。本実施の形態では、第1光ガイド層103は、厚さ220nmのn型GaN、及び、厚さ40nmのアンドープIn0.01Ga0.99Nからなる積層膜である。第1光ガイド層103のn型GaNには、濃度5×1017cm-3のSiがドープされている。なお、第1光ガイド層103の構成はこれに限定されない。例えば、第1光ガイド層103は、単層構造であってもよい。また、半導体発光素子10は、第1光ガイド層103を備えなくてもよい。
 活性層104は、第1クラッド層102の上方に配置された発光層である。本実施の形態では、活性層104は、第1光ガイド層103上に配置される。活性層104は、図2に示される比較例に係る活性層104と同様に単一量子井戸構造を有する。図2に示されるように、活性層104は、Inを含む単一の第1井戸層104aと、第1井戸層104aを、図2の上方及び下方から挟む二層の第1障壁層104bとを含む。
 第1井戸層104aは、活性層104の単一量子井戸構造を形成する井戸層である。本実施の形態では、第1井戸層104aは、膜厚7.5nmのアンドープIn0.07Ga0.93Nからなる。なお、第1井戸層104aの膜厚及び組成はこれに限定されない。例えば、第1井戸層104aの膜厚は、7.5nmより厚くてもよいし、第1井戸層104aの組成は、InGa1-xN(0<x<1)であってもよい。
 第1障壁層104bは、活性層104の単一量子井戸構造を形成する障壁層である。本実施の形態では、第1障壁層104bは、膜厚14nmのアンドープIn0.02Ga0.98Nからなる。なお、第1障壁層104bの膜厚及び組成はこれに限定されない。例えば、第1障壁層104bの膜厚は、14nmより厚くてもよいし、第1障壁層104bの組成は、InGa1-xN(0≦x<1)であってもよい。
 第2光ガイド層105は、活性層104の上方に配置されたガイド層である。本実施の形態では、第2光ガイド層105は、厚さ110nmのアンドープIn0.01Ga0.99Nからなる。なお、第2光ガイド層105の構成はこれに限定されない。例えば、第2光ガイド層105は、多層構造であってもよい。また、半導体発光素子10は、第2光ガイド層105を備えなくてもよい。
 オーバーフロー抑制層106は、活性層104から第2クラッド層107へのキャリアの漏れを抑制する層である。本実施の形態では、オーバーフロー抑制層106は、電子の漏れを抑制する層であり、膜厚5nmのp型Al0.3Ga0.7Nからなる。オーバーフロー抑制層106には、濃度2×1018cm-3のMgがドープされている。なお、オーバーフロー抑制層106の構成はこれに限定されず、活性層104から第2クラッド層107へのキャリアの漏れを抑制する機能を実現できる構成であればよい。
 第2クラッド層107は、活性層104の上方に配置された第1導電型と異なる第2導電型のクラッド層であり、本実施の形態では、厚さ2nmのp型Al0.06Ga0.94Nと、厚さ2nmのp型GaNとを、165層ずつ積層した超格子クラッド層である。第2クラッド層107の各層には、濃度1×1018cm-3のMgがドープされている。なお、第2クラッド層107の構成はこれに限定されない。第2クラッド層107は、第2導電型のクラッド層として機能すればよい。
 本実施の形態では、第2クラッド層107には、リッジ部が形成されている。これにより、半導体発光素子10に流れる電流を狭窄し、かつ、導波路を形成する。
 コンタクト層108は、第2クラッド層107の上方に配置された、第2導電型の層である。本実施の形態では、コンタクト層108は、膜厚60nmのp型GaNからなる。コンタクト層108のクラッド層寄りの膜厚50nmの領域には、濃度2×1018cm-3のMgがドープされており、第2電極110寄りの膜厚10nmの領域には、濃度2×1020cm-3のMgがドープされている。コンタクト層108の構成はこれに限定されない。コンタクト層108は、第2電極110とオーミック接触する層であればよい。本実施の形態では、コンタクト層108は、第2クラッド層107のリッジ部に配置される。
 絶縁層109は、第2クラッド層107の上方に配置された、絶縁材料からなる層である。本実施の形態では、絶縁層109は、第2クラッド層107の上面のうちリッジ部上面以外の領域に配置される。絶縁層109は、膜厚300nmのSiOからなる。絶縁層109の構成は、これに限定されない。絶縁層109の膜厚は適宜設定されればよい。また、絶縁層109はSiO以外の絶縁材料からなってもよい。
 第2電極110は、コンタクト層108の上方に配置される導電材料からなる層である。第2電極110は、コンタクト層108と接触する。本実施の形態では、第2電極110は、コンタクト層108側から順に膜厚40nmのPd及び膜厚35nmのPtが積層された積層膜である。第2電極110の各金属膜の膜厚及び膜構成はこれに限定されない。第2電極110は、例えば、Cr、Ti、Ni、Pd、Pt及びAuの少なくとも一つで形成された単層膜又は多層膜であってもよい。また、第2電極110は、絶縁層109上にも形成されてもよい。
 パッド電極111は、第2電極110の上方に配置されたパッド状の電極である。本実施の形態では、パッド電極111は、Auからなり、第2電極110及び絶縁層109の上方に配置される。パッド電極111の構成はこれに限定されない。パッド電極111は、例えば、Cr、Ti、Ni、Pd、Pt及びAuの少なくとも一つで形成された単層膜又は多層膜であってもよい。パッド電極111の膜厚は特に限定されない。パッド電極111の膜厚は、例えば、100nm以上であってもよい。
 第1電極112は、基板101の下方に配置される電極である。本実施の形態では、第1電極112は、基板101側から順にTi、Pt及びAuが積層された積層膜である。第1電極112の構成はこれに限定されない。第1電極112は、例えば、Ti及びAuなどの積層膜であってもよい。第1電極112の膜厚は特に限定されない。第1電極112は、例えば、膜厚5nmのTi、膜厚10nmのPt及び膜厚1000nmのAuが積層された積層膜であってもよい。
 超格子層200は、第1クラッド層102の下方、及び、第2クラッド層107の上方の少なくとも一方に配置された超格子構造を有する層である。なお、図4には、超格子層200が第1クラッド層102の下方に配置される例が示されている。超格子層200の詳細構成について、図5を用いて説明する。図5は、本実施の形態に係る超格子層200の構成を示す模式的な断面図である。図5に示されるように、超格子層200は、複数の第2井戸層200aと複数の第2障壁層200bとを含み、複数の第2井戸層200aの各々と複数の第2障壁層200bの各々とが交互に配置される。複数の第2井戸層200aの各々は、活性層104の第1井戸層104aとIn組成比が等しく、かつ、第1井戸層104aの膜厚の自然数倍の膜厚を有する。複数の第2障壁層200bの各々は、活性層104の第1障壁層104bとIn組成比が等しく、かつ、第1障壁層104bの膜厚の自然数倍の膜厚を有する。
 なお、ここで、In組成比が等しいとの記載は、二つの層のIn組成比が完全に一致する場合だけでなく、実質的に等しい場合をも意味する。具体的には、In組成比が等しいとの記載は、例えば、二つの層のIn組成比の誤差が5%以下である場合を意味する。
 また、第1井戸層104aの膜厚の自然数倍の膜厚との記載は、膜厚が、当該自然数倍の膜厚に完全に一致する場合だけでなく、実質的に等しい場合をも意味する。具体的には、第1井戸層104aの膜厚の自然数倍の膜厚との記載は、例えば、当該自然数倍の膜厚からの誤差が5%以下である膜厚を意味する。第1障壁層104bの膜厚の自然数倍の膜厚との記載についても同様である。
 このような超格子層200を形成するための結晶成長条件に付いて説明する。例えば、第2井戸層200aの成膜時における結晶成長条件のうち、膜厚、及び、導電型不純物供給量の二つの条件を除く結晶成長条件を、活性層104の第1井戸層104aの結晶成長条件と一致させる。これにより、第2井戸層200aのIn組成比と、第1井戸層104aのIn組成比とを正確に一致させることができる。また、第2井戸層200aの膜厚と、第1井戸層104aの膜厚との関係を正確に調整できる。
 また、第2障壁層200bの成膜時における結晶成長条件のうち、膜厚、In原料の供給量、及び、導電型不純物供給量の三つの条件を除く結晶成長条件を、活性層104の第1障壁層104bの結晶成長条件と一致させる。これにより、第2障壁層200bの膜厚と、第1障壁層104bの膜厚との関係を正確に調整できる。また、第2井戸層200aのIn組成比を、第1井戸層104aのIn組成比と等しくする場合には、In原料の供給量を一致させてもよい。
 また、超格子層200の各層には、導電型不純物がドープされる。これにより、半導体発光素子10に超格子層200を挿入することに起因する動作電圧の上昇を抑制できる。
 複数の第2井戸層200aの各々は、例えば、膜厚7.5nmのIn0.07Ga0.93Nからなり、複数の第2障壁層200bの各々は、例えば、膜厚14nmのIn0.02Ga0.98Nからなる。図4に示されるように、超格子層200が、第1クラッド層102の下方に配置される場合には、第1導電型の不純物がドープされ、超格子層200が、第2クラッド層107の上方に配置される場合には、第2導電型の不純物がドープされる。図4に示される例では、超格子層200の各層には、例えば、濃度5×1017cm-3のSiがドープされている。なお、超格子層200の各層の構成はこれに限定されない。第2井戸層200aは、第1井戸層104aとIn組成比が等しく、かつ、第1井戸層104aの膜厚の自然数倍の膜厚を有していればよい。第2障壁層200bは、第1障壁層104bとIn組成比が等しく、かつ、第1障壁層104bの膜厚の自然数倍の膜厚を有していればよい。
 [2.膜厚測定方法]
 次に、本実施の形態に係る半導体発光素子10における活性層104の膜厚測定方法について、図6を用いて説明する。図6は、本実施の形態に係る半導体発光素子10にX線回折法を適用した場合に得られる回折強度分布を示すグラフである。
 図3に示される比較例の半導体発光素子1010に対する回折強度分布のグラフと比較すると、図6に示される本実施の形態に係る半導体発光素子10に対する回折強度分布のグラフにおいては、超格子層200に対応するピークが検出される。詳しくは、超格子層200の平均In組成比に対応する一つのピークと、超格子層200の繰り返し構造に対応する複数のサテライトピークとが検出される。超格子層200の繰り返し構造に対応する複数のサテライトピークのうち、隣り合うサテライトピーク間の回折角の差Δωに基づいて、超格子層200の繰り返し構造の周期、つまり、図5に示される、第2井戸層200aの膜厚と、第2障壁層200bの膜厚との和Bを求めることができる。また、平均In組成比に対応するピークと、超格子層200の繰り返し構造に対応する複数のサテライトピークとの間の回折角の差に基づいて、超格子層200の繰り返し構造の周期を求めることもできる。
 ここで、複数の第2井戸層200aの各々は、第1井戸層104aの膜厚の自然数倍の膜厚を有し、複数の第2障壁層200bの各々は、第1障壁層104bの膜厚の自然数倍の膜厚を有する。したがって、第2井戸層200aの膜厚と、第2障壁層200bの膜厚との和Bから、活性層104の第1井戸層104aの膜厚と、第1障壁層104bの膜厚との和を求めることができる。本実施の形態では、活性層104の各層の結晶成長条件と、超格子層200の各層の結晶成長条件とを正確に一致させることができるため、超格子層200の膜厚の計測結果に基づいて、活性層104の膜厚を正確に計測できる。
 以上のように、本実施の形態では、活性層104の膜厚を計測できる。
 また、図6に示される、GaNからなる基板101に対応するピークと、超格子層200の平均In組成比に対応するピークとの回折角の差(Δω)から、超格子層200の平均In組成比を求めることができる。
 [3.製造方法]
 次に、本実施の形態に係る半導体発光素子10の製造方法について図7を用いて説明する。図7は、本実施の形態に係る半導体発光素子10の製造方法の流れを示すフローチャートである。
 図7に示されるように、まず、基板101上に、各半導体層の結晶成長を行う(S11)。ここでは、基板101を構成するウェハーに、複数の半導体発光素子10を構成する構成要素のうち半導体層の積層体を形成するだけである。
 次に、ステップS11で形成した積層構造体に対してX線回折法により評価を行う(S12)。ここでは、上述したように、X線回折法を用いて、活性層104の平均In組成比及び膜厚を計測し、計測結果について評価を行う。ここで、平均In組成比及び膜厚の少なくとも一方が所定の規格を満たさない場合(S12でNG)、半導体発光素子10における結晶成長工程に問題があると判断して、製造を中止する(S14)。つまり、製造工程の流れを中止する。所定の規格は、半導体発光素子10に要求される品質に応じて適宜設定されればよい。例えば、所定の規格とは、目標とするIn組成比及び膜厚に対する誤差が10%未満であることなどである。
 一方、平均In組成比及び膜厚の両方が所定の規格を満たす場合(S12でOK)、ウェハープロセスに移行する(S15)。ウェハープロセスにより、図4に示されるような半導体層及び電極からなる積層構造体を形成する。
 また、X線回折法を用いて評価した結果に基づき、結晶成長条件を補正する必要があると判断されれば(S12で要補正)。結晶成長条件を変更し(S13)、次の結晶成長(S11)において変更後の結晶成長条件を反映させる。例えば、平均In組成比及び膜厚の少なくとも一方が所定の規格を満たさなかった場合(S12でNG)に、結晶成長条件を補正する。また、平均In組成比及び膜厚の両方が所定の規格を満たした場合(S12でOK)でも、より目標値に近い値となるように結晶成長条件を補正してもよい。
 ウェハープロセスの終了後、基板101の一次劈開を行う(S16)。続いて、劈開面に端面コートを施す(S17)。さらに必要に応じて追加される工程を経て半導体発光素子10が製造される。
 以上のように、本実施の形態に係る半導体発光素子10によれば、活性層104の平均In組成比及び膜厚をX線回折法により簡易に計測できる。このため、計測結果に基づいて、In組成比及び膜厚の少なくとも一方が規格外であることが判明した場合には、半導体発光素子の製造工程を中止することで、規格外の半導体発光素子が製造され続けることを回避できる。これにより、規格外の半導体発光素子が製造されることによる損失を削減できる。
 また、活性層104の膜厚を結晶成長直後に評価できるため、次に製造する半導体発光素子10の結晶成長において、評価結果をフィードバックすることで、活性層104の平均In組成比及び膜厚をより目標値に近づけることができる。
 また、本実施の形態に係る半導体発光素子10によれば、活性層104の膜厚を調べるための確認成膜を別途行う必要がないため、製造工数及びコストを削減できる。
 [4.実施例]
 次に、本実施の形態に係る半導体発光素子10の実施例について図8及び図9を用いて説明する。図8は、本実施の形態に係る半導体発光素子の各実施例における超格子層の構成を示す表である。図9は、本実施の形態に係る半導体発光素子10の各実施例における超格子層の平均In組成比及び膜厚周期を示す表である。図8に示される井戸層及び障壁層は、それぞれ超格子層の第2井戸層及び第2障壁層を示す。
 なお、図9において、平均In組成比Raveは、第2井戸層のIn組成比Rw、第2障壁層のIn組成比Rb、第2井戸層の膜厚Tw、及び、第2障壁層の膜厚Tbを用いて、以下の式で計算できる。
   Rave=(Rw×Tw+Rb×Tb)/(Tw+Tb)
 また、図9に示される膜厚周期は、第2井戸層の膜厚と、第2障壁層の膜厚との和である。また、図9に示される合格規格とは、平均In組成比及び膜厚周期の目標値である中心値との誤差が10%以下の範囲を意味する。図9には、合格規格の範囲の最大値と最小値とが示されている。
 以下、図8及び図9に示される実施例1~6に係る半導体発光素子について説明する。
 [4-1.実施例1]
 実施例1に係る半導体発光素子について図10を用いて説明する。図10は、本実施例に係る超格子層201の構成を示す模式的な断面図である。
 本実施例に係る半導体発光素子は、図4に示される半導体発光素子10と同様に、基板101と第1クラッド層102との間に超格子層201が配置される。図8及び図10に示されるように、第2井戸層200aと第2障壁層200bとの繰り返し周期数が2(つまり、第2井戸層200aの層数が2)である。
 図8に示されるように、本実施例に係る2層の第2井戸層200aの各々は、膜厚7.5nmのIn0.07Ga0.93Nからなり、3層の第2障壁層200bの各々は、膜厚14nmのIn0.02Ga0.98Nからなる。これらの各層には、濃度5×1017cm-3のSiがドープされている。これらの各層は、活性層104の各層と同一の成長速度で結晶成長される。
 このような超格子層201を備える本実施例に係る半導体発光素子にX線回折法を適用した場合に得られる回折強度分布は、上述した図6に示されるような回折強度分布となる。
 回折強度分布において、活性層104のみでは、サテライトピークは検出されない(図3参照)。しかしながら、活性層104の各層と同じ成長速度で形成され、活性層104の各層と同じ膜厚、及び、同じ周期を有する超格子層201を挿入することにより、図6に示す通り、超格子層201の平均In組成比ピークと、超格子層201の繰り返し構造に対応するサテライトピークとが現れる。ここで、平均In組成比に対応するピークとサテライトピークとの回折角の差、及び、隣り合うサテライトピークの回折角の差から超格子層201の第2井戸層200aの膜厚7.5nmと第2障壁層200bの膜厚14nmとの和である膜厚周期21.5nmを計測できる。
 加えて本実施例の超格子層201により活性層104と同じ平均In組成比を計測できる。
 なお、第1クラッド層102でキャリアがブロックされているため、InGaN/InGaNの超格子構造を有する超格子層201でキャリア再結合による発光はない。
 また、活性層104でキャリア再結合により発する光は第1クラッド層102で閉じ込められているため、超格子層201を備えることにより発生する光の漏れはない。
 また、超格子層201にはSiがドープされているため、半導体発光素子の動作電圧が上昇することが抑制される。
 また、本実施例では、第2井戸層の層数は、2である。このため、超格子層201を構成する層数を最小限に抑えることができる。したがって、半導体発光素子の構成を簡素化でき、かつ、超格子層201が半導体発光素子の特性に与える影響を最小限に抑えることができる。
 また、本実施例では、第2井戸層200aの膜厚は、第1井戸層104aの膜厚と等しく第2障壁層200bの膜厚は、第1障壁層104bの膜厚と等しい。これにより、超格子層201の膜厚が大きくなることを抑制できる。したがって、超格子層201の厚さを抑制できるため、超格子層が半導体発光素子の特性に与える影響を抑制できる。
 [4-2.実施例2]
 実施例2に係る半導体発光素子について図11を用いて説明する。図11は、本実施例に係る超格子層202の構成を示す模式的な断面図である。
 本実施例に係る半導体発光素子は、図8及び図11に示されるように、第2井戸層200aと第2障壁層200bとの繰り返し周期数が3(つまり、第2井戸層200aの層数が3)である点において実施例1に係る半導体発光素子と相違し、その他の点で一致する。
 このような超格子層202を備える本実施例に係る半導体発光素子にX線回折法を適用した場合に得られる回折強度分布について図12を用いて説明する。図12は、本実施例に係る半導体発光素子にX線回折法を適用した場合に得られる回折強度分布を示すグラフである。図12においては、実施例1に係る半導体発光素子にX線回折法を適用した場合に得られる回折強度分布についても、合わせて破線で示されている。
 本実施例では、超格子層202の繰り返し周期数を実施例1より増加させていることに伴い、第2井戸層200aの総膜厚が1.5倍になる。このことから、図12に示すとおり、実施例1と比較してサテライトピークにおける回折強度が1.5倍となり、サテライトピークがより鮮明に検出される。その他の効果などについては、実施例1と同様である。
 [4-3.実施例3]
 実施例3に係る半導体発光素子について図13を用いて説明する。図13は、本実施例に係る超格子層203の構成を示す模式的な断面図である。図13に示されるように、超格子層203は、第2井戸層200aと第2障壁層203bとを含む。
 本実施例に係る半導体発光素子は、図8に示されるように、第2障壁層203bのIn組成比がゼロである点、つまり、第2障壁層203bがGaNからなる点において、実施例1に係る半導体発光素子と相違し、その他の点で一致する。
 このような超格子層203を備える本実施例に係る半導体発光素子にX線回折法を適用した場合に得られる回折強度分布について図14を用いて説明する。図14は、本実施例に係る半導体発光素子にX線回折法を適用した場合に得られる回折強度分布を示すグラフである。図14においては、実施例1に係る半導体発光素子にX線回折法を適用した場合に得られる回折強度分布についても、合わせて破線で示されている。
 図14に示されるように、本実施例においても、実施例1と同様に、平均In組成比に対応するピークと、超格子層203の繰り返し構造に対応するサテライトピークとが検出される。平均In組成比に対応するピークにより、超格子層203での第2井戸層200aと第2障壁層203bとの平均In組成比を知ることができる。ここで、第2障壁層203bが実施例1のIn0.02Ga0.98NからGaNに変更されていることから、平均In組成比は実施例1の0.037から0.024に減少する。ここで超格子層203での第2井戸層200aのIn組成比及び膜厚は活性層104と同一であり、第2障壁層203bがGaN(つまり、In組成比がゼロ)であることから、X線回折法を用いた評価から導き出せる超格子層203での第2井戸層200aと第2障壁層203bとの平均In組成比から超格子層203の第2井戸層200aのIn組成比を導き出すことができる。超格子層203の第2井戸層200aは活性層104の第1井戸層104aと同一のIn組成比にしていることから、活性層104での第1井戸層104aのIn組成比も求めることができる。その他の効果などについては、実施例1と同様である。
 [4-4.実施例4]
 実施例4に係る半導体発光素子について図15を用いて説明する。図15は、本実施例に係る超格子層204の構成を示す模式的な断面図である。図15に示されるように、超格子層204は、第2井戸層204aと第2障壁層204bとを含む。
 本実施例に係る半導体発光素子は、図8に示されるように、第2井戸層204a及び第2障壁層204bの膜厚が、それぞれ、第1井戸層104a及び第1障壁層104bの膜厚の2倍である点において、実施例1に係る半導体発光素子と相違し、その他の点で一致する。
 このような超格子層204を備える本実施例に係る半導体発光素子にX線回折法を適用した場合に得られる回折強度分布について図16を用いて説明する。図16は、本実施例に係る半導体発光素子にX線回折法を適用した場合に得られる回折強度分布を示すグラフである。図16においては、実施例1に係る半導体発光素子にX線回折法を適用した場合に得られる回折強度分布についても、合わせて破線で示されている。
 本実施例では、超格子層204での第2井戸層204aの膜厚を2倍にすることで第2井戸層204aの総膜厚が2倍になるため、回折強度のピークが2倍になり、実施例1よりもサテライトピークがより鮮明に検出される。
 また、超格子層204の第2井戸層204aと第2障壁層204bとの膜厚周期が実施例1の2倍になるため、平均In組成比ピークとサテライトピーク、及び、隣り合うサテライトピークの回折角の差は実施例1に対し小さくなる。これらの回折角の差から、第2井戸層204aと第2障壁層204bとの膜厚周期を求めることができる。したがって、活性層104の第1井戸層104aと第1障壁層104bとの膜厚周期を、超格子層204の膜厚周期の1/2として計測することができる。その他の効果などについては、実施例1と同様である。
 [4-5.実施例5]
 実施例5に係る半導体発光素子について図17を用いて説明する。図17は、本実施例に係る超格子層205の構成を示す模式的な断面図である。図17に示されるように、超格子層205は、第2井戸層205aと第2障壁層205bとを含む。
 本実施例に係る半導体発光素子は、図8に示されるように、第2障壁層205bのIn組成比がゼロである点、第2井戸層205a及び第2障壁層205bの膜厚が、それぞれ、第1井戸層104a及び第1障壁層104bの膜厚の2倍である点、及び、超格子層204の繰り返し周期数が3である点において、実施例1に係る半導体発光素子と相違し、その他の点で一致する。
 このような超格子層205を備える本実施例に係る半導体発光素子にX線回折法を適用した場合に得られる回折強度分布について図18を用いて説明する。図18は、本実施例に係る半導体発光素子にX線回折法を適用した場合に得られる回折強度分布を示すグラフである。図18においては、実施例1に係る半導体発光素子にX線回折法を適用した場合に得られる回折強度分布についても、合わせて破線で示されている。
 図18に示されるように、第2障壁層205bをGaNにしている実施例3と同じ回折角に超格子層205の第2井戸層205aと第2障壁層205bとの平均In組成比ピークが現れる。この理由は第2井戸層205aと第2障壁層205bとのIn組成比が実施例3と同じであり、第2井戸層205a及び第2障壁層205bの膜厚が実施例3の2倍になっているものの、第2井戸層205aと第2障壁層205bとの膜厚比が実施例3と同じである点にある。
 実施例1及び実施例2では平均In組成比が0.037であるが、実施例5での平均In組成比が0.024になり、平均In組成比ピークは実施例1及び実施例2よりもGaN基板に対応するピークに近づく。
 本実施例では、超格子層205での各層の膜厚を実施例1の各層の膜厚の2倍にしており、加えて繰り返し周期数を2から3へと1.5倍に増加させている。このため、実施例1に対し第2井戸層205aの総膜厚が2倍と1.5倍との積の3倍になることから、平均In組成比のピーク強度が、実施例1の3倍になる。このことにより、実施例1よりもX線回折法によるサテライトピークがより鮮明に検出される。
 本実施例では、実施例4と第2井戸層及び第2障壁層の膜厚が同じである。このため、平均In組成比ピークとサテライトピークとの回折角の差、及び、隣り合うサテライトピークの間の回折角の差は、それぞれ実施例4と同じになり、実施例1、実施例2及び実施例3よりも小さくなる。本実施例においては、実施例1及び実施例2に対し、第2井戸層と第2障壁層との膜厚周期が2倍になるため、平均In組成比ピークとサテライトピークとの回折角の差、及び、隣り合うサテライトピークの間の回折角の差は小さくなる。これらの回折角の差から、実施例4と同様に、第2井戸層205aと第2障壁層205bとの膜厚周期を求めることができる。したがって、活性層104の第1井戸層104aと第1障壁層104bとの膜厚周期を、超格子層205の膜厚周期の1/2として計測することができる。その他の効果などについては、実施例1と同様である。
 [4-6.実施例6]
 実施例6に係る半導体発光素子について図19及び図20を用いて説明する。図19は、本実施例に係る半導体発光素子16の構成を示す模式的な断面図である。図20は、本実施例に係る超格子層206の構成を示す模式的な断面図である。
 本実施例に係る半導体発光素子16は、超格子層206の配置、及び、超格子層206の構成において、実施例1に係る半導体発光素子と相違し、その他の点において一致する。
 図19に示されるように、超格子層206が第2クラッド層107の上方に配置されている。より詳しくは、超格子層206は、第2クラッド層107とコンタクト層108との間に配置されている。
 図20に示されるように、超格子層206は、第2井戸層206aと、第2障壁層206bとを含む。超格子層206の繰り返し周期は、2である。超格子層206の各層の構成は、不純物がMgであること以外は、実施例1に係る超格子層201と同様である。
 このような超格子層206を備える本実施例に係る半導体発光素子16にX線回折法を適用した場合に得られる回折強度分布について図21を用いて説明する。図21は、本実施例に係る半導体発光素子16にX線回折法を適用した場合に得られる回折強度分布を示すグラフである。
 上述したように、本実施例においては、超格子層206の配置は、実施例1と異なるものの、超格子層206の各層のIn組成比及び膜厚は、実施例1に係る超格子層201の各層のIn組成比及び膜厚と同等である。このため、図21に示されるように、回折強度分布は、実施例1の回折強度分布とほぼ同じとなる。これにより、実施例1と同様に、活性層104の平均In組成比及び膜厚を計測できる。
 本実施例では、オーバーフロー抑制層106及び第2クラッド層107でキャリアがブロックされているため、InGaN/InGaNの超格子構造を有する超格子層206でキャリア再結合による発光はない。
 また、活性層104でキャリア再結合により発する光は第2電極110の吸収を活用して閉じ込められているため、超格子層206を備えることにより発生する光の漏れはない。
 また、超格子層206にはMgがドープされているため、半導体発光素子16の動作電圧が上昇することが抑制される。
 (変形例など)
 以上、本開示に係る半導体発光素子について、実施の形態に基づいて説明したが、本開示は、上記実施の形態に限定されるものではない。
 例えば、上記実施の形態においては、第2井戸層及び第2障壁層は、それぞれ、第1井戸層及び第1障壁層とIn組成比が等しいが、第2井戸層及び第2障壁層は、それぞれ、第1井戸層及び第1障壁層とIn組成比が等しくなくてもよい。また、上記実施の形態においては、各第2井戸層は、第1井戸層の膜厚の自然数倍の膜厚を有するが、各第2井戸層は、第1井戸層の膜厚の自然数倍の膜厚を有さなくてもよい。例えば、各第2井戸層の膜厚は、第1井戸層の膜厚の自然数分の1倍であってもよい。つまり、各第2井戸層の膜厚は、第1井戸層の膜厚の1倍、1/2倍、1/3倍又は1/4倍などであってもよい。
 また、上記実施の形態においては、各第2障壁層は、第1障壁層の膜厚の自然数倍の膜厚を有するが、各第2障壁層は、第1障壁層の膜厚の自然数倍の膜厚を有さなくてもよい。例えば、各第2障壁層の膜厚は、第1井戸層の膜厚の自然数分の1倍であってもよい。つまり、各第2障壁層の膜厚は、第1井戸層の膜厚の1倍、1/2倍、1/3倍又は1/4倍などであってもよい。
 つまり、本開示に係る半導体発光素子は、第1クラッド層と、第1クラッド層の上方に配置され、第1障壁層と、In及びGaNを含む第1井戸層とを有する単一量子井戸構造の活性層と、活性層の上方に配置された第2クラッド層と、第1クラッド層の下方、及び、第2クラッド層の上方の少なくと一方に配置された超格子層とを備え、超格子層は、GaNを含む複数の第2井戸層と、GaNを含み、第2井戸層とはIn組成比が異なる複数の第2障壁層とが交互に積層された構造を有してもよい。
 このような構成を有する半導体発光素子においても、半導体発光素子にX線回折法を適用した場合に得られる回折強度分布を示すグラフから、超格子層の繰り返し構造の周期を計測することができる。また、超格子層の繰り返し構造の周期と、活性層の膜厚との関係が分かっていれば、活性層の膜厚を正確に計測できる。
 また、上記各実施の形態においては、半導体発光素子が半導体レーザ素子である例を示したが、半導体発光素子は、半導体レーザ素子に限定されない。例えば、半導体発光素子は、スーパールミネッセントダイオードであってもよい。
 また、上記各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で上記各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 本開示の半導体発光素子は、例えば、高出力な光源としてプロジェクタなどに適用できる。
10、16、1010 半導体発光素子
101 基板
102 第1クラッド層
103 第1光ガイド層
104 活性層
104a 第1井戸層
104b 第1障壁層
105 第2光ガイド層
106 オーバーフロー抑制層
107 第2クラッド層
108 コンタクト層
109 絶縁層
110 第2電極
111 パッド電極
112 第1電極
200、201、202、203、204、205、206 超格子層
200a、204a、205a、206a 第2井戸層
200b、203b、204b、205b、206b 第2障壁層

Claims (9)

  1.  第1クラッド層と、
     前記第1クラッド層の上方に配置され、第1障壁層と、In及びGaNを含む第1井戸層とを有する単一量子井戸構造の活性層と、
     前記活性層の上方に配置された第2クラッド層と、
     前記第1クラッド層の下方、及び、前記第2クラッド層の上方の少なくとも一方に配置された超格子層とを備え、
     前記超格子層は、GaNを含む複数の第2井戸層と、GaNを含み、前記第2井戸層とはIn組成比が異なる複数の第2障壁層とが交互に積層された構造を有する
     半導体発光素子。
  2.  前記複数の第2井戸層と、前記第1井戸層とは、互いにIn組成比が等しい
     請求項1に記載の半導体発光素子。
  3.  前記複数の第2井戸層の各々の膜厚は、前記第1井戸層の膜厚の自然数倍、又は、自然数分の1倍である
     請求項1に記載の半導体発光素子。
  4.  前記第1障壁層は、GaNを含み、かつ、前記第1井戸層とIn組成比が異なり、
     前記複数の第2障壁層は、前記第1障壁層とIn組成比が等しい
     請求項1に記載の半導体発光素子。
  5.  前記第1障壁層は、GaNを含み、かつ、前記第1井戸層とIn組成比が異なり、
     前記複数の第2障壁層の各々の膜厚は、前記第1障壁層の膜厚の自然数倍、又は、自然数分の1倍である
     請求項1に記載の半導体発光素子。
  6.  第1導電型の第1クラッド層と、
     前記第1クラッド層の上方に配置された単一量子井戸構造の活性層と、
     前記活性層の上方に配置された第2導電型の第2クラッド層と、
     前記第1クラッド層の下方、及び、前記第2クラッド層の上方の少なくとも一方に配置された超格子層とを備え、
     前記活性層は、Inを含む単一の第1井戸層と、第1障壁層とを含み、
     前記超格子層は、複数の第2井戸層と複数の第2障壁層とを含み、
     前記複数の第2井戸層の各々と前記複数の第2障壁層の各々とが交互に配置され、
     前記複数の第2井戸層の各々は、前記第1井戸層とIn組成比が等しく、かつ、前記第1井戸層の膜厚の自然数倍、又は、自然数分の1倍の膜厚を有し、
     前記複数の第2障壁層の各々は、GaNからなり、前記第1障壁層の膜厚の自然数倍、又は、自然数分の1倍の膜厚を有する
     半導体発光素子。
  7.  前記複数の第2井戸層の層数は、2又は3である
     請求項6に記載の半導体発光素子。
  8.  前記複数の第2井戸層の各々の膜厚は、前記第1井戸層の膜厚の1倍又は2倍であり、
     前記複数の第2障壁層の各々の膜厚は、前記第1障壁層の膜厚の1倍又は2倍である
     請求項6に記載の半導体発光素子。
  9.  前記複数の第2井戸層の各々の膜厚は、前記第1井戸層の膜厚の1倍、1/2倍、1/3倍、又は、1/4倍であり、
     前記複数の第2障壁層の各々の膜厚は、前記第1障壁層の膜厚の1倍、1/2倍、1/3倍、又は、1/4倍である
     請求項6に記載の半導体発光素子。
PCT/JP2019/010449 2018-03-26 2019-03-14 半導体発光素子 WO2019188318A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020509882A JPWO2019188318A1 (ja) 2018-03-26 2019-03-14 半導体発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018058919 2018-03-26
JP2018-058919 2018-03-26

Publications (1)

Publication Number Publication Date
WO2019188318A1 true WO2019188318A1 (ja) 2019-10-03

Family

ID=68061451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010449 WO2019188318A1 (ja) 2018-03-26 2019-03-14 半導体発光素子

Country Status (2)

Country Link
JP (1) JPWO2019188318A1 (ja)
WO (1) WO2019188318A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998031055A1 (fr) * 1997-01-09 1998-07-16 Nichia Chemical Industries, Ltd. Dispositif a semi-conducteur au nitrure
WO1999046822A1 (fr) * 1998-03-12 1999-09-16 Nichia Chemical Industries, Ltd. Dispositif semi-conducteur electroluminescent au nitrure
JP2001021508A (ja) * 1999-07-06 2001-01-26 Nippon Telegr & Teleph Corp <Ntt> 歪量子井戸構造の構造解析方法およびその記録媒体
JP2003060315A (ja) * 2001-08-10 2003-02-28 Sharp Corp 化合物半導体デバイス製造方法および半導体レーザ素子
JP2005507155A (ja) * 2001-05-30 2005-03-10 クリー インコーポレイテッド 量子井戸と超格子とを有するiii族窒化物系発光ダイオード構造
JP2006510234A (ja) * 2003-06-25 2006-03-23 エルジー イノテック カンパニー リミテッド 窒化物半導体の発光素子及びその製造方法
KR20090058364A (ko) * 2007-12-04 2009-06-09 삼성전기주식회사 질화갈륨계 반도체 발광소자

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3606015B2 (ja) * 1997-07-23 2005-01-05 豊田合成株式会社 3族窒化物半導体素子の製造方法
JPH11340580A (ja) * 1997-07-30 1999-12-10 Fujitsu Ltd 半導体レーザ、半導体発光素子、及び、その製造方法
CA2446656A1 (en) * 2001-06-15 2002-12-27 Cree, Inc. Gan based led formed on a sic substrate
JP3834748B2 (ja) * 2001-10-16 2006-10-18 日鉱金属株式会社 半導体単結晶の構造解析方法
JP3888927B2 (ja) * 2002-04-25 2007-03-07 シャープ株式会社 化合物半導体デバイス製造方法
KR101938731B1 (ko) * 2012-08-08 2019-01-15 엘지이노텍 주식회사 발광 소자

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998031055A1 (fr) * 1997-01-09 1998-07-16 Nichia Chemical Industries, Ltd. Dispositif a semi-conducteur au nitrure
WO1999046822A1 (fr) * 1998-03-12 1999-09-16 Nichia Chemical Industries, Ltd. Dispositif semi-conducteur electroluminescent au nitrure
JP2001021508A (ja) * 1999-07-06 2001-01-26 Nippon Telegr & Teleph Corp <Ntt> 歪量子井戸構造の構造解析方法およびその記録媒体
JP2005507155A (ja) * 2001-05-30 2005-03-10 クリー インコーポレイテッド 量子井戸と超格子とを有するiii族窒化物系発光ダイオード構造
JP2003060315A (ja) * 2001-08-10 2003-02-28 Sharp Corp 化合物半導体デバイス製造方法および半導体レーザ素子
JP2006510234A (ja) * 2003-06-25 2006-03-23 エルジー イノテック カンパニー リミテッド 窒化物半導体の発光素子及びその製造方法
KR20090058364A (ko) * 2007-12-04 2009-06-09 삼성전기주식회사 질화갈륨계 반도체 발광소자

Also Published As

Publication number Publication date
JPWO2019188318A1 (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
US11302843B2 (en) Deep ultraviolet light-emitting device and method of manufacturing same
JP5175918B2 (ja) 半導体発光素子
JP6735409B2 (ja) 半導体積層体
US9847449B2 (en) Nitride semiconductor light-emitting device with periodic gain active layers
JP2012109436A (ja) 発光ダイオード
WO2020039904A1 (ja) 発光素子
KR20110102118A (ko) 반도체 발광 소자 및 그 제조 방법
TW200805710A (en) Planar light emitting element
JP2012238787A (ja) 半導体発光素子及びウェーハ
JP2008251641A (ja) Iii族窒化物半導体素子およびiii族窒化物半導体素子の製造方法
JP5880383B2 (ja) 半導体発光素子、発光装置
JP2014038941A (ja) 半導体発光素子、発光装置
JP4884826B2 (ja) 半導体発光素子
JP5044704B2 (ja) 半導体発光素子
WO2019188318A1 (ja) 半導体発光素子
JP2008159626A (ja) 半導体発光素子
WO2021200328A1 (ja) 窒化物半導体レーザ素子
JP2015103546A (ja) 半導体装置
CN111446621B (zh) 半导体激光元件及其制造方法
JP2012244163A (ja) 半導体発光素子及びウェーハ
US11088512B2 (en) Nitride semiconductor element
WO2023153035A1 (ja) 窒化物系半導体発光素子
CN111435782B (zh) 发光元件
JP2019041102A (ja) レーザダイオード
JP2012119692A (ja) 半導体発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776843

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509882

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776843

Country of ref document: EP

Kind code of ref document: A1