WO2019183905A1 - 信号传输的方法、网络设备和终端设备 - Google Patents

信号传输的方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2019183905A1
WO2019183905A1 PCT/CN2018/081188 CN2018081188W WO2019183905A1 WO 2019183905 A1 WO2019183905 A1 WO 2019183905A1 CN 2018081188 W CN2018081188 W CN 2018081188W WO 2019183905 A1 WO2019183905 A1 WO 2019183905A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
ssb
frequency resource
period
network device
Prior art date
Application number
PCT/CN2018/081188
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to SG11202009459QA priority Critical patent/SG11202009459QA/en
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to JP2020551974A priority patent/JP7150042B2/ja
Priority to ES18911748T priority patent/ES2947086T3/es
Priority to CN201880091712.5A priority patent/CN111972006A/zh
Priority to CN202011317491.4A priority patent/CN112423370B/zh
Priority to KR1020207028856A priority patent/KR102378980B1/ko
Priority to EP18911748.4A priority patent/EP3780745B1/en
Priority to PCT/CN2018/081188 priority patent/WO2019183905A1/zh
Priority to RU2020134394A priority patent/RU2748223C1/ru
Priority to AU2018415294A priority patent/AU2018415294B2/en
Priority to TW108110650A priority patent/TWI812691B/zh
Publication of WO2019183905A1 publication Critical patent/WO2019183905A1/zh
Priority to US17/031,444 priority patent/US11510159B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a method, a network device, and a terminal device for signal transmission.
  • the communication device follows the "Listen Before Talk (LBT)" principle, that is, the communication device needs to perform channel detection before the signal is transmitted on the channel of the unlicensed spectrum, only when the channel detection result When the channel is idle, or when the channel usage right is obtained, the communication device can perform signal transmission; if the channel detection result of the communication device on the channel of the unlicensed spectrum is that the channel is busy, the communication device cannot perform signal transmission.
  • LBT Listen Before Talk
  • the Synchronization Signal Block (SSB) is an important signal for terminal equipment access to the network and for Radio Resource Management (RRM) measurement.
  • RRM Radio Resource Management
  • the network device When the spectrum is applied to the NR system, the network device must obtain the signal usage right to send the SSB. In this case, how to effectively transmit the SSB by the network device is a problem worth studying.
  • the embodiment of the present application provides a method for signaling, a network device, and a terminal device, which can implement effective transmission of the SSB according to the channel detection result.
  • the first aspect provides a method for signal transmission, including: detecting, by a network device, a first carrier, and determining, according to the detection result, a first time-frequency resource for obtaining a channel usage right from the M1 time-frequency resources, where the M1
  • the time-frequency resource is a time-frequency resource that the network device configures for the first period on the first carrier and can be used to transmit the first synchronization signal block SSB, where M1 is a positive integer, and M1 ⁇ 2;
  • the first time-frequency resource sends the first SSB to a terminal device.
  • the network device may configure multiple time-frequency resources that can be used to transmit the first SSB in the first period, which is beneficial to increase the transmission opportunity of the SSB, and the network device is in the first period.
  • the first time-frequency resource that is available in the M1 time-frequency resources in the first period may be determined according to the channel detection result, and the first time-frequency resource may be further sent by using the first time-frequency resource.
  • the effective transmission of the first SSB can be implemented, and the resource utilization efficiency is improved.
  • the M1 time-frequency resources may be used to transmit the first SSB, or the M1 time-frequency resources may be considered as candidate time-frequency resources that can be used to transmit the first SSB, but in actual transmission, the M1 The time-frequency resources are not always used to transmit the first SSB. Therefore, the M1 time-frequency resources may include a time-frequency resource that actually transmits the first SSB and a time-frequency resource that does not transmit the first SSB.
  • the network device may not perform in the first period.
  • the transmitting of the first SSB further, the network device may perform channel detection on the first carrier in a second period after the first period, and perform the first SSB according to the channel detection result in the second period. Send.
  • the first carrier may be an unlicensed carrier, or may be an authorized carrier, which is not limited in this embodiment of the present application.
  • the length of the first period may be specified by the communication system, or may be configured by the network device, or may be determined by the network device and the terminal device.
  • the determination of the first period is not limited.
  • the maximum number of times the network device sends the first SSB in the first period is N1, where N1 is a positive integer, and 1 ⁇ N1 ⁇ M1.
  • the network device may send the first SSB only on part of the time-frequency resources of the M1 time-frequency resources, instead of transmitting the first SSB on each of the M1 time-frequency resources, which can be reduced.
  • the value of the N1 may be specified by the communication system, or configured by the network device, or may be determined by the network device and the terminal device.
  • the embodiment of the present application is not limited.
  • the number of times the network device sends the first SSB before the first time-frequency resource in the first period is less than N1.
  • the method further includes:
  • the network device does not send the first SSB on the time-frequency resources of the M1 time-frequency resources that are later than the second time-frequency resource, where the second time-frequency resource is the M1 time-frequency resources.
  • the network device sends the time-frequency resource of the first SSB to the Nth time.
  • the first SSB may not be transmitted on other candidate time-frequency resources in the M1 time-frequency resources, and therefore, the network
  • the device can also reduce the number of times the SSB is transmitted, thereby reducing the resource overhead of the SSB transmission.
  • the network device can perform data transmission, thereby improving resource utilization.
  • the first time-frequency resource is one time-frequency resource of the K1 time-frequency resources
  • the K1 time-frequency resources are used by the M1 time-frequency resources to send the A time-frequency resource of an SSB
  • K1 is a positive integer, 1 ⁇ K1 ⁇ N1.
  • the K1 time-frequency resources are the first K1 time-frequency resources that the network device obtains the channel usage right in the M1 time-frequency resources.
  • the first period includes M1 sub-cycles, and each of the M1 sub-cycles includes one time-frequency resource of the M1 time-frequency resources, where the M1 sub-cycles are The M1 time-frequency resources are in one-to-one correspondence.
  • the location of the third time-frequency resource in the first sub-period is the same as the location of the fourth time-frequency resource in the second sub-period, where the third time-frequency resource and the fourth time-frequency resource are For the two different time-frequency resources of the M1 time-frequency resources, the third time-frequency resource corresponds to the first sub-period, and the fourth time-frequency resource corresponds to the second sub-period.
  • the network device sends first indication information to the terminal device, where the first indication information is used to indicate that the network device sends the first SSB in the first period. information.
  • the first indication information is used to indicate at least one of: a maximum number of transmission times of the first SSB in the first period, an identifier of the first SSB, The beam identification of the first SSB.
  • the network device sends the first indication information on a fifth time-frequency resource in the first period.
  • the first indication information is used to indicate at least one of: the first SSB on the time-frequency resource that is earlier than the fifth time-frequency resource in the first period The number of times to be transmitted, the number of times to be transmitted of the first SSB on the time-frequency resource of the fifth time-frequency resource in the first period, and the information of the fifth time-frequency in the first period The candidate location information of the first SSB on the time-frequency resource of the resource.
  • the terminal device may determine the information of the first SSB in the first period according to the first indication information, and further perform the first SSB on the specific resource location according to the information of the first SSB. After receiving, or after successfully receiving N1 times, the first SSB is not received on other time-frequency resources, which can reduce the blind detection complexity of the terminal device.
  • the terminal device may determine a time-frequency resource location of the first SSB according to the first indication information, and perform rate matching on the first SSB when performing data reception.
  • the first period is determined according to at least one of the following:
  • the number of terminal devices served by the network device the coverage size of the cell served by the network device, and the delay requirement for the terminal device to access the network device.
  • the period may be determined according to a sending period of the SSB, for example, the period may be 80 ms, 160 ms, or the like.
  • the first SSB is one SSB in the SSB group, and the SSB group further includes a second SSB, the method further includes:
  • a sixth time-frequency resource that obtains a channel usage right from the M2 time-frequency resources, where the M2 time-frequency resources are configured by the network device for the first period on the first carrier a time-frequency resource for transmitting the second SSB, where M2 is a positive integer, and M2 ⁇ 2;
  • the network device sends the second SSB to the terminal device by using the sixth time-frequency resource.
  • the sixth time-frequency resource is one time-frequency resource of the K2 time-frequency resources, and the K2 time-frequency resources are used by the M2 time-frequency resources to send the The time-frequency resource of the second SSB, K2 is a positive integer, 1 ⁇ K2 ⁇ N2, where N2 is the maximum number of times the network device sends the second SSB in the first period, and N2 is a positive integer, 1 ⁇ N2 ⁇ M2.
  • the K2 time-frequency resources are the first K2 time-frequency resources that the network device obtains the channel usage right in the M2 time-frequency resources.
  • the network device sends second indication information to the terminal device, where the second indication information is used to indicate that the network device sends the information of the SSB group in the first period. .
  • the second indication information is used to indicate at least one of the following:
  • the network device sends the second indication information on a seventh time-frequency resource in the first period.
  • the second indication information is used to indicate at least one of the following:
  • the number of times of transmission of the at least one SSB in the SSB group on the time-frequency resource of the seventh time-frequency resource in the first period, and the information in the first period that is later than the seventh time-frequency resource The number of times to be transmitted of the at least one SSB in the SSB group on the time-frequency resource, and the candidate location information of the at least one SSB in the SSB group on the time-frequency resource that is later than the seventh time-frequency resource in the first period .
  • the terminal device may determine information about at least one SSB in the SSB group in the first period according to the second indication information, and further, perform the SSB group at a specific location according to the information of the SSB group.
  • the reception of at least one SSB in the SSB group, or the successful reception of a certain SSB in the SSB group reaches the maximum number of times (for example, the first SSB receives N1 times and the second SSB receives N2 times), and is no longer received on other time-frequency resources.
  • the SSB in the SSB group can reduce the blind detection complexity of the terminal device.
  • the terminal device may determine a time-frequency resource location of the SSB group according to the second indication information, and perform rate matching on the at least one SSB in the SSB group when performing data reception.
  • a method for signal transmission including: detecting, by a terminal device, a first synchronization signal block SSB on M1 time-frequency resources on a first carrier, to determine a first time frequency of the first SSB sent by the network device.
  • a resource, the M1 time-frequency resource is a time-frequency resource that is configured by the network device to be used for transmitting the first SSM on the first carrier, where M1 is a positive integer, and M1 ⁇ 2; Receiving, by the first time-frequency resource, the device, by the network device, the first SSB.
  • the maximum number of times the network device sends the first SSB in the first period is N1, where N1 is a positive integer, and 1 ⁇ N1 ⁇ M1.
  • the terminal device detects that the first SSB is less than N1 before the first time-frequency resource in the first period.
  • the method further includes: the terminal device does not detect the first SSB on a time-frequency resource that is later than the second time-frequency resource in the M1 time-frequency resources, where The second time-frequency resource is the time-frequency resource of the first SSB detected by the terminal device in the M1 time-frequency resources.
  • the first time-frequency resource is one time-frequency resource of the K1 time-frequency resources, and the K1 time-frequency resources are detected by the terminal device in the M1 time-frequency resources.
  • the time-frequency resource of the first SSB, K1 is a positive integer, and 1 ⁇ K1 ⁇ N1.
  • the K1 time-frequency resources are the first K1 time-frequency resources of the first SSB detected by the terminal device in the M1 time-frequency resources.
  • the first period includes M1 sub-cycles, and each of the M1 sub-cycles includes one time-frequency resource of the M1 time-frequency resources, where the M1 sub-cycles are The M1 time-frequency resources are in one-to-one correspondence.
  • the location of the third time-frequency resource in the first sub-period is the same as the location of the fourth time-frequency resource in the second sub-period, where the third time-frequency resource and the fourth time-frequency resource are For the two different time-frequency resources of the M1 time-frequency resources, the third time-frequency resource corresponds to the first sub-period, and the fourth time-frequency resource corresponds to the second sub-period.
  • the terminal device receives the first indication information that is sent by the network device, where the first indication information is used to indicate that the network device sends the first SSB in the first period. Information.
  • the first indication information is used to indicate at least one of: a maximum number of transmission times of the first SSB in the first period, an identifier of the first SSB, The beam identification of the first SSB.
  • the terminal device receives the first indication information on a fifth time-frequency resource in the first period.
  • the first indication information is used to indicate at least one of: the first SSB on the time-frequency resource that is earlier than the fifth time-frequency resource in the first period The number of times to be transmitted, the number of times to be transmitted of the first SSB on the time-frequency resource of the fifth time-frequency resource in the first period, and the information of the fifth time-frequency in the first period The candidate location information of the first SSB on the time-frequency resource of the resource.
  • the terminal device may determine the information of the first SSB in the first period according to the first indication information, and further perform the first SSB on the specific resource location according to the information of the first SSB. After receiving, or after successfully receiving N1 times, the first SSB is not received on other time-frequency resources, which can reduce the blind detection complexity of the terminal device.
  • the terminal device may determine a time-frequency resource location of the first SSB according to the first indication information, and perform rate matching on the first SSB when performing data reception.
  • the first period is determined according to at least one of the following:
  • the number of terminal devices served by the network device the coverage size of the cell served by the network device, and the delay requirement for the terminal device to access the network device.
  • the first SSB is one SSB in the SSB group, and the SSB group further includes a second SSB, the method further includes:
  • the terminal device detects a second SSB in the M2 time-frequency resources on the first carrier, to determine that the network device sends a sixth time-frequency resource of the second SSB, where the M2 time-frequency resources are
  • the network device is configured to transmit the time-frequency resource of the second SSB in the first period on the first carrier, where M2 is a positive integer, and M2 ⁇ 2; the terminal device passes the sixth time-frequency The resource receives the second SSB sent by the network device.
  • the sixth time-frequency resource is one time-frequency resource of the K2 time-frequency resources, and the K2 time-frequency resources are used by the M2 time-frequency resources to send the The time-frequency resource of the second SSB, K2 is a positive integer, 1 ⁇ K2 ⁇ N2, where N2 is the maximum number of times the network device sends the second SSB in the first period, and N2 is a positive integer, 1 ⁇ N2 ⁇ M2.
  • the K2 time-frequency resources are the first K2 time-frequency resources that the network device obtains the channel usage right in the M2 time-frequency resources.
  • the terminal device receives second indication information that is sent by the network device, where the second indication information is used to indicate that the network device sends the SSB group in the first period. information.
  • the second indication information is used to indicate at least one of the following:
  • the terminal device receives the second indication information on a seventh time-frequency resource in the first period.
  • the second indication information is used to indicate at least one of the following:
  • the number of times of transmission of the at least one SSB in the SSB group on the time-frequency resource of the seventh time-frequency resource in the first period, and the information in the first period that is later than the seventh time-frequency resource The number of times to be transmitted of the at least one SSB in the SSB group on the time-frequency resource, and the candidate location information of the at least one SSB in the SSB group on the time-frequency resource that is later than the seventh time-frequency resource in the first period .
  • the terminal device may determine information about at least one SSB in the SSB group in the first period according to the second indication information, and further, perform the SSB group at a specific location according to the information of the SSB group.
  • the reception of at least one SSB in the SSB group, or the successful reception of a certain SSB in the SSB group reaches the maximum number of times (for example, the first SSB receives N1 times and the second SSB receives N2 times), and is no longer received on other time-frequency resources.
  • the SSB in the SSB group can reduce the blind detection complexity of the terminal device.
  • the terminal device may determine a time-frequency resource location of the SSB group according to the second indication information, and perform rate matching on the at least one SSB in the SSB group when performing data reception.
  • a network device for performing the method of any of the first aspect or the first aspect of the first aspect.
  • the network device comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a terminal device comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is for storing instructions for executing the memory stored instructions for performing the method of any of the first aspect or the first aspect of the first aspect.
  • a network device for performing the method of any of the foregoing second aspect or any of the possible implementations of the second aspect.
  • the network device comprises means for performing the method of any of the possible implementations of the second aspect or the second aspect described above.
  • a terminal device comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is for storing instructions for executing the memory stored instructions for performing the method of any of the possible implementations of the second aspect or the second aspect above.
  • a computer storage medium for storing computer software instructions for performing the method of any of the above first aspect or any of the possible implementations of the first aspect, comprising program.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of any of the above-described first aspect or any of the alternative implementations of the first aspect.
  • a ninth aspect a computer storage medium for storing computer software instructions for performing the method of any of the above second aspect or any of the possible implementations of the second aspect, comprising program.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any of the alternative aspects of the second aspect or the second aspect.
  • FIG. 1 is a schematic flowchart of a method for signal transmission in an embodiment of the present application.
  • FIG. 2 is a schematic diagram showing an example of a method of signal transmission in an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for signal transmission according to another embodiment of the present application.
  • FIG. 4 shows a schematic block diagram of a network device of an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a terminal device of an embodiment of the present application.
  • FIG. 6 shows a schematic block diagram of a network device of another embodiment of the present application.
  • FIG. 7 shows a schematic block diagram of a terminal device of another embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • Wideband Code Wideband Code Division Multiple Access
  • Division Multiple Access WCDMA
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • Wideband Code Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NR system evolution system LTE-based access to unlicensed spectrum
  • NR-U Universal Mobile Telecommunication System
  • UMTS Wireless Local Area Networks
  • WLAN Wireless Fidelity
  • next-generation communication systems or other communication systems.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (CA) scenario, or may be applied to a dual connectivity (DC, Dual Connectivity) scenario, and may also be applied to an independent (SA, Standalone) fabric. Net scene.
  • CA carrier aggregation
  • DC Dual Connectivity
  • SA Standalone
  • the embodiment of the present application does not limit the spectrum of the application.
  • the embodiment of the present application can be applied to an authorized spectrum, and can also be applied to an unlicensed spectrum.
  • the embodiments of the present application describe various embodiments in combination with a network device and a terminal device, where the terminal device may also be referred to as a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, and a remote location.
  • UE User Equipment
  • Station remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device can be a station in the WLAN (STAION, ST), which can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, and a personal digital processing.
  • WLAN STAION, ST
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • a handheld device with wireless communication capabilities a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, and a next-generation communication system, such as a terminal device in an NR network or Terminal equipment in the future evolution of the Public Land Mobile Network (PLMN) network.
  • PLMN Public Land Mobile Network
  • the terminal device may also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are more than just a hardware device, but they also implement powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-size, non-reliable smartphones for full or partial functions, such as smart watches or smart glasses, and focus on only one type of application, and need to work with other devices such as smartphones. Use, such as various smart bracelets for smart signs monitoring, smart jewelry, etc.
  • the network device may be a device for communicating with the mobile device, and the network device may be an Access Point (AP) in the WLAN, a Base Transceiver Station (BTS) in GSM or CDMA, or may be in WCDMA.
  • AP Access Point
  • BTS Base Transceiver Station
  • a base station (NodeB, NB) which may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or an access point, or an in-vehicle device, a wearable device, and a network device in an NR network or a future evolution.
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • eNodeB evolved base station
  • the network device provides a service for the cell
  • the terminal device communicates with the network device by using a transmission resource (for example, a frequency domain resource, or a spectrum resource) used by the cell
  • the cell may be a network device (for example, The corresponding cell of the base station, the cell may belong to the macro base station, or may belong to the base station corresponding to the small cell, where the small cell may include: a metro cell, a micro cell, and a pico cell. Cell, femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the downlink physical channel in the embodiment of the present application may include a Physical Downlink Control Channel (PDCCH), an Enhanced Physical Downlink Control Channel (EPDCCH), and a Physical Downlink Shared Channel (Physical Downlink Shared). Channel, PDSCH), Physical Hybrid ARQ Indicator Channel (PHICH), Physical Multicast Channel (PMCH), Physical Broadcast Channel (PBCH), and the like.
  • the downlink reference signal may include a downlink synchronization signal (Synchronization Signal), a phase tracking reference signal (Phase Tracking Reference Signal (PT-RS), a downlink demodulation reference signal (DMRS), and a channel state information reference signal (Channel State Information).
  • the downlink synchronization signal can be used for communication equipment access network and radio resource management measurement
  • the downlink DMRS can be used for downlink channel demodulation
  • the CSI-RS can be used for downlink channel measurement and downlink time
  • PT-RS can also be used for downlink channel measurement, downlink time-frequency synchronization or phase tracking.
  • the downlink physical channel or the downlink reference signal with the same name and different functions may be included in the embodiment of the present application, and may also include a downlink physical channel or a downlink reference signal that is different from the above name and has the same function. Not limited.
  • the uplink physical channel in the embodiment of the present application may include a physical random access channel (PRACH), a physical uplink control channel (PUCCH), and a physical uplink shared channel (PUSCH, Physical Uplink). Shared CHannel) and so on.
  • the uplink reference signal may include an Up Modulation Reference Signal (DMRS), a Sounding Reference Signal (SRS), a Phase Tracking Reference Signal (PT-RS), and the like.
  • DMRS Up Modulation Reference Signal
  • SRS Sounding Reference Signal
  • PT-RS Phase Tracking Reference Signal
  • the uplink DMRS can be used for demodulation of the uplink channel
  • the SRS can be used for uplink channel measurement, uplink time-frequency synchronization or phase tracking
  • the PT-RS can also be used for uplink channel measurement, uplink time-frequency synchronization or phase tracking.
  • the uplink physical channel or the uplink reference signal with the same name and different functions may be included in the embodiment of the present application, and may also include an uplink physical channel or an uplink reference signal that is different from the above name and has the same function. Not limited.
  • FIG. 1 to FIG. 3 are schematic flowcharts of a method for signal transmission according to an embodiment of the present application, showing details of the method.
  • the communication steps or operations, but these steps or operations are merely examples, and other embodiments of the present application may also perform other operations or variations of the various operations in FIGS. 1 through 3.
  • FIGS. 1 through 3 may be performed in a different order than that presented in FIGS. 1 through 3, respectively, and it is possible that not all operations in FIGS. 1 through 3 are to be performed.
  • FIG. 1 is a schematic flowchart of a method for signal transmission according to an embodiment of the present application. As shown in FIG. 1, the method 100 includes:
  • the network device detects the first carrier, and determines, according to the detection result, the first time-frequency resource that obtains the channel usage right from the M1 time-frequency resources, where the M1 time-frequency resources are the network device a time-frequency resource configured to transmit the first synchronization signal block SSB in a first period on a carrier, where M1 is a positive integer, M1 ⁇ 2;
  • the network device sends the first SSB to the terminal device by using the first time-frequency resource.
  • the network device may configure M1 time-frequency resources for the first period on the first carrier, where the M1 time-frequency resources are used for transmitting the first time in the first period of the network device on the first carrier.
  • the time-frequency resource of the SSB that is, the M1 time-frequency resources may be used to transmit the first SSB, or the M1 time-frequency resources may be considered as candidate time-frequency resources that can be used to transmit the first SSB, but in practice
  • whether the M1 time-frequency resources are used to transmit the first SSB which is not limited in this embodiment, that is, the M1 time-frequency resources may include time-frequency resources that are actually used to transmit the first SSB, and A time-frequency resource for transmitting the first SSB.
  • the M1 time-frequency resources include a time-frequency resource 1, a time-frequency resource 2, and a time-frequency resource 3.
  • the time-frequency resource 1, the time-frequency resource 2, and the time-frequency resource 3 are available for transmitting the first SSB.
  • the frequency resource in the actual transmission, if the first SSB is transmitted only on the time-frequency resource 1, the time-frequency resource 1 is a time-frequency resource actually used for transmitting the first SSB, and the time-frequency resource 2 and the The time-frequency resource 3 is a time-frequency resource that is not used to transmit the first SSB.
  • At least one time-frequency resource of the M1 time-frequency resources is not used to transmit the first SSB.
  • the network device may perform channel detection on the first carrier, and determine which time-frequency resources of the M1 time-frequency resources are available according to the channel detection result, that is, which time-frequency resources obtain the channel usage rights. For example, if the channel detection result on the time-frequency resource K in the M1 time-frequency resources is that the channel is idle, it may be determined that the time-frequency resource K is available, that is, the channel usage right of the time-frequency resource K is obtained, otherwise, It is determined that the time-frequency resource K is not available, that is, the channel usage right of the time-frequency resource K is not obtained.
  • the time-frequency resource that obtains the channel usage right may include the first time-frequency resource. Further, the network device may send the first SSB to the terminal device by using the first time-frequency resource.
  • the network device may configure multiple time-frequency resources that can be used to transmit the first SSB in the first period, which is beneficial to increase the transmission opportunity of the SSB, and the network device may perform the first carrier.
  • Channel detection the first time-frequency resource available in the M1 time-frequency resources in the first period is determined according to the channel detection result, and the first SSB may be further sent by the first time-frequency resource instead of the M1
  • the first SSB is sent on each of the time-frequency resources or the specific time-frequency resource, and the effective transmission of the first SSB can be implemented, and the resource utilization efficiency is improved.
  • the first time-frequency resource may include one time-frequency resource, or may also include multiple time-frequency resources.
  • the first carrier may be an unlicensed carrier, or may be an authorized carrier, which is not limited by the embodiment of the present application.
  • the network device has obtained the channel usage right before the first time-frequency resource (for example, the network device has started data transmission before the first time-frequency resource), in this case, the network device The channel detection may be performed on the time resource before the data transmission, and correspondingly, the network device may consider that the channel usage right of the first time-frequency resource has been obtained without performing channel detection; or, the network The device may perform channel detection before the first time-frequency resource to determine whether the first time-frequency resource is available, so that the first SSB is transmitted when available. It should be understood that the embodiment of the present application does not specifically limit the specific location of the network device for performing channel detection on the first carrier, as long as it can determine whether M1 time-frequency resources are available according to the channel detection result.
  • the network device may The first SSB is not sent in the first period. Further, the network device may perform channel detection on the first carrier in a second period after the first period, and perform channel detection according to the second period. As a result, the sending of the first SSB is performed.
  • the specific implementation process refers to the implementation process in the first cycle, and details are not described herein again.
  • the number of times the network device sends the first SSB in the first period or the second period may be related to the channel usage right obtained by the network device in the period, for example, the network device may not send the first period in the first period.
  • An SSB sends the first SSB once in the second period.
  • the network device configures the candidate time-frequency resources of the SSB in a periodic configuration, that is, the candidate time-frequency resource configurations of the SSB are the same in each period.
  • the first period is one of the configuration periods
  • the second period is another period of the configuration period.
  • the lengths of the first period and the second period are the same, and the second period is after the first period.
  • the period of the candidate time-frequency resource of the network device configuring the SSB is 80 ms. If the first period corresponds to 1 to 80 ms, the second period may correspond to 81 to 160 ms.
  • the length of the candidate time-frequency resource configuration period may be one of 40 ms, 80 ms, or 160 ms.
  • the length of the candidate time-frequency resource configuration period (that is, the length of the first period) may be specified by the communication system, or may be configured by the network device, or may be a network device.
  • the method for determining the length of the first period is not limited by the embodiment of the present application.
  • the length of the first period may be determined according to at least one of the following:
  • the number of terminal devices served by the network device the coverage size of the cell served by the network device, and the delay requirement for the terminal device to access the network device.
  • a shorter first period can be configured, so that when the terminal device wants to perform initial access or initiate random access, the SSB can be obtained in time, which is beneficial to shorten the terminal.
  • the delay of the device accessing the network improves the user experience.
  • a shorter first period can be configured, and the coverage of the cell is larger.
  • the number of terminal devices served by the network device is large. Therefore, configuring the shorter first period is advantageous for the terminal device to acquire the SSB in time for fast initial access when the network device wants to access the network; or, at the terminal When the access delay of the device is high, the network device needs to send the SSB at a higher frequency. Therefore, configuring the shorter first period is beneficial to the terminal device to obtain the SSB in time when the initial access is to be initiated. Access.
  • the first period may be based on the number of terminal devices served by the network device, the coverage size of the cell served by the network device, and the delay requirement of the terminal device to access the network device. At least two determinations, for example, when the coverage of the cell served by the network device is greater than a certain threshold, and the time domain requirement of the access network of the terminal device is higher than a certain threshold, configuring a shorter first period, or, in the network When the number of the terminal devices served by the device is less than a certain threshold, and the range of the cells served by the network device is less than a certain threshold, the first period of the configuration is not limited.
  • the maximum number of times the network device sends the first SSB in the first period is N1, where N1 is a positive integer, and 1 ⁇ N1 ⁇ M1.
  • the network device or the communication system accesses the network according to the length of the first period, the number of terminal devices served by the network device, the coverage size of a cell served by the network device, and the terminal device At least one of the delay requirements of the device determines a maximum number of transmissions of the first SSB in the first period.
  • the network device may send the first SSB only on part of the time-frequency resources of the M1 time-frequency resources, instead of each time-frequency resource in the M1 time-frequency resources. Sending the first SSB can reduce the number of times the SSB is transmitted, thereby reducing the resource overhead of transmitting the SSB.
  • the value of the N1 may be specified by the communication system, or configured by the network device, or may be determined by the network device and the terminal device.
  • the embodiment of the present application is not limited.
  • the network device sends the first SSB less than N1 before the first time-frequency resource in the first period.
  • the first time-frequency resource may be a time-frequency resource used for one transmission in the N1 transmission of the first SSB, for example, the first time-frequency resource may be the first transmission for the first SSB. , or may be used for the N1th transmission of the first SSB, or may be used for the intermediate transmission in the N1 transmission, which is not limited in this embodiment of the present application.
  • the method 100 further includes:
  • the network device does not send the first SSB on the time-frequency resources of the M1 time-frequency resources that are later than the second time-frequency resource, where the second time-frequency resource is the M1 time-frequency resources.
  • the network device sends the time-frequency resource of the first SSB to the Nth time.
  • the network device may perform the N1 transmission of the first SSB by using the N1 time-frequency resources of the M1 time-frequency resources, where the second time-frequency resource is in the N1 transmission.
  • the network device no longer sends the first SSB, that is, the network device is in the M1 time-frequency resources, and other time-frequency resources after the second time-frequency resource.
  • the first SSB is not transmitted on the other candidate time-frequency resources in the M1 time-frequency resources. Therefore, the signal transmission according to the embodiment of the present application is performed.
  • the number of times of sending the SSB can also be reduced, thereby reducing the resource overhead of transmitting the SSB.
  • the network device may perform data transmission, thereby improving resource utilization.
  • the first time-frequency resource is a time-frequency resource used for the Nth transmission of the first SSB
  • the first time-frequency resource and the second time-frequency resource are the same.
  • the first time-frequency resource is one time-frequency resource of the K1 time-frequency resources, and the K1 time-frequency resources are used for sending the M1 time-frequency resources.
  • K1 is a positive integer, and 1 ⁇ K1 ⁇ N1.
  • the K1 time-frequency resources are actually used to transmit the time-frequency resources of the first SSB, or the first SSB is transmitted on the K1 time-frequency resources, that is, the network device is in the network device.
  • the first time-frequency resource may be one time-frequency resource of the K1 time-frequency resources, and optionally, the first time-frequency resource may be
  • the position of the first time-frequency resource in the K1 time-frequency resources is not specifically limited.
  • the K1 time-frequency resources are the first K1 time-frequency resources in which the network device obtains channel usage rights in the M1 time-frequency resources.
  • the K1 time-frequency resources may be the first K1 of the P time-frequency resources.
  • the time-frequency resources, the K1 time-frequency resources respectively correspond to the K1 transmission of the first SSB.
  • the first period includes M1 sub-cycles, and each of the M1 sub-cycles includes one time-frequency resource of the M1 time-frequency resources, that is, the M1.
  • the sub-periods correspond one-to-one with the M1 time-frequency resources.
  • a candidate time-frequency resource that can be used to transmit the first SSB can be configured in each sub-period of the M1 sub-periods.
  • each sub-period can be used to transmit the first SSB.
  • the locations of candidate time-frequency resources are the same.
  • the first time period includes a first time period and a second time period
  • the M1 time-frequency resources include a third time-frequency resource and a fourth time-frequency resource, where the third time-frequency resource is the first sub-period a candidate time-frequency resource, where the fourth time-frequency resource is a candidate time-frequency resource in the second sub-period, and the location of the third time-frequency resource in the first sub-period and the fourth time-frequency resource are in the The locations in the second sub-cycle are the same.
  • K1 time-frequency resources that are actually used to transmit the first SSB may correspond to K1 sub-periods, respectively, and the K1 sub-periods may be consecutive in the M1 sub-periods, or may be discontinuous.
  • the embodiment does not limit this.
  • the network device may further send, to the terminal device, first indication information, where the first indication information is used to indicate that the network device sends the Information about the first SSB.
  • the first indication information is used to indicate at least one of: a maximum number of times of sending the first SSB in the first period, an identifier of the first SSB, the first SSB Beam identification.
  • the beam indication information of one beam may include: a signal index or a beam identifier of a reference signal that satisfies a Quasi-Co-Located (QCL) relationship with the beam.
  • QCL Quasi-Co-Located
  • a beam used to receive a signal may be understood as a spatial domain reception filter used to receive a signal; a beam used to transmit a signal may be understood.
  • a spatial domain transmission filter used to transmit a signal For two signals transmitted using the same spatial domain transmit filter, the two signals can be considered to be QCL with respect to the spatial receive parameters.
  • the first indication information may be used to indicate the identifier, the number of times, the resource location, the beam identifier used by the first SSB, and the like, the first SSB to be sent by the network device in the first period. information.
  • the terminal device may determine, according to the first indication information, information about a resource location, a number of transmissions, and the like of the first SSB, and may receive the first SSB at a specific resource location, or only receive the first SSB of a specific number of times, and the like. It is beneficial to reduce the complexity of blind detection of terminal equipment.
  • the network device may send the first indication information on a fifth time-frequency resource in the first period.
  • the first indication information is used to indicate at least one of the following: the number of times of sending the first SSB on the time-frequency resource of the fifth time-frequency resource in the first period The information about the number of times to be sent of the first SSB on the time-frequency resource of the fifth time-frequency resource in the first period, and the time-frequency of the fifth time-frequency resource in the first period The candidate location information of the first SSB on the resource.
  • the terminal device may determine the information of the first SSB in the first period according to the first indication information, and may further perform the receiving of the first SSB according to the information of the first SSB, for example, The first SSB is received at a specific resource location, or after the N1 times are successfully received, the first SSB and the like are not continuously received on other time-frequency resources, and the blind detection complexity of the terminal device can be reduced.
  • the terminal device may determine a time-frequency resource location of the first SSB according to the first indication information, and perform rate matching on the first SSB when performing data reception.
  • the rate matching according to the time-frequency resource location of the SSB in the embodiment of the present application may be: when the terminal device is scheduled to use the SSB candidate time-frequency resource in the time-frequency resource for data transmission, the terminal device needs Rate matching is performed according to the actually transmitted SSB.
  • the first indication information indicates that one candidate time-frequency resource is used to send the first SSB, and the terminal device may assume that the time-frequency resource is not used for data transmission when performing data reception, or the first indication information indicates A candidate time-frequency resource is not used to transmit the first SSB, and the terminal device can assume that the time-frequency resource is used for data transmission when performing data reception.
  • the time-frequency resource in the embodiment of the present application may include a time domain resource and/or a frequency domain resource, where a time-frequency resource earlier than the fifth time-frequency resource may be earlier than the fifth time in the time domain dimension.
  • the time-frequency resource of the frequency resource, the time-frequency resource later than the fifth time-frequency resource may be a time-frequency resource that is later than the fifth time-frequency resource in the time domain dimension, and the frequency domain location is not specifically limited.
  • the first SSB is one SSB in the SSB group
  • the SSB group further includes a second SSB
  • the method 100 may further include:
  • a sixth time-frequency resource that obtains a channel usage right from the M2 time-frequency resources, where the M2 time-frequency resources are configured by the network device for the first period on the first carrier a time-frequency resource for transmitting the second SSB, where M2 is a positive integer, and M2 ⁇ 2;
  • the network device sends the second SSB to the terminal device by using the sixth time-frequency resource.
  • the method for signal transmission according to the embodiment of the present application may be used to send a set of SSBs, where the specific implementation process of sending the second SSB in the SSB group is similar to the specific implementation process of sending the first SSB, Reference is made to the related description of the foregoing embodiments, and details are not described herein again.
  • the sixth time-frequency resource is one time-frequency resource of the K2 time-frequency resources, and the K2 time-frequency resources are used to send the second SSB in the M2 time-frequency resources.
  • the frequency resource, K2 is a positive integer, 1 ⁇ K2 ⁇ N2, where N2 is the maximum number of times the network device sends the second SSB in the first period, and N2 is a positive integer, and 1 ⁇ N2 ⁇ M2.
  • the sixth time-frequency resource is similar to the first time-frequency resource, and the sixth time-frequency resource may be a resource used for one transmission in the K2 transmission of the second SSB, and the sixth time-frequency resource may be Reference is made to the foregoing description of the first time-frequency resource, and details are not described herein again.
  • the N2 may be equal to the foregoing N1, that is, the maximum number of transmissions of the first SSB and the second SSB may be the same.
  • the N2 may be specified by the communication system, or configured by the network device, or determined by the network device and the terminal device.
  • the K2 time-frequency resources are the first K2 time-frequency resources in which the network device obtains channel usage rights in the M2 time-frequency resources.
  • K2 time-frequency resources are similar to the foregoing K1 time-frequency resources.
  • K1 time-frequency resources For details, refer to the related description of the K1 time-frequency resources, and details are not described herein again.
  • the M2 may be equal to the foregoing M1, that is, each time period in the first period may include one time-frequency resource of the M2 time-frequency resources, that is, the M1 sub-subs The period may be in one-to-one correspondence with the M2 time-frequency resources.
  • each of the M2 time-frequency resources has the same position in the sub-period corresponding to the time-frequency resource in the M1 sub-periods.
  • the SSB group includes S SSBs
  • the network device configures M groups of time-frequency resources in a first period, where each group of time-frequency resources in the M-group time-frequency resources includes S time-frequency resources, and the S The time-frequency resources are respectively used to send the S SSBs, and the maximum number of times the network device configures the SSB group is N, that is, the maximum number of times of each SSB in the SSB group is N.
  • the first period includes M sub-periods, and the M-group time-frequency resources correspond to the M sub-periods, and the positions of each group of the M-group time-frequency resources in the corresponding sub-periods of the M sub-periods the same.
  • the network device sends second indication information to the terminal device, where the second indication information is used to indicate that the network device sends the SSB group in the first period. Information.
  • the second indication information is used to indicate at least one of the following:
  • the second indication information may be used to indicate that the at least one SSB in the SSB group is currently sent, the number of unsent, the maximum number of times, and the resource location that can be used to send the at least one SSB. And transmitting at least one of a beam identifier of the at least one SSB, or an identifier of the at least one SSB, and the like.
  • the network device sends the second indication information on a seventh time-frequency resource in the first period, where the second indication information is used to indicate the following At least one item:
  • the number of times of transmission of the at least one SSB in the SSB group on the time-frequency resource of the seventh time-frequency resource in the first period, and the information in the first period that is later than the seventh time-frequency resource The number of times to be transmitted of the at least one SSB in the SSB group on the time-frequency resource, and the candidate location information of the at least one SSB in the SSB group on the time-frequency resource that is later than the seventh time-frequency resource in the first period .
  • the terminal device may determine information about at least one SSB in the SSB group in the first period according to the second indication information, and further, perform the SSB group at a specific location according to the information of the SSB group.
  • the reception of at least one SSB in the SSB group, or the successful reception of a certain SSB in the SSB group reaches the maximum number of times (for example, the first SSB receives N1 times and the second SSB receives N2 times), and is no longer received on other time-frequency resources.
  • the SSB in the SSB group can reduce the blind detection complexity of the terminal device.
  • the terminal device may determine a time-frequency resource location of the SSB group according to the second indication information, and perform rate matching on the at least one SSB in the SSB group when performing data reception.
  • the time-frequency resource that is earlier than the seventh time-frequency resource may be a time-frequency resource that is earlier than the seventh time-frequency resource in the time domain dimension
  • the time-frequency resource that is later than the seventh time-frequency resource may be The time-frequency resource in the time domain dimension is later than the time-frequency resource of the seventh time-frequency resource, and the size in the frequency domain dimension is not specifically limited.
  • the SSB group may include SSB1, SSB2, SSB3, SSB4, and SSB5, and the maximum number of transmissions per SSB is one.
  • the maximum number of transmissions per SSB may be greater than one time, or each The maximum number of transmissions corresponding to the SSBs may also be different.
  • the number of SSBs included in the SSB group may also be other numbers. In other cases, the signal transmission may be performed in a similar manner, and no further description is made.
  • each sub-period is configured with time-frequency resources (ie, candidate time-frequency resources) that can be used to transmit each SSB in the SSB group, and the network device can perform channel detection on the first carrier to determine Whether each candidate time-frequency resource in the first sub-period within the first period (ie, the first sub-period within the first period) is available.
  • time-frequency resources ie, candidate time-frequency resources
  • the network device can The SSB3 to SSB5 are respectively transmitted on the time-frequency resources that can be used for transmitting the SSB3 to SSB5, and the transmission of the SSB1 and the SSB2 is not performed in the first sub-period. Since the SSB3 to SSB5 have reached the maximum number of transmissions, the During the second sub-cycle after a sub-cycle, the network device may not perform transmission of SSB3 to SSB5.
  • the network device may perform channel detection on the first carrier, and determine, according to the channel detection result, whether time-frequency resources that can be used for transmitting the SSB1 and the SSB2 in the second sub-period are available, and if the time-frequency resources that can be used for transmitting the SSB1 and the SSB2 are available, And in the second sub-period, the network device may perform transmission of SSB1 and SSB2 respectively on time-frequency resources that can be used for transmitting SSB1 and SSB2, or if the second sub-period is used to transmit the SSB1 and The time-frequency resource of the SSB2 is unavailable. Further, the network device may perform channel detection on the first carrier, and determine whether the transmission of the SSB1 and the SSB2 can be performed in the third sub-period according to the channel detection result.
  • the terminal device For the terminal device, if the terminal device is in the initial access state, the terminal device does not know the configuration of the network device, that is, the terminal device does not know the location of the M1 time-frequency resources configured by the network device, and does not know the SSB. The number of times each SSB in the group is sent. Therefore, the terminal device blindly checks all possible SSBs until it accesses the network.
  • the terminal device may obtain information about the M1 time-frequency resources, the first indication information or the second indication information, and the like, so the terminal device may be in the M1 in the first period.
  • the SSB is detected on the time-frequency resources. It is assumed that the maximum number of transmissions of the SSB is 1. If the terminal device detects the SSB once, the SSB may not continue to be detected on other time-frequency resources.
  • the terminal device may continue to detect the SSB1 on the time-frequency resource corresponding to the SSB1 in the second sub-period. If the SSB1 is detected, the SSB1 is not detected in other sub-cycles after the second sub-cycle.
  • the terminal device may obtain information about the M1 time-frequency resources, the first indication information or the second indication information, and the like, the terminal device may be configured according to the first indication information or the second The indication information is rate matched to the SSB.
  • the resource that is scheduled by the terminal device for data transmission includes candidate time-frequency resources of SSB1 to SSB5 in the second sub-period, and the terminal device may determine, according to the second indication information, two candidate time-frequency resources of SSB1 and SSB2, respectively.
  • the three candidate time-frequency resources for transmitting SSB1 and SSB2, SSB3 to SSB5 are not used for transmitting the SSB. Therefore, the terminal device can assume that three candidate time-frequency resources of SSB3 to SSB5 are used for data transmission.
  • the network device can configure multiple candidate time-frequency resources for each SSS in a group of SSBs in one cycle, which can increase the transmission opportunity of the SSB, and if the network is actually transmitted, If the device successfully transmits the corresponding SSB on a candidate time-frequency resource in the period, the SSB may not continue to be transmitted on other candidate time-frequency resources. Therefore, while increasing the transmission opportunity of the SSB, it is also beneficial to reduce the sending of the SSB. Resource overhead.
  • the terminal device in the connected state detects the SSB on a candidate time-frequency resource in the period
  • the blind detection of the SSB on the other candidate time-frequency resources in the period may be stopped, which is beneficial to reducing the blindness of the terminal device.
  • FIG. 3 is a schematic flowchart of a method 300 for signal transmission according to another embodiment of the present application. As shown in FIG. 3, the method 300 includes the following content:
  • the terminal device detects the first synchronization signal block SSB on the M1 time-frequency resources on the first carrier, to determine that the network device sends the first time-frequency resource of the first SSB, where the M1 time-frequency resources are the network.
  • the device is configured to use the first period on the first carrier to transmit a time-frequency resource of the first SSB, where M1 is a positive integer, and M1 ⁇ 2;
  • the terminal device receives, by using the first time-frequency resource, the network device to send the first SSB.
  • the maximum number of times the network device sends the first SSB in the first period is N1, where N1 is a positive integer, and 1 ⁇ N1 ⁇ M1.
  • the terminal device detects that the first SSB is less than N1 before the first time-frequency resource in the first period.
  • the method 300 further includes:
  • the terminal device does not detect the first SSB on the time-frequency resource of the M1 time-frequency resources that is later than the second time-frequency resource, where the second time-frequency resource is the M1 time-frequency resource.
  • the terminal device detects the time-frequency resource of the first SSB by the N1 time.
  • the first time-frequency resource is one time-frequency resource of the K1 time-frequency resources, and the K1 time-frequency resources are the terminal device in the M1 time-frequency resources.
  • the time-frequency resource of the first SSB is detected, and K1 is a positive integer, and 1 ⁇ K1 ⁇ N1.
  • the K1 time-frequency resources are the first K1 time-frequency resources of the first SSB detected by the terminal device in the M1 time-frequency resources.
  • the K1 time-frequency resources on the network device side are the time-frequency resources used by the network device to perform the K1 transmission of the first SSB
  • the K1 time-frequency resources on the terminal device side are the K1 obtained by the blind detection.
  • the K1 time-frequency resources of the network device and the K1 time-frequency resources of the terminal device may be inconsistent.
  • the network device may send the first SSB but the terminal device There is no detected condition.
  • K1 on the network device side may be larger than K1 on the terminal device side.
  • the first period includes M1 sub-cycles, and each of the M1 sub-cycles includes one time-frequency resource of the M1 time-frequency resources, where the M1 sub- The period is in one-to-one correspondence with the M1 time-frequency resources.
  • the location of the third time-frequency resource in the first sub-period is the same as the location of the fourth time-frequency resource in the second sub-period, wherein the third time-frequency resource and the fourth time The frequency resource is two different time-frequency resources in the M1 time-frequency resources, the third time-frequency resource is corresponding to the first sub-period, and the fourth time-frequency resource is in the second sub-period correspond.
  • the terminal device receives the first indication information sent by the network device, where the first indication information is used to indicate that the network device sends the first period in the first period An SSB message.
  • the terminal device receives the first indication information on a fifth time-frequency resource in the first period, where the first indication information is used to indicate at least one of And the information about the maximum number of times of sending the first SSB in the first period, the number of times of sending the first SSB on the time-frequency resource of the fifth time-frequency resource in the first period, The number of times to be transmitted of the first SSB on the time-frequency resource of the fifth time-frequency resource in the first period, and the time-frequency resource that is later than the fifth time-frequency resource in the first period The candidate location information of the first SSB, the identifier of the first SSB, and the beam identifier of the first SSB.
  • the first period is determined according to at least one of the following:
  • the number of terminal devices served by the network device the coverage size of the cell served by the network device, and the delay requirement for the terminal device to access the network device.
  • the first SSB is one SSB in the SSB group
  • the SSB group further includes a second SSB
  • the method further includes:
  • the terminal device detects a second SSB in the M2 time-frequency resources on the first carrier, to determine that the network device sends a sixth time-frequency resource of the second SSB, where the M2 time-frequency resources are
  • the network device is configured to transmit the time-frequency resource of the second SSB in the first period on the first carrier, where M2 is a positive integer, and M2 ⁇ 2; the terminal device passes the sixth time-frequency The resource receives the second SSB sent by the network device.
  • the sixth time-frequency resource is one of the K2 time-frequency resources, and the K2 time-frequency resources are used in the M2 time-frequency resources.
  • the K2 time-frequency resources are the first K2 time-frequency resources in which the network device obtains channel usage rights in the M2 time-frequency resources.
  • the terminal device receives second indication information that is sent by the network device, where the second indication information is used to indicate that the network device sends the SSB in the first period. Group of information.
  • the terminal device receives the second indication information on a seventh time-frequency resource in the first period, where the second indication information is used to indicate at least one of item:
  • the maximum number of transmission times of the at least one SSB in the SSB group in the first period, and the time-frequency resource in the first period that is earlier than the time-frequency resource of the seventh time-frequency resource on the at least one SSB in the SSB group The information of the number of times to be sent, the number of times to be sent of the at least one SSB in the SSB group, and the number of times to be sent in the first period later than the seventh time in the first period of time, the time-frequency resource of the seventh time-frequency resource
  • FIG. 4 shows a schematic block diagram of a network device 400 in accordance with an embodiment of the present application.
  • the network device 400 includes:
  • the processing module 410 is configured to detect the first carrier, and determine, according to the detection result, the first time-frequency resource that obtains the channel usage right from the M1 time-frequency resources, where the M1 time-frequency resources are the network device a time-frequency resource that is configured to transmit the first synchronization signal block SSB in a first period on the first carrier, where M1 is a positive integer, and M1 ⁇ 2;
  • the communication module 420 is configured to send the first SSB to the terminal device by using the first time-frequency resource.
  • the maximum number of times the network device sends the first SSB in the first period is N1, where N1 is a positive integer, and 1 ⁇ N1 ⁇ M1.
  • the network device sends the first SSB less than N1 before the first time-frequency resource in the first period.
  • the communication module is further configured to:
  • the first SSB is not sent on the time-frequency resource of the M1 time-frequency resources that is later than the second time-frequency resource, where the second time-frequency resource is the network in the M1 time-frequency resources.
  • the device transmits the time-frequency resource of the first SSB on the Nth time.
  • the first time-frequency resource is one time-frequency resource of the K1 time-frequency resources, and the K1 time-frequency resources are used for sending the M1 time-frequency resources.
  • K1 is a positive integer, and 1 ⁇ K1 ⁇ N1.
  • the K1 time-frequency resources are the first K1 time-frequency resources in which the network device obtains channel usage rights in the M1 time-frequency resources.
  • the first period includes M1 sub-cycles, and each of the M1 sub-cycles includes one time-frequency resource of the M1 time-frequency resources, where the M1 sub- The period is in one-to-one correspondence with the M1 time-frequency resources.
  • the location of the third time-frequency resource in the first sub-period is the same as the location of the fourth time-frequency resource in the second sub-period, wherein the third time-frequency resource and the fourth time The frequency resource is two different time-frequency resources in the M1 time-frequency resources, the third time-frequency resource is corresponding to the first sub-period, and the fourth time-frequency resource is in the second sub-period correspond.
  • the network device sends first indication information to the terminal device, where the first indication information is used to indicate that the network device sends the first SSB information.
  • the network device sends the first indication information on a fifth time-frequency resource in the first period, where the first indication information is used to indicate at least one of And the information about the maximum number of times of sending the first SSB in the first period, the number of times of sending the first SSB on the time-frequency resource of the fifth time-frequency resource in the first period, The number of times to be transmitted of the first SSB on the time-frequency resource of the fifth time-frequency resource in the first period, and the time-frequency resource that is later than the fifth time-frequency resource in the first period
  • the first period is determined according to at least one of the following:
  • the number of terminal devices served by the network device the coverage size of the cell served by the network device, and the delay requirement for the terminal device to access the network device.
  • the first SSB is one SSB in the SSB group
  • the SSB group further includes a second SSB
  • the processing module is further configured to:
  • the time-frequency resource of the second SSB, M2 is a positive integer, M2 ⁇ 2;
  • the communication module is further configured to: send the second SSB to the terminal device by using the sixth time-frequency resource.
  • the sixth time-frequency resource is one of the K2 time-frequency resources, and the K2 time-frequency resources are used in the M2 time-frequency resources.
  • the K2 time-frequency resources are the first K2 time-frequency resources in which the network device obtains channel usage rights in the M2 time-frequency resources.
  • the network device sends second indication information to the terminal device, where the second indication information is used to indicate that the network device sends the SSB group in the first period. Information.
  • the network device sends the second indication information on a seventh time-frequency resource in the first period, where the second indication information is used to indicate at least one of the following item:
  • the maximum number of transmission times of the at least one SSB in the SSB group in the first period, and the time-frequency resource in the first period that is earlier than the time-frequency resource of the seventh time-frequency resource on the at least one SSB in the SSB group The information of the number of times to be sent, the number of times to be sent of the at least one SSB in the SSB group, and the number of times to be sent in the first period later than the seventh time in the first period of time, the time-frequency resource of the seventh time-frequency resource
  • the network device 400 may correspond to the network device in the method embodiment of the present application, and the foregoing and other operations and/or functions of the respective units in the network device 400 respectively implement the method shown in FIG.
  • the corresponding process of the network device in 100 is not described here for brevity.
  • FIG. 5 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 500 of FIG. 5 includes:
  • the processing module 510 is configured to detect the first synchronization signal block SSB on the M1 time-frequency resources on the first carrier, to determine that the network device sends the first time-frequency resource of the first SSB, where the M1 time-frequency resources are The network device is configured to use the first period on the first carrier to transmit a time-frequency resource of the first SSB, where M1 is a positive integer, and M1 ⁇ 2;
  • the communication module 520 is configured to receive, by using the first time-frequency resource, the network device to send the first SSB.
  • the maximum number of times the network device sends the first SSB in the first period is N1, where N1 is a positive integer, and 1 ⁇ N1 ⁇ M1.
  • the terminal device detects that the first SSB is less than N1 before the first time-frequency resource in the first period.
  • the communication module 520 is further configured to:
  • the terminal device does not detect the first SSB on the time-frequency resource of the M1 time-frequency resources that is later than the second time-frequency resource, where the second time-frequency resource is the M1 time-frequency resource.
  • the terminal device detects the time-frequency resource of the first SSB by the N1 time.
  • the first time-frequency resource is one time-frequency resource of the K1 time-frequency resources, and the K1 time-frequency resources are the terminal device in the M1 time-frequency resources.
  • the time-frequency resource of the first SSB is detected, and K1 is a positive integer, and 1 ⁇ K1 ⁇ N1.
  • the K1 time-frequency resources are the first K1 time-frequency resources of the first SSB detected by the terminal device in the M1 time-frequency resources.
  • the first period includes M1 sub-cycles, and each of the M1 sub-cycles includes one time-frequency resource of the M1 time-frequency resources, where the M1 sub- The period is in one-to-one correspondence with the M1 time-frequency resources.
  • the location of the third time-frequency resource in the first sub-period is the same as the location of the fourth time-frequency resource in the second sub-period, wherein the third time-frequency resource and the fourth time The frequency resource is two different time-frequency resources in the M1 time-frequency resources, the third time-frequency resource is corresponding to the first sub-period, and the fourth time-frequency resource is in the second sub-period correspond.
  • the terminal device receives the first indication information sent by the network device, where the first indication information is used to indicate that the network device sends the first period in the first period An SSB message.
  • the terminal device receives the first indication information on a fifth time-frequency resource in the first period, where the first indication information is used to indicate at least one of And the information about the maximum number of times of sending the first SSB in the first period, the number of times of sending the first SSB on the time-frequency resource of the fifth time-frequency resource in the first period, The number of times to be transmitted of the first SSB on the time-frequency resource of the fifth time-frequency resource in the first period, and the time-frequency resource that is later than the fifth time-frequency resource in the first period The candidate location information of the first SSB, the identifier of the first SSB, and the beam identifier of the first SSB.
  • the first period is determined according to at least one of the following:
  • the number of terminal devices served by the network device the coverage size of the cell served by the network device, and the delay requirement for the terminal device to access the network device.
  • the first SSB is one SSB in the SSB group
  • the SSB group further includes a second SSB
  • the processing module is further configured to:
  • Detecting a second SSB in the M2 time-frequency resources on the first carrier to determine that the network device sends a sixth time-frequency resource of the second SSB, where the M2 time-frequency resources are a time-frequency resource configured to transmit the second SSB in the first period on the first carrier, where M2 is a positive integer, and M2 ⁇ 2;
  • the communication module is further configured to: receive, by using the sixth time-frequency resource, the second SSB sent by the network device.
  • the sixth time-frequency resource is one of the K2 time-frequency resources, and the K2 time-frequency resources are used in the M2 time-frequency resources.
  • the K2 time-frequency resources are the first K2 time-frequency resources in which the network device obtains channel usage rights in the M2 time-frequency resources.
  • the terminal device receives second indication information that is sent by the network device, where the second indication information is used to indicate that the network device sends the SSB in the first period. Group of information.
  • the terminal device receives the second indication information on a seventh time-frequency resource in the first period, where the second indication information is used to indicate at least one of item:
  • the maximum number of transmission times of the at least one SSB in the SSB group in the first period, and the time-frequency resource in the first period that is earlier than the time-frequency resource of the seventh time-frequency resource on the at least one SSB in the SSB group The information of the number of times to be sent, the number of times to be sent of the at least one SSB in the SSB group, and the number of times to be sent in the first period later than the seventh time in the first period of time, the time-frequency resource of the seventh time-frequency resource
  • the terminal device 500 may correspond to (for example, may be configured or be itself) the terminal device described in the foregoing method 300, and each module or unit in the terminal device 500 is used to execute the terminal in the foregoing method 300, respectively. Detailed descriptions of the operations and processes performed by the device are omitted here to avoid redundancy.
  • the embodiment of the present application further provides a network device 600, which may be the network device 400 in FIG. 4, which can be used to execute a network device corresponding to the method 100 in FIG. content.
  • the network device 600 includes an input interface 610, an output interface 620, a processor 630, and a memory 640.
  • the input interface 610, the output interface 620, the processor 630, and the memory 640 can be connected by a bus system.
  • the memory 640 is used to store programs, instructions or code.
  • the processor 630 is configured to execute a program, an instruction or a code in the memory 640 to control the input interface 610 to receive a signal, control the output interface 620 to send a signal, and complete the operations in the foregoing method embodiments.
  • the processor 630 may be a central processing unit (“CPU"), and the processor 630 may also be other general-purpose processors, digital signal processors ( DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 640 can include read only memory and random access memory and provides instructions and data to the processor 630. A portion of the memory 640 can also include a non-volatile random access memory. For example, the memory 640 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 630 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor execution, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 640, and the processor 630 reads the information in the memory 640 and completes the contents of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processing module 410 included in the network device 400 of FIG. 4 may be implemented by the processor 630 of FIG. 6.
  • the communication module 420 included in the network device 400 of FIG. 4 may use the input interface 610 of FIG.
  • the output interface 620 is implemented.
  • the embodiment of the present application further provides a terminal device 700, which may be the terminal device 500 in FIG. 5, which can be used to execute a terminal device corresponding to the method 300 in FIG. content.
  • the device 700 includes an input interface 710, an output interface 720, a processor 730, and a memory 740, and the input interface 710, the output interface 720, the processor 730, and the memory 740 can be connected by a bus system.
  • the memory 740 is configured to store programs, instructions or code.
  • the processor 730 is configured to execute a program, an instruction or a code in the memory 740 to control the input interface 710 to receive a signal, control the output interface 720 to send a signal, and complete the operations in the foregoing method embodiments.
  • the processor 730 may be a central processing unit (“CPU"), and the processor 730 may also be other general-purpose processors, digital signal processors ( DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 740 can include read only memory and random access memory and provides instructions and data to the processor 730. A portion of the memory 740 can also include a non-volatile random access memory. For example, the memory 740 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 730 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 740, and the processor 730 reads the information in the memory 740 and completes the contents of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processing module 510 included in the terminal device 500 in FIG. 5 can be implemented by the processor 730 of FIG. 7.
  • the communication module 520 included in the terminal device 500 in FIG. 5 can use the input interface 710 of FIG.
  • the output interface 720 is implemented.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs including instructions, when the portable electronic device is included in a plurality of applications When executed, the portable electronic device can be caused to perform the method of the embodiment shown in Figures 1-3.
  • the embodiment of the present application also proposes a computer program comprising instructions which, when executed by a computer, cause the computer to perform the corresponding flow of the method of the embodiment shown in Figures 1 to 3.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the present application, which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product stored in a storage medium. A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本申请实施例提供了一种信号传输的方法、网络设备和终端设备,该方法包括:网络设备对第一载波进行检测,并根据检测结果从M1个时频资源中确定获得信道使用权的第一时频资源,所述M1个时频资源是所述网络设备为所述第一载波上的第一周期配置的可用于传输第一同步信号块SSB的时频资源,M1为正整数,M1≥2;所述网络设备通过所述第一时频资源向终端设备发送所述第一SSB。

Description

信号传输的方法、网络设备和终端设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及信号传输的方法、网络设备和终端设备。
背景技术
在免授权频谱上,通信设备遵循“先听后说(Listen Before Talk,LBT)”原则,即通信设备在免授权频谱的信道上进行信号发送前,需要先进行信道检测,只有当信道检测结果为信道空闲时,或者说,获得信道使用权时,该通信设备才能进行信号发送;如果通信设备在免授权频谱的信道上的信道检测结果为信道忙,该通信设备不能进行信号发送。
在新无线(New Radio,NR)中,同步信号块(Synchronization Signal Block,SSB)为用于终端设备接入网络和进行无线资源管理(Radio Resource Management,RRM)测量的重要的信号,将免授权频谱应用到NR***上时,网络设备必须获得信号使用权才能发送SSB,此情况下,网络设备如何有效传输SSB是一项值得研究的问题。
发明内容
本申请实施例提供了一种信号传输的方法、网络设备和终端设备,能够根据信道检测结果实现SSB的有效传输。
第一方面,提供了一种信号传输的方法,包括:网络设备对第一载波进行检测,并根据检测结果从M1个时频资源中确定获得信道使用权的第一时频资源,所述M1个时频资源是所述网络设备为所述第一载波上的第一周期配置的可用于传输第一同步信号块SSB的时频资源,M1为正整数,M1≥2;所述网络设备通过所述第一时频资源向终端设备发送所述第一SSB。
因此,在本申请实施例中,网络设备可以在第一周期内配置可用于传输该第一SSB的多个时频资源,有利于增加SSB的发送机会,并且该网络设备在该第一周期内可以对第一载波进行信道检测,根据信道检测结果确定在该第一周期内的M1个时频资源中可用的第一时频资源,进一步地可以通过该第一时频资源发送该第一SSB,而不是在该M1个时频资源中的每个时频资源或特定时频资源上发送第一SSB,能够实现该第一SSB的有效传输,并且有利于提升资源利用效率。
应理解,该M1个时频资源可用于传输该第一SSB,或者,该M1个时频资源可以认为是可用于传输第一SSB的候选时频资源,但是,在实际传输中,该M1个时频资源不一定都用于传输该第一SSB,因此,该M1个时频资源可以包括实际传输第一SSB的时频资源和未传输第一SSB的时频资源。
可选地,若在该M1个时频资源上都信道检测失败,即未获得该M1个时频资源中的任一时频资源的信道使用权,则该网络设备可以不在该第一周期内进行该第一SSB的发送,进一步的,该网络设备可以在该第一周期之后的第二周期内对该第一载波进行信道检测,并根据该第二周期内的信道检测结果进行该第一SSB的发送。
可选地,在本申请实施例中,该第一载波可以为免授权载波,或者也可以为授权载波,本申请实施例对此不作限定。
可选地,在本申请实施例中,所述第一周期的长度可以是通信***规定的,或者也可以是网络设备配置的,或者可以是网络设备和终端设备共同确定的,本申请实施例并不限定该第一周期的确定方式。
在一些可能的实现方式中,所述网络设备在所述第一周期内发送所述第一SSB的最大次数为N1,N1为正整数,1≤N1<M1。
因此,网络设备可以只在M1个时频资源中的部分时频资源上发送该第一SSB,而不是在该M1个时频资源中的每个时频资源上都发送第一SSB,能够降低SSB的发送次数,从而能够降低用于SSB发送的资源开销。
可选地,该N1的取值可以是由通信***规定的,或者网络设备配置的,或者可以是网络设备和终端设备共同确定的,本申请实施例并不限定。
在一些可能的实现方式中,所述网络设备在所述第一周期内在所述第一时频资源前发送所述第一SSB的次数小于N1。
在一些可能的实现方式中,所述方法还包括:
所述网络设备在所述M1个时频资源中晚于第二时频资源的时频资源上不发送所述第一SSB,其中,所述第二时频资源为所述M1个时频资源中所述网络设备第N1次发送所述第一SSB的时频资源。
因此,网络设备在该M1个时频资源上进行该第一SSB的N1次传输后,在该M1个时频资源中的其他候选时频资源上可以不再传输该第一SSB,因此,网络设备通过在第一周期内配置多个时频资 源增加SSB的发送机会的同时,还能够降低SSB的发送次数,从而能够降低SSB发送的资源开销。
可选地,在该第二时频资源后的其他候选时频资源上,网络设备可以进行数据的传输,从而能够提升资源利用率。
在一些可能的实现方式中,所述第一时频资源为K1个时频资源中的一个时频资源,所述K1个时频资源为所述M1个时频资源中用于发送所述第一SSB的时频资源,K1为正整数,1≤K1≤N1。
在一些可能的实现方式中,所述K1个时频资源为所述M1个时频资源中所述网络设备获得信道使用权的前K1个时频资源。
在一些可能的实现方式中,所述第一周期包括M1个子周期,所述M1个子周期中的每个子周期内包括所述M1个时频资源中的一个时频资源,所述M1个子周期与所述M1个时频资源一一对应。
在一些可能的实现方式中,第三时频资源在第一子周期内的位置与第四时频资源在第二子周期内的位置相同,其中,第三时频资源和第四时频资源为所述M1个时频资源中的两个不同的时频资源,所述第三时频资源与所述第一子周期对应,所述第四时频资源与所述第二子周期对应。
在一些可能的实现方式中,所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述网络设备在所述第一周期内发送所述第一SSB的信息。
在一些可能的实现方式中,所述第一指示信息用于指示以下中的至少一项:所述第一周期内所述第一SSB的最大发送次数信息、所述第一SSB的标识、所述第一SSB的波束标识。
在一些可能的实现方式中,所述网络设备在所述第一周期内的第五时频资源上发送所述第一指示信息。
在一些可能的实现方式中,所述第一指示信息用于指示以下中的至少一项:所述第一周期内早于所述第五时频资源的时频资源上所述第一SSB的已发送次数信息、所述第一周期内晚于所述第五时频资源的时频资源上所述第一SSB的待发送次数信息、所述第一周期内晚于所述第五时频资源的时频资源上所述第一SSB的候选位置信息。
因此,终端设备可以根据所述第一指示信息,即可确定该第一周期内的该第一SSB的信息,进而可以根据该第一SSB的信息,在特定资源位置上进行该第一SSB的接收,或者在成功接收N1次后,在其他时频资源上不再进行该第一SSB的接收,能够降低终端设备的盲检复杂度。或者,终端设备可以根据所述第一指示信息确定该第一SSB的时频资源位置,并在进行数据接收时对该第一SSB进行速率匹配。
在一些可能的实现方式中,所述第一周期是根据以下中的至少一项确定的:
所述网络设备服务的终端设备个数、所述网络设备服务的小区的覆盖范围大小、所述终端设备接入所述网络设备的时延要求。
可选地,在另一些实施例中,该周期可以是根据SSB的发送周期确定的,例如,该周期可以为80ms,160ms等。
在一些可能的实现方式中,所述第一SSB为SSB组中的一个SSB,所述SSB组还包括第二SSB,所述方法还包括:
所述网络设备从M2个时频资源中确定获得信道使用权的第六时频资源,所述M2个时频资源是所述网络设备为所述第一载波上的所述第一周期配置的用于传输所述第二SSB的时频资源,M2为正整数,M2≥2;
所述网络设备通过所述第六时频资源向所述终端设备发送所述第二SSB。
在一些可能的实现方式中,所述第六时频资源为K2个时频资源中的一个时频资源,所述K2个时频资源为所述M2个时频资源中用于发送所述第二SSB的时频资源,K2为正整数,1≤K2≤N2,其中,N2为所述网络设备在所述第一周期内发送所述第二SSB的最大次数,N2为正整数,1≤N2<M2。
在一些可能的实现方式中,所述K2个时频资源为所述M2个时频资源中所述网络设备获得信道使用权的前K2个时频资源。
在一些可能的实现方式中,所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述网络设备在所述第一周期内发送所述SSB组的信息。
在一些可能的实现方式中,所述第二指示信息用于指示以下中的至少一项:
所述第一周期内所述SSB组中至少一个SSB的最大发送次数信息、所述SSB组中至少一个SSB的标识、所述SSB组中至少一个SSB的波束标识。
在一些可能的实现方式中,所述网络设备在所述第一周期内的第七时频资源上发送所述第二指示信息。
在一些可能的实现方式中,所述第二指示信息用于指示以下中的至少一项:
所述第一周期内早于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的已发送次数信息、所述第一周期内晚于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的待发送次数信息、所述第一周期内晚于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的候选位置信息。
因此,终端设备可以根据所述第二指示信息,即可确定该第一周期内的该SSB组中的至少一个SSB的信息,进而可以根据该SSB组的信息,在特定位置上进行该SSB组中的至少一个SSB的接收,或者在该SSB组中的某个SSB成功接收达到最大次数(例如第一SSB接收N1次,第二SSB接收N2次)后,在其他时频资源上不再接收该SSB组中的该个SSB,能够降低终端设备的盲检复杂度。或者,终端设备可以根据所述第二指示信息确定该SSB组的时频资源位置,并在进行数据接收时对该SSB组中的至少一个SSB进行速率匹配。
第二方面,提供了一种信号传输的方法,包括:终端设备在第一载波上的M1个时频资源上检测第一同步信号块SSB,以确定网络设备发送第一SSB的第一时频资源,所述M1个时频资源是所述网络设备为所述第一载波上的第一周期配置的可用于传输第一SSB的时频资源,M1为正整数,M1≥2;所述终端设备通过所述第一时频资源接收所述网络设备发送所述第一SSB。
在一些可能的实现方式中,所述网络设备在所述第一周期内发送所述第一SSB的最大次数为N1,N1为正整数,1≤N1<M1。
在一些可能的实现方式中,所述终端设备在所述第一周期内在所述第一时频资源前检测到所述第一SSB的次数小于N1。
在一些可能的实现方式中,所述方法还包括:所述终端设备在所述M1个时频资源中晚于第二时频资源的时频资源上不检测所述第一SSB,其中,所述第二时频资源为所述M1个时频资源中所述终端设备第N1次检测到所述第一SSB的时频资源。
在一些可能的实现方式中,所述第一时频资源为K1个时频资源中的一个时频资源,所述K1个时频资源为所述M1个时频资源中所述终端设备检测到所述第一SSB的时频资源,K1为正整数,1≤K1≤N1。
在一些可能的实现方式中,所述K1个时频资源为所述M1个时频资源中所述终端设备检测到所述第一SSB的前K1个时频资源。
在一些可能的实现方式中,所述第一周期包括M1个子周期,所述M1个子周期中的每个子周期内包括所述M1个时频资源中的一个时频资源,所述M1个子周期与所述M1个时频资源一一对应。
在一些可能的实现方式中,第三时频资源在第一子周期内的位置与第四时频资源在第二子周期内的位置相同,其中,第三时频资源和第四时频资源为所述M1个时频资源中的两个不同的时频资源,所述第三时频资源与所述第一子周期对应,所述第四时频资源与所述第二子周期对应。
在一些可能的实现方式中,所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述网络设备在所述第一周期内发送所述第一SSB的信息。
在一些可能的实现方式中,所述第一指示信息用于指示以下中的至少一项:所述第一周期内所述第一SSB的最大发送次数信息、所述第一SSB的标识、所述第一SSB的波束标识。
在一些可能的实现方式中,所述终端设备在所述第一周期内的第五时频资源上接收所述第一指示信息。
在一些可能的实现方式中,所述第一指示信息用于指示以下中的至少一项:所述第一周期内早于所述第五时频资源的时频资源上所述第一SSB的已发送次数信息、所述第一周期内晚于所述第五时频资源的时频资源上所述第一SSB的待发送次数信息、所述第一周期内晚于所述第五时频资源的时频资源上所述第一SSB的候选位置信息。
因此,终端设备可以根据所述第一指示信息,即可确定该第一周期内的该第一SSB的信息,进而可以根据该第一SSB的信息,在特定资源位置上进行该第一SSB的接收,或者在成功接收N1次后,在其他时频资源上不再进行该第一SSB的接收,能够降低终端设备的盲检复杂度。或者,终端设备可以根据所述第一指示信息确定该第一SSB的时频资源位置,并在进行数据接收时对该第一SSB进行速率匹配。
在一些可能的实现方式中,所述第一周期是根据以下中的至少一项确定的:
所述网络设备服务的终端设备个数、所述网络设备服务的小区的覆盖范围大小、所述终端设备接入所述网络设备的时延要求。
在一些可能的实现方式中,所述第一SSB为SSB组中的一个SSB,所述SSB组还包括第二SSB,所述方法还包括:
所述终端设备在所述第一载波上的M2个时频资源中检测第二SSB,以确定所述网络设备发送第 二SSB的第六时频资源,所述M2个时频资源是所述网络设备为所述第一载波上的所述第一周期配置的用于传输所述第二SSB的时频资源,M2为正整数,M2≥2;所述终端设备通过所述第六时频资源接收所述网络设备发送的所述第二SSB。
在一些可能的实现方式中,所述第六时频资源为K2个时频资源中的一个时频资源,所述K2个时频资源为所述M2个时频资源中用于发送所述第二SSB的时频资源,K2为正整数,1≤K2≤N2,其中,N2为所述网络设备在所述第一周期内发送所述第二SSB的最大次数,N2为正整数,1≤N2<M2。
在一些可能的实现方式中,所述K2个时频资源为所述M2个时频资源中所述网络设备获得信道使用权的前K2个时频资源。
在一些可能的实现方式中,所述终端设备接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述网络设备在所述第一周期内发送所述SSB组的信息。
在一些可能的实现方式中,所述第二指示信息用于指示以下中的至少一项:
所述第一周期内所述SSB组中至少一个SSB的最大发送次数信息、所述SSB组中至少一个SSB的标识、所述SSB组中至少一个SSB的波束标识。
在一些可能的实现方式中,所述终端设备在所述第一周期内的第七时频资源上接收所述第二指示信息。
在一些可能的实现方式中,所述第二指示信息用于指示以下中的至少一项:
所述第一周期内早于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的已发送次数信息、所述第一周期内晚于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的待发送次数信息、所述第一周期内晚于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的候选位置信息。
因此,终端设备可以根据所述第二指示信息,即可确定该第一周期内的该SSB组中的至少一个SSB的信息,进而可以根据该SSB组的信息,在特定位置上进行该SSB组中的至少一个SSB的接收,或者在该SSB组中的某个SSB成功接收达到最大次数(例如第一SSB接收N1次,第二SSB接收N2次)后,在其他时频资源上不再接收该SSB组中的该个SSB,能够降低终端设备的盲检复杂度。或者,终端设备可以根据所述第二指示信息确定该SSB组的时频资源位置,并在进行数据接收时对该SSB组中的至少一个SSB进行速率匹配。
第三方面,提供了一种网络设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该网络设备包括用于执行上述第一方面或第一方面的任一可能的实现方式中的方法的单元。
第四方面,提供了一种终端设备,该终端设备包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线***相连。该存储器用于存储指令,该处理器用于执行该存储器存储的指令,用于执行上述第一方面或第一方面的任一可能的实现方式中的方法。
第五方面,提供了一种网络设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该网络设备包括用于执行上述第二方面或第二方面的任一可能的实现方式中的方法的单元。
第六方面,提供了一种终端设备,该终端设备包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线***相连。该存储器用于存储指令,该处理器用于执行该存储器存储的指令,用于执行上述第二方面或第二方面的任一可能的实现方式中的方法。
第七方面,提供了一种计算机存储介质,用于储存为执行上述第一方面或第一方面的任意可能的实现方式中的方法所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第八方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任一可选的实现方式中的方法。
第九方面,提供了一种计算机存储介质,用于储存为执行上述第二方面或第二方面的任意可能的实现方式中的方法所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第十方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任一可选的实现方式中的方法。
附图说明
图1示出了本申请实施例的信号传输的方法的示意性流程图。
图2示出了本申请实施例的信号传输的方法的一例示意图。
图3示出了本申请另一实施例的信号传输的方法的示意性流程图。
图4示出了本申请实施例的网络设备的示意性框图。
图5示出了本申请实施例的终端设备的示意性框图。
图6示出了本申请另一实施例的网络设备的示意性框图。
图7示出了本申请另一实施例的终端设备的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新无线(New Radio,NR)***、NR***的演进***、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信***。
可选地,本申请实施例中的通信***可以应用于载波聚合(CA,Carrier Aggregation)场景,也可以应用于双连接(DC,Dual Connectivity)场景,还可以应用于独立(SA,Standalone)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中:终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信***,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
可选地,本申请实施例的下行物理信道可以包括物理下行控制信道(Physical Downlink Control Channel,PDCCH),增强物理下行控制信道(Enhanced Physical Downlink Control Channel,EPDCCH),物理下行共享信道(Physical Downlink Shared Channel,PDSCH),物理HARQ指示信道(Physical Hybrid  ARQ Indicator Channel,PHICH),物理多播信道(Physical Multicast Channel,PMCH),物理广播信道(Physical Broadcast Channel,PBCH),等等。下行参考信号可以包括下行同步信号(Synchronization Signal),相位跟踪参考信号(Phase Tracking Reference Signal,PT-RS),下行解调参考信号(DeModulation Reference Signal,DMRS),信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)等,其中,下行同步信号可用于通信设备接入网络和无线资源管理测量,下行DMRS可用于下行信道的解调,CSI-RS可用于下行信道的测量、下行时频同步或相位跟踪,PT-RS也可用于下行信道的测量、下行时频同步或相位跟踪。应理解,本申请实施例中可以包括和上述名称相同、功能不同的下行物理信道或下行参考信号,也可以包括和上述名称不同、功能相同的下行物理信道或下行参考信号,本申请对此并不限定。
可选地,本申请实施例的上行物理信道可以包括物理随机接入信道(PRACH,Physical Random Access CHannel)、物理上行控制信道(PUCCH,Physical Uplink Control CHannel)、物理上行共享信道(PUSCH,Physical Uplink Shared CHannel)等。上行参考信号可以包括上行解调参考信号(DeModulation Reference Signal,DMRS)、探测参考信号(Sounding Reference Signal,SRS)、相位跟踪参考信号(Phase Tracking Reference Signal,PT-RS)等。其中,上行DMRS可用于上行信道的解调,SRS可用于上行信道的测量、上行时频同步或相位跟踪,PT-RS也可用于上行信道的测量、上行时频同步或相位跟踪。应理解,本申请实施例中可以包括和上述名称相同、功能不同的上行物理信道或上行参考信号,也可以包括和上述名称不同、功能相同的上行物理信道或上行参考信号,本申请对此并不限定。
下面结合图1至图3对本申请实施例的信号传输的方法进行说明,应理解,图1至图3是本申请实施例的信号传输的方法的示意性流程图,示出了该方法的详细的通信步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者图1至图3中的各种操作的变形。
此外,图1至图3中的各个步骤可以分别按照与图1至图3所呈现的不同的顺序来执行,并且有可能并非要执行图1至图3中的全部操作。
图1是根据本申请实施例的信号传输的方法的示意性流程图,如图1所示,该方法100包括:
S110,网络设备对第一载波进行检测,并根据检测结果从M1个时频资源中确定获得信道使用权的第一时频资源,所述M1个时频资源是所述网络设备为所述第一载波上的第一周期配置的可用于传输第一同步信号块SSB的时频资源,M1为正整数,M1≥2;
S120,所述网络设备通过所述第一时频资源向终端设备发送所述第一SSB。
具体而言,网络设备可以为第一载波上的第一周期配置M1个时频资源,该M1个时频资源为该网络设备在该第一载波上的第一周期内能够用于传输第一SSB的时频资源,即该M1个时频资源可用于传输该第一SSB,或者,该M1个时频资源可以认为是能够用于传输该第一SSB的候选时频资源,但是,在实际传输中,该M1个时频资源是否都用于传输该第一SSB,本申请实施例对此不作限定,即该M1个时频资源可以包括实际用于传输第一SSB的时频资源和未用于传输第一SSB的时频资源。
例如,该M1个时频资源包括时频资源1、时频资源2和时频资源3,则该时频资源1、时频资源2和时频资源3为可用于传输该第一SSB的时频资源,在实际传输中,若只在时频资源1上传输了该第一SSB,则该时频资源1为实际用于传输该第一SSB的时频资源,该时频资源2和该时频资源3为未用于传输该第一SSB的时频资源。
可选地,在本申请实施例中,该M1个时频资源中至少有一个时频资源不用于传输该第一SSB。
在本申请实施例中,网络设备可以对该第一载波进行信道检测,根据信道检测结果确定该M1个时频资源中的哪些时频资源可用,即哪些时频资源获得了信道使用权。例如,若在该M1个时频资源中的时频资源K上的信道检测结果为信道空闲,则可以确定该时频资源K可用,即获得该时频资源K的信道使用权,否则,可以确定该时频资源K不可用,即未获得该时频资源K的信道使用权。其中,获得信道使用权的时频资源中可以包括第一时频资源,进一步地,该网络设备可以通过该第一时频资源向终端设备发送该第一SSB。
因此,在本申请实施例中,网络设备可以在第一周期内配置可用于传输该第一SSB的多个时频资源,有利于增加SSB的发送机会,并且该网络设备可以对第一载波进行信道检测,根据信道检测结果确定在该第一周期内的M1个时频资源中可用的第一时频资源,进一步地可以通过该第一时频资源发送该第一SSB,而不是在该M1个时频资源中的每个时频资源或特定时频资源上发送第一SSB,能够实现该第一SSB的有效传输,并且有利于提升资源利用效率。
可选地,在本申请实施例中,该第一时频资源可以包括一个时频资源,或者也可以包括多个时频资源。
可选地,在本申请实施例中,该第一载波可以为免授权载波,或者也可以为授权载波,本申请实 施例对此不作限定。
需要说明的是,若网络设备在该第一时频资源之前已经拿到信道使用权了(例如,网络设备在第一时频资源前已经开始进行数据传输了),此情况下,该网络设备对该第一载波进行信道检测可以是在进行数据传输之前的时间资源上,相应地,该网络设备可以认为已经获得该第一时频资源的信道使用权而不必再进行信道检测;或者,网络设备可以在该第一时频资源之前进行信道检测,以确定该第一时频资源是否可用,从而在可用的情况下进行第一SSB的发送。应理解,本申请实施例并不特别限定网络设备对第一载波进行信道检测的具***置,只要能够根据信道检测结果确定M1个时频资源是否可用即可。
可选地,在本申请实施例中,若在该M1个时频资源上都信道检测失败,即未获得该M1个时频资源中的任一时频资源的信道使用权,则该网络设备可以不在该第一周期内进行第一SSB的发送,进一步的,该网络设备可以在该第一周期之后的第二周期内对该第一载波进行信道检测,并根据该第二周期内的信道检测结果进行该第一SSB的发送,具体实现过程参考第一周期内的实现过程,这里不再赘述。
应理解,网络设备在第一周期或第二周期内发送该第一SSB的次数可以和该周期内网络设备获得的信道使用权情况有关,例如,网络设备可以在第一周期内没有发送该第一SSB,在第二周期内发送一次该第一SSB。
可选地,网络设备配置SSB的候选时频资源时是按周期配置的,即,每个周期内SSB的候选时频资源配置相同。其中,第一周期是该配置周期中的一个周期,第二周期是该配置周期中的另一个周期,第一周期和第二周期的长度相同,第二周期位于第一周期之后。例如网络设备配置SSB的候选时频资源的周期为80ms,假设第一周期对应1~80ms,那么第二周期可以对应81~160ms。
可选地,该候选时频资源配置周期的长度可以为40ms,80ms,或160ms等中的一种。
可选地,在本申请实施例中,候选时频资源配置周期的长度(即所述第一周期的长度)可以是通信***规定的,或者也可以是网络设备配置的,或者可以是网络设备和终端设备共同确定的,本申请实施例并不限定该第一周期的长度的确定方式。
可选地,在一些实施例中,所述第一周期的长度可以是根据以下中的至少一项确定的:
所述网络设备服务的终端设备个数、所述网络设备服务的小区的覆盖范围大小、所述终端设备接入所述网络设备的时延要求。
例如,在网络设备服务的终端设备的个数较多时,可以配置较短的第一周期,从而终端设备想要进行初始接入或发起随机接入时,可以及时获取该SSB,有利于缩短终端设备接入网络的时延,提升用户体验;或者,在网络设备服务的小区的覆盖范围较大时,可以配置较短的第一周期,小区的覆盖范围较大在某种程度上也可以认为该网络设备服务的终端设备的个数较多,因此,配置较短的第一周期有利于终端设备在想要接入网络时,能够及时获取SSB,进行快速的初始接入;或者,在终端设备的接入时延要求较高时,需要网络设备发送SSB的频率更高,因此,配置较短的第一周期有利于终端设备在想要发起初始接入时,能够及时获取SSB,进行快速的接入。
再如,该第一周期也可以是根据所述网络设备服务的终端设备个数、所述网络设备服务的小区的覆盖范围大小、所述终端设备接入所述网络设备的时延要求中的至少两项确定的,例如,在网络设备服务的小区的覆盖范围大于特定阈值,并且终端设备的接入网络的时域要求高于特定阈值时,配置较短的第一周期,或者,在网络设备服务的终端设备的个数小于特定阈值,并且网络设备服务的小区的范围小于特定阈值时,配置较长的第一周期等,本申请实施例对此不作限定。
可选地,在一些实施例中,所述网络设备在所述第一周期内发送所述第一SSB的最大次数为N1,N1为正整数,1≤N1<M1。
可选地,网络设备或通信***根据所述第一周期的长度、所述网络设备服务的终端设备个数、所述网络设备服务的小区的覆盖范围大小和所述终端设备接入所述网络设备的时延要求中的至少一项来确定所述第一周期内所述第一SSB的最大发送次数。
因此,在本申请实施例中,网络设备可以只在M1个时频资源中的部分时频资源上发送该第一SSB,而不是在该M1个时频资源中的每个时频资源上都发送第一SSB,能够降低SSB的发送次数,从而能够降低发送SSB的资源开销。
可选地,该N1的取值可以是由通信***规定的,或者网络设备配置的,或者可以是网络设备和终端设备共同确定的,本申请实施例并不限定。
可选地,在一些实施例中,所述网络设备在所述第一周期内在所述第一时频资源前发送所述第一SSB的次数小于N1。
即,该第一时频资源可以是该第一SSB的N1次传输中的一次传输所使用的时频资源,例如,该 第一时频资源可以是用于该第一SSB的第一次传输的,或者也可以是用于该第一SSB的第N1次传输的,或者也可以是用于该N1次传输中的中间的一次传输的,本申请实施例对此不作限定。
可选地,在一些实施例中,所述方法100还包括:
所述网络设备在所述M1个时频资源中晚于第二时频资源的时频资源上不发送所述第一SSB,其中,所述第二时频资源为所述M1个时频资源中所述网络设备第N1次发送所述第一SSB的时频资源。
具体来说,网络设备可以使用该M1个时频资源中的N1个获得信道使用权的时频资源进行该第一SSB的N1次传输,其中,该第二时频资源为该N1次传输中用于第N1次传输的时频资源,则在该M1个时频资源中该第二时频资源之后的其他时频资源上,该网络设备不再发送该第一SSB,即网络设备在该M1个时频资源上进行该第一SSB的N1次传输后,不再在该M1个时频资源中的其他候选时频资源上传输该第一SSB,因此,根据本申请实施例的信号传输方法,在增加SSB的发送机会,实现SSB的有效传输的情况下,还能够降低SSB的发送次数,从而能够降低发送SSB的资源开销。
可选地,在一些实施例中,在该第二时频资源后的其他候选时频资源上,网络设备可以进行数据的传输,从而能够提升资源利用率。
可选地,若该第一时频资源为用于该第一SSB的第N1次传输的时频资源,则该第一时频资源和该第二时频资源相同。
可选地,在一些实施例中,所述第一时频资源为K1个时频资源中的一个时频资源,所述K1个时频资源为所述M1个时频资源中用于发送所述第一SSB的时频资源,K1为正整数,1≤K1≤N1。
应理解,这里的该K1个时频资源是实际用于传输该第一SSB的时频资源,或者说,在该K1个时频资源上进行了该第一SSB的传输,即网络设备在该K1个时频资源上进行该第一SSB的K1次传输,其中,该第一时频资源可以为该K1个时频资源中的一个时频资源,可选地,该第一时频资源可以为该K1次传输中的任一次传输所使用的时频资源,本申请实施例对于该第一时频资源在该K1个时频资源中的位置不作具体限定。
可选地,在一些实施例中,所述K1个时频资源为所述M1个时频资源中所述网络设备获得信道使用权的前K1个时频资源。
例如,若该网络设备在M1个时频资源中的P个时频资源上获得信道使用权,其中,P≥K1,则该K1个时频资源可以为该P个时频资源中的前K1个时频资源,该K1个时频资源分别对应该第一SSB的K1次传输。
可选地,在一些实施例中,所述第一周期包括M1个子周期,所述M1个子周期中的每个子周期内包括所述M1个时频资源中的一个时频资源,即所述M1个子周期与所述M1个时频资源一一对应。
也就是说,在M1个子周期内的每个子周期内都可以配置一个能够用于传输该第一SSB的候选时频资源,可选地,每个子周期内的能够用于传输该第一SSB的候选时频资源的位置相同。
例如,该第一周期包括第一子周期和第二子周期,该M1个时频资源包括第三时频资源和第四时频资源,其中,该第三时频资源为该第一子周期内的候选时频资源,该第四时频资源为该第二子周期内的候选时频资源,则该第三时频资源在第一子周期内的位置与该第四时频资源在该第二子周期内的位置相同。
应理解,实际用于传输该第一SSB的该K1个时频资源可以分别对应K1个子周期,该K1个子周期在该M1个子周期中可以是连续的,或者也可以是不连续的,本申请实施例对此不作限定。
可选地,在一些实施例中,所述网络设备还可以向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述网络设备在所述第一周期内发送所述第一SSB的信息。
可选地,所述第一指示信息用于指示以下中的至少一项:所述第一周期内所述第一SSB的最大发送次数信息、所述第一SSB的标识、所述第一SSB的波束标识。
可选地,一个波束的波束指示信息可以包括:与该波束之间满足准同址(Quasi-Co-Located,QCL)关系的参考信号的信号索引或波束标识。
可选地,本申请实施例中,接收一个信号所使用的波束,可以理解为,接收一个信号所使用的空间域接收滤波器(Spatial domain reception filter);发送一个信号所使用的波束,可以理解为,发送一个信号所使用的空间域传输滤波器(Spatial domain transmission filter)。对于采用相同的空间域发送滤波器发送的两个信号,可以认为这两个信号相对于空间接收参数是QCL的。
作为示例而非限定,该第一指示信息可以用于指示该网络设备在该第一周期内待发送的该第一SSB的标识、次数、资源位置、发送该第一SSB所使用的波束标识等信息。
从而,终端设备可以根据所述第一指示信息确定该第一SSB的资源位置,发送次数等信息,进而可以在特定资源位置上接收该第一SSB,或者只接收特定次数的该第一SSB等,有利于降低终端设备盲检的复杂度。
可选地,在一具体的实施例中,所述网络设备可以在所述第一周期内的第五时频资源上发送所述第一指示信息。
此情况下,所述第一指示信息用于指示以下中的至少一项:所述第一周期内早于所述第五时频资源的时频资源上所述第一SSB的已发送次数信息、所述第一周期内晚于所述第五时频资源的时频资源上所述第一SSB的待发送次数信息、所述第一周期内晚于所述第五时频资源的时频资源上所述第一SSB的候选位置信息。
因此,终端设备可以根据所述第一指示信息,即可确定该第一周期内的该第一SSB的信息,进而可以根据该第一SSB的信息,进行该第一SSB的接收,例如,可以在特定资源位置上接收该第一SSB,或者在成功接收N1次后,在其他时频资源上不再继续接收该第一SSB等,能够降低终端设备的盲检复杂度。或者,终端设备可以根据所述第一指示信息确定该第一SSB的时频资源位置,并在进行数据接收时对该第一SSB进行速率匹配。
可选地,本申请实施例中的根据SSB的时频资源位置进行速率匹配,可以指:当终端设备被调度用于数据传输的时频资源中包括SSB的候选时频资源时,终端设备需要根据实际发送的SSB来进行速率匹配。作为示例而非限定,第一指示信息指示一个候选时频资源用于发送第一SSB,终端设备在进行数据接收时可以假设该个时频资源未用于数据传输,或者,第一指示信息指示一个候选时频资源未用于发送第一SSB,终端设备在进行数据接收时可以假设该个时频资源用于数据传输。
应理解,本申请实施例的时频资源可以包括时域资源和/或频域资源,其中,早于该第五时频资源的时频资源可以为在时域维度上早于该第五时频资源的时频资源,晚于该第五时频资源的时频资源可以为在时域维度上晚于该第五时频资源的时频资源,对于频域位置不作具体限定。
可选地,在一些实施例中,所述第一SSB为SSB组中的一个SSB,所述SSB组还包括第二SSB,所述方法100还可以包括:
所述网络设备从M2个时频资源中确定获得信道使用权的第六时频资源,所述M2个时频资源是所述网络设备为所述第一载波上的所述第一周期配置的用于传输所述第二SSB的时频资源,M2为正整数,M2≥2;
所述网络设备通过所述第六时频资源向所述终端设备发送所述第二SSB。
因此,根据本申请实施例的信号传输的方法,可以用于发送一组SSB,其中,发送该SSB组中的该第二SSB的具体实现过程跟发送该第一SSB的具体实现过程类似,可以参考前述实施例的相关描述,这里不再赘述。
可选地,所述第六时频资源为K2个时频资源中的一个时频资源,所述K2个时频资源为所述M2个时频资源中用于发送所述第二SSB的时频资源,K2为正整数,1≤K2≤N2,其中,N2为所述网络设备在所述第一周期内发送所述第二SSB的最大次数,N2为正整数,1≤N2<M2。
应理解,该第六时频资源与该第一时频资源类似,该第六时频资源可以为该第二SSB的K2次传输中的一次传输所使用的资源,该第六时频资源可以参考前述的该第一时频资源的相关描述,这里不再赘述。
可选地,在一些实施例中,该N2可以等于前述的N1,即第一SSB和第二SSB的最大传输次数可以相同。
跟N1类似,该N2也可以是由通信***规定的,或者由网络设备配置的,或者由网络设备和终端设备共同确定的等,本申请实施例对此不作限定。
可选地,在一些实施例中,所述K2个时频资源为所述M2个时频资源中所述网络设备获得信道使用权的前K2个时频资源。
应理解,该K2个时频资源跟前述的K1个时频资源类似,具体可参考该K1个时频资源的相关描述,这里不再赘述。
可选地,在一些实施例中,该M2可以等于前述的M1,即在该第一周期内的每个子周期内都可以包括该M2个时频资源中的一个时频资源,即该M1个子周期可以与该M2个时频资源一一对应。可选地,该M2个时频资源中的每个时频资源在该M1个子周期中该个时频资源对应的子周期内的位置相同。
应理解,M1和M2可以是独立确定的,也可以是统一确定的,本申请对此并不限定,例如网络设备配置M值,对应到本申请中,M1=M,M2=M。
应理解,N1和N2可以是独立确定的,也可以是统一确定的,本申请对此并不限定,例如网络设备配置N值,对应到本申请中,N1=N,N2=N。
作为示例而非限定,SSB组包括S个SSB,网络设备在第一周期内配置M组时频资源,该M组时频资源中的每组时频资源包括S个时频资源,该S个时频资源分别用于发送该S个SSB,网络设备 配置该SSB组的最大发送次数为N,即该SSB组中的每个SSB的最大发送次数均为N。其中,该第一周期包括M个子周期,该M组时频资源与该M个子周期对应,该M组时频资源中的每组时频资源在该M个子周期中对应的子周期内的位置相同。
可选地,在一些实施例中,所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述网络设备在所述第一周期内发送所述SSB组的信息。
可选地,在一些实施例中,所述第二指示信息用于指示以下中的至少一项:
所述第一周期内所述SSB组中至少一个SSB的最大发送次数信息、所述SSB组中至少一个SSB的标识、所述SSB组中至少一个SSB的波束标识。
作为示例而非限定,所述第二指示信息可以用于指示该SSB组中的至少一个SSB当前已发送次数,未发送次数,最大发送次数,后续可用于发送该至少一个SSB的资源位置,可用于发送该至少一个SSB的波束标识,或该至少一个SSB的标识等中的至少一项。
可选地,在一具体的实施例中,所述网络设备在所述第一周期内的第七时频资源上发送所述第二指示信息,所述第二指示信息用于指示以下中的至少一项:
所述第一周期内早于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的已发送次数信息、所述第一周期内晚于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的待发送次数信息、所述第一周期内晚于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的候选位置信息。
从而,终端设备可以根据所述第二指示信息,即可确定该第一周期内的该SSB组中的至少一个SSB的信息,进而可以根据该SSB组的信息,在特定位置上进行该SSB组中的至少一个SSB的接收,或者在该SSB组中的某个SSB成功接收达到最大次数(例如第一SSB接收N1次,第二SSB接收N2次)后,在其他时频资源上不再接收该SSB组中的该个SSB,能够降低终端设备的盲检复杂度。或者,终端设备可以根据所述第二指示信息确定该SSB组的时频资源位置,并在进行数据接收时对该SSB组中的至少一个SSB进行速率匹配。
应理解,早于该第七时频资源的时频资源可以为在时域维度上早于该第七时频资源的时频资源,晚于该第七时频资源的时频资源可以为在时域维度上晚于该第七时频资源的时频资源,对于频域维度上的大小不作具体限定。
以下,结合图2所示的具体示例,说明根据本申请实施例的信号传输的方法。
在图2所示的示例中,SSB组可以包括SSB1、SSB2、SSB3、SSB4和SSB5,每个SSB的最大传输次数为1次,当然,每个SSB的最大传输次数也可以大于一次,或者每个SSB对应的最大传输次数也可以不同,SSB组包括的SSB的数量也可以为其他数量,在其他情况下,也可以采用类似的方式进行信号传输,不作赘述。
在该图2中,每个子周期内都配置有可用于传输该SSB组中的每个SSB的时频资源(即候选时频资源),该网络设备可以对第一载波进行信道检测,以确定在该第一周期内的第一子周期内(即该第一周期内的第一个子周期)的每个候选时频资源是否可用。
在该第一子周期内,若可用于传输该SSB1和该SSB2的时频资源不可用,可用于传输该SSB3~SSB5的时频资源可用,则在该第一子周期内,该网络设备可以在可用于传输该SSB3~SSB5的时频资源上分别传输该SSB3~SSB5,在该第一子周期内不进行SSB1和SSB2的传输,由于SSB3~SSB5已达到最大传输次数,因此,在该第一子周期后的第二子周期内,该网络设备可以不进行SSB3~SSB5的传输。
该网络设备可以对第一载波进行信道检测,根据信道检测结果确定在该第二子周期内可用于传输SSB1和SSB2的时频资源是否可用,若可用于传输SSB1和SSB2的时频资源都可用,则在该第二子周期内,该网络设备可以在可用于传输SSB1和SSB2的时频资源分别进行SSB1和SSB2的传输,或者若在该第二子周期内,该可用于传输该SSB1和SSB2的时频资源不可用,进一步的,该网络设备可以对第一载波进行信道检测,根据信道检测结果确定在第三子周期内是否可以进行该SSB1和SSB2的发送。
对于终端设备而言,若该终端设备处于初始接入状态,由于终端设备不知道网络设备的配置,即该终端设备不知道网络设备配置的该M1个时频资源的位置,并且不知道该SSB组中的每个SSB的发送次数,因此,终端设备会盲检所有可能的SSB,直到接入网络。
或者,若终端设备处于连接态,终端设备可以获知该M1个时频资源的信息,前述的第一指示信息或第二指示信息等信息,因此,终端设备可以在该第一周期内的该M1个时频资源上检测SSB,假设SSB的最大传输次数为1,若终端设备检测到一次SSB,则可以不在其他时频资源上继续检测SSB。
例如,若在第一子周期内,该终端设备在该SSB1对应的时频资源上未检测到SSB1,该终端设 备可以在第二子周期内的该SSB1对应的时频资源上继续检测SSB1,若检测到该SSB1,则不在该第二子周期后的其他子周期内继续检测SSB1。
或者,若终端设备处于连接态,终端设备可以获知该M1个时频资源的信息,前述的第一指示信息或第二指示信息等信息,因此,终端设备可以根据该第一指示信息或第二指示信息对SSB进行速率匹配。
例如,该终端设备被调度用于数据传输的资源中包括第二子周期内的SSB1~SSB5的候选时频资源,终端设备根据第二指示信息可以确定SSB1和SSB2的两个候选时频资源分别用于发送SSB1和SSB2,SSB3~SSB5的三个候选时频资源未用于发送SSB,因此,该终端设备可以假设SSB3~SSB5的三个候选时频资源用于数据传输。
因此,根据本申请实施例的信号传输的方法,网络设备可以在一个周期内对一组SSB中的每个SSB配置多个候选时频资源,能够增加SSB的发送机会,实际传输时,若网络设备在该周期内的一个候选时频资源上成功传输对应的SSB,则可以不在其他候选时频资源上继续传输该SSB,因此,在增加SSB的发送机会的同时,还有利于降低发送SSB的资源开销。
并且,连接态的终端设备若在该周期内的一个候选时频资源上检测到SSB,则可以停止对该周期内的其他候选时频资源上的SSB的盲检测,有利于降低终端设备的盲检复杂度。
上文结合图1至图2,从网络设备的角度详细描述了根据本申请实施例的信号传输的方法,下文结合图3,从终端设备的角度详细描述根据本申请另一实施例的信号传输的方法。应理解,终端设备侧的描述与网络设备侧的描述相互对应,相似的描述可以参见上文,为避免重复,此处不再赘述。
图3是根据本申请另一实施例的信号传输的方法300的示意性流程图,如图3所示,该方法300包括如下内容:
S310,终端设备在第一载波上的M1个时频资源上检测第一同步信号块SSB,以确定网络设备发送第一SSB的第一时频资源,所述M1个时频资源是所述网络设备为所述第一载波上的第一周期配置的可用于传输第一SSB的时频资源,M1为正整数,M1≥2;
S320,所述终端设备通过所述第一时频资源接收所述网络设备发送所述第一SSB。
可选地,在一些实施例中,所述网络设备在所述第一周期内发送所述第一SSB的最大次数为N1,N1为正整数,1≤N1<M1。
可选地,在一些实施例中,所述终端设备在所述第一周期内在所述第一时频资源前检测到所述第一SSB的次数小于N1。
可选地,在一些实施例中,所述方法300还包括:
所述终端设备在所述M1个时频资源中晚于第二时频资源的时频资源上不检测所述第一SSB,其中,所述第二时频资源为所述M1个时频资源中所述终端设备第N1次检测到所述第一SSB的时频资源。
可选地,在一些实施例中,所述第一时频资源为K1个时频资源中的一个时频资源,所述K1个时频资源为所述M1个时频资源中所述终端设备检测到所述第一SSB的时频资源,K1为正整数,1≤K1≤N1。
可选地,在一些实施例中,所述K1个时频资源为所述M1个时频资源中所述终端设备检测到所述第一SSB的前K1个时频资源。
应理解,网络设备侧的K1个时频资源,是网络设备进行该第一SSB的K1次传输所使用的时频资源,终端设备侧的该K1个时频资源是通过盲检测得到的K1个有SSB的时频资源,该网络设备的K1个时频资源和终端设备侧的该K1个时频资源可能会出现不一致的情况,例如,可能会出现网络设备发送了该第一SSB但终端设备没有检测到的情况,此情况下,网络设备侧的K1可能大于终端设备侧的K1。
可选地,在一些实施例中,所述第一周期包括M1个子周期,所述M1个子周期中的每个子周期内包括所述M1个时频资源中的一个时频资源,所述M1个子周期与所述M1个时频资源一一对应。
可选地,在一些实施例中,第三时频资源在第一子周期内的位置与第四时频资源在第二子周期内的位置相同,其中,第三时频资源和第四时频资源为所述M1个时频资源中的两个不同的时频资源,所述第三时频资源与所述第一子周期对应,所述第四时频资源与所述第二子周期对应。
可选地,在一些实施例中,所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述网络设备在所述第一周期内发送所述第一SSB的信息。
可选地,在一些实施例中,所述终端设备在所述第一周期内的第五时频资源上接收所述第一指示信息,所述第一指示信息用于指示以下中的至少一项:所述第一周期内所述第一SSB的最大发送次数信息、所述第一周期内早于所述第五时频资源的时频资源上所述第一SSB的已发送次数信息、所 述第一周期内晚于所述第五时频资源的时频资源上所述第一SSB的待发送次数信息、所述第一周期内晚于所述第五时频资源的时频资源上所述第一SSB的候选位置信息、所述第一SSB的标识、所述第一SSB的波束标识。
可选地,在一些实施例中,所述第一周期是根据以下中的至少一项确定的:
所述网络设备服务的终端设备个数、所述网络设备服务的小区的覆盖范围大小、所述终端设备接入所述网络设备的时延要求。
可选地,在一些实施例中,所述第一SSB为SSB组中的一个SSB,所述SSB组还包括第二SSB,所述方法还包括:
所述终端设备在所述第一载波上的M2个时频资源中检测第二SSB,以确定所述网络设备发送第二SSB的第六时频资源,所述M2个时频资源是所述网络设备为所述第一载波上的所述第一周期配置的用于传输所述第二SSB的时频资源,M2为正整数,M2≥2;所述终端设备通过所述第六时频资源接收所述网络设备发送的所述第二SSB。
可选地,在一些实施例中,所述第六时频资源为K2个时频资源中的一个时频资源,所述K2个时频资源为所述M2个时频资源中用于发送所述第二SSB的时频资源,K2为正整数,1≤K2≤N2,其中,N2为所述网络设备在所述第一周期内发送所述第二SSB的最大次数,N2为正整数,1≤N2<M2。
可选地,在一些实施例中,所述K2个时频资源为所述M2个时频资源中所述网络设备获得信道使用权的前K2个时频资源。
可选地,在一些实施例中,所述终端设备接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述网络设备在所述第一周期内发送所述SSB组的信息。
可选地,在一些实施例中,所述终端设备在所述第一周期内的第七时频资源上接收所述第二指示信息,所述第二指示信息用于指示以下中的至少一项:
所述第一周期内所述SSB组中至少一个SSB的最大发送次数信息、所述第一周期内早于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的已发送次数信息、所述第一周期内晚于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的待发送次数信息、所述第一周期内晚于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的候选位置信息、所述SSB组中至少一个SSB的标识、所述SSB组中至少一个SSB的波束标识。
上文结合图1至图3,详细描述了本申请的方法实施例,下文结合图4至图7,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图4示出了根据本申请实施例的网络设备400的示意性框图。如图4所示,该网络设备400包括:
处理模块410,用于对第一载波进行检测,并根据检测结果从M1个时频资源中确定获得信道使用权的第一时频资源,所述M1个时频资源是所述网络设备为所述第一载波上的第一周期配置的可用于传输第一同步信号块SSB的时频资源,M1为正整数,M1≥2;
通信模块420,用于通过所述第一时频资源向终端设备发送所述第一SSB。
可选地,在一些实施例中,所述网络设备在所述第一周期内发送所述第一SSB的最大次数为N1,N1为正整数,1≤N1<M1。
可选地,在一些实施例中,所述网络设备在所述第一周期内在所述第一时频资源前发送所述第一SSB的次数小于N1。
可选地,在一些实施例中,所述通信模块还用于:
在所述M1个时频资源中晚于第二时频资源的时频资源上不发送所述第一SSB,其中,所述第二时频资源为所述M1个时频资源中所述网络设备第N1次发送所述第一SSB的时频资源。
可选地,在一些实施例中,所述第一时频资源为K1个时频资源中的一个时频资源,所述K1个时频资源为所述M1个时频资源中用于发送所述第一SSB的时频资源,K1为正整数,1≤K1≤N1。
可选地,在一些实施例中,所述K1个时频资源为所述M1个时频资源中所述网络设备获得信道使用权的前K1个时频资源。
可选地,在一些实施例中,所述第一周期包括M1个子周期,所述M1个子周期中的每个子周期内包括所述M1个时频资源中的一个时频资源,所述M1个子周期与所述M1个时频资源一一对应。
可选地,在一些实施例中,第三时频资源在第一子周期内的位置与第四时频资源在第二子周期内的位置相同,其中,第三时频资源和第四时频资源为所述M1个时频资源中的两个不同的时频资源,所述第三时频资源与所述第一子周期对应,所述第四时频资源与所述第二子周期对应。
可选地,在一些实施例中,所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述网络设备在所述第一周期内发送所述第一SSB的信息。
可选地,在一些实施例中,所述网络设备在所述第一周期内的第五时频资源上发送所述第一指示信息,所述第一指示信息用于指示以下中的至少一项:所述第一周期内所述第一SSB的最大发送次数信息、所述第一周期内早于所述第五时频资源的时频资源上所述第一SSB的已发送次数信息、所述第一周期内晚于所述第五时频资源的时频资源上所述第一SSB的待发送次数信息、所述第一周期内晚于所述第五时频资源的时频资源上所述第一SSB的候选位置信息、所述第一SSB的标识、所述第一SSB的波束标识。
可选地,在一些实施例中,所述第一周期是根据以下中的至少一项确定的:
所述网络设备服务的终端设备个数、所述网络设备服务的小区的覆盖范围大小、所述终端设备接入所述网络设备的时延要求。
可选地,在一些实施例中,所述第一SSB为SSB组中的一个SSB,所述SSB组还包括第二SSB,所述处理模块还用于:
从M2个时频资源中确定获得信道使用权的第六时频资源,所述M2个时频资源是所述网络设备为所述第一载波上的所述第一周期配置的用于传输所述第二SSB的时频资源,M2为正整数,M2≥2;
所述通信模块还用于:通过所述第六时频资源向所述终端设备发送所述第二SSB。
可选地,在一些实施例中,所述第六时频资源为K2个时频资源中的一个时频资源,所述K2个时频资源为所述M2个时频资源中用于发送所述第二SSB的时频资源,K2为正整数,1≤K2≤N2,其中,N2为所述网络设备在所述第一周期内发送所述第二SSB的最大次数,N2为正整数,1≤N2<M2。
可选地,在一些实施例中,所述K2个时频资源为所述M2个时频资源中所述网络设备获得信道使用权的前K2个时频资源。
可选地,在一些实施例中,所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述网络设备在所述第一周期内发送所述SSB组的信息。
可选地,在一些实施例中,所述网络设备在所述第一周期内的第七时频资源上发送所述第二指示信息,所述第二指示信息用于指示以下中的至少一项:
所述第一周期内所述SSB组中至少一个SSB的最大发送次数信息、所述第一周期内早于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的已发送次数信息、所述第一周期内晚于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的待发送次数信息、所述第一周期内晚于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的候选位置信息、所述SSB组中至少一个SSB的标识、所述SSB组中至少一个SSB的波束标识。
应理解,根据本申请实施例的网络设备400可对应于本申请方法实施例中的网络设备,并且网络设备400中的各个单元的上述和其它操作和/或功能分别为了实现图1所示方法100中网络设备的相应流程,为了简洁,在此不再赘述。
图5是根据本申请实施例的终端设备的示意性框图。图5的终端设备500包括:
处理模块510,用于在第一载波上的M1个时频资源上检测第一同步信号块SSB,以确定网络设备发送第一SSB的第一时频资源,所述M1个时频资源是所述网络设备为所述第一载波上的第一周期配置的可用于传输第一SSB的时频资源,M1为正整数,M1≥2;
通信模块520,用于通过所述第一时频资源接收所述网络设备发送所述第一SSB。
可选地,在一些实施例中,所述网络设备在所述第一周期内发送所述第一SSB的最大次数为N1,N1为正整数,1≤N1<M1。
可选地,在一些实施例中,所述终端设备在所述第一周期内在所述第一时频资源前检测到所述第一SSB的次数小于N1。
可选地,在一些实施例中,所述通信模块520还用于:
所述终端设备在所述M1个时频资源中晚于第二时频资源的时频资源上不检测所述第一SSB,其中,所述第二时频资源为所述M1个时频资源中所述终端设备第N1次检测到所述第一SSB的时频资源。
可选地,在一些实施例中,所述第一时频资源为K1个时频资源中的一个时频资源,所述K1个时频资源为所述M1个时频资源中所述终端设备检测到所述第一SSB的时频资源,K1为正整数,1≤K1≤N1。
可选地,在一些实施例中,所述K1个时频资源为所述M1个时频资源中所述终端设备检测到所述第一SSB的前K1个时频资源。
可选地,在一些实施例中,所述第一周期包括M1个子周期,所述M1个子周期中的每个子周期内包括所述M1个时频资源中的一个时频资源,所述M1个子周期与所述M1个时频资源一一对应。
可选地,在一些实施例中,第三时频资源在第一子周期内的位置与第四时频资源在第二子周期内的位置相同,其中,第三时频资源和第四时频资源为所述M1个时频资源中的两个不同的时频资源,所述第三时频资源与所述第一子周期对应,所述第四时频资源与所述第二子周期对应。
可选地,在一些实施例中,所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述网络设备在所述第一周期内发送所述第一SSB的信息。
可选地,在一些实施例中,所述终端设备在所述第一周期内的第五时频资源上接收所述第一指示信息,所述第一指示信息用于指示以下中的至少一项:所述第一周期内所述第一SSB的最大发送次数信息、所述第一周期内早于所述第五时频资源的时频资源上所述第一SSB的已发送次数信息、所述第一周期内晚于所述第五时频资源的时频资源上所述第一SSB的待发送次数信息、所述第一周期内晚于所述第五时频资源的时频资源上所述第一SSB的候选位置信息、所述第一SSB的标识、所述第一SSB的波束标识。
可选地,在一些实施例中,所述第一周期是根据以下中的至少一项确定的:
所述网络设备服务的终端设备个数、所述网络设备服务的小区的覆盖范围大小、所述终端设备接入所述网络设备的时延要求。
可选地,在一些实施例中,所述第一SSB为SSB组中的一个SSB,所述SSB组还包括第二SSB,所述处理模块还用于:
在所述第一载波上的M2个时频资源中检测第二SSB,以确定所述网络设备发送第二SSB的第六时频资源,所述M2个时频资源是所述网络设备为所述第一载波上的所述第一周期配置的用于传输所述第二SSB的时频资源,M2为正整数,M2≥2;
所述通信模块还用于:通过所述第六时频资源接收所述网络设备发送的所述第二SSB。
可选地,在一些实施例中,所述第六时频资源为K2个时频资源中的一个时频资源,所述K2个时频资源为所述M2个时频资源中用于发送所述第二SSB的时频资源,K2为正整数,1≤K2≤N2,其中,N2为所述网络设备在所述第一周期内发送所述第二SSB的最大次数,N2为正整数,1≤N2<M2。
可选地,在一些实施例中,所述K2个时频资源为所述M2个时频资源中所述网络设备获得信道使用权的前K2个时频资源。
可选地,在一些实施例中,所述终端设备接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述网络设备在所述第一周期内发送所述SSB组的信息。
可选地,在一些实施例中,所述终端设备在所述第一周期内的第七时频资源上接收所述第二指示信息,所述第二指示信息用于指示以下中的至少一项:
所述第一周期内所述SSB组中至少一个SSB的最大发送次数信息、所述第一周期内早于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的已发送次数信息、所述第一周期内晚于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的待发送次数信息、所述第一周期内晚于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的候选位置信息、所述SSB组中至少一个SSB的标识、所述SSB组中至少一个SSB的波束标识。
具体地,该终端设备500可以对应(例如,可以配置于或本身即为)上述方法300中描述的终端设备,并且,该终端设备500中的各模块或单元分别用于执行上述方法300中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
如图6所示,本申请实施例还提供了一种网络设备600,所述网络设备600可以为图4中的网络设备400,其能够用于执行与图1中方法100对应的网络设备的内容。所述网络设备600包括:输入接口610、输出接口620、处理器630以及存储器640,所述输入接口610、输出接口620、处理器630和存储器640可以通过总线***相连。所述存储器640用于存储包括程序、指令或代码。所述处理器630,用于执行所述存储器640中的程序、指令或代码,以控制输入接口610接收信号、控制输出接口620发送信号以及完成前述方法实施例中的操作。
应理解,在本申请实施例中,所述处理器630可以是中央处理单元(Central Processing Unit,简称为“CPU”),所述处理器630还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者所述处理器也可以是任何常规的处理器等。
所述存储器640可以包括只读存储器和随机存取存储器,并向处理器630提供指令和数据。存储器640的一部分还可以包括非易失性随机存取存储器。例如,存储器640还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器630中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理 器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。所述存储介质位于存储器640,处理器630读取存储器640中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,图4中网络设备400包括的处理模块410可以用图6的处理器630实现,图4中网络设备400包括的通信模块420可以用图6的所述输入接口610和所述输出接口620实现。
如图7所示,本申请实施例还提供了一种终端设备700,所述终端设备700可以为图5中的终端设备500,其能够用于执行与图3中方法300对应的终端设备的内容。所述设备700包括:输入接口710、输出接口720、处理器730以及存储器740,所述输入接口710、输出接口720、处理器730和存储器740可以通过总线***相连。所述存储器740用于存储包括程序、指令或代码。所述处理器730,用于执行所述存储器740中的程序、指令或代码,以控制输入接口710接收信号、控制输出接口720发送信号以及完成前述方法实施例中的操作。
应理解,在本申请实施例中,所述处理器730可以是中央处理单元(Central Processing Unit,简称为“CPU”),所述处理器730还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者所述处理器也可以是任何常规的处理器等。
所述存储器740可以包括只读存储器和随机存取存储器,并向处理器730提供指令和数据。存储器740的一部分还可以包括非易失性随机存取存储器。例如,存储器740还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器730中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。所述存储介质位于存储器740,处理器730读取存储器740中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,图5中终端设备500包括的处理模块510可以用图7的处理器730实现,图5中终端设备500包括的通信模块520可以用图7的所述输入接口710和所述输出接口720实现。
本申请实施例还提出了一种计算机可读存储介质,该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行图1至图3所示实施例的方法。
本申请实施例还提出了一种计算机程序,该计算机程序包括指令,当该计算机程序被计算机执行时,使得计算机可以执行图1至图3所示实施例的方法的相应流程。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应所述理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者所述技术方案的部分可以以软件产品的形式体现出来,所述计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器 (ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (64)

  1. 一种信号传输的方法,其特征在于,包括:
    网络设备对第一载波进行检测,并根据检测结果从M1个时频资源中确定获得信道使用权的第一时频资源,所述M1个时频资源是所述网络设备为所述第一载波上的第一周期配置的可用于传输第一同步信号块SSB的时频资源,M1为正整数,M1≥2;
    所述网络设备通过所述第一时频资源向终端设备发送所述第一SSB。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备在所述第一周期内发送所述第一SSB的最大次数为N1,N1为正整数,1≤N1<M1。
  3. 根据权利要求2所述的方法,其特征在于,所述网络设备在所述第一周期内在所述第一时频资源前发送所述第一SSB的次数小于N1。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    所述网络设备在所述M1个时频资源中晚于第二时频资源的时频资源上不发送所述第一SSB,其中,所述第二时频资源为所述M1个时频资源中所述网络设备第N1次发送所述第一SSB的时频资源。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述第一时频资源为K1个时频资源中的一个时频资源,所述K1个时频资源为所述M1个时频资源中用于发送所述第一SSB的时频资源,K1为正整数,1≤K1≤N1。
  6. 根据权利要求5所述的方法,其特征在于,所述K1个时频资源为所述M1个时频资源中所述网络设备获得信道使用权的前K1个时频资源。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一周期包括M1个子周期,所述M1个子周期中的每个子周期内包括所述M1个时频资源中的一个时频资源,所述M1个子周期与所述M1个时频资源一一对应。
  8. 根据权利要求7所述的方法,其特征在于,第三时频资源在第一子周期内的位置与第四时频资源在第二子周期内的位置相同,其中,第三时频资源和第四时频资源为所述M1个时频资源中的两个不同的时频资源,所述第三时频资源与所述第一子周期对应,所述第四时频资源与所述第二子周期对应。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述网络设备在所述第一周期内发送所述第一SSB的信息。
  10. 根据权利要求9所述的方法,其特征在于,所述网络设备在所述第一周期内的第五时频资源上发送所述第一指示信息,所述第一指示信息用于指示以下中的至少一项:所述第一周期内所述第一SSB的最大发送次数信息、所述第一周期内早于所述第五时频资源的时频资源上所述第一SSB的已发送次数信息、所述第一周期内晚于所述第五时频资源的时频资源上所述第一SSB的待发送次数信息、所述第一周期内晚于所述第五时频资源的时频资源上所述第一SSB的候选位置信息、所述第一SSB的标识、所述第一SSB的波束标识。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一周期是根据以下中的至少一项确定的:
    所述网络设备服务的终端设备个数、所述网络设备服务的小区的覆盖范围大小、所述终端设备接入所述网络设备的时延要求。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述第一SSB为SSB组中的一个SSB,所述SSB组还包括第二SSB,所述方法还包括:
    所述网络设备从M2个时频资源中确定获得信道使用权的第六时频资源,所述M2个时频资源是所述网络设备为所述第一载波上的所述第一周期配置的用于传输所述第二SSB的时频资源,M2为正整数,M2≥2;
    所述网络设备通过所述第六时频资源向所述终端设备发送所述第二SSB。
  13. 根据权利要求12所述的方法,其特征在于,所述第六时频资源为K2个时频资源中的一个时频资源,所述K2个时频资源为所述M2个时频资源中用于发送所述第二SSB的时频资源,K2为正整数,1≤K2≤N2,其中,N2为所述网络设备在所述第一周期内发送所述第二SSB的最大次数,N2为正整数,1≤N2<M2。
  14. 根据权利要求13所述的方法,其特征在于,所述K2个时频资源为所述M2个时频资源中所述网络设备获得信道使用权的前K2个时频资源。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述网络设备在所述第一周期内发送所述SSB组的 信息。
  16. 根据权利要求15所述的方法,其特征在于,所述网络设备在所述第一周期内的第七时频资源上发送所述第二指示信息,所述第二指示信息用于指示以下中的至少一项:
    所述第一周期内所述SSB组中至少一个SSB的最大发送次数信息、所述第一周期内早于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的已发送次数信息、所述第一周期内晚于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的待发送次数信息、所述第一周期内晚于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的候选位置信息、所述SSB组中至少一个SSB的标识、所述SSB组中至少一个SSB的波束标识。
  17. 一种信号传输的方法,其特征在于,包括:
    终端设备在第一载波上的M1个时频资源上检测第一同步信号块SSB,以确定网络设备发送第一SSB的第一时频资源,所述M1个时频资源是所述网络设备为所述第一载波上的第一周期配置的可用于传输第一SSB的时频资源,M1为正整数,M1≥2;
    所述终端设备通过所述第一时频资源接收所述网络设备发送的所述第一SSB。
  18. 根据权利要求17所述的方法,其特征在于,所述网络设备在所述第一周期内发送所述第一SSB的最大次数为N1,N1为正整数,1≤N1<M1。
  19. 根据权利要求18所述的方法,其特征在于,所述终端设备在所述第一周期内在所述第一时频资源前检测到所述第一SSB的次数小于N1。
  20. 根据权利要求18或19所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述M1个时频资源中晚于第二时频资源的时频资源上不检测所述第一SSB,其中,所述第二时频资源为所述M1个时频资源中所述终端设备第N1次检测到所述第一SSB的时频资源。
  21. 根据权利要求18至20中任一项所述的方法,其特征在于,所述第一时频资源为K1个时频资源中的一个时频资源,所述K1个时频资源为所述M1个时频资源中所述终端设备检测到所述第一SSB的时频资源,K1为正整数,1≤K1≤N1。
  22. 根据权利要求21所述的方法,其特征在于,所述K1个时频资源为所述M1个时频资源中所述终端设备检测到所述第一SSB的前K1个时频资源。
  23. 根据权利要求17至22中任一项所述的方法,其特征在于,所述第一周期包括M1个子周期,所述M1个子周期中的每个子周期内包括所述M1个时频资源中的一个时频资源,所述M1个子周期与所述M1个时频资源一一对应。
  24. 根据权利要求23所述的方法,其特征在于,第三时频资源在第一子周期内的位置与第四时频资源在第二子周期内的位置相同,其中,第三时频资源和第四时频资源为所述M1个时频资源中的两个不同的时频资源,所述第三时频资源与所述第一子周期对应,所述第四时频资源与所述第二子周期对应。
  25. 根据权利要求17至24中任一项所述的方法,其特征在于,所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述网络设备在所述第一周期内发送所述第一SSB的信息。
  26. 根据权利要求25所述的方法,其特征在于,所述终端设备在所述第一周期内的第五时频资源上接收所述第一指示信息,所述第一指示信息用于指示以下中的至少一项:所述第一周期内所述第一SSB的最大发送次数信息、所述第一周期内早于所述第五时频资源的时频资源上所述第一SSB的已发送次数信息、所述第一周期内晚于所述第五时频资源的时频资源上所述第一SSB的待发送次数信息、所述第一周期内晚于所述第五时频资源的时频资源上所述第一SSB的候选位置信息、所述第一SSB的标识、所述第一SSB的波束标识。
  27. 根据权利要求17至26中任一项所述的方法,其特征在于,所述第一周期是根据以下中的至少一项确定的:
    所述网络设备服务的终端设备个数、所述网络设备服务的小区的覆盖范围大小、所述终端设备接入所述网络设备的时延要求。
  28. 根据权利要求17至27中任一项所述的方法,其特征在于,所述第一SSB为SSB组中的一个SSB,所述SSB组还包括第二SSB,所述方法还包括:
    所述终端设备在所述第一载波上的M2个时频资源中检测第二SSB,以确定所述网络设备发送第二SSB的第六时频资源,所述M2个时频资源是所述网络设备为所述第一载波上的所述第一周期配置的用于传输所述第二SSB的时频资源,M2为正整数,M2≥2;
    所述终端设备通过所述第六时频资源接收所述网络设备发送的所述第二SSB。
  29. 根据权利要求28所述的方法,其特征在于,所述第六时频资源为K2个时频资源中的一个时频资源,所述K2个时频资源为所述M2个时频资源中用于发送所述第二SSB的时频资源,K2为正整数,1≤K2≤N2,其中,N2为所述网络设备在所述第一周期内发送所述第二SSB的最大次数,N2为正整数,1≤N2<M2。
  30. 根据权利要求29所述的方法,其特征在于,所述K2个时频资源为所述M2个时频资源中所述网络设备获得信道使用权的前K2个时频资源。
  31. 根据权利要求28至30中任一项所述的方法,其特征在于,所述终端设备接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述网络设备在所述第一周期内发送所述SSB组的信息。
  32. 根据权利要求31所述的方法,其特征在于,所述终端设备在所述第一周期内的第七时频资源上接收所述第二指示信息,所述第二指示信息用于指示以下中的至少一项:
    所述第一周期内所述SSB组中至少一个SSB的最大发送次数信息、所述第一周期内早于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的已发送次数信息、所述第一周期内晚于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的待发送次数信息、所述第一周期内晚于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的候选位置信息、所述SSB组中至少一个SSB的标识、所述SSB组中至少一个SSB的波束标识。
  33. 一种网络设备,其特征在于,包括:
    处理模块,用于对第一载波进行检测,并根据检测结果从M1个时频资源中确定获得信道使用权的第一时频资源,所述M1个时频资源是所述网络设备为所述第一载波上的第一周期配置的可用于传输第一同步信号块SSB的时频资源,M1为正整数,M1≥2;
    通信模块,用于通过所述第一时频资源向终端设备发送所述第一SSB。
  34. 根据权利要求33所述的网络设备,其特征在于,所述网络设备在所述第一周期内发送所述第一SSB的最大次数为N1,N1为正整数,1≤N1<M1。
  35. 根据权利要求34所述的网络设备,其特征在于,所述网络设备在所述第一周期内在所述第一时频资源前发送所述第一SSB的次数小于N1。
  36. 根据权利要求34或35所述的网络设备,其特征在于,所述通信模块还用于:
    在所述M1个时频资源中晚于第二时频资源的时频资源上不发送所述第一SSB,其中,所述第二时频资源为所述M1个时频资源中所述网络设备第N1次发送所述第一SSB的时频资源。
  37. 根据权利要求34至36中任一项所述的网络设备,其特征在于,所述第一时频资源为K1个时频资源中的一个时频资源,所述K1个时频资源为所述M1个时频资源中用于发送所述第一SSB的时频资源,K1为正整数,1≤K1≤N1。
  38. 根据权利要求37所述的网络设备,其特征在于,所述K1个时频资源为所述M1个时频资源中所述网络设备获得信道使用权的前K1个时频资源。
  39. 根据权利要求33至38中任一项所述的网络设备,其特征在于,所述第一周期包括M1个子周期,所述M1个子周期中的每个子周期内包括所述M1个时频资源中的一个时频资源,所述M1个子周期与所述M1个时频资源一一对应。
  40. 根据权利要求39所述的网络设备,其特征在于,第三时频资源在第一子周期内的位置与第四时频资源在第二子周期内的位置相同,其中,第三时频资源和第四时频资源为所述M1个时频资源中的两个不同的时频资源,所述第三时频资源与所述第一子周期对应,所述第四时频资源与所述第二子周期对应。
  41. 根据权利要求33至40中任一项所述的网络设备,其特征在于,所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述网络设备在所述第一周期内发送所述第一SSB的信息。
  42. 根据权利要求41所述的网络设备,其特征在于,所述网络设备在所述第一周期内的第五时频资源上发送所述第一指示信息,所述第一指示信息用于指示以下中的至少一项:所述第一周期内所述第一SSB的最大发送次数信息、所述第一周期内早于所述第五时频资源的时频资源上所述第一SSB的已发送次数信息、所述第一周期内晚于所述第五时频资源的时频资源上所述第一SSB的待发送次数信息、所述第一周期内晚于所述第五时频资源的时频资源上所述第一SSB的候选位置信息、所述第一SSB的标识、所述第一SSB的波束标识。
  43. 根据权利要求33至42中任一项所述的网络设备,其特征在于,所述第一周期是根据以下中的至少一项确定的:
    所述网络设备服务的终端设备个数、所述网络设备服务的小区的覆盖范围大小、所述终端设备接 入所述网络设备的时延要求。
  44. 根据权利要求33至43中任一项所述的网络设备,其特征在于,所述第一SSB为SSB组中的一个SSB,所述SSB组还包括第二SSB,所述处理模块还用于:
    从M2个时频资源中确定获得信道使用权的第六时频资源,所述M2个时频资源是所述网络设备为所述第一载波上的所述第一周期配置的用于传输所述第二SSB的时频资源,M2为正整数,M2≥2;
    所述通信模块还用于:通过所述第六时频资源向所述终端设备发送所述第二SSB。
  45. 根据权利要求44所述的网络设备,其特征在于,所述第六时频资源为K2个时频资源中的一个时频资源,所述K2个时频资源为所述M2个时频资源中用于发送所述第二SSB的时频资源,K2为正整数,1≤K2≤N2,其中,N2为所述网络设备在所述第一周期内发送所述第二SSB的最大次数,N2为正整数,1≤N2<M2。
  46. 根据权利要求45所述的网络设备,其特征在于,所述K2个时频资源为所述M2个时频资源中所述网络设备获得信道使用权的前K2个时频资源。
  47. 根据权利要求44至46中任一项所述的网络设备,其特征在于,所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述网络设备在所述第一周期内发送所述SSB组的信息。
  48. 根据权利要求47所述的网络设备,其特征在于,所述网络设备在所述第一周期内的第七时频资源上发送所述第二指示信息,所述第二指示信息用于指示以下中的至少一项:
    所述第一周期内所述SSB组中至少一个SSB的最大发送次数信息、所述第一周期内早于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的已发送次数信息、所述第一周期内晚于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的待发送次数信息、所述第一周期内晚于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的候选位置信息、所述SSB组中至少一个SSB的标识、所述SSB组中至少一个SSB的波束标识。
  49. 一种终端设备,其特征在于,包括:
    处理模块,用于在第一载波上的M1个时频资源上检测第一同步信号块SSB,以确定网络设备发送第一SSB的第一时频资源,所述M1个时频资源是所述网络设备为所述第一载波上的第一周期配置的可用于传输第一SSB的时频资源,M1为正整数,M1≥2;
    通信模块,用于通过所述第一时频资源接收所述网络设备发送所述第一SSB。
  50. 根据权利要求49所述的终端设备,其特征在于,所述网络设备在所述第一周期内发送所述第一SSB的最大次数为N1,N1为正整数,1≤N1<M1。
  51. 根据权利要求50所述的终端设备,其特征在于,所述终端设备在所述第一周期内在所述第一时频资源前检测到所述第一SSB的次数小于N1。
  52. 根据权利要求50或51所述的终端设备,其特征在于,所述通信模块还用于:
    所述终端设备在所述M1个时频资源中晚于第二时频资源的时频资源上不检测所述第一SSB,其中,所述第二时频资源为所述M1个时频资源中所述终端设备第N1次检测到所述第一SSB的时频资源。
  53. 根据权利要求50至52中任一项所述的终端设备,其特征在于,所述第一时频资源为K1个时频资源中的一个时频资源,所述K1个时频资源为所述M1个时频资源中所述终端设备检测到所述第一SSB的时频资源,K1为正整数,1≤K1≤N1。
  54. 根据权利要求53所述的终端设备,其特征在于,所述K1个时频资源为所述M1个时频资源中所述终端设备检测到所述第一SSB的前K1个时频资源。
  55. 根据权利要求49至54中任一项所述的终端设备,其特征在于,所述第一周期包括M1个子周期,所述M1个子周期中的每个子周期内包括所述M1个时频资源中的一个时频资源,所述M1个子周期与所述M1个时频资源一一对应。
  56. 根据权利要求55所述的终端设备,其特征在于,第三时频资源在第一子周期内的位置与第四时频资源在第二子周期内的位置相同,其中,第三时频资源和第四时频资源为所述M1个时频资源中的两个不同的时频资源,所述第三时频资源与所述第一子周期对应,所述第四时频资源与所述第二子周期对应。
  57. 根据权利要求49至56中任一项所述的终端设备,其特征在于,所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述网络设备在所述第一周期内发送所述第一SSB的信息。
  58. 根据权利要求57所述的终端设备,其特征在于,所述终端设备在所述第一周期内的第五时频资源上接收所述第一指示信息,所述第一指示信息用于指示以下中的至少一项:所述第一周期内所 述第一SSB的最大发送次数信息、所述第一周期内早于所述第五时频资源的时频资源上所述第一SSB的已发送次数信息、所述第一周期内晚于所述第五时频资源的时频资源上所述第一SSB的待发送次数信息、所述第一周期内晚于所述第五时频资源的时频资源上所述第一SSB的候选位置信息、所述第一SSB的标识、所述第一SSB的波束标识。
  59. 根据权利要求49至58中任一项所述的终端设备,其特征在于,所述第一周期是根据以下中的至少一项确定的:
    所述网络设备服务的终端设备个数、所述网络设备服务的小区的覆盖范围大小、所述终端设备接入所述网络设备的时延要求。
  60. 根据权利要求49至59中任一项所述的终端设备,其特征在于,所述第一SSB为SSB组中的一个SSB,所述SSB组还包括第二SSB,所述处理模块还用于:
    在所述第一载波上的M2个时频资源中检测第二SSB,以确定所述网络设备发送第二SSB的第六时频资源,所述M2个时频资源是所述网络设备为所述第一载波上的所述第一周期配置的用于传输所述第二SSB的时频资源,M2为正整数,M2≥2;
    所述通信模块还用于:通过所述第六时频资源接收所述网络设备发送的所述第二SSB。
  61. 根据权利要求60所述的终端设备,其特征在于,所述第六时频资源为K2个时频资源中的一个时频资源,所述K2个时频资源为所述M2个时频资源中用于发送所述第二SSB的时频资源,K2为正整数,1≤K2≤N2,其中,N2为所述网络设备在所述第一周期内发送所述第二SSB的最大次数,N2为正整数,1≤N2<M2。
  62. 根据权利要求61所述的终端设备,其特征在于,所述K2个时频资源为所述M2个时频资源中所述网络设备获得信道使用权的前K2个时频资源。
  63. 根据权利要求60至62中任一项所述的终端设备,其特征在于,所述终端设备接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述网络设备在所述第一周期内发送所述SSB组的信息。
  64. 根据权利要求63所述的终端设备,其特征在于,所述终端设备在所述第一周期内的第七时频资源上接收所述第二指示信息,所述第二指示信息用于指示以下中的至少一项:
    所述第一周期内所述SSB组中至少一个SSB的最大发送次数信息、所述第一周期内早于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的已发送次数信息、所述第一周期内晚于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的待发送次数信息、所述第一周期内晚于所述第七时频资源的时频资源上所述SSB组中至少一个SSB的候选位置信息、所述SSB组中至少一个SSB的标识、所述SSB组中至少一个SSB的波束标识。
PCT/CN2018/081188 2018-03-29 2018-03-29 信号传输的方法、网络设备和终端设备 WO2019183905A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
KR1020207028856A KR102378980B1 (ko) 2018-03-29 2018-03-29 신호 전송의 방법, 네트워크 장치와 단말 장치
JP2020551974A JP7150042B2 (ja) 2018-03-29 2018-03-29 信号伝送方法、ネットワーク装置及び端末装置
ES18911748T ES2947086T3 (es) 2018-03-29 2018-03-29 Método de transmisión de señal, dispositivo de red y dispositivo terminal
CN201880091712.5A CN111972006A (zh) 2018-03-29 2018-03-29 信号传输的方法、网络设备和终端设备
CN202011317491.4A CN112423370B (zh) 2018-03-29 2018-03-29 信号传输的方法、网络设备和终端设备
SG11202009459QA SG11202009459QA (en) 2018-03-29 2018-03-29 Signal transmission method, network device, and terminal device
EP18911748.4A EP3780745B1 (en) 2018-03-29 2018-03-29 Signal transmission method, network device, and terminal device
AU2018415294A AU2018415294B2 (en) 2018-03-29 2018-03-29 Signal transmission method, network device, and terminal device
RU2020134394A RU2748223C1 (ru) 2018-03-29 2018-03-29 Способ передачи сигнала, сетевое устройство и терминал
PCT/CN2018/081188 WO2019183905A1 (zh) 2018-03-29 2018-03-29 信号传输的方法、网络设备和终端设备
TW108110650A TWI812691B (zh) 2018-03-29 2019-03-27 信號傳輸的方法、網路設備和終端設備
US17/031,444 US11510159B2 (en) 2018-03-29 2020-09-24 Signal transmission method, network device, and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/081188 WO2019183905A1 (zh) 2018-03-29 2018-03-29 信号传输的方法、网络设备和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/031,444 Continuation US11510159B2 (en) 2018-03-29 2020-09-24 Signal transmission method, network device, and terminal device

Publications (1)

Publication Number Publication Date
WO2019183905A1 true WO2019183905A1 (zh) 2019-10-03

Family

ID=68059450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081188 WO2019183905A1 (zh) 2018-03-29 2018-03-29 信号传输的方法、网络设备和终端设备

Country Status (11)

Country Link
US (1) US11510159B2 (zh)
EP (1) EP3780745B1 (zh)
JP (1) JP7150042B2 (zh)
KR (1) KR102378980B1 (zh)
CN (2) CN112423370B (zh)
AU (1) AU2018415294B2 (zh)
ES (1) ES2947086T3 (zh)
RU (1) RU2748223C1 (zh)
SG (1) SG11202009459QA (zh)
TW (1) TWI812691B (zh)
WO (1) WO2019183905A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111770473A (zh) * 2020-06-24 2020-10-13 北京大学 一种蜂窝车联网的非授权频谱接入与载波聚合方法及装置
JP2021517429A (ja) * 2018-04-02 2021-07-15 ペキン シャオミ モバイル ソフトウェア カンパニー, リミテッドBeijing Xiaomi Mobile Software Co.,Ltd. 同期ブロードキャスト情報伝送方法及び装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11050531B2 (en) * 2018-04-27 2021-06-29 Qualcomm Incorporated Frequency diversity with carrier hopping in unlicensed spectrum
EP3858068A1 (en) * 2018-09-28 2021-08-04 Nokia Technologies Oy Transmission opportunities
WO2020142997A1 (zh) * 2019-01-10 2020-07-16 北京小米移动软件有限公司 随机接入方法及装置
CN112788730B (zh) * 2019-11-08 2022-08-05 大唐移动通信设备有限公司 一种信号的发送、接收方法、装置及终端
CN113365357B (zh) * 2021-06-08 2022-11-22 中国联合网络通信集团有限公司 图像识别模型训练方法、载波调整方法、装置及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140198772A1 (en) * 2013-01-17 2014-07-17 Telefonaktiebolaget L M Ericsson (Publ) Synchronization signal design for wireless devices in a long range extension mode
CN106797611A (zh) * 2017-01-09 2017-05-31 北京小米移动软件有限公司 信息搜索方法、信息发送方法、装置及***
CN107528682A (zh) * 2017-09-20 2017-12-29 宇龙计算机通信科技(深圳)有限公司 参考信号的发送方法及装置
WO2018049274A1 (en) * 2016-09-09 2018-03-15 Intel IP Corporation Low latency random access channel procedures for beamformed systems

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5238019B2 (ja) * 2007-05-02 2013-07-17 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 通信ネットワークにおける方法と装置
US9867203B2 (en) * 2008-07-11 2018-01-09 Qualcomm Incorporated Synchronous TDM-based communication in dominant interference scenarios
CN102026375B (zh) * 2009-09-11 2013-10-23 ***通信集团公司 一种***信息发送的方法、***和设备
US10292123B2 (en) * 2013-04-25 2019-05-14 Samsung Electronics Co., Ltd. Method and system for acquiring high frequency carrier in a wireless communication network
CN112737759B (zh) * 2013-08-07 2023-03-24 华为技术有限公司 信息发送、接收方法及设备
JP6517354B2 (ja) * 2015-02-05 2019-05-22 ホアウェイ・テクノロジーズ・カンパニー・リミテッド サービスデータ伝送方法及び装置
CN107736060B (zh) * 2015-06-15 2021-01-08 瑞典爱立信有限公司 可变同步块格式
CN107623933B (zh) * 2016-07-15 2019-12-10 电信科学技术研究院 一种初始接入信号的传输方法和装置
CN109479234B (zh) * 2016-08-10 2021-11-16 苹果公司 用于同步信号传输的方法、设备以及机器可读介质
WO2018030774A1 (ko) * 2016-08-11 2018-02-15 삼성전자 주식회사 강건하고 신뢰성 있는 5G New Radio 통신 방법 및 그 장치
WO2018045307A1 (en) * 2016-09-02 2018-03-08 Intel IP Corporation Paging with unified single and multi-beam operation support in new radio
BR112019016239A2 (pt) * 2017-02-06 2020-04-07 Motorola Mobility Llc transmissão e recepção de um bloco de sinais de sincronização

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140198772A1 (en) * 2013-01-17 2014-07-17 Telefonaktiebolaget L M Ericsson (Publ) Synchronization signal design for wireless devices in a long range extension mode
WO2018049274A1 (en) * 2016-09-09 2018-03-15 Intel IP Corporation Low latency random access channel procedures for beamformed systems
CN106797611A (zh) * 2017-01-09 2017-05-31 北京小米移动软件有限公司 信息搜索方法、信息发送方法、装置及***
CN107528682A (zh) * 2017-09-20 2017-12-29 宇龙计算机通信科技(深圳)有限公司 参考信号的发送方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021517429A (ja) * 2018-04-02 2021-07-15 ペキン シャオミ モバイル ソフトウェア カンパニー, リミテッドBeijing Xiaomi Mobile Software Co.,Ltd. 同期ブロードキャスト情報伝送方法及び装置
JP7089051B2 (ja) 2018-04-02 2022-06-21 ペキン シャオミ モバイル ソフトウェア カンパニー, リミテッド 同期ブロードキャスト情報伝送方法及び装置
US11617142B2 (en) 2018-04-02 2023-03-28 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for transmitting synchronized broadcast transmission
US12004103B2 (en) 2018-04-02 2024-06-04 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for transmitting synchronized broadcast transmission
CN111770473A (zh) * 2020-06-24 2020-10-13 北京大学 一种蜂窝车联网的非授权频谱接入与载波聚合方法及装置
CN111770473B (zh) * 2020-06-24 2021-06-22 北京大学 一种蜂窝车联网的非授权频谱接入与载波聚合方法及装置

Also Published As

Publication number Publication date
TWI812691B (zh) 2023-08-21
RU2748223C1 (ru) 2021-05-21
KR20200128732A (ko) 2020-11-16
TW201943300A (zh) 2019-11-01
JP2021517416A (ja) 2021-07-15
CN112423370A (zh) 2021-02-26
JP7150042B2 (ja) 2022-10-07
CN112423370B (zh) 2023-04-18
ES2947086T3 (es) 2023-08-01
CN111972006A (zh) 2020-11-20
KR102378980B1 (ko) 2022-03-24
AU2018415294B2 (en) 2021-09-09
US20210007069A1 (en) 2021-01-07
EP3780745B1 (en) 2023-05-03
US11510159B2 (en) 2022-11-22
EP3780745A1 (en) 2021-02-17
SG11202009459QA (en) 2020-10-29
EP3780745A4 (en) 2021-04-07
AU2018415294A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
WO2019183905A1 (zh) 信号传输的方法、网络设备和终端设备
US20200187266A1 (en) Random access method, device, and system
WO2020147131A1 (zh) 无线通信方法、终端设备和网络设备
WO2019136720A1 (zh) 信号传输的方法和设备
WO2019183848A1 (zh) 监听pdcch的方法、终端设备和网络设备
WO2020211096A1 (zh) 无线通信方法、终端设备和网络设备
US11546044B2 (en) Wireless communication method, terminal device and network device
WO2022104542A1 (zh) 无线通信方法和通信装置
US20220217034A1 (en) Communication method and apparatus
WO2019178776A1 (zh) 传输信息的方法和设备
WO2021138866A1 (zh) 信息确定方法、信息指示方法、终端设备和网络设备
WO2019148443A1 (zh) 确定竞争窗口的方法和设备
US11792831B2 (en) Method and device for signal transmission
WO2019148451A1 (zh) 信息传输的方法和设备
WO2019157634A1 (zh) 一种harq信息的传输方法及装置、计算机存储介质
WO2021174508A1 (zh) 监听寻呼方法、寻呼方法、终端设备和网络设备
WO2019136721A1 (zh) 传输信息的方法和设备
WO2021072602A1 (zh) 链路失败检测的方法和装置
CN116686340A (zh) 一种通信方法和装置
WO2019126964A1 (zh) 传输信息的方法、网络设备和终端设备
WO2019157639A1 (zh) 一种harq信息的传输方法及装置、计算机存储介质
WO2021088076A1 (zh) 无线通信方法和装置
WO2019242681A1 (zh) 无线链路监测的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020551974

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207028856

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018415294

Country of ref document: AU

Date of ref document: 20180329

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018911748

Country of ref document: EP

Effective date: 20201027