WO2019184580A1 - 一种车用液冷驱动电机 - Google Patents

一种车用液冷驱动电机 Download PDF

Info

Publication number
WO2019184580A1
WO2019184580A1 PCT/CN2019/073468 CN2019073468W WO2019184580A1 WO 2019184580 A1 WO2019184580 A1 WO 2019184580A1 CN 2019073468 W CN2019073468 W CN 2019073468W WO 2019184580 A1 WO2019184580 A1 WO 2019184580A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
rotating shaft
stator core
stator
passage
Prior art date
Application number
PCT/CN2019/073468
Other languages
English (en)
French (fr)
Inventor
宋强
张梓超
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学 filed Critical 北京理工大学
Publication of WO2019184580A1 publication Critical patent/WO2019184580A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/193Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil with provision for replenishing the cooling medium; with means for preventing leakage of the cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/01Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields, i.e. structural association with shields
    • H02K11/012Shields associated with rotating parts, e.g. rotor cores or rotary shafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to the field of drive motors, and more particularly to a liquid-cooled drive motor for a vehicle.
  • the cooling medium of the electric motor drive motor cooling system it can be divided into air cooling and liquid cooling.
  • Air cooling can be divided into natural air cooling and forced air cooling.
  • Liquid cooling can be divided into water cooling and oil cooling.
  • the Bayesian system Hagerence Company disclosed the invention of supplying a coolant to a rotor with a cooling flange structure, and supplying a liquid cooling motor that supplies the coolant to the stator by rotating the rotor, in order to effectively cool the motor and improve performance.
  • Tesla Motor, Inc. disclosed a liquid-cooled motor invention based on the interaction of pressure and gravity. It is characterized by the shape of the oil pan and the design of the deflector to disperse the oil on the intended part under the action of gravity, independent of the spray. The size and number of the oil port avoid the blockage or insufficient pressure of the fuel injection port.
  • the disadvantage is that the gravity dispersion can not guarantee the cooling effect of the lower part of the motor, and the lower part may overheat, which puts higher requirements on the thermal stability of the motor stator and rotor material.
  • Shanghai Dajun Power Control Technology Co., Ltd. disclosed a utility model for oil-cooled motor, which is characterized by spraying the motor wire package and iron core to overcome the defects of water-cooled motor and improve power density.
  • Fuan Guangyuan Electromechanical Co., Ltd. disclosed an internal circulation oil-cooled motor, which is characterized by direct cooling of the outer circumference of the stator, spray cooling at the ends of the windings, partial immersion cooling of the rotor (adjustable liquid level), and splash cooling phase of the stator inner circumference.
  • the disadvantage is that the rotor is partially immersed in oil, which is easy to generate bubbles, increase thermal resistance, destroy heat transfer, and the existence of air gap wind pressure is not reliable for the inner circumference of the stator, and the thermal stability of the stator and rotor material of the motor Higher requirements have also been raised.
  • Daniel disclosed a liquid-cooled motor invention, which relies on a dynamic seal to provide an injector that can move relative to the stator windings, in order to avoid coil erosion caused by fixed-point injection cooling and oil-air mixture after spray cooling. Adverse effects on oil pump performance.
  • a utility model of oil-cooled motor which is characterized in that the rotor core is circumferentially distributed with a plurality of through-grooves containing guide bars, and part of the oil in the oil passage of the stator casing enters the guide bar to cool the rotor, and part of the The fuel injection hole facing the stator winding ejects the cooled stator winding, which has the disadvantage that the wind pressure is present in the guide bar, and the cooling oil is difficult to enter.
  • Zhang Jingcai et al. disclosed a motor liquid cooling system invention. The purpose is to solve the problem that the external cooling pipe connects the casing and the shaft cooling passage to require more parts and long flow passages, and the motor structure is complicated.
  • the present invention provides a liquid-cooled drive motor for a vehicle, which can be used as a drive motor for a high-performance electric, hybrid car, multi-purpose vehicle, and the like. It mainly solves the problems that the current automotive drive motor has insufficient cooling and unsatisfactory results.
  • a liquid-cooled driving motor for a vehicle includes: a motor casing, a stator core, a stator winding, a rotating shaft, and a rotor core;
  • the motor casing is provided with a liquid inlet opening to the rear end portion of the rotating shaft;
  • a first dynamic sealing device corresponding to the liquid inlet is sleeved on the rotating shaft, and an annular rotating shaft liquid supply chamber is formed between the liquid inlet and the first dynamic sealing device; a rotating shaft inlet passage is arranged on the annular surface of the rotating shaft sealed by the sealing device;
  • the annular rotating shaft liquid supply chamber communicates the liquid inlet with the rotating shaft inlet passage; the rotating shaft is provided with a rotating shaft cooling chamber communicating with the rotating shaft inlet passage;
  • a rotating shaft outlet passage is disposed on a side of the rotating shaft away from the rotating shaft inlet passage, and an outer side of the motor housing is provided with at least one liquid outlet, and the rotating shaft cooling chamber passes through the rotating shaft outlet passage and At least one of the liquid outlets is in communication.
  • the drive motor further includes: a first stator winding rotary cooler;
  • the first stator winding rotary cooler includes: a second dynamic sealing device located at one end of the rotor and sleeved on the rotating shaft; and a liquid discharge port mounted on the second dynamic sealing device;
  • the liquid discharge port discharges the coolant to the inner circumferential surface of the stator winding and is discharged through the liquid outlet.
  • the drive motor further includes: a second stator winding rotary cooler;
  • the second stator winding rotary cooler includes: a third dynamic sealing device located at the other end of the rotor and sleeved on the rotating shaft; and a liquid discharge port mounted on the third dynamic sealing device;
  • the liquid discharge port discharges the coolant to the inner circumferential surface of the stator winding and is discharged through the liquid outlet.
  • the drive motor further includes one or two partitions, the partitions being located on one side or both sides of the rotor core in the axial direction;
  • the partition plate is mounted on the rotating shaft through a diaphragm bearing, and the outer circumferential surface of the partition plate is sealingly connected with the stator winding;
  • An area between the partition, the rotor core and the stator core forms an air gap cooling chamber
  • the shaft cooling chamber communicates with the air gap cooling chamber through the shaft outlet passage;
  • a fourth dynamic sealing device is mounted on a side of the diaphragm bearing adjacent to the air gap cooling chamber, and the air gap cooling chamber communicates with the liquid outlet through the fourth dynamic sealing device.
  • At least one stator core liquid channel is disposed on the stator core
  • a liquid inlet of the stator core liquid passage is in communication with the air gap cooling chamber
  • the liquid outlet end of the stator core liquid passage communicates with the liquid outlet.
  • stator core is formed by pressing a plurality of silicon steel sheets, and the stator core liquid passage has a rectangular cross section, and the stator core liquid passage direction is parallel to the plane of the silicon steel sheet.
  • the driving motor further includes: a stator core liquid jacket in a bobbin shape;
  • stator core liquid sleeve The outer ends of the stator core liquid sleeve are fixedly connected to the inner wall of the motor casing; the inner wall of the stator core liquid jacket is fixedly connected with the stator core, and the stator core liquid sleeve and the motor are Forming a stator core liquid jacket cooling chamber between the outer casings;
  • the stator core liquid sleeve is correspondingly provided with a liquid sleeve inlet port communicating with the stator core liquid passage, and the stator core liquid passage passes through the liquid sleeve inlet port and the stator core
  • the liquid jacket cooling chamber is in communication;
  • the stator core liquid jacket is provided with at least one liquid jacket liquid outlet, and the stator core liquid jacket cooling chamber communicates with the liquid outlet through at least one liquid jacket liquid outlet.
  • the drive motor further includes: one or two stator winding fixed type coolers axially disposed between the stator core liquid sleeve and the stator winding and having a ring shape, and the stator winding
  • the fixed type coolers are respectively located on one side or both sides of the stator core in the axial direction;
  • the gap between the stator core liquid sleeve and the stator winding forms two cooler chambers, and the two cooler chambers are respectively located on two sides of the stator core along the axial direction;
  • stator winding fixed type cooler is fixedly connected and sealed to the stator core liquid sleeve and the stator iron core;
  • the liquid outlet outlet communicates with the corresponding cooler chamber, and the cooler chamber communicates with the corresponding outlet.
  • stator winding fixed type cooler is provided with a plurality of flow guiding holes, and the opening sizes of the plurality of the guiding holes are sequentially increased from top to bottom.
  • the drive motor further includes a magnetic shield plate disposed axially on both sides of the rotor core.
  • a liquid-cooled driving motor for a vehicle includes: a motor casing, a stator core, a stator winding, a rotating shaft, and a rotor core; and the motor casing is provided with a liquid inlet opening to a rear end portion of the rotating shaft a first dynamic sealing device corresponding to the liquid inlet port is disposed on the rotating shaft, and an annular rotating shaft liquid supply chamber is formed between the liquid inlet opening and the first dynamic sealing device; a rotating shaft inlet passage is disposed on the annular surface of the rotating shaft sealed by the dynamic sealing device; the annular rotating shaft supplying liquid chamber communicates the liquid inlet with the rotating shaft inlet passage; and the rotating shaft is provided with the rotating shaft a rotating shaft cooling chamber connected to the inlet passage; a rotating shaft outlet passage is disposed on a side of the rotating shaft away from the rotating shaft inlet passage, and an outer side of the motor casing is provided with at least one liquid outlet, the rotating shaft cooling chamber
  • the shaft outlet passage is in communication with at least one of
  • the liquid-cooled driving motor for vehicle provided by the present invention seals the cavity between the liquid inlet and the rotating shaft with relative movement by providing a dynamic sealing device, and the sealing effect is good, and the liquid leakage is not easy;
  • the hot rotor can be effectively cooled, thereby increasing the service life of the drive motor.
  • FIG. 1 is a schematic cross-sectional structural view of a liquid-cooled driving motor for a vehicle according to the present invention
  • FIG. 2A is a schematic structural view of a first stator winding rotary cooler 58a
  • FIG. 2B is a schematic cross-sectional structural view of the first stator winding rotary cooler 58a;
  • FIG. 3 is a schematic partial enlarged structural view of a stator core provided by the present invention.
  • Figure 4 is a cross-sectional structural view taken along line A-A of Figure 1;
  • FIG. 5 is a schematic structural view of a stator winding fixed type cooler provided by the present invention.
  • 1-motor housing 100-motor, 10-stator core liquid jacket cooling chamber, 11-outlet, 2-stator core liquid sleeve, 20-liquid sleeve liquid outlet, 21-liquid sleeve inlet ,3-stator core, 30-stator core channel, 31-inlet end, 32-air gap cooling chamber, 33-silicon steel sheet, 4-stator winding, 40-stator winding fixed cooler, 41-cooling Cavity, 411-414 stator winding fixed type cooler guide hole, 415-418 stator winding fixed type cooler liquid supply port, 5-turn shaft, 50-inlet port, 51-first dynamic seal device, 52-shaft Liquid supply chamber, 53-turn shaft inlet, 54-rotor cooling chamber, 55a-first shaft-stator winding fluid passage, 55b-second shaft-stator winding fluid passage, 56a-second dynamic seal, 56b- Three-acting seal, 570a, 570b - stator winding rotary cooler low pressure chamber, 571
  • Embodiments of the present invention provide a liquid-cooled driving motor for a vehicle, which will be described below with reference to the accompanying drawings.
  • the invention relates to a liquid-cooled driving motor for a vehicle, wherein the cooling liquid used is circulated in a cooling cavity and a passage in the motor, and the excess heat energy generated in the working of the motor is taken away, so that the motor can work normally.
  • the temperature is running.
  • it may be composed of ethylene glycol, an anti-corrosion additive, an anti-foam additive and water, or other cooling oil, etc., and the cooling liquid used in the embodiment of the present disclosure is not limited.
  • the motor 100 includes: a motor housing 1, a stator core 3, a stator winding 4, a rotating shaft 5 and a rotor core 6;
  • the motor casing 1 is provided with a liquid inlet 50 leading to the rear end portion of the rotating shaft 5; an external cooling source can be injected through the liquid inlet 50;
  • the rotating shaft 5 is sleeved with a first dynamic sealing device 51 corresponding to the liquid inlet 50, and the liquid inlet 50 is disposed on the motor casing 1, and the motor casing 1 is fixed to the bearing outer ring of the rotating shaft 5, so the liquid inlet 50 is opposite
  • the ground is stationary, and the rotating shaft 5 is rotationally moved;
  • the first dynamic sealing device 51 includes an isolating gland and a rolling bearing, and the first dynamic sealing device 51 is used to seal the space between the liquid inlet 50 and the rotating shaft 5 having relative motion.
  • the cavity, the first dynamic sealing device 51 is a rotary contact type dynamic sealing device.
  • the inlet port 50 and the first dynamic sealing device 51 form an annular shaft supply chamber 52; on the annular surface of the shaft 5 sealed by the first dynamic sealing device 51 is provided with a shaft inlet passage 53;
  • the annular shaft supply chamber 52 communicates the inlet port 50 with the shaft inlet passage 53.
  • the shaft 5 is provided with a shaft cooling chamber 54 communicating with the shaft inlet passage 53, which can effectively cool the rotor.
  • a shaft exiting passage 60 is provided on a side of the rotating shaft 5 away from the rotating shaft inlet passage 53 as a liquid discharging end of the rotating shaft cooling chamber 54.
  • the outer side surface of the motor casing 1 may be provided with at least one liquid outlet port 11, as shown in FIG. As shown, two outlet ports 11 can be disposed on the motor casing 1 near the left and right ends.
  • the coolant in the cooling cavity 54 of the rotating shaft can flow out through the shaft discharge passage 60 and be discharged through the liquid outlet 11 to realize circulation. cool down.
  • the above-described drive motor 100 further includes: a first stator winding rotary cooler 58a for cooling the stator windings; the method includes: locating at one end of the rotor 6 a second dynamic sealing device 56a on the rotating shaft 5 and a liquid discharging port 59a mounted on the second dynamic sealing device 56a; a first rotating shaft-stator winding is disposed on the annular surface of the rotating shaft 5 sealed by the second dynamic sealing device 56a
  • the stator winding 4 with a high heat generation on one side is further effectively cooled.
  • the drawn cooling liquid accumulates on the inner circumferential surface of the lower half of the stator winding 4 side, and then
  • the above drive motor 100 further includes a second stator winding rotary cooler 58b at the other end of the rotor core 6;
  • the second stator winding rotary cooler 58b includes a third dynamic seal 56b located at the other end of the rotor 6 and sleeved on the rotary shaft 5, and a liquid discharge port 59b mounted on the third dynamic seal 56b. ;
  • a second shaft-stator winding liquid passage 55b is disposed on the annular surface of the rotating shaft 5 sealed by the third dynamic sealing device 56b;
  • the coolant in the rotating shaft cooling chamber 54 enters the second stator winding rotary cooler 58b through the second rotating shaft-stator winding liquid passage 55b, and the liquid discharging port 59b winds the cooling liquid toward the inner circumferential surface of the stator winding 4, thereby further effectively cooling the other Stator winding 4 with high heat on one side.
  • the drawn coolant accumulates on the inner circumferential surface of the lower half of the stator winding 4, and then flows to the left and right liquid outlets 11, respectively.
  • the second dynamic sealing device and the third dynamic sealing device have the same structure as the first dynamic sealing device in the above embodiment, and details are not described herein again.
  • the first stator winding rotary cooler 58a and the second stator winding rotary cooler 58b are fixed to the rotating shaft 5 by the second dynamic sealing device 56a and the third dynamic sealing device 56b, and rotate together with the rotating shaft 5, and the rotating shaft cooling chamber a portion of the coolant 54 enters the first stator winding rotary cooler 58a and the second stator winding rotary cooler 58b via the first shaft-stator winding liquid passage 55a and the second shaft-rotor winding liquid passage 55b;
  • the formed stator winding rotary cooler low pressure chambers 570a, 570b are then entered into the stator winding rotary cooler high pressure chambers 571a, 571b, and finally the stator winding rotary cooler spray ports 59a, 59b are used to deflect the coolant toward the stator windings 4
  • the inner circumferential surface further effectively
  • the dynamic sealing device After the dynamic sealing device is arranged, there is an annular cavity between the liquid discharging port and the rotating shaft, and the design of the liquid discharging port is such that the liquid volume in the liquid inlet is large, the pressure is small, the liquid volume in the liquid discharging chamber is small, the pressure is large, and the dynamic sealing device is used. (ie: the second dynamic sealing device and the third dynamic sealing device), the annular cavity is sealed, and the liquid ejection opening can be rotated at the same speed as the rotating shaft, or the liquid discharging port and the rotating shaft can have relative movement according to specific requirements. The purpose of cooling the stator windings can be achieved.
  • the driving motor 100 further includes one or two partitions 7.
  • the number of the partitions 7 is one, it may be located on either side of the rotor core 6 in the axial direction.
  • the number is two, they are respectively located on both sides of the rotor core 6 in the axial direction;
  • the partition plate 7 is mounted on the above-mentioned rotating shaft 5 through a partition plate bearing 62, and the outer circumferential surface of the partition plate 7 is sealingly connected with the stator winding 4, so that an area between the partition plate 7, the rotor core 6 and the stator core 3 forms an air gap.
  • Cooling chamber 32 as shown in FIG. 1, two partitions 7 are formed, and two air gap cooling chambers 32 are formed, and between the two air gap cooling chambers 32, between the rotor core 6 and the stator core 3 The gaps achieve communication.
  • the shaft cooling chamber 54 is connected to the air gap cooling chamber 32 through the shaft outlet passage 60; and a fourth moving seal device 61 is mounted on the side of the diaphragm bearing 62 near the air gap cooling chamber 32, and the air gap cooling chamber 32 is provided.
  • the communication with the liquid outlet 11 is realized by the fourth dynamic sealing device 61, so that the rotor core, the rotor end, the air gap between the stator and the rotor, the stator core, and the stator end windings are all effectively cooled, especially for high incidence.
  • the air gap of the heat and the end of the rotor enhance the cooling.
  • the structure of the fourth dynamic sealing device is the same as that of the first dynamic sealing device, and details are not described herein again.
  • At least one stator core liquid passage 30 may be radially disposed on the stator core, and an appropriate number of stators may be set according to the power of the specific driving motor or other use parameters. Iron core channel.
  • stator core liquid passages are disposed, wherein the liquid inlet end 31 of the stator core liquid passage 30 communicates with the air gap cooling chamber 32, and the coolant in the air gap cooling chamber 32 can be led to The stator core liquid passage 30, and the liquid discharge end of the stator core liquid passage 30 can communicate with the corresponding liquid outlet 11, and can effectively remove the heat inside the stator core.
  • the stator core is pressed by a plurality of silicon steel sheets 33, and the cross-sectional shape of the stator core liquid passage 30 is rectangular, and the direction of the stator core liquid passage 30 and the plane of the silicon steel sheet 33 are Parallel, ie radially arranged, perpendicular to the axis of rotation 5.
  • the length of the rectangular cross section of the stator core liquid passage 30 is an integral multiple of the thickness of the silicon steel sheet, for example, 10 to 20 silicon steel sheets.
  • the drive motor 100 further includes a stator core liquid sleeve 2 in the shape of a bobbin, and the outer circumference of the stator core liquid sleeve 2 Fixedly connected to the inner wall of the motor casing 1; the inner wall of the stator core liquid sleeve 2 is fixedly connected with the stator core 3, and the stator core liquid jacket 2 and the motor casing 1 form a stator core liquid jacket cooling chamber 10;
  • stator core liquid jacket 2 may be provided with a liquid jacket inlet port 21 communicating with the stator core liquid passage 30, and the number of the liquid jacket inlet port 21 may be the same as the number of the stator core fluid passages 30. Consistently; the stator core liquid passage 30 communicates with the stator core liquid jacket cooling chamber 10 through the liquid jacket inlet port 21;
  • At least one liquid jacket liquid outlet 20 is provided on the stator core liquid jacket 2, and as shown in FIG. 1, two liquid jacket liquid outlets 20 may be provided, and the stator core liquid jacket cooling chamber 10 passes at least one of the above.
  • the liquid outlet port 20 communicates with the corresponding liquid outlet 11, thereby effectively cooling the heated motor casing 1 and the stator core 3.
  • stator winding-type cooling coolers 40 may be axially disposed between the stator core liquid jacket 2 and the stator windings 4, as shown in FIGS.
  • the winding-fixed type coolers 40 are in the shape of a ring and are respectively located on both sides of the stator core 3 in the axial direction.
  • the gap between the stator core liquid sleeve 2 and the stator winding 4 forms two cooler chambers 41, and the two cooler chambers 41 are respectively located on both sides of the stator core 3 in the axial direction; two stators
  • the winding-type cooling cooler 40 is fixedly connected and sealed to the stator core liquid jacket 2 and the stator core 3, respectively;
  • the liquid jacket liquid outlet 20 communicates with a corresponding cooler chamber 41, and the cooler chamber 41 corresponds to the corresponding The liquid outlets 11 communicate, thereby completing further overall cooling of the stator windings.
  • the stator winding-type cooling cooler 40 may be provided with a plurality of flow guiding holes, and the opening sizes of the plurality of the guiding holes are sequentially increased from top to bottom.
  • the stator winding-type cooling cooler 40 is provided with flow guiding holes 411-414 (the number and shape may be different), and the guiding holes are divided into three regions: inner, outer and middle, as shown in FIG. That is to say: the circular hole is in the middle area, the strip hole is distributed in the inner side and the outer side area, and the opening size is increased from top to bottom in order to guide the uniform dispersion of the cooling liquid to the upper outer circumference of the stator winding 4 under the action of gravity.
  • the upper surface of the stator winding 4 is effectively cooled, and when the coolant in the cooler chamber 41 is accumulated to a certain volume, the portion of the coolant will pass through the liquid port 415 of the stator winding type cooler 40.
  • the 418 (the opening size is sequentially reduced) overflows, thereby effectively cooling the lower outer circumferential surface of the stator winding.
  • magnetic isolation measures are taken, and magnetic isolation plates 8 are further provided, which are respectively fixed to both side faces of the rotor core 6 in the axial direction, and the magnetic flux leakage effect is better.
  • the motor housing 1 at the rear end of the driving motor 100 is provided with a liquid inlet 50, and the lower end is provided with two liquid outlets 11; the driving motor 100 includes a rotating shaft cooling chamber 54 and an air gap cooling chamber 32.
  • the coolant enters the shaft cooling chamber 54 from the inlet port 50 through the first dynamic sealing device 51 and the shaft inlet passage 53 to achieve effective cooling of the shaft.
  • the coolant discharge line of the shaft cooling chamber 54 is of two types:
  • the coolant in the shaft cooling chamber 54 passes through the first shaft-stator winding liquid passage 55a and the second shaft-stator winding liquid passage 55b, and enters the first stator winding rotary cooler 58a and the second stator winding rotary cooling.
  • the heater 58b further effectively cools the highly heat generating stator winding 4.
  • the coolant drawn from the liquid discharge ports 59a and 59b is collected on the inner circumferential surfaces of the lower and lower circumferences of the stator windings 4 on the left and right sides, and then flows to the left and right liquid outlet ports 11, respectively.
  • the coolant in the cooling chamber 54 of the shaft enters the air gap cooling chamber 32 through the shaft outlet passage 60 to cool the rotor core 6 and a portion of the stator winding 4; a part of the coolant can pass through the fourth side of the diaphragm bearing 62.
  • the dynamic sealing device 61 also converges to the inner circumferential surface of the lower half of the stator winding 4 on the left and right sides, and then flows to the left and right liquid outlets 11 respectively;
  • the cooling chamber 10 is arranged to realize effective cooling of the motor casing 1; then, the two liquid jacket outlet ports 20 respectively enter the two stator winding-type cooling coolers 40 and the two cooler chambers 41 to realize the partial stator windings 4 And effective cooling of part of the stator core 3; as shown in Fig. 5, the stator winding 4 is continuously cooled by the 411-418 stator winding fixed type cooler port, and then concentrated in the symmetrically disposed two 418 ports.
  • the circumferential area between the two flows from the above-mentioned area to the two liquid outlets 11.
  • the present invention provides a liquid-cooled driving motor for a vehicle, which solves the problems of insufficient cooling and unsatisfactory cooling of the current driving motor for a vehicle, and has a comprehensive cooling portion and high cooling efficiency, thereby improving the service life of the driving motor. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种车用液冷驱动电机,电机外壳(1)上设有通向转轴(5)后端部的进液口(50);转轴上套设有与进液口相对应的第一动密封装置(51),进液口与第一动密封装置之间形成环形转轴供液腔(52);在第一动密封装置密封的转轴环形表面上设有转轴进液道(53);环形转轴供液腔将进液口与转轴进液道连通;转轴内设有与转轴进液道连通的转轴冷却腔(54);在转轴远离转轴进液道的一侧设有转轴出液道(60),电机外壳的外侧面设有至少一个出液口(11),转轴冷却腔通过转轴出液道与至少一个出液口连通。该车用液冷驱动电机通过设置动密封装置密封具有相对运动的进液口和转轴之间的空腔,密封效果较好,不易漏液;设置转轴冷却腔,可以有效冷却发热的转轴,进而提高驱动电机的使用寿命。

Description

一种车用液冷驱动电机 技术领域
本发明涉及驱动电机领域,尤其涉及一种车用液冷驱动电机。
背景技术
根据电动车用驱动电机冷却***冷却介质的不同,可分为风冷和液冷等。风冷又可分为自然风冷和强迫风冷。液冷可分为水冷和油冷。随着电动车驱动电机功率密度的增大,发热量更大,简单廉价的风冷电机难以满足要求,因此电动车驱动电机多采用液冷的冷却方式。
1995年,康平、穆大玉等人对三种不同结构水冷电机进行对比研究,得出外壳水冷加端盖水冷加轴水冷结构冷却效果最好,但是工艺上难度较大。1997年美国Carlo C Di Pietro等人采用喷射油路与循环油路相结合的方法对电动车电机进行冷却,降低了电机转子永磁体与绕组端部的温升,大大改善了电机性能。2001年德国H.Neudorfer对具有不同冷却方式及结构的电机进行散热对比分析,得出液冷电机同时具有防污染防尘等优点。2004年黄苏融等人提出了一种电机定子机座轴向水冷回路,冷却效率较高、工艺简单。2012年雅典K.I.Laskaris等人对间接机壳油冷电机进行温升研究,其冷却效果较好。2014年沈阳工大张凤阁等人对1.12Mw高速永磁电机提出了三种风冷与水冷相结合的冷却方案,对比分析温度场,得出针对高速电机如何降低转子温升是冷却***设计的重点。2015年贝以***哈格伦斯公司公开了供给冷却液至带有冷却凸缘构造的转子,利用转子旋转将冷却液供应给定子的液冷电机发明,目的是有效冷却马达,提高性能。同年Tesla Motor,Inc公开了一项基于压力和重力共同作用的液冷电机发明,其特点是通过油盘形状、引流片设计在重力作用下使油分散接触在预期的部件上,不依赖于喷油口的大小和数量避免了喷油口的阻 塞或压力不足,缺点是重力分散无法保证电机下部的冷却效果,下部分可能过热,对电机定转子材料热稳定性提出了更高要求。2016年上海大郡动力控制技术有限公司公开了一种油冷电机实用新型,特点是对电机线包和铁芯进行喷淋,目的是克服水冷电机的缺陷,提高功率密度。同年福安市广源机电有限公司公开了一种内循环油冷电机,特点是对定子外周直接冷却、绕组端部喷洒冷却、转子部分浸入冷却(液面高度可调)、定子内周飞溅冷却相结合,以高效散热,缺点是转子部分浸油容易产生气泡,加大热阻,破坏换热,且气隙风压的存在对定子内周的冷却效果不可靠,对电机定转子材料热稳定性也提出了更高要求。2016年BAE SYSTEMS公司ENGBLOM,Daniel公开一液冷电机发明,其依靠动密封设置有可相对定子绕组运动的喷油器,目的是避免定点喷油冷却造成的线圈侵蚀及喷雾冷却后油-空气混合物对油泵性能的不良影响。同年该公司LASSILA,Viktor公开一液冷电机发明,通过偏心设置喷嘴等方式使得喷油器可相对定子线圈运动,目的是避免腐蚀损坏电机及局部过热。2017年蔚来汽车有限公司张诗香等人公开一油冷电机实用新型,特点是转子铁芯周向分布若干内含导条的通槽,定子外壳油道中的部分油进入导条冷却转子,部分从朝向定子绕组的喷油孔喷出冷却定子绕组,其缺点是导条内存在风压,冷却油难以进入。同年该公司张敬才等人公开一电机液冷***发明,目的是解决外接冷却管将机壳和转轴冷却通道进行连通需要较多零部件和较长流道,电机结构复杂的问题。同年贺双桂、傅兵等人公开一驱动电机冷却油道结构,通过在副油道设置朝向定转子相应的的多点喷孔,解决由于壳体结构限制只能设置1、2个喷油点进行局部冷却的问题。因此,驱动电机在冷却方面还有待提高,仍然存在冷却不全面、效果不理想等问题。
发明内容
鉴于上述问题,本发明提供一种车用液冷驱动电机,可作为高性能电动、混动轿车、多用途车等车辆的驱动电机。主要解决目前车用驱动电机存在的冷 却不全面、效果不理想等问题。
为实现上述目的,一种车用液冷驱动电机,包括:电机外壳、定子铁芯、定子绕组、转轴、转子铁芯;
所述电机外壳上设有通向转轴后端部的进液口;
所述转轴上套设有与所述进液口相对应的第一动密封装置,所述进液口与所述第一动密封装置之间形成环形转轴供液腔;在所述第一动密封装置密封的所述转轴环形表面上设有转轴进液道;
所述环形转轴供液腔将所述进液口与所述转轴进液道连通;所述转轴内设有与所述转轴进液道连通的转轴冷却腔;
在所述转轴上远离所述转轴进液道的一侧设有转轴出液道,所述电机外壳的外侧面设有至少一个出液口,所述转轴冷却腔通过所述转轴出液道与至少一个所述出液口连通。
进一步地,所述驱动电机还包括:第一定子绕组旋转型冷却器;
所述第一定子绕组旋转型冷却器包括:位于所述转子一端且套设在所述转轴上的第二动密封装置和安装在所述第二动密封装置上的喷液口;
在所述第二动密封装置密封的所述转轴环形表面上设有第一转轴-定子绕组液道;
所述喷液口将冷却液甩向所述定子绕组内圆周面后经所述出液口排出。
进一步地,所述驱动电机还包括:第二定子绕组旋转型冷却器;
所述第二定子绕组旋转型冷却器包括:位于所述转子另一端且套设在所述转轴上的第三动密封装置和安装在所述第三动密封装置上的喷液口;
在所述第三动密封装置密封的所述转轴环形表面上设有第二转轴-定子绕组液道;
所述喷液口将冷却液甩向所述定子绕组内圆周面后经所述出液口排出。
进一步地,所述驱动电机还包括一个或两个隔板,所述隔板位于所述转子铁芯沿轴向的一侧或两侧;
所述隔板通过隔板轴承安装在所述转轴上,所述隔板其外圆周面与所述定子绕组密封连接;
所述隔板、转子铁芯和定子铁芯之间的区域形成气隙冷却腔;
所述转轴冷却腔通过所述转轴出液道与所述气隙冷却腔连通;
在所述隔板轴承靠近气隙冷却腔一侧安装有第四动密封装置,所述气隙冷却腔通过所述第四动密封装置与所述出液口连通。
进一步地,所述定子铁芯上设有至少一个定子铁芯液道;
所述定子铁芯液道的进液口与所述气隙冷却腔连通;
所述定子铁芯液道的出液端与所述出液口相通。
进一步地,所述定子铁芯由多个硅钢片压制而成,所述定子铁芯液道的截面形状为矩形,所述定子铁芯液道走向与所述硅钢片平面平行。
进一步地,所述驱动电机还包括:呈梭芯状的定子铁芯液套;
所述定子铁芯液套两端面外周固定连接在所述电机外壳的内壁上;所述定子铁芯液套内壁与所述定子铁芯固定连接,且所述定子铁芯液套与所述电机外壳之间形成定子铁芯液套冷却腔;
所述定子铁芯液套上相对应地设有与所述定子铁芯液道相通的液套进液口,所述定子铁芯液道通过所述液套进液口与所述定子铁芯液套冷却腔相通;
所述定子铁芯液套上设有至少一个液套出液口,所述定子铁芯液套冷却腔通过至少一个所述液套出液口与所述出液口相通。
进一步地,所述驱动电机还包括:沿轴向设置于所述定子铁芯液套与所述定子绕组之间且呈环形状的一个或两个定子绕组固定型冷却器,且所述定子绕组固定型冷却器分别沿轴向位于所述定子铁芯的一侧或两侧;
所述定子铁芯液套与所述定子绕组之间的空隙形成两个冷却器腔,两个所述冷却器腔分别位于所述定子铁芯沿轴向的两侧;
所述定子绕组固定型冷却器与所述定子铁芯液套和所述定子铁芯固定连接并密封;
所述液套出液口与相对应的所述冷却器腔相通,所述冷却器腔与相对应的所述出液口相通。
进一步地,所述定子绕组固定型冷却器上设有多个导流孔,多个所述导流孔的开孔尺寸从上到下依次增大。
进一步地,所述驱动电机还包括沿轴向设置在所述转子铁芯两侧面的隔磁板。
本发明实施例提供的上述技术方案的有益效果至少包括:
本发明实施例提供的一种车用液冷驱动电机,包括:电机外壳、定子铁芯、定子绕组、转轴、转子铁芯;所述电机外壳上设有通向转轴后端部的进液口;所述转轴上套设有与所述进液口相对应的第一动密封装置,所述进液口与所述第一动密封装置之间形成环形转轴供液腔;在所述第一动密封装置密封的所述转轴环形表面上设有转轴进液道;所述环形转轴供液腔将所述进液口与所述转轴进液道连通;所述转轴内设有与所述转轴进液道连通的转轴冷却腔;在所述转轴远离所述转轴进液道的一侧设有转轴出液道,所述电机外壳的外侧面设有至少一个出液口,所述转轴冷却腔通过所述转轴出液道与至少一个所述出液口连通。上述方案中,本发明提供的车用液冷驱动电机,通过设置动密封装置密封具有相对运动的进液口和转轴之间的空腔,密封效果较好,不易漏液;设置转轴冷却腔,可以有效冷却发热的转子,进而提高驱动电机的使用寿命。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发 明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明提供的车用液冷驱动电机剖面结构示意图;
图2A为第一定子绕组旋转型冷却器58a的结构示意图;
图2B为第一定子绕组旋转型冷却器58a的剖面结构示意图;
图3为本发明提供的定子铁芯局部放大结构示意图;
图4为图1中沿A-A方向的剖面结构示意图;
图5为本发明提供的定子绕组固定型冷却器的结构示意图;
其中:1-电机外壳,100-电机,10-定子铁芯液套冷却腔,11-出液口,2-定子铁芯液套,20-液套出液口,21-液套进液口,3-定子铁芯,30-定子铁芯液道,31-进液端,32-气隙冷却腔,33-硅钢片,4-定子绕组,40-定子绕组固定型冷却器,41-冷却器腔,411-414定子绕组固定型冷却器导流孔,415-418定子绕组固定型冷却器施液口,5-转轴,50-进液口,51-第一动密封装置,52-转轴供液腔,53-转轴进液道,54-转轴冷却腔,55a-第一转轴-定子绕组液道、55b-第二转轴-定子绕组液道,56a-第二动密封装置、56b-第三动密封装置,570a、570b-定子绕组旋转型冷却器低压腔,571a、571b-定子绕组旋转型冷却器高压腔,58a-第一定子绕组旋转型冷却器、58b-第二定子绕组旋转型冷却器,59a、59b-喷液口,6-转子铁芯,60-转轴出液道,61-第四动密封装置,62隔板轴承,7-隔板,8-隔磁板。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本发明实施例提供了一种车用液冷驱动电机,下面结合附图说明。
本发明实施例中,涉及一种车用液冷驱动电机,所使用的冷却液在电机中 的冷却腔和通道中循环流动,将电机工作中产生的多余热能带走,使电机能以正常工作温度运转。比如可以为由乙二醇、防腐蚀添加剂、抗泡沫添加剂和水组成,也可以是其他冷却油等,本公开实施例对所用冷却液不做限定。参照图1所示,该电机100包括:电机外壳1、定子铁芯3、定子绕组4、转轴5和转子铁芯6;
其中:
在电机外壳1上设有通向转轴5后端部的进液口50;外部冷却源可以由此进液口50注入;
转轴5上套设有与进液口50相对应的第一动密封装置51,进液口50设置在电机外壳1上,电机外壳1与转轴5的轴承外圈固定,因此进液口50相对地面是静止的,而转轴5是旋转运动的;第一动密封装置51包括隔离密封套和滚动轴承,第一动密封装置51用于密封具有相对运动的进液口50和转轴5之间的空腔,第一动密封装置51为旋转接触式动密封装置。其机械密封性能可靠,泄露量小,使用寿命长,功耗低,毋须经常维修,且能适应于电机使用过程中高温、低温、高压、真空、高速以及各种强腐蚀性介质、含固体颗粒介质等苛刻工况的密封要求。
进液口50与第一动密封装置51之间形成环形转轴供液腔52;在第一动密封装置51密封的转轴5环形表面上设有转轴进液道53;
环形转轴供液腔52将进液口50与转轴进液道53连通;转轴5内设有与转轴进液道53连通的转轴冷却腔54,可以有效的冷却转子。
在转轴5上远离转轴进液道53的一侧设有转轴出液道60,作为转轴冷却腔54的排液端,电机外壳1的外侧面可设有至少一个出液口11,参照图1所示,可在电机外壳1上靠近左右端部设有两个出液口11,上述转轴冷却腔54内的冷却液可通过转轴出液道60流出,经出液口11排出,可实现循环冷却。
本实施例中,通过设置动密封装置密封具有相对运动的进液口和转轴之间的空腔,密封效果较好,不易漏液;设置转轴冷却腔,可以有效冷却发热的转 子,进而提高驱动电机的使用寿命。
在一个实施例中,参照图1、2A和2B所示,上述驱动电机100还包括:用于冷却定子绕组的第一定子绕组旋转型冷却器58a;其包括:位于转子6一端且套设在转轴5上的第二动密封装置56a和安装在第二动密封装置56a上的喷液口59a;在上述第二动密封装置56a密封的转轴5环形表面上设有第一转轴-定子绕组液道55a;转轴冷却腔54中的冷却液通过第一转轴-定子绕组液道55a进入第一定子绕组旋转型冷却器58a,喷液口59a将冷却液甩向定子绕组4内圆周面,进一步有效冷却了一侧高发热的定子绕组4。甩出的冷却液在定子绕组4一侧下半周的内圆周面上集聚,随即分别流向左右两个出液口11。
进一步地,上述驱动电机100还包括位于转子铁芯6另一端的第二定子绕组旋转型冷却器58b;
同样地,该第二定子绕组旋转型冷却器58b包括:位于上述转子6另一端且套设在转轴5上的第三动密封装置56b和安装在第三动密封装置56b上的喷液口59b;
在第三动密封装置56b密封的转轴5环形表面上设有第二转轴-定子绕组液道55b;
转轴冷却腔54中的冷却液通过第二转轴-定子绕组液道55b进入第二定子绕组旋转型冷却器58b,喷液口59b将冷却液甩向定子绕组4内圆周面,进一步有效冷却了另一侧高发热的定子绕组4。甩出的冷却液在定子绕组4另一侧下半周的内圆周面上集聚,随即分别流向左右两个出液口11。
本实施例中,第二动密封装置和第三动密封装置与上述实施例中的第一动密封装置结构相同,在此不再赘述。比如:第一定子绕组旋转型冷却器58a、第二定子绕组旋转型冷却器58b通过第二动密封装置56a、第三动密封装置56b与转轴5固定,随转轴5一同旋转,转轴冷却腔54中部分冷却液经第一转轴-定子绕组液道55a、第二转轴-定子绕组液道55b进入第一定子绕组旋转型冷却器58a、第二定子绕组旋转型冷却器58b;与转轴5形成的定子绕组旋转型冷 却器低压腔570a、570b,随后进入定子绕组旋转型冷却器高压腔571a、571b,最后由定子绕组旋转型冷却器喷液口59a、59b将冷却液甩向定子绕组4内圆周面,进一步有效冷却了高发热的定子绕组4。
设置动密封装置后,喷液口与转轴之间有环形空腔,喷液口的设计使得进液处液腔体积大,压力小,出液处液腔体积小,压力大,使用动密封装置(即:第二动密封装置和第三动密封装置),使环形空腔密封,可实现喷液口既可以与转轴等速转动,也可以根据具体需求使喷液口与转轴具有相对运动,均可实现冷却定子绕组的目的。
在一个实施例中,参照图1所示,上述驱动电机100还包括一个或两个隔板7,隔板7数量为一个时,可位于转子铁芯6轴向的任意一侧,当隔板7数量为两个时,分别位于转子铁芯6沿轴向的两侧;
隔板7通过隔板轴承62安装在上述转轴5上,隔板7的外圆周面与定子绕组4密封连接,使隔板7、转子铁芯6和定子铁芯3之间的区域形成气隙冷却腔32;参照图1所示,为两个隔板7,形成两个气隙冷却腔32,且两个气隙冷却腔32之间,通过转子铁芯6与定子铁芯3之间的空隙实现连通。
上述转轴冷却腔54通过转轴出液道60可实现与气隙冷却腔32连通;并且在隔板轴承62靠近气隙冷却腔32一侧安装有第四动密封装置61,上述气隙冷却腔32通过第四动密封装置61实现与出液口11连通,可使得转子铁芯、转子端部、定转子间的气隙、定子铁芯、部分定子端部绕组均得到有效冷却,尤其是对高发热量的气隙及转子端部强化了冷却。
同样地,第四动密封装置的结构与第一动密封装置结构也相同,在此不再赘述。
在一个实施例中,为了进一步地冷却定子铁芯3,可在定子铁芯上径向设置至少一个定子铁芯液道30,可根据具体驱动电机的功率或其他使用参数,设置合适数量的定子铁芯液道。
参照图1所示,设置为3个定子铁芯液道,其中定子铁芯液道30的进液 端31与上述气隙冷却腔32连通,可将气隙冷却腔32中的冷却液引至定子铁芯液道30,而该定子铁芯液道30的出液端可与相应的出液口11相通,可有效地带走定子铁芯内部的热量。
进一步地,参照图3所示,上述定子铁芯是由多个硅钢片33压制而成,定子铁芯液道30的截面形状为矩形,上述定子铁芯液道30的走向与硅钢片33平面平行,即径向设置,垂直于转轴5。定子铁芯液道30矩形截面长度为硅钢片厚度的整数倍比如可为10~20个硅钢片厚度。
在一个实施例中,为了更有效的冷却电机外壳,参照图1、4所示,上述驱动电机100还包括,呈梭芯状的定子铁芯液套2,定子铁芯液套2两端面外周固定连接在电机外壳1的内壁上;定子铁芯液套2内壁与上述定子铁芯3固定连接,且定子铁芯液套2与电机外壳1之间形成定子铁芯液套冷却腔10;
上述定子铁芯液套2上相对应地可设有与上述定子铁芯液道30相通的液套进液口21,液套进液口21的数量可与上述定子铁芯液道30的数量一致;上述定子铁芯液道30通过液套进液口21与定子铁芯液套冷却腔10相通;
在上述定子铁芯液套2上设有至少一个液套出液口20,参照图1所示,可设置为2个液套出液口20,定子铁芯液套冷却腔10通过至少一个上述液套出液口20与相应的出液口11相通,从而有效的冷却发热的电机外壳1和定子铁芯3。
在上述实施例中,在液压及转子铁芯6旋转离心力共同作用下,气隙冷却腔32中部分冷却液沿定子绕组4溢出,部分进入定子铁芯液道30,继而进入定子液套2中,并逐渐充满定子铁芯液套冷却腔10。这种方式使得转子铁芯、转子端部、定转子间的气隙、定子铁芯、部分定子端部绕组均得到有效冷却,尤其是对高发热量的气隙及转子端部强化了冷却。
为了进一步地全面冷却定子绕组,可在定子铁芯液套2与定子绕组4之间沿轴向设置一个或两个定子绕组固定型冷却器40,参照图1、5所示,为两个定子绕组固定型冷却器40,呈环形状,而且分别沿轴向位于定子铁芯3的两侧。
参照图1所示,定子铁芯液套2与定子绕组4之间的空隙形成两个冷却器腔41,两个冷却器腔41分别位于定子铁芯3沿轴向的两侧;两个定子绕组固定型冷却器40分别与定子铁芯液套2和定子铁芯3固定连接并密封;上述液套出液口20与相对应的冷却器腔41相通,上述冷却器腔41与相对应的出液口11相通,从而完成对定子绕组的进一步全面的冷却。
上述定子绕组固定型冷却器40上可设有多个导流孔,多个上述导流孔的开孔尺寸从上到下依次增大。参照图5所示,定子绕组固定型冷却器40所设导流孔411—414(数量、形状可以不同),该导流孔分里、外、中3个区域,参照图5所示,也就是说:圆孔在中间区域,条形孔分布在里侧和外侧区域,开孔尺寸从上到下依次增大,从而在重力作用下引导冷却液均匀分散覆盖到定子绕组4上半外圆周面上,从而有效冷却了定子绕组4上半外圆周面,在冷却器腔41中的冷却液积存到一定体积时,这部分冷却液将通过定子绕组固定型冷却器40所设施液口415-418(开孔尺寸顺次减小)溢出,从而有效冷却了定子绕组下半外圆周面。
在上述驱动电机100中,采取隔磁措施,还设置隔磁板8,分别沿轴向固定在转子铁芯6的两侧面,限制漏磁效果较好。
下面通过一个完整的例子来说明本驱动电机冷却全面的工作原理。
参照图1所示,驱动电机100后端部的电机外壳1上设有进液口50,下端部设有两个出液口11;该驱动电机100包括转轴冷却腔54、气隙冷却腔32、定子铁芯液套冷却腔10和两个定子绕组旋转型冷却器58a、58b以及两个定子绕组固定型冷却器40。
参照图1所示,从冷却液的流向予以说明本驱动电机具有冷却全面、冷却效果较好的技术效果。冷却液从进液口50,通过第一动密封装置51、转轴进液道53进入转轴冷却腔54,实现对转轴的有效冷却。
而转轴冷却腔54的冷却液排出线路为2种:
1、转轴冷却腔54中的冷却液经第一转轴-定子绕组液道55a和第二转轴- 定子绕组液道55b,进入第一定子绕组旋转型冷却器58a和第二定子绕组旋转型冷却器58b,进一步有效冷却了高发热的定子绕组4。
喷液口59a、59b甩出的冷却液在左右两侧定子绕组4下半周的内圆周面上集聚,随即分别流向左右两个出液口11。
2、转轴冷却腔54中的冷却液经转轴出液道60进入气隙冷却腔32,实现冷却转子铁芯6和部分定子绕组4;其中一部分冷却液可经隔板轴承62一侧的第四动密封装置61也汇聚到左右两侧定子绕组4下半周的内圆周面上,随即分别流向左右两个出液口11;
另一部分冷却液经转子铁芯6与定子铁芯3之间的空隙,进入定子铁芯3上设置的定子铁芯液道30,实现对定子铁芯3的有效冷却,再进入定子铁芯液套冷却腔10,实现对电机外壳1的有效冷却;然后再经两个液套出液口20分别进入两个定子绕组固定型冷却器40以及两个冷却器腔41,实现对部分定子绕组4和部分定子铁芯3的有效冷却;参照图5所示,再经411-418定子绕组固定型冷却器液口,继续对定子绕组4冷却,再然后集聚在对称设置的两个418液口之间的圆周面区域,再从上述区域流向两个出液口11。
因此,本发明提供的一种车用液冷驱动电机,解决了目前车用驱动电机存在的冷却不全面、效果不理想等问题,其冷却部位全面,冷却效率高,进而提高驱动电机的使用寿命。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种车用液冷驱动电机,其特征在于,包括:电机外壳(1)、定子铁芯(3)、定子绕组(4)、转轴(5)、转子铁芯(6);
    所述电机外壳(1)上设有通向转轴(5)后端部的进液口(50);
    所述转轴(5)内具有沿其轴向布置的转轴冷却腔(54),其上套设有与所述进液口(50)相对应的第一动密封装置(51),所述进液口(50)与所述第一动密封装置(51)之间形成环形转轴供液腔(52);在所述第一动密封装置(51)密封的所述转轴(5)环形壁上设有转轴进液道(53);
    所述环形转轴供液腔(52)将所述进液口(50)与所述转轴进液道(53)连通;所述转轴进液道(53)与所述转轴冷却腔(54)连通;
    在所述转轴(5)上远离所述转轴进液道(53)一端的侧壁上设有转轴出液道(60),所述电机外壳(1)的外侧面设有至少一个出液口(11),所述转轴冷却腔(54)通过所述转轴出液道(60)且依次经过转子铁芯(6)定子铁芯(3)及定子绕组(4)与至少一个所述出液口(11)连通。
  2. 如权利要求1所述的一种车用液冷驱动电机,其特征在于,所述驱动电机(100)还包括:第一定子绕组旋转型冷却器(58a);
    所述第一定子绕组旋转型冷却器(58a)包括:位于所述转子(6)一端且套设在所述转轴(5)上的第二动密封装置(56a)和安装在所述第二动密封装置(56a)上的喷液口(59a);
    在所述第二动密封装置(56a)密封的所述转轴(5)环形表面上设有第一转轴-定子绕组液道(55a);
    所述喷液口(59a)将冷却液甩向所述定子绕组(4)内圆周面后经所述出液口(11)排出。
  3. 如权利要求2所述的一种车用液冷驱动电机,其特征在于,所述驱动电机(100)还包括:第二定子绕组旋转型冷却器(58b);
    所述第二定子绕组旋转型冷却器(58b)包括:位于所述转子(6)另一端 且套设在所述转轴(5)上的第三动密封装置(56b)和安装在所述第三动密封装置(56b)上的喷液口(59b);
    在所述第三动密封装置(56b)密封的所述转轴(5)环形表面上设有第二转轴-定子绕组液道(55b);
    所述喷液口(59b)将冷却液甩向所述定子绕组(4)内圆周面后经所述出液口(11)排出。
  4. 如权利要求1所述的一种车用液冷驱动电机,其特征在于,所述驱动电机(100)还包括一个或两个隔板(7),所述隔板(7)位于所述转子铁芯(6)沿轴向的一侧或两侧;
    所述隔板(7)通过隔板轴承(62)安装在所述转轴(5)上,所述隔板(7)其外圆周面与所述定子绕组(4)密封连接;
    所述隔板(7)、转子铁芯(6)和定子铁芯(3)之间的区域形成气隙冷却腔(32);
    所述转轴冷却腔(54)通过所述转轴出液道(60)与所述气隙冷却腔(32)连通;
    在所述隔板轴承(62)靠近气隙冷却腔(32)一侧安装有第四动密封装置(61),所述气隙冷却腔(32)通过所述第四动密封装置(61)与所述出液口(11)连通。
  5. 如权利要求4所述的一种车用液冷驱动电机,其特征在于,所述定子铁芯(3)上设有至少一个定子铁芯液道(30);
    所述定子铁芯液道(30)的进液端(31)与所述气隙冷却腔(32)连通;
    所述定子铁芯液道(30)的出液端与所述出液口(11)相通。
  6. 如权利要求5所述的一种车用液冷驱动电机,其特征在于,所述定子铁芯(3)由多个硅钢片(33)压制而成,所述定子铁芯液道(30)的截面形状为矩形,所述定子铁芯液道(30)走向与所述硅钢片平面平行。
  7. 如权利要求5所述的一种车用液冷驱动电机,其特征在于,所述驱动 电机(100)还包括:呈梭芯状的定子铁芯液套(2);
    所述定子铁芯液套(2)两端面外周固定连接在所述电机外壳(1)的内壁上;所述定子铁芯液套(2)内壁与所述定子铁芯(3)固定连接,且所述定子铁芯液套(2)与所述电机外壳(1)之间形成定子铁芯液套冷却腔(10);
    所述定子铁芯液套(2)上相对应地设有与所述定子铁芯液道(30)相通的液套进液口(21),所述定子铁芯液道(30)通过所述液套进液口(21)与所述定子铁芯液套冷却腔(10)相通;
    所述定子铁芯液套(2)上设有至少一个液套出液口(20),所述定子铁芯液套冷却腔(10)通过至少一个所述液套出液口(20)与所述出液口(11)相通。
  8. 如权利要求7所述的一种车用液冷驱动电机,其特征在于,所述驱动电机(100)还包括:沿轴向设置于所述定子铁芯液套(2)与所述定子绕组(4)之间且呈环形状的一个或两个定子绕组固定型冷却器(40),且所述定子绕组固定型冷却器(40)分别沿轴向位于所述定子铁芯(3)的一侧或两侧;
    所述定子铁芯液套(2)与所述定子绕组(4)之间的空隙形成两个冷却器腔(41),两个所述冷却器腔(41)分别位于所述定子铁芯(3)沿轴向的两侧;
    所述定子绕组固定型冷却器(40)与所述定子铁芯液套(2)和所述定子铁芯(3)固定连接并密封;
    所述液套出液口(20)与相对应的所述冷却器腔(41)相通,所述冷却器腔(41)与相对应的所述出液口(11)相通。
  9. 如权利要求8所述的一种车用液冷驱动电机,其特征在于,所述定子绕组固定型冷却器(40)上设有多个导流孔,多个所述导流孔的开孔尺寸从上到下依次增大。
  10. 如权利要求1-9任一项所述的一种车用液冷驱动电机,其特征在于,所述驱动电机(100)还包括沿轴向设置在所述转子铁芯(6)两侧面的隔磁板(8)。
PCT/CN2019/073468 2018-03-30 2019-01-28 一种车用液冷驱动电机 WO2019184580A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810296994.4 2018-03-30
CN201810296994.4A CN108282056B (zh) 2018-03-30 2018-03-30 一种车用液冷驱动电机

Publications (1)

Publication Number Publication Date
WO2019184580A1 true WO2019184580A1 (zh) 2019-10-03

Family

ID=62811311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073468 WO2019184580A1 (zh) 2018-03-30 2019-01-28 一种车用液冷驱动电机

Country Status (2)

Country Link
CN (1) CN108282056B (zh)
WO (1) WO2019184580A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114069971A (zh) * 2020-08-03 2022-02-18 安徽威灵汽车部件有限公司 驱动电机、具有该驱动电机的驱动***和车辆
GB2607870A (en) * 2021-06-07 2022-12-21 Magnomatics Ltd Magnetically geared apparatus and rotor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282056B (zh) * 2018-03-30 2024-03-01 北京理工大学 一种车用液冷驱动电机
CN112803676B (zh) * 2021-02-23 2022-05-24 美卓矿山安全设备(徐州)有限公司 一种永磁电动滚筒定子循环冷却装置
CN116613907A (zh) * 2023-06-29 2023-08-18 小米汽车科技有限公司 定子铁芯、驱动电机和车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105680628A (zh) * 2015-06-23 2016-06-15 扬州科光技术发展有限公司 一种高功率比自循环液冷永磁电机
CN106787452A (zh) * 2015-11-23 2017-05-31 南车株洲电力机车研究所有限公司 一种油冷电机
CN206237254U (zh) * 2016-10-27 2017-06-09 蔚来汽车有限公司 电机液冷结构
CN108282056A (zh) * 2018-03-30 2018-07-13 北京理工大学 一种车用液冷驱动电机
CN208128076U (zh) * 2018-03-30 2018-11-20 北京理工大学 一种车用液冷驱动电机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499697B (zh) * 2009-03-10 2012-04-25 武汉唯特特种电机有限公司 一种液冷电机
JP5502421B2 (ja) * 2009-10-08 2014-05-28 株式会社東芝 回転電機
CN201994738U (zh) * 2011-02-28 2011-09-28 比亚迪股份有限公司 一种封闭式自冷却电机
JP2013183481A (ja) * 2012-02-29 2013-09-12 Toyota Motor Corp 回転電機用ロータの冷却構造、および、回転電機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105680628A (zh) * 2015-06-23 2016-06-15 扬州科光技术发展有限公司 一种高功率比自循环液冷永磁电机
CN106787452A (zh) * 2015-11-23 2017-05-31 南车株洲电力机车研究所有限公司 一种油冷电机
CN206237254U (zh) * 2016-10-27 2017-06-09 蔚来汽车有限公司 电机液冷结构
CN108282056A (zh) * 2018-03-30 2018-07-13 北京理工大学 一种车用液冷驱动电机
CN208128076U (zh) * 2018-03-30 2018-11-20 北京理工大学 一种车用液冷驱动电机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114069971A (zh) * 2020-08-03 2022-02-18 安徽威灵汽车部件有限公司 驱动电机、具有该驱动电机的驱动***和车辆
GB2607870A (en) * 2021-06-07 2022-12-21 Magnomatics Ltd Magnetically geared apparatus and rotor

Also Published As

Publication number Publication date
CN108282056B (zh) 2024-03-01
CN108282056A (zh) 2018-07-13

Similar Documents

Publication Publication Date Title
CN108336865B (zh) 一种液冷驱动电机
WO2019184580A1 (zh) 一种车用液冷驱动电机
CN207939351U (zh) 一种液冷驱动电机
WO2021114606A1 (zh) 一种带吊挂结构的空水冷大功率永磁牵引电机
CN111478521A (zh) 一种混合冷却电机
CN110138145B (zh) 一种水冷和油冷相结合的永磁同步电机
CN207939353U (zh) 一种电机和车辆
CN113364166B (zh) 一种电机定子油冷结构
CN110086296B (zh) 一种高效油冷永磁同步电机
CN111884428A (zh) 电机、电机冷却***及电动车
CN113241880A (zh) 内置油路结构的油冷电机
CN114629297B (zh) 一种液冷电机
WO2022156546A1 (zh) 一种油冷电机冷却***
CN111181300A (zh) 一种永磁同步电机油冷结构
CN208128076U (zh) 一种车用液冷驱动电机
US11973407B2 (en) Thermal management techniques for electric motors
CN115276302A (zh) 一种油冷电机及油冷电机过热保护方法
CN206211738U (zh) 增程器发电机油冷***
Zi-Chao et al. Innovative design of the cooling topologies for electric vehicle motors
CN110798022A (zh) 一种冷却装置
CN212033944U (zh) 油冷机壳以及油冷电机
US20230198340A1 (en) Motor having multiple cooling flow channels
CN117118155A (zh) 高效散热的筒式永磁调速器
CN112865397B (zh) 一种电机冷却油路结构
CN209748302U (zh) 用于电机的端盖和具有该端盖的电机和电动车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774545

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19774545

Country of ref document: EP

Kind code of ref document: A1