WO2019184637A1 - 一种硅酸钙镁保温材料及其制备方法和应用 - Google Patents

一种硅酸钙镁保温材料及其制备方法和应用 Download PDF

Info

Publication number
WO2019184637A1
WO2019184637A1 PCT/CN2019/076039 CN2019076039W WO2019184637A1 WO 2019184637 A1 WO2019184637 A1 WO 2019184637A1 CN 2019076039 W CN2019076039 W CN 2019076039W WO 2019184637 A1 WO2019184637 A1 WO 2019184637A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
thermal insulation
insulation material
calcium
active
Prior art date
Application number
PCT/CN2019/076039
Other languages
English (en)
French (fr)
Inventor
韦江雄
徐畏婷
余其俊
石亮
赵志广
李方贤
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2019184637A1 publication Critical patent/WO2019184637A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B9/00Magnesium cements or similar cements
    • C04B9/11Mixtures thereof with other inorganic cementitious materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • C04B28/12Hydraulic lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B9/00Magnesium cements or similar cements
    • C04B9/20Manufacture, e.g. preparing the batches
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0004Compounds chosen for the nature of their cations
    • C04B2103/001Alkaline earth metal or Mg-compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00431Refractory materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • C04B2201/32Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values for the thermal conductivity, e.g. K-factors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the field of thermal insulation materials and relates to magnesium oxide, in particular to a calcium silicate magnesium thermal insulation material prepared by partially replacing calcium raw materials by using magnesium oxide (or other magnesium raw materials such as magnesium hydroxide), and a preparation method thereof. application.
  • limestone can be divided into high calcium limestone (CaCO 3 > 95wt%), magnesium limestone (CaCO 3 : 80 ⁇ 90wt%; MgCO 3 : 5 ⁇ 15wt%) and dolomitic limestone (CaCO 3 : 50 ⁇ 80wt %; MgCO 3 : 15 to 45 wt%).
  • China's proven reserves of limestone are about 73 billion tons, of which about 30 billion tons of high-grade limestone and about 40 billion tons of low-grade limestone, and mainly magnesium-rich limestone.
  • the content of MgO in raw materials is strictly limited, and a large amount of high-quality limestone mineral resources are consumed.
  • the invention replaces the calcium raw material with the magnesium raw material to prepare the magnesium-hard xonotlite thermal insulation material by high temperature and high pressure dynamic hydrothermal synthesis, and can remove the application limitation of the magnesium-rich low-grade limestone in the building materials field.
  • the dynamic hydrothermal synthesis of the xonotlite insulation material can reach a temperature of up to 1000 ° C, and the fibrous xonotlite crystals are interwoven under the action of centrifugal force to form hollow spherical secondary particles, which makes it have lower heat conduction. Coefficient, higher strength and relatively low bulk density. Different bulk density xonotlite insulation materials have different performance indexes, the bulk density is less than 130kg/m 3 , the thermal conductivity is less than 0.049W/m ⁇ K, the bulk density is less than 220kg/m 3 , and the thermal conductivity is less than 0.062W/m ⁇ K; The bulk density is less than 240kg/m 3 and the thermal conductivity is less than 0.095W/m ⁇ K.
  • the xonotlite type thermal insulation material has the advantages of fireproofing, soundproofing, and the like, and is harmless to the human body, and is a kind of all-green thermal insulation material.
  • the main raw materials for the production of xonotlite products at home and abroad are quicklime, slaked lime, etc.
  • the quality of calcium raw materials is relatively high, and a large amount of high-quality limestone is consumed.
  • the invention prepares magnesium-hard xonotlite insulation materials with different magnesium content by means of compounding to guide the application of magnesium-containing low-grade limestone in the field of building materials.
  • the primary object of the present invention is to provide a method for preparing a calcium silicate magnesium thermal insulation material by replacing a part of the calcium raw material with a magnesium raw material.
  • Another object of the present invention is to provide a calcium silicate magnesium thermal insulation material prepared by the above method.
  • Still another object of the present invention is to provide the use of the above calcium silicate magnesium thermal insulation material.
  • a method for preparing a calcium silicate magnesium thermal insulation material by replacing a part of the calcium raw material with a magnesium raw material which mainly comprises the following steps:
  • Pretreatment of calcium raw materials and magnesium raw materials the magnesite and limestone are respectively raised to 600-950 ° C at a heating rate of 5 to 10 ° C / min, and then calcined for 1 to 3 hours, and then cooled to room temperature after completion of calcination. After that, grinding and passing through a 200 mesh sieve to prepare active calcium oxide powder and active magnesium oxide powder;
  • the active slurry obtained in the step (3) is allowed to stand and precipitate, the supernatant liquid is removed, and the lower active slurry is injected into the molding die, and the slurry is filtered at a pressurization rate of 5 to 10 N/s.
  • the siliceous material described in the step (2) is silica fume or quartz powder having an average particle size of 1 to 4 ⁇ m, preferably silica fume;
  • the amount of the active calcium oxide powder, the active magnesium oxide powder, the siliceous material and the water in the step (2) is such that the ratio of the sum of the moles of calcium oxide and magnesium oxide to the number of moles of SiO 2 is 1:1;
  • the ratio of the number of moles of magnesium oxide to the sum of the moles of calcium oxide and magnesium oxide is 0 to 0.2, preferably 0 to 15.15%, more preferably 10%; water and solid phase (calcium oxide + magnesium oxide + SiO 2 )
  • the mass ratio of the total amount is 20 to 60:1;
  • the high temperature and high pressure reaction described in the step (3) means that the temperature is raised to 210 to 240 ° C at a rate of 2 to 3 ° C / min, the heat treatment reaction is 10 to 24 hours, and the pressure in the kettle is 2.0 to 3.0 MPa when the temperature is maintained;
  • the magnetic stirring described in the step (3) means magnetic stirring at a speed of 100 to 400 r/min.
  • the static precipitation described in the step (4) means standing precipitation for 20 to 40 minutes;
  • the dwell time described in the step (4) is calculated from the non-aqueous filtration; the drying is carried out in two steps, first drying at a low temperature of 40 to 60 ° C for 4 to 6 h, and then drying at a high temperature of 80 to 110 ° C to Constant weight.
  • a calcium silicate magnesium thermal insulation material prepared by the above method.
  • the above-mentioned calcium silicate magnesium thermal insulation material is applied in the interior wall of the building, the kiln, the metallurgy and the like.
  • the mechanism of the invention is:
  • the invention combines calcium raw material, magnesium raw material, siliceous raw material and water into a raw slurry in a certain proportion, and reacts in a high temperature and high pressure magnetic driven reaction kettle, and the reaction process is continuously stirred to make fibrous magnesium-hard silicon.
  • the calcium carbide crystal forms a secondary particle having a "chestnut shell"-like structure under the action of eddy current, that is, an active slurry, and then is subjected to pressure filtration molding, drying, coating with a waterproof coating, and drying to obtain a finished product.
  • the present invention has the following advantages and beneficial effects:
  • the magnesium-hard xonotlite heat insulating material of the present invention replaces part of the calcium raw material, and the substitution amount is 0-15.15% by weight, which can be used for guiding magnesium limestone (CaCO 3 : 80-90 wt%; MgCO 3 : 5 ⁇ 15wt%) to prepare calcium silicate magnesium insulation material, reduce the use of high-quality limestone, but also avoid the idle waste of magnesium limestone.
  • the calcium silicate magnesium thermal insulation material of the invention has the characteristics of low bulk density, small thermal conductivity, high strength and high use temperature, and has the same performance as the xonotlite insulation material, and can be used as a building inner wall and a kiln. Insulation Materials.
  • the invention adopts high temperature and high pressure dynamic hydrothermal synthesis to exchange magnesium ions with calcium ions in the xonotlite crystal, and the product has no magnesium hydroxide or other magnesium containing phase, thus ensuring the calcium silicate. High temperature stability of magnesium insulation materials.
  • XRD X-ray diffraction
  • SEM scanning electron microscope
  • reagents used in the examples are commercially available from the market unless otherwise specified.
  • the magnesite used in the examples is the first product of Liaoning Haicheng.
  • the calcined magnesium content can reach 97% after calcination, and the calcium oxide content after calcination can reach 98%.
  • the magnesite and limestone were calcined at 950 ° C, incubated for 2 h, cooled to room temperature, and ground through a 200 mesh sieve. According to the molar ratio of (CaO+MgO) to SiO 2 of 1:1, the molar ratio of MgO to (CaO+MgO) is 0.1, the mass ratio of water to solid phase is 40:1, mixed with quartz powder and water with an average particle size of 2.24 ⁇ m, and stirred. Make a raw slurry evenly.
  • the raw slurry was added to a high-temperature and high-pressure magnetic stirring reactor, the stirring speed was 250 r/min, the temperature was raised to 220 ° C in 90 minutes, the pressure was 2.1 MPa, and the dynamic hydrothermal synthesis of magnesium-hard xonotlite was carried out for 12 hours. Immediately after the completion of the heat preservation, the circulating water was cooled, and cooled to room temperature to obtain a magnesium-hard xonotlite active slurry.
  • the active slurry was allowed to stand and precipitated for 30 min, the supernatant liquid was removed, and the lower active slurry was injected into a molding die, and the water in the slurry was filtered at a pressure rate of 5 N/s, and the pressure was dried for 2 s for 60 s, and the mold was dried. It is dried at a low temperature of 60 ° C for 4 h, and then dried at a high temperature of 80 ° C to a constant weight to obtain a finished product.
  • the magnesite and limestone were calcined at 950 ° C, incubated for 2 h, cooled to room temperature, and ground through a 200 mesh sieve. According to the molar ratio of (CaO+MgO) to SiO 2 of 1:1, the molar ratio of MgO to (CaO+MgO) is 0.2, the mass ratio of water to solid phase is 40:1, mixed with quartz powder and water with an average particle size of 2.24 ⁇ m, and stirred. Make a raw slurry evenly.
  • the raw slurry was added to a high-temperature and high-pressure magnetic stirring reactor, the stirring speed was 250 r/min, the temperature was raised to 220 ° C in 90 minutes, the pressure was 2.1 MPa, and the dynamic hydrothermal synthesis of magnesium-hard xonotlite was carried out for 12 hours. Immediately after the completion of the heat preservation, the circulating water was cooled, and cooled to room temperature to obtain a magnesium-hard xonotlite active slurry.
  • the active slurry was allowed to stand and precipitated for 30 min, the supernatant liquid was removed, and the lower active slurry was injected into a molding die, and the water in the slurry was filtered at a pressure rate of 5 N/s, and the pressure was dried for 2 s for 60 s, and the mold was dried. It is dried at a low temperature of 60 ° C for 4 h, and then dried at a high temperature of 80 ° C to a constant weight to obtain a finished product.
  • the magnesite and limestone were calcined at 950 ° C, incubated for 2 h, cooled to room temperature, and ground through a 200 mesh sieve. According to the molar ratio of (CaO+MgO) to SiO 2 of 1:1, the molar ratio of MgO to (CaO+MgO) is 0.1, the mass ratio of water to solid phase is 40:1, mixed with silica fume and water, and stirred to form raw meal. Pulp.
  • the raw slurry was added to a high-temperature and high-pressure magnetic stirring reactor, the stirring speed was 250 r/min, the temperature was raised to 220 ° C in 90 minutes, the pressure was 2.1 MPa, and the dynamic hydrothermal synthesis of magnesium-hard xonotlite was carried out for 12 hours. Immediately after the completion of the heat preservation, the circulating water was cooled, and cooled to room temperature to obtain a magnesium-hard xonotlite active slurry.
  • the active slurry was allowed to stand and precipitated for 30 min, the supernatant liquid was removed, and the lower active slurry was injected into a molding die, and the water in the slurry was filtered at a pressure rate of 5 N/s, and the pressure was dried for 2 s for 60 s, and the mold was dried. It is dried at a low temperature of 60 ° C for 4 h, and then dried at a high temperature of 80 ° C to a constant weight to obtain a finished product.
  • the magnesite and limestone were calcined at 950 ° C, incubated for 2 h, cooled to room temperature, and ground through a 200 mesh sieve. According to the molar ratio of (CaO+MgO) to SiO 2 of 1:1, the molar ratio of MgO to (CaO+MgO) is 0.2, the mass ratio of water to solid phase is 40:1, mixed with silica fume and water, and stirred to form raw meal. Pulp.
  • the raw slurry was added to a high-temperature and high-pressure magnetic stirring reactor, the stirring speed was 250 r/min, the temperature was raised to 220 ° C in 90 minutes, the pressure was 2.1 MPa, and the dynamic hydrothermal synthesis of magnesium-hard xonotlite was carried out for 12 hours. Immediately after the completion of the heat preservation, the circulating water was cooled, and cooled to room temperature to obtain a magnesium-hard xonotlite active slurry.
  • the active slurry was allowed to stand and precipitated for 30 min, the supernatant liquid was removed, and the lower active slurry was injected into a molding die, and the water in the slurry was filtered at a pressure rate of 5 N/s, and the pressure was dried for 2 s for 60 s, and the mold was dried. It is dried at a low temperature of 60 ° C for 4 h, and then dried at a high temperature of 80 ° C to a constant weight to obtain a finished product.
  • XRD X-ray diffraction
  • X-ray fluorescence spectroscopy (XRF) of PANalytical, the Netherlands, was used to analyze the composition of the synthetic product magnesium-hard xonotlite.
  • the synthesized products of Examples 1, 2, 3, and 4 were washed with deionized water, filtered three times, and dried.
  • the XRF component analysis results are shown in Table 1.
  • the magnesium content of the products in Examples 1 to 4 is equivalent to the amount of the magnesium raw material added before the reaction, that is, the magnesium ion replaces the xonotlite lattice during the reaction.
  • the calcium ions in the form form magnesium-hard xonotlite crystals rather than magnesium hydroxide or other magnesium-containing phases.
  • Insulation material performance test performance test mainly according to GB/T 5486-2008 "Inorganic hard insulation products test method" for thermal insulation material thermal conductivity, bulk density, compressive strength, etc., the specific performance indicators are shown in Table 2.
  • the magnesium-hard xonotlite insulation materials prepared in Examples 1-4 substantially satisfy the performance indexes of the hard xonotlite insulation materials, wherein the magnesium-hard silicon prepared by the molar ratio of MgO and CaO+MgO is 0.1.
  • Calcium stone insulation material has low bulk density and low thermal conductivity, and it is better to use silica fume as siliceous material to synthesize magnesium-hard xonotlite insulation material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种硬硅钙镁保温材料及其制备方法和应用。该方法包括以下步骤:(1)菱镁石和石灰石的煅烧预处理,制得氧化钙和氧化镁粉;(2)生料浆的配制;(3)动态水热合成,得到硅酸钙镁活性料浆;(4)压滤成型、干燥,制得成品。采用动态水热合成法制得的硅酸钙镁保温材料主晶相为含镁-硬硅钙石,具有导热系数小、容重低、抗压强度高和高温稳定性好等优点,可用作建筑内墙和窑炉等的保温材料。

Description

一种硅酸钙镁保温材料及其制备方法和应用 技术领域
本发明属于保温绝热材料领域,与氧化镁有关,特别涉及一种利用氧化镁(或者其他镁质原料比如氢氧化镁)部分替代钙质原料来制备的硅酸钙镁保温材料及其制备方法和应用。
背景技术
硅酸盐水泥生产需要消耗大量不可再生的矿产资源,其中消耗量最大的是优质石灰石,我国每年仅仅生产水泥就要消耗高品位石灰石20亿吨。预计我国未来20年仅水泥工业就将消耗300亿吨高品位石灰石。
根据矿物组成可以将石灰石分为高钙石灰石(CaCO 3>95wt%)、镁石灰石(CaCO 3:80~90wt%;MgCO 3:5~15wt%)和白云石质石灰石(CaCO 3:50~80wt%;MgCO 3:15~45wt%)。据相关统计,我国石灰石探明储量约730亿吨,其中高品位石灰石约300亿吨,低品位石灰石约400亿吨,而且主要是富镁石灰石。水泥生产中对原材料中MgO的含量严格限制,消耗大量的优质石灰石矿产资源。同时也造成了约400亿吨富镁低品位石灰石的闲置浪费。本发明以镁质原料部分替代钙质原料通过高温高压动态水热合成来制备镁-硬硅钙石保温材料,可以解除建材领域对富镁低品位石灰石的应用限制。
动态水热合成的硬硅钙石型保温材料使用温度可达1000℃,又由于纤维状的硬硅钙石晶体在离心力的作用下交织形成空心球状二次粒子,使得它兼具较低的导热系数、较高的强度和相当低的容重。不同容重的硬硅钙石型保温材料有不同的性能指标,容重小于130kg/m 3,导热系数小于0.049W/m·K;容重小于220kg/m 3,导热系数小于0.062W/m·K;容重小于240kg/m 3,导热系数小于0.095W/m·K。而且硬硅钙石型保温材料还具有防火、隔音等优点,对人体无害,是一种全绿色的保温材料。国内外生产硬硅钙石制品主要运用的 钙质原料是生石灰、消石灰等,对钙质原料的品质要求比较高,消耗大量的优质石灰石。还没有用含镁低品位石灰石制备镁-硬硅钙石保温材料的报道。本发明用复配的方式制备了不同含镁量的镁-硬硅钙石保温材料,来指导含镁低品位石灰石在建材领域的应用。
发明内容
为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一种用镁质原料替代部分钙质原料来制备硅酸钙镁保温材料的制备方法。
本发明另一目的在于提供上述方法制备的硅酸钙镁保温材料。
本发明再一目的在于提供上述硅酸钙镁保温材料的应用。
本发明的目的通过下述方案实现:
一种用镁质原料替代部分钙质原料来制备硅酸钙镁保温材料的方法,主要包括以下步骤:
(1)钙质原料和镁质原料的预处理:将菱镁石和石灰石分别以5~10℃/min的升温速率升至600~950℃,然后保温煅烧1~3h,煅烧结束后冷却至室温后,粉磨、过200目筛,从而制得活性氧化钙粉和活性氧化镁粉;
(2)生料浆的配制:将步骤(1)中得到的活性氧化钙粉、活性氧化镁粉、硅质原料和水按一定比例混合,搅拌均匀后得到生料浆;
(3)动态水热合成:将步骤(2)中得到的生料浆加入高温高压磁力驱动反应釜中,在磁力搅拌条件下进行高温高压反应,反应结束后冷却至室温,制得镁-硬硅钙石活性料浆;
(4)成型干燥:将步骤(3)中得到的活性料浆静置、沉淀,除去上层清液,将下层活性料浆注入成型模具中,以5~10N/s加压速率滤去料浆中的水,2~4KN保压60s,脱模烘干,制得成品。
步骤(2)中所述的硅质原料为硅灰或平均粒度为1~4μm的石英粉,优选为硅灰;
步骤(2)中所述的活性氧化钙粉、活性氧化镁粉、硅质原料和水的用量满足:氧化钙和氧化镁的摩尔数之和与SiO 2的摩尔数的比值为1:1;氧化镁的 摩尔数与氧化钙和氧化镁的摩尔数之和的比值为0~0.2,优选为0~15.15%,更优选为10%;水与固相(氧化钙+氧化镁+SiO 2)总量的质量比为20~60:1;
步骤(3)中所述的高温高压反应是指以2~3℃/min的速度升温至210~240℃,保温反应10~24h,保温时釜内压力为2.0~3.0MPa;
步骤(3)中所述的磁力搅拌是指以100~400r/min速度进行磁力搅拌。
步骤(4)中所述的静置沉淀是指静置沉淀20~40min;
步骤(4)中所述的保压时间从无水滤出开始计算;所述的烘干分两步,先在低温40~60℃干燥4~6h,再在高温80~110℃烘干至恒重。
一种由上述方法制备得到的硅酸钙镁保温材料。
上述的硅酸钙镁保温材料在建筑内墙、窑炉、冶金等保温行业中的应用。
本发明的机理为:
本发明将钙质原料、镁质原料、硅质原料和水以一定比例混合制成生料浆,在高温高压磁力驱动反应釜中进行反应,反应过程持续搅拌,使得纤维状的镁-硬硅钙石晶体在涡流作用下形成具有“栗子壳”状结构的二次粒子,即活性料浆,然后经过压滤成型、干燥、涂防水涂料、烘干制得成品。
本发明相对于现有技术,具有如下的优点及有益效果:
(1)本发明的镁-硬硅钙石保温材料,镁质原料替代部分钙质原料,替代量为0~15.15wt%,可用来指导用镁石灰石(CaCO 3:80~90wt%;MgCO 3:5~15wt%)来制备硅酸钙镁保温材料,减少对优质石灰石的利用,也避免了镁石灰石的闲置浪费。
(2)本发明的硅酸钙镁保温材料具有容重低、导热系数小、强度高、使用温度高等特点,与硬硅钙石型保温材料性能相当,可用作建筑内墙和窑炉等的保温材料。
(3)本发明采用高温高压动态水热合成,使镁离子与硬硅钙石晶体中的钙离子发生交换,产物中没有氢氧化镁或者其他含镁物相,这样保证了这种硅酸钙镁保温材料的高温稳定性。
附图说明
图1为实施例1、2、3、4制备的硅酸钙镁保温材料的镁-硬硅钙石的X射线衍射(XRD)图谱;
图2为实施例1、2、3、4制备的硅酸钙镁保温材料的镁-硬硅钙石在同一尺度下二次粒子的扫描电子显微镜(SEM)图片。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例中所用试剂如无特殊说明均可从市场常规购得。
实施例中所用的菱镁石为辽宁海城一级品,煅烧后氧化镁含量可达97%,石灰石煅烧后氧化钙含量可达98%。
实施例1
菱镁石和石灰石经950℃煅烧,保温2h,冷却至室温,粉磨过200目筛。按照(CaO+MgO)和SiO 2摩尔比1:1,MgO与(CaO+MgO)摩尔比0.1,水与固相的质量比40:1,与平均粒度2.24μm的石英粉和水混合,搅拌均匀制成生料浆。将生料浆加入高温高压磁力搅拌反应釜,持续搅拌速度250r/min,90min升温至220℃,压力为2.1MPa,保温12h进行动态水热合成镁-硬硅钙石。保温结束立即通冷却循环水,冷却至室温,获得镁-硬硅钙石活性料浆。将活性料浆静置、沉淀30min,除去上层清液,将下层活性料浆注入成型模具中,以5N/s加压速率滤去料浆中的水,2KN保压60s,脱模烘干,先在低温60℃干燥4h,再在高温80℃烘干至恒重,制得成品。
实施例2
菱镁石和石灰石经950℃煅烧,保温2h,冷却至室温,粉磨过200目筛。按照(CaO+MgO)和SiO 2摩尔比1:1,MgO与(CaO+MgO)摩尔比0.2,水与固相的质量比40:1,与平均粒度2.24μm的石英粉和水混合,搅拌均匀制成生料浆。将生料浆加入高温高压磁力搅拌反应釜,持续搅拌速度250r/min,90分钟升温至220℃,压力为2.1MPa,保温12h进行动态水热合成镁-硬硅钙石。 保温结束立即通冷却循环水,冷却至室温,获得镁-硬硅钙石活性料浆。将活性料浆静置、沉淀30min,除去上层清液,将下层活性料浆注入成型模具中,以5N/s加压速率滤去料浆中的水,2KN保压60s,脱模烘干,先在低温60℃干燥4h,再在高温80℃烘干至恒重,制得成品。
实施例3
菱镁石和石灰石经950℃煅烧,保温2h,冷却至室温,粉磨过200目筛。按照(CaO+MgO)和SiO 2摩尔比1:1,MgO与(CaO+MgO)摩尔比0.1,水与固相的质量比40:1,与硅灰和水混合,搅拌均匀制成生料浆。将生料浆加入高温高压磁力搅拌反应釜,持续搅拌速度250r/min,90分钟升温至220℃,压力为2.1MPa,保温12h进行动态水热合成镁-硬硅钙石。保温结束立即通冷却循环水,冷却至室温,获得镁-硬硅钙石活性料浆。将活性料浆静置、沉淀30min,除去上层清液,将下层活性料浆注入成型模具中,以5N/s加压速率滤去料浆中的水,2KN保压60s,脱模烘干,先在低温60℃干燥4h,再在高温80℃烘干至恒重,制得成品。
实施例4
菱镁石和石灰石经950℃煅烧,保温2h,冷却至室温,粉磨过200目筛。按照(CaO+MgO)和SiO 2摩尔比1:1,MgO与(CaO+MgO)摩尔比0.2,水与固相的质量比40:1,与硅灰和水混合,搅拌均匀制成生料浆。将生料浆加入高温高压磁力搅拌反应釜,持续搅拌速度250r/min,90分钟升温至220℃,压力为2.1MPa,保温12h进行动态水热合成镁-硬硅钙石。保温结束立即通冷却循环水,冷却至室温,获得镁-硬硅钙石活性料浆。将活性料浆静置、沉淀30min,除去上层清液,将下层活性料浆注入成型模具中,以5N/s加压速率滤去料浆中的水,2KN保压60s,脱模烘干,先在低温60℃干燥4h,再在高温80℃烘干至恒重,制得成品。
实施例1~4中制备的硅酸钙镁保温材料的镁-硬硅钙石的X射线衍射(XRD)图谱如图1所示,从图1中可以看出产物物相组成仅为硬硅钙石, 原料中加入的氧化镁消失,既没形成氢氧化镁,也没形成水化硅酸镁。同时硬硅钙石衍射峰在27度左右产生明显的副峰,这也从侧面反映了镁离子进入硬硅钙石晶格,形成硅酸钙镁。
实施例1~4中制备的硅酸钙镁保温材料的镁-硬硅钙石在同一尺度下二次粒子的扫描电子显微镜(SEM)图片如图2所示。
镁含量测试:荷兰PANalytical公司X射线荧光光谱(XRF),分析合成产物镁-硬硅钙石的成分。将实施例1、2、3、4的合成产物用去离子水洗涤、过滤三次,烘干,其XRF成分分析结果见表1。
表1 实施例1~4中的合成产物的XRF成分分析结果
试样 实施例1 实施例2 实施例3 实施例4
CaO(wt%) 46.58 47.23 45.95 48.45
MgO(wt%) 39.12 36.42 38.24 36.39
SiO 2(wt%) 2.88 5.12 3.39 5.74
MgO/(CaO+MgO) 0.09 0.16 0.11 0.18
(CaO+MgO)/SiO 2 0.99 0.99 1.00 0.98
从表1中可以看出,实施例1~4中的产物中的镁含量与反应前加入的镁质原料的量相当,也就是说,在反应过程中镁离子取代了硬硅钙石晶格中的钙离子,形成镁-硬硅钙石晶体,而不是以氢氧化镁或者其他含镁物相存在。
保温材料性能测试:性能测试主要根据GB/T 5486-2008《无机硬质绝热制品试验方法》对保温材料的导热系数、容重、抗压强度等进行表征,具体性能指标见表2。
表2 实施例1~4中的产物的导热系数、容重和抗压强度的数据
Figure PCTCN2019076039-appb-000001
从表2中可以看出,实施例1-4制备的镁-硬硅钙石保温材料基本满足硬 硅钙石保温材料的性能指标,其中MgO和CaO+MgO摩尔比0.1制备的镁-硬硅钙石保温材料容重较低、导热系数较小,而且用硅灰作为硅质原料来合成镁-硬硅钙石保温材料效果较好。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

  1. 一种硅酸钙镁保温材料的制备方法,其特征在于主要包括以下步骤:
    (1)钙质原料和镁质原料的预处理:将菱镁石和石灰石分别以5~10℃/min的升温速率升至600~950℃,然后保温煅烧1~3h,煅烧结束后冷却至室温后,粉磨、过200目筛,从而制得活性氧化钙粉和活性氧化镁粉;
    (2)生料浆的配制:将步骤(1)中得到的活性氧化钙粉、活性氧化镁粉、硅质原料和水按一定比例混合,搅拌均匀后得到生料浆;
    (3)动态水热合成:将步骤(2)中得到的生料浆加入高温高压磁力驱动反应釜中,在磁力搅拌条件下进行高温高压反应,反应结束后冷却至室温,制得镁-硬硅钙石活性料浆;
    (4)成型干燥:将步骤(3)中得到的活性料浆静置、沉淀,除去上层清液,将下层活性料浆注入成型模具中,以5~10N/s加压速率滤去料浆中的水,2~4KN保压60s,脱模烘干,制得成品。
  2. 根据权利要求1所述的硅酸钙镁保温材料的制备方法,其特征在于:
    步骤(2)中所述的硅质原料为硅灰或平均粒度为1~4μm的石英粉。
  3. 根据权利要求2所述的硅酸钙镁保温材料的制备方法,其特征在于:
    步骤(2)中所述的硅质原料为硅灰。
  4. 根据权利要求1所述的硅酸钙镁保温材料的制备方法,其特征在于:
    步骤(2)中所述的活性氧化钙粉、活性氧化镁粉、硅质原料和水的用量满足:氧化钙和氧化镁的摩尔数之和与SiO 2的摩尔数的比值为1:1;氧化镁的摩尔数与氧化钙和氧化镁的摩尔数之和的比值为0~0.2;水与固相总量的质量比为20~60:1。
  5. 根据权利要求1所述的硅酸钙镁保温材料的制备方法,其特征在于:
    步骤(2)中所述的活性氧化钙粉、活性氧化镁粉、硅质原料和水的用量满足:氧化钙和氧化镁的摩尔数之和与SiO 2的摩尔数的比值为1:1;氧化镁的摩尔数与氧化钙和氧化镁的摩尔数之和的比值为0~15.15%;水与固相总量的质量比为40:1。
  6. 根据权利要求1所述的硅酸钙镁保温材料的制备方法,其特征在于:
    步骤(3)中所述的高温高压反应是指以2~3℃/min的速度升温至210~240℃,保温反应10~24h,保温时釜内压力为2.0~3.0MPa;
    步骤(3)中所述的磁力搅拌是指以100~400r/min速度进行磁力搅拌。
  7. 根据权利要求1所述的硅酸钙镁保温材料的制备方法,其特征在于:
    步骤(4)中所述的静置沉淀是指静置沉淀20~40min;
    步骤(4)中所述的保压时间从无水滤出开始计算;所述的烘干分两步,先在低温40~60℃干燥4~6h,再在高温80~110℃烘干至恒重。
  8. 一种根据权利要求1~7任一项所述的方法制备得到的硅酸钙镁保温材料。
  9. 根据权利要求8所述的硅酸钙镁保温材料在建筑内墙、窑炉和冶金中的应用。
PCT/CN2019/076039 2018-03-27 2019-02-25 一种硅酸钙镁保温材料及其制备方法和应用 WO2019184637A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810259580.4 2018-03-27
CN201810259580.4A CN108455948A (zh) 2018-03-27 2018-03-27 一种硅酸钙镁保温材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2019184637A1 true WO2019184637A1 (zh) 2019-10-03

Family

ID=63237564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076039 WO2019184637A1 (zh) 2018-03-27 2019-02-25 一种硅酸钙镁保温材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN108455948A (zh)
WO (1) WO2019184637A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108455948A (zh) * 2018-03-27 2018-08-28 华南理工大学 一种硅酸钙镁保温材料及其制备方法和应用
CN110127710A (zh) * 2019-06-10 2019-08-16 河南师范大学 一种水合硅酸钙镁流变剂及其节能环保型生产工艺
CN113072347A (zh) * 2021-03-31 2021-07-06 华南理工大学 一种高密度高强度硅酸钙镁质板材及其制备方法
CN112919484A (zh) * 2021-04-25 2021-06-08 西南科技大学 一种以石英砂为硅质原料制备的硅酸镁及其方法
CN116426169A (zh) * 2023-04-02 2023-07-14 炫杰复合材料(上海)有限公司 一种保温隔热涂料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119058A (ja) * 1998-10-14 2000-04-25 Asano Slate Co Ltd 軽量珪酸カルシウム板の製造方法
CN1958499A (zh) * 2006-09-28 2007-05-09 贵州省遵义碱厂 一种硬硅钙石保温隔热材料及其制备方法
CN105218059A (zh) * 2015-10-19 2016-01-06 武汉钢铁(集团)公司 低品位石灰石制备硅酸钙板的方法
CN106747205A (zh) * 2017-01-03 2017-05-31 大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 一种利用硅钙渣制备硬硅钙石的方法
CN108455948A (zh) * 2018-03-27 2018-08-28 华南理工大学 一种硅酸钙镁保温材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119058A (ja) * 1998-10-14 2000-04-25 Asano Slate Co Ltd 軽量珪酸カルシウム板の製造方法
CN1958499A (zh) * 2006-09-28 2007-05-09 贵州省遵义碱厂 一种硬硅钙石保温隔热材料及其制备方法
CN105218059A (zh) * 2015-10-19 2016-01-06 武汉钢铁(集团)公司 低品位石灰石制备硅酸钙板的方法
CN106747205A (zh) * 2017-01-03 2017-05-31 大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 一种利用硅钙渣制备硬硅钙石的方法
CN108455948A (zh) * 2018-03-27 2018-08-28 华南理工大学 一种硅酸钙镁保温材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, ZHAOHENG: "MgO-SiO2-H2O Non-official translation: (Study on Reaction Mechanism and Application of MgO-SiO2-H2O Gelling System", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, ENGINEERING SCIENCE AND TECHNOLOGY, vol. 11, no. 4, 30 April 2016 (2016-04-30), pages 16, 37, 39, 172, 180 - 182, 185, 187 *

Also Published As

Publication number Publication date
CN108455948A (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
WO2019184637A1 (zh) 一种硅酸钙镁保温材料及其制备方法和应用
Heikal et al. Physico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag
TWI478891B (zh) Expandable material and its manufacturing method
CN112794666B (zh) 一种铁尾矿免烧陶粒及其制备方法
CN107056115B (zh) 一种用于磷石膏基胶凝材料的促凝型早强剂及其制备方法
CN108946748B (zh) 一种高铝粉煤灰合成硬硅钙石复合保温材料的方法
CN108675657B (zh) 一种利用废渣制备硅酸盐-硫铝酸盐复合体系熟料的方法
CN113428887B (zh) 一种工业副产物石膏制备α高强石膏的方法
CN114105543B (zh) 一种全固废泡沫混凝土的制备方法
CN108863254A (zh) 基于碱渣-矿渣二元胶凝材料的砂浆试件及其制备方法
EP2878585B1 (en) Method for the manufacturing of cementitious C-S-H seeds
CN111320400A (zh) 一种钙铝组分高温重构制备高胶凝活性钢渣的方法及应用
CN112010581A (zh) 一种水化硅酸钙纳米晶核悬浮液及其制备方法
CN108821713A (zh) 基于碱渣-矿渣-水泥三元胶凝材料的砂浆试件及其制备方法
CN109704617A (zh) 一种建筑垃圾墙板抗裂改性剂及其制备方法
CN116675509A (zh) 一种全固废免蒸养混凝土及其应用
Chen et al. Improved mechanical strength of magnesium oxysulfate cement using ferric sulfate
CN110759654A (zh) 一种高温条件下具有高性能的铝酸盐基水泥及其制备方法
CN108910902B (zh) 一种高铝粉煤灰合成托贝莫来石复合保温材料的方法
CN114956642B (zh) 一种基于再生微粉的复合膨胀剂及其制备方法
CN109020273B (zh) 一种纳米铁铝酸盐水泥的制备方法
CN108840585B (zh) 一种混凝土抗裂剂的低温制备方法
Yang et al. Preparation of micro-iron ore tailings by wet-grinding and its application in sulphoaluminate cement
CN108395178A (zh) 一种含铝土矿尾矿的非蒸压加气混凝土及其制备方法
CN113072347A (zh) 一种高密度高强度硅酸钙镁质板材及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 20-01-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19776070

Country of ref document: EP

Kind code of ref document: A1