WO2019181861A1 - Thermal spray slurry - Google Patents

Thermal spray slurry Download PDF

Info

Publication number
WO2019181861A1
WO2019181861A1 PCT/JP2019/011199 JP2019011199W WO2019181861A1 WO 2019181861 A1 WO2019181861 A1 WO 2019181861A1 JP 2019011199 W JP2019011199 W JP 2019011199W WO 2019181861 A1 WO2019181861 A1 WO 2019181861A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersant
slurry
acid
thermal spraying
thermal
Prior art date
Application number
PCT/JP2019/011199
Other languages
French (fr)
Japanese (ja)
Inventor
敬也 益田
和弥 杉村
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to KR1020207023977A priority Critical patent/KR102519311B1/en
Publication of WO2019181861A1 publication Critical patent/WO2019181861A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Definitions

  • the present invention relates to a slurry for thermal spraying.
  • An object of the present invention is to provide a slurry for thermal spraying in which aggregation of thermal spray particles hardly occurs.
  • a slurry for thermal spraying contains a thermal spray particle made of ceramic, a dispersion medium in which the thermal spray particles are dispersed, and a dispersant that improves dispersion stability of the thermal spray particles with respect to the dispersion medium.
  • the gist is to contain a first dispersant that is at least one of an organic acid having a molecular weight of 1000 or more and a salt thereof, and a second dispersant that is an organic acid having a molecular weight of 40 or more and 400 or less.
  • agglomeration of spray particles is difficult to occur.
  • the slurry for thermal spraying of this embodiment contains thermal spray particles made of ceramic, a dispersion medium in which the thermal spray particles are dispersed, and a dispersant that improves the dispersion stability of the thermal spray particles with respect to the dispersion medium.
  • this dispersing agent contains the 1st dispersing agent which is at least one of the organic acid whose molecular weight is 1000 or more, and its salt, and the 2nd dispersing agent which is an organic acid whose molecular weight is 40 or more and 400 or less.
  • the thermal spray particles in the thermal spray slurry Even when the content of the thermal spray particles in the thermal spray slurry is high, the thermal spray particles hardly aggregate in the thermal spray slurry. Therefore, if spraying is performed using the slurry for thermal spraying according to the present embodiment, for example, clogging is unlikely to occur in the supply pipe for feeding the slurry for thermal spraying to the thermal spraying torch, which may hinder the supply of the slurry for thermal spraying to the thermal spraying torch. Hard to occur. Therefore, since it is possible to make a slurry for thermal spraying with a high content of thermal spray particles, thermal spraying can be performed with high film formation speed and good work efficiency.
  • the thermal spray particles contained in the thermal spray slurry of the present embodiment are made of ceramic.
  • a metal oxide can be used suitably.
  • the metal oxide include yttrium oxide (Y 2 O 3 ), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), and zirconium oxide (ZrO 2 ). Can do.
  • the content of the spray particles in the slurry for thermal spraying according to the present embodiment is not particularly limited, but it is not only when the concentration is low or medium, but when the concentration is high, for example, 50% by mass or more. Even in the slurry for thermal spraying, agglomeration of thermal spray particles hardly occurs. Therefore, the thermal spray slurry of the present embodiment can set the content of the thermal spray particles high, and if the thermal spray slurry of the present embodiment is used, the thermal spraying with high film forming speed and good work efficiency is performed. be able to.
  • Dispersion medium Although the kind of dispersion medium is not specifically limited, for example, water, an organic solvent, and the mixed solvent of 2 or more types of these solvents can be used. It is preferable to use water with few impurities, for example, ion-exchanged water, pure water, ultrapure water, distilled water, purified water, filtered water, tap water, or the like is preferably used.
  • the organic solvent for example, alcohols such as methanol, ethanol, n-propyl alcohol, and isopropyl alcohol can be used.
  • the slurry for thermal spraying of the present embodiment contains a dispersant that improves the dispersion stability of the thermal spray particles with respect to the dispersion medium, but contains at least two dispersants as the dispersant.
  • the first dispersant is at least one of an organic acid having a molecular weight of 1000 or more and a salt thereof.
  • the second dispersant is an organic acid having a molecular weight of 40 or more and 400 or less.
  • the slurry for thermal spraying according to the present embodiment contains the first dispersant having the above molecular weight and the second dispersant having a molecular weight smaller than that of the first dispersant, so that the thermal spray particles are more dispersed. It can be maintained and aggregation of the spray particles is suppressed.
  • the organic acid and its salt which are 1st dispersing agents it is more preferable that the molecular weight of an organic acid is 3000 or more, and it is further more preferable that it is 5000 or more.
  • the molecular weight of the organic acid as the second dispersant is more preferably 100 or more, and further preferably 150 or more.
  • the molecular weight of the organic acid that is the second dispersant is more preferably 200 or less.
  • the kind of the organic acid having a molecular weight of 1000 or more as the first dispersant is not particularly limited, and examples thereof include polycarboxylic acid polymer dispersants such as polycarboxylic acid polymer compounds. It is done. Other than the polycarboxylic acid polymer dispersant, for example, a polystyrene sulfonic acid polymer compound may be used.
  • examples of organic acid salts having a molecular weight of 1000 or more include metal salts and ammonium salts of organic acids having a molecular weight of 1000 or more.
  • the metal salt include sodium salt, potassium salt, lithium salt, calcium salt, and magnesium salt.
  • a 1st dispersing agent may be used individually by 1 type, and may be used together in combination of 2 or more type.
  • the type of organic acid having a molecular weight of 40 or more and 400 or less as the second dispersant is not particularly limited, but examples include pyruvic acid, citric acid, malic acid, formic acid, lactic acid, pyroglutamic acid, acetic acid, Examples include succinic acid, propionic acid, levulinic acid, tartaric acid, and hydroxy acid.
  • a 2nd dispersing agent may be used individually by 1 type, and may be used together in combination of 2 or more type.
  • the contents of the first dispersant and the second dispersant in the thermal spray slurry of the present embodiment are not particularly limited, but the content of the first dispersant is 1% by mass or more and 3% by mass.
  • the content of the second dispersant can be 3% by mass or more and 8% by mass or less.
  • the content of the first dispersant is more preferably 2% by mass or more. Further, the content of the first dispersant is not adversely affected even if it is large, but it is preferably less than 3% by mass in consideration of cost effectiveness.
  • the content of the second dispersant is more preferably 5% by mass or more. Further, the content of the second dispersant is not adversely affected even if it is large, but it is preferably 8% by mass or less in consideration of cost effectiveness.
  • the content of the second dispersant is preferably greater than the content of the first dispersant, and the content of the second dispersant is at least twice the content of the first dispersant. Is more preferable.
  • the content of the second dispersant is larger than the content of the first dispersant, the effect of suppressing the aggregation of the spray particles is further exhibited.
  • the slurry for thermal spraying of this embodiment may further contain components other than the thermal spray particles, the dispersion medium, and the dispersant as desired.
  • an additive may be further contained as necessary.
  • the additive include a pH adjuster, a viscosity adjuster, a redispersibility improver, an antifoaming agent, an antifreezing agent, an antiseptic, and an antifungal agent. These additives may be used alone or in combination of two or more.
  • the pH of the slurry for thermal spraying of this embodiment is not specifically limited, For example, it can be made into 8 or more and 10 or less by adding a pH adjuster. If pH is 8 or more and 10 or less, the handling property of the slurry for thermal spraying is excellent.
  • Example 1 The slurry for thermal spraying of Example 1 was prepared by mixing yttrium oxide particles as thermal spray particles, two kinds of dispersants, and water as a dispersion medium, and dispersing the yttrium oxide particles in water.
  • the content of yttrium oxide particles in the thermal spray slurry of Example 1 is 60% by mass. Further, D50 of the yttrium oxide particles (particle diameter at which the cumulative frequency from the small particle diameter side becomes 50% in the volume-based cumulative particle diameter distribution) is 2.6 ⁇ m. The particle size and volume-based cumulative particle size distribution of the yttrium oxide particles were measured using a laser diffraction / scattering particle size distribution measuring apparatus LA-300 manufactured by Horiba, Ltd.
  • ammonium polycarboxylate as the first dispersant and citric acid as the second dispersant were used.
  • the molecular weight of ammonium polycarboxylate is 5000, and the molecular weight of citric acid is 192.
  • content of ammonium polycarboxylate in the slurry for thermal spraying of Example 1 is 2 mass%, and content of citric acid is 5 mass%.
  • the pH of the slurry for thermal spraying of Example 1 is 9.5.
  • a polyurethane tube (CHIODA touch tube (urethane) TE-8
  • a polyurethane tube with an inner diameter of 5 mm, an outer diameter of 8 mm, and a length of 5 m was placed horizontally on a test table with no height difference, and one end of the tube A roller pump for supplying slurry was attached to the other end, and the other end was placed in the slurry collection container.
  • Example 1 The slurry for thermal spraying of Example 1 was stirred with a magnetic stirrer to confirm that the sprayed particles were well dispersed, and then supplied into the tube at a flow rate of 35 mL / min with a roller pump. Then, the slurry for thermal spraying which passed the tube was collect
  • recovered slurry for thermal spraying was measured. The mass A of the thermal spray particles contained in 800 mL of the thermal spray slurry after preparation is measured in advance, and the slurry is supplied from this mass A and the mass B of the thermal spray particles contained in the recovered slurry for thermal spraying based on the following formula. The index was calculated. The results are shown in Table 1. If (%) B / A ⁇ 100
  • Thermal spraying was performed using a plasma spraying apparatus 100HE manufactured by Progressive Surface.
  • a Liquidifer HE trade name
  • SPS / SPPS feed system manufactured by Progressive Surface
  • Example 2 A slurry for thermal spraying of Example 2 was prepared in exactly the same manner as Example 1 except that malic acid was used instead of citric acid as the second dispersant. The molecular weight of malic acid is 134. Then, in exactly the same manner as in Example 1, the slurry supply index was calculated and the thermal sprayability test was performed. The results are shown in Table 1.
  • Comparative Example 1 A slurry for thermal spraying of Comparative Example 1 was prepared in the same manner as Example 1 except that no dispersant was used. The pH of the thermal spray slurry of Comparative Example 1 is 10. Then, in exactly the same manner as in Example 1, the slurry supply index was calculated and the thermal sprayability test was performed. The results are shown in Table 1.
  • Comparative Example 2 Thermal spraying of Comparative Example 2 was performed in exactly the same manner as in Example 1 except that only the ammonium polycarboxylate as the first dispersant was used as the dispersant, and citric acid as the second dispersant was not used. A slurry was prepared. The thermal spray slurry of Comparative Example 2 has a pH of 9.5. Then, in exactly the same manner as in Example 1, the slurry supply index was calculated and the thermal sprayability test was performed. The results are shown in Table 1.
  • Comparative Example 3 Thermal spraying of Comparative Example 3 was carried out in exactly the same manner as in Example 1 except that only citric acid as the second dispersant was used as the dispersant, and ammonium polycarboxylate as the first dispersant was not used. A slurry was prepared. The thermal spray slurry of Comparative Example 3 has a pH of 4. Then, in exactly the same manner as in Example 1, the slurry supply index was calculated and the thermal sprayability test was performed. The results are shown in Table 1.
  • Comparative Example 4 Except for using ammonium polycarboxylate as the first dispersant and citric acid as the second dispersant as the dispersant, the same procedure as in Example 1 was performed except that nitric acid as an inorganic acid was used. Thus, a slurry for thermal spraying of Comparative Example 4 was prepared. As a result, the slurry for thermal spraying solidified, and liquid feeding and thermal spraying were impossible.
  • the thermal spray slurries of Comparative Examples 1 to 3 do not use either one or both of the first dispersant and the second dispersant, and therefore, the spray particles are not aggregated. occured. For this reason, clogging occurs in the supply piping for sending the slurry for thermal spraying to the thermal spraying torch of the plasma spraying apparatus, and the thermal spraying slurry cannot be supplied to the thermal spraying torch, thus preventing thermal spraying.
  • thermal spraying slurries of Examples 1 and 2 did not cause aggregation of thermal spray particles. Therefore, clogging did not occur in the supply pipe for feeding the slurry for thermal spraying to the thermal spraying torch of the plasma spraying apparatus, and the thermal spraying slurry could be supplied to the thermal spraying torch, so that thermal spraying could be performed without any problem. Since thermal spraying was performed using a slurry for thermal spraying having a high content of thermal spray particles of 60% by mass, it was possible to perform thermal spraying with high film formation speed and good work efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Nozzles (AREA)

Abstract

Provided is a thermal spray slurry in which coagulation of thermal spray particles does not easily occur. This thermal spray slurry contains: thermal spray particles formed of ceramic; a dispersion medium in which the thermal spray particles are dispersed; and a dispersant that improves the dispersion stability of the thermal spray particles with respect to the dispersion medium. In addition, the dispersant contains: a first dispersant which is at least one among an organic acid having a molecular weight of at least 1000 or a salt thereof; and a second dispersant which is an organic acid having a molecular weight of 40 to 400.

Description

溶射用スラリーThermal spray slurry
 本発明は溶射用スラリーに関する。 The present invention relates to a slurry for thermal spraying.
 溶射粒子を分散媒に分散させた溶射用スラリーを溶射材料として用いるスラリー溶射法が知られている(例えば特許文献1を参照)。スラリー溶射法においては、作業効率の向上、すなわち成膜速度の向上が求められており、これを実現する手段としては、溶射用スラリー中の溶射粒子の含有量の向上が最も直接的な手段である。 There is known a slurry spraying method in which a slurry for thermal spraying in which thermal spray particles are dispersed in a dispersion medium is used as a thermal spray material (see, for example, Patent Document 1). In the slurry spraying method, improvement in work efficiency, that is, improvement in film formation rate is required, and as a means for realizing this, improvement of the content of spray particles in the slurry for thermal spraying is the most direct means. is there.
日本国特許公開公報 2010年第150617号Japanese Patent Publication No. 2010, No. 150617
 しかしながら、溶射用スラリー中の溶射粒子の含有量が50質量%を超えると、溶射粒子が凝集しやすくなるため、溶射用スラリーを溶射トーチへ送る供給配管内に詰まりが発生して、溶射トーチへの溶射用スラリーの供給が困難となるおそれがあった。
 本発明は、溶射粒子の凝集が生じにくい溶射用スラリーを提供することを課題とする。
However, if the content of the thermal spray particles in the thermal spray slurry exceeds 50% by mass, the thermal spray particles are likely to aggregate. Therefore, clogging occurs in the supply pipe that feeds the thermal spray slurry to the thermal spray torch. There was a risk that it would be difficult to supply the slurry for thermal spraying.
An object of the present invention is to provide a slurry for thermal spraying in which aggregation of thermal spray particles hardly occurs.
 本発明の一態様に係る溶射用スラリーは、セラミックからなる溶射粒子と、溶射粒子が分散した分散媒と、分散媒に対する溶射粒子の分散安定性を向上させる分散剤と、を含有し、分散剤は、分子量が1000以上の有機酸及びその塩の少なくとも一方である第1の分散剤と、分子量が40以上400以下の有機酸である第2の分散剤とを含有することを要旨とする。 A slurry for thermal spraying according to an aspect of the present invention contains a thermal spray particle made of ceramic, a dispersion medium in which the thermal spray particles are dispersed, and a dispersant that improves dispersion stability of the thermal spray particles with respect to the dispersion medium. The gist is to contain a first dispersant that is at least one of an organic acid having a molecular weight of 1000 or more and a salt thereof, and a second dispersant that is an organic acid having a molecular weight of 40 or more and 400 or less.
 本発明によれば、溶射粒子の凝集が生じにくい。 According to the present invention, agglomeration of spray particles is difficult to occur.
 本発明の一実施形態について詳細に説明する。なお、以下の実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、以下の実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。 An embodiment of the present invention will be described in detail. Note that the following embodiment shows an example of the present invention, and the present invention is not limited to this embodiment. Various modifications or improvements can be added to the following embodiments, and forms to which such modifications or improvements are added can also be included in the present invention.
 本実施形態の溶射用スラリーは、セラミックからなる溶射粒子と、溶射粒子が分散した分散媒と、分散媒に対する溶射粒子の分散安定性を向上させる分散剤と、を含有する。そして、この分散剤は、分子量が1000以上の有機酸及びその塩の少なくとも一方である第1の分散剤と、分子量が40以上400以下の有機酸である第2の分散剤と、を含有する。 The slurry for thermal spraying of this embodiment contains thermal spray particles made of ceramic, a dispersion medium in which the thermal spray particles are dispersed, and a dispersant that improves the dispersion stability of the thermal spray particles with respect to the dispersion medium. And this dispersing agent contains the 1st dispersing agent which is at least one of the organic acid whose molecular weight is 1000 or more, and its salt, and the 2nd dispersing agent which is an organic acid whose molecular weight is 40 or more and 400 or less. .
 このような構成の溶射用スラリーは、溶射用スラリー中の溶射粒子の含有量が高い場合であっても、溶射用スラリー中において溶射粒子の凝集が生じにくい。よって、本実施形態の溶射用スラリーを用いて溶射を行えば、例えば、溶射用スラリーを溶射トーチへ送る供給配管内に詰まりが発生しにくいので、溶射トーチへの溶射用スラリーの供給に支障が生じにくい。したがって、溶射粒子の含有量の高い溶射用スラリーとすることが可能であるので、成膜速度が高く作業効率の良好な溶射を行うことができる。 In the slurry for thermal spraying having such a configuration, even when the content of the thermal spray particles in the thermal spray slurry is high, the thermal spray particles hardly aggregate in the thermal spray slurry. Therefore, if spraying is performed using the slurry for thermal spraying according to the present embodiment, for example, clogging is unlikely to occur in the supply pipe for feeding the slurry for thermal spraying to the thermal spraying torch, which may hinder the supply of the slurry for thermal spraying to the thermal spraying torch. Hard to occur. Therefore, since it is possible to make a slurry for thermal spraying with a high content of thermal spray particles, thermal spraying can be performed with high film formation speed and good work efficiency.
 以下に、本実施形態の溶射用スラリーについて、さらに詳細に説明する。
〔溶射粒子〕
 本実施形態の溶射用スラリーに含有される溶射粒子は、セラミックからなる。セラミックの種類は特に限定されるものではないが、金属酸化物を好適に用いることができる。金属酸化物としては、例えば、酸化イットリウム(Y23)、酸化アルミニウム(Al23)、酸化ケイ素(SiO2)、酸化チタン(TiO2)、酸化ジルコニウム(ZrO2)を使用することができる。
Below, the slurry for thermal spraying of this embodiment is demonstrated in detail.
[Sprayed particles]
The thermal spray particles contained in the thermal spray slurry of the present embodiment are made of ceramic. Although the kind of ceramic is not specifically limited, a metal oxide can be used suitably. Examples of the metal oxide include yttrium oxide (Y 2 O 3 ), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), and zirconium oxide (ZrO 2 ). Can do.
 本実施形態の溶射用スラリー中の溶射粒子の含有量は、特に限定されるものではないが、低濃度や中濃度である場合のみならず、例えば50質量%以上の高濃度である場合であっても、溶射用スラリー中において溶射粒子の凝集が生じにくい。よって、本実施形態の溶射用スラリーは、溶射粒子の含有量を高く設定することが可能であり、本実施形態の溶射用スラリーを用いれば、成膜速度が高く作業効率の良好な溶射を行うことができる。 The content of the spray particles in the slurry for thermal spraying according to the present embodiment is not particularly limited, but it is not only when the concentration is low or medium, but when the concentration is high, for example, 50% by mass or more. Even in the slurry for thermal spraying, agglomeration of thermal spray particles hardly occurs. Therefore, the thermal spray slurry of the present embodiment can set the content of the thermal spray particles high, and if the thermal spray slurry of the present embodiment is used, the thermal spraying with high film forming speed and good work efficiency is performed. be able to.
〔分散媒〕
 分散媒の種類は特に限定されるものではないが、例えば、水、有機溶剤、及びこれらの溶剤のうち2種以上の溶剤の混合溶剤を使用することができる。水は、不純物の少ないものを用いることが好ましく、例えば、イオン交換水、純水、超純水、蒸留水、精製水、ろ過水、水道水等を用いることが好ましい。有機溶剤としては、例えば、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール等のアルコール類を使用することができる。
[Dispersion medium]
Although the kind of dispersion medium is not specifically limited, For example, water, an organic solvent, and the mixed solvent of 2 or more types of these solvents can be used. It is preferable to use water with few impurities, for example, ion-exchanged water, pure water, ultrapure water, distilled water, purified water, filtered water, tap water, or the like is preferably used. As the organic solvent, for example, alcohols such as methanol, ethanol, n-propyl alcohol, and isopropyl alcohol can be used.
〔分散剤〕
 本実施形態の溶射用スラリーは、分散媒に対する溶射粒子の分散安定性を向上させる分散剤を含有するが、分散剤として少なくとも2種の分散剤を含有する。第1の分散剤は、分子量が1000以上の有機酸及びその塩の少なくとも一方である。第2の分散剤は、分子量が40以上400以下の有機酸である。
[Dispersant]
The slurry for thermal spraying of the present embodiment contains a dispersant that improves the dispersion stability of the thermal spray particles with respect to the dispersion medium, but contains at least two dispersants as the dispersant. The first dispersant is at least one of an organic acid having a molecular weight of 1000 or more and a salt thereof. The second dispersant is an organic acid having a molecular weight of 40 or more and 400 or less.
 本実施形態の溶射用スラリーは、上記分子量を有する第1の分散剤と、第1の分散剤よりも分子量が小さい第2の分散剤とを含有することにより、溶射粒子が分散した状態をより維持することができ、溶射粒子の凝集が抑制される。第1の分散剤である有機酸及びその塩は、有機酸の分子量が3000以上であることがより好ましく、5000以上であることがさらに好ましい。第2の分散剤である有機酸の分子量は、100以上であることがより好ましく、150以上であることがさらに好ましい。また、第2の分散剤である有機酸の分子量は、200以下であることがより好ましい。 The slurry for thermal spraying according to the present embodiment contains the first dispersant having the above molecular weight and the second dispersant having a molecular weight smaller than that of the first dispersant, so that the thermal spray particles are more dispersed. It can be maintained and aggregation of the spray particles is suppressed. As for the organic acid and its salt which are 1st dispersing agents, it is more preferable that the molecular weight of an organic acid is 3000 or more, and it is further more preferable that it is 5000 or more. The molecular weight of the organic acid as the second dispersant is more preferably 100 or more, and further preferably 150 or more. The molecular weight of the organic acid that is the second dispersant is more preferably 200 or less.
 第1の分散剤である分子量1000以上の有機酸の種類は、特に限定されるものではないが、例としては、ポリカルボン酸系高分子化合物等のポリカルボン酸系高分子型分散剤が挙げられる。また、ポリカルボン酸系高分子型分散剤以外では、例えば、ポリスチレンスルホン酸系高分子化合物を使用することもできる。分子量1000以上の有機酸の塩の例としては、上記の分子量1000以上の有機酸の金属塩やアンモニウム塩が挙げられる。金属塩の例としては、ナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、マグネシウム塩が挙げられる。第1の分散剤は、1種を単独で使用してもよいし、2種以上を組み合わせて併用してもよい。 The kind of the organic acid having a molecular weight of 1000 or more as the first dispersant is not particularly limited, and examples thereof include polycarboxylic acid polymer dispersants such as polycarboxylic acid polymer compounds. It is done. Other than the polycarboxylic acid polymer dispersant, for example, a polystyrene sulfonic acid polymer compound may be used. Examples of organic acid salts having a molecular weight of 1000 or more include metal salts and ammonium salts of organic acids having a molecular weight of 1000 or more. Examples of the metal salt include sodium salt, potassium salt, lithium salt, calcium salt, and magnesium salt. A 1st dispersing agent may be used individually by 1 type, and may be used together in combination of 2 or more type.
 第2の分散剤である分子量40以上400以下の有機酸の種類は、特に限定されるものではないが、例としては、ピルビン酸、クエン酸、リンゴ酸、ギ酸、乳酸、ピログルタミン酸、酢酸、コハク酸、プロピオン酸、レブリン酸、酒石酸、ヒドロキシ酸が挙げられる。第2の分散剤は、1種を単独で使用してもよいし、2種以上を組み合わせて併用してもよい。 The type of organic acid having a molecular weight of 40 or more and 400 or less as the second dispersant is not particularly limited, but examples include pyruvic acid, citric acid, malic acid, formic acid, lactic acid, pyroglutamic acid, acetic acid, Examples include succinic acid, propionic acid, levulinic acid, tartaric acid, and hydroxy acid. A 2nd dispersing agent may be used individually by 1 type, and may be used together in combination of 2 or more type.
 本実施形態の溶射用スラリー中の第1の分散剤及び第2の分散剤の含有量は、特に限定されるものではないが、第1の分散剤の含有量は1質量%以上3質量%未満とすることができ、第2の分散剤の含有量は3質量%以上8質量%以下とすることができる。
 第1の分散剤の含有量は、2質量%以上であることがより好ましい。また、第1の分散剤の含有量は、多量でも悪影響は無いが、費用対効果を考慮すると、3質量%未満であることが好ましい。
The contents of the first dispersant and the second dispersant in the thermal spray slurry of the present embodiment are not particularly limited, but the content of the first dispersant is 1% by mass or more and 3% by mass. The content of the second dispersant can be 3% by mass or more and 8% by mass or less.
The content of the first dispersant is more preferably 2% by mass or more. Further, the content of the first dispersant is not adversely affected even if it is large, but it is preferably less than 3% by mass in consideration of cost effectiveness.
 第2の分散剤の含有量は、5質量%以上であることがより好ましい。また、第2の分散剤の含有量は、多量でも悪影響は無いが、費用対効果を考慮すると、8質量%以下であることが好ましい。 The content of the second dispersant is more preferably 5% by mass or more. Further, the content of the second dispersant is not adversely affected even if it is large, but it is preferably 8% by mass or less in consideration of cost effectiveness.
 ただし、第2の分散剤の含有量が第1の分散剤の含有量よりも多いことが好ましく、第2の分散剤の含有量が第1の分散剤の含有量の2倍以上であることがより好ましい。第2の分散剤の含有量が第1の分散剤の含有量よりも多いことにより、溶射粒子の凝集を抑制する効果がより一層奏される。 However, the content of the second dispersant is preferably greater than the content of the first dispersant, and the content of the second dispersant is at least twice the content of the first dispersant. Is more preferable. When the content of the second dispersant is larger than the content of the first dispersant, the effect of suppressing the aggregation of the spray particles is further exhibited.
 本実施形態の溶射用スラリーは、所望により、溶射粒子、分散媒、分散剤以外の成分をさらに含有してもよい。例えば、溶射用スラリーの性能を向上させるために、必要に応じて、添加剤をさらに含有してもよい。添加剤としては、例えば、pH調整剤、粘度調整剤、再分散性向上剤、消泡剤、凍結防止剤、防腐剤、防カビ剤が挙げられる。これらの添加剤は、1種を単独で用いてもよいし、2種以上を組み合わせて併用してもよい。
 本実施形態の溶射用スラリーのpHは特に限定されるものではないが、pH調整剤を添加することなどにより、例えば8以上10以下とすることができる。pHが8以上10以下であれば、溶射用スラリーの取扱性が優れている。
The slurry for thermal spraying of this embodiment may further contain components other than the thermal spray particles, the dispersion medium, and the dispersant as desired. For example, in order to improve the performance of the slurry for thermal spraying, an additive may be further contained as necessary. Examples of the additive include a pH adjuster, a viscosity adjuster, a redispersibility improver, an antifoaming agent, an antifreezing agent, an antiseptic, and an antifungal agent. These additives may be used alone or in combination of two or more.
Although the pH of the slurry for thermal spraying of this embodiment is not specifically limited, For example, it can be made into 8 or more and 10 or less by adding a pH adjuster. If pH is 8 or more and 10 or less, the handling property of the slurry for thermal spraying is excellent.
〔実施例〕
 以下に実施例及び比較例を示し、本発明をさらに具体的に説明する。
(実施例1)
 溶射粒子である酸化イットリウム粒子と、2種の分散剤と、分散媒である水とを混合し、酸化イットリウム粒子を水に分散させて、実施例1の溶射用スラリーを調製した。
〔Example〕
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
(Example 1)
The slurry for thermal spraying of Example 1 was prepared by mixing yttrium oxide particles as thermal spray particles, two kinds of dispersants, and water as a dispersion medium, and dispersing the yttrium oxide particles in water.
 実施例1の溶射用スラリー中の酸化イットリウム粒子の含有量は、60質量%である。また、酸化イットリウム粒子のD50(体積基準の積算粒子径分布において小粒径側からの積算頻度が50%となる粒子径)は、2.6μmである。酸化イットリウム粒子の粒子径や体積基準の積算粒子径分布は、株式会社堀場製作所製のレーザー回折/散乱式粒子径分布測定装置LA-300を用いて測定した。 The content of yttrium oxide particles in the thermal spray slurry of Example 1 is 60% by mass. Further, D50 of the yttrium oxide particles (particle diameter at which the cumulative frequency from the small particle diameter side becomes 50% in the volume-based cumulative particle diameter distribution) is 2.6 μm. The particle size and volume-based cumulative particle size distribution of the yttrium oxide particles were measured using a laser diffraction / scattering particle size distribution measuring apparatus LA-300 manufactured by Horiba, Ltd.
 分散剤としては、第1の分散剤であるポリカルボン酸アンモニウムと、第2の分散剤であるクエン酸を使用した。ポリカルボン酸アンモニウムの分子量は5000であり、クエン酸の分子量は192である。また、実施例1の溶射用スラリー中のポリカルボン酸アンモニウムの含有量は2質量%であり、クエン酸の含有量は5質量%である。
 さらに、実施例1の溶射用スラリーのpHは9.5である。
As the dispersant, ammonium polycarboxylate as the first dispersant and citric acid as the second dispersant were used. The molecular weight of ammonium polycarboxylate is 5000, and the molecular weight of citric acid is 192. Moreover, content of ammonium polycarboxylate in the slurry for thermal spraying of Example 1 is 2 mass%, and content of citric acid is 5 mass%.
Furthermore, the pH of the slurry for thermal spraying of Example 1 is 9.5.
 次に、実施例1の溶射用スラリーにおける溶射粒子の凝集の生じにくさを、スラリー供給指数Ifによって評価した。以下に、スラリー供給指数の測定方法を説明する。
 まず、内径5mm、外径8mm、長さ5mのポリウレタン製チューブ(CHIYODA製 タッチチューブ(ウレタン) TE-8)を、高低差のない試験台の上に水平に設置し、チューブの一方の端部にスラリー供給用のローラーポンプを取り付け、他方の端部をスラリー回収容器内に配した。
Next, the difficulty of agglomeration of spray particles in the thermal spray slurry of Example 1 was evaluated by the slurry supply index If. The method for measuring the slurry supply index will be described below.
First, a polyurethane tube (CHIODA touch tube (urethane) TE-8) with an inner diameter of 5 mm, an outer diameter of 8 mm, and a length of 5 m was placed horizontally on a test table with no height difference, and one end of the tube A roller pump for supplying slurry was attached to the other end, and the other end was placed in the slurry collection container.
 そして、実施例1の溶射用スラリーを、マグネチックスターラーで撹拌することによって溶射粒子の分散状態が良好であることを確認した後に、ローラーポンプにより35mL/minの流速でチューブ内に供給した。その後、チューブを通過した溶射用スラリーをスラリー回収容器にて回収し、回収した溶射用スラリーに含まれる溶射粒子の質量Bを測定した。
 調製後の溶射用スラリー800mLに含まれる溶射粒子の質量Aを予め測定しておき、この質量Aと、回収した溶射用スラリーに含まれる溶射粒子の質量Bとから、次式に基づき、スラリー供給指数を算出した。結果を表1に示す。
    If(%)=B/A×100
The slurry for thermal spraying of Example 1 was stirred with a magnetic stirrer to confirm that the sprayed particles were well dispersed, and then supplied into the tube at a flow rate of 35 mL / min with a roller pump. Then, the slurry for thermal spraying which passed the tube was collect | recovered with the slurry collection | recovery container, and the mass B of the thermal spray particle contained in the collect | recovered slurry for thermal spraying was measured.
The mass A of the thermal spray particles contained in 800 mL of the thermal spray slurry after preparation is measured in advance, and the slurry is supplied from this mass A and the mass B of the thermal spray particles contained in the recovered slurry for thermal spraying based on the following formula. The index was calculated. The results are shown in Table 1.
If (%) = B / A × 100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 さらに、実施例1の溶射用スラリーを用いて溶射が可能か否かを試験した。溶射は、プログレッシブサーフェイス社製のプラズマ溶射装置100HEを用いて行った。溶射用スラリーをプラズマ溶射装置に供給する供給装置には、プログレッシブサーフェイス社製のLiquifeederHE(商品名) SPS/SPPSフィードシステムを用いた。溶射条件は、以下の通りである。 Furthermore, it was tested whether or not spraying was possible using the slurry for thermal spraying of Example 1. Thermal spraying was performed using a plasma spraying apparatus 100HE manufactured by Progressive Surface. As a supply device for supplying the slurry for thermal spraying to the plasma spraying device, a Liquidifer HE (trade name) SPS / SPPS feed system manufactured by Progressive Surface was used. The thermal spraying conditions are as follows.
    アルゴンガスの流量:180NL/min
    窒素ガスの流量  : 70NL/min
    水素ガスの流量  : 70NL/min
    プラズマ出力   :105kW
    溶射距離     : 76mm
    トラバース速度  :1500mm/s
    溶射角度     : 90°
    スラリー供給量  : 38mL/min
    パス数      : 50パス
 溶射可否の結果を表1に示す。表1においては、溶射が可能であった場合は○印、溶射ができなかった場合は×印で示してある。
Argon gas flow rate: 180 NL / min
Nitrogen gas flow rate: 70 NL / min
Hydrogen gas flow rate: 70 NL / min
Plasma output: 105kW
Thermal spraying distance: 76mm
Traverse speed: 1500mm / s
Thermal spray angle: 90 °
Slurry supply amount: 38 mL / min
Number of passes: 50 passes Table 1 shows the results of spraying. In Table 1, when the thermal spraying is possible, it is indicated by ◯, and when thermal spraying is not possible, it is indicated by X.
(実施例2)
 第2の分散剤としてクエン酸に代えてリンゴ酸を使用した点以外は、実施例1と全く同様にして、実施例2の溶射用スラリーを調製した。なお、リンゴ酸の分子量は134である。そして、実施例1と全く同様にして、スラリー供給指数の算出と、溶射可否の試験を行った。結果を表1に示す。
(Example 2)
A slurry for thermal spraying of Example 2 was prepared in exactly the same manner as Example 1 except that malic acid was used instead of citric acid as the second dispersant. The molecular weight of malic acid is 134. Then, in exactly the same manner as in Example 1, the slurry supply index was calculated and the thermal sprayability test was performed. The results are shown in Table 1.
(比較例1)
 分散剤を全く用いない点以外は、実施例1と全く同様にして、比較例1の溶射用スラリーを調製した。なお、比較例1の溶射用スラリーのpHは10である。そして、実施例1と全く同様にして、スラリー供給指数の算出と、溶射可否の試験を行った。結果を表1に示す。
(Comparative Example 1)
A slurry for thermal spraying of Comparative Example 1 was prepared in the same manner as Example 1 except that no dispersant was used. The pH of the thermal spray slurry of Comparative Example 1 is 10. Then, in exactly the same manner as in Example 1, the slurry supply index was calculated and the thermal sprayability test was performed. The results are shown in Table 1.
(比較例2)
 分散剤として、第1の分散剤であるポリカルボン酸アンモニウムのみを使用し、第2の分散剤であるクエン酸は使用しない点以外は、実施例1と全く同様にして、比較例2の溶射用スラリーを調製した。なお、比較例2の溶射用スラリーのpHは9.5である。そして、実施例1と全く同様にして、スラリー供給指数の算出と、溶射可否の試験を行った。結果を表1に示す。
(Comparative Example 2)
Thermal spraying of Comparative Example 2 was performed in exactly the same manner as in Example 1 except that only the ammonium polycarboxylate as the first dispersant was used as the dispersant, and citric acid as the second dispersant was not used. A slurry was prepared. The thermal spray slurry of Comparative Example 2 has a pH of 9.5. Then, in exactly the same manner as in Example 1, the slurry supply index was calculated and the thermal sprayability test was performed. The results are shown in Table 1.
(比較例3)
 分散剤として、第2の分散剤であるクエン酸のみを使用し、第1の分散剤であるポリカルボン酸アンモニウムは使用しない点以外は、実施例1と全く同様にして、比較例3の溶射用スラリーを調製した。なお、比較例3の溶射用スラリーのpHは4である。そして、実施例1と全く同様にして、スラリー供給指数の算出と、溶射可否の試験を行った。結果を表1に示す。
(Comparative Example 3)
Thermal spraying of Comparative Example 3 was carried out in exactly the same manner as in Example 1 except that only citric acid as the second dispersant was used as the dispersant, and ammonium polycarboxylate as the first dispersant was not used. A slurry was prepared. The thermal spray slurry of Comparative Example 3 has a pH of 4. Then, in exactly the same manner as in Example 1, the slurry supply index was calculated and the thermal sprayability test was performed. The results are shown in Table 1.
(比較例4)
 分散剤として、第1の分散剤であるポリカルボン酸アンモニウムと第2の分散剤であるクエン酸を使用する代わりに、無機酸である硝酸を使用した点以外は、実施例1と全く同様にして、比較例4の溶射用スラリーを調製した。その結果、溶射用スラリーは固化してしまい、送液や溶射は不可能であった。
(Comparative Example 4)
Except for using ammonium polycarboxylate as the first dispersant and citric acid as the second dispersant as the dispersant, the same procedure as in Example 1 was performed except that nitric acid as an inorganic acid was used. Thus, a slurry for thermal spraying of Comparative Example 4 was prepared. As a result, the slurry for thermal spraying solidified, and liquid feeding and thermal spraying were impossible.
 表1に示す結果から分かるように、比較例1~3の溶射用スラリーは、第1の分散剤及び第2の分散剤の一方又は両方を使用していないため、いずれも溶射粒子の凝集が生じた。そのため、プラズマ溶射装置の溶射トーチへ溶射用スラリーを送る供給配管内に詰まりが発生し、溶射トーチへ溶射用スラリーを供給することができず、溶射を行うことができなかった。 As can be seen from the results shown in Table 1, the thermal spray slurries of Comparative Examples 1 to 3 do not use either one or both of the first dispersant and the second dispersant, and therefore, the spray particles are not aggregated. occured. For this reason, clogging occurs in the supply piping for sending the slurry for thermal spraying to the thermal spraying torch of the plasma spraying apparatus, and the thermal spraying slurry cannot be supplied to the thermal spraying torch, thus preventing thermal spraying.
 これに対して、実施例1、2の溶射用スラリーは、溶射粒子の凝集は生じなかった。そのため、プラズマ溶射装置の溶射トーチへ溶射用スラリーを送る供給配管内に詰まりは発生せず、溶射トーチへ溶射用スラリーを供給することができたので、問題なく溶射を行うことができた。溶射粒子の含有量が60質量%と高い溶射用スラリーを用いて溶射を行ったので、成膜速度が高く作業効率の良好な溶射を行うことができた。 In contrast, the thermal spraying slurries of Examples 1 and 2 did not cause aggregation of thermal spray particles. Therefore, clogging did not occur in the supply pipe for feeding the slurry for thermal spraying to the thermal spraying torch of the plasma spraying apparatus, and the thermal spraying slurry could be supplied to the thermal spraying torch, so that thermal spraying could be performed without any problem. Since thermal spraying was performed using a slurry for thermal spraying having a high content of thermal spray particles of 60% by mass, it was possible to perform thermal spraying with high film formation speed and good work efficiency.

Claims (5)

  1.  セラミックからなる溶射粒子と、前記溶射粒子が分散した分散媒と、前記分散媒に対する前記溶射粒子の分散安定性を向上させる分散剤と、を含有し、前記分散剤は、分子量が1000以上の有機酸及びその塩の少なくとも一方である第1の分散剤と、分子量が40以上400以下の有機酸である第2の分散剤とを含有する溶射用スラリー。 Thermal spray particles made of ceramic, a dispersion medium in which the spray particles are dispersed, and a dispersant that improves dispersion stability of the spray particles with respect to the dispersion medium. The dispersant has an organic molecular weight of 1000 or more. A slurry for thermal spraying containing a first dispersant which is at least one of an acid and a salt thereof and a second dispersant which is an organic acid having a molecular weight of 40 or more and 400 or less.
  2.  前記第2の分散剤の含有量が前記第1の分散剤の含有量よりも多い請求項1に記載の溶射用スラリー。 The slurry for thermal spraying according to claim 1, wherein the content of the second dispersant is higher than the content of the first dispersant.
  3.  前記第1の分散剤がポリカルボン酸系高分子型分散剤である請求項1又は請求項2に記載の溶射用スラリー。 The slurry for thermal spraying according to claim 1 or 2, wherein the first dispersant is a polycarboxylic acid polymer dispersant.
  4.  前記第2の分散剤が、ピルビン酸、クエン酸、リンゴ酸、ギ酸、乳酸、ピログルタミン酸、酢酸、コハク酸、プロピオン酸、レブリン酸、酒石酸、及びヒドロキシ酸のうちの少なくとも1種の有機酸である請求項1~3のいずれか一項に記載の溶射用スラリー。 The second dispersant is at least one organic acid selected from pyruvic acid, citric acid, malic acid, formic acid, lactic acid, pyroglutamic acid, acetic acid, succinic acid, propionic acid, levulinic acid, tartaric acid, and hydroxy acid. The slurry for thermal spraying according to any one of claims 1 to 3.
  5.  前記セラミックが金属酸化物である請求項1~4のいずれか一項に記載の溶射用スラリー。 The slurry for thermal spraying according to any one of claims 1 to 4, wherein the ceramic is a metal oxide.
PCT/JP2019/011199 2018-03-23 2019-03-18 Thermal spray slurry WO2019181861A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020207023977A KR102519311B1 (en) 2018-03-23 2019-03-18 thermal spray slurry

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018056785A JP6975084B2 (en) 2018-03-23 2018-03-23 Spraying slurry
JP2018-056785 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019181861A1 true WO2019181861A1 (en) 2019-09-26

Family

ID=67987778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011199 WO2019181861A1 (en) 2018-03-23 2019-03-18 Thermal spray slurry

Country Status (4)

Country Link
JP (1) JP6975084B2 (en)
KR (1) KR102519311B1 (en)
TW (1) TWI783130B (en)
WO (1) WO2019181861A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106434A (en) * 2021-04-12 2021-07-13 南昌大学 Environment-friendly aluminum alloy chemical oxidation liquid and chemical oxidation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037702A (en) * 2009-07-31 2011-02-24 General Electric Co <Ge> Method for manufacturing environmental barrier coating using sintering aid
WO2014142017A1 (en) * 2013-03-13 2014-09-18 株式会社 フジミインコーポレーテッド Slurry for thermal spraying, thermal spraying film, and formation method for thermal spraying film
JP2016006238A (en) * 2015-10-15 2016-01-14 株式会社フジミインコーポレーテッド Spray coating membrane producing method, and spray coating material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US150617A (en) 1874-05-05 Improvement in life-preservers
JP6741410B2 (en) * 2015-09-25 2020-08-19 株式会社フジミインコーポレーテッド Spraying slurry, sprayed coating and method for forming sprayed coating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037702A (en) * 2009-07-31 2011-02-24 General Electric Co <Ge> Method for manufacturing environmental barrier coating using sintering aid
WO2014142017A1 (en) * 2013-03-13 2014-09-18 株式会社 フジミインコーポレーテッド Slurry for thermal spraying, thermal spraying film, and formation method for thermal spraying film
JP2016006238A (en) * 2015-10-15 2016-01-14 株式会社フジミインコーポレーテッド Spray coating membrane producing method, and spray coating material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106434A (en) * 2021-04-12 2021-07-13 南昌大学 Environment-friendly aluminum alloy chemical oxidation liquid and chemical oxidation method

Also Published As

Publication number Publication date
TWI783130B (en) 2022-11-11
KR102519311B1 (en) 2023-04-10
KR20200133731A (en) 2020-11-30
JP6975084B2 (en) 2021-12-01
JP2019167588A (en) 2019-10-03
TW201945560A (en) 2019-12-01

Similar Documents

Publication Publication Date Title
JP6367426B2 (en) Thermal spray slurry and method of forming thermal spray coating
KR102481729B1 (en) Slurry for thermal spraying, thermal sprayed coating and method for forming thermal sprayed coating
JP6291069B2 (en) Thermal spray slurry, thermal spray coating and method of forming thermal spray coating
US10377905B2 (en) Slurry for thermal spraying, thermal sprayed coating, and method for forming thermal sprayed coating
JP2017061735A (en) Slurry for spray
KR20230025827A (en) Slurry for thermal spraying, thermal sprayed coating, and method for forming thermal sprayed coating
WO2019181861A1 (en) Thermal spray slurry
JP2018154895A (en) Slurry for spray, and formation method of spray coating
WO2019188763A1 (en) Slurry for spraying
JP2020056114A (en) Slurry for spray
JP6186821B2 (en) Aqueous dispersant and aqueous dispersion composition
CN115895596B (en) Stainless steel coarse grinding fluid and preparation method and application thereof
JP2010235422A (en) Calcium hydroxide slurry and production method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19770517

Country of ref document: EP

Kind code of ref document: A1