WO2019181470A1 - ブラシレスdcモータの種類を識別する識別方法、識別装置およびブラシレスdcモータ - Google Patents

ブラシレスdcモータの種類を識別する識別方法、識別装置およびブラシレスdcモータ Download PDF

Info

Publication number
WO2019181470A1
WO2019181470A1 PCT/JP2019/008515 JP2019008515W WO2019181470A1 WO 2019181470 A1 WO2019181470 A1 WO 2019181470A1 JP 2019008515 W JP2019008515 W JP 2019008515W WO 2019181470 A1 WO2019181470 A1 WO 2019181470A1
Authority
WO
WIPO (PCT)
Prior art keywords
brushless
motor
identification
power supply
voltage
Prior art date
Application number
PCT/JP2019/008515
Other languages
English (en)
French (fr)
Inventor
秀幸 竹本
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2019181470A1 publication Critical patent/WO2019181470A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor

Definitions

  • the present disclosure relates to an identification method, an identification device, and a brushless DC motor for identifying the type of a brushless DC motor.
  • a fan motor as a cooling device for releasing heat generated inside to the outside.
  • a fan motor is electrically connected to a system controller and operates under the control of the system controller.
  • Patent Document 1 discloses an identification method in which a fan motor and a system controller communicate with each other to acquire fan identification information. For example, the mode is switched from the normal mode to the command mode, and the fan motor and the system controller transmit and receive commands via a power supply line, a PWM (Pulse Width Modulation) line, and a TACH (Tachometer) line.
  • the system controller acquires fan identification information by handshaking and determines compatibility with the fan motor. In this case, both the system controller and the fan require complicated control software such as switching between the normal mode and the command mode.
  • the exemplary embodiments of the present disclosure provide a brushless DC motor type identification method and identification apparatus capable of identifying a brushless DC motor type without performing a handshake.
  • An exemplary identification method of the present disclosure is an identification method used in an identification device that identifies a type of a brushless DC motor, wherein the brushless DC motor includes at least one capacitor connected between a power supply line and a GND line. And the at least one capacitor is assigned a different specific capacity for each type of a plurality of brushless DC motors, and supplies power from the identification device to the brushless DC motor via the power line, Including identifying a type of the brushless DC motor based on an identification voltage appearing on the power supply line, which varies depending on the specific capacitance of at least one capacitor.
  • An exemplary identification device of the present disclosure is an identification device that identifies a type of a brushless DC motor, wherein the brushless DC motor is at least one connected between an inverter that drives the motor, a power supply line, and a GND line.
  • a controller for identifying a type of the brushless DC motor wherein the controller is different depending on the specific capacity of the at least one capacitor in a state where the power is supplied to the brushless DC motor.
  • the controller is different depending on the specific capacity of the at least one capacitor in a state where the power is supplied to the brushless DC motor.
  • An exemplary brushless DC motor of the present disclosure includes a circuit board, a power supply terminal disposed on the circuit board for supplying power from the outside, an inverter for driving the motor, and a power supply line connected to the power supply terminal. And at least one capacitor to which a different specific capacity is assigned for each type of the plurality of brushless DC motors, and the power is supplied through the power supply terminal in the state where the power is supplied. Different identification voltages appear at the power supply terminals depending on the capacitance.
  • an identification voltage is detected that is connected between a power supply line and a GND line and is based on a specific capacitance of an identification capacitor provided in the brushless DC motor.
  • a brushless DC motor identification method and identification apparatus capable of identifying the type of the brushless DC motor without performing handshake are provided.
  • FIG. 1 is a flowchart of an identification method for identifying the type of a brushless DC motor according to the present disclosure.
  • FIG. 2 is a block diagram illustrating a typical block configuration example of the user system 100 and the brushless DC motor 200 according to the exemplary embodiment 1.
  • FIG. 3 is a block configuration diagram showing an example of the internal block configuration of the user system 100.
  • FIG. 4 is a block diagram illustrating another block configuration example of the user system 100 and the brushless DC motor 200 according to the exemplary embodiment 1.
  • FIG. 5 is a flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the exemplary embodiment 1.
  • FIG. 6 is a graph illustrating how the identification voltage changes with time.
  • FIG. 7 is a diagram illustrating a table used to identify the type of the brushless DC motor 200 in the exemplary embodiment 1.
  • FIG. 8 is a flowchart of a further identification method for identifying the type of brushless DC motor 200 according to exemplary embodiment 1.
  • FIG. 9 is a flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the second exemplary embodiment.
  • FIG. 10 is a graph illustrating how the identification voltage changes with time.
  • FIG. 11 is a diagram illustrating a table used to identify the type of the brushless DC motor 200 in the exemplary embodiment 1.
  • FIG. 12 is a block diagram illustrating a typical block configuration example of the user system 100, the identification device 100A, and the brushless DC motor 200 according to Exemplary Embodiment 3.
  • FIG. 13 is a block diagram illustrating another block configuration example of the user system 100, the identification device 100A, and the brushless DC motor 200 according to Exemplary Embodiment 3.
  • FIG. 1 shows a flowchart of an identification method for identifying the type of brushless DC motor according to the present disclosure.
  • the identification method according to the present disclosure is an identification method used for an identification device that identifies information about a brushless DC motor output from a brushless DC motor.
  • the brushless DC motor is typically a two-wire motor having a power supply terminal and a GND terminal, and includes at least one capacitor connected between the power supply line and the GND line.
  • at least one capacitor may be referred to as an “identification capacitor”.
  • a different specific capacitance is assigned to the identification capacitor for each type of the plurality of brushless DC motors.
  • the identification method includes a step of supplying power from the identification device to the brushless DC motor via a power supply line (step S100), a step of reading an identification voltage that varies depending on the specific resistance of the identification capacitor (step S200), and a read A step of identifying the type of the brushless DC motor based on the identified voltage (step S300).
  • the identification method it is possible to identify information regarding the brushless DC motor output from the brushless DC motor without performing handshaking.
  • Such information is, for example, information indicating the type or product lot number of the brushless DC motor.
  • FIG. 2 schematically shows a typical block configuration example of the user system 100 and the brushless DC motor 200 according to the present embodiment.
  • the brushless DC motor of the present disclosure includes an inner rotor type or an outer rotor type motor.
  • the brushless DC motor 200 is not limited to a fan motor, and is a brushless DC motor used for various applications.
  • the brushless DC motor 200 is, for example, a motor used in home appliances such as an air conditioner or a washing machine and a vehicle-mounted motor.
  • User system 100 is electrically connected to brushless DC motor 200.
  • the user system 100 can supply power to the brushless DC motor 200.
  • the user system 100 can be installed in a production management system of a brushless DC motor in a factory that produces a variety of products.
  • the user system 100 is a system in an electronic device or an in-vehicle system in which the brushless DC motor 200 can be mounted.
  • the brushless DC motor 200 is suitably mounted on an electronic device such as a server, a desktop personal computer main body, or a game machine.
  • the user system 100 is a part of a series of inspection systems.
  • the brushless DC motor 200 is mounted as a fan motor in the main body of a server or a desktop personal computer, the user system 100 is an entire system composed of various electronic components mounted on a motherboard or one of them. Part. *
  • the user system 100 includes a controller 110 and a memory 120, for example. As will be described later, the user system 100 according to the present embodiment has a function of identifying the type of the brushless DC motor 200. In other words, the user system 100 can be used as an identification device that identifies the type of the brushless DC motor 200. Therefore, in this specification, the user system 100 may be referred to as the identification device 100. *
  • the controller 110 mainly controls the entire user system 100 and can control power supply to the brushless DC motor 200.
  • the controller 110 can further identify the type of the brushless DC motor 200.
  • FPGA field programmable gate array
  • the memory 120 is, for example, a writable memory (for example, PROM), a rewritable memory (for example, flash memory), or a read-only memory.
  • the memory 120 stores a control program having a command group for causing the controller 110 to identify the type of the brushless DC motor 200.
  • the control program is temporarily expanded in a RAM (not shown) at the time of booting.
  • the memory 120 does not need to be externally attached to the controller 110 and may be mounted on the controller 110.
  • the controller 110 equipped with the memory 120 is, for example, the MCU described above. *
  • the user system 100 includes a Vmot terminal and a GND terminal as connection terminals for connection to the brushless DC motor 200.
  • the Vmot terminal is a terminal for motor power.
  • the motor power supply voltage Vmot in the range of 7.0 to 13.8V is supplied to the brushless DC motor 200 from the Vmot terminal.
  • FIG. 3 schematically shows a more detailed block configuration example inside the user system 100. *
  • the user system 100 further includes, for example, a DC power supply 151, a voltage detector 152, and a discriminator 153.
  • a DC power supply 151 When referring to the internal block configuration of the user system 100 or the identification device 100, the components of the controller 110, the DC power supply 151, the voltage detector 152, and the discriminator 153 may be simply referred to as “controller 110”. *
  • the DC power supply 151 is, for example, a constant voltage source, and generates a motor power supply voltage Vmot (for example, 7.0 to 13.8 V) to be supplied to the brushless DC motor 200 during normal motor driving.
  • the normal motor driving means that the motor is driven in a state where the inverter 230 is operated by supplying power to the inverter 230 of the brushless DC motor 200.
  • the DC power supply 151 preferably has a current limiting function for limiting the current. *
  • the DC power supply 151 supplies power to the brushless DC motor 200 also when identifying the type of the brushless DC motor 200.
  • the voltage supplied at the time of identification may be equal to or lower than the motor power supply voltage Vmot.
  • a constant current source can be used as the DC power source 151. As a result, a constant current can flow through the power supply line.
  • the voltage detector 152 detects an identification voltage appearing on the power supply line, that is, a potential difference between the power supply line and the GND line in identifying the type of the brushless DC motor 200.
  • the identification voltage corresponds to the voltage of the identification capacitor 250 and indicates a voltage equal to or lower than the rated voltage of the DC power supply 151. Further, the voltage detector 152 measures an arrival time until the identification voltage reaches a predetermined value described later.
  • the discriminator 153 identifies the type of the brushless DC motor 200 based on the identification voltage detected by the voltage detector 152 or the measured arrival time.
  • the discriminator 153 is typically mounted on the controller 110. *
  • the brushless DC motor 200 is a DC fan including an impeller, for example.
  • the brushless DC motor 200 is, for example, an axial fan, a centrifugal fan, a cross flow fan, or a sirocco fan.
  • the brushless DC motor 200 typically includes a regulator 210, a motor drive IC 220, an inverter 230, a circuit board CB on which those electronic components are mounted, a coil 240, an identification capacitor 250, and a Hall element 260.
  • the regulator 210, the motor drive IC 220, the inverter 230, and the Hall element 260 constitute a motor control circuit for energizing the coil 240 to drive the motor. *
  • the regulator 210 steps down the motor power supply voltage Vmot of 13.8V, for example, and generates a power supply voltage Vcc (for example, 5.0V) for the motor drive IC 220.
  • Vcc for example, 5.0V
  • the power supply voltage Vcc supplied to the motor drive IC 220 is preferably generated based on the motor power supply voltage Vmot. Thereby, it is not necessary to provide a terminal for the power supply voltage Vcc in the brushless DC motor 200, and the number of terminals and lead wires can be reduced.
  • the power supply voltage Vcc may be supplied from the user system 100 to the brushless DC motor 200 separately from the motor power supply voltage Vmot. *
  • the motor drive IC 220 includes, for example, an MCU 221 and is connected to the inverter 230.
  • the MCU 221 generates a PWM signal for controlling the rotation of the motor.
  • the motor drive IC 220 generates a control signal for controlling the inverter 230 according to the PWM signal and outputs the control signal to the inverter 230.
  • the MCU 221 incorporates a general timer function. Using this function, the MCU 221 can stop the generation of the PWM signal until a predetermined time elapses after the power supply voltage Vcc is started.
  • the certain time is, for example, about 0.1 s. Thereby, driving of inverter 230 can be stopped until a predetermined time has elapsed from the start of application of power supply voltage Vcc.
  • the motor drive IC 220 monitors the rotational speed of the motor based on the output from the Hall element 260 and generates a PWM signal corresponding to the rotational speed of the motor.
  • the output method is, for example, 2 pulses per rotation.
  • a technique that does not use a Hall element is known. When such a technique is adopted, the Hall element 260 is not essential.
  • Inverter 230 is electrically connected to motor drive IC 220 and motor coil 240.
  • the inverter 230 converts the electric power of the motor power into electric power supplied to the fan motor under the control of the motor drive IC 220, and energizes the motor coil 240.
  • the coil 240 is a winding of the motor. *
  • the identification capacitor 250 is a bypass capacitor for suppressing fluctuations in the voltage of the power supply line, and is typically an electrolytic capacitor.
  • the capacity is several hundred ⁇ F, for example.
  • the identification capacitor 250 may be a single capacitor, or may include a plurality of capacitors connected in parallel or in series with each other. *
  • the capacity of the identification capacitor 250 is different for each type of the plurality of brushless DC motors. In this specification, such a capacity is referred to as a “specific capacity”. As specific information of the brushless DC motor, different specific capacities are assigned to the identification capacitor 250 for each type of the plurality of brushless DC motors. When the identification capacitor 250 includes a plurality of capacitors, the specific capacitance is set by the combined capacitance of these capacitors. *
  • the identification capacitor 250 can be assigned as unique information of the brushless DC motor for each supplier that manufactures the brushless DC motor. For example, a unique capacity of 100 ⁇ F can be assigned to supplier A, a unique capacity of 200 ⁇ F can be assigned to supplier B, and a unique capacity of 300 ⁇ F can be assigned to supplier C. Furthermore, different specific capacities can be assigned to multiple suppliers. *
  • the identification capacitor 250 can be assigned as unique information for each product lot. For example, a unique capacity of 100 ⁇ F can be assigned to product lot number A, a unique capacity of 200 ⁇ F can be assigned to product lot number B, and a unique capacity of 300 ⁇ F can be assigned to product lot number C. Furthermore, a unique capacity different from these can be assigned to each of a plurality of product lot numbers. In this way, there are, for example, as many types of brushless DC motors as the number of suppliers or as many as the number of product lots to be managed. *
  • the brushless DC motor 200 includes, for example, a circuit board CB on which a Vmot terminal and a GND terminal corresponding to the terminal on the user system 100 side are arranged. *
  • FIG. 4 schematically shows another block configuration example of the user system 100 and the brushless DC motor 200. *
  • the user system 100 may further include a light emitting element 130.
  • the light emitting element 130 includes, for example, a plurality of LEDs (Light Emitted Diode).
  • the light emitting element 130 is a notification device that notifies the identification result of the type of the brushless DC motor 200.
  • the plurality of LEDs can be provided in the number of types of the plurality of brushless DC motors. For example, if there are two types of brushless DC motors of suppliers A and B, two LEDs having different emission colors can be provided. For example, a red LED for supplier A and a blue LED for supplier B can be provided. *
  • FIG. 5 shows a flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the present embodiment.
  • the identification method according to the present embodiment is a method used for the identification device 100, for example.
  • the identification method of the present disclosure is suitably used for a method of checking the suitability of a brushless DC motor with respect to a user system when manufacturing a product in a factory.
  • the process of checking the suitability of a brushless DC motor can be incorporated as part of the product manufacturing process.
  • Step S100 First, in a state where terminals of the identification device 100 (user system 100) and the brushless DC motor 200 are electrically connected to each other, for example, a brushless DC from the identification device 100 using a constant voltage source or a constant current source with a current limit is used. Electric power is supplied to the motor 200.
  • the power supply voltage for identification may be lower than the motor power supply voltage Vmot supplied to the brushless DC motor 200 during normal motor driving.
  • the identification capacitor 250 may be charged by passing a constant current through a power supply line using a constant current source. According to this method, it is possible to suppress the occurrence of an excessive inrush current. As a result, detection of an identification voltage described later is stabilized, and the lifetime of the identification capacitor 250 is extended. Furthermore, since the time variation of the identification voltage is linear, it is possible to easily measure the arrival time described later. *
  • the identification capacitor 250 may be charged by flowing a current larger than the current flowing when the brushless DC motor 200 is driven to the power supply line. According to this method, even when part of the current flows to the motor side, the arrival time can be measured, and the charging time of the identification capacitor 250 can be shortened.
  • the identification capacitor 250 may be charged by flowing a current set by current limitation through the power supply line. According to this method, since the time variation of the identification voltage becomes linear, the arrival time can be measured appropriately and easily. *
  • FIG. 6 is a graph illustrating the change over time of the identification voltage.
  • the horizontal axis of the graph represents time ( ⁇ s), and the vertical axis represents the identification voltage Vdt (V).
  • V the identification voltage
  • the specific capacity of supplier A is 100 ⁇ F
  • the specific capacity of supplier B is 200 ⁇ F
  • the specific capacity of supplier C is 300 ⁇ F.
  • the identification voltage detected at a certain time indicates a voltage that differs for each supplier.
  • the identification voltage Vdt appearing on the power supply line is detected by the voltage detector 152.
  • the voltage detector 152 detects (or samples) the identification voltage Vdt at a time interval of 50 ⁇ s.
  • the voltage detector 152 detects the identification voltage Vdt while the inverter 230 of the brushless DC motor 200 is off, that is, stopped.
  • the drive of the inverter 230 is stopped by using the timer function of the MCU 221 to stop generating the PWM signal until a predetermined time has elapsed from the start of power supply.
  • the predetermined time is a time required for identifying the type of motor, and is set to, for example, a time (3600 ⁇ s) or more when the identification voltage Vdt of the supplier C having the largest specific capacity is saturated.
  • Step S210B When power supply to the brushless DC motor 200 is started, charging of the identification capacitor 250 starts.
  • Vdt I_limit / C1 ⁇ time
  • I_limit is a current limit
  • C1 is a specific capacity of the identification capacitor 250
  • time is a charging time ( ⁇ s).
  • the time t_reach until the identification voltage Vdt reaches the rated voltage Vsat of the motor power supply voltage Vmot varies depending on the size of the specific capacity C1. This can be used to identify suppliers.
  • t_reach is expressed by equation (2)
  • C1 is expressed by equation (3).
  • t_reach Vsat ⁇ C1 / I_limit Equation (2)
  • C1 t_reach ⁇ I_limit / Vsat Equation (3)
  • the arrival time t_reach differs for each supplier.
  • I_limit is set to 1A and Vsat is set to 12.0V.
  • the arrival time t_reach is 1200 ⁇ s for supplier A, 2400 ⁇ s for supplier B, and 3600 ⁇ s for supplier C.
  • the identification voltage Vdt changes linearly with time and eventually reaches a predetermined value.
  • the predetermined value of the identification voltage Vdt is the rated voltage Vsat.
  • the voltage detector 152 measures the arrival time until the identification voltage Vdt reaches the rated voltage Vsat. Specifically, the voltage detector 152 monitors the identification voltage Vdt detected in step 210A and measures the arrival time. Alternatively, an ammeter (not shown) may be used to measure the delay time from the start of power supply until the inverter 230 operates and the motor drive current begins to flow. For example, the voltage detector 152 measures 1200 ⁇ s as the arrival time of the supplier A, measures 2400 ⁇ s as the arrival time of the supplier B, and measures 3600 ⁇ s as the arrival time of the supplier C. *
  • the predetermined value of the identification voltage Vdt is set to a voltage in the range of 10% to 90% of the rated voltage Vsat.
  • the arrival time in this case means, for example, the time until the identification voltage Vdt reaches 60% of the rated voltage.
  • the arrival time is shortened as compared with the case where the rated voltage Vsat is used as a reference, thereby suppressing the influence that variations in power may have on the measurement.
  • the identification voltage Vdt changes according to the time constant according to the equation (4).
  • the constant R indicates a minute resistance component that is parasitic on, for example, the wiring conductor of the power supply line, the output impedance of the power supply, or the wiring resistance in the motor control circuit.
  • the identification voltage Vdt changes greatly. Therefore, the difference in the identification voltage Vdt due to the difference in capacity between the plurality of brushless DCs 200 becomes small. In the second half, the identification voltage Vdt gradually approaches the rated voltage Vsat, so that an error may occur in the arrival time measurement.
  • Vdt Vmot (1-exp ⁇ ( t / RC) )
  • the arrival time is measured after reading the initial voltage of the identification capacitor 250, and based on the difference between the initial voltage and a predetermined value. May be corrected. For example, when the initial voltage is 4.0 V and the predetermined value is 12.0 V, the corrected arrival time is multiplied based on the expression (2) by multiplying the measured arrival time by the ratio of 12.0 V / 8.0 V. The arrival time is determined. Charges may remain in the identification capacitor 250 due to static electricity or the like, and the initial voltage is not necessarily zero. Even in such a case, the arrival time can be appropriately measured by detecting the initial voltage in advance and correcting the measured arrival time. *
  • the initial voltage of the identification capacitor 250 is set to 0 V, that is, the electric charge remaining in the identification capacitor 250 is discharged. Then, the arrival time may be measured.
  • the initial voltage of the identification capacitor 250 can be set to 0 V by electrically connecting the power supply line to the GND line before measuring the identification voltage Vdt by the voltage detector 152. This eliminates the need for detecting the initial voltage and correcting the measured arrival time.
  • the classifier 153 is used to identify the type of the brushless DC motor 200 based on the arrival time measured by the voltage detector 152. Specifically, the discriminator 153 refers to the table and identifies the type of motor based on the measured arrival time.
  • FIG. 7 illustrates a table used for identifying the type of the brushless DC motor 200.
  • the table is a look-up table (LUT) that associates types of a plurality of brushless DC motors with unique information of the plurality of brushless DC motors.
  • the unique information of the brushless DC motor represents an arrival time that differs for each of the plurality of brushless DC motors.
  • the table is stored in the memory 120, for example.
  • the type of motor can be expressed by, for example, a 3-bit digital signal. *
  • the discriminator 153 may include an AD converter (not shown).
  • the discriminator 153 converts the arrival time (analog value) measured by the voltage detector 152 into a digital signal.
  • the unique information of the brushless DC motor can also be expressed by a digital value having the same bit width as the AD conversion resolution.
  • the AD converter may be mounted on the voltage detector 152 in the previous stage. *
  • the stop state of the inverter 230 is released. Thereafter, for example, the motor power supply voltage Vmot is supplied from the DC power supply 151 to the brushless DC motor 200.
  • the inverter 230 is started to drive the motor at the normal time.
  • the type of the brushless DC motor 200 can be identified based on the arrival time until the identification voltage reaches a predetermined value. Since the type of the brushless DC motor 200 can be identified separately from the normal motor driving, the load on the identification device 100 side can be reduced. Furthermore, the conventional communication by handshake between the identification device 100 and the brushless DC motor 200 is unnecessary. Moreover, an existing power supply terminal can be used, and a dedicated terminal for identification need not be newly provided. Product cost can be reduced by reducing the number of parts. For the identification, input and output terminals such as a PWM terminal and a TACH terminal are not particularly required, so that a particular advantage is obtained in identifying the type of the two-wire motor. *
  • the identification method of the present disclosure is suitably used not only at the time of product manufacture but also when, for example, replacing a failed brushless DC motor with a new brushless DC motor. It can be confirmed whether or not the replaced brushless DC motor is compatible with the system.
  • individual products equipped with brushless DC motors are connected to the Internet. So-called IoT (Internet of Things) is realized.
  • IoT Internet of Things
  • an individual product supplier equipped with a brushless DC motor can identify a product equipped with a specific brushless DC motor by analyzing big data including unique information of the brushless DC motor. As a result, quality can be stabilized, for example, by preventing occurrence of defects. *
  • FIG. 8 shows a further specific example of a flowchart of an identification method for identifying the type of the brushless DC motor 200.
  • the identification method according to the present embodiment may further include step S ⁇ b> 400 for notifying the result of identifying the type of the brushless DC motor 200.
  • the notification method it is possible to notify the result of identifying the type of the brushless DC motor 200 using the light emitting element 130 (for example, a plurality of LEDs) shown in FIG.
  • the controller 110 of the identification device 100 identifies the type of the brushless DC motor 200 from among the plurality of LEDs allocated for each type of the plurality of brushless DC motors, and the LED allocated to the brushless DC motor 200 to be identified. Light is emitted based on the result.
  • the light emitting element is not limited to the LED, and may be an element that notifies by light. *
  • a red LED can be assigned to the A supplier
  • a blue LED can be assigned to the B supplier
  • a green LED can be assigned to the C supplier.
  • the controller 110 of the identification device 100 can identify the brushless DC motor of the C supplier
  • the controller 110 can cause the green LED to emit light.
  • the worker in the factory can visually recognize whether or not the brushless DC motor to be identified is the motor of the C supplier.
  • the identification result can be displayed on the liquid crystal display as character information.
  • controller 110 of the identification apparatus 100 may once write the identification result in the memory 120, or may transmit it to another apparatus or device that requires the identification result. These forms are also modes for notifying the identification result. *
  • Embodiment 2 The present embodiment is different from the first embodiment in that the type of the brushless DC motor 200 is identified based on the identification voltage that appears on the power supply line after a predetermined time has elapsed since the start of power supply to the brushless DC motor 200.
  • the description of the configuration of the identification device 100 that is common to the first embodiment will be omitted, and differences from the first embodiment in the identification method will be mainly described.
  • FIG. 9 shows a flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the present embodiment.
  • FIG. 10 is a graph illustrating the change over time of the identification voltage.
  • FIG. 11 illustrates a table used for identifying the type of the brushless DC motor 200. *
  • Step S220A The voltage detector 152 detects the identification voltage after a predetermined time has elapsed since the start of power supply to the brushless DC motor 200. As described above, it is preferable that the voltage detector 152 detects the identification voltage Vdt after a predetermined time has elapsed since the power is supplied with the inverter 230 turned off. For example, the voltage detector 152 detects the identification voltage Vdt after 1800 ⁇ s from the start of power supply to the brushless DC motor 200.
  • the predetermined time is set to be equal to or less than the arrival time until the identification voltage based on the capacitor having the second smallest specific capacitance among the different capacitors for each type of the plurality of brushless DC motors reaches a predetermined value.
  • FIG. 10 shows an example in which the predetermined time is set to 1800 ⁇ s.
  • the predetermined time is set to an arrival time of 2400 ⁇ s or less until the identification capacitor of the supplier B having the second smallest specific capacitance among the suppliers A, B and C reaches the rated voltage of 12.0 V, for example.
  • the predetermined time is set to be equal to or less than the arrival time until the identification capacitor of the supplier A having the smallest specific capacity reaches the rated voltage of 12.0V.
  • the predetermined time can be set to 600 ⁇ s, for example. *
  • the identification voltage Vdt of the supplier A has already reached the rated voltage 12.0V, and the identification voltage Vdt of the suppliers B and C has changed linearly. On the way. In this way, after a predetermined time has elapsed since the start of power supply, each of the three identification voltages has a different value depending on the specific capacity. In this embodiment, the type of the brushless DC motor is identified using this characteristic.
  • the initial voltage of the identification capacitor 250 is read, and the identification voltage Vdt after the lapse of a predetermined time is determined as the initial voltage and the rated voltage. You may correct
  • the classifier 153 identifies the type of the brushless DC motor based on the identification voltage Vdt detected by the voltage detector 152 after a predetermined time has elapsed. Specifically, the discriminator 153 refers to the table and identifies the motor type based on the identification voltage Vdt.
  • the unique information of the brushless DC motor represents an identification voltage Vdt after a predetermined time, which is different for each of the plurality of brushless DC motors.
  • the predetermined time is 1800 ⁇ s
  • the identification voltage of supplier A after the elapse of the predetermined time is 12.0V
  • the identification voltage of supplier B is 9.0V
  • the identification voltage of supplier C is 6.0V.
  • the unique information of supplier A is 12.0V
  • the unique information of supplier B is 9.0V
  • the unique information of supplier C is 6.0V.
  • the hardware or software scale for identifying the type of the brushless DC motor 200 can be further reduced, and the identification can be performed more easily.
  • FIG. 12 schematically illustrates a typical block configuration example of the user system 100, the identification device 100A, and the brushless DC motor 200.
  • the identification device 100A is a separate device from the user system 100.
  • the identification device 100A includes, for example, an MCU 110A and a light emitting element 130 on which a DC power source 151, a voltage detector 152, and a discriminator 153 are mounted. Note that the DC power supply 151, the voltage detector 152, and the discriminator 153 are not shown in FIG.
  • the identification device 100 ⁇ / b> A includes a Vmot terminal and a GND terminal as terminals necessary for identifying the type of the brushless DC motor 200. *
  • the user system 100, the identification device 100A, and the brushless DC motor 200 are electrically connected to each other between the Vmot terminal and the GND terminal.
  • a power supply voltage can be supplied from the identification device 100A to the brushless DC motor 200 via the Vmot terminal.
  • the identification device 100A can identify the type of the brushless DC motor 200 after the power is turned on, for example, according to the processing flow shown in FIG.
  • the MCU 110A may transmit the identification result to the controller 110 of the user system 100.
  • FIG. 13 schematically shows another block configuration example of the user system 100, the identification device 100 ⁇ / b> A, and the brushless DC motor 200. *
  • the identification device 100A is electrically connected to the user system 100 and the brushless DC motor 200 via, for example, a test point (TP).
  • TP1 is a power supply TP.
  • TP2 is a TP for GND.
  • a dedicated probe can be connected to the identification device 100A and the type of the brushless DC motor 200 can be identified by applying the probe to the TP. *
  • Embodiments of the present disclosure are widely used in various devices including various fan motors such as a personal computer, a game machine, a vacuum cleaner, a dryer, a washing machine, and a refrigerator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本開示による識別方法は、ブラシレスDCモータの種類を識別する方法である。ブラシレスDCモータは、少なくとも1つのコンデンサを有し、少なくとも1つのコンデンサに、複数のブラシレスDCモータの種類毎に異なる固有容量が割り当てられる。その識別方法は、識別装置からブラシレスDCモータに電源ラインを介して電力を供給し、少なくとも1つのコンデンサの固有容量によって異なる、電源ラインに現れる識別電圧に基づいてブラシレスDCモータの種類を識別することを包含する。

Description

ブラシレスDCモータの種類を識別する識別方法、識別装置およびブラシレスDCモータ
本開示は、ブラシレスDCモータの種類を識別する識別方法、識別装置およびブラシレスDCモータに関する。
多くの電子機器は、例えば、内部で発生する熱を外部に逃がすための冷却装置としてファンモータを備える。電子機器において、ファンモータは、システムコントローラに電気的に接続され、そのシステムコントローラの制御を受けて動作する。 
特許文献1は、ファンモータとシステムコントローラとが通信を行ってファン識別情報を取得する識別方法を開示している。例えば、通常モードからコマンドモードに切り替わり、ファンモータおよびシステムコントローラは、電源線、PWM(Pulse Width Modulation)線およびTACH(Tachometer)線を介しコマンドを送受信する。システムコントローラは、ファン識別情報をハンドシェイクにより取得し、ファンモータとの適合性を判断する。この場合、システムコントローラ、ファン共に、通常モードと、コマンドモードの切り替えなど、複雑な制御ソフトを必要としていた。
米国特許出願公開第2006/0152891号明細書
ブラシレスDCモータの種類をより簡単に識別する手法が望まれている。 
本開示の例示的な実施形態は、ハンドシェイクを特に行うことなくブラシレスDCモータの種類を識別することが可能な、ブラシレスDCモータの種類の識別方法および識別装置を提供する。
本開示の例示的な識別方法は、ブラシレスDCモータの種類を識別する、識別装置に用いる識別方法であって、前記ブラシレスDCモータは、電源ラインとGNDラインの間に接続された少なくとも1つのコンデンサを有し、前記少なくとも1つのコンデンサに、複数のブラシレスDCモータの種類毎に異なる固有容量が割り当てられており、前記識別装置から前記ブラシレスDCモータに前記電源ラインを介して電力を供給し、前記少なくとも1つのコンデンサの前記固有容量によって異なる、前記電源ラインに現れる識別電圧に基づいて前記ブラシレスDCモータの種類を識別することを包含する。 
本開示の例示的な識別装置は、ブラシレスDCモータの種類を識別する識別装置であって、前記ブラシレスDCモータは、モータを駆動するインバータと、電源ラインとGNDラインの間に接続された少なくとも1つのコンデンサとを有し、前記少なくとも1つのコンデンサに、複数のブラシレスDCモータの種類毎に異なる固有容量が割り当てられており、前記ブラシレスDCモータに前記電源ラインを介して電力を供給するための電源端子と、前記ブラシレスDCモータの種類を識別するコントローラと、を備え、前記コントローラは、前記電力を前記ブラシレスDCモータに供給した状態で、前記少なくとも1つのコンデンサの前記固有容量によって異なる、前記電源ラインに現れる識別電圧に基づいて前記ブラシレスDCモータの種類を識別する。 
本開示の例示的なブラシレスDCモータは、回路基板と、前記回路基板に配置され、外部から電力を供給するための電源端子と、モータを駆動するインバータと、前記電源端子に接続された電源ラインとGNDラインの間に接続され、複数のブラシレスDCモータの種類毎に異なる固有容量が割り当てられた少なくとも1つのコンデンサと、を備え、前記電源端子を介して前記電力を供給した状態で、前記固有容量に応じて異なる識別電圧が前記電源端子に現れる。
本開示の例示的な実施形態によると、電源ラインとGNDラインの間に接続され、ブラシレスDCモータに設けられた識別用コンデンサの固有容量に基づく識別電圧を検出する。これにより、ハンドシェイクを行うことなくブラシレスDCモータの種類を識別することが可能な、ブラシレスDCモータの識別方法および識別装置が提供される。
図1は、本開示による、ブラシレスDCモータの種類を識別する識別方法のフローチャートである。 図2は、例示的な実施形態1によるユーザシステム100およびブラシレスDCモータ200の典型的なブロック構成例を示すブロック図である。 図3は、ユーザシステム100の内部のブロック構成例を示すブロック構成図である。 図4は、例示的な実施形態1によるユーザシステム100およびブラシレスDCモータ200の他のブロック構成例を示すブロック図である。 図5は、例示的な実施形態1によるブラシレスDCモータ200の種類を識別する識別方法のフローチャートである。 図6は、識別電圧の時間変化の様子を例示するグラフである。 図7は、例示的な実施形態1においてブラシレスDCモータ200の種類を識別するために用いるテーブルを例示する図である。 図8は、例示的な実施形態1によるブラシレスDCモータ200の種類を識別するさらなる識別方法のフローチャートである。 図9は、例示的な実施形態2によるブラシレスDCモータ200の種類を識別する識別方法のフローチャートである。 図10は、識別電圧の時間変化の様子を例示するグラフである。 図11は、例示的な実施形態1においてブラシレスDCモータ200の種類を識別するために用いるテーブルを例示する図である。 図12は、例示的な実施形態3による、ユーザシステム100、識別装置100AおよびブラシレスDCモータ200の典型的なブロック構成例を示すブロック図である。 図13は、例示的な実施形態3による、ユーザシステム100、識別装置100AおよびブラシレスDCモータ200の他のブロック構成例を示すブロック図である。
以下、添付の図面を参照しながら、本開示のブラシレスDCモータの種類を識別する識別方法および識別装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。また、本発明の実施形態は、以下で例示する装置または方法に限られない。例えば、一の実施形態と、他の実施形態とを組み合わせることも可能である。 
本開示の実施形態を説明する前に、図1を参照しながら、本開示における識別方法の概要を説明する。図1は、本開示による、ブラシレスDCモータの種類を識別する識別方法のフローチャートを示している。 
本開示による識別方法は、ブラシレスDCモータから出力されるブラシレスDCモータに関する情報を識別する、識別装置に用いる識別方法である。当該ブラシレスDCモータは、典型的には、電源端子およびGND端子を有する2ワイヤモータであり、電源ラインとGNDラインの間に接続された少なくとも1つのコンデンサを備える。本明細書において、少なくとも1つのコンデンサを「識別用コンデンサ」と表記する場合がある。当該識別用コンデンサに、複数のブラシレスDCモータの種類毎に異なる固有容量が割り当てられる。電源端子を介して電源電圧、つまり、電力をブラシレスDCモータに供給すると、その固有容量によって異なる識別電圧が電源端子に現れる。 
本開示による識別方法は、識別装置からブラシレスDCモータに電源ラインを介して電力を供給する工程(ステップS100)と、識別用コンデンサの固有抵抗によって異なる識別電圧を読み出す工程(ステップS200)と、読み出した識別電圧に基づいてブラシレスDCモータの種類を識別する工程(ステップS300)を包含する。 
本開示による識別方法によれば、ハンドシェイクを特に行うことなく、ブラシレスDCモータから出力されるブラシレスDCモータに関する情報を識別することが可能である。そのような情報は、例えば、ブラシレスDCモータの種類または製品ロット番号を示す情報である。 
(実施形態1)

 〔1-1.ユーザシステム100およびブラシレスDCモータ200の構成例〕

 図2は、本実施形態による、ユーザシステム100およびブラシレスDCモータ200の典型的なブロック構成例を模式的に示している。本明細書では、ファンモータを例にしてブラシレスDCモータ200の構造および動作を説明する。本開示のブラシレスDCモータは、インナーロータ型またはアウターロータ型モータを含む。ブラシレスDCモータ200は、ファンモータに限られず、様々な用途に用いられるブラシレスDCモータである。ブラシレスDCモータ200は、例えば、空調装置または洗濯機などの家電製品に用いられるモータおよび車載用モータである。 
ユーザシステム100は、ブラシレスDCモータ200に電気的に接続される。ユーザシステム100は、ブラシレスDCモータ200に電力を供給することが可能である。ユーザシステム100は、多品種を生産する工場で、ブラシレスDCモータの生産管理システムに搭載できる。また、ユーザシステム100は、ブラシレスDCモータ200を搭載することが可能な電子機器内のシステムまたは車載システムである。例えば、ブラシレスDCモータ200は、サーバー、デスクトップ型のパーソナルコンピュータの本体またはゲーム機などの電子機器に好適に搭載される。例えば、仕様の異なるブラシレスDCモータ200が、同一の場所で生産される場合、ユーザシステム100は、一連の検査システムの一部である。または、ブラシレスDCモータ200が、ファンモータとして、サーバー、デスクトップ型のパーソナルコンピュータの本体に搭載される場合、ユーザシステム100は、マザーボードに実装される種々の電子部品で構成されるシステム全体またはその一部である。 
ユーザシステム100は、例えば、コントローラ110およびメモリ120を備える。本実施形態によるユーザシステム100は、後述するように、ブラシレスDCモータ200の種類を識別する機能を有する。換言すると、ユーザシステム100は、ブラシレスDCモータ200の種類を識別する識別装置として使用することができる。そのため、本明細書では、ユーザシステム100を識別装置100と呼ぶ場合がある。 
コントローラ110は、ユーザシステム100の全体を主に制御し、ブラシレスDCモータ200への電力供給を制御することができる。コントローラ110は、さらに、ブラシレスDCモータ200の種類を識別することが可能である。コントローラ110は、例えば、MCU(マイクロコントロールユニット)またはFPGA(フィールド・プログラマブル・ゲートアレイ)などの半導体集積回路である。 
メモリ120は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。メモリ120は、例えば、ブラシレスDCモータ200の種類をコントローラ110に識別させるための命令群を有する制御プログラムを格納する。例えば、その制御プログラムはブート時にRAM(不図示)に一旦展開される。なお、メモリ120は、コントローラ110に外付けされる必要はなく、コントローラ110に搭載されていてもよい。メモリ120を搭載したコントローラ110は、例えば上述したMCUである。 
ユーザシステム100は、ブラシレスDCモータ200に接続するための接続端子として、Vmot端子およびGND端子を備える。Vmot端子は、モータ電源用の端子である。例えば、7.0~13.8Vの範囲のモータ電源電圧Vmotが、Vmot端子からブラシレスDCモータ200に供給される。 
図3は、ユーザシステム100の内部のより詳細なブロック構成例を模式的に示している。 
ユーザシステム100は、例えば、DC電源151、電圧検出器152および判別器153をさらに備える。ユーザシステム100または識別装置100の内部のブロック構成に言及する場合、コントローラ110、DC電源151、電圧検出器152および判別器153の構成要素を纏めて単に「コントローラ110」と呼ぶ場合がある。 
DC電源151は、例えば定電圧源であり、通常時のモータ駆動においてブラシレスDCモータ200に供給するモータ電源電圧Vmot(例えば7.0~13.8V)を生成する。通常時のモータ駆動とは、ブラシレスDCモータ200のインバータ230に電力を供給することによりインバータ230を動作させた状態で、モータを駆動することを意味する。DC電源151は、電流を制限するための電流制限の機能を備えていることが好ましい。 
DC電源151は、ブラシレスDCモータ200の種類を識別するときにもブラシレスDCモータ200に電力を供給する。識別時に供給する電圧は、モータ電源電圧Vmot以下であってもよい。DC電源151として定電流源を用いることが可能である。これにより、電源ラインに定電流を流すことができる。 
電圧検出器152は、ブラシレスDCモータ200の種類の識別において、電源ラインに現れる識別電圧、つまり、電源ラインおよびGNDラインの間の電位差を検出する。識別電圧は、識別用コンデンサ250の電圧に相当し、DC電源151の定格電圧以下の電圧を示す。さらに、電圧検出器152は、識別電圧が後述する所定値に到達するまでの到達時間を計測する。 
判別器153は、電圧検出器152によって検出された識別電圧または計測された到達時間に基づいて、ブラシレスDCモータ200の種類を識別する。判別器153は、典型的には、コントローラ110に実装される。 
再び、図2を参照する。 
ブラシレスDCモータ200は、例えば、インペラを備えるDCファンである。ブラシレスDCモータ200は、例えば、軸流ファン、遠心ファン、クロスフローファンまたはシロッコファンである。ブラシレスDCモータ200は、典型的に、レギュレータ210、モータドライブIC220、インバータ230、それらの電子部品を実装する回路基板CB、コイル240、識別用コンデンサ250およびホール素子260を備える。例えば、レギュレータ210、モータドライブIC220、インバータ230およびホール素子260によって、コイル240を通電してモータを駆動するためのモータ制御回路が構成される。 
レギュレータ210は、例えば13.8Vのモータ電源電圧Vmotを降圧してモータドライブIC220用の電源電圧Vcc(例えば5.0V)を生成する。ブラシレスDCモータ200において、モータドライブIC220に供給する電源電圧Vccをモータ電源電圧Vmotに基づいて生成することが好ましい。これにより、電源電圧Vcc用の端子をブラシレスDCモータ200に設ける必要がなくなり、端子およびリード線の数を減らすことができる。ただし、モータ電源電圧Vmotとは別に、ユーザシステム100からブラシレスDCモータ200に電源電圧Vccを供給するようにしてもよい。 
モータドライブIC220は、例えばMCU221を搭載し、インバータ230に接続される。MCU221は、モータの回転を制御するためのPWM信号を生成する。モータドライブIC220は、インバータ230を制御する制御信号をPWM信号に従って生成しインバータ230に出力する。 
MCU221は、一般的なタイマーの機能を内蔵する。MCU221はこの機能を用いて、電源電圧Vccの投入開始から一定時間経過するまでPWM信号の生成を停止することができる。一定時間は、例えば0.1s程度である。これにより、電源電圧Vccの投入開始から一定時間経過するまでインバータ230の駆動を停止させることができる。 
モータドライブIC220は、例えばホール素子260からの出力に基づいてモータの回転速度を監視し、モータの回転速度に応じたPWM信号を生成する。その出力方式は、例えば、一回転当たり2パルスである。ただし、ホール素子を利用しない技術が知られている。そのような技術を採用する場合、ホール素子260は必須ではない。 
インバータ230は、モータドライブIC220およびモータのコイル240に電気的に接続される。インバータ230は、モータドライブIC220の制御の下でモータ電源の電力をファンモータに供給する電力に変換し、モータのコイル240を通電する。 
コイル240は、モータの巻線である。 
識別用コンデンサ250は、電源ラインの電圧の変動を抑制するためのバイパスコンデンサであり、典型的には、電解コンデンサである。その容量は、例えば数百μFである。識別用コンデンサ250は、単体のコンデンサであってもよいし、互いに並列または直列に接続された複数のコンデンサを備えていてもよい。 
識別用コンデンサ250の容量は、複数のブラシレスDCモータの種類毎に異なる。本明細書では、そのような容量を「固有容量」と呼ぶこととする。ブラシレスDCモータの固有情報として、識別用コンデンサ250に、複数のブラシレスDCモータの種類毎に異なる固有容量が割り当てられる。識別用コンデンサ250が複数のコンデンサを含む場合、固有容量は、それらのコンデンサの合成容量によって設定される。 
例えば、ブラシレスDCモータを製造するサプライヤー毎に、識別用コンデンサ250をブラシレスDCモータの固有情報として割り当てることができる。例えば、100μFの固有容量をサプライヤーAに割り当て、200μFの固有容量をサプライヤーBに割り当て、300μFの固有容量をサプライヤーCに割り当てることができる。さらに、これらと異なる固有容量を複数のサプライヤーにそれぞれ割り当てることができる。 
例えば、製品ロット毎に識別用コンデンサ250を固有情報として割り当てることができる。例えば、100μFの固有容量を製品ロット番号Aに割り当て、200μFの固有容量を製品ロット番号Bに割り当て、300μFの固有容量を製品ロット番号Cに割り当てることができる。さらに、これらと異なる固有容量を複数の製品ロット番号にそれぞれ割り当てることができる。このように、複数のブラシレスDCモータの種類は、例えば、サプライヤーの数だけ存在し、または、管理対象の製品ロットの数だけ存在する。 
ブラシレスDCモータ200は、例えば、ユーザシステム100側の端子に対応した、Vmot端子およびGND端子が配置された回路基板CBを備える。 
図4は、ユーザシステム100およびブラシレスDCモータ200の他のブロック構成例を模式的に示している。 
ユーザシステム100は、発光素子130をさらに備えていてもよい。発光素子130は、例えば、複数のLED(Light Emitted Diode)を有する。発光素子130は、ブラシレスDCモータ200の種類の識別結果を報知する報知装置である。例えば、複数のLEDは、複数のブラシレスDCモータの種類の数だけ設けることができる。例えば、サプライヤーAおよびBの2種類のブラシレスDCモータがあれば、発光色の異なる2個のLEDを設けることができる。例えば、サプライヤーA用の赤色LED、サプライヤーB用の青色LEDを設けることができる。 
〔1-2.ブラシレスDCモータ200の種類の識別方法〕

 図5は、本実施形態によるブラシレスDCモータ200の種類を識別する識別方法のフローチャートを示している。 
本実施形態による識別方法は、例えば識別装置100に用いる方法である。モータを搭載する多品種の製品を製造する工程において、異なる種類のモータの混入を防止するために、一般に、ブラシレスDCモータの種類の識別が必要とされる。例えば、工場における製品製造時、ユーザシステムに対するブラシレスDCモータの適合性を検査する方法に、本開示の識別方法は好適に利用される。例えば、ブラシレスDCモータの適合性を検査する工程は、製品製造の工程の一部に組み込むことができる。 
(ステップS100)

 先ず、識別装置100(ユーザシステム100)とブラシレスDCモータ200との端子同士を電気的に接続した状態で、例えば、電流制限付きの定電圧源または定電流源を用いて識別装置100からブラシレスDCモータ200に電力を供給する。識別用の電源電圧は、通常時のモータ駆動においてブラシレスDCモータ200に供給するモータ電源電圧Vmotよりも低くても構わない。 
例えば、定電流源を用いて電源ラインに定電流を流すことによって、識別用コンデンサ250を充電してもよい。この方法によれば、過大な突入電流が発生することを抑制でき、その結果、後述する識別電圧の検出が安定し、かつ、識別用コンデンサ250の寿命も延びる。さらに、識別電圧の時間変化が線形になるので、後述する到達時間の計測を容易に行える。 
例えば、ブラシレスDCモータ200の駆動時に流す電流よりも大きい電流を電源ラインに流すことによって、識別用コンデンサ250を充電してもよい。この方法によれば、電流の一部がモータ側に流れた場合においても到達時間の計測を継続することができ、さらに、識別用コンデンサ250の充電時間を短縮することができる。 
例えば、電流制限により設定される電流を電源ラインに流すことによって、識別用コンデンサ250を充電してもよい。この方法によれば、識別電圧の時間変化が線形になるので、到達時間の計測を適切かつ容易に行える。 
(ステップS210A)

 図6は、識別電圧の時間変化を例示するグラフである。グラフの横軸は時間(μs)を示し、縦軸は、識別電圧Vdt(V)を示す。例えば、サプライヤーAの固有容量は、100μFであり、サプライヤーBの固有容量は、200μFであり、サプライヤーCの固有容量は、300μFである。 
複数のブラシレスDCモータの種類毎に固有容量が割り当てられるので、ある時刻に検出される識別電圧は、サプライヤー毎に異なる電圧を示す。電源ラインに現れる識別電圧Vdtを電圧検出器152によって検出する。例えば、電圧検出器152は、50μsの時間間隔で識別電圧Vdtを検出(またはサンプリング)する。そのとき、ブラシレスDCモータ200のインバータ230がオフ、つまり、停止している状態で、識別電圧Vdtを電圧検出器152によって検出することが好ましい。例えば、MCU221のタイマー機能を用いて電力の供給開始から一定時間経過するまでPWM信号の生成を停止することにより、インバータ230の駆動を停止させる。インバータ230の駆動の停止によって、ブラシレスDCモータ200の回転に伴い電源ラインを流れる駆動電流が大きく変動することを抑制できる。上記の一定時間は、モータの種類の識別に必要とされる時間であり、例えば、最も大きい固有容量を有するサプライヤーCの識別電圧Vdtが飽和する時間(3600μs)以上に設定される。 
(ステップS210B)

 ブラシレスDCモータ200に電力投入を開始すると、識別用コンデンサ250の充電が始まる。例えば、電流制限付きの定電圧源を用いる場合の識別電圧Vdtは式(1)に従って上昇する。  Vdt=I_limit/C1×time       式(1)

ここで、I_limitは電流制限であり、C1は識別用コンデンサ250の固有容量であり、timeは充電時間(μs)である。識別電圧Vdtがモータ電源電圧Vmotの定格電圧Vsatに到達するまでの時間t_reachは、固有容量C1の大小に応じて変化する。これを利用してサプライヤーを識別することができる。t_reachは式(2)で表され、C1は式(3)で表される。

  t_reach=Vsat×C1/I_limit    式(2)

  C1=t_reach×I_limit/Vsat    式(3)
到達時間t_reachは、サプライヤー毎に異なる。例えば、I_limitを1Aとし、Vsatを12.0Vとする。図6に示すように、到達時間t_reachは、サプライヤーAでは1200μsであり、サプライヤーBでは2400μsであり、サプライヤーCでは3600μsである。例えば、電流制限付きの定電圧源を用いる場合、図示するように、識別電圧Vdtは、時間的に線形に変化し、やがて、所定値に到達する。 
ある一例において、識別電圧Vdtの所定値は、定格電圧Vsatである。この場合、識別電圧Vdtの比較対象となる基準電圧が1つとなるので、電源回路を簡単に構成できるという利点が得られる。例えば、識別電圧Vdtが定格電圧Vsatに到達するまでの到達時間を電圧検出器152によって計測する。具体的には、電圧検出器152は、ステップ210Aで検出する識別電圧Vdtを監視し、その到達時間を計測する。または、電流計(不図示)を用いることによって、電力の供給を開始してからインバータ230が動作してモータの駆動電流が流れ始めるまでの遅延時間を計測してもよい。例えば、電圧検出器152は、サプライヤーAの到達時間として1200μsを計測し、サプライヤーBの到達時間として2400μsを計測し、サプライヤーCの到達時間として3600μsを計測する。 
他の一例において、識別電圧Vdtの所定値は、定格電圧Vsatの10%以上90%以下の範囲の電圧に設定される。この場合の到達時間は、例えば、識別電圧Vdtが定格電圧の60%に到達するまでの時間を意味する。その到達時間は、定格電圧Vsatを基準にする場合と比べ短縮され、これにより、電力のばらつきが計測に及ぼし得る影響を抑えることができる。 
定電圧源を用いる場合、識別電圧Vdtは、式(4)に従って時定数に応じて変化する。定数Rは、例えば、電源ラインの配線導線、電源の出力インピーダンス、またはモータ制御回路内の配線抵抗などに寄生する微小な抵抗成分を示す。電源投入の直後は、識別電圧Vdtは大きく変化する。そのため、複数のブラシレスDC200の間の容量の違いによる識別電圧Vdtの差は小さくなる。後半では、識別電圧Vdtは定格電圧Vsatに漸近していくので、到達時間の計測において誤差が生じ得る。これを考慮すると、定電圧源を用いる場合には、定格電圧Vsatの10%以上90%以下の範囲に所定値を設定することが好ましい。  Vdt=Vmot(1-exp-(t/RC))     式(4)
他の一例において、例えば電圧検出器152によって、電源ラインに電力の供給を開始する時に、識別用コンデンサ250の初期電圧を読み出してから、到達時間を計測し、初期電圧と所定値の差分に基づいて補正してもよい。例えば、初期電圧が4.0Vであり、所定値が12.0Vである場合、12.0V/8.0Vの比率を計測した到達時間に乗算することによって、式(2)に基づいて補正後の到達時間が求まる。静電気などに起因して識別用コンデンサ250に電荷が残る可能性があり、初期電圧は、必ずしもゼロであるとは限らない。そのような場合でも、予め初期電圧を検出しておき、計測した到達時間を補正することにより、到達時間の計測を適切に行うことができる。 
他の一例において、例えば電圧検出器152によって、電源ラインで電力の供給を開始するとき、識別用コンデンサ250の初期電圧を0Vにしてから、つまり、識別用コンデンサ250に残存している電荷を放電してから、到達時間の測定を行ってもよい。例えば、電圧検出器152により識別電圧Vdtを測定する前に電源ラインをGNDラインに電気的に接続することにより、識別用コンデンサ250の初期電圧を0Vにできる。これにより、初期電圧の検出および計測した到達時間の補正は不要となる。 
(ステップS300)

 判別器153を用いて、電圧検出器152により計測した到達時間に基づいてブラシレスDCモータ200の種類を識別する。具体的には、判別器153は、テーブルを参照して、計測された到達時間に基づいてモータの種類を識別する。 
図7は、ブラシレスDCモータ200の種類を識別するために用いるテーブルを例示している。テーブルは、複数のブラシレスDCモータの種類と、複数のブラシレスDCモータの固有情報と、を関連付けるルックアップテーブル(LUT)である。ブラシレスDCモータの固有情報は、複数のブラシレスDCモータ毎に異なる到達時間を表す。テーブルは、例えばメモリ120に格納される。上述したとおり、複数のブラシレスDCモータの種類は、例えば、サプライヤー毎に存在し、例えば、サプライヤーA、BおよびCの3種類が存在する。例えば、モータの種類は、例えば3ビットのデジタル信号で表現することができる。 
例えば、判別器153は、AD変換器(不図示)を有していてもよい。判別器153は、電圧検出器152によって計測された到達時間(アナログ値)をデジタル信号に変換する。ブラシレスDCモータの固有情報は、AD変換の分解能と同じビット幅のデジタル値によっても表現され得る。なお、AD変換器は、前段の電圧検出器152に実装してもよい。 
識別装置100によるブラシレスDCモータ200の種類の識別が完了すると、インバータ230の停止状態は解除される。その後、例えば、DC電源151からブラシレスDCモータ200にモータ電源電圧Vmotを供給する。モータドライブIC220からインバータ230にPWM信号を与えることにより、インバータ230に通常時のモータの駆動を開始させる。 
本実施形態の識別方法によれば、識別電圧が所定値に到達するまでの到達時間に基づいてブラシレスDCモータ200の種類を識別することが可能となる。ブラシレスDCモータ200の種類の識別を、通常時のモータ駆動とは別に実施できるので、識別装置100側の負荷を低減できる。さらに、従来のような、識別装置100およびブラシレスDCモータ200の間のハンドシェイクによる通信は不要である。また、既存の電源端子を利用することができ、識別用の専用端子を新たに設けなくてもよい。部品数の削減により、製品コストを低減することができる。識別に、PWM端子、TACH端子などの入力、出力端子は特に必要とされないので、2ワイヤモータの種類の識別に特に利点が得られる。 
本開示の識別方法は、製品製造時に限らず、例えば、故障したブラシレスDCモータを新しいブラシレスDCモータに交換するときなどにも好適に用いられる。交換したブラシレスDCモータがそのシステムに適合しているか否かを確認することができる。また、例えば、ブラシレスDCモータを搭載した個々の製品はインターネットに接続される。いわゆる、IoT(Internet of Things)が実現される。例えば、ブラシレスDCモータを搭載した個々の製品のサプライヤーは、ブラシレスDCモータの固有情報を含むビッグデータを解析することにより、特定のブラシレスDCモータが搭載された製品を特定することができる。これにより不具合の発生を未然に防ぐなど品質の安定化が図れる。 
図8は、ブラシレスDCモータ200の種類を識別する識別方法のフローチャートのさらなる具体例を示している。 
図8に示すように、本実施形態による識別方法は、ブラシレスDCモータ200の種類を識別した結果を報知するステップS400をさらに包含することができる。 
報知の手法の一例として、図4に示す発光素子130(例えば複数のLED)を用いてブラシレスDCモータ200の種類を識別した結果を報知することが可能である。識別装置100のコントローラ110は、複数のブラシレスDCモータの種類毎に割り当てられた複数のLEDの中から、識別対象のブラシレスDCモータ200に割り当てられたLEDを、ブラシレスDCモータ200の種類を識別した結果に基づいて発光させる。なお、発光素子は、LEDに限らず、光によって報知する素子であってもよい。 
例えば、Aサプライヤー用に赤色LEDを割り当て、Bサプライヤー用に青色LEDを割り当て、Cサプライヤー用に緑色LEDを割り当てることができる。識別装置100のコントローラ110は、CサプライヤーのブラシレスDCモータを識別した場合、緑色LEDを発光させることができる。これにより、例えば工場の作業者は、識別対象のブラシレスDCモータがCサプライヤーのモータであるか否かを視覚的に認識することができる。 
他の一例として、表示装置(例えば、液晶ディスプレイ)またはスピーカーなどを用いてブラシレスDCモータ200の種類を識別した結果を報知することが可能である。例えば、その識別結果を文字情報として液晶ディスプレイに表示させることができる。例えば、複数のブラシレスDCモータの種類毎に音の高低を変えてスピーカーを鳴らすことが可能である。 
他の一例として、識別装置100のコントローラ110は、識別結果をメモリ120に一旦書き込んでもよいし、識別結果を必要とする他の装置またはデバイスにそれを送信してもよい。これらの形態も、識別結果を報知する一態様である。 
(実施形態2)

 本実施形態は、ブラシレスDCモータ200に電力の供給を開始してから所定時間経過後に電源ラインに現れる識別電圧に基づいてブラシレスDCモータ200の種類を識別する点において、実施形態1とは異なる。以下、実施形態1と共通する識別装置100の構成などの説明は省略し、識別方法において実施形態1と異なる点を主に説明する。 
図9は、本実施形態によるブラシレスDCモータ200の種類を識別する識別方法のフローチャートを示している。図10は、識別電圧の時間変化を例示するグラフである。図11は、ブラシレスDCモータ200の種類を識別するために用いるテーブルを例示している。 
(ステップS220A)

 電圧検出器152によって、ブラシレスDCモータ200に電力の供給を開始してから所定時間経過後の識別電圧を検出する。既に説明したとおり、インバータ230をオフさせた状態で、電圧検出器152によって、電力を供給してから所定時間経過後の識別電圧Vdtを検出することが好ましい。例えば、電圧検出器152によって、ブラシレスDCモータ200に電力の供給を開始してから1800μs後の識別電圧Vdtを検出する。 
例えば、所定時間は、複数のブラシレスDCモータの種類毎に異なるコンデンサの中で、固有容量が2番目に小さいコンデンサに基づく識別電圧が所定値に到達するまでの到達時間以下に設定される。図10には、所定時間を1800μsに設定した例を示す。その所定時間は、サプライヤーA、BおよびCの中で固有容量が2番目に小さいサプライヤーBの識別用コンデンサが、例えば定格電圧12.0Vに到達するまでの到達時間2400μs以下に設定されている。または、例えば、所定時間は、固有容量が最も小さいサプライヤーAの識別用コンデンサが、定格電圧12.0Vに到達するまでの到達時間以下に設定される。その場合、所定時間は、例えば600μsに設定することができる。 
ブラシレスDCモータ200に電力の供給を開始してから1800μs後、サプライヤーAの識別電圧Vdtは、定格電圧12.0Vに既に到達し、かつ、サプライヤーB、Cの識別電圧Vdtは線形に変化している途中である。このように、電力の供給を開始してから所定時間経過後、3つの各々の識別電圧は固有容量によって異なる値を示す。本実施形態では、この特性を利用し、ブラシレスDCモータの種類を識別する。 
実施形態1と同様に、例えば電圧検出器152によって、電源ラインに電力の供給を開始する時に、識別用コンデンサ250の初期電圧を読み出し、所定時間経過後の識別電圧Vdtを、初期電圧と定格電圧の差分に基づいて補正してもよい。 
(ステップS300)

 判別器153によって、電圧検出器152により検出した所定時間経過後の識別電圧Vdtに基づいてブラシレスDCモータの種類を識別する。具体的には、判別器153によって、テーブルを参照して、識別電圧Vdtに基づいてモータの種類を識別する。 
図11に示すように、ブラシレスDCモータの固有情報は、複数のブラシレスDCモータ毎に異なる、所定時間経過後の識別電圧Vdtを表す。例えば、所定時間を1800μsとした場合、所定時間経過後のサプライヤーAの識別電圧は12.0Vであり、サプライヤーBの識別電圧は9.0Vであり、サプライヤーCの識別電圧は6.0Vである。換言すると、サプライヤーAの固有情報は12.0Vであり、サプライヤーBの固有情報は9.0Vであり、サプライヤーCの固有情報は6.0Vである。 
本実施形態によれば、識別電圧Vdtが所定値に到達するまでの到達時間の計測などは特に必要とされず、所定時間経過後の識別電圧Vdtを検出するだけでよい。そのため、ブラシレスDCモータ200の種類の識別のためのハードウェアまたはソフトウェア規模をさらに縮小することが可能となり、さらに、その識別をより簡単に行うことができる。 
(実施形態3)

 図12は、ユーザシステム100、識別装置100AおよびブラシレスDCモータ200の典型的なブロック構成例を模式的に示している。 
本実施形態による識別装置100Aは、実施形態1または2とは異なり、ユーザシステム100とは別個の装置である。識別装置100Aは、例えば、DC電源151、電圧検出器152および判別器153を搭載したMCU110Aおよび発光素子130を備える。なお、煩雑にならないよう、図12に、DC電源151、電圧検出器152および判別器153を示していない。識別装置100Aは、ブラシレスDCモータ200の種類の識別に必要な端子として、Vmot端子およびGND端子を備える。 
ユーザシステム100、識別装置100AおよびブラシレスDCモータ200は、Vmot端子およびGND端子の間で互いに電気的に接続される。識別装置100AからブラシレスDCモータ200にVmot端子を介して電源電圧を供給することができる。 
識別装置100Aは、電源投入後に、例えば図8または図9に示す処理フローに従って、ブラシレスDCモータ200の種類を識別することができる。MCU110Aは、ユーザシステム100のコントローラ110に識別結果を送信してもよい。 
図13は、ユーザシステム100、識別装置100AおよびブラシレスDCモータ200の他のブロック構成例を模式的に示している。 
識別装置100Aは、例えばテストポイント(TP)を介して、ユーザシステム100およびブラシレスDCモータ200に電気的に接続される。TP1は電源用TPである。TP2はGND用TPである。識別装置100Aに専用プローブを接続し、そのプローブをTPに当ててブラシレスDCモータ200の種類を識別することができる。 
本開示の実施形態は、例えば、パソコン、ゲーム機、掃除機、ドライヤ、洗濯機および冷蔵庫などの、各種ファンモータを備える多様な機器に幅広く利用される。

Claims (19)

  1. ブラシレスDCモータの種類を識別する、識別装置に用いる識別方法であって、

     前記ブラシレスDCモータは、電源ラインとGNDラインの間に接続された少なくとも1つのコンデンサを有し、前記少なくとも1つのコンデンサに、複数のブラシレスDCモータの種類毎に異なる固有容量が割り当てられており、

     前記識別装置から前記ブラシレスDCモータに前記電源ラインを介して電力を供給し、

     前記少なくとも1つのコンデンサの前記固有容量によって異なる、前記電源ラインに現れる識別電圧に基づいて前記ブラシレスDCモータの種類を識別する、識別方法。
  2. 請求項1に記載の識別方法であって、

     前記ブラシレスDCモータの種類の識別は、前記ブラシレスDCモータのインバータがオフしている状態で前記識別電圧が所定値に到達するまでの、前記固有容量に応じて異なる到達時間を検出し、前記到達時間に基づいて行う。
  3. 請求項2に記載の識別方法であって、

     前記所定値は、モータ電源電圧の定格電圧である。
  4. 請求項2に記載の識別方法であって、

     前記所定値は、モータ電源電圧の定格電圧の10%以上90%以下の範囲の電圧である。
  5. 請求項2から4のいずれかに記載の識別方法であって、

     前記ブラシレスDCモータの種類の識別は、電圧検出器によって検出した前記到達時間に基づいて行う。
  6. 請求項2から5のいずれかに記載の識別方法であって、

     前記ブラシレスDCモータの種類の識別は、前記複数のブラシレスDCモータの種類と、複数のブラシレスDCモータの固有情報と、を関連付けるテーブルを参照して、前記固有容量に応じて異なる前記到達時間に基づいて行う。
  7. 請求項2から6のいずれかに記載の識別方法であって、

     さらに、前記電源ラインに前記電力の供給を開始する時に、前記少なくとも1つのコンデンサの初期電圧を読み出し、前記到達時間を、前記初期電圧と前記所定値の差分に基づいて補正する。
  8. 請求項1から7のいずれかに記載の識別方法であって、

     前記電力の供給において、定電流源を用いて前記電源ラインに定電流を流すことによって、前記少なくとも1つのコンデンサを充電する。
  9. 請求項1から7のいずれかに記載の識別方法であって、

     前記電力の供給において、前記ブラシレスDCモータの駆動時に流す電流よりも大きい電流を前記電源ラインに流すことによって、前記少なくとも1つのコンデンサを充電する。
  10. 請求項1から7のいずれかに記載の識別方法であって、

     前記電力の供給において、電流制限により設定される電流を前記電源ラインに流すことによって、前記少なくとも1つのコンデンサを充電する。
  11. 請求項1から10のいずれかに記載の識別方法であって、

     前記到達時間の検出は、前記電力の供給開始から一定時間経過するまで前記インバータの駆動を停止させた状態で行う。
  12. 請求項11に記載の識別方法であって、

     前記ブラシレスDCモータに実装されたタイマー機能を用いて前記インバータの駆動を停止させる。
  13. 請求項1から12のいずれかに記載の識別方法であって、

     さらに、前記識別装置を用いて、前記ブラシレスDCモータの種類を識別した結果を報知する。
  14. 請求項1から12のいずれかに記載の識別方法であって、

     さらに、前記複数のブラシレスDCモータの種類毎に割り当てられた複数の発光素子の中から、識別対象のブラシレスDCモータに割り当てられた発光素子を、前記ブラシレスDCモータの種類を識別した結果に基づいて発光させる。
  15. 請求項1から14のいずれかに記載の識別方法であって、

     前記ブラシレスDCモータは、インペラを有するファンモータである。
  16. ブラシレスDCモータの種類を識別する識別装置であって、

     前記ブラシレスDCモータは、モータを駆動するインバータと、電源ラインとGNDラインの間に接続された少なくとも1つのコンデンサとを有し、前記少なくとも1つのコンデンサに、複数のブラシレスDCモータの種類毎に異なる固有容量が割り当てられており、

     前記ブラシレスDCモータに前記電源ラインを介して電力を供給するための電源端子と、

     前記ブラシレスDCモータの種類を識別するコントローラと、

    を備え、

     前記コントローラは、前記電力を前記ブラシレスDCモータに供給した状態で、前記少なくとも1つのコンデンサの前記固有容量によって異なる、前記電源ラインに現れる識別電圧に基づいて前記ブラシレスDCモータの種類を識別する。
  17. 請求項16に記載の識別装置であって、

     前記コントローラは、前記識別電圧が所定値に到達するまでの、前記固有容量に応じて異なる到達時間を検出し、前記到達時間に基づいて前記ブラシレスDCモータの種類を識別する。
  18. ブラシレスDCモータであって、

     回路基板と、

     前記回路基板に配置され、外部から電力を供給するための電源端子と、

     モータを駆動するインバータと、

     前記電源端子に接続された電源ラインとGNDラインの間に接続され、複数のブラシレスDCモータの種類毎に異なる固有容量が割り当てられた少なくとも1つのコンデンサと、

    を備え、

     前記電源端子を介して前記電力を供給した状態で、前記固有容量に応じて異なる識別電圧が前記電源端子に現れる。
  19. 請求項18に記載のブラシレスDCモータであって、

     前記少なくとも1つのコンデンサは、数百μFの容量を有する電解コンデンサである。
PCT/JP2019/008515 2018-03-23 2019-03-05 ブラシレスdcモータの種類を識別する識別方法、識別装置およびブラシレスdcモータ WO2019181470A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018057032 2018-03-23
JP2018-057032 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019181470A1 true WO2019181470A1 (ja) 2019-09-26

Family

ID=67986125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008515 WO2019181470A1 (ja) 2018-03-23 2019-03-05 ブラシレスdcモータの種類を識別する識別方法、識別装置およびブラシレスdcモータ

Country Status (1)

Country Link
WO (1) WO2019181470A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11874310B2 (en) 2022-05-13 2024-01-16 Haier Us Appliance Solutions, Inc. Motor identification by filter determination

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107771A (ja) * 1993-09-30 1995-04-21 Toshiba Corp モータ駆動装置
JP2000316289A (ja) * 1999-04-27 2000-11-14 Canon Inc モータ駆動装置および画像形成装置
JP2001245488A (ja) * 2000-02-29 2001-09-07 Canon Inc モータのサーボ制御装置
JP2005117791A (ja) * 2003-10-08 2005-04-28 Denso Wave Inc 駆動制御装置及び駆動制御装置の駆動モジュール判別方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107771A (ja) * 1993-09-30 1995-04-21 Toshiba Corp モータ駆動装置
JP2000316289A (ja) * 1999-04-27 2000-11-14 Canon Inc モータ駆動装置および画像形成装置
JP2001245488A (ja) * 2000-02-29 2001-09-07 Canon Inc モータのサーボ制御装置
JP2005117791A (ja) * 2003-10-08 2005-04-28 Denso Wave Inc 駆動制御装置及び駆動制御装置の駆動モジュール判別方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11874310B2 (en) 2022-05-13 2024-01-16 Haier Us Appliance Solutions, Inc. Motor identification by filter determination

Similar Documents

Publication Publication Date Title
US10439522B2 (en) Brushless DC motor, and identification method and identification apparatus of identifying type of brushless DC motor
US10264704B2 (en) Brushless DC motor, and identification method and identification apparatus of identifying type of brushless DC motor
US10439521B2 (en) Brushless DC motor, and identification method and identification apparatus of identifying type of brushless DC motor
WO2019181470A1 (ja) ブラシレスdcモータの種類を識別する識別方法、識別装置およびブラシレスdcモータ
WO2019181472A1 (ja) ブラシレスdcモータの種類を識別する識別方法および識別装置
US10440858B2 (en) Brushless DC motor, and identification method and identification apparatus of identifying type of brushless DC motor
WO2019181471A1 (ja) ブラシレスdcモータの種類を識別する識別方法、識別装置およびブラシレスdcモータ
WO2019189165A1 (ja) ブラシレスdcモータの種類を識別する識別方法および識別装置
WO2019189166A1 (ja) ブラシレスdcモータの種類を識別する識別方法および識別装置
JP6051415B2 (ja) ブラシレスモータ制御装置およびその診断処理方法
US11283377B2 (en) Identification method and identification device for identifying type of brushless DC motor, and brushless DC motor
US11171593B2 (en) Identification method to identify type of brushless DC motor, identifier, and brushless DC motor
US11271498B2 (en) Brushless DC motor having drive circuit generating superimposed signal
WO2019189164A1 (ja) ブラシレスdcモータの種類を識別する識別方法、識別装置およびブラシレスdcモータ
WO2019189167A1 (ja) ブラシレスdcモータの種類を識別する識別方法および識別装置
JP6922569B2 (ja) ブラシレスdcモータ、ブラシレスdcモータの種類を識別する識別方法および識別装置
JP2013135595A (ja) モータ駆動装置
WO2019107156A1 (ja) ブラシレスdcモータの種類を識別する識別方法、識別装置およびブラシレスdcモータ
JP2020141548A (ja) モータ駆動制御装置
JP2015159692A (ja) 空気調和機
CN112421999B (zh) 用于电机诊断的方法和***
JP2009303458A (ja) モータ制御装置、及びモータ制御方法
JP2000010647A (ja) ファン駆動制御回路
CN114070139A (zh) 无刷直流电机的启动方法、装置、存储介质及电子设备
WO2019035402A1 (ja) ブラシレスモータ制御装置、その診断処理方法および自己診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19772581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP