WO2019184408A1 - 电化学制冷窗式空调除霜控制方法及控制***、空调 - Google Patents

电化学制冷窗式空调除霜控制方法及控制***、空调 Download PDF

Info

Publication number
WO2019184408A1
WO2019184408A1 PCT/CN2018/117454 CN2018117454W WO2019184408A1 WO 2019184408 A1 WO2019184408 A1 WO 2019184408A1 CN 2018117454 W CN2018117454 W CN 2018117454W WO 2019184408 A1 WO2019184408 A1 WO 2019184408A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
outdoor heat
air conditioner
indoor
heating mode
Prior art date
Application number
PCT/CN2018/117454
Other languages
English (en)
French (fr)
Inventor
张龙
朱百发
王若峰
乔光宝
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2019184408A1 publication Critical patent/WO2019184408A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/20Details or features not otherwise provided for mounted in or close to a window

Definitions

  • the invention relates to the technical field of air conditioners, in particular to an electrochemical refrigeration window air conditioner defrosting control method and a control system, and an electrochemical refrigeration window air conditioner.
  • Electrochemical air conditioning system and its control method discloses an electrochemical air conditioning system, including: an electrochemical hydrogen pump, a first metal hydride heat exchanger a second metal hydride heat exchanger, a first fan and a second fan, etc., alternately heating or cooling by the first metal hydride heat exchanger and the second metal hydride heat exchanger, and alternately connecting the indoor and outdoor, Realize continuous heating or cooling in the room.
  • the outdoor heat exchanger In the heating mode, the outdoor heat exchanger is in a low temperature environment, especially when it is in an environment below zero, the outdoor heat exchanger dehydrogenates and absorbs heat, and the moisture around the evaporator is condensed into frost.
  • the outdoor heat exchanger will seriously affect the air conditioning performance after frosting.
  • the electrochemical hydrogen pump of the electrochemical refrigeration window air conditioner can not continue to heat during the commutation, and the power consumption increases, which affects the heating effect of the air conditioner. And heating efficiency.
  • Embodiments of the present invention provide an electrochemical refrigeration window air conditioner defrosting control method and control system, and an electrochemical refrigeration window air conditioner.
  • an electrochemical refrigeration window air conditioner defrosting control method and control system
  • an electrochemical refrigeration window air conditioner In order to have a basic understanding of some aspects of the disclosed embodiments, a brief summary is given below. This generalization is not a general comment, nor is it intended to identify key/critical constituent elements or to describe the scope of protection of these embodiments. Its sole purpose is to present some concepts in a simplified form as a prelude to the following detailed description.
  • an electrochemical refrigeration window air conditioner defrosting control method is provided.
  • the method includes: detecting a temperature of an outdoor heat exchanger of the electrochemical refrigeration window air conditioner; comparing the detected temperature and temperature set values of the outdoor heat exchanger; And when the detected temperature of the outdoor heat exchanger is less than or equal to a temperature set value, controlling the outdoor heat exchanger to operate in a heating mode to defrost the outdoor heat exchanger.
  • the outdoor heat exchanger is defrosted by using the heating characteristic of the air conditioner to ensure normal operation of the air conditioner.
  • controlling the outdoor heat exchanger to operate in a heating mode to defrost the outdoor heat exchanger comprises: controlling voltage commutation of the electrochemical refrigeration window air conditioner to make the electricity
  • the outdoor heat exchanger of the chemical refrigeration window air conditioner operates in a heating mode, and controls the indoor air passage of the electrochemical refrigeration window air conditioner to stop working.
  • the indoor heat exchanger is disconnected from the indoor air passage during the defrosting to ensure that the indoor heating and cooling mode is not disordered.
  • the method further comprises: timing from the outdoor heat exchanger operating in the heating mode to obtain a defrosting time; and controlling the outdoor heat exchanger when the defrosting time reaches a set time
  • the indoor air duct of Unicom is connected, and the indoor heat exchanger is controlled to communicate with the outdoor air duct.
  • the method further comprises: timing from the outdoor heat exchanger operating in the heating mode to obtain a defrosting time; and controlling the electrochemical cooling window when the defrosting time reaches a set time
  • the voltage of the air conditioner is reversed to operate the indoor heat exchanger in a heating mode, and the indoor heat exchanger is controlled to communicate with the indoor air duct to control the outdoor heat exchanger to communicate with the outdoor air duct.
  • the outdoor heat exchanger is continuously heated or switched to the indoor heat exchanger heating mode to ensure the continuity of the indoor heating.
  • an electrochemical refrigeration window air conditioner defrosting control system includes: a temperature detecting device for detecting the electrochemical cooling window a temperature of the outdoor heat exchanger of the air conditioner; and a processor configured to: compare the detected temperature and temperature set values of the outdoor heat exchanger; when the detected temperature of the outdoor heat exchanger is less than or When the temperature is set to be equal to the temperature set value, the outdoor heat exchanger is controlled to operate in a heating mode to defrost the outdoor heat exchanger.
  • the processor controls the outdoor heat exchanger to operate in a heating mode to defrost the outdoor heat exchanger comprises: controlling voltage commutation of the electrochemical refrigeration window air conditioner to The outdoor heat exchanger of the electrochemical refrigeration window air conditioner is operated in a heating mode, and the indoor air duct of the electrochemical refrigeration window air conditioner is controlled to stop working.
  • the system further comprises: a timing device for timing from the outdoor heat exchanger operating in the heating mode to obtain a defrosting time; and the processor is further configured to: when the defrosting When the time reaches the set time, the outdoor heat exchanger is controlled to communicate with the indoor air duct, and the indoor heat exchanger is controlled to communicate with the outdoor air duct.
  • the system further comprises: a timing device for timing from the outdoor heat exchanger operating in the heating mode to obtain a defrosting time; and the processor is further configured to: when the defrosting Controlling the voltage commutation of the electrochemical refrigeration window air conditioner when the time reaches the set time, so that the indoor heat exchanger operates in the heating mode, and controls the indoor heat exchanger to communicate with the indoor air duct, and the control center The outdoor heat exchanger communicates with the outdoor air duct.
  • a timing device for timing from the outdoor heat exchanger operating in the heating mode to obtain a defrosting time
  • the processor is further configured to: when the defrosting Controlling the voltage commutation of the electrochemical refrigeration window air conditioner when the time reaches the set time, so that the indoor heat exchanger operates in the heating mode, and controls the indoor heat exchanger to communicate with the indoor air duct, and the control center
  • the outdoor heat exchanger communicates with the outdoor air duct.
  • an electrochemical refrigeration window air conditioner and in some alternative embodiments, the electrochemical refrigeration window air conditioner comprises an electrochemical refrigeration window of any of the above Air conditioning defrost control system.
  • the air conditioner further includes: a hydrogen concentration detecting device for detecting a hydrogen concentration of the indoor heat exchanger and the outdoor heat exchanger; the processor is further configured to: detect the hydrogen concentration detecting device Comparing the hydrogen concentration with a set concentration value, when the hydrogen concentration is less than the set concentration value, controlling a voltage commutation of the electrochemical refrigeration window air conditioner to cause the indoor heat exchanger and the The outdoor heat exchanger alternately operates in a heating mode, and simultaneously controls the three-way valve to be commutated such that the indoor heat exchanger or the outdoor heat exchanger operating in the heating mode communicates with the indoor air duct.
  • a hydrogen concentration detecting device for detecting a hydrogen concentration of the indoor heat exchanger and the outdoor heat exchanger
  • the processor is further configured to: detect the hydrogen concentration detecting device Comparing the hydrogen concentration with a set concentration value, when the hydrogen concentration is less than the set concentration value, controlling a voltage commutation of the electrochemical refrigeration window air conditioner to cause the indoor heat exchanger and the The outdoor heat exchanger alternately operates in
  • FIG. 1 is a schematic structural view of a prior art electrochemical refrigeration window air conditioner system according to an exemplary embodiment
  • FIG. 2 is a schematic flow chart of an electrochemical refrigeration window air conditioner defrosting control method according to an exemplary embodiment
  • FIG. 3 is a schematic flow chart of an electrochemical refrigeration window air conditioner defrosting control method according to another exemplary embodiment
  • FIG. 4 is a schematic flow chart of an electrochemical refrigeration window air conditioner defrosting control method according to another exemplary embodiment
  • FIG. 5 is a schematic flow chart of an electrochemical refrigeration window air conditioner defrosting control method according to another exemplary embodiment
  • FIG. 6 is a schematic structural diagram of an electrochemical refrigeration window air conditioner defrosting control system according to an exemplary embodiment
  • FIG. 7 is a schematic structural diagram of an electrochemical refrigeration window air conditioner defrosting control system according to another exemplary embodiment.
  • Figure 1 in: 1, electrochemical hydrogen pump; 2, the first metal hydride heat exchanger; 3, the second metal hydride heat exchanger; 4, the first fan; 5, the second fan; 6, the first wind Road; 7, the second air duct; 8, the third air duct; 9, the fourth air duct; 10, the first three-way valve; 11, the second three-way valve; 12, the third three-way valve; Four three-way valve.
  • FIG. 1 is a schematic structural view of a prior art electrochemical refrigeration window air conditioner system according to an exemplary embodiment.
  • 1 is an electrochemical hydrogen pump, which connects two indoor and outdoor metal hydride heat exchangers through two hydrogen pipes, wherein the first metal hydride heat exchanger 2 is an indoor heat exchanger, and the second metal is hydrogenated.
  • the heat exchanger 3 is an outdoor heat exchanger, and the heat exchange system is air-cooled heat exchange, and the indoor and outdoor winds are sucked into the air passage through two centrifugal fans, that is, the first fan 4 and the second fan 5, and the electromagnetic three is passed through
  • the reversing valves 9, 10, 11 and 12 are blown out from the indoor and outdoor air outlets, and the continuous reversing or heating is realized by the commutation of the electromagnetic three-way reversing valve.
  • the first metal hydride heat exchanger 2 that is, the indoor heat exchanger
  • the second metal hydride heat exchanger 3 that is, the outdoor heat exchanger dehydrogenation heat absorption, as the evaporator
  • the first three-way valve 10 and the second three-way valve 11 are in the AB direction
  • the third three-way valve 12 and the fourth three-way valve 13 are in the AC direction.
  • the outdoor air is sucked into the fourth air duct 9 by the second air blower 5 and blown out from the outdoor air outlet.
  • Indoor heating when a positive pressure is applied to the electrochemical hydrogen pump 1, at this time, the second metal hydride heat exchanger 3, that is, the outdoor heat exchanger hydrogen absorption heat release as a condenser, the first metal hydride heat exchanger 2 That is, the dehydrogenation heat absorption of the indoor heat exchanger is used as an evaporator, the AC directions of the first three-way valve 10 and the second three-way valve 11 are turned on, and the third three-way valve 12 and the fourth three-way valve 13 are turned on in the AB direction.
  • the indoor air is cooled by the indoor heat exchanger through the second air duct 7 and blown out from the outdoor air outlet, and the outdoor air is heated by the outdoor heat exchanger.
  • Three duct 8 air blown from the indoor, this time to achieve a heating chamber at positive pressure.
  • the air conditioning system achieves continuous heating by alternating application of positive and negative pressures at certain time intervals.
  • the above-mentioned electrochemical refrigeration window air conditioners alternately heat the indoor and outdoor heat exchangers, and the heating heat exchangers are alternately connected to the indoors through the switching of the three-way valves to realize continuous heating in the room.
  • the outdoor heat exchanger is in a low temperature environment, when the indoor heat exchanger is heated and the outdoor heat exchanger is cooled, the outdoor heat exchanger acts as an evaporator, which is prone to condensation and frost formation.
  • the chemical hydrogen pump voltage is reversed, when the outdoor heat exchanger needs heating, the defrosting/defrosting is first required. The defrosting preheating heat absorption will delay the supply of heat to the room, reduce the heating effect of the air conditioner, and affect the air conditioning operation effect.
  • the invention is based on the above technical problem, and defrosts the electrochemical refrigeration window air conditioner by the defrosting control system and the control method, improves the heating efficiency of the air conditioner, and improves the operation effect of the air conditioner. Specific embodiments and related effects will be described below with reference to FIGS. 2-7.
  • FIG. 2 is a schematic flow chart of an electrochemical refrigeration window air conditioner defrosting control method according to an exemplary embodiment.
  • an electrochemical refrigeration window air conditioner defrosting control method includes: detecting a temperature of an outdoor heat exchanger of the electrochemical refrigeration window air conditioner in step S110; S120, comparing the detected temperature and temperature setting values of the outdoor heat exchanger to determine whether the temperature of the outdoor heat exchanger is less than or equal to a temperature setting value; and, when the detected outdoor heat exchanger When the temperature is less than or equal to the temperature set value, in step S130, the outdoor heat exchanger is controlled to operate in a heating mode to defrost the outdoor heat exchanger.
  • the electrochemical refrigeration window air conditioner is in a low temperature environment, the indoor heat exchanger is in the heating mode, and the outdoor heat exchanger is used as the evaporator.
  • the hydrogen absorption and heat release generate water vapor condensation and frost, which will affect the normality of the air conditioner. Operation, at this time, when the temperature Tw of the outdoor heat exchanger of the electrochemical cooling window air conditioner detected is less than or equal to the temperature set value T, it is considered that the outdoor heat exchanger needs defrosting/defrosting, and at this time, the outdoor control is changed.
  • the heat exchanger works in a heating mode, for example, by controlling the voltage commutation of the electrochemical hydrogen pump applied to the electrochemical refrigeration window air conditioner, so that the outdoor heat exchanger is switched from the dehydrogenation heat absorption working mode to the hydrogen absorption heat release working mode. That is, the evaporator is switched to the condenser, and the heat in the self-heating process melts the condensation of the heat exchanger to perform the defrosting operation, thereby avoiding the influence of frosting on the normal operation of the outdoor heat exchanger, and ensuring the air conditioner. Normal operation, improve heating effect and operating efficiency.
  • the outdoor heat exchanger is heated and defrosted by using the heating characteristics of the air conditioner itself, without adding hardware structure, and without using other defrosting devices, saving energy and cost.
  • heating is performed by an outdoor heat exchanger or an indoor heat exchanger, and the heat exchanger in the heating mode is connected to the indoor air passage to continue the indoor heating.
  • FIG. 3 is a schematic flow chart of an electrochemical refrigeration window air conditioner defrosting control method according to another exemplary embodiment.
  • an electrochemical refrigeration window air conditioner defrosting control method according to another embodiment of the present invention, wherein the outdoor heat exchanger is controlled to operate in a heating mode to remove the outdoor heat exchanger
  • the frost includes: controlling the voltage commutation of the electrochemical refrigeration window air conditioner in step S132, so that the outdoor heat exchanger of the electrochemical refrigeration window air conditioner operates in the heating mode, and in step S134, controlling The indoor air duct of the electrochemical refrigeration window air conditioner stops working.
  • the indoor heat exchanger and the outdoor heat exchanger of the electrochemical refrigeration window air conditioner alternately perform cooling or heating, and when the outdoor heat exchanger is switched to the condenser mode hydrogen absorption and heat release for defrosting, the electrochemical hydrogen pump
  • the voltage commutation for example, the applied voltage changes from positive to negative, and the indoor heat exchanger dehydrogenation heat is switched to the evaporator.
  • the indoor is the heating demand, in order to avoid the refrigeration caused by the indoor heat exchanger switching to the evaporator.
  • the effect affects the indoor temperature, disconnects the indoor heat exchanger and the indoor air duct to avoid the indoor temperature is lowered, causing disorder in the indoor heating and cooling mode to ensure the normal operation of the air conditioner.
  • the indoor heat exchanger when the outdoor heat exchanger performs a defrosting process, the indoor heat exchanger is used as an evaporator, and the communication between the indoor heat exchanger and the indoor air passage is closed, for example, the indoor fan, that is, the first fan 4 can be controlled to stop, thereby
  • the indoor heat exchanger does not cool the indoor air and circulates through the first air passage 6 to the indoor, thereby avoiding the disorder of the cooling and heating mode caused by the cooling of the indoor air, and ensuring the normal operation of the air conditioner.
  • FIG. 4 is a schematic flow chart of an electrochemical refrigeration window air conditioner defrosting control method according to another exemplary embodiment.
  • the method further includes: in step S140, starting from the outdoor heat exchanger to start timing in the heating mode to obtain a defrosting time; and, in step S150, determining whether the defrosting time is reached Setting the time, when the defrost time reaches the set time, in step S160, the outdoor heat exchanger is controlled to communicate with the indoor air duct, and the indoor heat exchanger is controlled to communicate with the outdoor air duct.
  • the defrost time/actual defrost time is set to t, and the set time/preset defrost time is t0. It can be set that when t>t0, the frost on the outdoor heat exchanger is completely completed.
  • the timing starts, and the defrosting time t is obtained.
  • the defrosting time t reaches the set time t0, it is considered that the defrosting is completed, and the outdoor heat exchanger and the indoor wind are obtained.
  • the outdoor heat exchanger works in the condenser mode, and the hydrogen absorption and heat release continue to provide hot air to the indoor; at this time, for example, the indoor heat exchanger and the outdoor air duct can be connected, and the air conditioning system is switched to the normal indoor heating mode. Keep running.
  • the cooling and heating working mode of the electrochemical refrigeration window air conditioning system shown in FIG. 1 can be used to realize the indoor heat exchanger and the outdoor heat exchange for the on/off switching of the three-way valve in the AB and AC directions.
  • the outdoor heat exchanger is controlled to continue to operate in the heating mode, and the AC direction of the first three-way valve 10 and the second three-way valve 11 is controlled to be turned on, and the third three-way valve 12 and the fourth three-way are controlled.
  • the valve 13 is electrically connected in the AB direction, the air outlet of the indoor heat exchanger is connected to the outdoor, and the air outlet of the outdoor heat exchanger is connected to the indoor, and the outdoor heat exchanger circulates the outdoor air to the indoors to perform indoor heating.
  • FIG. 5 is a schematic flow chart of an electrochemical refrigeration window air conditioner defrosting control method according to another exemplary embodiment.
  • the method further includes: in step S140, starting from the outdoor heat exchanger to operate in a heating mode to obtain a defrosting time; In step S150, it is determined whether the defrosting time reaches the set time. When the defrosting time reaches the set time, in step S172, the voltage commutation of the electrochemical cooling window type air conditioner is controlled so that the The indoor heat exchanger operates in a heating mode, and in step S174, the indoor heat exchanger is controlled to communicate with the indoor air duct, and the outdoor heat exchanger is controlled to communicate with the outdoor air duct.
  • the above exemplary description corresponds to the exemplary description shown in FIG. 4, and when it is determined that the defrosting process is completed, the outdoor heat exchanger is controlled to switch from the hydrogen absorption heat release mode/heating mode to the dehydrogenation heat absorption mode/cooling mode.
  • the indoor heat exchanger is reversed, and the cooling mode is switched to the heating mode, and then the indoor heat is heated by the indoor heat exchanger. Accordingly, the indoor heat exchanger is connected to the indoor air passage, the outdoor heat exchanger and the outdoor air duct. Unicom to continue to run the heating program to make the air conditioner operate normally.
  • control room heat exchanger When the defrosting is completed, the control room heat exchanger operates in the heating mode, and controls the first three-way valve 10 and the second three-way valve 11 to be turned on in the AB direction, and controls the third three-way valve 12 and the fourth three-way valve.
  • the AC direction of 13 When the AC direction of 13 is turned on, the air outlet of the indoor heat exchanger is connected to the outdoor, and the air outlet of the outdoor heat exchanger is connected to the indoor, and the indoor heat exchanger heats the indoor air and circulates indoors to perform indoor heating.
  • the defrosting time is determined according to the detected temperature of the outdoor heat exchanger or the detected outdoor temperature, for example, the relationship between the temperature/outdoor temperature of the outdoor heat exchanger and the defrosting time is set according to the experimental or empirical value.
  • the set time is determined by the detected temperature/outdoor temperature of the outdoor heat exchanger.
  • an experience table may be established according to the correspondence between the temperature of the actually detected outdoor heat exchanger and the set time of the defrosting, after acquiring the temperature of the outdoor heat exchanger or the outdoor temperature, according to the The corresponding table determines the set time of the defrost.
  • the voltage commutation time that is, the time during which the heat exchanger absorbs or releases the hydrogen gas
  • the heat exchanger is commutating, which causes the indoor cooling and heating to be disordered.
  • the above-mentioned electrochemical refrigeration window type air conditioner defrosting control method utilizes the heating characteristic of the electrochemical cooling window type air conditioner to perform defrosting operation on the outdoor heat exchanger in a low temperature environment, and ensures normal operation of the air conditioner without adding additional hardware, thereby improving Air conditioning operation reliability and operating efficiency.
  • FIG. 6 is a schematic structural diagram of an electrochemical refrigeration window air conditioner defrosting control system according to an exemplary embodiment.
  • An electrochemical refrigeration window air conditioner control system according to an embodiment of the present invention includes: a temperature detecting device 110 for detecting a temperature of an outdoor heat exchanger of the electrochemical refrigeration window air conditioner;
  • the processor 120 is configured to: compare the detected temperature and temperature set values of the outdoor heat exchanger; and when the detected temperature of the outdoor heat exchanger is less than or equal to a temperature set value, control the The outdoor heat exchanger operates in a heating mode to defrost the outdoor heat exchanger.
  • the processor controls the outdoor heat exchanger to operate in a heating mode to defrost the outdoor heat exchanger, comprising: controlling voltage commutation of the electrochemical refrigeration window air conditioner to enable The outdoor heat exchanger of the electrochemical refrigeration window air conditioner operates in a heating mode, and controls an indoor air duct of the electrochemical refrigeration window air conditioner to stop working.
  • FIG. 7 is a schematic structural diagram of an electrochemical refrigeration window air conditioner defrosting control system according to another exemplary embodiment.
  • the electrochemical refrigeration window air conditioner control system according to another embodiment of the present invention further includes: a timing device 112, configured to start timing in the heating mode from the outdoor heat exchanger to obtain a frost time; and the processor is further configured to: when the defrost time reaches a set time, control the outdoor heat exchanger to communicate with the indoor air duct, and control the indoor heat exchanger to communicate with the outdoor air duct .
  • the processor 120 may, for example, be further configured to: when the defrost time reaches a set time, control voltage commutation of the electrochemical refrigerating window air conditioner to cause the indoor
  • the heat exchanger operates in a heating mode, and controls the indoor heat exchanger to communicate with the indoor air duct to control the outdoor heat exchanger to communicate with the outdoor air duct.
  • Another exemplary embodiment of the present invention is an electrochemical refrigeration window air conditioner (not shown).
  • An electrochemical refrigeration window air conditioner defrosting control system according to any of the above will be mentioned.
  • the electrochemical refrigeration window air conditioner defrosting control system shown in FIG. 6 or FIG. 7 may be combined with the electrochemical refrigeration window air conditioner shown in FIG. 1 to obtain an electrochemically cooled window air conditioner capable of performing defrosting.
  • the air conditioner further includes: a hydrogen concentration detecting device configured to detect a hydrogen concentration of the indoor heat exchanger and the outdoor heat exchanger; the processor further configured to: detect the hydrogen concentration detecting device Comparing the hydrogen concentration with a set concentration value, when the hydrogen concentration is less than the set concentration value, controlling a voltage commutation of the electrochemical refrigeration window air conditioner to cause the indoor heat exchanger and the The outdoor heat exchanger alternately operates in a heating mode, and simultaneously controls the three-way valve to be commutated such that the indoor heat exchanger or the outdoor heat exchanger operating in the heating mode communicates with the indoor air duct.
  • a hydrogen concentration detecting device configured to detect a hydrogen concentration of the indoor heat exchanger and the outdoor heat exchanger
  • the processor further configured to: detect the hydrogen concentration detecting device Comparing the hydrogen concentration with a set concentration value, when the hydrogen concentration is less than the set concentration value, controlling a voltage commutation of the electrochemical refrigeration window air conditioner to cause the indoor heat exchanger and the The outdoor heat exchanger alternately operates in a heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明公开了一种电化学制冷窗式空调除霜控制方法及控制***,以及电化学制冷窗式空调,属于空调技术领域。该方法包括:检测所述电化学制冷窗式空调的室外换热器的温度;将所检测的所述室外换热器的温度和温度设定值比较;以及,当所检测的所述室外换热器的温度小于或等于温度设定值时,控制所述室外换热器工作在制热模式,以对所述室外换热器进行除霜。本发明的电化学制冷窗式空调除霜控制方法及控制***,利用空调自身的制热特性对室外换热器进行除霜,保证空调正常运行,提高空调制热效果。

Description

电化学制冷窗式空调除霜控制方法及控制***、空调
本申请基于申请号为201810276540.0、申请日为2018年03月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及空调技术领域,特别涉及电化学制冷窗式空调除霜控制方法及控制***,以及电化学制冷窗式空调。
背景技术
现有技术中大多数空调特别是家用空调采用的是蒸汽压缩式制冷,通过对制冷剂的压缩,使得制冷状态不断变化,该种制冷方式的能源消耗较大,且其释放或泄露冷媒,即氟化物对环境造成污染。
本发明人的申请号为CN201710054779.9,申请名称:电化学空调***及其控制方法的在先申请公开了一种电化学空调***,包括:电化学氢泵、第一金属氢化物换热器、第二金属氢化物换热器、第一风机和第二风机等,通过第一金属氢化物换热器和第二金属氢化物换热器交替制热或制冷,并交替联通室内和室外,实现室内的连续制热或制冷。利用金属氢化物自身特性实现制冷或制热,达到节能环保的效果。
而在制热工作模式下,处于室外的换热器处于低温环境中,尤其当处于低于零度的环境中时,室外换热器脱氢吸热,作为蒸发器其周围的水分凝结成霜,室外换热器结霜后会严重影响空调性能,导致电化学制冷窗式空调的电化学氢泵在换向时室外换热器无法继续制热,耗电量增加,影响空调的制热使用效果和制热效率。
发明内容
本发明实施例提供了一种电化学制冷窗式空调除霜控制方法及控制***、电化学制冷窗式空调。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本发明实施例的第一方面,提供了一种电化学制冷窗式空调除霜控制方法。
在一些可选实施例中,所述方法包括:检测所述电化学制冷窗式空调的室外换热器的温度;将所检测的所述室外换热器的温度和温度设定值比较;以及,当所检测的所述室外换热器的温度小于或等于温度设定值时,控制所述室外换热器工作在制热模式,以对所述 室外换热器进行除霜。
上述实施例的电化学制冷窗式空调除霜控制方法,利用空调自身的制热特性对室外换热器进行除霜,保证空调正常运行。
优选地,其中,控制所述室外换热器工作在制热模式,以对所述室外换热器进行除霜包括:控制所述电化学制冷窗式空调的电压换向,以使得所述电化学制冷窗式空调的室外换热器工作在制热模式,并控制所述电化学制冷窗式空调的室内风道停止工作。
上述实施例的电化学制冷窗式空调除霜控制方法,除霜期间室内换热器与室内风道停止联通,保证室内制热制冷模式不紊乱。
优选地,该方法还包括:从所述室外换热器工作在制热模式开始计时,以获取除霜时间;以及,当所述除霜时间达到设定时间时,控制所述室外换热器联通所述室内风道,并控制室内换热器联通室外风道。
优选地,该方法还包括:从所述室外换热器工作在制热模式开始计时,以获取除霜时间;以及,当所述除霜时间达到设定时间时,控制所述电化学制冷窗式空调的电压换向,以使得所述室内换热器工作在制热模式,并控制所述室内换热器联通室内风道,控制所述室外换热器联通室外风道。
上述实施例的电化学制冷窗式空调除霜控制方法,除霜完成后通过室外换热器继续制热或切换至室内换热器制热的模式,保证室内制热的连续性。
根据本发明实施例的第二方面,提供一种电化学制冷窗式空调除霜控制***,在一些可选实施例中,该***包括;温度检测装置,用于检测所述电化学制冷窗式空调的室外换热器的温度;以及,处理器,被配置成:将所检测的所述室外换热器的温度和温度设定值比较;当所检测的所述室外换热器的温度小于或等于温度设定值时,控制所述室外换热器工作在制热模式,以对所述室外换热器进行除霜。
优选地,其中,所述处理器控制所述室外换热器工作在制热模式,以对所述室外换热器进行除霜包括:控制所述电化学制冷窗式空调的电压换向,以使得所述电化学制冷窗式空调的室外换热器工作在制热模式,并控制所述电化学制冷窗式空调的室内风道停止工作。
优选地,该***还包括:计时装置,用于从所述室外换热器工作在制热模式开始计时,以获取除霜时间;以及,所述处理器还被配置成:当所述除霜时间达到设定时间时,控制所述室外换热器联通所述室内风道,并控制室内换热器联通室外风道。
优选地,该***还包括:计时装置,用于从所述室外换热器工作在制热模式开始计时,以获取除霜时间;以及,所述处理器还被配置成:当所述除霜时间达到设定时间时,控制所述电化学制冷窗式空调的电压换向,以使得所述室内换热器工作在制热模式,并控制所述室内换热器联通室内风道,控制所述室外换热器联通室外风道。
根据本发明实施例的第三方面,提供了一种电化学制冷窗式空调,在一些可选实施例中,所述电化学制冷窗式空调包括如上所述任一种的电化学制冷窗式空调除霜控制***。
优选地,该空调还包括:氢气浓度检测装置,用于检测所述室内换热器和所述室外换热器的氢气浓度;所述处理器还被配置成:将所述氢气浓度检测装置检测的所述氢气浓度和设定浓度值比较,当所述氢气浓度小于所述设定浓度值时,控制所述电化学制冷窗式空调的电压换向,以使得所述室内换热器和所述室外换热器交替工作在制热模式,并同时控制三通阀换向,以使得工作在制热模式的所述室内换热器或室外换热器联通所述室内风道。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的现有技术的电化学制冷窗式空调***结构示意图;
图2是根据一示例性实施例示出的一种电化学制冷窗式空调除霜控制方法的流程示意图;
图3是根据另一示例性实施例示出的一种电化学制冷窗式空调除霜控制方法的流程示意图;
图4是根据另一示例性实施例示出的一种电化学制冷窗式空调除霜控制方法的流程示意图;
图5是根据另一示例性实施例示出的一种电化学制冷窗式空调除霜控制方法的流程示意图;
图6是根据一示例性实施例示出的一种电化学制冷窗式空调除霜控制***的结构示意图;
图7是根据另一示例性实施例示出的一种电化学制冷窗式空调除霜控制***的结构示意图。
附图标记
图1中:1、电化学氢泵;2、第一金属氢化物换热器;3、第二金属氢化物换热器;4、第一风机;5、第二风机;6、第一风道;7、第二风道;8、第三风道;9、第四风道;10、第一三通阀;11、第二三通阀;12、第三三通阀;13、第四三通阀。
具体实施方式
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践 它们。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的结构、产品等而言,由于其与实施例公开的部分相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
图1是根据一示例性实施例示出的现有技术的电化学制冷窗式空调***结构示意图。如图1所示,1为电化学氢泵,通过两条氢气管道连接室内外两个金属氢化物换热器,其中第一金属氢化物换热器2为室内换热器,第二金属氢化物换热器3为室外换热器,该换热***为风冷换热,通过两个离心风扇即第一风机4和第二风机5,将室内外的风吸到风道,通过电磁三通换向阀9、10、11和12从室内外出风口吹出,通过电磁三通换向阀的换向来实现连续制冷或制热。
在制热模式下,当给电化学氢泵1施加负压时,此时第一金属氢化物换热器2即室内换热器吸氢放热作为冷凝器,第二金属氢化物换热器3即室外换热器脱氢吸热,作为蒸发器,第一三通阀10和第二三通阀11的AB方向导通,第三三通阀12和第四三通阀13的AC方向导通,室内空气被离心风扇即第一风机4吸入第一风道6从室内出风口吹出,室外空气被第二风机5吸入第四风道9从室外出风口吹出,此时实现负压下的室内制热;当给电化学氢泵1施加正压时,此时第二金属氢化物换热器3即室外换热器吸氢放热作为冷凝器,第一金属氢化物换热器2即室内换热器脱氢吸热作为蒸发器,第一三通阀10和第二三通阀11的AC方向导通,第三三通阀12和第四三通阀13的AB方向导通,此时室内空气通过室内换热器被制冷经第二风道7从室外出风口吹出,室外空气通过室外换热器被制热经第三风道8从室内出风口吹出,此时实现正压下的室内制热。通过正负压在一定时间间隔下的交替施加,该空调***便实现连续制热。
上述电化学制冷窗式空调室内外换热器的交替制热,并将制热的换热器通过三通阀的切换交替联通至室内,实现室内的连续制热。而在使用中,由于室外换热器处于低温环境中,当室内换热器制热而室外换热器制冷时,室外换热器作为蒸发器易出现水汽凝结成霜现象,此时,当电化学氢泵电压换向,室外换热器需要制热时,首先需进行除霜/化霜,除霜预热吸收热量将延迟为室内提供热量,降低空调的制热效果,影响空调运行效果。本发明基于上述技术问题提出,通过除霜控制***、控制方法对电化学制冷窗式空调进行除霜,提高空调的制热效率,改善空调的运行效果。下面结合附图2-7对具体的实施方式和相关效果进行说明。
图2是根据一示例性实施例示出的一种电化学制冷窗式空调除霜控制方法的流程示意图。如图2所示,本发明一种实施方式的电化学制冷窗式空调除霜控制方法,包括:在步骤S110中,检测所述电化学制冷窗式空调的室外换热器的温度;在步骤S120中,将所检测的所述室外换热器的温度和温度设定值比较,判断室外换热器的温度是否小于或等于温度设定值;以及,当所检测的所述室外换热器的温度小于或等于温度设定值时,在步骤S130中,控制所述室外换热器工作在制热模式,以对所述室外换热器进行除霜。
上述方案中,电化学制冷窗式空调当处于低温环境中,室内换热器处于制热工作模式下,室外换热器作为蒸发器,吸氢放热产生水汽凝结成霜,会影响空调的正常运行,此时,当检测的电化学制冷窗式空调的室外换热器的温度Tw小于或等于温度设定值T时,认为室外换热器需要化霜/除霜,此时,控制室外换热器工作在制热模式,例如可以通过控制施加在电化学制冷窗式空调的电化学氢泵的电压换向,使得室外换热器由脱氢吸热工作模式切换到吸氢放热工作模式,即由蒸发器切换为冷凝器,自身放热过程中的热量对换热器的凝霜融化,以进行除霜操作,避免结霜对室外换热器的正常工作带来的影响,保证空调正常运行,提高制热效果和运行效率。利用空调自身的制热特性对室外换热器进行制热除霜,无需增加硬件结构,无需使用其他除霜装置,节约能源和成本。
上述方案中,例如可以在除霜完成后,通过室外换热器或室内换热器进行制热,并将制热模式下的换热器联通到室内风道,以继续进行室内制热。
图3是根据另一示例性实施例示出的一种电化学制冷窗式空调除霜控制方法的流程示意图。如图3所示,本发明另一种实施方式的电化学制冷窗式空调除霜控制方法,其中,控制所述室外换热器工作在制热模式,以对所述室外换热器进行除霜包括:在步骤S132中,控制所述电化学制冷窗式空调的电压换向,以使得所述电化学制冷窗式空调的室外换热器工作在制热模式,并在步骤S134中,控制所述电化学制冷窗式空调的室内风道停止 工作。
上述方案中,电化学制冷窗式空调的室内换热器和室外换热器交替进行制冷或制热,当室外换热器切换为冷凝器模式吸氢放热进行除霜时,电化学氢泵的电压换向,例如施加电压由正变为负,室内换热器脱氢吸热切换为蒸发器,此时,室内为制热需求,为避免室内换热器切换为蒸发器带来的制冷效果影响室内温度,将室内换热器和室内风道的联通断开,以避免室内温度降低,造成室内制热制冷模式出现紊乱,保证空调正常运行。
参考图1,当室外换热器进行除霜程序时,室内换热器为蒸发器使用,室内换热器和室内风道的联通关闭,例如可以控制室内风机即第一风机4停止运行,从而使得室内换热器不会将室内空气制冷并通过第一风道6循环到室内,从而避免对室内空气的降温造成的制冷制热模式紊乱,保证空调正常运行。
图4是根据另一示例性实施例示出的一种电化学制冷窗式空调除霜控制方法的流程示意图。如图4所示,该方法还包括:在步骤S140中,从所述室外换热器工作在制热模式开始计时,以获取除霜时间;以及,在步骤S150中,判断除霜时间是否达到设定时间,当所述除霜时间达到设定时间时,在步骤S160中,控制所述室外换热器联通所述室内风道,并控制室内换热器联通室外风道。
上述方案中,设定除霜时间/实际化霜时间为t,设定时间/预设化霜时间为t0,可以设定当t>t0时,室外换热器上的凝霜全部化完。当室外换热器工作在制热模式进行除霜时,即开始计时,得到除霜时间t,当除霜时间t到达设定时间t0时,认为除霜完成,将室外换热器和室内风道联通,室外换热器工作在冷凝器模式,吸氢放热继续为室内提供热风;此时,例如可以将室内换热器和室外风道联通,空调***切换至正常的室内制热模式,继续运行。
上述方案中,在室外换热器制热除霜完成后,继续利用其进行制热操作,仅切换换热器和室内外风道的联通方式即可,减少对空调的电化学氢泵的电压换向操作,节省***的程序操作频次,提高***的运行效率。
上述方案中,例如可以参考图1所示的电化学制冷窗式空调***的制冷制热工作模式对三通阀的AB、AC方向的导通/断开切换实现室内换热器、室外换热器和室内风道、室外风道的联通和断开控制
当除霜完成后,控制室外换热器继续工作在制热模式,控制第一三通阀10和第二三通阀11的AC方向导通,控制第三三通阀12和第四三通阀13的AB方向导通,则室内换热器的出风口联通室外,室外换热器的出风口联通室内,室外换热器将室外空气制热经 循环到室内,进行室内的制热。
图5是根据另一示例性实施例示出的一种电化学制冷窗式空调除霜控制方法的流程示意图。如图5所示,与图4所示的示例性实施例对应,该方法还包括:在步骤S140中,从所述室外换热器工作在制热模式开始计时,以获取除霜时间;以及,在步骤S150中,判断除霜时间是否达到设定时间,当所述除霜时间达到设定时间时,在步骤S172中,控制所述电化学制冷窗式空调的电压换向,以使得所述室内换热器工作在制热模式,并在步骤S174中,控制所述室内换热器联通室内风道,控制所述室外换热器联通室外风道。
上述示例性说明与图4所示的示例性说明相对应,当判断除霜程序完成后,控制室外换热器由吸氢放热模式/制热模式切换至脱氢吸热模式/制冷模式,室内换热器则相反,及由制冷模式切换至制热模式,继而通过室内换热器对室内进行制热,相应地,室内换热器和室内风道联通,室外换热器和室外风道联通,以继续运行制热程序,使空调正常运行。
当除霜完成后,控制室内换热器工作在制热模式,控制第一三通阀10和第二三通阀11的AB方向导通,控制第三三通阀12和第四三通阀13的AC方向导通,则室内换热器的出风口联通室外,室外换热器的出风口联通室内,室内换热器将室内空气制热并在室内循环,进行室内的制热。
上述方案中,根据检测到的室外换热器的温度或检测的室外温度来确定除霜时间,例如根据实验或经验值设定室外换热器的温度/室外温度与除霜时间的关系曲线,由检测的室外换热器的温度/室外温度确定设定时间,当图5所示方法中的除霜时间达到设定时间后,停止除霜,进入正常制热模式。
上述方案中,作为示例,例如可以根据实际检测的室外换热器的温度与除霜的设定时间的对应关系,建立经验表格,以在获取室外换热器的温度或室外温度后,根据该对应表格确定除霜的设定时间。
作为另一示例,例如还可以建立除霜的设定时间和室外换热器的温度/室外温度的计算公式,t0=a-KTw;其中t0为除霜的设定时间,Tw为室外换热器的温度或室外温度,Tw≤0℃,当室外换热器的温度或室外温度低于0℃时,需要启动除霜程序,得到有效的除霜的设定时间;K为比例系数,a为除霜初始设定时间,即当室外换热器的温度或室外温度为0℃时的除霜时间,当室外换热器温度或室外温度越低,除霜的设定时间成正比例K地增加。
上述各实施方式的除霜控制方法/***,根据经验值可以确定电压换向时间即换热器吸收或释放完氢气的时间应远大于化霜时间,这样不会导致在化霜过程中出现换热器换向 现象,从而导致室内制冷制热紊乱。
上述电化学制冷窗式空调除霜控制方法利用电化学制冷窗式空调自身的制热特性,对处于低温环境的室外换热器进行除霜操作,不增加额外硬件情况下保证空调正常运行,提高空调运行的可靠性和运行效率。
根据本发明实施例的第二方面,提供一种电化学制冷窗式空调除霜控制***,图6是根据一示例性实施例示出的一种电化学制冷窗式空调除霜控制***的结构示意图。如图6所示的本发明一种实施方式的电化学制冷窗式空调控制***,包括;温度检测装置110,用于检测所述电化学制冷窗式空调的室外换热器的温度;以及,处理器120,被配置成:将所检测的所述室外换热器的温度和温度设定值比较;当所检测的所述室外换热器的温度小于或等于温度设定值时,控制所述室外换热器工作在制热模式,以对所述室外换热器进行除霜。
上述方案中,所述处理器控制所述室外换热器工作在制热模式,以对所述室外换热器进行除霜包括:控制所述电化学制冷窗式空调的电压换向,以使得所述电化学制冷窗式空调的室外换热器工作在制热模式,并控制所述电化学制冷窗式空调的室内风道停止工作。
图7是根据另一示例性实施例示出的一种电化学制冷窗式空调除霜控制***的结构示意图。如图7所示的本发明另一种实施方式的电化学制冷窗式空调控制***,还包括:计时装置112,用于从所述室外换热器工作在制热模式开始计时,以获取除霜时间;以及,所述处理器还被配置成:当所述除霜时间达到设定时间时,控制所述室外换热器联通所述室内风道,并控制室内换热器联通室外风道。
作为图7的另一示例,其中处理器120例如还可以被配置成:当所述除霜时间达到设定时间时,控制所述电化学制冷窗式空调的电压换向,以使得所述室内换热器工作在制热模式,并控制所述室内换热器联通室内风道,控制所述室外换热器联通室外风道。
电化学制冷窗式空调除霜控制***的相关说明可参考图2-5所示的电化学制冷窗式空调除霜控制方法中的相关说明,此处不一一赘述。
本发明另一示例性实施例为一种电化学制冷窗式空调(图中未示出)。将括如上所述任一种的电化学制冷窗式空调除霜控制***。例如可以包括图6或图7所示的电化学制冷窗式空调除霜控制***和图1所示的电化学制冷窗式空调结合,以得到可进行除霜的电化学制冷窗式空调。
作为示例,该空调还包括:氢气浓度检测装置,用于检测所述室内换热器和所述室外换热器的氢气浓度;所述处理器还被配置成:将所述氢气浓度检测装置检测的所述氢气浓 度和设定浓度值比较,当所述氢气浓度小于所述设定浓度值时,控制所述电化学制冷窗式空调的电压换向,以使得所述室内换热器和所述室外换热器交替工作在制热模式,并同时控制三通阀换向,以使得工作在制热模式的所述室内换热器或室外换热器联通所述室内风道。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的流程及结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种电化学制冷窗式空调除霜控制方法,其特征在于,该方法包括:
    检测所述电化学制冷窗式空调的室外换热器的温度;
    将所检测的所述室外换热器的温度和温度设定值比较;以及,
    当所检测的所述室外换热器的温度小于或等于温度设定值时,控制所述室外换热器工作在制热模式,以对所述室外换热器进行除霜。
  2. 根据权利要求1所述的方法,其特征在于,其中,控制所述室外换热器工作在制热模式,以对所述室外换热器进行除霜包括:
    控制所述电化学制冷窗式空调的电压换向,以使得所述电化学制冷窗式空调的室外换热器工作在制热模式,并控制所述电化学制冷窗式空调的室内风道停止工作。
  3. 根据权利要求2所述的方法,其特征在于,该方法还包括:
    从所述室外换热器工作在制热模式开始计时,以获取除霜时间;以及,
    当所述除霜时间达到设定时间时,控制所述室外换热器联通所述室内风道,并控制室内换热器联通室外风道。
  4. 根据权利要求2所述的方法,其特征在于,该方法还包括:
    从所述室外换热器工作在制热模式开始计时,以获取除霜时间;以及,
    当所述除霜时间达到设定时间时,控制所述电化学制冷窗式空调的电压换向,以使得所述室内换热器工作在制热模式,并控制所述室内换热器联通室内风道,控制所述室外换热器联通室外风道。
  5. 一种电化学制冷窗式空调除霜控制***,其特征在于,该***包括;
    温度检测装置,用于检测所述电化学制冷窗式空调的室外换热器的温度;以及,
    处理器,被配置成:
    将所检测的所述室外换热器的温度和温度设定值比较;
    当所检测的所述室外换热器的温度小于或等于温度设定值时,控制所述室外换热器工作在制热模式,以对所述室外换热器进行除霜。
  6. 根据权利要求5所述的***,其特征在于,其中,
    所述处理器控制所述室外换热器工作在制热模式,以对所述室外换热器进行除霜包括:
    控制所述电化学制冷窗式空调的电压换向,以使得所述电化学制冷窗式空调的室外换热器工作在制热模式,并控制所述电化学制冷窗式空调的室内风道停止工作。
  7. 根据权利要求6所述的***,其特征在于,该***还包括:
    计时装置,用于从所述室外换热器工作在制热模式开始计时,以获取除霜时间;以及,
    所述处理器还被配置成:当所述除霜时间达到设定时间时,控制所述室外换热器联通所述室内风道,并控制室内换热器联通室外风道。
  8. 根据权利要求6所述的***,其特征在于,该***还包括:
    计时装置,用于从所述室外换热器工作在制热模式开始计时,以获取除霜时间;以及,
    所述处理器还被配置成:当所述除霜时间达到设定时间时,控制所述电化学制冷窗式空调的电压换向,以使得所述室内换热器工作在制热模式,并控制所述室内换热器联通室内风道,控制所述室外换热器联通室外风道。
  9. 一种电化学制冷窗式空调,其特征在于,该空调包括:
    权利要求5-8中任一项所述的电化学制冷窗式空调除霜控制***。
  10. 根据权利要求9所述的空调,其特征在于,该空调还包括:
    氢气浓度检测装置,用于检测所述室内换热器和所述室外换热器的氢气浓度;
    所述处理器还被配置成:
    将所述氢气浓度检测装置检测的所述氢气浓度和设定浓度值比较,当所述氢气浓度小于所述设定浓度值时,控制所述电化学制冷窗式空调的电压换向,以使得所述室内换热器和所述室外换热器交替工作在制热模式,并同时控制三通阀换向,以使得工作在制热模式的所述室内换热器或室外换热器联通所述室内风道。
PCT/CN2018/117454 2018-03-30 2018-11-26 电化学制冷窗式空调除霜控制方法及控制***、空调 WO2019184408A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810276540.0 2018-03-30
CN201810276540.0A CN108758971A (zh) 2018-03-30 2018-03-30 电化学制冷窗式空调除霜控制方法及控制***、空调

Publications (1)

Publication Number Publication Date
WO2019184408A1 true WO2019184408A1 (zh) 2019-10-03

Family

ID=63980916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117454 WO2019184408A1 (zh) 2018-03-30 2018-11-26 电化学制冷窗式空调除霜控制方法及控制***、空调

Country Status (2)

Country Link
CN (1) CN108758971A (zh)
WO (1) WO2019184408A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108758971A (zh) * 2018-03-30 2018-11-06 青岛海尔空调器有限总公司 电化学制冷窗式空调除霜控制方法及控制***、空调
CN110044026A (zh) * 2019-03-26 2019-07-23 青岛海尔空调器有限总公司 一种电化学空调及其控制方法
CN112856720B (zh) * 2021-01-29 2022-08-19 青岛海尔空调器有限总公司 用于空调器的除霜控制方法及装置、空调器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337222A (ja) * 1998-05-27 1999-12-10 Zexel:Kk 車両用空調装置
CN106288071A (zh) * 2016-07-21 2017-01-04 青岛海尔空调器有限总公司 电化学空调***
CN107044692A (zh) * 2017-04-21 2017-08-15 广东美的暖通设备有限公司 多联机***及其除霜控制方法和装置
CN108758971A (zh) * 2018-03-30 2018-11-06 青岛海尔空调器有限总公司 电化学制冷窗式空调除霜控制方法及控制***、空调

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100763144B1 (ko) * 2000-12-29 2007-10-08 주식회사 엘지이아이 연료전지 구동형 에어컨

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337222A (ja) * 1998-05-27 1999-12-10 Zexel:Kk 車両用空調装置
CN106288071A (zh) * 2016-07-21 2017-01-04 青岛海尔空调器有限总公司 电化学空调***
CN107044692A (zh) * 2017-04-21 2017-08-15 广东美的暖通设备有限公司 多联机***及其除霜控制方法和装置
CN108758971A (zh) * 2018-03-30 2018-11-06 青岛海尔空调器有限总公司 电化学制冷窗式空调除霜控制方法及控制***、空调

Also Published As

Publication number Publication date
CN108758971A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
CN101975422B (zh) 冷暖型空调器及其除霜方法
CN103542459B (zh) 冷暖型变频空调器及制热运行时的除霜方法
CN107514683A (zh) 空调器及其室内机自清洁控制方法
CN108302651B (zh) 一种多联机空调室外机***及其除霜方法
CN103363601B (zh) 热泵式空气调节装置
WO2019184408A1 (zh) 电化学制冷窗式空调除霜控制方法及控制***、空调
CN108548251A (zh) 电化学制冷转动式空调除霜控制方法及控制***、空调
WO2019128356A1 (zh) 一种空调及除霜控制方法
CN103363600A (zh) 热泵式空气调节装置
CN103411341A (zh) 恒温除湿空调器及除湿方法
CN112797593A (zh) 自清洁控制方法及单冷型空调器
CN104729163A (zh) 空调***及其化霜控制方法
CN201059689Y (zh) 强热型空调器
WO2020019849A1 (zh) 空调器及其室外机除霜控制方法
CN112344519B (zh) 一种加热和制冷***调试和节能控制方法
CN108692426B (zh) 空调器除霜控制方法
CN102506486A (zh) 一种空调器的控制方法
CN104848497A (zh) 一种空气调节器
CN202993410U (zh) 一种内置辅助电加热器的空调器室外机
CN102141282A (zh) 空调器的制热方法
CN108592297B (zh) 空调器除霜控制方法
CN111322784A (zh) 连续制热的空调机组及其控制方法
JP5225442B2 (ja) 空調装置
CN205332368U (zh) 一种自由冷却机房空调机组
CN203731735U (zh) 一种螺杆式风冷热泵空调机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911899

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18911899

Country of ref document: EP

Kind code of ref document: A1