WO2019187525A1 - Determination device, solar power system and determination method - Google Patents

Determination device, solar power system and determination method Download PDF

Info

Publication number
WO2019187525A1
WO2019187525A1 PCT/JP2019/001417 JP2019001417W WO2019187525A1 WO 2019187525 A1 WO2019187525 A1 WO 2019187525A1 JP 2019001417 W JP2019001417 W JP 2019001417W WO 2019187525 A1 WO2019187525 A1 WO 2019187525A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
unit
determination
output current
output
Prior art date
Application number
PCT/JP2019/001417
Other languages
French (fr)
Japanese (ja)
Inventor
池上洋行
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2020509706A priority Critical patent/JP7095734B2/en
Priority to DE112019001621.0T priority patent/DE112019001621T5/en
Publication of WO2019187525A1 publication Critical patent/WO2019187525A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification

Definitions

  • the present invention relates to a determination device, a photovoltaic power generation system, and a determination method.
  • This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2018-58753 for which it applied on March 26, 2018, and takes in those the indications of all here.
  • Patent Document 1 JP 2012-205078 A discloses a monitoring system for photovoltaic power generation as follows. That is, the photovoltaic power generation monitoring system is a photovoltaic power generation monitoring system that monitors the power generation status of the solar cell panel for a photovoltaic power generation system that aggregates outputs from a plurality of solar cell panels and sends them to a power converter.
  • the management device determines the presence or absence of abnormality based on the difference in power generation amount at the same time for each solar cell panel, or the maximum value or integration of the power generation amount for a predetermined period for each solar cell panel The presence or absence of abnormality is determined based on the value.
  • the determination device of the present disclosure is a determination device used in a solar power generation system including a plurality of power generation units including a solar battery panel, and includes a plurality of measurement results of output currents of the plurality of power generation units, respectively.
  • An acquisition unit that acquires measurement information, a detection unit that detects occurrence of a state due to overloading of the photovoltaic power generation system, and the output based on fluctuations in the output current when the state occurs
  • a determination unit that determines an abnormality of the power generation unit corresponding to the current.
  • the solar power generation system of the present disclosure is a solar power generation system including a plurality of power generation units including a solar battery panel and a determination device, and the determination device is configured to output currents of the plurality of power generation units. Obtaining a plurality of measurement information each indicating a measurement result, detecting occurrence of a state due to overloading of the photovoltaic power generation system, and based on fluctuations in the output current when the state occurs, An abnormality of the power generation unit corresponding to the output current is determined.
  • the determination method of the present disclosure is a determination method in a determination device used in a solar power generation system including a plurality of power generation units including a solar battery panel, and is in a state caused by overloading of the solar power generation system. Detecting an occurrence, and determining an abnormality of the power generation unit corresponding to the output current based on fluctuations in output currents of the plurality of power generation units when the state occurs.
  • One aspect of the present disclosure can be realized not only as a determination apparatus including such a characteristic processing unit, but also as a program for causing a computer to execute such characteristic processing steps. Further, one embodiment of the present disclosure can be realized as a semiconductor integrated circuit that realizes part or all of the determination device, or can be realized as a system including the determination device.
  • one aspect of the present disclosure can be realized not only as a solar power generation system including such a characteristic processing unit, but also as a determination method using such characteristic processing as a step. Can be realized as a program for causing a computer to execute. Further, one embodiment of the present disclosure can be realized as a semiconductor integrated circuit that realizes part or all of a photovoltaic power generation system.
  • FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing a configuration of the current collecting unit according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing a configuration of the solar cell unit according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing the configuration of the monitoring system according to the embodiment of the present invention.
  • FIG. 6 is a diagram showing a configuration of a monitoring device in the monitoring system according to the embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration of the determination device in the monitoring system according to the embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present
  • FIG. 8 is a diagram showing an example of monitoring information held by the determination apparatus in the monitoring system according to the embodiment of the present invention.
  • FIG. 9 is a diagram illustrating the generated power of the power generation unit in an overloaded state.
  • FIG. 10 is a diagram showing the relationship between the output current and the output voltage of the power generation unit in the power generation state determination system according to the embodiment of the present invention.
  • FIG. 11 is a diagram illustrating an example of output currents of a normal power generation unit and an abnormal power generation unit in an overloaded state.
  • FIG. 12 is a flowchart that defines an operation procedure when the determination apparatus according to the embodiment of the present invention performs abnormality determination regarding the power generation unit.
  • This indication was made in order to solve the above-mentioned subject, and the object is to provide a judgment device, a photovoltaic power generation system, and a judgment method which can improve abnormality judgment of a photovoltaic power generation system. is there.
  • a determination device is a determination device used in a solar power generation system including a plurality of power generation units including a solar battery panel, and a measurement result of output currents of the plurality of power generation units.
  • An acquisition unit that acquires a plurality of measurement information respectively, a detection unit that detects occurrence of a state due to overloading of the solar power generation system, and fluctuations in the output current when the state occurs And a determination unit that determines an abnormality of the power generation unit corresponding to the output current.
  • the detection unit determines that the state has occurred when a total of generated power based on the output current of each power generation unit or a total of the output current satisfies a predetermined condition.
  • the occurrence of a state caused by overloading can be performed using the measurement result of each power generation unit without obtaining information on whether or not the power is overloaded from a power converter or the like. Can be detected.
  • an output line from each of the power generation units is electrically connected to a power conversion device, and the detection unit acquires information indicating the occurrence of the state from the power conversion device.
  • Such a configuration makes it possible to more reliably detect the occurrence of a state caused by overloading in the photovoltaic power generation system.
  • a photovoltaic power generation system is a photovoltaic power generation system including a plurality of power generation units including a solar battery panel and a determination device, and the determination device includes the plurality of power generations.
  • a plurality of pieces of measurement information respectively indicating measurement results of the output current of the unit, detecting occurrence of a state caused by overloading of the photovoltaic power generation system, and fluctuation of the output current when the state occurs Based on the above, the abnormality of the power generation unit corresponding to the output current is determined.
  • a determination method is a determination method in a determination device used in a solar power generation system including a plurality of power generation units including a solar battery panel, and the solar power generation system is overloaded. Detecting the occurrence of a state caused by the step, and determining an abnormality of the power generation unit corresponding to the output current based on fluctuations in output currents of the plurality of power generation units when the state occurs Including.
  • FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
  • solar power generation system 401 includes four PCS (Power Conditioning Subsystem) units 80 and cubicle 6.
  • the cubicle 6 includes a copper bar 73.
  • FIG. 1 representatively shows four PCS units 80, but a larger or smaller number of PCS units 80 may be provided.
  • FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present invention.
  • the PCS unit 80 includes four current collecting units 60 and a PCS (power conversion device) 8.
  • the PCS 8 includes a copper bar 7 and a power conversion unit 9.
  • FIG. 2 four current collecting units 60 are representatively shown, but a larger or smaller number of current collecting units 60 may be provided.
  • FIG. 3 is a diagram showing a configuration of the current collecting unit according to the embodiment of the present invention.
  • the current collecting unit 60 includes four solar cell units 74 and a current collecting box 71.
  • the current collection box 71 has a copper bar 72.
  • FIG. 3 four solar cell units 74 are representatively shown, but a larger number or a smaller number of solar cell units 74 may be provided.
  • FIG. 4 is a diagram showing the configuration of the solar cell unit according to the embodiment of the present invention.
  • solar cell unit 74 includes four power generation units 78 and a junction box 76.
  • the power generation unit 78 has a solar cell panel.
  • the connection box 76 has a copper bar 77.
  • FIG. 4 representatively shows four power generation units 78, but a larger or smaller number of power generation units 78 may be provided.
  • the power generation unit 78 is a string in which four solar cell panels 79A, 79B, 79C, and 79D are connected in series.
  • each of the solar cell panels 79A, 79B, 79C, and 79D is also referred to as a solar cell panel 79.
  • FIG. 4 representatively shows four solar cell panels 79, but a larger or smaller number of solar cell panels 79 may be provided.
  • output lines and aggregated lines that is, power lines from the plurality of power generation units 78 are electrically connected to the cubicles 6, respectively.
  • the output line 1 of the power generation unit 78 has a first end connected to the power generation unit 78 and a second end connected to the copper bar 77.
  • Each output line 1 is aggregated into an aggregation line 5 via a copper bar 77.
  • the copper bar 77 is provided, for example, inside the connection box 76.
  • the power generation unit 78 When the power generation unit 78 receives sunlight, the power generation unit 78 converts the received solar energy into DC power, and outputs the converted DC power to the output line 1.
  • aggregation line 5 has a first end connected to copper bar 77 and a second end connected to copper bar 72 in corresponding solar cell unit 74. Each aggregation line 5 is aggregated into the aggregation line 2 via the copper bar 72.
  • the copper bar 72 is provided, for example, inside the current collection box 71.
  • the output lines 1 from the plurality of power generation units 78 are aggregated into the aggregation line 5, and the aggregation lines 5 are aggregated into the aggregation line 2. Then, each aggregation line 2 is aggregated to the aggregation line 4, and each aggregation line 4 is electrically connected to the cubicle 6.
  • each aggregation line 2 has a first end connected to the copper bar 72 in the corresponding current collecting unit 60 and a second end connected to the copper bar 7.
  • the internal line 3 has a first end connected to the copper bar 7 and a second end connected to the power conversion unit 9.
  • the power conversion unit 9 uses, for example, the DC power generated in each power generation unit 78 via the output line 1, the copper bar 77, the aggregation line 5, the copper bar 72, the aggregation line 2, the copper bar 7 and the internal line 3. Is received, the received DC power is converted into AC power and output to the aggregation line 4.
  • the aggregation line 4 has a first end connected to the power conversion unit 9 and a second end connected to the copper bar 73.
  • FIG. 5 is a diagram showing the configuration of the monitoring system according to the embodiment of the present invention.
  • the solar power generation system 401 includes a monitoring system 301.
  • the monitoring system 301 includes a determination device 101, a plurality of monitoring devices 111, and a collection device 151.
  • FIG. 5 representatively shows four monitoring devices 111 provided corresponding to one current collecting unit 60, but a larger or smaller number of monitoring devices 111 may be provided.
  • the monitoring system 301 includes one collection device 151, but may include a plurality of collection devices 151.
  • sensor information in the monitoring device 111 which is a slave is transmitted to the collection device 151 regularly or irregularly.
  • the monitoring device 111 is provided in the current collecting unit 60, for example. More specifically, four monitoring devices 111 are provided corresponding to the four solar cell units 74, respectively. Each monitoring device 111 is electrically connected to the corresponding output line 1 and aggregation line 5, for example.
  • the monitoring device 111 measures the current of each output line 1 in the corresponding solar cell unit 74 with a sensor. Moreover, the monitoring apparatus 111 measures the voltage of each output line 1 in the corresponding solar cell unit 74 with a sensor.
  • the collecting device 151 is provided in the vicinity of the PCS 8, for example. More specifically, the collection device 151 is provided corresponding to the PCS 8 and is electrically connected to the copper bar 7 via the signal line 46.
  • the monitoring device 111 and the collection device 151 perform transmission and reception of information by performing power line communication (PLC: Power Line Communication) via the aggregation lines 2 and 5.
  • PLC Power Line Communication
  • each monitoring device 111 transmits monitoring information indicating the measurement result of the current and voltage of the corresponding output line.
  • the collection device 151 collects the measurement results of each monitoring device 111.
  • FIG. 6 is a diagram showing a configuration of a monitoring device in the monitoring system according to the embodiment of the present invention.
  • the output line 1, the aggregation line 5 and the copper bar 77 are shown in more detail.
  • output line 1 includes a plus side output line 1p and a minus side output line 1n.
  • Aggregation line 5 includes a plus-side aggregation line 5p and a minus-side aggregation line 5n.
  • the copper bar 77 includes a plus side copper bar 77p and a minus side copper bar 77n.
  • the copper bar 72 in the current collection box 71 shown in FIG. 3 includes a plus-side copper bar 72p and a minus-side copper bar 72n corresponding to the plus-side aggregation line 5p and the minus-side aggregation line 5n, respectively.
  • the plus side output line 1p has a first end connected to the corresponding power generation unit 78 and a second end connected to the plus side copper bar 77p.
  • the negative side output line 1n has a first end connected to the corresponding power generation unit 78 and a second end connected to the negative side copper bar 77n.
  • the plus side aggregation line 5p has a first end connected to the plus side copper bar 77p and a second end connected to the plus side copper bar 72p in the current collection box 71.
  • the minus-side aggregate line 5n has a first end connected to the minus-side copper bar 77n and a second end connected to the minus-side copper bar 72n in the current collection box 71.
  • the monitoring device 111 includes a detection processing unit 11, four current sensors 16, a voltage sensor 17, and a communication unit 14. Note that the monitoring device 111 may further include a large number or a small number of current sensors 16 depending on the number of output lines 1.
  • the monitoring device 111 is provided in the vicinity of the power generation unit 78, for example. Specifically, the monitoring device 111 is provided, for example, inside a connection box 76 provided with a copper bar 77 to which the output line 1 to be measured is connected. Note that the monitoring device 111 may be provided outside the connection box 76.
  • the monitoring device 111 is electrically connected to, for example, the plus-side aggregate line 5p and the minus-side aggregate line 5n via the plus-side power line 26p and the minus-side power line 26n, respectively.
  • each of the plus-side power line 26p and the minus-side power line 26n is also referred to as a power line 26.
  • Each monitoring device 111 transmits monitoring information indicating a measurement result regarding the corresponding power generation unit 78 via a power line connected to itself and the collecting device 151.
  • the communication unit 14 in the monitoring device 111 can perform power line communication via the aggregation line with the collection device 151 that collects the measurement results of the plurality of monitoring devices 111. More specifically, the communication unit 14 can transmit and receive information via the aggregation lines 2 and 5. Specifically, the communication unit 14 performs power line communication with the collection device 151 via the power line 26 and the aggregation lines 2 and 5.
  • the detection processing unit 11 is set, for example, so as to create monitoring information indicating the measurement results of the current and voltage of the corresponding output line 1 every predetermined time.
  • the current sensor 16 measures the current of the output line 1. More specifically, the current sensor 16 is, for example, a Hall element type current probe. The current sensor 16 measures the current flowing through the corresponding negative output line 1n using the power received from the power supply circuit (not shown) of the monitoring device 111, and outputs a signal indicating the measurement result to the detection processing unit 11. The current sensor 16 may measure a current flowing through the plus side output line 1p.
  • the voltage sensor 17 measures the voltage of the output line 1. More specifically, the voltage sensor 17 measures the voltage between the plus-side copper bar 77p and the minus-side copper bar 77n, and outputs a signal indicating the measurement result to the detection processing unit 11.
  • the detection processing unit 11 converts, for example, a signal obtained by performing signal processing such as averaging and filtering on each measurement signal received from each current sensor 16 and voltage sensor 17 at predetermined time intervals into a digital signal.
  • the detection processing unit 11 includes the measured value indicated by each created digital signal, the ID of the corresponding current sensor 16 (hereinafter also referred to as current sensor ID), and the ID of the voltage sensor 17 (hereinafter also referred to as voltage sensor ID). And monitoring information including the ID of the own monitoring device 111 (hereinafter also referred to as monitoring device ID).
  • the detection processing unit 11 creates a monitoring information packet in which the transmission source ID is its own monitoring device ID, the transmission destination ID is the ID of the collection device 151, and the data portion is monitoring information. Then, the detection processing unit 11 outputs the created monitoring information packet to the communication unit 14.
  • the detection processing unit 11 may include a sequence number in the monitoring information packet.
  • the communication unit 14 transmits the monitoring information packet received from the detection processing unit 11 to the collection device 151.
  • the collection device 151 can send and receive information via the aggregation lines 2 and 5. Specifically, the collection device 151 performs power line communication with the monitoring device 111 via the signal line 46 and the aggregation lines 2 and 5, for example, and receives monitoring information packets from the plurality of monitoring devices 111.
  • the collection device 151 has a counter and a storage unit. When receiving the monitoring information packet from the monitoring device 111, the collecting device 151 acquires the monitoring information from the received monitoring information packet and acquires the count value in the counter as the reception time. Then, after including the reception time in the monitoring information, the collection device 151 stores the monitoring information in a storage unit (not shown).
  • the counter resets the count value every day at midnight, and increments the count value every time the same time as the measurement cycle of the monitoring device 111 elapses.
  • the collection device 151 receives a plurality of monitoring information packets from the plurality of monitoring devices 111 from the timing when the count value is incremented until the time elapses, the collection device 151 obtains each of the plurality of monitoring information packets. The current same count value is included in the received monitoring information as the reception time.
  • FIG. 7 is a diagram showing a configuration of the determination device in the monitoring system according to the embodiment of the present invention.
  • the determination apparatus 101 includes a determination unit 81, a communication processing unit 84, a storage unit 85, an acquisition unit 86, and a detection unit 87.
  • the ID of the monitoring apparatus 111 to be managed that is, the monitoring apparatus ID is registered.
  • the correspondence R1 between the monitoring device ID and the ID of each sensor included in the monitoring device 111 having the monitoring device ID, that is, the current sensor ID and the voltage sensor ID is registered.
  • the determination device 101 is, for example, a server, periodically acquires monitoring information from the collection device 151, and processes the acquired monitoring information. Note that the determination apparatus 101 may be configured to be incorporated in the collection apparatus 151, for example.
  • the communication processing unit 84 in the determination apparatus 101 transmits / receives information to / from other apparatuses such as the collection apparatus 151 via the network.
  • the communication processing unit 84 performs monitoring information collection processing at a designated daily processing timing, for example, at 0:00 every day. Note that if the determination device 101 is built in the collection device 151, monitoring information can be easily collected at shorter intervals.
  • the communication processing unit 84 refers to each monitoring device ID registered in the storage unit 85, corresponds to each monitored monitoring device ID, and has a 24-hour daily processing timing.
  • a monitoring information request for requesting monitoring information including a reception time that belongs to the daily processing timing (hereinafter also referred to as a processing date) from before is transmitted to the collection device 151.
  • the collection device 151 When the collection device 151 receives the monitoring information request from the determination device 101, the collection device 151 transmits one or more pieces of monitoring information satisfying the content of the monitoring information request to the determination device 101 in accordance with the received monitoring information request.
  • FIG. 8 is a diagram showing an example of monitoring information held by the determination device in the monitoring system according to the embodiment of the present invention.
  • the monitoring information includes the monitoring device ID, the current sensor ID of each current sensor 16 in the monitoring device 111, the current value that is the measured value of each current sensor 16, and the voltage sensor ID of the voltage sensor 17. And a voltage value that is a measurement value of the voltage sensor 17 and a reception time.
  • the reception time is the time when the collection device 151 receives the monitoring information transmitted from the monitoring device 111.
  • the communication processing unit 84 When the communication processing unit 84 receives one or more pieces of monitoring information from the collection device 151 as a response to the monitoring information request, the communication processing unit 84 saves each received monitoring information in the storage unit 85 and outputs a processing completion notification to the detection unit 87. .
  • the detection unit 87 detects the occurrence of a state (hereinafter also referred to as an overloading state) due to overloading of the solar power generation system 401.
  • the provision of a number of solar cell panels capable of generating power exceeding the power conversion capacity of the PCS 8 is referred to as overloading.
  • the overload state is a state in which the generated power of each power generation unit 78 is limited to the power conversion capacity of the PCS 8.
  • FIG. 9 is a diagram showing the generated power of the power generation unit in an overloaded state.
  • the horizontal axis indicates time, and the vertical axis indicates generated power.
  • an overload state occurs in the daytime, and the generated power of the power generation unit 78 is limited.
  • the detection unit 87 determines that an overload state has occurred when the total of the measurement results indicated by the monitoring information of each power generation unit 78 satisfies a predetermined condition.
  • the detection unit 87 when the detection unit 87 receives a process completion notification from the communication processing unit 84, the detection unit 87 refers to the correspondence R1 and measures each current sensor 16 included in the monitoring information of each monitoring device 111 from the storage unit 85. A current value as a value and a voltage value as a measurement value of the corresponding voltage sensor 17 are acquired.
  • the detection part 87 calculates the electric power generation of each electric power generation part 78 in the receiving time contained in monitoring information by multiplying an electric current value and a voltage value in the some set of the acquired electric current value and voltage value.
  • the detection unit 87 determines that an overloading state has occurred at the reception time when the total value of the generated power at the same reception time is equal to or greater than a predetermined threshold Th1, for example.
  • the threshold value Th1 is determined based on, for example, the generated power of the power generation unit 78 predicted from the values of the pyranometer or based on the rated capacity of the power generation unit 78.
  • the detection unit 87 determines an overload period from the occurrence of the overload state to the end of the overload state based on the reception time when the overload state has occurred, and obtains information indicating the determined overload period Output to 86.
  • the detection unit 87 checks whether or not the sum of the output currents of the power generation units 78 satisfies the predetermined condition instead of checking whether or not the total power generated by the power generation units 78 satisfies the predetermined condition. It may be a configuration. For example, when the total value of the output currents of the power generation units 78 at the same reception time is equal to or greater than the threshold value Th3, the detection unit 87 determines that an overload state has occurred at the reception time.
  • the detection unit 87 acquires information indicating the occurrence of an overloading state from the PCS 8.
  • the detection unit 87 receives information indicating the overload period from the PCS 8 via the signal line 46, the collection device 151, and the communication processing unit 84, and outputs the received information to the acquisition unit 86. .
  • the acquisition unit 86 acquires measurement information indicating the measurement results of the output currents of the plurality of power generation units 78, respectively.
  • the acquisition unit 86 receives information indicating the overloading period, refers to the correspondence relationship R1 registered in the storage unit 85, and determines each of the overloading period and the time immediately before the overloading period.
  • the monitoring information of each monitoring device 111 including the measurement value of the current sensor 16 is acquired from the storage unit 85 and output to the determination unit 81.
  • the detection unit 87 performs both confirmation of whether or not the total generated power or the total output current of each power generation unit 78 satisfies a predetermined condition and acquisition of information indicating the occurrence of an overload state from the PCS 8. It may be a configuration.
  • the overload state is Judge that it occurred.
  • the overload state is detected. Judge that it occurred.
  • FIG. 10 is a diagram showing the relationship between the output current and the output voltage of the power generation unit in the power generation state determination system according to the embodiment of the present invention.
  • the horizontal axis represents voltage
  • the vertical axis represents current.
  • graph A1 shows the relationship between the output current and output voltage of normal power generation unit 78.
  • Graph A2 shows the relationship between the output current and the output voltage of a power generation unit 78 (hereinafter also referred to as an abnormal power generation unit) that has a low open-circuit voltage and may be abnormal, for example.
  • an abnormal power generation unit a power generation unit 78 that has a low open-circuit voltage and may be abnormal, for example.
  • the normal power generation unit 78 and the abnormal power generation unit are connected in parallel.
  • MPPT Maximum Power Point Tracking
  • the point Pma in the graph A1 is the maximum power point of the normal power generation unit 78, that is, the point at which the generated power is maximum.
  • the output voltage of the power generation unit 78 is Vpm, and the output current is Ipma.
  • the point Pmb in the graph A2 is the maximum power point of the abnormal power generation unit. At the point Pmb, the output voltage of the abnormal power generation unit is Vpm, and the output current is Ipmb.
  • the fluctuation in the output current of the abnormal power generation unit when transitioning from the normal state to the overloading state that is, the difference d2 between Ipmb and Iocb is normal power generation when transitioning from the normal state to the overloading state. It becomes larger than the fluctuation of the output current of the section 78, that is, the difference d1 between Ipma and Ioca.
  • FIG. 11 is a diagram illustrating an example of output currents of a normal power generation unit and an abnormal power generation unit in an overloaded state.
  • the horizontal axis indicates time
  • the vertical axis indicates output current.
  • graph A3 shows the output current of normal power generation unit 78.
  • Graph A4 shows the output current of the abnormal power generation unit.
  • the fluctuation in the output current of the abnormal power generation unit when the normal state is changed to the overload state is larger than the fluctuation of the output current of the normal power generation unit 78.
  • the determination unit 81 determines the abnormality of the corresponding power generation unit 78 based on the fluctuation of the output current when such an overloading state occurs.
  • the determination unit 81 calculates, for each current sensor 16, an average value in the overload period of the measurement value of the current sensor 16 received from the acquisition unit 86.
  • the determination part 81 calculates the fluctuation amount Ic of the measured value for every current sensor 16 by subtracting the calculated corresponding average value from the measured value of the current sensor 16 in the time immediately before the overloading period.
  • Each device in the monitoring system 301 includes a computer, and an arithmetic processing unit such as a CPU in the computer reads and executes a program including a part or all of each step of the following flowchart from a memory (not shown).
  • an arithmetic processing unit such as a CPU in the computer reads and executes a program including a part or all of each step of the following flowchart from a memory (not shown).
  • Each of the programs of the plurality of apparatuses can be installed from the outside. The programs of the plurality of apparatuses are distributed while being stored in a recording medium.
  • FIG. 12 is a flowchart that defines an operation procedure when the determination device according to the embodiment of the present invention makes an abnormality determination related to the power generation unit.
  • the determination apparatus 101 detects an overloading state (step S101).
  • the determination apparatus 101 acquires the measurement value of the current of each power generation unit 78 in the overloading period and the measurement value of the current in the time immediately before the overloading period from the monitoring information stored in itself ( Step S102).
  • the determination apparatus 101 calculates an average value of the measured values in the acquired overload period for each current sensor 16 (step S103).
  • the determination apparatus 101 subtracts the calculated corresponding average value from the measured current value at the time immediately before the overloading period, thereby changing the variation Ic of the measured value of the current sensor 16. Is calculated (step S104).
  • step S105 when the calculated fluctuation amount Ic is equal to or greater than the predetermined threshold Th2 (YES in step S105), the determination apparatus 101 determines that the corresponding power generation unit 78 is abnormal (step S106).
  • step S105 when the calculated fluctuation amount Ic is less than the predetermined threshold Th2 (NO in step S105), the determination apparatus 101 determines that the corresponding power generation unit 78 is normal (step S107).
  • step S105 when the determination device 101 has not performed abnormality determination for all the power generation units 78 (NO in step S108), the determination device 101 performs abnormality determination for the other power generation units 78 (step S105).
  • the acquisition unit 86 acquires a plurality of pieces of measurement information that respectively indicate measurement results of output currents of the plurality of power generation units 78.
  • the detection unit 87 detects the occurrence of an overload state of the solar power generation system 401.
  • the determination unit 81 determines an abnormality of the power generation unit 78 corresponding to the output current based on the fluctuation of the output current when the overload state occurs.
  • the determination apparatus can improve the abnormality determination of the solar power generation system.
  • the detection unit 87 causes an overload state when the total generated power or the total output current based on the output current of each power generation unit 78 satisfies a predetermined condition.
  • the occurrence of an overload state is detected using the measurement result of each power generation unit 78 without acquiring information on whether or not the vehicle is overloaded from the PCS 8 or the like. be able to.
  • the detection unit 87 acquires information indicating the occurrence of an overloading state from the PCS 8.
  • Such a configuration makes it possible to more reliably detect the occurrence of an overload state in the photovoltaic power generation system 401.
  • the determination apparatus 101 acquires a plurality of pieces of measurement information that respectively indicate measurement results of output currents of the plurality of power generation units 78. In addition, the determination apparatus 101 detects the occurrence of a state due to overloading of the solar power generation system 401, and based on the fluctuation of the output current when the state occurs, the power generation unit corresponding to the output current 78 abnormalities are determined.
  • the abnormality determination of the solar power generation system 401 can be improved.
  • the determination method first, occurrence of an overloading state of the solar power generation system 401 is detected. Next, the abnormality of the power generation unit 78 corresponding to the output current is determined based on the fluctuations in the output currents of the plurality of power generation units 78 when the overloading state occurs.
  • the abnormality determination of the solar power generation system can be improved.
  • a determination device used in a solar power generation system including a plurality of power generation units including a solar battery panel, An acquisition unit for acquiring a plurality of pieces of measurement information respectively indicating measurement results of output currents of the plurality of power generation units; A detection unit for detecting the occurrence of a state due to overloading of the solar power generation system; A determination unit that determines an abnormality of the power generation unit corresponding to the output current, based on fluctuations in the output current when the state occurs,
  • the power generation unit is a string in which a plurality of solar cell panels are connected in series, The determination unit is configured to determine the abnormality of the corresponding power generation unit by comparing the variation in the output current in the power generation unit with the variation in the output current in another power generation unit.

Landscapes

  • Photovoltaic Devices (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

This determination device, which is used in a solar power system provided with multiple generator units having solar cell panels, is provided with: an acquisition unit which acquires measurement information indicating the results of measuring the output current of each of the generator units; a detection unit which detects the occurrence of a state caused by overloading of the solar power system; and a determination unit which, on the basis of the fluctuations in the output current when the aforementioned state occurs, determines an abnormality in the generator unit corresponding to the output current.

Description

判定装置、太陽光発電システムおよび判定方法Determination device, solar power generation system, and determination method
 本発明は、判定装置、太陽光発電システムおよび判定方法に関する。
 この出願は、2018年3月26日に出願された日本出願特願2018-58753号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
The present invention relates to a determination device, a photovoltaic power generation system, and a determination method.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2018-58753 for which it applied on March 26, 2018, and takes in those the indications of all here.
 特開2012-205078号公報(特許文献1)には、以下のような太陽光発電用監視システムが開示されている。すなわち、太陽光発電用監視システムは、複数の太陽電池パネルからの出力を集約して電力変換装置に送り込む太陽光発電システムについて、前記太陽電池パネルの発電状況を監視する太陽光発電用監視システムであって、前記複数の太陽電池パネルからの出力電路が集約された場所に設けられ、各太陽電池パネルの発電量を計測する計測装置と、前記計測装置に接続され、前記計測装置による発電量の計測データを送信する機能を有する下位側通信装置と、前記下位側通信装置から送信される前記計測データを受信する機能を有する上位側通信装置と、前記上位側通信装置を介して前記太陽電池パネルごとの前記計測データを収集する機能を有する管理装置とを備える。前記管理装置は、前記各太陽電池パネルについての、同一時点における発電量の差に基づいて異常の有無を判定するか、または前記各太陽電池パネルについての、所定期間の発電量の最大値又は積算値に基づいて異常の有無を判定する。 JP 2012-205078 A (Patent Document 1) discloses a monitoring system for photovoltaic power generation as follows. That is, the photovoltaic power generation monitoring system is a photovoltaic power generation monitoring system that monitors the power generation status of the solar cell panel for a photovoltaic power generation system that aggregates outputs from a plurality of solar cell panels and sends them to a power converter. A measuring device for measuring the power generation amount of each solar cell panel provided in a place where the output electric circuits from the plurality of solar cell panels are aggregated, and connected to the measurement device, A lower communication device having a function of transmitting measurement data, an upper communication device having a function of receiving the measurement data transmitted from the lower communication device, and the solar cell panel via the upper communication device And a management device having a function of collecting the measurement data for each. The management device determines the presence or absence of abnormality based on the difference in power generation amount at the same time for each solar cell panel, or the maximum value or integration of the power generation amount for a predetermined period for each solar cell panel The presence or absence of abnormality is determined based on the value.
特開2012-205078号公報JP 2012-205078 A
 (1)本開示の判定装置は、太陽電池パネルを含む複数の発電部を備える太陽光発電システムに用いられる判定装置であって、前記複数の発電部の出力電流の計測結果をそれぞれ示す複数の計測情報を取得する取得部と、前記太陽光発電システムの過積載に起因する状態の発生を検知する検知部と、前記状態が発生している場合における前記出力電流の変動に基づいて、前記出力電流に対応する前記発電部の異常を判定する判定部とを備える。 (1) The determination device of the present disclosure is a determination device used in a solar power generation system including a plurality of power generation units including a solar battery panel, and includes a plurality of measurement results of output currents of the plurality of power generation units, respectively. An acquisition unit that acquires measurement information, a detection unit that detects occurrence of a state due to overloading of the photovoltaic power generation system, and the output based on fluctuations in the output current when the state occurs A determination unit that determines an abnormality of the power generation unit corresponding to the current.
 (4)本開示の太陽光発電システムは、太陽電池パネルを含む複数の発電部と、判定装置とを備える太陽光発電システムであって、前記判定装置は、前記複数の発電部の出力電流の計測結果をそれぞれ示す複数の計測情報を取得し、前記太陽光発電システムの過積載に起因する状態の発生を検知し、前記状態が発生している場合における前記出力電流の変動に基づいて、前記出力電流に対応する前記発電部の異常を判定する。 (4) The solar power generation system of the present disclosure is a solar power generation system including a plurality of power generation units including a solar battery panel and a determination device, and the determination device is configured to output currents of the plurality of power generation units. Obtaining a plurality of measurement information each indicating a measurement result, detecting occurrence of a state due to overloading of the photovoltaic power generation system, and based on fluctuations in the output current when the state occurs, An abnormality of the power generation unit corresponding to the output current is determined.
 (5)本開示の判定方法は、太陽電池パネルを含む複数の発電部を備える太陽光発電システムに用いられる判定装置における判定方法であって、前記太陽光発電システムの過積載に起因する状態の発生を検知するステップと、前記状態が発生している場合における前記複数の発電部の出力電流の変動に基づいて、前記出力電流に対応する前記発電部の異常を判定するステップとを含む。 (5) The determination method of the present disclosure is a determination method in a determination device used in a solar power generation system including a plurality of power generation units including a solar battery panel, and is in a state caused by overloading of the solar power generation system. Detecting an occurrence, and determining an abnormality of the power generation unit corresponding to the output current based on fluctuations in output currents of the plurality of power generation units when the state occurs.
 本開示の一態様は、このような特徴的な処理部を備える判定装置として実現され得るだけでなく、かかる特徴的な処理のステップをコンピュータに実行させるためのプログラムとして実現され得る。また、本開示の一態様は、判定装置の一部または全部を実現する半導体集積回路として実現され得たり、判定装置を含むシステムとして実現され得る。 One aspect of the present disclosure can be realized not only as a determination apparatus including such a characteristic processing unit, but also as a program for causing a computer to execute such characteristic processing steps. Further, one embodiment of the present disclosure can be realized as a semiconductor integrated circuit that realizes part or all of the determination device, or can be realized as a system including the determination device.
 また、本開示の一態様は、このような特徴的な処理部を備える太陽光発電システムとして実現され得るだけでなく、かかる特徴的な処理をステップとする判定方法として実現され得たり、かかるステップをコンピュータに実行させるためのプログラムとして実現され得る。また、本開示の一態様は、太陽光発電システムの一部または全部を実現する半導体集積回路として実現され得る。 In addition, one aspect of the present disclosure can be realized not only as a solar power generation system including such a characteristic processing unit, but also as a determination method using such characteristic processing as a step. Can be realized as a program for causing a computer to execute. Further, one embodiment of the present disclosure can be realized as a semiconductor integrated circuit that realizes part or all of a photovoltaic power generation system.
図1は、本発明の実施の形態に係る太陽光発電システムの構成を示す図である。FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention. 図2は、本発明の実施の形態に係るPCSユニットの構成を示す図である。FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present invention. 図3は、本発明の実施の形態に係る集電ユニットの構成を示す図である。FIG. 3 is a diagram showing a configuration of the current collecting unit according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る太陽電池ユニットの構成を示す図である。FIG. 4 is a diagram showing a configuration of the solar cell unit according to the embodiment of the present invention. 図5は、本発明の実施の形態に係る監視システムの構成を示す図である。FIG. 5 is a diagram showing the configuration of the monitoring system according to the embodiment of the present invention. 図6は、本発明の実施の形態に係る監視システムにおける監視装置の構成を示す図である。FIG. 6 is a diagram showing a configuration of a monitoring device in the monitoring system according to the embodiment of the present invention. 図7は、本発明の実施の形態に係る監視システムにおける判定装置の構成を示す図である。FIG. 7 is a diagram showing a configuration of the determination device in the monitoring system according to the embodiment of the present invention. 図8は、本発明の実施の形態に係る監視システムにおける判定装置が保持する監視情報の一例を示す図である。FIG. 8 is a diagram showing an example of monitoring information held by the determination apparatus in the monitoring system according to the embodiment of the present invention. 図9は、過積載状態における発電部の発電電力を示す図である。FIG. 9 is a diagram illustrating the generated power of the power generation unit in an overloaded state. 図10は、本発明の実施の形態に係る発電状態判定システムにおける発電部の出力電流と出力電圧との関係を示す図である。FIG. 10 is a diagram showing the relationship between the output current and the output voltage of the power generation unit in the power generation state determination system according to the embodiment of the present invention. 図11は、過積載状態における正常な発電部および異常発電部の出力電流の一例を示す図である。FIG. 11 is a diagram illustrating an example of output currents of a normal power generation unit and an abnormal power generation unit in an overloaded state. 図12は、本発明の実施の形態に係る判定装置が発電部に関する異常判定を行う際の動作手順を定めたフローチャートである。FIG. 12 is a flowchart that defines an operation procedure when the determination apparatus according to the embodiment of the present invention performs abnormality determination regarding the power generation unit.
 近年、太陽光発電システムを監視して異常を判別するための技術が開発されている。 In recent years, techniques for monitoring solar power generation systems and determining abnormalities have been developed.
 [本開示が解決しようとする課題]
 特許文献1に記載の技術を超えて、太陽光発電システムの異常判定を向上させることが可能な技術が望まれる。
[Problems to be solved by the present disclosure]
A technology capable of improving the abnormality determination of the photovoltaic power generation system beyond the technology described in Patent Document 1 is desired.
 本開示は、上述の課題を解決するためになされたもので、その目的は、太陽光発電システムの異常判定を向上させることが可能な判定装置、太陽光発電システムおよび判定方法を提供することである。 This indication was made in order to solve the above-mentioned subject, and the object is to provide a judgment device, a photovoltaic power generation system, and a judgment method which can improve abnormality judgment of a photovoltaic power generation system. is there.
 [本開示の効果]
 本開示によれば、太陽光発電システムの異常判定を向上させることができる。
[Effects of the present disclosure]
According to the present disclosure, it is possible to improve abnormality determination of the solar power generation system.
 [本願発明の実施形態の説明]
 最初に、本発明の実施形態の内容を列記して説明する。
[Description of Embodiment of Present Invention]
First, the contents of the embodiment of the present invention will be listed and described.
 (1)本発明の実施の形態に係る判定装置は、太陽電池パネルを含む複数の発電部を備える太陽光発電システムに用いられる判定装置であって、前記複数の発電部の出力電流の計測結果をそれぞれ示す複数の計測情報を取得する取得部と、前記太陽光発電システムの過積載に起因する状態の発生を検知する検知部と、前記状態が発生している場合における前記出力電流の変動に基づいて、前記出力電流に対応する前記発電部の異常を判定する判定部とを備える。 (1) A determination device according to an embodiment of the present invention is a determination device used in a solar power generation system including a plurality of power generation units including a solar battery panel, and a measurement result of output currents of the plurality of power generation units. An acquisition unit that acquires a plurality of measurement information respectively, a detection unit that detects occurrence of a state due to overloading of the solar power generation system, and fluctuations in the output current when the state occurs And a determination unit that determines an abnormality of the power generation unit corresponding to the output current.
 このような構成により、太陽光発電システムにおいて、過積載に起因する状態において発生する現象に着目し、異常の疑いのある発電部を良好に検出することができる。したがって、太陽光発電システムの異常判定を向上させることができる。 With such a configuration, in the photovoltaic power generation system, attention can be paid to a phenomenon that occurs in a state caused by overloading, and a power generation unit that is suspected of being abnormal can be detected well. Therefore, the abnormality determination of the solar power generation system can be improved.
 (2)好ましくは、前記検知部は、各前記発電部の前記出力電流に基づく発電電力の合計または前記出力電流の合計が所定条件を満たす場合、前記状態が発生したと判断する。 (2) Preferably, the detection unit determines that the state has occurred when a total of generated power based on the output current of each power generation unit or a total of the output current satisfies a predetermined condition.
 このような構成により、太陽光発電システムにおいて、電力変換装置等から過積載であるか否かの情報を取得することなく、各発電部の計測結果を用いて、過積載に起因する状態の発生を検知することができる。 With such a configuration, in a photovoltaic power generation system, the occurrence of a state caused by overloading can be performed using the measurement result of each power generation unit without obtaining information on whether or not the power is overloaded from a power converter or the like. Can be detected.
 (3)好ましくは、各前記発電部からの出力ラインが電力変換装置に電気的に接続され、前記検知部は、前記電力変換装置から前記状態の発生を示す情報を取得する。 (3) Preferably, an output line from each of the power generation units is electrically connected to a power conversion device, and the detection unit acquires information indicating the occurrence of the state from the power conversion device.
 このような構成により、太陽光発電システムにおいて、過積載に起因する状態の発生をより確実に検知することができる。 Such a configuration makes it possible to more reliably detect the occurrence of a state caused by overloading in the photovoltaic power generation system.
 (4)本発明の実施の形態に係る太陽光発電システムは、太陽電池パネルを含む複数の発電部と、判定装置とを備える太陽光発電システムであって、前記判定装置は、前記複数の発電部の出力電流の計測結果をそれぞれ示す複数の計測情報を取得し、前記太陽光発電システムの過積載に起因する状態の発生を検知し、前記状態が発生している場合における前記出力電流の変動に基づいて、前記出力電流に対応する前記発電部の異常を判定する。 (4) A photovoltaic power generation system according to an embodiment of the present invention is a photovoltaic power generation system including a plurality of power generation units including a solar battery panel and a determination device, and the determination device includes the plurality of power generations. A plurality of pieces of measurement information respectively indicating measurement results of the output current of the unit, detecting occurrence of a state caused by overloading of the photovoltaic power generation system, and fluctuation of the output current when the state occurs Based on the above, the abnormality of the power generation unit corresponding to the output current is determined.
 このような構成により、太陽光発電システムにおいて、過積載に起因する状態において発生する現象に着目し、異常の疑いのある発電部を良好に検出することができる。したがって、太陽光発電システムの異常判定を向上させることができる。 With such a configuration, in the photovoltaic power generation system, attention can be paid to a phenomenon that occurs in a state caused by overloading, and a power generation unit that is suspected of being abnormal can be detected well. Therefore, the abnormality determination of the solar power generation system can be improved.
 (5)本発明の実施の形態に係る判定方法は、太陽電池パネルを含む複数の発電部を備える太陽光発電システムに用いられる判定装置における判定方法であって、前記太陽光発電システムの過積載に起因する状態の発生を検知するステップと、前記状態が発生している場合における前記複数の発電部の出力電流の変動に基づいて、前記出力電流に対応する前記発電部の異常を判定するステップとを含む。 (5) A determination method according to an embodiment of the present invention is a determination method in a determination device used in a solar power generation system including a plurality of power generation units including a solar battery panel, and the solar power generation system is overloaded. Detecting the occurrence of a state caused by the step, and determining an abnormality of the power generation unit corresponding to the output current based on fluctuations in output currents of the plurality of power generation units when the state occurs Including.
 このような構成により、太陽光発電システムにおいて、過積載に起因する状態において発生する現象に着目し、異常の疑いのある発電部を良好に検出することができる。したがって、太陽光発電システムの異常判定を向上させることができる。 With such a configuration, in the photovoltaic power generation system, attention can be paid to a phenomenon that occurs in a state caused by overloading, and a power generation unit that is suspected of being abnormal can be detected well. Therefore, the abnormality determination of the solar power generation system can be improved.
 以下、本発明の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。また、以下に記載する実施の形態の少なくとも一部を任意に組み合わせてもよい。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated. Moreover, you may combine arbitrarily at least one part of embodiment described below.
 [太陽光発電システムの構成]
 図1は、本発明の実施の形態に係る太陽光発電システムの構成を示す図である。
[Configuration of solar power generation system]
FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
 図1を参照して、太陽光発電システム401は、4つのPCS(Power Conditioning Subsystem)ユニット80と、キュービクル6とを備える。キュービクル6は、銅バー73を含む。 Referring to FIG. 1, solar power generation system 401 includes four PCS (Power Conditioning Subsystem) units 80 and cubicle 6. The cubicle 6 includes a copper bar 73.
 図1では、4つのPCSユニット80を代表的に示しているが、さらに多数または少数のPCSユニット80が設けられてもよい。 FIG. 1 representatively shows four PCS units 80, but a larger or smaller number of PCS units 80 may be provided.
 図2は、本発明の実施の形態に係るPCSユニットの構成を示す図である。 FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present invention.
 図2を参照して、PCSユニット80は、4つの集電ユニット60と、PCS(電力変換装置)8とを備える。PCS8は、銅バー7と、電力変換部9とを含む。 2, the PCS unit 80 includes four current collecting units 60 and a PCS (power conversion device) 8. The PCS 8 includes a copper bar 7 and a power conversion unit 9.
 図2では、4つの集電ユニット60を代表的に示しているが、さらに多数または少数の集電ユニット60が設けられてもよい。 In FIG. 2, four current collecting units 60 are representatively shown, but a larger or smaller number of current collecting units 60 may be provided.
 図3は、本発明の実施の形態に係る集電ユニットの構成を示す図である。 FIG. 3 is a diagram showing a configuration of the current collecting unit according to the embodiment of the present invention.
 図3を参照して、集電ユニット60は、4つの太陽電池ユニット74と、集電箱71とを含む。集電箱71は、銅バー72を有する。 Referring to FIG. 3, the current collecting unit 60 includes four solar cell units 74 and a current collecting box 71. The current collection box 71 has a copper bar 72.
 図3では、4つの太陽電池ユニット74を代表的に示しているが、さらに多数または少数の太陽電池ユニット74が設けられてもよい。 In FIG. 3, four solar cell units 74 are representatively shown, but a larger number or a smaller number of solar cell units 74 may be provided.
 図4は、本発明の実施の形態に係る太陽電池ユニットの構成を示す図である。 FIG. 4 is a diagram showing the configuration of the solar cell unit according to the embodiment of the present invention.
 図4を参照して、太陽電池ユニット74は、4つの発電部78と、接続箱76とを含む。発電部78は、太陽電池パネルを有する。接続箱76は、銅バー77を有する。 Referring to FIG. 4, solar cell unit 74 includes four power generation units 78 and a junction box 76. The power generation unit 78 has a solar cell panel. The connection box 76 has a copper bar 77.
 図4では、4つの発電部78を代表的に示しているが、さらに多数または少数の発電部78が設けられてもよい。 FIG. 4 representatively shows four power generation units 78, but a larger or smaller number of power generation units 78 may be provided.
 発電部78は、この例では4つの太陽電池パネル79A,79B,79C,79Dが直列接続されたストリングである。以下、太陽電池パネル79A,79B,79C,79Dの各々を、太陽電池パネル79とも称する。 In this example, the power generation unit 78 is a string in which four solar cell panels 79A, 79B, 79C, and 79D are connected in series. Hereinafter, each of the solar cell panels 79A, 79B, 79C, and 79D is also referred to as a solar cell panel 79.
 図4では、4つの太陽電池パネル79を代表的に示しているが、さらに多数または少数の太陽電池パネル79が設けられてもよい。 FIG. 4 representatively shows four solar cell panels 79, but a larger or smaller number of solar cell panels 79 may be provided.
 太陽光発電システム401では、複数の発電部78からの出力ラインおよび集約ラインすなわち電力線がそれぞれキュービクル6に電気的に接続される。 In the solar power generation system 401, output lines and aggregated lines, that is, power lines from the plurality of power generation units 78 are electrically connected to the cubicles 6, respectively.
 より詳細には、発電部78の出力ライン1は、発電部78に接続された第1端と、銅バー77に接続された第2端とを有する。各出力ライン1は、銅バー77を介して集約ライン5に集約される。銅バー77は、たとえば接続箱76の内部に設けられている。 More specifically, the output line 1 of the power generation unit 78 has a first end connected to the power generation unit 78 and a second end connected to the copper bar 77. Each output line 1 is aggregated into an aggregation line 5 via a copper bar 77. The copper bar 77 is provided, for example, inside the connection box 76.
 発電部78は、太陽光を受けると、受けた太陽光のエネルギーを直流電力に変換し、変換した直流電力を出力ライン1へ出力する。 When the power generation unit 78 receives sunlight, the power generation unit 78 converts the received solar energy into DC power, and outputs the converted DC power to the output line 1.
 図3および図4を参照して、集約ライン5は、対応の太陽電池ユニット74における銅バー77に接続された第1端と、銅バー72に接続された第2端とを有する。各集約ライン5は、銅バー72を介して集約ライン2に集約される。銅バー72は、たとえば集電箱71の内部に設けられている。 3 and 4, aggregation line 5 has a first end connected to copper bar 77 and a second end connected to copper bar 72 in corresponding solar cell unit 74. Each aggregation line 5 is aggregated into the aggregation line 2 via the copper bar 72. The copper bar 72 is provided, for example, inside the current collection box 71.
 図1~図4を参照して、太陽光発電システム401では、上述のように複数の発電部78からの各出力ライン1が集約ライン5に集約され、各集約ライン5が集約ライン2に集約され、各集約ライン2が集約ライン4に集約され、各集約ライン4がキュービクル6に電気的に接続される。 With reference to FIGS. 1 to 4, in the photovoltaic power generation system 401, as described above, the output lines 1 from the plurality of power generation units 78 are aggregated into the aggregation line 5, and the aggregation lines 5 are aggregated into the aggregation line 2. Then, each aggregation line 2 is aggregated to the aggregation line 4, and each aggregation line 4 is electrically connected to the cubicle 6.
 より詳細には、各集約ライン2は、対応の集電ユニット60における銅バー72に接続された第1端と、銅バー7に接続された第2端とを有する。PCS8において、内部ライン3は、銅バー7に接続された第1端と、電力変換部9に接続された第2端とを有する。 More specifically, each aggregation line 2 has a first end connected to the copper bar 72 in the corresponding current collecting unit 60 and a second end connected to the copper bar 7. In the PCS 8, the internal line 3 has a first end connected to the copper bar 7 and a second end connected to the power conversion unit 9.
 PCS8において、電力変換部9は、たとえば、各発電部78において発電された直流電力を出力ライン1、銅バー77、集約ライン5、銅バー72、集約ライン2、銅バー7および内部ライン3経由で受けると、受けた直流電力を交流電力に変換して集約ライン4へ出力する。 In the PCS 8, the power conversion unit 9 uses, for example, the DC power generated in each power generation unit 78 via the output line 1, the copper bar 77, the aggregation line 5, the copper bar 72, the aggregation line 2, the copper bar 7 and the internal line 3. Is received, the received DC power is converted into AC power and output to the aggregation line 4.
 集約ライン4は、電力変換部9に接続された第1端と、銅バー73に接続された第2端とを有する。 The aggregation line 4 has a first end connected to the power conversion unit 9 and a second end connected to the copper bar 73.
 キュービクル6において、各PCS8における電力変換部9から各集約ライン4へ出力された交流電力は、銅バー73を介して系統へ出力される。 In the cubicle 6, AC power output from the power conversion unit 9 in each PCS 8 to each aggregation line 4 is output to the system via the copper bar 73.
 [監視システム301の構成]
 図5は、本発明の実施の形態に係る監視システムの構成を示す図である。
[Configuration of Monitoring System 301]
FIG. 5 is a diagram showing the configuration of the monitoring system according to the embodiment of the present invention.
 図5を参照して、太陽光発電システム401は、監視システム301を備える。監視システム301は、判定装置101と、複数の監視装置111と、収集装置151とを含む。 Referring to FIG. 5, the solar power generation system 401 includes a monitoring system 301. The monitoring system 301 includes a determination device 101, a plurality of monitoring devices 111, and a collection device 151.
 図5では、1つの集電ユニット60に対応して設けられた4つの監視装置111を代表的に示しているが、さらに多数または少数の監視装置111が設けられてもよい。また、監視システム301は、1つの収集装置151を備えているが、複数の収集装置151を備えてもよい。 FIG. 5 representatively shows four monitoring devices 111 provided corresponding to one current collecting unit 60, but a larger or smaller number of monitoring devices 111 may be provided. In addition, the monitoring system 301 includes one collection device 151, but may include a plurality of collection devices 151.
 監視システム301では、子機である監視装置111におけるセンサの情報が、収集装置151へ定期的または不定期に伝送される。 In the monitoring system 301, sensor information in the monitoring device 111 which is a slave is transmitted to the collection device 151 regularly or irregularly.
 監視装置111は、たとえば集電ユニット60に設けられている。より詳細には、監視装置111は、4つの太陽電池ユニット74にそれぞれ対応して4つ設けられている。各監視装置111は、たとえば、対応の出力ライン1および集約ライン5に電気的に接続されている。 The monitoring device 111 is provided in the current collecting unit 60, for example. More specifically, four monitoring devices 111 are provided corresponding to the four solar cell units 74, respectively. Each monitoring device 111 is electrically connected to the corresponding output line 1 and aggregation line 5, for example.
 監視装置111は、対応の太陽電池ユニット74における各出力ライン1の電流をセンサにより計測する。また、監視装置111は、対応の太陽電池ユニット74における各出力ライン1の電圧をセンサにより計測する。 The monitoring device 111 measures the current of each output line 1 in the corresponding solar cell unit 74 with a sensor. Moreover, the monitoring apparatus 111 measures the voltage of each output line 1 in the corresponding solar cell unit 74 with a sensor.
 収集装置151は、たとえばPCS8の近傍に設けられている。より詳細には、収集装置151は、PCS8に対応して設けられ、信号線46を介して銅バー7に電気的に接続されている。 The collecting device 151 is provided in the vicinity of the PCS 8, for example. More specifically, the collection device 151 is provided corresponding to the PCS 8 and is electrically connected to the copper bar 7 via the signal line 46.
 監視装置111および収集装置151は、集約ライン2,5を介して電力線通信(PLC:Power Line Communication)を行うことにより情報の送受信を行う。 The monitoring device 111 and the collection device 151 perform transmission and reception of information by performing power line communication (PLC: Power Line Communication) via the aggregation lines 2 and 5.
 より詳細には、各監視装置111は、対応の出力ラインの電流および電圧の計測結果を示す監視情報を送信する。収集装置151は、各監視装置111の計測結果を収集する。 More specifically, each monitoring device 111 transmits monitoring information indicating the measurement result of the current and voltage of the corresponding output line. The collection device 151 collects the measurement results of each monitoring device 111.
 [監視装置111の構成]
 図6は、本発明の実施の形態に係る監視システムにおける監視装置の構成を示す図である。図6では、出力ライン1、集約ライン5および銅バー77がより詳細に示されている。
[Configuration of Monitoring Device 111]
FIG. 6 is a diagram showing a configuration of a monitoring device in the monitoring system according to the embodiment of the present invention. In FIG. 6, the output line 1, the aggregation line 5 and the copper bar 77 are shown in more detail.
 図6を参照して、出力ライン1は、プラス側出力ライン1pと、マイナス側出力ライン1nとを含む。集約ライン5は、プラス側集約ライン5pと、マイナス側集約ライン5nとを含む。銅バー77は、プラス側銅バー77pと、マイナス側銅バー77nとを含む。 Referring to FIG. 6, output line 1 includes a plus side output line 1p and a minus side output line 1n. Aggregation line 5 includes a plus-side aggregation line 5p and a minus-side aggregation line 5n. The copper bar 77 includes a plus side copper bar 77p and a minus side copper bar 77n.
 図示しないが、図3に示す集電箱71における銅バー72は、プラス側集約ライン5pおよびマイナス側集約ライン5nにそれぞれ対応して、プラス側銅バー72pおよびマイナス側銅バー72nを含む。 Although not shown, the copper bar 72 in the current collection box 71 shown in FIG. 3 includes a plus-side copper bar 72p and a minus-side copper bar 72n corresponding to the plus-side aggregation line 5p and the minus-side aggregation line 5n, respectively.
 プラス側出力ライン1pは、対応の発電部78に接続された第1端と、プラス側銅バー77pに接続された第2端とを有する。マイナス側出力ライン1nは、対応の発電部78に接続された第1端と、マイナス側銅バー77nに接続された第2端とを有する。 The plus side output line 1p has a first end connected to the corresponding power generation unit 78 and a second end connected to the plus side copper bar 77p. The negative side output line 1n has a first end connected to the corresponding power generation unit 78 and a second end connected to the negative side copper bar 77n.
 プラス側集約ライン5pは、プラス側銅バー77pに接続された第1端と、集電箱71におけるプラス側銅バー72pに接続された第2端とを有する。マイナス側集約ライン5nは、マイナス側銅バー77nに接続された第1端と、集電箱71におけるマイナス側銅バー72nに接続された第2端とを有する。 The plus side aggregation line 5p has a first end connected to the plus side copper bar 77p and a second end connected to the plus side copper bar 72p in the current collection box 71. The minus-side aggregate line 5n has a first end connected to the minus-side copper bar 77n and a second end connected to the minus-side copper bar 72n in the current collection box 71.
 監視装置111は、検出処理部11と、4つの電流センサ16と、電圧センサ17と、通信部14とを備える。なお、監視装置111は、出力ライン1の数に応じて、さらに多数または少数の電流センサ16を備えてもよい。 The monitoring device 111 includes a detection processing unit 11, four current sensors 16, a voltage sensor 17, and a communication unit 14. Note that the monitoring device 111 may further include a large number or a small number of current sensors 16 depending on the number of output lines 1.
 監視装置111は、たとえば、発電部78の近傍に設けられている。具体的には、監視装置111は、たとえば、計測対象の出力ライン1が接続された銅バー77が設けられた接続箱76の内部に設けられている。なお、監視装置111は、接続箱76の外部に設けられてもよい。 The monitoring device 111 is provided in the vicinity of the power generation unit 78, for example. Specifically, the monitoring device 111 is provided, for example, inside a connection box 76 provided with a copper bar 77 to which the output line 1 to be measured is connected. Note that the monitoring device 111 may be provided outside the connection box 76.
 監視装置111は、たとえば、プラス側集約ライン5pおよびマイナス側集約ライン5nとそれぞれプラス側電源線26pおよびマイナス側電源線26nを介して電気的に接続されている。以下、プラス側電源線26pおよびマイナス側電源線26nの各々を、電源線26とも称する。 The monitoring device 111 is electrically connected to, for example, the plus-side aggregate line 5p and the minus-side aggregate line 5n via the plus-side power line 26p and the minus-side power line 26n, respectively. Hereinafter, each of the plus-side power line 26p and the minus-side power line 26n is also referred to as a power line 26.
 各監視装置111は、対応の発電部78に関する計測結果を示す監視情報を、自己および収集装置151に接続される電力線を介して送信する。 Each monitoring device 111 transmits monitoring information indicating a measurement result regarding the corresponding power generation unit 78 via a power line connected to itself and the collecting device 151.
 詳細には、監視装置111における通信部14は、集約ラインを介した電力線通信を、複数の監視装置111の計測結果を収集する収集装置151と行うことが可能である。より詳細には、通信部14は、集約ライン2,5経由で情報を送受信することが可能である。具体的には、通信部14は、電源線26および集約ライン2,5を介して収集装置151と電力線通信を行う。 Specifically, the communication unit 14 in the monitoring device 111 can perform power line communication via the aggregation line with the collection device 151 that collects the measurement results of the plurality of monitoring devices 111. More specifically, the communication unit 14 can transmit and receive information via the aggregation lines 2 and 5. Specifically, the communication unit 14 performs power line communication with the collection device 151 via the power line 26 and the aggregation lines 2 and 5.
 検出処理部11は、たとえば、対応の出力ライン1の電流および電圧の計測結果を示す監視情報を所定時間ごとに作成するように設定されている。 The detection processing unit 11 is set, for example, so as to create monitoring information indicating the measurement results of the current and voltage of the corresponding output line 1 every predetermined time.
 電流センサ16は、出力ライン1の電流を計測する。より詳細には、電流センサ16は、たとえば、ホール素子タイプの電流プローブである。電流センサ16は、監視装置111の図示しない電源回路から受けた電力を用いて、対応のマイナス側出力ライン1nを通して流れる電流を計測し、計測結果を示す信号を検出処理部11へ出力する。なお、電流センサ16は、プラス側出力ライン1pを通して流れる電流を計測してもよい。 The current sensor 16 measures the current of the output line 1. More specifically, the current sensor 16 is, for example, a Hall element type current probe. The current sensor 16 measures the current flowing through the corresponding negative output line 1n using the power received from the power supply circuit (not shown) of the monitoring device 111, and outputs a signal indicating the measurement result to the detection processing unit 11. The current sensor 16 may measure a current flowing through the plus side output line 1p.
 電圧センサ17は、出力ライン1の電圧を計測する。より詳細には、電圧センサ17は、プラス側銅バー77pおよびマイナス側銅バー77n間の電圧を計測し、計測結果を示す信号を検出処理部11へ出力する。 The voltage sensor 17 measures the voltage of the output line 1. More specifically, the voltage sensor 17 measures the voltage between the plus-side copper bar 77p and the minus-side copper bar 77n, and outputs a signal indicating the measurement result to the detection processing unit 11.
 検出処理部11は、たとえば、所定時間ごとに、各電流センサ16および電圧センサ17から受けた各計測信号に対して平均化およびフィルタリング等の信号処理を行った信号をデジタル信号に変換する。 The detection processing unit 11 converts, for example, a signal obtained by performing signal processing such as averaging and filtering on each measurement signal received from each current sensor 16 and voltage sensor 17 at predetermined time intervals into a digital signal.
 検出処理部11は、作成した各デジタル信号の示す計測値と、対応の電流センサ16のID(以下、電流センサIDとも称する。)、電圧センサ17のID(以下、電圧センサIDとも称する。)、および自己の監視装置111のID(以下、監視装置IDとも称する。)とを含む監視情報を作成する。 The detection processing unit 11 includes the measured value indicated by each created digital signal, the ID of the corresponding current sensor 16 (hereinafter also referred to as current sensor ID), and the ID of the voltage sensor 17 (hereinafter also referred to as voltage sensor ID). And monitoring information including the ID of the own monitoring device 111 (hereinafter also referred to as monitoring device ID).
 検出処理部11は、送信元IDが自己の監視装置IDであり、送信先IDが収集装置151のIDであり、データ部分が監視情報である監視情報パケットを作成する。そして、検出処理部11は、作成した監視情報パケットを通信部14へ出力する。なお、検出処理部11は、監視情報パケットにシーケンス番号を含めてもよい。 The detection processing unit 11 creates a monitoring information packet in which the transmission source ID is its own monitoring device ID, the transmission destination ID is the ID of the collection device 151, and the data portion is monitoring information. Then, the detection processing unit 11 outputs the created monitoring information packet to the communication unit 14. The detection processing unit 11 may include a sequence number in the monitoring information packet.
 通信部14は、検出処理部11から受ける監視情報パケットを収集装置151へ送信する。 The communication unit 14 transmits the monitoring information packet received from the detection processing unit 11 to the collection device 151.
 再び図5を参照して、収集装置151は、集約ライン2,5経由で情報を送受信することが可能である。具体的には、収集装置151は、たとえば、信号線46および集約ライン2,5を介して監視装置111と電力線通信を行い、監視情報パケットを複数の監視装置111から受信する。 Referring to FIG. 5 again, the collection device 151 can send and receive information via the aggregation lines 2 and 5. Specifically, the collection device 151 performs power line communication with the monitoring device 111 via the signal line 46 and the aggregation lines 2 and 5, for example, and receives monitoring information packets from the plurality of monitoring devices 111.
 収集装置151は、カウンタおよび記憶部を有しており、監視装置111から監視情報パケットを受信すると、受信した監視情報パケットから監視情報を取得するとともに、カウンタにおけるカウント値を受信時刻として取得する。そして、収集装置151は、受信時刻を監視情報に含めた後、図示しない記憶部に当該監視情報を保存する。 The collection device 151 has a counter and a storage unit. When receiving the monitoring information packet from the monitoring device 111, the collecting device 151 acquires the monitoring information from the received monitoring information packet and acquires the count value in the counter as the reception time. Then, after including the reception time in the monitoring information, the collection device 151 stores the monitoring information in a storage unit (not shown).
 より詳細には、上記カウンタは、たとえば、毎日の午前0時においてカウント値をリセットし、監視装置111の計測周期と同じ時間が経過するたびにカウント値をインクリメントする。この場合、収集装置151は、カウント値をインクリメントしたタイミングから上記時間が経過するまでの間に複数の監視装置111からそれぞれ複数の監視情報パケットを受信すると、これら複数の監視情報パケットの各々から取得した監視情報に現在の同一のカウント値を受信時刻として含める。 More specifically, for example, the counter resets the count value every day at midnight, and increments the count value every time the same time as the measurement cycle of the monitoring device 111 elapses. In this case, when the collection device 151 receives a plurality of monitoring information packets from the plurality of monitoring devices 111 from the timing when the count value is incremented until the time elapses, the collection device 151 obtains each of the plurality of monitoring information packets. The current same count value is included in the received monitoring information as the reception time.
 [判定装置の構成および動作]
 図7は、本発明の実施の形態に係る監視システムにおける判定装置の構成を示す図である。
[Configuration and operation of judgment device]
FIG. 7 is a diagram showing a configuration of the determination device in the monitoring system according to the embodiment of the present invention.
 図7を参照して、判定装置101は、判定部81と、通信処理部84と、記憶部85と、取得部86と、検知部87とを備える。 Referring to FIG. 7, the determination apparatus 101 includes a determination unit 81, a communication processing unit 84, a storage unit 85, an acquisition unit 86, and a detection unit 87.
 判定装置101における記憶部85には、たとえば、管理対象の監視装置111のIDすなわち監視装置IDが登録されている。また、記憶部85には、監視装置IDと当該監視装置IDを有する監視装置111に含まれる各センサのIDすなわち電流センサIDおよび電圧センサIDとの対応関係R1が登録されている。 In the storage unit 85 of the determination apparatus 101, for example, the ID of the monitoring apparatus 111 to be managed, that is, the monitoring apparatus ID is registered. In the storage unit 85, the correspondence R1 between the monitoring device ID and the ID of each sensor included in the monitoring device 111 having the monitoring device ID, that is, the current sensor ID and the voltage sensor ID is registered.
 判定装置101は、たとえばサーバであり、監視情報を収集装置151から定期的に取得し、取得した監視情報を処理する。なお、判定装置101は、たとえば収集装置151に内蔵される構成であってもよい。 The determination device 101 is, for example, a server, periodically acquires monitoring information from the collection device 151, and processes the acquired monitoring information. Note that the determination apparatus 101 may be configured to be incorporated in the collection apparatus 151, for example.
 より詳細には、判定装置101における通信処理部84は、ネットワークを介して、収集装置151等の他の装置と情報の送受信を行う。 More specifically, the communication processing unit 84 in the determination apparatus 101 transmits / receives information to / from other apparatuses such as the collection apparatus 151 via the network.
 通信処理部84は、指定された日毎処理タイミング、たとえば毎日の午前0時において監視情報収集処理を行う。なお、判定装置101を収集装置151に内蔵する構成にすれば、より短い間隔で監視情報を容易に収集することができる。 The communication processing unit 84 performs monitoring information collection processing at a designated daily processing timing, for example, at 0:00 every day. Note that if the determination device 101 is built in the collection device 151, monitoring information can be easily collected at shorter intervals.
 より詳細には、通信処理部84は、日毎処理タイミングが到来すると、記憶部85に登録されている各監視装置IDを参照し、参照した各監視装置IDに対応し、日毎処理タイミングの24時間前から当該日毎処理タイミングまで(以下、処理日とも称する。)に属する受信時刻を含む監視情報を要求するための監視情報要求を収集装置151へ送信する。 More specifically, when the daily processing timing arrives, the communication processing unit 84 refers to each monitoring device ID registered in the storage unit 85, corresponds to each monitored monitoring device ID, and has a 24-hour daily processing timing. A monitoring information request for requesting monitoring information including a reception time that belongs to the daily processing timing (hereinafter also referred to as a processing date) from before is transmitted to the collection device 151.
 収集装置151は、判定装置101から監視情報要求を受信すると、受信した監視情報要求に従って、監視情報要求の内容を満足する1または複数の監視情報を判定装置101へ送信する。 When the collection device 151 receives the monitoring information request from the determination device 101, the collection device 151 transmits one or more pieces of monitoring information satisfying the content of the monitoring information request to the determination device 101 in accordance with the received monitoring information request.
 図8は、本発明の実施の形態に係る監視システムにおける判定装置が保持する監視情報の一例を示す図である。 FIG. 8 is a diagram showing an example of monitoring information held by the determination device in the monitoring system according to the embodiment of the present invention.
 図8を参照して、監視情報は、監視装置IDと、監視装置111における各電流センサ16の電流センサIDと、各電流センサ16の計測値である電流値と、電圧センサ17の電圧センサIDと、電圧センサ17の計測値である電圧値と、受信時刻とを含む。受信時刻は、収集装置151が監視装置111から送信された監視情報を受信した時刻である。 With reference to FIG. 8, the monitoring information includes the monitoring device ID, the current sensor ID of each current sensor 16 in the monitoring device 111, the current value that is the measured value of each current sensor 16, and the voltage sensor ID of the voltage sensor 17. And a voltage value that is a measurement value of the voltage sensor 17 and a reception time. The reception time is the time when the collection device 151 receives the monitoring information transmitted from the monitoring device 111.
 通信処理部84は、監視情報要求の応答として収集装置151から1または複数の監視情報を受信すると、受信した各監視情報を記憶部85に保存するとともに、処理完了通知を検知部87へ出力する。 When the communication processing unit 84 receives one or more pieces of monitoring information from the collection device 151 as a response to the monitoring information request, the communication processing unit 84 saves each received monitoring information in the storage unit 85 and outputs a processing completion notification to the detection unit 87. .
 検知部87は、太陽光発電システム401の過積載に起因する状態(以下、過積載状態とも称する。)の発生を検知する。 The detection unit 87 detects the occurrence of a state (hereinafter also referred to as an overloading state) due to overloading of the solar power generation system 401.
 太陽光発電システム401において、PCS8の電力変換容量を超える電力を発電可能な数の太陽電池パネルが設けられることを、過積載と称する。 In the solar power generation system 401, the provision of a number of solar cell panels capable of generating power exceeding the power conversion capacity of the PCS 8 is referred to as overloading.
 また、太陽光発電システム401において、過積載状態とは、各発電部78の発電電力がPCS8の電力変換容量に制限される状態である。 In the solar power generation system 401, the overload state is a state in which the generated power of each power generation unit 78 is limited to the power conversion capacity of the PCS 8.
 図9は、過積載状態における発電部の発電電力を示す図である。図9において、横軸は時間を示し、縦軸は発電電力を示す。 FIG. 9 is a diagram showing the generated power of the power generation unit in an overloaded state. In FIG. 9, the horizontal axis indicates time, and the vertical axis indicates generated power.
 図9を参照して、太陽光発電システム401において、昼間に過積載状態が発生し、発電部78の発電電力が制限されている。 Referring to FIG. 9, in the solar power generation system 401, an overload state occurs in the daytime, and the generated power of the power generation unit 78 is limited.
 たとえば、検知部87は、各発電部78の監視情報の示す計測結果の合計が所定条件を満たす場合、過積載状態が発生したと判断する。 For example, the detection unit 87 determines that an overload state has occurred when the total of the measurement results indicated by the monitoring information of each power generation unit 78 satisfies a predetermined condition.
 より詳細には、検知部87は、通信処理部84から処理完了通知を受けると、対応関係R1を参照して、記憶部85から各監視装置111の監視情報に含まれる各電流センサ16の計測値である電流値、および対応の電圧センサ17の計測値である電圧値を取得する。 More specifically, when the detection unit 87 receives a process completion notification from the communication processing unit 84, the detection unit 87 refers to the correspondence R1 and measures each current sensor 16 included in the monitoring information of each monitoring device 111 from the storage unit 85. A current value as a value and a voltage value as a measurement value of the corresponding voltage sensor 17 are acquired.
 そして、検知部87は、取得した電流値および電圧値の複数の組において電流値および電圧値を乗じることにより、監視情報に含まれる受信時刻における各発電部78の発電電力を算出する。 And the detection part 87 calculates the electric power generation of each electric power generation part 78 in the receiving time contained in monitoring information by multiplying an electric current value and a voltage value in the some set of the acquired electric current value and voltage value.
 検知部87は、算出した同一の受信時刻における各発電電力の合計値が、たとえば所定の閾値Th1以上である場合、当該受信時刻において過積載状態が発生していたと判断する。 The detection unit 87 determines that an overloading state has occurred at the reception time when the total value of the generated power at the same reception time is equal to or greater than a predetermined threshold Th1, for example.
 なお、上記閾値Th1は、たとえば、日射計の数値から予測された発電部78の発電電力に基づいて決定されるか、または、発電部78の定格容量に基づいて決定される。 The threshold value Th1 is determined based on, for example, the generated power of the power generation unit 78 predicted from the values of the pyranometer or based on the rated capacity of the power generation unit 78.
 検知部87は、過積載状態が発生していた受信時刻に基づいて、過積載状態の発生から過積載状態の終了までの過積載期間を判定し、判定した過積載期間を示す情報を取得部86へ出力する。 The detection unit 87 determines an overload period from the occurrence of the overload state to the end of the overload state based on the reception time when the overload state has occurred, and obtains information indicating the determined overload period Output to 86.
 なお、検知部87は、各発電部78の発電電力の合計が所定条件を満たすか否かを確認する代わりに、各発電部78の出力電流の合計が所定条件を満たすか否かを確認する構成であってもよい。たとえば、検知部87は、同一の受信時刻における各発電部78の出力電流の合計値が閾値Th3以上である場合、当該受信時刻において過積載状態が発生していたと判断する。 Note that the detection unit 87 checks whether or not the sum of the output currents of the power generation units 78 satisfies the predetermined condition instead of checking whether or not the total power generated by the power generation units 78 satisfies the predetermined condition. It may be a configuration. For example, when the total value of the output currents of the power generation units 78 at the same reception time is equal to or greater than the threshold value Th3, the detection unit 87 determines that an overload state has occurred at the reception time.
 他の例として、検知部87は、PCS8から過積載状態の発生を示す情報を取得する。 As another example, the detection unit 87 acquires information indicating the occurrence of an overloading state from the PCS 8.
 より詳細には、検知部87は、たとえば、PCS8から過積載期間を示す情報を信号線46、収集装置151および通信処理部84を介して受信し、受信した当該情報を取得部86へ出力する。 More specifically, for example, the detection unit 87 receives information indicating the overload period from the PCS 8 via the signal line 46, the collection device 151, and the communication processing unit 84, and outputs the received information to the acquisition unit 86. .
 取得部86は、複数の発電部78の出力電流の計測結果をそれぞれ示す計測情報を取得する。 The acquisition unit 86 acquires measurement information indicating the measurement results of the output currents of the plurality of power generation units 78, respectively.
 より詳細には、たとえば、取得部86は、過積載期間を示す情報を受けて、記憶部85に登録されている対応関係R1を参照し、過積載期間および過積載期間の直前の時間における各電流センサ16の計測値を含む各監視装置111の監視情報を記憶部85から取得し、判定部81へ出力する。 More specifically, for example, the acquisition unit 86 receives information indicating the overloading period, refers to the correspondence relationship R1 registered in the storage unit 85, and determines each of the overloading period and the time immediately before the overloading period. The monitoring information of each monitoring device 111 including the measurement value of the current sensor 16 is acquired from the storage unit 85 and output to the determination unit 81.
 なお、検知部87は、各発電部78の発電電力の合計または出力電流の合計が所定条件を満たすか否かの確認、およびPCS8からの過積載状態の発生を示す情報の取得の両方を行う構成であってもよい。 Note that the detection unit 87 performs both confirmation of whether or not the total generated power or the total output current of each power generation unit 78 satisfies a predetermined condition and acquisition of information indicating the occurrence of an overload state from the PCS 8. It may be a configuration.
 この場合、検知部87は、たとえば、各発電部78の発電電力の合計または出力電流の合計が所定条件を満たし、かつPCS8から過積載状態の発生を示す情報を取得した場合、過積載状態が発生したと判断する。あるいは、たとえば、検知部87は、各発電部78の発電電力の合計もしくは出力電流の合計が所定条件を満たす場合、またはPCS8から過積載状態の発生を示す情報を取得した場合、過積載状態が発生したと判断する。 In this case, for example, when the detection unit 87 acquires information indicating that the total generated power or the total output current of the power generation units 78 satisfies a predetermined condition and indicates the occurrence of the overload state from the PCS 8, the overload state is Judge that it occurred. Alternatively, for example, when the total of generated power or the total of output currents of the power generation units 78 satisfies a predetermined condition, or when the detection unit 87 acquires information indicating the occurrence of an overload state from the PCS 8, the overload state is detected. Judge that it occurred.
 図10は、本発明の実施の形態に係る発電状態判定システムにおける発電部の出力電流と出力電圧との関係を示す図である。図10において、横軸は電圧を示し、縦軸は電流を示す。 FIG. 10 is a diagram showing the relationship between the output current and the output voltage of the power generation unit in the power generation state determination system according to the embodiment of the present invention. In FIG. 10, the horizontal axis represents voltage, and the vertical axis represents current.
 図10を参照して、グラフA1は、正常な発電部78の出力電流と出力電圧との関係を示す。グラフA2は、たとえば開放電圧が低く異常の可能性がある発電部78(以下、異常発電部とも称する。)の出力電流と出力電圧との関係を示す。ここで、正常な発電部78および異常発電部は、並列に接続されているものとする。 Referring to Fig. 10, graph A1 shows the relationship between the output current and output voltage of normal power generation unit 78. Graph A2 shows the relationship between the output current and the output voltage of a power generation unit 78 (hereinafter also referred to as an abnormal power generation unit) that has a low open-circuit voltage and may be abnormal, for example. Here, it is assumed that the normal power generation unit 78 and the abnormal power generation unit are connected in parallel.
 発電部78では、最大電力点追従(MPPT:Maximum Power Point Tracking)により、発電電力が最大になるように電流および電圧が制御されている。 In the power generation unit 78, current and voltage are controlled by maximum power point tracking (MPPT: Maximum Power Point Tracking) so that the generated power is maximized.
 グラフA1におけるポイントPmaは、正常な発電部78の最大電力点すなわち発電電力が最大となる点である。ポイントPmaにおいて、発電部78の出力電圧はVpmであり、出力電流はIpmaである。 The point Pma in the graph A1 is the maximum power point of the normal power generation unit 78, that is, the point at which the generated power is maximum. At the point Pma, the output voltage of the power generation unit 78 is Vpm, and the output current is Ipma.
 グラフA2におけるポイントPmbは、異常発電部の最大電力点である。ポイントPmbにおいて、異常発電部の出力電圧はVpmであり、出力電流はIpmbである。 The point Pmb in the graph A2 is the maximum power point of the abnormal power generation unit. At the point Pmb, the output voltage of the abnormal power generation unit is Vpm, and the output current is Ipmb.
 グラフA1に示すように、正常な発電部78において、過積載状態が発生すると、当該発電部78の出力電圧は、Vpmより大きいVocとなる。また、当該発電部78の出力電流は、Ipmaより小さいIocaとなる。 As shown in graph A1, when an overload state occurs in the normal power generation unit 78, the output voltage of the power generation unit 78 becomes Voc larger than Vpm. Further, the output current of the power generation unit 78 is Ioca smaller than Ipma.
 グラフA2に示すように、異常発電部において、過積載状態が発生すると、出力電圧は、VocとなりVpmより大きくなる。出力電流は、Ipmbより小さいIocbとなる。 As shown in graph A2, when an overload state occurs in the abnormal power generation unit, the output voltage becomes Voc and is higher than Vpm. The output current becomes Iocb smaller than Ipmb.
 図10に示すように、通常状態から過積載状態に遷移した場合における異常発電部の出力電流の変動すなわちIpmbとIocbとの差d2は、通常状態から過積載状態に遷移した場合における正常な発電部78の出力電流の変動すなわちIpmaとIocaとの差d1より大きくなる。 As shown in FIG. 10, the fluctuation in the output current of the abnormal power generation unit when transitioning from the normal state to the overloading state, that is, the difference d2 between Ipmb and Iocb is normal power generation when transitioning from the normal state to the overloading state. It becomes larger than the fluctuation of the output current of the section 78, that is, the difference d1 between Ipma and Ioca.
 図11は、過積載状態における正常な発電部および異常発電部の出力電流の一例を示す図である。図11において、横軸は時間を示し、縦軸は出力電流を示す。 FIG. 11 is a diagram illustrating an example of output currents of a normal power generation unit and an abnormal power generation unit in an overloaded state. In FIG. 11, the horizontal axis indicates time, and the vertical axis indicates output current.
 図11を参照して、グラフA3は、正常な発電部78の出力電流を示す。グラフA4は、異常発電部の出力電流を示す。 Referring to FIG. 11, graph A3 shows the output current of normal power generation unit 78. Graph A4 shows the output current of the abnormal power generation unit.
 グラフA3およびグラフA4に示すように、通常状態から過積載状態に遷移した場合における異常発電部の出力電流の変動は、正常な発電部78の出力電流の変動よりも大きい。 As shown in the graph A3 and the graph A4, the fluctuation in the output current of the abnormal power generation unit when the normal state is changed to the overload state is larger than the fluctuation of the output current of the normal power generation unit 78.
 判定部81は、このような過積載状態が発生している場合における出力電流の変動に基づいて、対応の発電部78の異常を判定する。 The determination unit 81 determines the abnormality of the corresponding power generation unit 78 based on the fluctuation of the output current when such an overloading state occurs.
 より詳細には、判定部81は、電流センサ16ごとに、取得部86から受けた電流センサ16の計測値の過積載期間における平均値を算出する。 More specifically, the determination unit 81 calculates, for each current sensor 16, an average value in the overload period of the measurement value of the current sensor 16 received from the acquisition unit 86.
 そして、判定部81は、過積載期間の直前の時間における電流センサ16の計測値から、算出した対応の平均値を差し引くことにより、電流センサ16ごとの計測値の変動量Icを算出する。 And the determination part 81 calculates the fluctuation amount Ic of the measured value for every current sensor 16 by subtracting the calculated corresponding average value from the measured value of the current sensor 16 in the time immediately before the overloading period.
 判定部81は、たとえば、算出した変動量Icが所定の閾値Th2以上の場合、対応の発電部78を異常であると判定する。
 [動作の流れ]
 監視システム301における各装置は、コンピュータを備え、当該コンピュータにおけるCPU等の演算処理部は、以下のフローチャートの各ステップの一部または全部を含むプログラムを図示しないメモリからそれぞれ読み出して実行する。これら複数の装置のプログラムは、それぞれ、外部からインストールすることができる。これら複数の装置のプログラムは、それぞれ、記録媒体に格納された状態で流通する。
For example, when the calculated fluctuation amount Ic is equal to or greater than a predetermined threshold Th2, the determination unit 81 determines that the corresponding power generation unit 78 is abnormal.
[Flow of operation]
Each device in the monitoring system 301 includes a computer, and an arithmetic processing unit such as a CPU in the computer reads and executes a program including a part or all of each step of the following flowchart from a memory (not shown). Each of the programs of the plurality of apparatuses can be installed from the outside. The programs of the plurality of apparatuses are distributed while being stored in a recording medium.
 図12は、本発明の実施の形態に係る判定装置が発電部に関する異常判定を行う際の動作手順を定めたフローチャートである。 FIG. 12 is a flowchart that defines an operation procedure when the determination device according to the embodiment of the present invention makes an abnormality determination related to the power generation unit.
 図12を参照して、まず、判定装置101は、過積載状態を検知する(ステップS101)。 Referring to FIG. 12, first, the determination apparatus 101 detects an overloading state (step S101).
 次に、判定装置101は、自己の保存している監視情報のうち、過積載期間における各発電部78の電流の計測値、および過積載期間の直前の時間における電流の計測値を取得する(ステップS102)。 Next, the determination apparatus 101 acquires the measurement value of the current of each power generation unit 78 in the overloading period and the measurement value of the current in the time immediately before the overloading period from the monitoring information stored in itself ( Step S102).
 次に、判定装置101は、電流センサ16ごとの、取得した過積載期間における計測値の平均値を算出する(ステップS103)。 Next, the determination apparatus 101 calculates an average value of the measured values in the acquired overload period for each current sensor 16 (step S103).
 次に、判定装置101は、電流センサ16ごとに、過積載期間の直前の時間における電流の計測値から、算出した対応の平均値を差し引くことにより、当該電流センサ16の計測値の変動量Icを算出する(ステップS104)。 Next, for each current sensor 16, the determination apparatus 101 subtracts the calculated corresponding average value from the measured current value at the time immediately before the overloading period, thereby changing the variation Ic of the measured value of the current sensor 16. Is calculated (step S104).
 次に、判定装置101は、算出した変動量Icが所定の閾値Th2以上である場合(ステップS105でYES)、対応の発電部78を異常であると判定する(ステップS106)。 Next, when the calculated fluctuation amount Ic is equal to or greater than the predetermined threshold Th2 (YES in step S105), the determination apparatus 101 determines that the corresponding power generation unit 78 is abnormal (step S106).
 一方、判定装置101は、算出した変動量Icが所定の閾値Th2未満である場合(ステップS105でNO)、対応の発電部78を正常であると判定する(ステップS107)。 On the other hand, when the calculated fluctuation amount Ic is less than the predetermined threshold Th2 (NO in step S105), the determination apparatus 101 determines that the corresponding power generation unit 78 is normal (step S107).
 次に、判定装置101は、すべての発電部78について異常判定を行った場合(ステップS108でYES)、異常判定を終了する。 Next, when the determination apparatus 101 performs abnormality determination for all the power generation units 78 (YES in step S108), the abnormality determination ends.
 一方、判定装置101は、すべての発電部78について異常判定を行っていない場合(ステップS108でNO)、他の発電部78について異常判定を行う(ステップS105)。 On the other hand, when the determination device 101 has not performed abnormality determination for all the power generation units 78 (NO in step S108), the determination device 101 performs abnormality determination for the other power generation units 78 (step S105).
 ところで、特許文献1に記載の技術を超えて、太陽光発電システムの異常判定を向上させることが可能な技術が望まれる。 By the way, beyond the technique described in Patent Document 1, a technique capable of improving the abnormality determination of the photovoltaic power generation system is desired.
 本発明の実施の形態に係る判定装置では、取得部86は、複数の発電部78の出力電流の計測結果をそれぞれ示す複数の計測情報を取得する。検知部87は、太陽光発電システム401の過積載状態の発生を検知する。判定部81は、過積載状態が発生している場合における出力電流の変動に基づいて、当該出力電流に対応する発電部78の異常を判定する。 In the determination apparatus according to the embodiment of the present invention, the acquisition unit 86 acquires a plurality of pieces of measurement information that respectively indicate measurement results of output currents of the plurality of power generation units 78. The detection unit 87 detects the occurrence of an overload state of the solar power generation system 401. The determination unit 81 determines an abnormality of the power generation unit 78 corresponding to the output current based on the fluctuation of the output current when the overload state occurs.
 このような構成により、太陽光発電システム401において、過積載状態において発生する現象に着目し、異常の疑いのある発電部78を良好に検出することができる。 With such a configuration, in the photovoltaic power generation system 401, attention can be paid to a phenomenon that occurs in an overloaded state, and the power generation unit 78 that is suspected of being abnormal can be detected well.
 したがって、本発明の実施の形態に係る判定装置では、太陽光発電システムの異常判定を向上させることができる。 Therefore, the determination apparatus according to the embodiment of the present invention can improve the abnormality determination of the solar power generation system.
 また、本発明の実施の形態に係る判定装置では、検知部87は、各発電部78の出力電流に基づく発電電力の合計または出力電流の合計が所定条件を満たす場合、過積載状態が発生したと判断する。 In the determination device according to the embodiment of the present invention, the detection unit 87 causes an overload state when the total generated power or the total output current based on the output current of each power generation unit 78 satisfies a predetermined condition. Judge.
 このような構成により、太陽光発電システム401において、PCS8等から過積載であるか否かの情報を取得することなく、各発電部78の計測結果を用いて、過積載状態の発生を検知することができる。 With such a configuration, in the photovoltaic power generation system 401, the occurrence of an overload state is detected using the measurement result of each power generation unit 78 without acquiring information on whether or not the vehicle is overloaded from the PCS 8 or the like. be able to.
 また、本発明の実施の形態に係る判定装置では、検知部87は、PCS8から過積載状態の発生を示す情報を取得する。 In the determination device according to the embodiment of the present invention, the detection unit 87 acquires information indicating the occurrence of an overloading state from the PCS 8.
 このような構成により、太陽光発電システム401において、過積載状態の発生をより確実に検知することができる。 Such a configuration makes it possible to more reliably detect the occurrence of an overload state in the photovoltaic power generation system 401.
 また、本発明の実施の形態に係る太陽光発電システム401では、判定装置101は、複数の発電部78の出力電流の計測結果をそれぞれ示す複数の計測情報を取得する。また、判定装置101は、太陽光発電システム401の過積載に起因する状態の発生を検知し、当該状態が発生している場合における出力電流の変動に基づいて、当該出力電流に対応する発電部78の異常を判定する。 Moreover, in the photovoltaic power generation system 401 according to the embodiment of the present invention, the determination apparatus 101 acquires a plurality of pieces of measurement information that respectively indicate measurement results of output currents of the plurality of power generation units 78. In addition, the determination apparatus 101 detects the occurrence of a state due to overloading of the solar power generation system 401, and based on the fluctuation of the output current when the state occurs, the power generation unit corresponding to the output current 78 abnormalities are determined.
 このような構成により、太陽光発電システム401において、過積載状態において発生する現象に着目し、異常の疑いのある発電部78を良好に検出することができる。 With such a configuration, in the photovoltaic power generation system 401, attention can be paid to a phenomenon that occurs in an overloaded state, and the power generation unit 78 that is suspected of being abnormal can be detected well.
 したがって、本発明の実施の形態に係る太陽光発電システム401では、太陽光発電システム401の異常判定を向上させることができる。 Therefore, in the solar power generation system 401 according to the embodiment of the present invention, the abnormality determination of the solar power generation system 401 can be improved.
 また、本発明の実施の形態に係る判定方法では、まず、太陽光発電システム401の過積載状態の発生を検知する。次に、過積載状態が発生している場合における複数の発電部78の出力電流の変動に基づいて、当該出力電流に対応する発電部78の異常を判定する。 In the determination method according to the embodiment of the present invention, first, occurrence of an overloading state of the solar power generation system 401 is detected. Next, the abnormality of the power generation unit 78 corresponding to the output current is determined based on the fluctuations in the output currents of the plurality of power generation units 78 when the overloading state occurs.
 このような構成により、太陽光発電システム401において、過積載状態において発生する現象に着目し、異常の疑いのある発電部78を良好に検出することができる。 With such a configuration, in the photovoltaic power generation system 401, attention can be paid to a phenomenon that occurs in an overloaded state, and the power generation unit 78 that is suspected of being abnormal can be detected well.
 したがって、本発明の実施の形態に係る判定方法では、太陽光発電システムの異常判定を向上させることができる。 Therefore, in the determination method according to the embodiment of the present invention, the abnormality determination of the solar power generation system can be improved.
 上記実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the above embodiment is illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 以上の説明は、以下に付記する特徴を含む。
 [付記1]
 太陽電池パネルを含む複数の発電部を備える太陽光発電システムに用いられる判定装置であって、
 前記複数の発電部の出力電流の計測結果をそれぞれ示す複数の計測情報を取得する取得部と、
 前記太陽光発電システムの過積載に起因する状態の発生を検知する検知部と、
 前記状態が発生している場合における前記出力電流の変動に基づいて、前記出力電流に対応する前記発電部の異常を判定する判定部とを備え、
 前記発電部は、複数の太陽電池パネルが直列接続されたストリングであり、
 前記判定部は、前記発電部における前記出力電流の変動を他の前記発電部における前記出力電流の変動と比較することにより、対応の前記発電部の異常を判定する、判定装置。
The above description includes the following features.
[Appendix 1]
A determination device used in a solar power generation system including a plurality of power generation units including a solar battery panel,
An acquisition unit for acquiring a plurality of pieces of measurement information respectively indicating measurement results of output currents of the plurality of power generation units;
A detection unit for detecting the occurrence of a state due to overloading of the solar power generation system;
A determination unit that determines an abnormality of the power generation unit corresponding to the output current, based on fluctuations in the output current when the state occurs,
The power generation unit is a string in which a plurality of solar cell panels are connected in series,
The determination unit is configured to determine the abnormality of the corresponding power generation unit by comparing the variation in the output current in the power generation unit with the variation in the output current in another power generation unit.
 1 出力ライン
 2,4,5 集約ライン
 3 内部ライン
 6 キュービクル
 7 銅バー
 8 PCS
 9 電力変換部
 11 取得部
 14 通信部
 16 電流センサ
 17 電圧センサ
 26 電源線
 46 信号線
 60 集電ユニット
 71 集電箱
 72,73,77 銅バー
 74 太陽電池ユニット
 76 接続箱
 78 発電部
 79 太陽電池パネル
 80 PCSユニット
 81 判定部
 84 通信処理部
 85 記憶部
 86 取得部
 87 検知部
 101 判定装置
 111 監視装置
 151 収集装置
 301 監視システム
 401 太陽光発電システム
1 Output line 2, 4, 5 Aggregation line 3 Internal line 6 Cubicle 7 Copper bar 8 PCS
DESCRIPTION OF SYMBOLS 9 Power conversion part 11 Acquisition part 14 Communication part 16 Current sensor 17 Voltage sensor 26 Power supply line 46 Signal line 60 Current collection unit 71 Current collection box 72,73,77 Copper bar 74 Solar cell unit 76 Connection box 78 Power generation part 79 Solar cell Panel 80 PCS unit 81 Determination unit 84 Communication processing unit 85 Storage unit 86 Acquisition unit 87 Detection unit 101 Determination device 111 Monitoring device 151 Collection device 301 Monitoring system 401 Solar power generation system

Claims (5)

  1.  太陽電池パネルを含む複数の発電部を備える太陽光発電システムに用いられる判定装置であって、
     前記複数の発電部の出力電流の計測結果をそれぞれ示す複数の計測情報を取得する取得部と、
     前記太陽光発電システムの過積載に起因する状態の発生を検知する検知部と、
     前記状態が発生している場合における前記出力電流の変動に基づいて、前記出力電流に対応する前記発電部の異常を判定する判定部とを備える、判定装置。
    A determination device used in a solar power generation system including a plurality of power generation units including a solar battery panel,
    An acquisition unit for acquiring a plurality of pieces of measurement information respectively indicating measurement results of output currents of the plurality of power generation units;
    A detection unit for detecting the occurrence of a state due to overloading of the solar power generation system;
    A determination apparatus comprising: a determination unit that determines an abnormality of the power generation unit corresponding to the output current based on a change in the output current when the state occurs.
  2.  前記検知部は、各前記発電部の前記出力電流に基づく発電電力の合計または前記出力電流の合計が所定条件を満たす場合、前記状態が発生したと判断する、請求項1に記載の判定装置。 The determination device according to claim 1, wherein the detection unit determines that the state has occurred when a total of generated power based on the output current of each power generation unit or a total of the output current satisfies a predetermined condition.
  3.  各前記発電部からの出力ラインが電力変換装置に電気的に接続され、
     前記検知部は、前記電力変換装置から前記状態の発生を示す情報を取得する、請求項1または請求項2に記載の判定装置。
    An output line from each of the power generation units is electrically connected to the power converter,
    The determination device according to claim 1, wherein the detection unit acquires information indicating the occurrence of the state from the power conversion device.
  4.  太陽電池パネルを含む複数の発電部と、
     判定装置とを備える太陽光発電システムであって、
     前記判定装置は、前記複数の発電部の出力電流の計測結果をそれぞれ示す複数の計測情報を取得し、前記太陽光発電システムの過積載に起因する状態の発生を検知し、前記状態が発生している場合における前記出力電流の変動に基づいて、前記出力電流に対応する前記発電部の異常を判定する、太陽光発電システム。
    A plurality of power generation units including solar cell panels;
    A photovoltaic power generation system comprising a determination device,
    The determination device acquires a plurality of pieces of measurement information respectively indicating measurement results of output currents of the plurality of power generation units, detects occurrence of a state due to overloading of the solar power generation system, and the state occurs. A photovoltaic power generation system that determines an abnormality of the power generation unit corresponding to the output current based on fluctuations in the output current when the
  5.  太陽電池パネルを含む複数の発電部を備える太陽光発電システムに用いられる判定装置における判定方法であって、
     前記太陽光発電システムの過積載に起因する状態の発生を検知するステップと、
     前記状態が発生している場合における前記複数の発電部の出力電流の変動に基づいて、前記出力電流に対応する前記発電部の異常を判定するステップとを含む、判定方法。
    A determination method in a determination device used in a solar power generation system including a plurality of power generation units including a solar battery panel,
    Detecting the occurrence of a condition resulting from overloading of the photovoltaic system;
    And determining an abnormality of the power generation unit corresponding to the output current based on fluctuations in output currents of the plurality of power generation units when the state occurs.
PCT/JP2019/001417 2018-03-26 2019-01-18 Determination device, solar power system and determination method WO2019187525A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020509706A JP7095734B2 (en) 2018-03-26 2019-01-18 Judgment device, photovoltaic system and judgment method
DE112019001621.0T DE112019001621T5 (en) 2018-03-26 2019-01-18 Determination device, photovoltaic system and determination method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-058753 2018-03-26
JP2018058753 2018-03-26

Publications (1)

Publication Number Publication Date
WO2019187525A1 true WO2019187525A1 (en) 2019-10-03

Family

ID=68061294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001417 WO2019187525A1 (en) 2018-03-26 2019-01-18 Determination device, solar power system and determination method

Country Status (3)

Country Link
JP (1) JP7095734B2 (en)
DE (1) DE112019001621T5 (en)
WO (1) WO2019187525A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113441A1 (en) * 2020-11-26 2022-06-02 住友電気工業株式会社 Power generation status determination device, power generation status determination method, and determination program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266921A (en) * 2003-02-28 2004-09-24 Kyocera Corp Ac power supply system
KR20130102390A (en) * 2012-03-07 2013-09-17 현대중공업 주식회사 Active power limitation method
WO2015029138A1 (en) * 2013-08-27 2015-03-05 東芝三菱電機産業システム株式会社 Solar generator system
KR101639940B1 (en) * 2015-02-24 2016-07-14 공주대학교 산학협력단 Apparatus and method for monitoring pv panel
JP2017225303A (en) * 2016-06-17 2017-12-21 国立大学法人 筑波大学 Solar cell monitoring system, and solar cell monitoring program
JP2018026909A (en) * 2016-08-08 2018-02-15 住友電気工業株式会社 Power generation state determination device, monitoring device, power generation state determination method and determination program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035136A (en) * 2009-07-31 2011-02-17 Kowa Denki Sangyo Kk Restoration device of photovoltaic power generator, photovoltaic power generation system and restoration system of the photovoltaic power generator
JP6796432B2 (en) * 2016-08-16 2020-12-09 未来工業株式会社 Power generation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266921A (en) * 2003-02-28 2004-09-24 Kyocera Corp Ac power supply system
KR20130102390A (en) * 2012-03-07 2013-09-17 현대중공업 주식회사 Active power limitation method
WO2015029138A1 (en) * 2013-08-27 2015-03-05 東芝三菱電機産業システム株式会社 Solar generator system
KR101639940B1 (en) * 2015-02-24 2016-07-14 공주대학교 산학협력단 Apparatus and method for monitoring pv panel
JP2017225303A (en) * 2016-06-17 2017-12-21 国立大学法人 筑波大学 Solar cell monitoring system, and solar cell monitoring program
JP2018026909A (en) * 2016-08-08 2018-02-15 住友電気工業株式会社 Power generation state determination device, monitoring device, power generation state determination method and determination program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIGUCHI, Y. ET AL.: "Classification of causes of broken solar panels in solar power plant", 2017 IEEE INTERNATIONAL TELECOMMUNICATIONS ENERGY CONFERENCE (INTELEC, 2017, pages 127 - 132, XP033277943, doi:10.1109/INTLEC.2017.8214123 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113441A1 (en) * 2020-11-26 2022-06-02 住友電気工業株式会社 Power generation status determination device, power generation status determination method, and determination program

Also Published As

Publication number Publication date
DE112019001621T5 (en) 2020-12-24
JP7095734B2 (en) 2022-07-05
JPWO2019187525A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
JP7188399B2 (en) Determination device, photovoltaic power generation system, determination method and determination program
JP6448946B2 (en) Solar panel abnormality detection system
JP2021189083A (en) Determination device and determination method
JP2018026909A (en) Power generation state determination device, monitoring device, power generation state determination method and determination program
WO2019187525A1 (en) Determination device, solar power system and determination method
KR20180112495A (en) System for data management of photovoltaic module
WO2019150816A1 (en) Monitoring system, analysis device, and determination method
JP7163931B2 (en) Determination device, determination method and determination program
JP2014161171A (en) Method for diagnosing soundness of photovoltaic power generation device, and information processing device
JP7226338B2 (en) Monitoring device and judgment method
JP2014089998A (en) Monitor system for photovoltaic power generation equipment
WO2018066693A1 (en) Assessing device and monitoring device
JP7207401B2 (en) Determination device, weather information processing device, determination method, and weather information processing method
JP7196910B2 (en) Monitoring device and monitoring method
KR101898928B1 (en) Monitoring apparatus for digital meter and solar energy generation system using the same
WO2019123883A1 (en) Determining device, solar power generation system, determining method, and determining program
JP2023009777A (en) Determination device and determination method
JPWO2019187524A1 (en) Power generation unit relocation arithmetic unit and arithmetic processing method
WO2023095387A1 (en) Determination device and determination method
JP2019200075A (en) Monitoring device, determination device, monitoring method and determination method
WO2019216014A1 (en) Monitoring system
CN104779915A (en) Conflux detection method and system for conflux boxes and solar power station
JP6226593B2 (en) Solar power system
JP6619185B2 (en) Photovoltaic power generation diagnostic system and diagnostic method
JP2019201543A (en) Monitoring device, determination device, ground fault measuring device, monitoring method, determination method, and measuring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509706

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19774930

Country of ref document: EP

Kind code of ref document: A1