WO2019180793A1 - 内燃機関制御方法及び内燃機関制御装置 - Google Patents

内燃機関制御方法及び内燃機関制御装置 Download PDF

Info

Publication number
WO2019180793A1
WO2019180793A1 PCT/JP2018/010892 JP2018010892W WO2019180793A1 WO 2019180793 A1 WO2019180793 A1 WO 2019180793A1 JP 2018010892 W JP2018010892 W JP 2018010892W WO 2019180793 A1 WO2019180793 A1 WO 2019180793A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
refrigerant
internal combustion
combustion engine
heat recovery
Prior art date
Application number
PCT/JP2018/010892
Other languages
English (en)
French (fr)
Inventor
徹 深見
健太郎 河原
佳史 入部
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2018/010892 priority Critical patent/WO2019180793A1/ja
Priority to US16/968,195 priority patent/US11092058B1/en
Priority to CN201880090346.1A priority patent/CN111771045B/zh
Priority to EP18910359.1A priority patent/EP3770397B1/en
Priority to JP2020507149A priority patent/JP6835290B2/ja
Publication of WO2019180793A1 publication Critical patent/WO2019180793A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/0205Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/02By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of high temperature, e.g. overheating of catalytic reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to control of an internal combustion engine.
  • An exhaust heat recovery system that recovers the heat of exhaust gas (hereinafter also referred to as exhaust heat) to a coolant for engine cooling is known for the purpose of improving the heater performance of a vehicle and raising the temperature of cooling water at the time of starting a cold machine.
  • exhaust heat an exhaust heat recovery device
  • heat exchange is performed between the exhaust gas and the refrigerant in the exhaust heat recovery device.
  • JP2008-27485A discloses that a refrigerant flow rate necessary for preventing boiling of the refrigerant in the exhaust heat recovery unit is estimated and the refrigerant flow rate is controlled based on the estimated refrigerant flow rate.
  • a configuration in which a filter for collecting fine particles contained in exhaust gas is provided in an exhaust passage of an engine.
  • DPF Diesel Particulate Filter
  • DPFs are already installed in many vehicles in order to meet the regulations of each country.
  • a gasoline engine is also being considered to be equipped with a filter to reduce particulate emissions.
  • a filter in the case of a gasoline engine is referred to as GPF (GasolineGaParticulate Filter).
  • GPF GasolineGaParticulate Filter
  • PF has a limited capacity for collecting fine particles
  • regeneration in which the collected fine particles are burned and removed.
  • the exhaust gas is heated by the combustion heat in the PF.
  • the amount of heat recovery in the exhaust heat recovery device increases, and the refrigerant is likely to boil in the heat recovery device.
  • an object of the present invention is to prevent boiling of the refrigerant in the exhaust heat recovery device even when the engine exhaust passage is provided with PF.
  • the exhaust gas temperature fluctuation factor part that causes the temperature of the exhaust gas of the internal combustion engine to fluctuate, and the exhaust gas passage that is disposed downstream of the exhaust gas temperature fluctuation factor part in the exhaust gas flow direction
  • an internal combustion engine control method for controlling an internal combustion engine comprising: an exhaust heat recovery unit that recovers heat into a refrigerant that cools the internal combustion engine; and a refrigerant flow rate adjustment unit that adjusts the flow rate of the refrigerant passing through the exhaust heat recovery unit. Is done.
  • the internal combustion engine control method estimates a boiling margin that is a parameter related to a thermal margin when the refrigerant boils in the exhaust heat recovery unit, and determines whether or not to perform a boiling avoidance process according to the boiling margin. .
  • FIG. 1 is a schematic diagram of a system to which the first embodiment is applied.
  • FIG. 2 is a block diagram showing a method for calculating the boiling margin.
  • FIG. 3 is an example of a table showing the relationship between the heat recovery efficiency and the exhaust gas flow rate.
  • FIG. 4 is an example of a table showing the boiling start temperature of the refrigerant, the system pressure, and the component shape.
  • FIG. 5 is a flowchart showing a control routine according to the first embodiment.
  • FIG. 6 is a flowchart showing a control routine according to the second embodiment.
  • FIG. 7 is a flowchart showing a control routine according to the third embodiment.
  • FIG. 1 is a schematic diagram of a system to which this embodiment is applied.
  • a filter 4 is interposed in the exhaust passage 1.
  • the exhaust passage 1 branches downstream of the filter 4 into a main passage 2 including a waste heat recovery unit 5 as an exhaust gas temperature fluctuation factor part and a bypass passage 3 bypassing the exhaust heat recovery unit 5.
  • a differential pressure type valve 6 is interposed in the bypass passage 3.
  • the filter 4 has a function of collecting fine particles contained in the exhaust gas. Specifically, when the internal combustion engine 13 is a gasoline engine, it is GPF, and when it is a diesel engine, it is DPF.
  • the first pressure sensor 9 is disposed on the upstream side of the filter 4 in the exhaust passage 1, and the second pressure sensor 10 is disposed on the downstream side.
  • the detection values of the first pressure sensor 9 and the second pressure sensor 10 are read into the controller 100 as a control unit.
  • the exhaust heat recovery unit 5 includes an exhaust gas passage through which exhaust gas passes and a refrigerant passage through which refrigerant passes, and is configured to exchange heat between the refrigerant and the exhaust gas.
  • cooling water for cooling the internal combustion engine is used as the refrigerant.
  • the refrigerant is supplied from the refrigerant inlet 7 to the refrigerant flow path, and the refrigerant that has passed through the refrigerant flow path is discharged from the refrigerant outlet 8.
  • the refrigerant inlet 7 is provided with a temperature sensor 11 that detects the temperature of the refrigerant flowing into the exhaust heat recovery unit 5. The detection value of the temperature sensor 11 is read into the controller 100.
  • the differential pressure type valve 6 is configured to open and close according to the differential pressure between the upstream side and the downstream side. Specifically, the valve opens when a differential pressure, which is a value obtained by subtracting the pressure on the downstream side of the differential pressure type valve 6 from the pressure on the upstream side of the differential pressure type valve 6, exceeds a preset threshold value. Moreover, the opening degree of the differential pressure type valve 6 increases as the differential pressure increases.
  • the controller 100 In addition to the detection values of the sensors 9, 10, 11, the controller 100 also reads detection values of a crank angle sensor, an accelerator opening sensor, etc. (not shown) to control ignition of the internal combustion engine 13, fuel injection, and the refrigerant pump 12. The control of etc. is executed. Further, the controller 100 performs so-called regeneration control that removes the particulates by burning them when the amount of particulates accumulated in the filter 4 exceeds a preset threshold value. For example, when the internal combustion engine 13 is a diesel engine, the fuel injection amount is increased, and when the internal combustion engine 13 is a gasoline engine, the engine rotation speed is increased.
  • the pressure loss of the exhaust gas passing through the filter 4 increases.
  • the exhaust gas flow rate downstream of the filter 4 decreases, so the opening of the differential pressure valve 6 decreases.
  • the ratio of the exhaust gas flowing into the exhaust heat recovery device 5 out of the exhaust gas that has passed through the filter 4 increases, and the amount of heat recovery in the exhaust heat recovery device 5 increases.
  • coolant which passed the exhaust heat recovery device 5 becomes high, so that the amount of heat recovery increases.
  • the regeneration control of the filter 4 is performed in a state where the temperature of the refrigerant is increased as described above, the refrigerant may boil in the exhaust heat recovery unit 5.
  • controller 100 executes the control described below in order to suppress the boiling of the refrigerant.
  • the controller 100 executes the boiling avoidance process for suppressing the boiling of the refrigerant by using the boiling margin that is a parameter related to the thermal margin when the refrigerant boils in the exhaust heat recovery unit 5. Determine whether or not.
  • the boiling avoidance process will be described later.
  • FIG. 2 is a block diagram showing a method for calculating the boiling margin.
  • the exhaust gas flow rate estimation unit B1 estimates the flow rate of exhaust gas discharged from the internal combustion engine 13. Specifically, the relationship between the engine rotation speed, the accelerator opening, and the exhaust gas flow rate is mapped in advance and stored in the controller 100, and is estimated by searching the map. Note that a flow rate sensor may be provided in the exhaust passage 1 and detected by the flow rate sensor.
  • the exhaust gas temperature estimation unit B2 estimates the temperature of exhaust gas discharged from the internal combustion engine 13. Specifically, the relationship between the engine speed, the accelerator opening, and the exhaust gas temperature is mapped in advance and stored in the controller 100, and is estimated by searching the map. Note that a temperature sensor may be provided in the exhaust passage 1 and detected by the temperature sensor.
  • the exhaust heat recovery device refrigerant flow rate estimation unit B3 estimates the flow rate of the refrigerant flowing into the exhaust heat recovery device 5. Specifically, the relationship between the engine speed, the accelerator opening, and the refrigerant flow rate is mapped in advance and stored in the controller 100, and is estimated by searching the map. In addition, a flow rate sensor may be provided at the inlet of the exhaust heat recovery unit 5 and detected by the flow rate sensor.
  • the filter temperature rise amount estimation unit B4 estimates the exhaust gas temperature rise amount in the filter 4 when regeneration is performed. Specifically, the amount of accumulated particulates is estimated based on the pressure difference between the upstream and downstream of the filter 4, and is estimated based on the amount of heat when the deposited particulates burn, the exhaust gas flow rate, and the exhaust gas temperature.
  • the heat recovery amount estimation unit B5 uses the following formula to calculate the heat recovery amount in the exhaust heat recovery unit 5 Is estimated.
  • Heat recovery amount specific heat x exhaust gas flow rate x (exhaust gas temperature-refrigerant temperature) x heat recovery efficiency (1)
  • the exhaust gas flow rate in Equation (1) is the exhaust gas flow rate flowing into the exhaust heat recovery unit 5 calculated based on the exhaust gas flow rate estimated by the exhaust gas flow rate estimation unit B1. A detailed calculation method will be described later. “Specific heat” in the formula (1) is specific heat of exhaust gas, and uses a theoretical value.
  • the exhaust gas temperature in Equation (1) is the exhaust gas temperature that has increased in temperature by the amount of temperature increase estimated by the filter temperature increase amount estimation unit B4.
  • the heat recovery efficiency in the equation (1) is set by creating a table showing the relationship between the heat recovery efficiency and the exhaust gas flow rate in advance, for example, as shown in FIG. To do.
  • the refrigerant temperature rise estimation unit B6 estimates the refrigerant temperature rise amount in the exhaust heat recovery unit 5 based on the heat recovery amount and the refrigerant flow rate flowing into the exhaust heat recovery unit 5.
  • the refrigerant temperature estimation unit B7 estimates the refrigerant temperature at the outlet of the exhaust heat recovery unit 5 based on the refrigerant temperature at the inlet of the exhaust heat recovery unit 5 and the temperature rise of the refrigerant in the exhaust heat recovery unit 5.
  • the boiling margin estimation unit B8 estimates the boiling margin based on the refrigerant temperature at the outlet of the exhaust heat recovery unit 5 and the boiling start temperature estimated from the system pressure and the component shape.
  • the boiling margin is the difference between the boiling start temperature and the refrigerant temperature at the outlet of the exhaust heat recovery unit 5 estimated from the refrigerant temperature estimation unit B7.
  • the system pressure is the pressure in the refrigerant flow path and is detected by a sensor.
  • the part shape is the shape inside and outside the exhaust heat recovery unit 5. There is a correlation as shown in FIG. 4, for example, between the boiling start temperature of the refrigerant, the system pressure, and the component shape.
  • Parts A and B are parts having different shapes.
  • the filter temperature increase amount estimation unit B4 since the exhaust gas temperature increase amount at the filter 4 is estimated by the filter temperature increase amount estimation unit B4, there is a component that causes the exhaust gas temperature to fluctuate upstream of the exhaust heat recovery device 5, such as the filter 4. Even in some cases, the temperature of the refrigerant flowing into the exhaust heat recovery unit 5 can be accurately estimated.
  • FIG. 5 is a flowchart showing a control routine executed by the controller 100.
  • step S100 the controller 100 estimates the pressure loss in the filter 4. Specifically, the difference between the detection value of the first pressure sensor 9 and the detection value of the second pressure sensor 10 is calculated.
  • the pressure loss estimation method is not limited to this, and a known method such as an estimation method using an accumulated travel distance may be used.
  • step S101 the controller 100 estimates the exhaust gas flow rate discharged from the internal combustion engine 13, that is, the exhaust gas flow rate flowing into the filter 4.
  • a specific estimation method is as described in the explanation of the exhaust gas flow rate estimation unit B1.
  • step S102 the controller 100 estimates the opening degree of the differential pressure type valve 6. Specifically, first, the exhaust gas flow rate at the outlet of the filter 4 is estimated from the pressure loss of the filter 4 and the exhaust gas flow rate flowing into the filter 4. Then, the pressure of the exhaust passage 1 on the outlet side of the filter 4 is estimated from the exhaust gas flow rate at the outlet of the filter 4, and the opening degree of the differential pressure type valve 6 is estimated based on the estimated value of this pressure and the characteristics of the differential pressure type valve 6. To do.
  • step S103 the controller 100 estimates the exhaust gas temperature at the outlet of the internal combustion engine 13.
  • a specific estimation method is as described in the explanation of the exhaust gas temperature estimation unit B2.
  • step S104 the controller 100 estimates the amount of exhaust gas temperature rise in the filter 4 when regeneration is performed.
  • a specific estimation method is as described in the description of the filter temperature increase amount estimation unit B4.
  • step S105 the controller 100 estimates the exhaust gas temperature at the outlet of the filter 4. Specifically, the temperature increase amount estimated in step S104 is added to the exhaust gas temperature estimated in step S103.
  • step S106 the controller 100 estimates the flow rate of the refrigerant flowing into the exhaust heat recovery unit 5.
  • the specific estimation method is as described in the explanation of the exhaust heat recovery device refrigerant flow rate estimation unit B3.
  • step S107 the controller 100 estimates the refrigerant temperature at the inlet of the exhaust heat recovery unit 5. Specifically, the detection value of the temperature sensor 11 is read.
  • step S108 the controller 100 estimates the heat recovery amount in the exhaust heat recovery device 5 by the above equation (1).
  • the exhaust gas flow rate in the equation (1) will be described.
  • the exhaust gas flow rate in Equation (1) is the exhaust gas flow rate that flows into the exhaust heat recovery unit 5 as described above, that is, the exhaust gas flow rate that passes through the main passage 2.
  • the controller 100 estimates the exhaust gas flow rate based on the exhaust gas flow rate at the outlet of the filter 4 and the opening of the differential pressure type valve 6. Specifically, the relationship between the ratio of the exhaust gas flow rate in the main passage 2 and the exhaust gas flow rate in the bypass passage 3 and the opening of the differential pressure type valve 6 is examined in advance and stored in the controller 100, and at the outlet of the filter 4. Estimation is made using the exhaust gas flow rate and the opening of the differential pressure type valve 6.
  • the exhaust gas flow rate at the outlet of the filter 4 is estimated based on the exhaust gas flow rate at the outlet of the internal combustion engine 13 and the pressure loss of the filter 4.
  • step S109 the controller 100 detects the refrigerant temperature at the inlet of the exhaust heat recovery unit 5 detected by the temperature sensor 11, the refrigerant flow rate flowing into the exhaust heat recovery unit 5 estimated in step S106, and the heat recovery amount estimated in step S108. And the refrigerant temperature at the outlet of the exhaust heat recovery unit 5 is estimated.
  • step S110 the controller 100 estimates the boiling margin.
  • the specific estimation method is as described in the explanation of the boiling margin estimation unit B8.
  • step S111 the controller 100 determines whether or not the boiling margin is equal to or less than a preset threshold value, and if it is equal to or less than the threshold value, executes the process of step S112, and if greater than the threshold value, executes the process of step S113.
  • the process in step S111 is to determine whether or not the refrigerant will boil when regeneration control is performed from now on.
  • the boiling margin is the difference between the refrigerant temperature at the outlet of the exhaust heat recovery unit 5 and the boiling start temperature of the refrigerant when regeneration control is performed. Therefore, if the boiling margin is less than or equal to zero, the refrigerant will boil by regeneration control, but here, a value greater than zero is set as a threshold value in consideration of sensor detection errors, estimation calculation errors, and the like. . A specific threshold is determined by matching.
  • step S112 the controller 100 prohibits forced regeneration of the filter 4 as a boiling avoidance process and ends the current routine.
  • the forced regeneration is regeneration control performed for the purpose of causing the controller 100 to regenerate the filter 4. For example, when the filter 4 is a DPF, the fuel injection amount is increased or the intake air amount is decreased. When the filter 4 is a GPF, the engine speed is increased. In the case where the filter 4 is GPF, the forced regeneration does not include the burning of the fine particles due to the increase in the engine speed during acceleration.
  • the driver may be informed that a large amount of fine particles are accumulated on the filter 4 by lighting a monitor lamp or the like.
  • step S113 the controller 100 permits forced regeneration and ends the current routine.
  • the controller 100 calculates the boiling margin based on the refrigerant temperature, the refrigerant flow rate, the exhaust gas flow rate, the exhaust gas temperature, the system pressure, and the opening of the differential pressure type valve 6.
  • the boiling margin can be estimated with high accuracy.
  • the exhaust gas flow rate flowing into the exhaust heat recovery unit 5 is estimated based on the exhaust gas flow rate at the outlet of the filter 4 and the opening of the differential pressure valve 6, and the exhaust gas flow rate flowing into the exhaust heat recovery unit 5 is exhausted.
  • the boiling margin can be estimated with higher accuracy.
  • the boiling margin that is a parameter related to the thermal margin when the refrigerant boils in the exhaust heat recovery unit 5 is estimated, and whether or not the boiling avoidance process is executed according to the boiling margin. Judging. Thereby, even when there is a component that causes the exhaust gas temperature to fluctuate upstream from the exhaust heat recovery unit 5, the temperature of the refrigerant flowing into the exhaust heat recovery unit 5 is accurately estimated, and the boiling avoidance process is performed to reduce the refrigerant temperature. It becomes possible to suppress boiling.
  • the exhaust gas temperature fluctuation factor part is the filter 4 that collects particulates contained in the exhaust gas, and forcibly regenerating the filter 4 as a boiling avoidance process when the boiling margin is equal to or less than a threshold value.
  • the amount of temperature rise of the filter 4 due to burning of the particulates collected by the filter 4 is estimated based on the pressure loss of the filter 4, and the exhaust gas after passing through the filter 4 based on the amount of temperature rise
  • the exhaust gas temperature at the filter outlet which is the temperature of the filter, is estimated.
  • the heat recovery amount is estimated based on the filter outlet exhaust gas temperature
  • the exhaust heat recovery device outlet refrigerant temperature that is the refrigerant temperature after passing through the exhaust heat recovery device 5 is estimated based on the heat recovery amount
  • the exhaust heat recovery device The boiling margin is estimated based on the difference between the outlet refrigerant temperature and the refrigerant boiling point. Thereby, it is possible to accurately estimate the boiling margin.
  • FIG. 6 is a flowchart showing a control routine executed by the controller 100. Steps S200 to S213 are the same as steps S100 to S113 in FIG.
  • step S214 the controller 100 increases the refrigerant flow rate and ends the current routine.
  • the amount of increase is set in advance by adaptation.
  • the refrigerant flow rate is increased, the refrigerant temperature at the outlet of the exhaust heat recovery unit 5 decreases even if the heat recovery amount does not change, so that the boiling margin increases. Therefore, by repeating this routine, the boiling margin becomes larger than the threshold value, and forced regeneration is permitted.
  • the forced regeneration of the filter 4 is prohibited as the boiling avoidance process, the flow rate of the refrigerant is increased, and the boiling margin is increased after increasing the flow rate of the refrigerant. If the value exceeds the threshold, forced regeneration is permitted. Thereby, forced regeneration can be performed at a timing at which there is no possibility that the refrigerant will boil.
  • a third embodiment will be described.
  • the control described in the first embodiment and the second embodiment determines whether or not the refrigerant boils before performing forced regeneration, and prohibits forced regeneration when there is a risk of boiling.
  • the control of the present embodiment is a control when reproduction starts at an unintended timing.
  • the case where the regeneration starts at an unintended timing is, for example, a case where the filter 4 is GPF and the engine speed increases due to the driver depressing the accelerator pedal to accelerate, and the regeneration starts.
  • FIG. 7 is a flowchart showing a control routine executed by the controller 100.
  • step S300 the controller 100 determines whether or not the difference between the refrigerant temperature at the inlet of the exhaust heat recovery unit 5 and the refrigerant temperature at the outlet (hereinafter also referred to as refrigerant temperature difference) is greater than or equal to a threshold temperature difference.
  • refrigerant temperature difference the difference between the refrigerant temperature at the inlet of the exhaust heat recovery unit 5 and the refrigerant temperature at the outlet
  • the refrigerant temperature difference coolant temperature of the inlet_port
  • This determination is to determine whether or not the regeneration of the filter 4 has started. Since the exhaust gas temperature rises when the regeneration of the filter 4 starts, the temperature of the refrigerant after heat exchange with the exhaust gas in the exhaust heat recovery device 5 also becomes higher than before the regeneration starts. Therefore, when the temperature difference between the refrigerant temperature at the outlet of the exhaust heat recovery device 5 and the refrigerant temperature at the inlet is rapidly widened, it can be estimated that regeneration has started.
  • the threshold temperature difference used for the determination is set according to the specifications of the exhaust heat recovery unit 5 and the like.
  • step S300 If the controller 100 determines that the refrigerant temperature difference is greater than or equal to the threshold temperature difference in step S300, the controller 100 executes the process of step S301. If the controller 100 determines that the refrigerant temperature difference is smaller than the threshold temperature difference, the current routine is terminated.
  • Steps S301 to S312 are the same as steps S100 to S111 in FIG.
  • step S313 the controller 100 increases the flow rate of the refrigerant. That is, when the boiling margin is equal to or less than the threshold value even though the regeneration of the filter 4 has started, the refrigerant will boil as it is, so that the refrigerant flow rate is increased as a boiling avoidance process. Thereby, boiling of a refrigerant
  • coolant can be suppressed.
  • the boiling margin is estimated. If the boiling margin is less than or equal to the threshold, the flow rate of the refrigerant is increased as a boiling avoidance process. Thereby, even when the regeneration of the filter 4 starts at an unintended timing, the boiling of the refrigerant can be suppressed.
  • the third embodiment may be combined with the first embodiment or the second embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

内燃機関制御方法は、内燃機関の排ガスの温度を変動させる要因となる排ガス温度変動要因部と、排ガス温度変動要因部よりも排ガスの流れ方向下流側の排気通路に配置され、排ガスの熱を、内燃機関を冷却する冷媒に回収する排熱回収器と、排熱回収器を通過する冷媒の流量を調節する冷媒流量調節部と、を備える内燃機関を制御する。そして、内燃機関制御方法は、排熱回収器で冷媒が沸騰する場合に対する熱的な余裕に関するパラメータである沸騰余裕度を推定し、沸騰余裕度に応じて沸騰回避処理を実行するか否かを判断する。

Description

内燃機関制御方法及び内燃機関制御装置
 本発明は、内燃機関の制御に関する。
 車両のヒーター性能の向上や、冷機始動時における冷却水の早期昇温等を目的として、排ガスの熱(以下、排熱ともいう)をエンジン冷却用の冷媒に回収する排熱回収システムが知られている。具体的な構成としては、エンジンの排気通路に排熱回収器を設け、この排熱回収器において排ガスと冷媒との間で熱交換を行なう構成が知られている。
 上記のような排熱回収システムを備える場合には、排熱回収器において冷媒が沸騰することを防止する必要がある。そのための制御として、排熱回収器での冷媒の沸騰を防止するために必要な冷媒流量を推定し、これに基づいて冷媒流量を制御することがJP2008-274885Aに開示されている。
 ところで、近年では排ガス中に含まれる微粒子を捕集するフィルタをエンジンの排気通路に設ける構成が知られている。ディーゼルエンジンに関しては、いわゆるDPF(Diesel Particulate Filter)が知られており、DPFは各国の規制に対応するため既に多くの車両に搭載されている。一方、ガソリンエンジンについても、微粒子の排出量低減のためにフィルタの搭載が検討されている。なお、ガソリンエンジンの場合のフィルタを、GPF(Gasoline Particulate Filter)と称する。また、DPFとGPFを区別する必要がない場合には、単にフィルタ又はPF(Particulate Filter)と称する。
 PFには微粒子を捕集する容量に限界があるため、捕集量が所定量に達したら、捕集した微粒子を燃焼させて除去する、いわゆる再生を行なう必要がある。そして再生が行われると、排ガスはPFにおいて燃焼熱により加熱される。このため、排ガスがPF通過後に排熱回収器に流入する構成においては、再生が行われると排熱回収器での熱回収量が増大し、熱回収器において冷媒が沸騰し易くなる。
 しかしながら、上記文献では排気通路にPFを備える構成を想定していない。このため、上記文献に記載の制御では、再生が行われた場合に冷媒が沸騰するおそれがある。
 そこで本発明は、エンジンの排気通路にPFを備える場合でも、排熱回収器における冷媒の沸騰を防止することを目的とする。
 本発明のある態様によれば、内燃機関の排ガスの温度を変動させる要因となる排ガス温度変動要因部と、排ガス温度変動要因部よりも排ガスの流れ方向下流側の排気通路に配置され、排ガスの熱を、内燃機関を冷却する冷媒に回収する排熱回収器と、排熱回収器を通過する冷媒の流量を調節する冷媒流量調節部と、を備える内燃機関を制御する内燃機関制御方法が提供される。内燃機関制御方法は、排熱回収器で冷媒が沸騰する場合に対する熱的な余裕に関するパラメータである沸騰余裕度を推定し、沸騰余裕度に応じて沸騰回避処理を実行するか否かを判断する。
図1は、第1実施形態を適用するシステムの模式図である。 図2は、沸騰余裕度の算出方法を示すブロック図である。 図3は、熱回収効率と排ガス流量との関係を示すテーブルの一例である。 図4は、冷媒の沸騰開始温度と系統圧及び部品形状とを示すテーブルの一例である。 図5は、第1実施形態に係る制御ルーチンを示すフローチャートである。 図6は、第2実施形態に係る制御ルーチンを示すフローチャートである。 図7は、第3実施形態に係る制御ルーチンを示すフローチャートである。
 以下、図面等を参照して、本発明の実施形態について説明する。
 (第1実施形態)
 図1は、本実施形態を適用するシステムの模式図である。排気通路1にはフィルタ4が介装されている。排気通路1は、フィルタ4よりも下流側で、排ガス温度変動要因部としての排熱回収器5を備えるメイン通路2と、排熱回収器5を迂回するバイパス通路3とに分岐する。バイパス通路3には差圧式バルブ6が介装されている。
 フィルタ4は、排ガス中に含まれる微粒子を捕集する機能を有する。具体的には、内燃機関13がガソリンエンジンの場合はGPF、ディーゼルエンジンの場合はDPFである。
 排気通路1のフィルタ4の上流側には第1圧力センサ9が、下流側には第2圧力センサ10が、それぞれ配置される。第1圧力センサ9及び第2圧力センサ10のそれぞれの検出値は制御部としてのコントローラ100に読み込まれる。
 排熱回収器5は、排ガスが通過する排ガス流路と冷媒が通過する冷媒流路とを内部に備え、冷媒と排ガスとの間で熱交換できる構成になっている。本実施形態では内燃機関を冷却する冷却水を冷媒として用いる。冷媒流路には、冷媒入口7から冷媒が供給され、冷媒流路を通過した冷媒は冷媒出口8から排出される。冷媒入口7には、排熱回収器5に流入する冷媒の温度を検出する温度センサ11が設けられる。温度センサ11の検出値はコントローラ100に読み込まれる。
 差圧式バルブ6は、上流側と下流側との差圧に応じて開閉する構成になっている。具体的には、差圧式バルブ6の上流側の圧力から差圧式バルブ6の下流側の圧力を減算した値である差圧が予め設定した閾値を超えると開弁する。また、差圧が大きいほど差圧式バルブ6の開度は大きくなる。
 コントローラ100は上記各センサ9、10、11の検出値の他に、図示しないクランク角センサやアクセル開度センサ等の検出値も読み込み、内燃機関13の点火や燃料噴射の制御や、冷媒ポンプ12の制御等を実行する。また、コントローラ100は、フィルタ4の内部に堆積する微粒子の量が予め設定した閾値を超えると、微粒子を燃焼させることによって除去する、いわゆる再生制御を行なう。例えば、内燃機関13がディーゼルエンジンの場合には燃料噴射量を増量し、ガソリンエンジンの場合にはエンジン回転速度を上昇させる。
 ところで、フィルタ4の内部に堆積する微粒子の量が多くなるほど、通過する排ガスの圧力損失が大きくなる。圧力損失が大きくなるほど、フィルタ4より下流側の排ガス流量は少なくなるので、差圧式バルブ6の開度が小さくなる。その結果、フィルタ4を通過した排ガスのうち排熱回収器5に流入する排ガスの割合が大きくなり、排熱回収器5における熱回収量が多くなる。そして、熱回収量が多くなるほど排熱回収器5を通過した冷媒の温度は高くなる。
 一方、フィルタ4の再生制御を行なうと、微粒子が燃焼することによって排ガスの温度が上昇する。
 したがって、上記のように冷媒の温度が高まった状態でフィルタ4の再生制御を行なうと、排熱回収器5において冷媒が沸騰するおそれがある。
 そこで、コントローラ100は冷媒の沸騰を抑制するために、以下に説明する制御を実行する。
 本実施形態では、コントローラ100は、排熱回収器5で冷媒が沸騰する場合に対する熱的な余裕に関するパラメータである沸騰余裕度を用いて、冷媒の沸騰を抑制するための沸騰回避処理を実行するか否かを判断する。沸騰回避処理については後述する。
 図2は、沸騰余裕度の算出方法を示すブロック図である。
 排ガス流量推定部B1は、内燃機関13から排出される排ガスの流量を推定する。具体的には、エンジン回転速度及びアクセル開度と排ガス流量との関係を予めマップ化してコントローラ100に記憶しておき、当該マップを検索することによって推定する。なお、排気通路1に流量センサを設けて、流量センサにより検出してもよい。
 排ガス温度推定部B2は、内燃機関13から排出される排ガスの温度を推定する。具体的には、エンジン回転速度及びアクセル開度と排ガス温度との関係を予めマップ化してコントローラ100に記憶しておき、当該マップを検索することによって推定する。なお、排気通路1に温度センサを設けて、温度センサにより検出してもよい。
 排熱回収器冷媒流量推定部B3は、排熱回収器5に流入する冷媒の流量を推定する。具体的には、エンジン回転速度及びアクセル開度と冷媒流量との関係を予めマップ化してコントローラ100に記憶しておき、当該マップを検索することによって推定する。なお、排熱回収器5の入口に流量センサを設けて、流量センサにより検出してもよい。
 フィルタ温度上昇量推定部B4は、再生が行われた場合のフィルタ4での排ガス温度上昇量を推定する。具体的には、フィルタ4の上下流の差圧に基づいて微粒子の堆積量を推定し、堆積している微粒子が燃焼した場合の熱量と、排ガス流量及び排ガス温度とに基づいて推定する。
 熱回収量推定部B5は、排ガス流量と、排ガス温度と、温度センサ11で検出した排熱回収器5の入口における冷媒温度と、に基づいて、下式により排熱回収器5における熱回収量を推定する。
 熱回収量=比熱×排ガス流量×(排ガス温度-冷媒温度)×熱回収効率・・・(1)
 式(1)における排ガス流量は、排ガス流量推定部B1で推定した排ガス流量に基づいて算出した排熱回収器5に流入する排ガス流量である。詳細な算出方法については後述する。式(1)における「比熱」は排ガスの比熱であり、理論値を用いる。式(1)における排ガス温度は、フィルタ温度上昇量推定部B4で推定した温度上昇量だけ温度上昇した排ガス温度である。式(1)における熱回収効率は、例えば図3に示すような、熱回収効率と排ガス流量との関係を示すテーブルを予め作成してコントローラ100に記憶しておき、これを検索することによって設定する。
 冷媒温度上昇推定部B6は、熱回収量と排熱回収器5に流入する冷媒流量とに基づいて、排熱回収器5における冷媒の温度上昇量を推定する。
 冷媒温度推定部B7は、排熱回収器5の入口における冷媒温度と、排熱回収器5における冷媒の温度上昇量とに基づいて、排熱回収器5の出口における冷媒温度を推定する。
 沸騰余裕度推定部B8は、排熱回収器5の出口における冷媒温度と、系統圧及び部品形状から推定する沸騰開始温度とに基づいて、沸騰余裕度を推定する。沸騰余裕度とは、沸騰開始温度と冷媒温度推定部B7出推定した排熱回収器5の出口における冷媒温度との差である。系統圧とは、冷媒流路内の圧力であり、センサにより検出する。部品形状とは排熱回収器5の内部及び外部の形状である。冷媒の沸騰開始温度と系統圧及び部品形状とには、例えば図4に示すような相関がある。部品Aと部品Bは形状が異なる部品である。すなわち、系統圧が高いほど沸騰開始温度も高くなる特性があり、かつ、同じ系統圧であっても部品形状が異なれば沸騰開始温度も異なる。そこで、本実施形態を適用するシステムについて、系統圧の変化に対して沸騰開始温度がどのように変化するのかを予め調べてテーブル化しておき、テーブル検索により沸騰開始温度を推定する。
 上記の通り、フィルタ4での排ガス温度上昇量をフィルタ温度上昇量推定部B4が推定するので、排熱回収器5よりも上流側にフィルタ4のように排ガス温度を変動させる要因となる部品がある場合でも、排熱回収器5に流入する冷媒の温度を精度良く推定できる。
 次に、冷媒の沸騰を回避するための制御について説明する。
 図5は、コントローラ100が実行する制御ルーチンを示すフローチャートである。
 ステップS100で、コントローラ100はフィルタ4における圧力損失を推定する。具体的には、第1圧力センサ9の検出値と第2圧力センサ10の検出値との差を演算する。なお、圧力損失の推定方法はこれに限られるわけではなく、例えば積算走行距離を用いる推定方法等、公知の方法を用いてもよい。
 ステップS101で、コントローラ100は内燃機関13から排出される排ガス流量、つまりフィルタ4に流入する排ガス流量を推定する。具体的な推定方法は、排ガス流量推定部B1の説明で述べた通りである。
 ステップS102で、コントローラ100は差圧式バルブ6の開度を推定する。具体的には、まずフィルタ4の圧力損失とフィルタ4に流入する排ガス流量とからフィルタ4の出口における排ガス流量を推定する。そして、フィルタ4の出口における排ガス流量からフィルタ4の出口側の排気通路1の圧力を推定し、この圧力の推定値と差圧式バルブ6の特性とに基づいて差圧式バルブ6の開度を推定する。
 ステップS103で、コントローラ100は内燃機関13の出口における排ガス温度を推定する。具体的な推定方法は、排ガス温度推定部B2の説明で述べた通りである。
 ステップS104で、コントローラ100は再生が行われた場合のフィルタ4での排ガス温度上昇量を推定する。具体的な推定方法は、フィルタ温度上昇量推定部B4の説明で述べた通りである。
 ステップS105で、コントローラ100はフィルタ4の出口における排ガス温度を推定する。具体的には、ステップS103で推定した排ガス温度にステップS104で推定した温度上昇量を加算する。
 ステップS106で、コントローラ100は排熱回収器5に流入する冷媒流量を推定する。具体的な推定方法は排熱回収器冷媒流量推定部B3の説明で述べた通りである。
 ステップS107で、コントローラ100は排熱回収器5の入口における冷媒温度を推定する。具体的には温度センサ11の検出値を読み込む。
 ステップS108で、コントローラ100は排熱回収器5における熱回収量を上記式(1)により推定する。ここで、式(1)における排ガス流量について説明する。
 式(1)における排ガス流量は、上述した通り排熱回収器5に流入する排ガス流量、つまりメイン通路2を通過する排ガス流量である。コントローラ100は、この排ガス流量をフィルタ4の出口における排ガス流量と差圧式バルブ6の開度とに基づいて推定する。具体的には、メイン通路2の排ガス流量とバイパス通路3の排ガス流量との比と、差圧式バルブ6の開度との関係を予め調べてコントローラ100に記憶しておき、フィルタ4の出口における排ガス流量と差圧式バルブ6の開度とを用いて推定する。ここで、フィルタ4の出口における排ガス流量は、内燃機関13の出口における排ガス流量とフィルタ4の圧力損失とに基づいて推定する。
 ステップS109で、コントローラ100は温度センサ11で検出した排熱回収器5の入口における冷媒温度と、ステップS106で推定した排熱回収器5に流入する冷媒流量と、ステップS108で推定した熱回収量と、を用いて排熱回収器5の出口における冷媒温度を推定する。
 ステップS110で、コントローラ100は沸騰余裕度を推定する。具体的な推定方法は、沸騰余裕度推定部B8の説明で述べた通りである。
 ステップS111で、コントローラ100は沸騰余裕度が予め設定した閾値以下であるか否かを判定し、閾値以下であればステップS112の処理を実行し、閾値より大きければステップS113の処理を実行する。
 ステップS111の処理は、これから再生制御を行なうと冷媒が沸騰するか否かを判定するものである。そして、沸騰余裕度は再生制御を行なった場合の排熱回収器5の出口における冷媒温度と冷媒の沸騰開始温度との差である。したがって、沸騰余裕度がゼロ以下であれば再生制御によって冷媒が沸騰することになるが、ここではセンサの検出誤差や推定演算の誤差等を考慮して、ゼロよりも大きな値を閾値として設定する。具体的な閾値は適合により決定する。
 ステップS112で、コントローラ100は沸騰回避処理としてフィルタ4の強制再生を禁止して今回のルーチンを終了する。強制再生とは、コントローラ100がフィルタ4を再生することを目的として行なう再生制御のことである。例えば、フィルタ4がDPFの場合には燃料噴射量の増量や吸入空気量の減量、フィルタ4がGPFの場合にはエンジン回転速度の上昇である。フィルタ4がGPFの場合において、加速時にエンジン回転速度が上昇することで微粒子が燃焼することは強制再生には含まれない。
 なお、強制再生が禁止された場合には、フィルタ4に多量の微粒子が堆積していることをモニタランプの点灯等により運転者に知らせるようにしてもよい。
 ステップS113で、コントローラ100は強制再生を許可して今回のルーチンを終了する。
 上記の通り、コントローラ100は冷媒温度、冷媒流量、排ガス流量、排ガス温度、系統圧、差圧式バルブ6の開度に基づいて沸騰余裕度を算出する。これにより沸騰余裕度を精度良く推定することができる。特に、排熱回収器5に流入する排ガス流量を、フィルタ4の出口における排ガス流量と差圧式バルブ6の開度とに基づいて推定し、排熱回収器5に流入する排ガス流量に基づいて排熱回収器5における熱回収量を推定することにより、沸騰余裕度をより精度良く推定することができる。
 以上の通り本実施形態では、排熱回収器5で冷媒が沸騰する場合に対する熱的な余裕に関するパラメータである沸騰余裕度を推定し、沸騰余裕度に応じて沸騰回避処理を実行するか否かを判断する。これにより、排熱回収器5よりも上流側に排ガス温度を変動させる要因となる部品がある場合でも、排熱回収器5に流入する冷媒の温度を精度良く推定し、沸騰回避処理により冷媒の沸騰を抑制することが可能となる。
 本実施形態では、排ガス温度変動要因部は排ガスに含まれる微粒子を捕集するフィルタ4であり、沸騰余裕度が閾値以下の場合に、沸騰回避処理としてフィルタ4の強制再生を禁止する。これにより、フィルタ4の再生制御を実行した場合に冷媒が沸騰するか否かを精度良く判断することが可能となり、沸騰するおそれがある場合には強制再生を禁止することによって冷媒の沸騰を回避できる。
 本実施形態では、フィルタ4の圧力損失に基づいて、フィルタ4に捕集された微粒子が燃焼することによるフィルタ4の温度上昇量を推定し、温度上昇量に基づいてフィルタ4を通過後の排ガスの温度であるフィルタ出口排ガス温度を推定する。そして、フィルタ出口排ガス温度に基づいて熱回収量を推定し、熱回収量に基づいて排熱回収器5を通過後の冷媒温度である排熱回収器出口冷媒温度を推定し、排熱回収器出口冷媒温度と冷媒沸点との差に基づいて沸騰余裕度を推定する。これにより、沸騰余裕度を精度良く推定することができる。
 (第2実施形態)
 第2実施形態について説明する。第1実施形態との相違点は、沸騰回避処理の内容である。第1実施形態では沸騰回避処理として強制再生を禁止するが、第2実施形態では、強制再生の禁止に加えて、冷媒流量の増加も行なう。以下、第1実施形態との相違点を中心に説明する。
 図6は、コントローラ100が実行する制御ルーチンを示すフローチャートである。ステップS200~S213は図5のステップS100~S113と同様なので説明を省略する。
 ステップS214で、コントローラ100は冷媒流量を増加させて今回のルーチンを終了する。増加量は適合等により予め設定する。冷媒流量を増加させると、熱回収量が変化しなくても排熱回収器5の出口における冷媒温度は低下するので、沸騰余裕度が増大する。したがって、本ルーチンを繰り返すことによって、沸騰余裕度は閾値より大きくなり、強制再生が許可される。
 すなわち、本実施形態では、強制再生を行なうと冷媒が沸騰すると推定された場合に、強制再生を禁止し、かつ冷媒流量を増加させることで沸騰余裕度を増大させる。そして、沸騰余裕度が閾値より大きくなったら、つまり強制再生を行なっても冷媒が沸騰するおそれがなくなったら、強制再生を許可する。
 以上の通り本実施形態では、沸騰余裕度が閾値以下の場合に、沸騰回避処理としてフィルタ4の強制再生を禁止し、かつ冷媒の流量を増加させ、冷媒の流量を増加させた後に沸騰余裕度が閾値より大きくなったら強制再生を許可する。これにより、冷媒が沸騰するおそれのないタイミングで強制再生を行なうことができる。
 (第3実施形態)
 第3実施形態について説明する。第1実施形態及び第2実施形態で説明した制御は、強制再生を行なう前に冷媒が沸騰するか否かを判定し、沸騰するおそれがある場合には強制再生を禁止するものである。これに対し本実施形態の制御は、意図しないタイミングで再生が始まった場合の制御である。意図しないタイミングで再生が始まる場合とは、例えば、フィルタ4がGPFであり、加速するために運転者がアクセルペダルを踏み込むことによってエンジン回転速度が上昇して、再生が始まってしまう場合である。
 図7は、コントローラ100が実行する制御ルーチンを示すフローチャートである。
 ステップS300で、コントローラ100は排熱回収器5の入口における冷媒温度と出口における冷媒温度との差(以下、冷媒温度差ともいう)が閾温度差以上か否かを判定する。なお、排熱回収器5の入口及び出口の冷媒温度は、それぞれ温度センサにより検出する。
 この判定は、フィルタ4の再生が始まったか否かを判定するものである。フィルタ4の再生が始まると排ガス温度が上昇するので、排熱回収器5で排ガスと熱交換した後の冷媒の温度も再生が始まる前に比べて高くなる。したがって、排熱回収器5の出口における冷媒温度と入口における冷媒温度との温度差が急激に広がったら、再生が始まったと推定することができる。判定に用いる閾温度差は、排熱回収器5の仕様等に応じて適合により設定する。
 コントローラ100は、ステップS300で冷媒温度差が閾温度差以上と判定したらステップS301の処理を実行し、冷媒温度差が閾温度差より小さいと判定したら今回のルーチンを終了する。
 ステップS301~S312は、図5のステップS100~S111と同様なので説明を省略する。
 ステップS313で、コントローラ100は冷媒の流量を増加させる。つまり、フィルタ4の再生が始まったにもかかわらず沸騰余裕度が閾値以下の場合には、そのままでは冷媒が沸騰してしまうので、沸騰回避処理として冷媒流量を増加する。これにより、冷媒の沸騰を抑制できる。
 以上の通り本実施形態では、フィルタ4の入口側の冷媒温度と出口側の冷媒温度との差に基づいて再生が始まったか否かを推定し、再生が始まった場合は沸騰余裕度を推定し、沸騰余裕度が閾値以下の場合には沸騰回避処理として冷媒の流量を増加させる。これにより、意図しないタイミングでフィルタ4の再生が始まった場合でも、冷媒の沸騰を抑制することができる。
 上記の各実施形態は適宜組み合わせても構わない。例えば、第3実施形態を第1実施形態または第2実施形態と組み合わせても構わない。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。

Claims (7)

  1.  内燃機関の排ガスの温度を変動させる要因となる排ガス温度変動要因部と、
     前記排ガス温度変動要因部よりも前記排ガスの流れ方向下流側の排気通路に配置され、前記排ガスの熱を、前記内燃機関を冷却する冷媒に回収する排熱回収器と、
     前記排熱回収器を通過する前記冷媒の流量を調節する冷媒流量調節部と、
    を備える内燃機関を制御する内燃機関制御方法において、
     前記排熱回収器で前記冷媒が沸騰する場合に対する熱的な余裕に関するパラメータである沸騰余裕度を推定し、
     前記沸騰余裕度に応じて沸騰回避処理を実行するか否かを判断する、内燃機関制御方法。
  2.  請求項1に記載の内燃機関制御方法において、
     前記排ガス温度変動要因部は前記排ガスに含まれる微粒子を捕集するフィルタであり、
     前記沸騰余裕度が閾値以下の場合に、前記沸騰回避処理として前記フィルタの強制再生を禁止する、内燃機関制御方法。
  3.  請求項1に記載の内燃機関制御方法において、
     前記排ガス温度変動要因部は前記排ガスに含まれる微粒子を捕集するフィルタであり、
     前記沸騰余裕度が閾値以下の場合に、前記沸騰回避処理として前記フィルタの強制再生を禁止し、かつ前記冷媒の流量を増加させ、
     前記冷媒の流量を増加させた後に前記沸騰余裕度が前記閾値より大きくなったら前記強制再生を許可する、内燃機関制御方法。
  4.  請求項2または3に記載の内燃機関制御方法において、
     前記フィルタの圧力損失に基づいて、前記フィルタに捕集された前記微粒子が燃焼することによる前記フィルタの温度上昇量を推定し、
     前記温度上昇量に基づいて前記フィルタを通過後の前記排ガスの温度であるフィルタ出口排ガス温度を推定し、
     前記フィルタ出口排ガス温度に基づいて熱回収量を推定し、
     前記熱回収量に基づいて前記排熱回収器を通過後の前記冷媒の温度である排熱回収器出口冷媒温度を推定し、
     前記排熱回収器出口冷媒温度と前記冷媒の沸点との差に基づいて前記沸騰余裕度を推定する、内燃機関制御方法。
  5.  請求項4に記載の内燃機関制御方法において、
     前記内燃機関は、前記排熱回収器を迂回するバイパス通路と、
     前記バイパス通路に配置され、上流側と下流側との差圧に応じて開閉するバイパス弁とをさらに備え、
     前記排熱回収器に流入する排ガス流量を、前記フィルタ出口における排ガス流量と前記バイパス弁の開度とに基づいて推定し、
    前記熱回収量を、前記排熱回収器に流入する排ガス流量に基づいて推定する、内燃機関制御方法。
  6.  請求項1に記載の内燃機関制御方法において、
     前記排ガス温度変動要因部は前記排ガスに含まれる微粒子を捕集するフィルタであり、
     前記フィルタの入口側の冷媒温度と出口側の冷媒温度との差に基づいて再生が始まったか否かを推定し、
    再生が始まった場合は前記沸騰余裕度を推定し、前記沸騰余裕度が閾値以下の場合には沸騰回避処理として前記冷媒の流量を増加させる、内燃機関制御方法。
  7.  内燃機関の排ガスの温度を変動させる要因となる排ガス温度変動要因部と、
     前記排ガス温度変動要因部よりも前記排ガスの流れ方向下流側の排気通路に配置され、前記排ガスの熱を、前記内燃機関を冷却する冷媒に回収する排熱回収器と、
     前記排熱回収器を通過する前記冷媒の流量を調節する冷媒流量調節部と、
     前記冷媒流量調節部を制御する制御部と、
    を備える内燃機関を制御する内燃機関制御装置において、
     前記制御部は、前記排熱回収器で前記冷媒が沸騰する場合に対する熱的な余裕に関するパラメータである沸騰余裕度を推定し、前記沸騰余裕度に応じて沸騰回避処理を実行するか否かを判断する、内燃機関制御装置。
PCT/JP2018/010892 2018-03-19 2018-03-19 内燃機関制御方法及び内燃機関制御装置 WO2019180793A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2018/010892 WO2019180793A1 (ja) 2018-03-19 2018-03-19 内燃機関制御方法及び内燃機関制御装置
US16/968,195 US11092058B1 (en) 2018-03-19 2018-03-19 Internal combustion engine control method and internal combustion engine control device
CN201880090346.1A CN111771045B (zh) 2018-03-19 2018-03-19 内燃机控制方法及内燃机控制装置
EP18910359.1A EP3770397B1 (en) 2018-03-19 2018-03-19 Method for controlling internal combustion engine and device for controlling internal combustion engine
JP2020507149A JP6835290B2 (ja) 2018-03-19 2018-03-19 内燃機関制御方法及び内燃機関制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/010892 WO2019180793A1 (ja) 2018-03-19 2018-03-19 内燃機関制御方法及び内燃機関制御装置

Publications (1)

Publication Number Publication Date
WO2019180793A1 true WO2019180793A1 (ja) 2019-09-26

Family

ID=67986785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010892 WO2019180793A1 (ja) 2018-03-19 2018-03-19 内燃機関制御方法及び内燃機関制御装置

Country Status (5)

Country Link
US (1) US11092058B1 (ja)
EP (1) EP3770397B1 (ja)
JP (1) JP6835290B2 (ja)
CN (1) CN111771045B (ja)
WO (1) WO2019180793A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018218209A1 (de) * 2018-10-24 2020-04-30 Robert Bosch Gmbh Verfahren zur Überwachung eines Abgasnachbehandlungssystems einer Brennkraftmaschine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274885A (ja) 2007-05-01 2008-11-13 Toyota Motor Corp 内燃機関の冷却装置
JP2013249794A (ja) * 2012-06-01 2013-12-12 Isuzu Motors Ltd エンジンの暖機装置
WO2015125260A1 (ja) * 2014-02-20 2015-08-27 日産自動車株式会社 冷却システム制御装置及び冷却システム制御方法
JP2017008868A (ja) * 2015-06-24 2017-01-12 トヨタ自動車株式会社 排熱回収器構造

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210115A (en) * 1981-06-22 1982-12-23 Toyota Motor Corp Purifier for exhaust particles of diesel engine
JP4928335B2 (ja) * 2007-04-17 2012-05-09 日野自動車株式会社 排気浄化装置
JP5331026B2 (ja) * 2010-02-18 2013-10-30 トヨタ自動車株式会社 排熱回収装置
US8869516B2 (en) * 2010-11-03 2014-10-28 Caterpillar Sarl Method of mixing exhaust gas exiting an exhaust stack outlet with cooling air exiting a cooling package outlet and machine using same
US9845750B2 (en) * 2016-01-29 2017-12-19 Ford Global Technologies, Llc Method and system for exhaust gas heat recovery
US10066561B2 (en) * 2016-04-27 2018-09-04 GM Global Technology Operations LLC Control of engine exhaust backpressure following engine cold-start
KR101786678B1 (ko) * 2016-04-29 2017-11-15 현대자동차 주식회사 엔진의 배기 열 회수 장치 및 방법
EP3339618A1 (en) * 2016-12-20 2018-06-27 Borgwarner Emissions Systems Spain, S.L.U. Valve for building a compact heat recovery unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274885A (ja) 2007-05-01 2008-11-13 Toyota Motor Corp 内燃機関の冷却装置
JP2013249794A (ja) * 2012-06-01 2013-12-12 Isuzu Motors Ltd エンジンの暖機装置
WO2015125260A1 (ja) * 2014-02-20 2015-08-27 日産自動車株式会社 冷却システム制御装置及び冷却システム制御方法
JP2017008868A (ja) * 2015-06-24 2017-01-12 トヨタ自動車株式会社 排熱回収器構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3770397A4

Also Published As

Publication number Publication date
EP3770397A1 (en) 2021-01-27
CN111771045A (zh) 2020-10-13
JP6835290B2 (ja) 2021-02-24
EP3770397A4 (en) 2021-01-27
JPWO2019180793A1 (ja) 2020-10-22
EP3770397B1 (en) 2023-07-19
CN111771045B (zh) 2021-06-29
US20210254532A1 (en) 2021-08-19
US11092058B1 (en) 2021-08-17

Similar Documents

Publication Publication Date Title
JP4075573B2 (ja) 内燃機関の排ガス浄化装置
US7219493B2 (en) Filter regeneration in engine exhaust gas purification device
US7062906B2 (en) Regeneration of particulate filter
EP1431531B1 (en) Particulate filter regenerating device
US6978602B2 (en) Engine exhaust cleaning device
US6990802B2 (en) Apparatus and method for regenerating particulate filter that removes particulates out of exhaust gas for internal combustion engine
EP1455060B1 (en) Engine exhaust gas purification device
EP1517012B1 (en) Filter regeneration control
RU2642710C1 (ru) Устройство управления для двигателя внутреннего сгорания, подавляющее выбросы белого дыма
JP4453718B2 (ja) 内燃機関の排ガス浄化装置
JP4556800B2 (ja) エンジンの背圧制御装置
WO2019180793A1 (ja) 内燃機関制御方法及び内燃機関制御装置
JP2006242098A (ja) 内燃機関の排気浄化装置
KR20120011564A (ko) 배기가스 후처리 방법 및 이를 수행하는 시스템
JP7363860B2 (ja) 内燃機関の制御装置および制御方法
JP2010169032A (ja) エンジンの制御装置
JP3915671B2 (ja) エンジンの排気浄化装置
JP4586702B2 (ja) オイル希釈防止装置を備えた内燃機関
JP4370942B2 (ja) エンジンの排気浄化装置
KR20120001431A (ko) 배기가스 후처리 시스템 및 이 제어방법
KR101801717B1 (ko) 내연 기관의 제어 장치
JP6962262B2 (ja) 排気処理システム
KR20050070572A (ko) 디젤 엔진용 후처리 장치의 재생 방법
JP7211192B2 (ja) 排気浄化装置
JP6769415B2 (ja) 排気処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507149

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018910359

Country of ref document: EP

Effective date: 20201019